
EMV-51
EMULATION VEHICLE

USER’S GUIDE

Copyright 1982, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

OrderNumber: 162611-002

CAUTION

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used
in accordance with the instruction manual, may cause interference to radio communications. It has
been tested and found to comply with the limits for a Class A Computing Device pursuant to Subpart J
of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference
when operated in a commercial environment. Operation of this equipment in a residential area is likely
to cause interference in which case the user, at his own expense, will be required to take whatever
measures may be required to correct the interference.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BXP Insite
CREDIT Intel
i Intclevision
l2-ICE intchgent Identifier
ICE intchgenl Programming
iCS Intellec
iLBX Jntcllink

iOSP
iMMX iPDS MLILI1BUS

IRMX MULTICHANNEL
iSBC MULTIMODULE
iSBX Plug-A-Bubblc
iSXM PROMPT
Library Manager RMX/MO
MCS RUPI
Mcgachassis System 2(X
MIC ROMAIN! RAME UPI

ii

REV. REVISION HISTORY DATE

-001 Original Issue 2/82

-002 Revision and update of manual 10/82

PREFACE

This manual is the user’s guide for the EMV-51 Emulation Vehicle. Chapters 1
and 2 contain an overview of the EMV-51. Chapters 3 through 6 provide tutorial
sessions to familiarize the initial user with the emulator commands. Chapter 7
contains reference material about the EMV-51 and the MCS-51 family of
microprocessors. Chapter 8 contains an alphabetical command dictionary.

Appendix A contains installation instructions for EMV-51. The following is a brief
guide to the contents of the manual:

Chapter 1 includes a description of the hardware and software
components of the EMV-51. The chapter defines emulation and how
emulation is used in the product development cycle.

Chapter 2 contains an overview of the command categories used in the
emulator software.

Chapter 3 presents a tutorial session on using the utility commands. It
includes a description of each command and gives screen displays showing
how each command is used.

Chapter 4 presents a tutorial session on using the display/modify
commands. It includes a description of each command and gives screen
displays showing how each command is used.

Chapter 5 presents a tutorial session on using the emulation commands. It
includes a description of each command and gives screen displays showing
how each command is used.

Chapter 6 presents a tutorial session on using the advanced commands. It
includes a description of each command and gives screen displays showing
how each command is used.

Chapter 7 contains reference material on the MCS-51 family of microproces
sors and the EMV-51.

Chapter 8 contains an alphabetical listing of the EMV-51 commands
including the format requirements.

Appendix A contains installation instructions and technical reference
material about the EMV-51.

Appendix B lists the error and warning messages.

Appendix C contains instructions for running the EMV-51 Confidence
Tests.

The reader should reference the following material to obtain additional
information about the MCS-51 family of microprocessors:

Microcontroller Applications Handbook, Order Number 210316
Microcontroller User’s Manual, Order Number 210359
MCS-51 Macro Assembler User's Guide, Order Number 9800937
Component Data Catalog, Order Number 210298

iv

SERVICE AND
REPAIR ASSISTANCE

The best service for your Intel product is provided by an Intel Customer Engineer.
These trained professionals provide prompt, efficient, on-site installation,
preventive maintenance, and corrective maintenance services required to keep
your equipment in the best possible operating condition.

The Intel Customer Engineer provides the service needed through a prepaid
service contract or on an hourly charge basis. For further information, contact
your local Intel sales office.

When the Intel Customer Engineer is not available, contact the Intel Product
Service Center.

United States customers can obtain service and repair assistance from Intel
Corporation by contacting the Intel Product Service Center in their local area.
Customers outside the United States should contact their sales source (Intel Sales
Office or Authorized Distributer) for service information and repair assistance.

Before calling the Product Service Center, have the following information
available:

a. The date you received the product.

b. The complete part number of the product (including dash number). On boards,
this number is usually silk-screened onto the board. On other MCSD products,
it usually stamped on a label.

c. The serial number of the product. On boards, this number is usually stamped
on the board. On other MCSD products, the serial number is usually stamped
on a label mounted on the outside of the chassis.

d. The shipping and billing address.

e. If the Intel Product warranty has expired, a purchase order number is needed
for billing purposes.

f. Be sure to advise the Center personnel of any extended warranty agreements
that apply.

Use the following telephone numbers for contacting the Intel Product Service
Center:

Western Region call: (602) 869-4951
Midwest Region call: (602) 869-4392
Eastern Region call: (602) 869-4045
International call: (602) 869-4391

Always contact the Product Service Center before returning a product to Intel for
repair. You are given a repair authorization number, shipping instructions, and
other important information which helps Intel provide you with fast, efficient
service. If you are returning the product because of damage sustained during
shipment, or if the product is out of warranty, a purchase order is required before
Intel can initiate the repair.

v

If available, use the original factory packaging material, when preparing a product
for shipment to the Intel Product Service Center. If the original packaging material
is not available, wrap the product in a cushioning material such as Air Cap
SD-240, manufactured by the Sealed Air Corporation, Hawthorne, N.J. Securely
enclose it in a heavy-duty corrugated shipping carton, mark it “FRAGILE” to
ensure careful handling, and ship it to the address specified by the Intel Product
Service Center.

vi

CONTENTS

CHAPTER 1 PAGE
INTRODUCTION
Introduction ... 1-1
EMV-51 Components .. 1-1

Hardware Components ... 1-2
Controller ... 1-2
Emulator... 1-2

Software Components .. 1-2
User Publications... 1-3

8751/8051/8031 Architecture Overview 1-3
Designing With The 8051 1-3

Purpose of Emulation .. 1-3
Definition of Emulation ... 1-4
Before Emulation.. 1-4
With Emulation .. 1-5
Symbolic Debugging .. 1-6

A Generalized Emulation Session 1-6
Emulation Procedure .. 1-6
Chapter Preview .. 1-10

CHAPTER 2
USING EMV-51
Introduction .. 2-1
Command Categories .. 2-1
Prompts And Messages.. 2-1
Comment Lines.. 2-2
Entering Commands .. 2-2

Entering the Command Line 2-2
Command Line Execution 2-2
Continuation Lines .. 2-2

Entry Editing and Display Control 2-3
Command Line Editing.. ■- 2-3
Controlling The Display .. 2-3

CHAPTER 3
UTILITY COMMANDS
Introduction .. 3-1
HELP Information .. 3-1

HELP Information Screen Displays 3-1
Beginning An Emulation Session.............................. 3-2

The LOAD Command .. 3-2
Loading Multiple Programs 3-3

Copy An Emulation Session 3-3
Setting Up A LIST File .. 3-3

The LIST Command .. 3-3
Closing A LIST File .. 3-4

Load and LIST Screen Display 3-4
Symbolic Reference Commands 3-5

Assigning Symbol Names 3-5

PAGE

The DEFINE Command 3-5
Manipulating Symbols... 3-5
Displaying Symbol Names 3-6

Displaying Individual Names 3-6
Displaying Multiply Defined Names 3-6
The SYMBOLS Command 3-6

Removing Symbol Names 3-6
The REMOVE Command................................... 3-6

Symbolic Reference Screen Displays 3-7
Enabling/Disabling Symbol Display....................... 3-7

The DISABLE Command................................... 3-8
The ENABLE Command 3-8

Evaluating Symbol Values 3-8
The EVALUATE Command 3-8
Evaluate Screen Display 3-8

Number Display Format ... 3-9
The SUFFIX and BASE Commands 3-9
SUFFIX and BASE Screen Displays....................... 3-9

Saving The User’s Program 3-9
The SAVE Command ... 3-10

Initializing EMV-51 Hardware 3-10
The RESET Command ... 3-10

Ending An Emulation Session 3-10
The EXIT Command... 3-10

Using Utility Commands ... 3-10

CHAPTER 4
DISPLAY/MODIFY COMMANDS
Introduction ... 4-1
Using Register Commands ... 4-1

Displaying Register Contents 4-1
Modifying Register Contents 4-1
Displaying Register Names and Contents 4-2

The REGISTER Command 4-2
Special Function Key 4 4-2
REGISTER Command Display Screen 4-2

Displaying INTERRUPT Register Contents 4-3
The INTERRUPT Command............................. 4-3

Memory Commands ... 4-4
Displaying Memory Contents................................. 4-4
Modifying Memory Contents 4-5
Displaying Memory Commands............................. 4-6

The MEMORY Command 4-6
Special Function Key 1 4-6

Assembly/Disassembly Commands 4-7
Assembling User's Program 4-7

The ASM Command ... 4-7
Disassembling User Programs 4-8

The DASM Command 4-8
Using Display/Modify Commands............................. 4-8

vii

CONTENTS (continued)

CHAPTER 5 PAGE
USING EMULATION COMMANDS
Introduction 5-1
Setting Breakpoints 5-1

Address Breakpoints 5-1
Branch Breakpoints 5-1
Range Breakpoints 5-2
Register Value Breakpoints 5-2
Clearing Breakpoints 5-2
Breakpoint Restrictions 5-2

Using The BREAK Command 5-3
Special Function Key 2 5-3
Breakpoint Screen Displays 5-3

Using Trace Display 5-4
The TD Command 5-4
The TR Command 5-5
The TBn Command 5-5
The TS Command 5-5
Controlling TRACE Display 5-5

The TRn Command 5-6
The TV Command 5-6

The DTRACE Command 5-6
Special Function Key 3 5-7
DTRACE Screen Displays 5-7

Program Emulation Commands 5-8
The STEP Command 5-8
The GO Command 5-9
The P Command 5-9

Emulation Control Screen Displays 5-10

CHAPTER 6
USING ADVANCED COMMANDS
Introduction 6-1
Using Macros 6-1

Defining Macros 6-1
The DEFINE Command 6-1
The EM Command 6-1
Parameter Passing 6-1
Writing Messages 6-2
Macro Definition Screen Display 6-2

Displaying Macro Information 6-2
The DIR Command .. 6-3
The MACRO Command 6-3
Macro Information Screen Displays 6-3

Executing Macros 6-3
The Macro Execution Command 6-3
Macro Execution Screen Display 6-4
The ENABLE/DIS ABLE Commands 6-4

Deleting Macros (the REMOVE Command) 6-4
Saving Macros (the PUT Command) 6-5
The INCLUDE Command 6-5

Executing Command Files 6-5
Executing Macro Command Files 6-5

PAGE

INCLUDE Command Screen Display 6-6
Using Compound Commands 6-7

Setting Up Conditional IF Commands 6-7
Conditional IF Screen Display 6-8

Setting Up the REPEAT Command 6-11
REPEAT Command Screen Displays 6-11

Setting up the COUNT Command 6-12
Using Special Function Keys 6-12

Assigning Function Keys to Macros 6-13
Function Key Precautions 6-13
Displaying Assigned Function Keys 6-13

Advanced Commands Demonstration 6-13

CHAPTER 7
EMV-51 REFERENCE MATERIAL
Introduction 7-1
EMV-51 Symbols 7-1
EMV-51 Operators 7-2

Arithmetic Operators 7-2
Content Operators 7-2

Code Memory (CBYTE) 7-2
CBYTE Restrictions 7-3
On-Chip Data and Register Memory
(DBYTE, RBIT, and RBYTE) 7-3

On-Chip Data Memory
(DBYTE and RBIT) 7-3
Special Function
Register Memory (RBYTE) 7-3

External Data Memory (PBYTE) 7-3
Relational Operators 7-6
Logical Operators 7-6

CHAPTER 8
COMMAND DICTIONARY PAGE
Introduction 8-1
Entering Commands 8-1

Entering the Command Line 8-1
Specifying the Workfile 8-1
Command Line Execution 8-2
Continuation Lines 8-2

Entry Editing and Display Control 8-2
Command Line Editing 8-2
Controlling the Display 8-3

Form of EMV-51 Commands 8-3
Notational Conventions 8-3

Command Description Formats 8-5
Special Command Format Terms 8-5

Expression g-6
String ... *'** 8.6
Source

viii

CONTENTS (continued)

PAGE PAGE

Destination.. 8-6
Command.. 8-7
Condition .. 8-7

Alphabetical Listing of Commands 8-7
ACCUMULATOR .. 8-7
ASM ... 8-8
B ... 8-9
BASE ... -8-10
BC .. 8-10
BRB.. 8-11
BREAK.. 8-11
BRR .. 8-12
BR<n> .. 8-13
BV ... 8-14
CBYTE .. 8-15
CDUMP .. 8-16
COUNT .. 8-17
DASM .. 8-18
DBYTE.. 8-19
DDUMP .. 8-20
DEFINE .. 8-20
DIR .. 8-21
DISABLE .. 8-22
DPTR .. 8-22
DTRACE .. 8-23
ENABLE .. 8-24
EVALUATE .. 8-24
EXIT .. 8-25
FUNCTION .. 8-26
GO .. 8-27
HELP .. 8-28
IF...THEN...ELSE .. 8-28
INCLUDE .. 8-30
INTERRUPT .. 8-30
LIST .. 8-31
LOAD .. 8-32
MACRO .. 8-33
MEMORY .. 8-34
P .. 8-34
PBYTE .. 8-35
PC .. 8-36
PSW .. 8-37
PUT .. 8-38
RBIT .. 8-39
RBS .. 8-40
RBYTE .. 8-40
REGISTER .. 8-41
R<n> .. 8-42
REMOVE .. 8-43
REPEAT .. 8-44
RESET .. 8-45
SAVE .. 8-46

SP .. 8-47
STEP.. 8-48
SUFFIX .. 8-49
SYMBOLS .. 8-50
TM0 .. 8-50
TM1 .. 8-51
WRITE .. 8-52
(macro execution) ... 8-52
(symbol handling) ... 8-53

APPENDIX A
INSTALLATION
Introduction ... A-l
Installing the EMV-51 ... A-l

Installation Considerations A-l
Installation Procedures ... A-l

Jumper Configurations ... A-5
Selecting the Program Memory A-5
Selecting Supply Voltage A-6
Selecting Oscillator Input A-6
Selecting Reset Input... A-6

User Test Signals ... A-6
Port 0 in Stand-Alone Mode A-7

APPENDIX B
ERROR MESSAGES

APPENDIX C
CONFIDENCE TEST
Confidence Test... C-l

PCONF Command ... C-l
INITE5ICON Command C-l
Confidence Test Commands C-2

Clear Command... C-2
Describe Command... C-2
Error Command... C-3
Exit Command... C-3
Ignore Command... C-3
List Command ... C-4
Recognize Command C-4
Summary Command ... C-4
Test Command .. C-5

Confidence Test Error Messages C-9

ix

FIGURES

FIGURE TITLE PAGE FIGURE TITLE PAGE

1-1 Complete Development System 1-1
1-2 Typical Microcomputer Development Cycle . 1-4
1-3 Development Cycle With EMV-51 Module .. 1-5
1-4 Emulator Module Connected to Prototype ... 1-6
1-5 Listing of Demonstration Program 1-11
7- 1 Internal Data Memory Organization 7-4
8- 1 Format of Command Descriptions 8-5
A-l EMV-51 Emulator Hardware Components .. A-2

A-2 Installation In The Personal
Development System A-3

A-3 Installation of Emulator
Module in Prototype .. A-4

A-4 EMV-51 Emulator Jumper Locations A-6
A-5 EMV-51 Controller’s

Terminal Post Location A-7
A-6 Port OPullup Configuration A-8

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE

2-1 Chapter Breakdown by Command Category 2-1
4-1 Register Keyword Names 4-1
4-2 Memory Areas and Keyword Names............... 4-4
7-1 System Symbols .. 7-1
7-2 Punctuation and Delimiter Keywords 7-1
7-3 Arithmetic Operators 7-2
7-4 Content Operators.. 7-2

7-5 Bit-Addressable Register Memory Contents . 7-5
7-6 Relational Operators ... 7-6
7- 7 Logical Operators ... 7-6
8- 1 Available Number Bases and Digits................. 8-6
A-l EMV-51 Emulator Jumper Descriptions A-5
A-2 User Test Signals ... A-7

x

CHAPTER 1
INTRODUCTION

Introduction

The EMV-51 Emulation Vehicle is an emulation tool for the MCS-51 family used
with the Personal Development System (iPDS). This chapter covers the following
topics:

• EMV-51 Components
• 8751/8051/8031 Architecture Overview
• Purpose of Emulation
• A Generalized Emulation Session

EMV-51 Components

The EMV-51 emulator is composed of hardware and software components. The
hardware includes the controller, the emulator, and the cable connecting the con
troller and emulator. The software component is the emulator software on a
diskette.

Figure 1-1 shows the controller connected to the iPDS and the cable connecting
the controller and emulator. Appendix A describes the procedure for preparing
the emulator for operation.

1-1

Introduction EMV-51

Hardware Components

The hardware components are:

• Controller
• Emulator
• Cable Assembly

Controller

The controller plugs into the side of the iPDS. It connects to the emulator via an
80 inch 50-conductor flat cable.

The controller’s user accessible terminal posts supply the test signals listed below
to the user’s test equipment. Appendix A contains additional information on these
signals.

• Instruction Fetch Clock (CLK)
• Address latch Enable (ALE)
• Program Store Enable (PSENE/)
• Emulation (EMUL)
• External Break Input (EXTBRK)
• Ground (GND)

Emulator

The emulator replaces the microcontroller in the user’s product. It contains the
following parts:

• 8051 microcontroller and integrated circuit buffers
• 12 MHz crystal
• Jumper connections for power, clock, source, reset input, and the EA/pin
• 40 pins exactly like the 8051/8031/8751 microcontroller

The emulator receives power from the iPDS development system or the user’s
product. The clock signal is supplied by the user’s product or by a 12 MHz crystal
located on the emulator circuit board. The user selects the source of power and
clock signals via jumper connections, described in Appendix A.

The reset jumper enables the user to select the reset input to the emulator’s 8051.
Either the prototype system reset or a lOuf reset capacitor on the emulator circuit
board may be selected. The choice between internal emulator memory or external
user memory is determined by the state of the EA/ pin. Additional information
about reset input and the EA/ pin is contained in Appendix A.

Software Components

The emulator software is furnished on a 5 1/4“ diskette under the file name
EMV51. A demonstration program is also furnished under the file name
EMVDEM.OBJ. Figure 1-5 shows a listing of the program.

The software is divided into three files. One file controls the iPDS and EMV-51
controller, while the second and third files contain error and general information
messages.

Chapter 2 describes the procedure to load the software from the diskette.

1-2

EMV-51 Introduction

User Publications

The EMV-51 package includes instructional and reference manuals to assist the
user in operating the system. These materials include the following:

• EMV-51 User’s Guide

• EMV-51 Pocket Reference listing each emulator command in alphabetical
order with a summary of its format and usage.

8751/8051/8031 Architecture Overview

The MCS-51 family consists of the 8031, the 8051, and the 8751 microcontrollers.
The 8031 contains no internal program memory. The 8051 contains 4K. of internal
Read-Only-Memory (ROM) that is programmed during the chip manufacture.
The 8751 contains 4K of internal Eraseable Programmable Read-Only-Memory
(EPROM) which the user programs with a PROM Programmer.

In addition, the MCS-51 family of chips contains 32 general purpose registers, 32
I/O lines, two 16-bit timer/event counters, a multiple source, nested interrupt
structure, a serial I/O channel, and an on-chip oscillator and clock circuit. The mi
crocontrollers can address 64K bytes of program memory and 64K bytes of exter
nal data memory.

The Microcontroller User’s Manual, manual order number 210359, contains addi
tional information about the MCS-51 family of chips.

Designing With the 8051

Due to the complexity of the MCS-51 microcontrollers, traditional design proce
dures using the oscilloscope and logic analyzer cannot be used. The 8051 (used col
lectively to indicate the 8051, 8751, and 8031) is a computer-on-a-chip requiring
advanced design techniques. The engineer needs the capability of emulating new
product designs with another computer to develop and debug
microcontroller/microcomputer products.

Purpose of Emulation

The tools required for developing a microcontroller or microcomputer based pro
duct differ from the tools used in the development of electronic products not using
micros.

For microcontroller and microcomputer based products, traditional electronics de
velopment tools alone are not sufficient for two reasons. First, they do not support
software development as required in microcontroller and microcomputer based
products. Second, many of the circuits and signals previously available to the de
signer are integrated onto a single silicon chip and are not accessible through the
connector pins on the chip’s package.

When used with the iPDS; the EMV-51 emulation vehicle provides the designer
with the tools necessary to design, develop, and debug microcontroller/micro
computer products.

1-3

Introduction EMV-51

Definition of Emulation

Emulation is the controlled execution of the prototype software in an artificial
hardware environment that duplicates the microcontroller of the prototype. The
EMV-51 creates the artificial hardware environment for all applications using the
MCS-51 family of microcontrollers.

Emulation allows the design engineer to interactively debug a product’s
microcontroller-based program code. Emulators permit reading and writing of mi
crocontroller registers and system memory, program disassembly, and interactive
control of program execution. One value of emulation is the ability to externally
control program execution while operating in the user’s prototype hardware.

The EMV-51 incorporates an 8051 microcontroller that replaces the microcontrol
ler in the user’s product, thus providing a window into the user’s prototype
system. With one tool, the engineer watches the hardware and software interact
within the prototype system, pinpointing problems in minutes that otherwise
takes days to find.

The EMV-51 connects between the iPDS and the user’s prototype and provides
complete control over the prototype. The EMV-51 contains 4K of RAM that can
replace the user’s ROM during emulation and permits the engineer to debug the
prototype hardware and software as a unit. This procedure is described in more
detail in the section titled WITH EMULATION.

Before Emulation

Prior to using emulators, the design of a new product involved a time-consuming
iterative process as illustrated in figure 1-2.

Figure 1-2 Typical Microcomputer Development Cycle

1-4

EMV-51 Introduction

As figure 1-2 indicates, each phase of the design progressed separate from the
other. The engineer developed and verified the hardware prototype, then devel
oped and verified the software to control that prototype. The software could not be
combined with the prototype hardware until both components were completely
verified. If problems arose during the integration of the two, the costly design and
verification phase had to be repeated until the problem was resolved.

WITH EMULATION

When using an emulator, the product design procedure is shortened considerably.
Figure 1-3 illustrates the design procedure using emulation.

As figure 1-3 illustrates, the design procedure with emulation eliminates four
design steps. After designing the product, the engineer proceeds immediately to
constructing the prototype hardware. Another advantage of emulation, then, is
that it permits the engineer to begin testing and debugging the software for a pro
duct without waiting for the hardware prototype to be built.

When using emulation techniques, the engineer eliminates the clock and control
circuit construction and verification phase. At the same time as the hardware pro
totype is being constructed, the program code is developed and translated using
the development system.

After the hardware prototype is constructed and the program code is developed,
the engineer connects the emulator between the development system and the pro
totype and verifies the hardware and software as a unit. This phase eliminates the
separate hardware verification, software verification, and system integration steps.

The emulator provides immediate recognition of problems between the hardware
and software. When a software problem is identified, the engineer corrects the
problem with the development system and continues with product emulation.

[scope of personal development system 1

Figure 1-3 Development Cycle With EMV-51 Module
0249

1-5

Introduction EMV-51

Symbolic Debugging

During emulation, the engineer can refer to physical addresses and data values
with symbolic names. This procedure, called symbolic debugging or symbolic
reference, improves the engineer’s ability to debug the software by removing the
need to remember physical numbers. If the contents of the program change, the
symbolic names indicate the same addresses or data values.

Chapter 3 contains additional information about symbolic debugging. The next
section presents a generalized emulation session that demonstrates some of the
emulator’s power.

A Generalized Emulation Session

This section describes the main steps in an emulation session. The user should do
each step as described to gain familiarity with EMV-51. Other system features are
discussed in Chapters 3 through 6.

Emulation Procedure

1. Turn off iPDS development system power.

2. Plug the EMV-51 controller into the iPDS system (described in Appendix A).

3. If any prototype hardware is used, remove the socket protector from the emula
tor and attach the emulator to the prototype hardware via the 40-pin socket. If
the prototype contains other sockets around the 40-pin socket, insert additional
40-pin sockets between the emulator and the prototype. Figure 1-4 shows the
emulator connected to the prototype.

If the prototype hardware is not used, leave the socket protector attached to the
emulator. The emulator then functions as a stand-alone 8051.

Figure 1-4 Emulator Module Connected to Prototype

1-6

EMV-51 Introduction

4. Enter the EMV51 command and obtain the sign-on message from the EMV-51
emulator software.

EMV51 RETURN; Enter EMV51. The ISIS-PDS operating system loads and
executes the EMV-51 software. The software displays the
sign-on message and asterisk prompt shown in this
display.

5. Load the prototype program from diskette into the EMV-51 memory, using the
LOAD command.

6. Prepare the system for emulation by setting the emulation breakpoints. A
breakpoint is a specific location in a program where execution of the program
should be halted. A breakpoint can be an address, a range of addresses, a register
value, or a program execution branch.

LOAD EMVDEM.OBJ
LZ-L------------

RETURN

The LOAD command gets a program from a disk file and
loads it into EMV-51 program memory. In this example,
the program labeled EMVDEM.OBJ is loaded into
memory. The emulator software responds with the aster
isk prompt when the LOAD command is completed.

BR0=61H [|WETUWNi Set a breakpoint at address 61H

1-7

Introduction EMV-51

The BREAK (BR) command displays a table containing a list of all the
breakpoints. The following screen display illustrates the BREAK command being
entered and the address value breakpoint specified.

Key-in Sequence

'RETURN1
? -----------\

BR

Comments

In this example, when the user entered the BREAK com
mand and the emulator software displays the breakpoint
table, one address breakpoint is set from a previous
operation. Breakpoint BRO is set at address 0061H.

7. Display the demonstration program to verify that it was loaded correctly. The
DASM command disassembles the program and displays it on the screen.

jI»DASM.DEMO TO.BUFFER
1 1 .DEMO OOMOH=HOV Rl,#.BUFFER DASH

1 1 00H5H = t10V R2->#O3H DASH
1 1 OO44H=CLR • CY DASH

1 1 OOMbH=PUSH • ROX DASH
f1 .LOOP 00M6H=H0V A,@R0 DASH
f 1 1 0041H=INC RO DASH
| I 1 1 004AH=INC RO DASH
1 1 1 004BH=INC RO DASH

1 / 1 004CH=ADDC A,@RO DASH
1 004DH=DA A DASH
1 OO4EH=PUSH ■ ACC DASH

1 1 1 005QH=ANL Ai#OFH DASH
1 0052H=0RL A-.#30H DASH
1 OO54H=H0V @R1,A DASH
1 OO5SH=INC R1 DASH
1 0D5LH=P0P • ACC DASH
1 00S6H=SUAP A DASH
1 005‘1H = ANL A-.#0FH DASH
1 00SBH=0RL A,#30H DASH
1 OO5DH=HOV @R1,A DASH
1 OOSEH=INC R1 DASH
1 OO5FH=DEC RO DASH
I QQbOH=DEC RO DASH

1-8

EMV-51 Introduction

Key-in Sequence Comments

DASM .DEMO TO .BUFFER The DASM command disassembles the contents
----—n of program memory and produces the mnemonic
----J equivalents of the instructions. In this example,

memory from symbolic address .DEMO to
.BUFFER is disassembled. The example continues
on the following screen display.

To halt scrolling of the screen display, press the
CTRL key and the S key simultaneously.

To continue, press the CTRL-Q Key combination.

•CLRHSD
DONE

BUFFER

I (jOblH = DJNZ
I 00L3H=JNC
I 00bSH=H0V
I 00b7H=SJHP

OOb‘1H=f1OV

RB-> -LOOP
.CLRHSD
@R1,#31H
-DONE
@Rli#30H

OObBH=POP .ROX
I OOLDH=SJHP .DONE

OObFH=XCH A,RM

DASH
DASH
DASH
DASH
DASH
DASH
DASH
DASH

8. Enter the GO command to begin continuous emulation. The EMV-51 soft
ware begins emulation at the address specified with the command entry or at
the current address in the 8051 program counter. Emulation continues at the
full clock rate until a breakpoint is encountered.

9. When a breakpoint is encountered, the EMV-51 hardware stops emulation.
At this point, instruct the emulator software to display the previous two in
structions emulated and determine if the instructions are performing the
desired operation.

10. By alternating between setting breakpoints and emulation of the program,
the user can quickly test and debug the prototype program.

11. At the end of the emulation session, the debugged code can be saved on an
ISIS-PDS diskette file, using the EMV-51 SAVE command.

1-9

Introduction EMV-51

Key-in Sequence Comments

GO FROM .DEMO
RETURN

RETURN

The GO command emulates the user’s program from
an address entered with the command, or from the
address contained in the program counter. The emu
lation continues until a breakpoint is reached. When
a breakpoint is reached, the emulator software dis
plays the cause of the breakpoint and the address
where it occurred.

After an emulator is performed, enter the P com
mand to display the last two instructions emulated. In
this example, the instructions DEC and DJNZ are
the last two instructions emulated with the GO
command.

SAVE :F0:EMVDEM.V10 Save the prototype program in a disk file prior to ter-
RETURN

minating the session. In this case the program is
saved in a file labeled EMVDEM.V10.

This introduction shows some of the scope and power of the EMV-51 emulator in
operation, and suggests how this integrated software/hardware design aid can fit
into the user’s development cycle.

In summary, emulation provides the following advantages:

• Controlled execution of software so the program can be monitored while
being run,

• Ability to start software development prior to completion of a working hard
ware prototype,

• Use of symbolic references to avoid a need to remember physical addresses.

Chapter Preview

Chapter 2 presents an overview of the emulator software command categories.
Chapters 3 through 6 describe command usage and present tutorial sessions in
volving the demonstration program. Chapter 7 contains 8051 and EMV-51 refer
ence material, including memory maps of the 8051 and key definitions used
throughout the emulator software. Chapter 8 is a command dictionary containing
command format notations and an alphabetical listings of EMV-51 commands,
including command formats and examples of commands usage. Appendix A con
tains installation instructions for the EMV-51 emulator.

Figure 1-5 is a listing of the demonstration program used in following chapters.

1-10

EMV-51 Introduction

EMV-51 DEMONSTRATION PROGRAM
; THIS PROGRAM ADDS TWO NUMBERS IN PACKED BCD FORMAT, AND
; CONVERTS THE SUM TO AN ASCII STRING. THE TWO NUMBERS ARE
; STORED IN CONSECUTIVE MEMORY BYTES AS:

; RO -> FIRST BYTE = LEAST AND NEXT LEAST SIGNIFICANT DIGITS OF
AUGEND

’ SECOND BYTE = NEXT TWO MOST SIGNIFICANT DIGITS OF AUGEND
I THIRD BYTE = MOST AND NEXT MOST SIGNIFICANT DIGITS OF
J AUGEND
’ FOURTH BYTE = \
’ FIFTH BYTE = > SAME FOR ADDEND
I SIXTH BYTE = /

THE RESULT IS RETURNED IN A STRING POINTED TO BY R1.

ORG
ROX

0040H
EQU OOH jPSEUDONYM FOR RO

DEMO: MOV R1,#BUFFER ;GET POINTER TO RESULTS AREA
MOV R2,#03 ;SET BCD DIGITS COUNTER
CLR CY ;GET READY FOR ADDITION ACTION
PUSH ROX ;SAVE PARAMETER POINTER

LOOP: MOV A,@RO ;GET TWO BCD DIGITS FROM AUGEND
INC RO ;POINT TO CORRESPONDING DIGITS IN

ADDEND
INC RO ; (“INC” DOESN’T AFFECT CARRY FLAG)
INC RO
ADDC A,@RO ;ADD THE TWO TOGETHER
DA A jADJUST FOR DECIMAL ARITHMETIC
PUSH ACC ;SAVE RESULT
ANL A,#OFH ;GET LOWER DIGIT
ORL A,#30H jCONVERT LOWER DIGIT TO ASCII
MOV @R1,A ;PUT INTO RESULT BUFFER
INC R1 ;POINTTO NEXT RESULT BUFFER LOCATION
POP ACC ;GET BACK RESULT OF ADDITION
SWAP A ;GET UPPER DIGIT
ANL A,#OFH
ORL A,#30H jCONVERT TO ASCII
MOV @R1,A ;PUT INTO RESULT BUFFER
INC R1 ;POINT TO NEXT RESULT BUFFER LOCATION
DEC RO ;POINT TO NEXT TWO BCD DIGITS IN AUGEND
DEC RO ; (“DEC" DOESN’T AFFECT CARRY FLAG)
DJNZ R2.LOOP ;LAST PAIR OF BCD DIGITS ADDED?

; NO-ADD TWO MORE
: YES-CHECK LAST DIGIT OF SUM

JNC CLRMSD ; CARRY OUT OF 6 DIGIT ADDITION?
MOV @R1,#31H ; YES-PUT AN ASCII “1 ” IN RESULT BUFFER
SJMP DONE

CLRMSD: MOV @R1,#30H ; NO-PUT AN ASCII “0" IN RESULT BUFFER
DONE: POP ROX ; RESTORE PARAMETER POINTER

SJMP DONE
BUFFER: DS 1OH ; BUFFER TO HOLD ASCII RESULT STRING

END

Figure 1-5 Listing of Demonstration Program

1-11/1-12

o

CHAPTER 2
USING EMV-51

Introduction

This chapter presents an overview of the command categories. It describes how to
enter commands and defines basic terms used throughout the manual. The follow
ing topics are covered:

• Command Categories
• Prompts and Messages
• Comment Lines
• Entering Commands
• Entry Editing and Display Control

Command Categories

Table 2-1 lists the four categories of EMV-51 commands and the chapters describ
ing each category. The paragraphs following the table give a brief description of
each category.

Table 2-1 Chapter Breakdown by Command Category

CATEGORY USAGE CHAPTER DEFINITION CHAPTER

Utility 3 8
Display/Modify 4 8
Emulation 5 8
Advanced 6 8

The utility commands are used to load user’s programs from diskette, establish
symbolic names, save user’s programs when the emulation session is completed,
and operate on the emulator hardware.

The Display/Modify commands are used to display or change register and memory
contents. This category includes commands to assemble new instructions into
code memory and to disassemble the contents of code memory.

The Emulation commands are used to start and stop emulation of the user’s
program. This category includes commands to set up various emulation controls.

The Advanced commands are used to build macro definitions and to set up condi
tional control structures. This category includes commands that define macros,
load and save macro definitions, and assign special function keys to macros.

Prompts and Messages

The EMV-51 software displays an asterisk (*) at the beginning of a line to indicate
software readiness for entry of command lines. If a macro is being defined
(described in Chapter 6), the EMV-51 software displays a special prompt (*)
during the macro definition. Entering the Write command (described in Ch inter
6) with an embedded RETURN, causes the EMV-51 software to display a double asterisk (**) prompt until the Write command is completed P J °Ub e

2-1

Using EMV-51 EMV-51

The emulator software displays error or warning messages indicating the status of
operations. The messages are only displayed when an operation generates errone
ous results. Appendix B contains a complete listing of the error and warning
messages.

Comment Lines

Comments may appear anywhere in the command line. Comment lines are preced
ed by a semicolon and ended with a carriage return. The emulator software ignores
all text between the semicolon and carriage return.

Entering Commands

EMV-51 operations are controlled by command lines. The emulator software re
ceives command lines from one of four sources:

1. Commands entered from the keyboard.

2. Previously defined command files containing valid EMV-51 commands.
After loading the EMV-51 software, the command file is loaded and executed
using the INCLUDE command (described in Chapter 6).

3. Macros, defined as a sequence of related commands, stored in a disk file.
After loading the EMV-51 software, the macro definition is loaded and ex
ecuted using the INCLUDE command (macros and the INCLUDE com
mand are described in Chapter 6).

4. Previously defined files loaded and executed using the SUBMIT command.
Refer to the ISIS-PDS User’s Guide for additional information on the
SUBMIT command.

Entering the Command Line

An EMV-51 command line is a sequence of one or more command words sepa
rated by spaces and ending with a carriage return. Normally, the command line is
limited to 122 characters. In most cases, the command words can be abbreviated
to one, two, or three characters. Chapter 8 contains a list of valid command words
and their abbreviations.

Command Line Execution

With six exceptions, the carriage return causes the command to be interpreted
and, if no format errors are detected, executed immediately. The exceptions are
macro commands, continuation lines, the REPEAT command, COUNT com
mand, IF command, and WRITE command. Macro, REPEAT, COUNT, IF and
WRITE commands are described in Chapter 6; continuation lines are described in
the following section.

Continuation Lines

If a command line exceeds 122 characters, the line must be separated into multiple
lines, known as continuation lines. Continuation lines are formed by entering an
ampersand character (&) and a carriage return prior to the 122nd character.

2-2

EMV-51 Using EMV-51

When entering the ampersand and carriage return, the emulator software responds
by displaying a double asterisk prompt (**). The double prompt indicates the
EMV-51 is accepting a command line that exceeds the 122 character maximum
length. The command line is not executed until termination of a continuation line
with just a carriage return. At this point, the emulator returns to displaying a single
asterisk prompt character.

Entry Editing and Display Control

The emulator software recognizes control characters that permit editing of com
mand line entries and control the display generated by command execution. These
control characters are described in the following sections.

Command Line Editing

The control characters listed below are used to correct errors in command line
entry. The control characters consist of one or two keyboard characters. If a charac
ter is preceded by the word CTRL, press the specified character while holding
down the CTRL key. Otherwise, the indicated key is entered.

RETURN

RUB
OUT

Aborts any operation that is executing or aborts any com
mand being entered.

Signifies the end of the command line.

Pressing the RUBOUT key deletes the last character
typed. One character is deleted each time the key is
pressed.

Gets the next keyboard entry and places the character in
the command line buffer without interpreting it.

Echo command line being entered.

Deletes the current line only, not any previous lines. If
several continuation lines have been entered, the CTRL
X deletes only the current portion.

Deletes an entire command line, including all continua
tion lines.

CONTROLLING THE DISPLAY

The emulator software displays information on the screen by displaying a line,
scrolling the displayed line upward one line, and displaying another line. The
speed of the display can be controlled with the characters listed below.

CTRL s
IqCTRL

Stops the output of new information to the screen.

Continues the output of new information to the screen.

Slows down or speeds up screen display. Pressing
FUNCT S once slows the display down, while pressing it
again speeds up the display.

2-372-4

o

o

o

o

ro

CHAPTER 3
UTILITY COMMANDS

Introduction

The Utility commands perform the emulator control functions for accessing the
iPDS resources and display information about the emulator. This chapter describes
what the Utility commands are, where they are used, and how they are used
through screen displays.

Help Information

Q

O

The HELP command displays information about the emulator commands and
keywords. It operates in two modes: general help mode where a list of available
commands and keywords is provided; specific mode where format and require
ments about specific commands and keywords are displayed.

Help Information Screen Displays

The following screen displays show the two forms of the HELP command. The
first form, without parameters, displays a list of all available commands and
keywords. This form is useful for a quick reference of further available help.

•help
Help is available for the following commands and definitions- Type
HELP followed by the full command name or (definition) ■

BASE -.DEFINE, DISABLE , ENABLE, EVA LU ATE-. EXIT,LIST,
LOAD,REMOVE RESET,SAVE,SUFFIX,SYMBOL
ASM,CBYTE,CDUMP,DASM,DBYTE,DDUMP, INTERRUPT, MEM
ORY,PBYTE,RBITRBYTE,REGISTER
BREAK,DTRACE,GO,PREVIOUS,STEP
COUNT,FUNCTION,DIR,IF,INCLUDE,PUT,REPEAT, WRITE
<ADDRESS*,CCHANGE*,<CPU$KEYUORD>,<DISPLAY>,
<EXPR><1DENTIFIER>,<INSTRUCTION*,<MACRO$DISPLAY>,
CMACROSINVOCATION*
<NUMERIC ^CONSTANT* , PARTITION* , <STRING>,
<STRINGSCONSTANT> <SYMBOL»REF*,<USER»SYMBOLS*

Keyboard - RUBOUT = delete char ESC = cancel CTRL R = echo line
Controls - CTRL X = delete line CTRLP = literal char CTRLZ = delete 1ine

Function Keys are invoked by simultaneously pressing FUNCTION and a
number•

1 = MEMORY 3 = DTRACE [5 to 1 and 0 are user def ined]
2=BREAK 3=REGISTER

*

Comments

When the user enters the word HELP, the emulator soft
ware responds by displaying a list of all commands and
keywords used by the software.

utility

display

evaluation
advanced
(definition)

Key-in Sequence

HELP RETURN

3-1

Utility Commands EMV-51

The second example demonstrates HELP LOAD which responds with the infor
mation about the LOAD command. Typing in HELP followed by one or more
commands or keywords produces information about each command or keyword.

•HELP LOAD
LOAD - Command to load object code and/or it symbols- The
symbols are added to the end of the EttV-51 symbol table-

(1) To load the object code and it symbols-! type:
LOAD :Fn:<filename>
where n is the drive number-
(EX: LOAD : F3 : ttYPROG - OB J)

(3) To load only the object code-i type:
LOAD :Fn:<ISIS filenames NOSYflBOL
(EX: LOAD : F3: tlYPROG ■ OB J NOSYFIBOL)

(3) To load only the symbols-! type:
LOAD :Fn:<ISISfilenames NOCODE
(EX: LOAD : F3: tlYPROG - OB J NOCODE)

Note: The LOAD command does not check for duplicate symbols- Thus-! two
loads of the same program will duplicate all symbols twice- Also-i
duplicate symbols can be accessed by entering the module name
first -
Example: CBYTE <-module•symbols <crS

Key-in Sequence Comments

HELP LOAD return] The user can obtain additional information about a com
mand by entering the word HELP followed by the desired
command or keyword. This example requests help with
the LOAD command.

The emulator software displays this information when
the user requests help with the LOAD command.

Beginning an Emulation Session

The next sections explain how to begin an emulation session.

The Load Command

To begin an emulation session, load a program into the EMV-51 emulator. The
LOAD command loads the specified 8051 program from an external device
(either diskette or magnetic bubble memory) into the EMV-51 program memory.
Programs can only be loaded into the 4K bytes of EMV-51 program memory. The
command can load hex or binary files. In the following example, a program named
EMVDEM.OBJ is loaded:

LOAD :F1 :EMVDEM.OBJ

The :F1: indicates the program is contained on disk drive number 1, but it may be
any disk drive or magnetic bubble memory currently installed on the iPDS.

During program assembly, the ASM-51 Assembler builds a symbol table contain
ing the addresses of all user assigned labels within the program. The symbol table
may be included in the object file produced by the assembler. The object file con
sists of the actual machine language equivalents of the mnemonic instructions.

3-2

EMV-51 Utility Commands

When the symbol table is included in the object file, the LOAD command option
ally loads the program, the symbol table created with the assembler, or both the
program and the symbol table. If the format shown above is used, the emulator
software loads the program and its symbol table into the emulator’s memory. The
symbol table, preceded by the program name, is appended to the end of the emula
tor’s internal symbol table.

When the keyword NOSYMBOL is added, the command loads the program with
out the symbol table. The format is shown below:

LOAD :F1 :EMVDEM.OBJ NOSYMBOL

By replacing the keyword NOSYMBOL with NOCODE, the command loads the
symbol table without the program:

LOAD :F1 :EMVDEM.OBJ NOCODE

Loading Multiple Programs

EMV-51 software permits the user to load multiple programs into its program
memory. The programs must be addressed so they do not overlap when loaded.
The addressing is accomplished with the ORG statement during program assembly
with ASM-51 assembler.

When loading multiple programs and symbol tables into EMV-51, each symbol
table is appended to the end of the emulator software’s internal symbol table with
the respective program name preceding the first symbol.

Copy an Emulation Session

In normal operation, the emulator software expects user input from the keyboard
and displays results on the screen. Instructing the emulator software to put a copy
of keyboard input and screen output in a separate file, is described in the following
sections.

Setting Up a List File

The following paragraphs describe how to set up a list file to receive a copy of infor
mation sent from the keyboard or to the screen.

The LIST Command

The LIST command instructs the emulator software to open a file to receive a copy
of all information sent to the display screen or coming from the keyboard. This
copy can be analyzed thoroughly after the emulation session to isolate errors. To
open a list file named EMVDEM.SMP on drive 1, the command is:

LIST :F1 :EMVDEM.SMP

After the command is entered, all subsequent keyboard and display information is
copied to the file EMVDEM.SMP. Any information previously in the file specified
with the LIST command is destroyed.

3-3

Utility Commands EMV-51

Closing a LIST File
When the user is ready to close the LIST file, enter the command:

LIST :CO:
The command instructs the emulator to close the list file and display information
on the screen only. The list file now contains a complete copy of the emulation
session, providing a means of examining the session at a later time.
If the user terminates an emulation session prior to closing the LIST file, the
emulator software closes the file before returning control to ISIS-PDS.

Load and LIST Screen Display
The following screen display demonstrates loading a demonstration program,
opening a LIST file, performing several commands, then closing the LIST file.

• LOAD EMVDEM.OBJ
• LIST :FO:SAVE.TXT
•HELP SAVE
SAVE - Command to save code memory and/or symbols in an 8051
object file-

(1) To save the last partition loaded and the symbol table-i type:
SAVE <f ilename> (EX: SAVE : Fl: S AVE - IT)
where <filename> is defined as the name of an ISIS file. For
example: :F1:tlYPROG■001.

(2) To save only the last partition loaded type:
SAVE <filename> N0SYI1B0L (EX: SAVE :F1:FOO NOSYfIBOL)

(3) To save only the symbol table- type:**
SAVE <f ilename> NOCODE (EX: SAVE :F2:SYt1B0L NOCODE)

(M) To save a specified part of code memory and the symbol tables
type:
SAVE <filename><partition> (EX: SAVE :F1:TOO 5 TO MSH)

(5) To save a specified part of code memory with no symbols-* type:
SAVE <filename> <partition> NOSYflBOL
(EX: SAVE :F3:C0DE.SAV 100H TO 200H NOSYfIBOL)

• SAVE :F0:EMV.PAR NOCODE
• LIST :CO:

Key-in Sequence Comments

The LOAD command gets a program from a
disk file and loads it into EMV-51 program
memory. In this example, the program labeled
EMVDEM.OBJ is loaded into memory. The
emulator software responds with the asterisk
prompt when the LOAD command is
completed.

LIST :FO:SAVE.TXT ^HETUHH^ This display illustrates how a LIST file is
opened and closed. The first command opens
the file, while the last command closes the
file. The material between the two commands,
including the command LIST :CO:, is dis
played on the screen and simultaneously
copied into the LIST file.

HELP SAVE RETURN

SAVE :F0:EMV.PAR NOCODE

LIST :CO: return

3-4

EMV-51 Utility Commands

Symbolic Reference Commands

Symbolic reference is a powerful feature of the EMV-51 emulator. The EMV-51
software permits the user to reference memory address values with the symbols
from the program symbol table. This table was created when the program was orig
inally assembled or compiled. The user can also add new names to the symbol
table to reference additional addresses or values.

The user can assign addresses to meaningful symbolic names, then refer to the
symbolic names rather than trying to keep track of the addresses of key locations
within the program. Numeric values can also be assigned symbolic names, which
can then be manipulated in expressions as variables.

The following topics are explained in this section:

• Assign values to symbol names
• Display user assigned symbol names
• Remove symbol names from the symbol table
• Enable symbolic name display
• Disable symbolic name display

Assigning Symbol Names

The DEFINE command is used to assign expression values to symbol names as de
scribed in the following section.

The DEFINE Command

The DEFINE command assigns an expression value to a symbol name. The ex
pression can be a numeric value or an address. User defined symbol names must
have a period as the first character. Once assigned, the user can enter the symbol
name rather than the expression. Several command examples are:

DEFINE .BAKER = 2000T Assigns the numeric decimal value 2000 to
the symbolic name .BAKER.

DEFINE ,ABLE = 23T*1 OOT/110T Assigns the result of the expression
23T*100T/l 10T to the symbolic name
.ABLE

Manipulating Symbols

The user can manipulate the values assigned to symbolic names by entering the
symbol name followed by an expression or value. Several examples are:

.ABLE = .ABLE + 1 Increments the current contents of the symbol
name .ABLE.

,BAKER = (.ABLE/256T) + 30H Assigns the value of the expression
(.ABLE/256T)+ 30H to the symbol name
.BAKER.

3-5

Utility Commands EMV-51

Displaying Symbol Names

The following sections describe how to display individual,multiply defined, or all
symbol names.

Displaying Individual Names

The user can display a symbol name and its corresponding value by entering the
name preceded by a period.

.ABLE Display the value assigned to the symbol name .ABLE.

.BAKER Display the value assigned to the symbol name .BAKER.

Displaying Multiply Defined Names

When several program modules are loaded into EMV-51 program memory, a
symbol name might be defined more than once. When this happens, a specific defi
nition can be displayed by preceding the name with the module name that contains
the desired definition:

.EMVDEM.ABLE

.EMVTWO.ABLE

Displays the value assigned to the symbol name .ABLE used
in the program EMVDEM.
Displays the value assigned to the symbol name .ABLE used
in the program EMVTWO.

The SYMBOLS Command

The SYMBOLS command displays all user symbol names currently residing in
memory and their corresponding address values. The command is:

SYMBOLS

Removing Symbol Names

The method for removing symbol names is described in the next section.

The REMOVE Command

The REMOVE command deletes one or more symbol names that the user assigned
from the emulator software’s symbol table. Several examples are:

REMOVE .BAKER Removes the user-assigned symbolic name
.BAKER from the symbol table.

REMOVE .APPLE, .BAKER Removes the user-assigned symbolic names
.APPLE and .BAKER from the symbol table.

REMOVE SYMBOLS Removes all user assigned symbol names from the
symbol table.

3-6

EMV-51 Utility Commands

Key-in Sequence Comments

Symbolic Reference Screen Displays

DEFINE.BAKER=63
RETURN

The user can define new symbolic names with the
DEFINE command. In this example, the symbolic name
.BAKER is defined and the value 63 is assigned to
.BAKER.

.BAKER RETURN Symbolic names have a value assigned to them. The user
can display the name and the assigned value by entering
the symbolic name. In response to the command
.BAKER, the emulator software displays the value as
signed to the name (in this case, the value is 63H).

•symbols
. EHVDEH=020DH
.BUFFER=OObFH
.CLRHSD=00b1H
.DEtlO = OOMOH
•D0NE=00bBH
.LOOP=OOMfiH
.ROX=ODOOH
. Et1VDEt1 = 0200H
.BUFFER=OObFH
. CLRHSD = OOb‘1H
. »EMO=OOMOH
•D0NE=00bBH
.LOOP=OOHaH
■ROX=DOOQH
•BAKER=0Qb3H
•REMOVE .BAKER

Key-in Sequence Comments

SYMBOLS RETURN

REMOVE.BAKER

RETURN

The emulator software displays all user-assigned symbolic
names and their assigned values in response to the SYM
BOLS command.

The REMOVE command deletes one or more user sym
bolic names. In this example, the name .BAKER is
deleted.

Enabling/Disabling Symbol Display
The emulator software commands display results as either numeric data or symbol
ic names. The commands look at an internal software switch before displaying
symbolic names. This switch is automatically controlled with the ENABLE and
DISABLE commands described below. Its default condition is enabled to display
symbolic names.

3-7

Utility Commands EMV-51

The DISABLE Command

The DISABLE command resets the internal switch, forcing the software to use
numeric addresses. The command is:

DISABLE SYMBOLIC

The ENABLE Command

The ENABLE command sets the internal switch permitting the display of symbolic
names rather than numeric addresses. When the software finds a symbol in the
symbol table that matches the numeric data, it displays the symbol rather than the
data. The command is:

ENABLE SYMBOLIC

Evaluating Symbol Values

The following sections explain how to evaluate symbol names and presents a
screen display demonstrating the EVALUATE command.

The EVALUATE Command

The EVALUATE command displays the value of a previously defined symbol
name or calculates the value of an expression involving symbols and mathematical
operators. In either case, the value is displayed in hexadecimal, decimal, octal,
ASCII, and as an offset from the nearest symbol name that is less than the value.
Several command entry examples are:

EVALUATE .ABLE Display the numeric value or address currently assigned
to .ABLE.

EVALUATE 100*23+4 Calculate the value of the expression and display the
result.

Evaluate Screen Display

Key-in Sequence Comments

DEFINE ,ABLE=23
pl ETURN

EVA.ABLE*21/2

The EVALUATE command evaluates an expression or
symbol name entered with the command. The emulator
software displays the results of the command in Binary,
Octal, Hexadecimal, and ASCII. In addition, the result is
displayed as an offset from the nearest symbol name that
is less than the value.

3-8

EMV-51 Utility Commands

Number Display Format

The EMV-51 software accepts numeric values entered from the keyboard and dis
plays numeric values on the screen in one of four number bases: hexadecimal (H),
decimal (T), binary (Y), or octal (Q). The user specifies the desired number base
for input and display with two commands, SUFFIX and BASE.

Any number entered without an explicit suffix is interpreted using the current
suffix. An explicit suffix overrides the suffix set by the SUFFIX command.

The SUFFIX and BASE Commands

The number base for keyboard entry is specified with the SUFFIX command and
the number base for display output with the BASE command.

The SUFFIX command displays the current keyboard entry number base or
changes the current number base to the specified one, as shown below:

SUFFIX Displays the current keyboard entry number base.
SUFFIX = H Changes the current keyboard entry number base to Hexadecimal.

The BASE command displays the current display number base or changes the cur
rent number base to the specified one, as shown below:

BASE Displays the current display number base.
BASE = Q Changes the current display number base to Octal.

The keyboard entry and display number bases may differ, as the above examples
show. Generally, the display is more readable when both bases are identical.

SUFFIX and BASE Screen Displays

Key-in Sequence

SUFFIX RETURN

Comments

The emulator software displays the current radix for
input numbers when the user enters the SUFFIX
command.

SUFFIX =T I RETURN The user can change the input number radix as shown in
this screen display.

Saving the User’s Program

The command for saving a user program is described in the following paragraph.

3-9

Utility Commands EMV-51

The SAVE Command

The SAVE command writes the user’s program to a disk file. The user specifies
whether the program, its symbol table, or both the program and symbol table
should be written to the file.

Examples:

SAVE :F1:EMVDEM.SAV

SAVE :F1 :EMVDEM.SAV NOSYMBOL

SAVE :F1 :EMVDEM.SAV NOCODE

SAVE :F1 :EMVDEM.SAV 10 TO 90

Saves the program object code and
symbol table in the file labeled
EMVDEM.SAV.
Saves the program object code in the
file labeled EMVDEM.SAV, but does
not save the symbol table.
Saves the program symbol table only.
The object code is not saved.
Saves a range of program object code
from address 10H through 90H and
symbol table in the file labeled
EMVDEM.SAV.

Initializing EMV-51 Hardware

The next section describes how to initialize the EMV-51 hardware.

The RESET Command

The RESET command initializes the breakpoints and tracepoints to the off state,
puts the 8051 microcontroller in its reset state, and issues prompts for additional
commands.

Ending an Emulation Session

The EXIT command, described in the next section, is used to end an EMV-51
emulation session.

The EXIT Command

The EXIT command terminates the EMV-51 emulation session and returns con
trol to the ISIS-PDS operating system, where the ISIS-PDS prompt character is
displayed.

Using Utility Commands

The following screen displays demonstrate several of the Utility commands by ex
ercising various portions of the demonstration program. In addition, the DASM
command (described in Chapter 4) is shown to demonstrate the
ENABLE/DISABLE commands. The demonstration program example is contin
ued in Chapters 4, 5, and 6.

3-10

EMV-51 Utility Commands

Key-in Sequence

ENABLE SYMBOLIC
RETURN

DASM40HTO 45H
RETURNy

DISABLE SYMBOLIC
RETURN

DASM 40H TO 45H
RETURN

"A

SAV :FO:EMVDEM.V10
RETURN

EXIT RETURN

Comments

When symbolic display is enabled, the emulator soft
ware displays addresses and data values as symbolic
names if the names exist in the user symbol table.

Display disassembled instructions from 40H to 45H.

Enter the DISABLE SYMBOLIC command, the
emulator displays all addresses and values as numeric
quantities.

Display disassembled instructions from 40H to 45H.

Save the prototype program in a disk file prior to ter
minating the session. In this case the program is saved
in a file labeled EMVDEM.V10.

The EXIT command terminates the emulator software
and returns control to the ISIS-PDS operating system.

3-11/3-12

CHAPTER 4
DISPLAY/MODIFY COMMANDS

Introduction

The DISPLAY/MODIFY commands include register and memory handling
commands. This chapter describes what the commands are, where they are used,
and provides examples of how they are used.

Using Register Commands

The MCS-51 family of microcontrollers contain temporary data storage locations,
called registers. The user accesses a register by entering the keyword associated
with that register. Table 4-1 lists the registers and the associated keyword names.

Displaying Register Contents

Table 4-1 Register Keyword Names

KEYWORD FUNCTION

PC Program Counter
SP Stack Pointer
DPTR Data Pointer
ACC Accumulator
B Multiplication Register
TMO Counter/TimerO
TM1 Counter/Timer 1
PSW Program Status Word
RBS Register Bank Select
RO General Purpose Register 0
R1 General Purpose Register 1
R2 General Purpose Register 2
R3 General Purpose Register 3
R4 General Purpose Register 4
R5 General Purpose Register 5
R6 General Purpose Register 6
R7 General Purpose Register 7

The emulator software displays the content of a register when the keyword asso
ciated with the particular register is entered. Several command examples are:

PC Displays the current address value in the program counter.
SP Displays the current 8-bit address value in the stack pointer.
DPTR Displays the current address value in the data pointer.

Modifying Register Contents

The content of a register can be modified by entering the register keyword followed
by an expression. These examples illustrate several types of expressions:

ACC = 88H Changes the contents of the accumulator to 88 hex.
DPTR = 4444T Changes the contents of data pointer to 4444 base 10.
R0 = .BCC + 22H*2 Changes the contents of general purpose register RO to the

value of the expression, ,BCC + 22H*2.

4-1

Display/Modify Commands EMV-51

Displaying Register Names and Contents

The REGISTER command, special function key 4, and a REGISTER command
display screen are given in the following sections.

The REGISTER Command

The REGISTER command displays all register keywords and contents on the
screen. The contents of the registers are displayed in the current number base
unless the number base is binary. If the current number base is binary, the con
tents of the registers are displayed in hexadecimal.

The display remains on the screen until the user enters a non-register keyword
(i.e., HELP). Thus, the user can change several registers and the display is updated
to reflect the new values. If the BASE is changed, all register contents change to re
flect the new base. All register contents are entered according to the current
number suffix.

Special Function Key 4

Rather than enter the command REGISTER, the user can enter the function key
shown below to obtain the same display. The numeral 4 key is pressed while hold
ing down on the FUNCT key.

RJMCT Displays some register keywords and their contents on
the screen.

REGISTER Command Display Screen

These screens demonstrate the REGISTER command and resulting display.

EMV51 return; When the user enters EMV51, the ISIS-PDS operating
system loads and executes the EMV-51 software. The
software displays the sign-on message and asterisk
prompt shown in this display.

LOAD EMVDEM.OBJ The LOAD command gets a program from a disk file and
loads it into EMV-51 program memory. In this example,
the program labeled EMVDEM.OBJ is loaded into
memory. The emulator software responds with the aster
isk prompt when the LOAD command is completed.

return;

4-2

EMV-51 Display/Modify Commands

Key-in Sequence

REG RETURN9

ACC=88 RETURN

Comments

The emulator software displays a table containing the
8051 registers when the REGISTER command is
entered. The command can be abbreviated to REG or R.
The asterisk prompt above the short line indicates the
software is in the register display mode.

Change the contents of an 8051 register as shown in this
screen. The value 88 is interpreted as hexadecimal since
the suffix is H.

Comments

This display shows the accumulator updated to its new
value and the EMV-51 software still in the register display
mode.

Displaying INTERRUPT Register Contents

The INTERRUPT command is explained in the next section.

The INTERRUPT Command

The INTERRUPT command displays the Interrupt Enable (IE), Interrupt Priority
(IP) registers, and the status of Interrupts in Progress for priority 0 (1IP0) and pri
ority 1 (IIP1). The command and resulting display are shown in the following
screen displays.

4-3

Display/Modify Commands EMV-51

Key-in Sequence Comments

1NT RETURN The INTERRUPT command displays a table showing the
status of all 8051 interrupts.

The column headers stand for:

EA Enable all Interrupts (IE register only)
SINT Serial Port Interrupt
TIMER1 Timer 1 Interrupt
EXT11 External Interrupt 1
T1MER0 Timer 0 Interrupt
EXTIO External Interrupt 0

Memory Commands

The MCS-51 microcontroller family contains separate program, data, and special
function register memory areas. The user accesses a memory area by entering the
keyword associated with it. The keyword also serves as the command for modifying
and displaying that memory area. Table 4-2 lists the memory areas and their key
word names, while Chapter 7 contains a breakdown of the contents of each
memory area. The Microcontrollers User's Manual, manual order number 210359,
contains additional information on the architecture of the microcontrollers.

Table 4-2 Memory Areas and Keyword Names

Keyword Memory Area

CBYTE Program Memory (0-4K internal/4K-64K external)
DBYTE Internal 128 byte Data Memory
PBYTE External 64K byte Data Memory
RBYTE Internal Special Register Memory (ports,counter)
RBIT Internal Bit-Addressable Memory

CDUMP Formatted Display of CBYTE Memory
DDUMP Formatted Display of External Data Memory

Displaying Memory Contents

The contents of a memory area are displayed when the user enters the keyword
name and an address within that area. The address consists of single or multiple
locations. Several examples of memory display commands are:

CBYTE03FFH
DBYTE0TO20H

PBYTE37H LEN9

Display the content of a single memory location.
Display the contents of a range of internal data memory lo
cations from 0 through 20H.
Display the contents of external data memory locations from
37H to 3FH.

4-4

EMV-51 Display/Modify Commands

Optionally, the contents of program or external data memory can be displayed in
both ASCII and Hex numeric format. Two examples of these memory display
commands are:

CDUMP 100HTOFFFH Displays the contents of a range of program memory
locations as ASCII characters and hexadecimal
numbers.

DDUMP0TO100H Displays the contents of a range of external data
memory locations as ASCII characters and hexadeci
mal numbers.

NOTE

Code memory from 0 to OFFFH may be internal or external to
EMV-51 if the emulator is plugged into a user prototype. If so,
the EA/ input to the emulator determines where the memory is
located: EA/ = 1 means the memory from OH to OFFFH is inter
nal to EMV-51, while EA/ = 0 means the memory is external to
EMV-51. The memory data displayed by CBYTE or CDUMP is
determined by EA/. The user can strap EA/ high or let the user
prototype determine the the state of EA/.

Modifying Memory Contents

The contents of a memory location can be changed by entering the memory
keyword, address, and an expression. Thus, the command

CBYTE 03FFH = 33H

changes the current contents of program memory location 03FFH to 33H in
EMV-51 program memory. Several examples of memory modification commands
are:

PBYTE 03FFH = 55H

DBYTE 0 = 2*3 + .ABLE

RBYTE 80H TO 83H = 22H

Changes the content of external data memory loca
tion 03FFH to 55H.
Changes the content of data memory location 0 to
the result of the expression 2*3 + .ABLE.
Changes the contents of register memory locations
80 through 83 to the value 22H.

NOTE

CBYTE only modifies the EMV-51 program memory, which is
located from 0 to OFFFH. If EMV-51 is plugged into a user pro
totype with external memory at these addresses (EA/ asserted),
the memory may be examined, but not modified.

4-5

Display/Modify Commands EMV-51

Displaying Memory Commands

The methods for displaying memory commands and demonstration screen displays
are explained in the next sections.

The MEMORY Command

The MEMORY command displays a table containing memory keywords and their
format requirements.

Special Function Key 1

Rather than enter the command MEMORY, the user can enter the function key
shown below to obtain the same display. The number 1 is pressed while holding
down the FUNCT key.

Displays all memory keywords and their format require
ments on the screen.

Key-in Sequence Comments

M
----- =-?
return!

When the MEMORY command (abbreviated to M) is
entered, the emulator software displays a table containing
the memory reference commands.

4-6

EMV-51 Display/Modify Commands

CDUMP (code dump) I Location TO Location
DDUMP (da ta dump) I

MEMORY COMMANDS

*CBYTE 40HLEN69H
.DEMO
OOHOH = 7*1H LFH 7AH B3H CEH D7H COH OOH
• LOOP
OOHSH = Et.H OBH 08H OSH 3LH DMH COH EOH SHH OFH HMH 30H F7H D1H DOH EOH
OOS8H=CMH SHH OFH HHH 30H F7H O1H IfiH 18H DAH ESH SOH OHH 77H 31H 80H
00L8H=0EH
•CLRMSD
D0b1H=?7H 3DH

CBYTE (code memory) 1 1 1 TO Location I1 “value
DBYTE (data memory) 1 1 1 1
RBYTE (registers) 1 Location 11 LENGTHn
RBIT (bit flags) 1 1 1
PBYTE (ext. data) 1 1 1

Key in Sequence Comments

RETURN

CBYTE 40H LEN 69H The CBYTE command displays the contents of a specified
section of program memory. The contents are displayed
according to the current Base. In this example, the cur
rent Base is hexadecimal. If an address is assigned to a
symbol name and the name is in the symbol table, the
EMV-51 software displays the symbol name followed by
the address.

Assembly/Disassembly Commands

The EMV-51 software contains two commands, ASM and DASM, that assemble
program instructions in program memory and disassemble program object code
into mnemonic equivalents. These commands are covered in the following
sections.

Assembling User’s Program

The following section explains the command that displays and changes the current
contents of the assembly location counter, and assembles one instruction into pro
gram memory.

The ASM Command

The ASM command performs three functions:

• Displays the current contents of the assembly location counter.
• Changes the current contents of the assembly location counter.
• Assembles one instruction into program memory.

4-7

Display/Modify Commands EMV-51

The emulator software maintains an assembly location counter that indicates the
next available location in program memory where new instructions can be placed.
The current contents of the assembly location counter can be displayed by
entering:

ASM Displays the current content of the assembly location counter.

New instructions are also assembled into program memory with the ASM
command. The new instructions are stored in memory at the current location
pointed to by the assembly location counter. The assembly location counter is in
cremented to the next available location and the new location is displayed. Several
examples are:

ASM ORG 03FFH Changes the contents of the assembly location counter to
03FFH.

ASM MOV A,RO Assembles the instruction MOV A,RO into program memory
at the location contained in the assembly location counter.

After a new instruction is assembled into program memory, the ASM command
updates the assembly location counter and displays the new value.

NOTE

The ASM command only operates between memory addresses 0
and OFFFH, inclusive, in EMV-51 internal program memory.

4-8

Disassembling User Programs

To produce and display mnemonic equivalents of instructions, use the command
described in the next section.

The DASM Command

The DASM command disassembles user programs, producing the mnemonic
equivalents of the machine language instructions. The command disassembles a
single instruction or a range of instructions. Several examples are:

DASM 100HTO 150H Disassembles contents of memory from address
100H through 150H, producing the mnemonic in
struction equivalents.

DASM .ABLE TO .BAKER Disassembles the contents of memory from symbolic
address .ABLE through symbolic address .BAKER,
producing the mnemonic instruction equivalents.

Using Display/Modify Commands

In Chapter 1, a short example program was described. This section uses the
Display/Modify commands to exercise portions of that program.

EMV-51 Display/Modify Commands

Key-in Sequence

ASM RETURN

Comments

By entering the command ASM, the emulator software
responds with the current value of the Assembly Loca
tion Counter (ALC). The ALC points to the place in
Program memory where the next instruction is
assembled. The following screen display shows the re
sults of the ASM command.

ASM ORG .BUFFER+10 When the ALC is set to a new value (via the ORG
RETURN

command), the emulator software displays the new lo
cation immediately following the command.

j * DASM 40H TO 50H 1
1 .DEHO OOMOH=nOV Rl,#.BUFFER DASH I

1 OOM5H=HOV R2,#03H DASH 1
1 004MH=CLR • CY DASH |
I 004bH=PUSH -ROX DASH |

I .LOOP oo4aH=riov A@R0 DASH |
1 OO4‘1H=INC RO DASH 1
1 004AH=INC RD DASH / 1

1 1 1 004BH=INC RO DASH / I
1 004CH=ADDC A,@0 DASH / 1
1 004DH=DA A DASH / I
1 OO4EH=PUSH • ACC DASH / 1
1 OOSOH=ANL Ai#OFH DASH / 1

Key-in Sequence Comments

DASM40H TO 50H
RETURN

The DASM command disassembles the contents of
memory and produces the mnemonic equivalents of the
instructions. In this example, memory from 40H to 50H
is disassembled.

4-9/4-10

CHAPTER 5
USING EMULATION COMMANDS

Introduction

This chapter describes the breakpoint, software trace, and emulation command
groups. The following sections describe the commands that comprise each group,
discuss how the commands are used, and give command entry examples. The fol
lowing topics are discussed:

• Using Breakpoint Commands
• Using Software Trace Commands
• Using Program Emulation Commands
• Using Emulation Controls

Setting Breakpoints

A breakpoint functions as a switch that stops program execution after a specified
event occurs. By using breakpoints, interactive control of program operation is
possible.

During program execution, if a breakpoint is encountered, the emulator stops pro
gram execution. Then, the user can selectively display and modify register and
memory contents.

The emulator software supports address, branch, range, and register value
breakpoints. These breakpoint types are described in the following paragraphs.

Address Breakpoints

The address breakpoint (BRn, where n=0 to 3) stops program execution if control
passes to a specified address. The address must be the first byte of an instruction;
otherwise, the breakpoint is ignored and program execution continues. Up to four
address breakpoints can be specified. Several command entry examples are:

BR0 = 100H
BR1 =.ABLE

BR2 = .ABLE + 5

BR3 = 100H + .BAKER*2

Sets address breakpoint 0 for address 100H.
Sets address breakpoint 1 for address specified by
the symbol name .ABLE.
Sets address breakpoint 2 for the address located 5
bytes after the address specified by the symbol
name .ABLE.
Sets address breakpoint 3 for the address specified
by the expression 100H + .BAKER*2.

Branch Breakpoints

A branch breakpoint (BRB) stops program execution when a jump instruction is
executed, i.e., a Jump, Call, Return, or Return from Interrupt instruction is
executed. The branch breakpoint is only used in the GO (or real time) emulation
mode. Branch breakpoint control can be enabled or disabled. Two.command entry
examples are:

BRB = ON Enables the branch breakpoint control.
BRB = OFF Disables branch breakpoint control.

5-1

Using Emulation Commands EMV-51

Range Breakpoints

A range breakpoint (BRR) stops program execution when program control passes
to an address within a specified range of addresses. The beginning address must be
the first byte of an instruction; otherwise, the breakpoints at these addresses are ig
nored and program execution continues. Several command entry examples are:

BRR = 1 OOH TO 120H Sets a range breakpoint for the address range
100H tol20H.

BRR = . ABLETO .ABLE+ 1 OOH Sets a range breakpoint for the address range
specified by .ABLE as the lower limit and
.ABLE+100H as the upper limit.

Register Value Breakpoints

The register value breakpoint (BV) stops program execution if a register contains
a specified value. The register value breakpoint is only used in the STEP (or non-
real time) emulation mode (the emulation modes, STEP and GO, are described
later in this chapter under Using Program Emulation Commands). The user can
specify one of the general purpose registers (RO through R7) or the accumulator
(ACC). The specific bank of general purpose registers depends on the contents of
RBS, which specifies register banks 0,1, 2, or 3. Several command entry examples
are:

BV = R0 44H Stops emulation when general purpose register RO contains
the value 44H.

BV=ACC .ALPHA Stops emulation when the accumulator contains the least 8
bits of the value represented by the symbol .ALPHA.

Clearing Breakpoints

The BC command, shown below, disables all breakpoints.

BC Disables all set breakpoints.

Breakpoint Restrictions

The emulator software permits the user to set four address breakpoints at any
given time. The range breakpoint (BRR) counts as three active address
breakpoints. Thus, the user can specify one range break and one address break, or
up to four address breaks.

When the user specifies two or more address breakpoints and a range breakpoint,
the emulator software displays the following error message:

TOO MANY BREAKS

The software does not recognize a range breakpoint when two or more address
breakpoints are enabled. To set a range breakpoint in this case, clear one or more
of the address breakpoints and then set the range breakpoint.

NOTE
If a range breakpoint and one address breakpoint are set and the
user adds another address breakpoint, the range breakpoint is
destroyed.

5-2

EMV-51 Using Emulation Commands

Using the BREAK Command

The preceding breakpoint commands can be entered individually or from within a
breakpoint table, as described in the following section.

The BREAK command displays a table containing all breakpoints, their entry
requirements, and the current state of each. When the user enters a breakpoint
command, the displayed table is updated to reflect the new entry. The breakpoint
display remains on the screen until the user enters a non-breakpoint command.

Special Function Key 2

Rather than enter the command BREAK, the user can enter the function key
shown below to obtain the same display. The numeral 2 key is pressed while hold
ing down the FUNCT key.

FUNCT 2 Displays all breakpoint keywords and their contents on
the screen.

Breakpoint Screen Displays

The following screen displays demonstrate the breakpoint commands and resulting
displays.

Key-in Sequence

BR RETURN

BR0=6B RETURN

Comments

When the BREAK or BR command is entered, the
emulator software displays a table containing all the
breakpoint commands.

The breakpoint commands can be entered individually or
from within the BREAK table. In this example, the break
point command BRO is enabled from within the BREAK
table.

5-3

Using Emulation Commands EMV-51

Comments

The BREAK table is updated when new breakpoint com
mands are entered.

Using Trace Display

During step (or non-real time) emulation of the user program, up to four lines of
emulation information can be automatically displayed after each instruction is
emulated. This information, called trace information, consists of disassembled
instructions, register and memory contents, and status information.

The user can enable or disable the automatic display of the emulation information
depending on program execution addresses or register contents. The emulator
software retains the last state of each trace display command. If the user disables a
trace command, the command must be re-enabled before it can be used to display
trace information. This section describes how to use the following commands:

• TD Command
• TR Command
• TBn Command
• TS Command
• TRn Command
• TV Command

The TD Command

The instruction trace (TD) command enables or disables the display of the dis
assembled instruction at a breakpoint or during STEP emulation mode. If enabled,
the instruction at the breakpoint is disassembled and displayed, along with the
cause of the breakpoint, on one line of the display. Command entry examples are:

TD = ON Enables display of disassembled instructions and the cause of the
breakpoint.

TD = OFF Disables the display of disassembled instructions.

5-4

EMV-51 Using Emulation Commands

The TR Command

The register display (TR) command enables or disables the display of general pur
pose registers RO through R7, the accumulator (ACC) at a breakpoint or during
STEP emulation mode, and PSW. If enabled, the registers are displayed on one
line of the screen. Two Command entry examples are:
TR = ON Enables the display of general purpose registers RO through R7, the

accumulator (ACC), and PSW.
TR = OFF Disables the display of general purpose registers RO through R7, the

accumulator (ACC) and PSW.

The TBn Command

The trace bit command (TBn) enables or disables the display of up to four one-bit
memory locations within the direct bit-addressable memory space when emulation
halts, where n specifies one of four trace bit commands. Bit-addressable memory
contains 128 user-defined software flags located between internal data memory ad
dresses 20H through 2FH as well as several bit locations within several special
function registers . Chapter 7 contains a memory map showing the physical layout
of the bit-addressable memory. Two command entry examples are:

TB0 = 4H Displays the contents of the fifth bit in bit-addressable memory as
bit display TBO when a breakpoint occurs or during STEP emulation
mode.

TB2 = OFF Disables the display of bit display TB2.

The TS Command

The status display (TS) command enables or disables the display of the program
status word (PSW) register when a breakpoint occurs. The register contains seven
1 -bit flags that indicate the current state of the following items:

• Carry flag
• Auxiliary Carry flag
• User Flag 0
• Register Bank Select RSO and RS 1
• Overflow Flag
• Parity Flag
• UTL (Reserved flag not accessible to the user)

Command entry examples are:
TS = ON Enables the display of the program status word register (PSW) on one

line of the screen display.
TS = OFF Disables the display of the PSW.

Controlling Trace Display

The commands described previously enable specific types of information to be dis
played as part of the instruction trace display. The instruction trace display can fur
ther be controlled by actions occurring within the user’s program.

The emulator contains two commands that enable or disable the instruction trace
displays depending on the contents of an 8051 register or when program control
passes to a specific address. These commands are covered in the following
paragraphs.

5-5

Using Emulation Commands EMV-51

The TRn Command

The TRn command enables or disables the trace display (as specified with the TD,
TRn, TBn, and TS commands) depending on program control passing to a speci
fied memory address. The user can specify up to four program locations that, if
located at the same addresses as breakpoints, enable or disable the instruction
trace display. The following example demonstrates how to use this command:

TR0=100HON Enables the trace display if the instruction at address 100H
also has a breakpoint set.

TR1 =11OH OFF Disables the trace display at address 110H .

In this example, the trace information (specified with the trace display
commands) is enabled if the instruction at address 100H is also the location of a
breakpoint. In STEP mode, the trace information is displayed for each instruction
executed until program control reaches address 110H . In GO emulation, the only
instructions displayed are those that also have breakpoints set. At address 11 OH,
the trace display is disabled. Once the trace display is disabled, no further trace in
formation is displayed until the user once again enables the display.

The TV Command

The TV command enables or disables the trace display (as specified by the TD,
TRn, TBn, and the TS commands) depending on the contents of a specified
register. The user can specify any of the registers RO through R7 or the accumula
tor ACC. The following example demonstrates how to use this command:

TV = RO 44H ON Enables the trace display if general purpose register RO con
tains 44H.

TV=ACC 10H OFF Disables the trace display if the accumulator contains 10H.

In this example, the trace information is displayed if general purpose register RO
contains the value 44H. The trace information is displayed for each instruction ex
ecuted until the accumulator contains the value 10H. At this point, the trace dis
play is disabled. Once the trace display is disabled, no further trace information is
displayed until the user once again enables the display.

NOTE

If the software trace display is turned off with either the TRn or
TV commands, the display will remain of! permanently until one
of the commands which is set to turn on the display is executed,
or until EMV-51 software is reset.

The DTRACE Command

The software trace (DTRACE) command displays a table containing all the trace
display controls. Thus, the trace control commands can be entered individually or
interactively from the DTRACE table. As the user enters instruction trace
commands, the table is updated to reflect the new entry. The DTRACE display re
mains on the screen until the user enters a non-trace display command. The
DTRACE table is then replaced by the results of the new command. The
DTRACE display is demonstrated in the next section.

5-6

EMV-51 Using Emulation Commands

Special Function Key 3

Rather than enter the command DTRACE, the user can enter the function key
shown below to obtain the same display. The numeral 3 key is pressed while hold
ing down on the FUNCT key.

FUNCT 3 Displays all trace keywords and their contents on the screen.

DTRACE Screen Displays

The following screen displays demonstrate the instruction trace display
commands. The first screen display demonstrates the DTRACE command, while
the following displays show the table being updated.

Key-in Sequence

DTR RETURN

Comments

Enter the DTRACE command. The emulator software
displays a table containing all the tracepoint commands.
The DTRACE command can be abbreviated to DTR.

TR0=48H ON RETURN Tracepoint display information can be controlled by ac
tions occurring within the users program. In this
example, the tracepoint display is enabled if the contents
at address 48H is executed.

5-7

Using Emulation Commands EMV-51

Comments

When the tracepoint commands are entered from the
DTRACE table, the emulator software updates the table
and continues displaying the table until a non-tracepoint
command is entered.

Program Emulation Commands

The emulator software contains two commands that start emulation of the user’s
program, the STEP and the GO commands. Both commands check for breakpoints
being set, but the STEP command performs the checking in software while the
GO command uses hardware breakpoint checking. These commands are described
in the following sections.

The STEP Command

The STEP command emulates the user’s program one instruction at a time, check
ing for a trace enable command (TRn or TV) or breakpoint (if enabled) after ex
ecuting each instruction. The EMV-51 software emulates either a single instruc
tion or a group of instructions. The emulation begins with the instruction pointed
to by the program counter, or at the address specified in the STEP command.

During STEP emulation, each instruction is executed and then checked for a trace
enable command being set. If software breakpoint checking is enabled, the emula
tor software also checks for breakpoints being set. If a trace enable command is
set, the emulator software displays up to four lines of trace information depending
on the trace control commands that are enabled. If a breakpoint is found and
breakpoints are enabled, the emulator software stops the emulation and displays
the address where the breakpoint occurred. Several command entry examples are:

STEP

STEP FROM 50H

Emulates the user program instruction pointed at by the
program counter. Breakpoints are not enabled.
Emulates the user program instruction located at address
50H. Breakpoints are not enabled.

5-8

EMV-51 Using Emulation Commands

STEP50H COUNT = 20H

STEP FROM 50H BR

Emulates user program instructions beginning at ad
dress 50H and continuing for the next 20H instruc
tions inclusive. Breakpoints are not enabled.
Emulates user program instructions beginning at ad
dress 50H. The BR parameter enables software
breakpoint checking.

The GO Command

The GO command emulates the user’s program at full speed (real-time) beginning
with the instruction pointed to by the program counter. If the user enters an ad
dress with the GO command, the emulator software updates the program counter
prior to beginning the emulation. The emulation continues until an address,
branch, or range break occurs, or the user aborts emulation by pressing the ESC
key.

If the user sets address, branch, or range breakpoints prior to entering the GO
command, the emulator hardware checks for breakpoints while executing each
instruction. If a breakpoint is found, the emulation stops after the instruction exe
cutes and EMV-51 displays the last address emulated and the reason for stopping
the emulation. Several command entry examples are:

GO Begins emulation from the address contained in the program
counter. If address, branch, or range breakpoints are set, the
emulation stops if a breakpoint is encountered.

GO FROM 50H Begins emulation from address 50H after updating the program
counter. If address, branch, or range breakpoints are set, the
emulation stops if a breakpoint is encountered.

NOTE

The emulator software issues one of the following warning
messages if the corresponding conditions occur:

Warning DO - an interrupt occurs just before the breakpoint to
halt emulation.

Warning DI - a breakpoint occurs on the first instruction of an in
terrupt service routine.

Warning D2 - when interrupts are enabled, and an 8051 timer is
enabled with an initial value of 0 or 1. A spurious timer overflow
occurs and an interrupt is generated.

The P Command

The P command displays the previous two instructions emulated by either the
STEP or GO commands. The command entry is:

P Displays the last two instructions emulated.

If the command is issued before any instructions are emulated, the emulator soft
ware displays the message “NO DATA”.

5-9

Using Emulation Commands EMV-51

Emulation Control Screen Displays

The demonstration program, introduced in Chapter 3, is used to demonstrate the
Emulation commands. In the following display screens, the breakpoint and trace
display commands are set up, the STEP and GO emulation commands are
demonstrated, and the P command is used to display the two commands last
emulated.

Key-in Sequence

BRB=ON

GO FROM .DEMO
RETURN

Comments

Enable the branch on breakpoint.

The GO command emulates the user’s program from an
address entered with the command, or from the address
contained in the program counter. The emulation con
tinues until a breakpoint is reached. When a breakpoint is
reached, the emulator software displays the cause of the
breakpoint and the address where it occurred.

Key-in Sequence Comments

'return;
J tt!

After an emulation has been performed, enter the P com
mand to display the last two instructions emulated. In
this example, the instructions DEC and DJNZ were the
last two instructions emulated with the GO command.

5-10

EMV-51
Using Emulation Commands

Key-in Sequence

BR RETURN

BR0=61 RETURN

Comments

Enter the BREAK command or its abbreviation. The
emulator software displays a table containing the break
point commands.

Change the breakpoint commands by entering the
desired command followed by the new contents. The
emulator updates the BREAK table and continues dis
playing it as shown in the following screen display.

Key-in Sequence Comments

TD=ON Enable instruction trace.

TR=ON Enable register trace.

5-11

Using Emulation Commands EMV-51

Key-in Sequence Comments

STEP FROM 61 BR Enter the STEP command with breakpoints enabled. The
EMV-51 software controls the hardware emulation of the
user’s program and stops the emulation when a break
point is encountered. When a breakpoint is detected, the
software may display up to four lines of trace information.
In this example, the instruction trace (TD) and register
trace (TR) were enabled.

5-12

CHAPTER 6
USING ADVANCED COMMANDS

Introduction

This chapter describes the macro and conditional command groups. The following
sections describe the commands that comprise each group, discuss how the com
mands are used, and give command entry examples. The following topics are
discussed:

• Using Macros
• Using Conditional Commands
• Macro and Conditional Commands Demonstration

Using Macros

A macro is a set of commands that are frequently used. When defined as a macro,
these commands are given a name, can be called into use by the single name
rather than being entered individually, and can have unique parameter values
passed to them each time they are executed.

This section describes the commands that define a macro, save a macro definition,
execute a defined macro, and remove a macro.

Defining Macros

The DEFINE Command

The DEFINE command assigns a single name (the macro name) to a group of
commands (the macro definition). The name is up to 32 characters long with a
colon (:) as the first character. After entering the DEFINE command, the emula
tor software response is a prompt consisting of a period immediately followed by
an asterisk (.*).

All user entry, following the prompt, is placed in the new macro definition. The
end macro command (described below), terminates the macro definition and the
system displays the single asterisk prompt again.

The EM Command

The EM command terminates the macro definition. Entering the EM command,
causes the emulator software to close the macro definition and display the single
asterisk prompt.

Parameter Passing

Customizing a macro definition is accomplished by passing up to 10 parameters to
the commands making up the definition. To indicate the points that receive
parameter strings, place a parameter indicator (a percent sign (%) followed by a

6-1

Using Advanced Commands EMV-51

number from 0 to 9) at the desired points. The actual parameter strings are passed
to the definition via the macro execution command, described later in this
chapter. The following example illustrates how to set up the definition to receive
parameter values.

DEFINE :SHOW
DBYTE%OTO%1

EM

Defines a new macro definition called SHOW.
Displays the contents of a range of addresses within data
memory. The actual range addresses are passed with the
macro execution command.
Terminates the macro definition.

NOTE
Commands may be entered to a macro in upper or lower case.
However, the system internally converts all the entered characters
to upper case.

Writing Messages

The WRITE command can be inserted in a macro definition to display messages
on the screen. With this command, the result of an expression or a string of charac
ters is displayed. Several examples are shown below:

WRITE ‘THE RESULT IS’ Displays the message THE RESULT IS when the
command is executed.

WRITE .ABLE + 100H Displays the result of the expression .ABLE+100H
when the command is executed.

Macro Definition Screen Display

The following screen display demonstrates the DEFINE and EM commands. A
macro is defined, and receives parameter values when executed.

DEFINE :SHOW
RETURN

J -4
DBY%OTO%1

EM

Macros are defined with the DEFINE command. In this
example, the macro :SHOW is defined to display a varia
ble section of memory.

Displaying Macro Information

The EMV-51 software contains commands that display the names of macros cur
rently in memory, or the text of specified macro definitions. These commands are
described below.

6-2

EMV-51 Using Advanced Commands

The DIR Command

The DIR command displays a directory of defined macro names currently residing
in memory. A macro definition must be defined by the user or loaded from a disk
file before the DIR command can display its name. The command is entered as:

DIR Displays a directory of all defined macros.

The MACRO Command

The MACRO command displays the definitions of one, several, or all defined
macros currently residing in memory. A macro definition must be defined by the
user or loaded from a disk file before the MACRO command can display its
definition. Several command entry examples are:

MACRO :NULL Displays the text definition of the macro :NULL.
MACRO :NULL,:DEMO Displays the text definitions of the two macros :NULL

and :DEMO.
MACRO Displays the text definitions of all defined macros.

Macro Information Screen Displays

The following screen display demonstrates the DIR and MACRO commands by
displaying the macros created in the first screen display.

DIR RETURN The DIR command displays the names of all user-defined
macros.

MACRO RETURN The MACRO command displays the names and defini
tions of all user-defined macros.

Executing Macros

The following sections show how to execute a macro (including a screen display),
and list a macro definition.

The Macro Execution Command

The user executes a macro by entering the macro name preceded by a colon (:). If
the macro requires parameters for execution, the parameters are entered with the

6-3

Using Advanced Commands EMV-51

macro name, separated by commas. The parameter values then replace the
parameter indicators (%0 through %9) sequentially.

The following examples demonstrate how to enter a macro name with and without
parameter values.:

:DIGIT 3,44 Executes the macro DIGIT and supplies the parameters
3 and 44.

:MULT.MUL1„MUL2 Executes the macro MULT and supplies the parameters
represented by the symbols .MUL1 and .MUL2.

:NULL
:DEMO

Executes a macro called NULL without parameters.
Executes a macro called DEMO without parameters.

Macro Execution Screen Display

The following screen display demonstrates the macro execution command with
parameter passing.

Key-in Sequence Comments

:SHOW 0,10H
RETURN

The macro :SH0W displays the contents of program
memory from address 0 to 10H.

The ENABLE/DISABLE Commands

When a macro definition is executed, the emulator software may or may not list
the definition prior to executing it. The default condition is that macro definitions
are not listed prior to execution of the macro.

To enable the display of macro definitions before executing the macro, the user
enters the command:

ENABLE EXPANSION Enables display of macro definition prior to the execu
tion of the macro definition.

The user can prevent the display of macro definitions by entering this command:

DISABLE EXPANSION Stops display of macro definition prior to the execution
of the macro definition.

Deleting Macros (The REMOVE Command)

The REMOVE command deletes macro names from memory. Several command
entry examples are:

REMOVE :NULL
REMOVE :NULL,:DEMO
REMOVE MACRO

Deletes the macro NULL from memory.
Deletes the macros NULL and DEMO from memory.
Deletes all macro names from memory.

6-4

EMV-51 Using Advanced Commands

Saving Macros (The PUT Command)

The PUT command saves a copy of the macro definition, including the DEFINE
and EM commands, in a disk file. The macro definition can be retrieved at a later
time using the INCLUDE command, described later in this chapter. Several com
mand entry examples are:

PUT :F1 :MACRO.SAV :NULL Saves a copy of the macro :NULL in the file
labeled MACRO.SAV on disk drive :F1:.

PUT :F3:MACRO.SAV :DEM,:RUN Saves a copy of the macros :DEM and :RUN
in the file labeled MACRO.SAV on disk
drive :F3:.

PUT :F3:SAVE.lT MACRO Saves a copy of all macros currently in
memory in the file labeled SAVE.IT on disk
drive :F3:.

NOTE
The PUT command destroys the contents previously in the disk
file. If one file is used for all macro definitions, retrieve all macro
definitions from the file prior to using the PUT command.

The INCLUDE Command

The INCLUDE command gets a command file from the specified disk file and exe
cutes the contents sequentially as they appear in the file. A command file consists
of valid EMV-51 commands created with either the ISIS-PDS editor or the
DEFINE macro command and stored in a disk file.

Executing Command Files

Command files are loaded with the INCLUDE command and executed sequential
ly as they appear in the file. For additional information on creating command files,
refer to the iPDS User’s Guide. A command entry example is shown below.

INCLUDE :F1 :TEST.V1 Loads a command file called TEST.V1 from device
:F1:.

Executing Macro Command Files

Macro definition commands, previously saved with the PUT command, are load
ed with the INCLUDE command and executed. Since the first command in the
macro is the DEFINE command, the macro is re-DEFINED in memory and
available for future reference. A command entry example is:

INCLUDE :F1 :MACRO.SAV Loads a command file called MACRO.SAV from
device :F1:.

As the macro is loaded into program memory, the emulator software automatically
lists the macro definition. The DISABLE EXPANSION command has no effect
during execution of the INCLUDE command.

6-5

:F3:SAVE.lT
SAVE.IT

Using A<h anced Commands EMV-51

INCLUDE Command Screen Display

• ENABLE EXPANSION
«:SHOWO,10H
. •DBY ZO to XI
»Et1
■ ROX
OOOOH = DMH 7SH FEH BAH A7H EAH bEH flbH BOH 01H 05H 5MH OHH flEH CAH ECH
OOlOH=bEH
• DISABLE EXPANSION
•PUT :FO:MACRO.SAV :SHOW

ENABLE EXPANSION

Key-in Sequence Comments

RETURN1

SHOW 0,1 OH
return!

-A

DISABLE EXPANSION
RETURN]

The ENABLE EXPANSION command causes
macro definitions to be displayed prior to execu
tion of the macro.

After the ENABLE EXPANSION command,
the macro definition is displayed prior to ex
ecuting the macro. This display shows the
macro command entry.

The DISABLE EXPANSION command dis
ables the macro expansion prior to macro
execution.

PUT :FO:MACRO.SAV :SHOW The PUT command writes a copy of the macro
f—-=n to the specified file. In this case, the macro
tRCTURHj :SH0W is written to the file MACRO.SAV on

device :F0:.

Key-in Sequence

REMOVE :SHOW
return!- - d

Comments

The Remove command deletes the macro defini
tion show from the symbol table. Each time a
macro is INCLUDED, its definition must be
REMOVED.

INCLUDE :F0: MACRO.SAV The INCLUDE command retrieves macro defini
tions from the specified file. In this case, the file is
MACRO.SAV. When the macro definitions are re
trieved from the file, the definition is displayed on
the screen.

6-6

EMV-51 Using Advanced Commands

IT»WRITE ‘THIS IS DUD”SI I »»TWO (2) LINE MESSAGE*
II THIS IS DUD’SI I TWO (2)
II LINE HESSAGE

Key-in Sequence Comments

WRITE ‘THIS IS DUD”S The WRITE command displays a message on the
fl screen. In this example, the message includes an em-

RETURN bedded apostrophe and carriage return. When the
TWO (2) LINE MESSAGE’message is displayed, it is displayed on two lines with
r=fl the correct single apostrophe.

RETURN

Using Compound Commands

Compound commands provide the user with conditional testing and looping
capabilities. Conditional testing uses the traditional IF..THEN..ELSE commands,
while the looping controls use both the REPEAT..WHILE/UNTIL ' and
COUNT..STEP..WHILE/UNTIL commands. The following sections cover:

• Setting Up Conditional IF Command
• Setting Up The REPEAT Command
• Setting Up The COUNT Command

Setting Up Conditional IF Commands

The IF..THEN..ORIF..ELSE command sequence permits conditional testing and
execution of groups of EMV-51 commands. The IF command can be nested to any
depth. The following command entry examples show several methods of using the
IF command.

In the first command entry example, the command STEP is executed if the con
tents of symbolic name .LOOP is equal to 5. If the test is false, the command GO is
executed. Chapter 8 contains additional information about the IF command.

IF .LOOP = 5 THEN If .LOOP = 5 then execute the command
STEP STEP, otherwise execute

ELSE the command GO.
GO

ENDIF The IF..LOOP terminator.

In the second command entry example, the value of the symbolic label .T deter
mines the sequence of a series of tests. If the initial value of .T is less than 3, the
testing begins. If the value of .T is greater than 1, phase B is performed. If the
value of .T equals 1, phase C is performed.

6-7

Using A<h a need Commands EMV-51

IF.TOTHEN
,ABLE = 10*.T
.T = .ABLE/10
WRITE’PHASE A PASSED’
IF.T>1 THEN

.BAKER = .ABLE*.T/4H

.T=.BAKER/. ABLE
WRITE’PHASE B PASSED’
STEP FROM .T COUNT = .ABLE
IF.T = 1 THEN

STEP FROM .T COUNT=.BAKER
WRITE’ALL PHASES PASSED’

ELSE
WRITE’PHASE C FAILED’

END
END

ELSE
WRITE’TEST FAILED’
STEP FROM ,T BR

ENDIF

Conditional IF Screen Display

The following screen display demonstrates a typical application of the conditional
IF command. The command is used to emulate various sections of a program
depending on the contents of a specified register.

‘DEFINE :W0RK2
»DBY3E=40
‘DEFINE. Z=1
‘REP
‘WHILE .Z>0
‘STEP FROM (DBY 3E)
»IFDBY3E=48THEN
« WRITE‘BYTE TAKEN'

ORIF (DBY 3E)=54
WRITE‘ASCII STORED'
ORIF (DBY3E)=61
.Z-.Z-1
DBY6FTO74
ENDIF

»DBY3E=(DBY3E)+1
‘END
»EM

Key-in Sequence

DEFINE :W0RK2
I RETURN

DBY 3E=40

REP

DEFINE.Z=1

Comments
This macro demonstrates how the REPEAT, WHILE,
STEP, IF...ORIF, and WRITE commands can be com
bined to emulate the portions of a program. Messages are
displayed when various points in the program are
emulated. The following screen displays show the results
produced by this macro.

6-8

EMV-51
Using Advanced Commands

Key-in Sequence

WHILE .Z>0 ff ’I
RETURN

U—

STEP FROM (DBY3E)

IF (DBY 3E)=48 THEN

WRITE‘BYTE TAKEN’

return)
--^1

RETURN

return!

ORIF (DBY3E)=54 jRETURNj

WRITE ‘ASCII STORED’

ORIF (DBY 3E)=61 (RETURN

DBY 6F TO 74 HETURN!

jRETURN^

ENDIF RETURN

END RETURN

DBY 3E=(DBY 3E)+1 [returni

EM RETURN

6-9

Using Advanced Commands EMV-51

OO4OH=HOV
I 0041H=XRL
I OOM2H=HOV
I 00H3H=RR
I OO4MH=CLR
I OOMLH=PUSH
I OOH7H=NOP

OOM6H=HOV

I DOH1H=INC
I OOHAH=INC
I OOMBH=INC
I OOHCH=ADDC
I DOMDH=DA
I DOHEH=PUSH
I OOHFH=HOVX
I OOSOH=ANL
I OOS1H=INC
I 00S2H=0RL
I OOS3H=JNB
I OOSHH=HOV

Rl,#.BUFFER
AiR?
R3,#03H
A
• CY
• ROX

A->@RO

RO
RO
RO
A,@O
A
• ACC
AiDPTR
A,#OFH
R7
Ai#30H
F7H-.00SFH
@R1->A

Key-in Sequence
:WORK2 Ireturn]

Comments

When the macro :W0RK2 is executed, the results shown
in the screen displays are produced.

Stop scrolling of screen display.

Continue scrolling of display.

ASCII STORED 11
1 OOSSH=INC R1 DASH 1 1
1 005LH=P0P • ACC DASH 1
1 00S7H=H0VX At&DPTR STEP I
1 OOSfiH-SUAP A DASH 1 |
1 00S1H=ANL Ai#0FH DASH 1 1
1 OOSAH=INC R7 STEP 1 I
1 OOSBH-ORL Ai*3OH DASH 1 1
1 D05CH=INC R7 STEP / 1
I 005DH=H0V @R1,A DASH I 1
1 OO5EH=INC R1 DASH / 1
1 OOSFH=DEC RO DASH / |
1 OObOH=DEC RO DASH / 1
) OOblH=DJNZ R2,.LOOP STEP 1 1

11 .BUFFER
|| O0UFH = 3OH 30H 30H 7EH OOH 8EH
1 \ »

6-10

EMV-51 Using Advanced Commands

Setting up the REPEAT Command
The REPEAT..WHILE and REPEAT..UNTIL command sequences execute a
series of commands conditionally. The REPEAT..WHILE sequence executes a
series of commands while a specified condition is true. The REPEAT..UNTIL se
quence executes a series of commands until a specified condition becomes true.
The UNTIL and WHILE clauses can appear once, never, or any number of times,
anywhere in the loop.

The following examples illustrate both forms of the REPEAT command.

REPEAT
WHILE DBYTE0>55H
STEP FROM 10HCOUNT = 10H
DBYTEO=(DBYTEO)-1

END

REPEAT
UNTIL DBYTE0=55H
STEP FROM 10H COUNT=10H
DBYTE O=(DBYTE 0) + 1

END

Begins a loop that repeats while mem
ory location 0 in data memory is
greater than 55H. The loop executes
STEP on each pass, then decrements
the memory location. Begins a loop
that repeats until memory location 0
in data memory equals 55H. The loop
executes STEP on each pass, then
increments the memory location.

REPEAT Command Screen Displays
The following screen display demonstrates a typical application of the REPEAT
command. The command emulates a program until a memory location equals a
specified value.

• DEFINE :WORK
• DBY3E=40
»DBY3F=0
•REP
• UNTIL (DSY 3F)=3
• GO FROM.DEMO
•DBY3F
• DBY6FTO75
• DBY 3F=(DBY 3F)+1
• END
• EM

Comments
DEFINE :WORK

REP RETURN

Key-in Sequence

Macros can reference data memory for function argu
ments. In this case, the UNTIL and DBY commands get
their arguments from data memory. The following screen
shows the execution results of this macro.

UNTIL (DBY 3F)=3 "bturn

GO FROM .DEMO RETURN

DBY3F RETURN

RETURN

EM [^RETURN

DBY 6F TO 75 jRETURN

DBY 3F=(DBY 3F)+1
END I^returhII

6-11

Using Advanced Commands EMV-51

Comments

*BRO=.DONE RETURN Set a breakpoint at the symbolic name .DONE

*:WORK RETURN Execute the macro,

DBYTE. R0X + DB3FH = 0BH
•BUFFER
00bFH=38H 3FH 3bH 3FH 37H 3FH 31H

»BRO=.DONE
»:WORK
•DONE OObBH=POP -ROX GO-BREAK
ACC=3FH PSU = 60H RO=FFH R1=7SH R2=00H R3=FFH RH=E3H RS = O1H Rb=FFH R7=8CH

CARRY=1 AUX = O FLAG=ORBS=OO OVERFLOU = O UTL = O PAR = O

DBYTE .R0X+D03FH=0BH
•BUFFER
B0bFH=38H 3FH 3bH 3FH 37H 3FH 31H
DONE OObBH=POP .ROX GO-BREAK
ACC=3FH PSU = aOH RO=FFH R1=7SH R2=00H R3=FFH RM=E3H RS = O1H Rb=FFH R7 = BCH

CARRY = 1 AUX = O FLAG = ORBS = OO OVERFLOU = OUTL = O PAR = D

DBYTE •ROX+OQ3FH=D1H
•BUFFER
00bFH=38H 3FH 3bH 3FH 37H 3FH 31H
DONE DObBH=POP .ROX GO-BREAK

ACC = 3FH PSIi) = 80H RO=FFH R1=75H RB=ODH R3=FFH RM=E3H RS = O1H Rb=FFH R7 = aCH
CARRY = 1 AUX=O FLAG = DRBS = OO OVERFLOWS UTL = O PAR = O

Key-in Sequence

Setting Up the COUNT Command
The COUNT..WHILE and COUNT..UNTIL command sequences execute a series
of commands a specified number of times. The WHILE and UNTIL clauses
permit conditional termination of the COUNT command sequence depending on
conditions within the program.

The following examples illustrate both forms of the COUNT command sequence.
COUNT12H

WHILE DBYTE 0>55H
STEP FROM 1OH COUNT=10H

END
COUNT12H

UNTIL DBYTE) = >55H
STEP FROM 10H COUNT= 10H

END

Begins a loop that repeats 12H times
and while memory location 0 in data
memory exceeds 55H. The loop exe
cutes STEP on each pass, with the
code presumably altering the con
tents of data memory location 0.
Terminates the COUNT command.
Begins a loop that repeats 12H times
or until data memory location 0
equals or exceeds 55H. The loop exe
cutes STEP on each pass, with the
code presumably altering the con
tents of data memory location 0.
Terminates the COUNT command.

Using Special Function Keys
The emulator software recognizes ten special function keys numbered 0 through
9. These keys are entered by typing the corresponding number while holding
down the FUNCT key similar to the way a SHIFTed character is typed. Function

6-12

EMV-51 Using Advanced Commands

keys 1 through 4 are predefined and were described in Chapters 3 through 5. Func
tion keys 0 and 5 through 9 are user-defined. These keys can be assigned to a
macro name if the macro does not require parameters passed to it. These prede
fined and user defined function keys can also be used by pressing only the num
bered key followed by a carriage return.

Assigning Function Keys to Macros

The following examples demonstrate the procedure to assign a function key to a
macro definition. Macro names associated with functions keys can be from 1 to 9
characters in length.

FUN = 0 :DEMO Assigns function key 0 to the macro definition labeled :DEM0.
FUN = 5 :NULL Assigns function key 5 to the macro definition labeled :NULL.

Function Key Precautions

The user can assign function keys 0 through 9 to macro definitions, but 0 and 5
through 9 should be assigned first. If function keys 1 through 4 are re-defined, the
user can not easily retrieve the system-defined function. The system definition for
function keys 1 through 4 can be retrieved by one of the following methods:

1. EXIT the emulation session and re-load the EMV-51 software by entering
EMV51. This procedure retrieves the original function key definitions, but
destroys all programs currently loaded.

2. Define a macro that duplicates the original function and assign the desired
function key to the macro definition.

For example, if the user re-defined function key 4 which generates the register
display, the following procedure can be used to retrieve the original definition.

Step 1 Define a macro that duplicates the original function:

DEFINE :REG Defines a macro labeled :REG that duplicates the original func-
REG tion key.

EM Displays the register keywords and their contents when executed.

Step 2 Assign the desired function key to the new macro.

FUN=4:REG Assigns function key 4 to the macro :REG that re-creates the
original function.

Displaying Assigned Function Keys

The user can display all assigned function keys by entering the command:

FUNCTION Displays all assigned function keys.

Advanced Commands Demonstration

This section demonstrates a practical use of the macro and conditional commands
by defining a macro that uses conditional commands to emulate the demonstration
program generated in Chapter 3.

6-13

Using Advanced Commands EMV-51

■ »EM
»MESS

»DEFINE:MESS
• »WRITE'
. «»LOAD NEXT PROGRAM

LOAD NEXT PROGRAM

Key-in Sequence

DEFINE :MESS RETURN

WRITE' return

Comments

The WRITE command can be used to display
messages on the screen. In this example, the message
is “LOAD NEXT PROGRAM”, preceded by an em
bedded carriage return.

LOAD NEXT PROGRAM

RETURN!

RETURNj
When the macro :MESS executes, it writes a message
to the display. The screen display shows the message
produced by the macro.

EM RETURN

:MESS return!

DEFINE :TEST

:WORK

Macro definitions can include other macro defintions. In
this example, the macro :TEST consists of the macros
:WORK and :MESS.

:MESS Treturn

t-----------a

EM [return:

6-14

EMV-51 Using Advanced Commands

Key-in Sequence Comments

FUNCT)—1 =0 :TEST

RETURN

funct|
=1 =0

Assign the macro :TEST to function Key 0

When the function key is depressed, the display shown in
the next screen is produced.

.DONE DObBH=POP -ROX GO-BREAK
ACC=3FH PSU=80H R0=FFH R1 = 7SH R2=00H R3=FFH RM=E3H RS=01H Rb=FFH R7=BCH

CARRY=1 AUX = O FLAG=ORBS=DO OVERFLOU = DUTL=O PAR = D

DBYTE.R0X+0D3FH=00H
.BUFFER
00bFH=38H 3FH 3bH 3FH 37H 3FH 31H
DONE DObBH=POP .ROX GO-BREAK

ACC = 3FH PSU = atJH RO=FFH R1=7SH R2 = OOH R3=FFH RH=E3H RS=O1H Rb=FFH R7=8CH
CARRY=1 AUX = O FLAG = ORBS = OO 0VERFL0U=OUTL=0 PAR = 0

DBYTE.ROX+D03FH=01H
.BUFFER
00bFH=38H 3FH 3bH 3FH 37H 3FH 31H
DONE DObBH=POP .ROX GO-BREAK

ACC = 3FH PSId = fiOH RO=FFH R1=75H R2=00H R3=FFH R4=E3H RS = B1H Rb=FFH R7=BCH
CARRY=1 AUX=D FLAG = 0RBS = OG OVERFLOW’DUTL=0 PAR = 0

DBYTE.R0X+003FH=02H
.BUFFER
00bFH = 38H 3FH 3bH 3FH 37H 3FH 31H

LOAD NEXT PROGRAM

6-15

Using A<h a need Commands EMV-51

CommentsKey-in Sequence

REMOVE :WORK RETURN

DEFINE :WORK RETURN

COUNT3T RETURN

STEP FROM (DBY20T) RETURN

IFACC=OTHEN return

REG RETURN

CBY0TO10T RETURN

ELSE RETURN

ENDIF ■RETURN

DBY 2OT = (DBY 2OT)+1

♦ REMOVE-.WORK
♦ DEFINE :WORK
.♦DBY2OT=4O
.♦COUNT 3T
.♦STEP FROM (DBY2OT)
. ♦IF ACC=OTHEN
.♦REG
.♦CBY0TO10T
.♦DBY0TO10T
.♦ELSE
. ♦CRY ROTO RO+1O
. ♦DBY ROTO RO+1O
.♦ENDIF
. ♦DBY 2OT = (DBY 20T)+1
.♦END
.♦EM

The macro must be removed before it can be rede
fined. This screen Display defines a macro that has
an error.

CRYROTORO+10 pUTURN^

DBY0TO10T jRETURNj

END l"ETURN;

EM ^RETURN j

RETURN.

DBYROTORO+10 yRETURNj

DBY20T=40 |j RETURN'

6-16

EMV-51 Using Advanced Commands

*ENABLEEXPANSION
*:WORK
• «DBY 20T=H0
•»COUNT 3T
. .»STEP FROtl (DBY SOT)
. .*IF ACC=O THEN
. • -»REG
. . -«CBY 0 TO 10T
. . .*DBY 0 TO 1OT
...»ELSE
...*CRY RO TO RO + IO

ERR ao SYNTAX ERROR

Key-in Sequence Comments

ENABLE EXPANSION
RETURN

:WORK RETURN

When macro expansion is enabled, the emulator soft
ware displays a macro definition prior to executing the
macro. In this case, the last line displayed contains an
error that prevented the macro from executing.

6-17

Using Advanced Commands EMV-51

»REMOVE'.WORK
»DEFINE:WORK
.*DBY20T=40
. »COUNT3T

»STEP FROM (DBY 2OT)
»IFACC=OTHEN
»REG
»CBY0TO10T
»DBYOTO 1OT
*ELSE
»CBY ROTO RO+1O
»DBYROTO RO+1O
»ENDIF
» D BY 2OT = (DBY 20T)+1
»END
»EM

CommentsKey-in Sequence

DBY20T=40 RETURN

DBY ROTO RO+1O return

ENDIF RETURN

END RETURN

EM

REMOVE: The macro must be removed before it can be rede
fined to correct the error. Enter the revised macro.

CBY RO TO RO+1 ofIHETUR"

CBY0TO10T |RETURNj

IFACC=OTHEN |RETURNj

DBY 2OT = (DBY 20T)+1 LRETURN

STEP FROM (DBY 2OT) |Jreturn^

COUNT3T | RETURN^

REG [RETURN^

DBYOTO 1OT !returnL> <

DEFINE :WORK

RETURN
A

-f
RETURN^

ELSE
f *

RETURN
/—

6-18

EMV-51 Using Advanced Commands

CWORK
• *DBY20T=MO
•»COUNTBT
• .«STEP FROM (DBY EOT)
. . »IF ACC = D THEN
. • .»REG
. • .»CBY 0 TO1OT
. . .»DBY 0 TO 10T
..-*ELSE
. • -»CBY RO TO RO + 1O
. . -»DBY RO TO RO+1O
..-»ENDIF
. .«DBY EOT = (DBY 20T)+l
. .*END
.«Et1

Key-in Sequence Comments

:WORK RETURN The corrected macro is executed with expansion enabled.
The following screen display illustrates the macro
execution.

After the macro definition is corrected, the macro is ex
ecuted and expanded without any errors.

• DEHO OOMOH=HOV Rl-.#. BUFFER STEP
ACC=68H PSU=OOH RO=OOH Rl=bFH R2=03H R3=3AH RM=AbH RS=EAH Rb=bEH R7=88H

CARRY=O AUX=G FLAG=ORBS=OQ OVERFLOU=DUTL=0PAR=O

.ROX
0000H = 33H 31H C1H CCH 33H 33H COH CCH B'lH 33H CDH C8H 33H 33H C8H C8H
0010H=33H
• ROX
OOOOH = DOH bfH D3H BAH AbH EAH bEH 68H OOH 01H OFH MEH OMH 8EH CAH ECH
OOlOH=bEH

I ODM1H=XRL A,R? STEP
ACC=OOH PSU=COH RO = OOH Rl=bFH R2=O3H R3 = 3AH RM=AbH RS=EAH Rb=bEH R7=88H

CARRY=O AUX = O FLAG = O RBS = OO OVERFLOU = OUTL = O PAR=O

.ROX
0000H = 33H 31H C8H CCH 33H 33H COH CCH 31H 33H CDH C8H 33H 33H C8H C8H
0010H=33H
.ROX
OOOOH-DOH bFH 03H BAH AbH EAH bEH 88H OOH O1H OFH MEH OMH 8EH CAH ECH
OOlOH=bEH

I 00M2H-M0V R2,#D3H STEP
ACC = OOH PSU=OOH RO+OOH Rl = bFH R2 = 03H R3=3AH RM =AbH RS=EAH Rb=bEH R7 = 8 8H

CARRY = O AUX = O FLAG = ORBS = OO OVERFLOU = OUTL = O PAR = O

Comments
When the macro :WORK is executed and the trace display
(TD), trace register (TR), and trace status (TS) com
mands are enabled, the display shown above is produced.

6-19/6-20

CHAPTER 7
EMV-51 REFERENCE MATERIAL

Introduction
This chapter contains reference material on the EMV-51 emulator and the
MCS-51 microcontroller family. It lists the keywords used by the emulator soft
ware and defines the MCS-51 operators used in the EMV-51 software.

EMV-51 Symbols
The emulator software contains a table of predefined system symbolic names,
known as system symbols. Table 7-1 lists the symbols and gives a definition of
each.

Table 7-1 System Symbols

KEYWORD DEFINITION

.ACC Accumulator
,B Multiplication Register Address
.PO PortO
.SP Stack Pointer
.DPL Data Pointer, Low Byte
.DPH Data Pointer, High Byte
.TOON Timer/Counter Port 0
.TMOD Timer Mode
.TLO Timer 0 Low Byte
.TL1 Timer 1 Low Byte
.THO Timer 0 High Byte
.TH1 Timer 1 High Byte
,P1 Portl
.SCON Serial Port Control
.SBUF Serial Port Buffer
,P2 Port 2
.IE Interrupt Enable
,P3 Port3
.IP Interrupt Priority
.PSW Program Status Word

In addition to the system symbols, the EMV-51 software uses several one-
character keywords as punctuation marks. These are listed in Table 7-2.

Table 7-2 Punctuation and Delimiter Keywords

Keyword Meaning

• Identifies symbolic reference
Separates items in a list

()
+

Controls order of evaluation in expressions
Indicates a positive value or addition

♦
Indicates a negative value or subtraction
Serves as the EMV-51 prompt character

- « a
 v

n Assigns one value to another
The greater than operator sign
The less than operator sign
Encloses opcode mnemonic constants in expressions
Encloses string characters
Identifies a macro name

% Identities formal parameters in macro definitions

7-1

EMV-51 Reference Material EMV-51

EMV-51 Operators

The EMV-51 software supports four types of operators: arithmetic, content,
relational, and logical operators. An operator is a category of commands that per
form specific functions. As an example, the CONTENT operator contains the
commands that access the various memory regions in the 8051 memory map. The
following paragraphs describe the four categories and list the operators in each.

Arithmetic Operators

Arithmetic operators consist of keywords that specify the five types of arithmetic
operations recognized by the emulator software. Each arithmetic operator returns
a 16-bit value. If the operation involves an 8-bit register as the destination the
register receives the low-order eight bits and the upper eight bits are truncated.
Table 7-3 lists the arithmetic operators.

Table 7-3 Arithmetic Operators

Operator Operation

+

•

Unary Plus
Unary Minus (2's complement)
Multiplication

/
MOD

+

Integer Division
Modulo division
Addition
Subtraction

Content Operators

Content operators consist of keywords that reference specific types of memory ad
dressed by the microcontroller. Table 7-4 lists the content operator keywords,
while the following paragraphs describe each memory space.

Table 7-4 Content Operator

Operator Type of Memory

CBYTE Code memory
DBYTE On-chip data memory
RBYTE Special Function Register memory
PBYTE External data memory
RBIT Bit-addressable memory

Code Memory (CBYTE)

The MCS-51 microcontroller family can address 64K bytes of program memory.
The 8051 and 8751 microcontrollers separate program memory into 4K bytes in
ternal memory and 60K bytes external program memory, while the 8031 provides
64K bytes of external program memory.

7-2

EMV-51 EMV-51 Reference Material

The emulator hardware contains 4K bytes of RAM that can optionally replace the
4K bytes of internal program memory of the 8051/8751 microcontrollers. The
user can replace the internal 4K byte memory space in the 8051/8751 microcon
trollers with the 4K bytes of RAM within the emulator hardware by setting control
jumpers as described in Appendix A.

CBYTE Restrictions

When using the emulator hardware 4K RAM as the microcontroller ROM, the
user can emulate and debug a program containing up to 64K bytes of instructions.
In the external 60K bytes of user program memory, the user can set breakpoints
and emulate programs, but can not modify the program code.

A program longer than 4K bytes can-be emulated and debugged in blocks of up to
4K instructions. The memory addresses for each block must be modified to load
into the EMV-51’s 4K RAM. As each block is emulated and debugged, it can be
programmed into a PROM, and inserted into the external 60K of program
memory space. In this manner, the entire user program can be emulated and
debugged. However, if the user enables external memory from 0 to 4K, the
CBYTE command is limited to reading memory contents. It can not modify pro
gram instructions in external memory.

On-Chip Data and Register Memory (DBYTE, RBIT, and RBYTE)

The MCS-51 microcontrollers contain 128 bytes of internal data memory orga
nized as 32 general-purpose registers, 16 bytes of bit-addressable memory, and 80
bytes of general-purpose RAM. In addition, the microcontrollers contain a block
of memory that consists of input/output registers and various internal control
registers. Figure 7-1 illustrates the organization of the internal memory.

On-Chip Data Memory (DBYTE and RBIT). The user can access the entire 128
bytes of internal data memory with the DBYTE keyword. The RBIT keyword is
used to access the 16 bytes of bit-addressable memory on a bit-by-bit level and bit-
addressable portions of the 8051 registers as shown in Figure 7-1 and Table 7-5.

Special Function Register Memory (RBYTE). The MCS-51 microcontroller
family contains a block of memory that consists of the input/output registers and
various internal control registers. The emulator software assigns system symbolic
names to the registers in this memory block. The user can access the pre-defined
registers by entering the RBYTE' keyword followed by an address or system
symbol. Table 7-1 lists the contents, system symbol, and a brief description of the
register memory locations. Refer to the MCS-51 Macro Assembler User’s Guide,
manual order number 9800937, for additional information.

External Data Memory (PBYTE)

The MCS-51 microcontroller family isolates program instructions from program
data by providing separate 64K. byte blocks of program memory and data memory.
The PBYTE keyword accesses the 64K bytes of external data memory.

7-3

EMV-51 Reference Material EMV-51

INTERNAL
DATA
MEMORY

ADDRESS

MEMORY
MAPPED
HARDWARE
REGISTERS

GENERAL
PURPOSE
MEMORY

RAM
BIT
ADDRESS
SPACE

GENERAL
PURPOSE
REGISTERS
R0-R7

0253

Figure 7-1 Internal Data Memory Organization

7-4

EMV-51 EMV-51 Reference Materia]

Table 7-5 Bit-Addressable Register Memory Contents

Hex Address System Symbol Meaning

80H-87H ,PO PortO

88H .ITO Timer Control
89H .IEO Timer 0 Interrupt Edge Flag
8AH .IT1 Timer 1 InterruptType Control Bit
8BH .IE1 Timer 1 Interrupt Edge Flag
8CH .TRO Timer 0 Run Control Bit
SDH .TFO Timer 0 Overflow Flag
8EH .TR1 Timer 1 Run Control Bit
8FH .TF1 Timer 1 Overflow Flag

90H-97H ,P1 Port 1

98H .Rl Receive Interrupt Flag
99H .Tl Transmit Interrupt Flag
9AH .RB8 Receive Bit 8
9BH ,TB8 Transmit Bit 8
9CH .REN Receiver Enable
9DH ,SM2 Serial Mode Control Bit 2
9EH ,SM1 Serial Mode Control Bit 1
9FH ,SMO Serial Mode Control Bit 0

AOH-A7H ,P2 Port 2

A8H .EXO Enable External Interrupt 0
A9H .ETO Enable Timer 0 Interrupt
AAH .EX1 Enable External Interrupt 1
ABH .ET1 Enable Timer 1 Interrupt
ACH .ES Enable Serial Port Interrupt

BOH .RXD Serial Port Receive Pin
B1H .TXD Serial Port Transmit Pin
B2H .INTO Interrupt 0 Input Pin
B3H .INT1 Interrupt 1 Input Pin
B4H .TO Timer/Counter 0 External Flag
B5H ,T1 Timer/Counter 1 External Flag
B6H ,WR Write Data (For External Memory)
B7H .RD Read Data (For External Memory)

B8H .PXO Priority of External Interrupt 0
B9H .PTO Priority of Timer 0 Interrupt
BAH .PX1 Priority of External Interrupt 1
BBH .PT1 Priority of Timer 1 Interrupt
BCH .PS Priority of Serial Interrupt

DOH ,P Parity Flag
D2H ,OV Overflow Flag
D3H .RSO Register Bank Select Bit 0
D4H .RS1 Register Bank Select Bit 1
D5H .FO FlagO
D6H .AC Auxiliary Carry Flag
D7H .CY Carry Flag

EOH-E7H .ACC Accumulator

FOH-F7H ,B Multiplication Register

7-5

EMV-51 Reference Material EMV-51

Relational Operators

Relational operators consist of keywords that indicate the desired relational com
parison to be performed. Table 7-6 lists the relational operators.

Table 7-6 Relational Operators

Operator Relation

= Is equal to
> Is greater than
< Is less than

>- Is greater than or equal to
< = Is less than or equal to
<> Is not equal to

Logical Operators

Logical operators consist of keywords that specify a logical combining of numbers.
Table 7-7 lists the logical operators.

Table 7-7 Logical Operators

Operator Operation

NOT 1's complement
AND Bitwise AND
OR Bitwise OR
XOR Bitwise exclusive OR

7-6

CHAPTER 8
COMMAND DICTIONARY

Introduction

This chapter presents the information necessary to understand the EMV-51
commands. It describes how commands are entered and edited, the form of
EMV-51 commands, command format notations, and gives definitions of terms
used in the command format descriptions. The information in this chapter is de
signed to be used by the more experienced user of the EMV-51 emulator. The fol
lowing topics are covered:

• Entering Commands
• Form of EMV-51 Commands
• Command Description Formats
• Special Command Format Terms
• Alphabetical Listing of Commands

Entering Commands

EMV-51 operations are controlled by command lines. The emulator software re
ceives command lines from one of four sources:

1. Commands entered from the keyboard.

2. Previously defined command files containing valid EMV-51 commands.
After loading the EMV-51 software, the command file is loaded and executed
using the INCLUDE command (described in Chapter 6).

3. Macros, defined as a sequence of related commands, stored in a disk file.
After loading the EMV-51 software, the macro definition is loaded and ex
ecuted using the INCLUDE command (macros and the INCLUDE com
mand are described in Chapter 6).

4. Previously defined files loaded and executed using the SUBMIT command.
Refer to the ISIS-PDS User’s Guide for additional information on the
SUBMIT command.

Entering the Command Line

An EMV-51 command line is a sequence of one or more command words separat
ed by spaces and ending with a carriage return. Normally, the command line is
limited to 122 characters. In most cases, the command words can be abbreviated
to one, two, or three characters.

Specifying the Workfile

Then the emulator software invocation command (EMV51) is entered, the ISIS-
PDS operating system automatically sets a workfile on the drive containing the
EMV-51 software. This workfile is used for temporary storage of macro

8-1

Command Dictionary EMV-51

definitions. While entering the invocation command, the user can specify an op
tional drive number for the workfile. The following command demonstrates spe
cifying another drive as the location of the workfile:

:F1:EMV51 WORKFILE (:Fn:)

In this example, the emulator software diskette is inserted in drive :F1: and the
workfile is specified as being on drive :Fn:, where n is replaced by 0,1, 2, 3, or 4.

Command Line Execution

With six exceptions, the carriage return causes the command to be interpreted
and, if no syntax errors are detected, executed immediately. The exceptions are
macro commands, continuation lines, the REPEAT command, the COUNT
command, the WRITE command, and the IF command. Macro, REPEAT,
COUNT, WRITE, and IF commands are described in Chapter 6; continuation
lines are described in the following section.

Continuation Lines

If a command line exceeds 122 characters, the line must be separated into multiple
lines, known as continuation lines. Continuation lines are formed by entering an
ampersand character (&) and a carriage return prior to the 122nd character.

When entering the ampersand and carriage return, the emulator software responds
by displaying a double asterisk prompt (**). The double prompt indicates the
EMV-51 is accepting a command line that exceeds the 122 character maximum
length. The command line is not executed until termination of a continuation line
with just a carriage return. At this point, the emulator returns to displaying a single
asterisk prompt character.

NOTE

If the continuation character (&) appears in a comment line, it is
interpreted as a part of the comment.

Entry Editing and Display Control

The emulator software recognizes control characters that permit editing of com
mand line entries and controlling of the display generated by command execution.
These control characters are described in the following sections.

Command Line Editing

The control characters list below are used to correct errors in command line entry.
The control characters consist of one or two keyboard characters. If a character is
preceded by the word CTRL, press the CTRL key and simultaneously press the
specified character. Otherwise, the indicated key is entered.

Aborts any operation that is executing or aborts any com
mand being entered.

Signifies the end of the command line.

8-2

EMV-51 Command Dictionary

rub]
OUT I Pressing the RUBOUT key deletes the last character

typed. One character is deleted each time the key is
pressed.

Gets the next keyboard entry and places the character in
the command line buffer without interpreting it.

Echo command line being entered.

Deletes the current line only, not any previous lines. If
several continuation lines have been entered, the CTRL
X deletes only the current portion.

Deletes an entire command line, including all continua
tion lines.

Controlling the Display

The emulator software displays information on the screen by displaying a line,
scrolling the displayed line upward one line, and displaying another line. Control
the of output to the display is accomplished with the control characters listed
below. Refer to the iPDS User’s Guide for a complete explanation of control char
acter functions.

Stops the output of new information to the screen.

Continues the output of new information to the screen.

Slows down or speeds up screen display. Pressing
FUNCT S once slows the display down, while pressing it
again speeds up the display.

Form of EMV-51 Commands

The command format requirements, listed later in this chapter, use special com
mand format notations terms. This section lists the format notations and defines
the command notation terms.

Notational Conventions

Because of the many different ways that a single command can be entered, it is not
possible or desirable to list every correct entry. Instead, the general format of the
command is described using special symbols or notational formats.

Command format notation consists of symbols adopted to help describe EMV-51
commands. These symbols are not part of the command but are used to precisely
describe the format of the command.

The special characters used in these formats have no significance to the emulator
software and are only meaningful in describing a class of correct command entries.
For example, items enclosed in brackets are optional parts of a command. The
brackets themselves would never be entered on a command line, but the item
within the brackets could optionally be included.

8-3

Command Dictionary EMV-51

UPPERCASE Characters shown in upper case must be entered exactly
as shown. Uppercase is used to denote command key
words as shown in the following example:

DEFINE ,<label> = <expression> <cr>

<class name> Angle brackets denote general terms that must be re
placed by a specific member of the class referenced. For
example, < filename > would be replaced by a valid ISIS-
PDS filename and <address> would be replaced by a
valid address.

[<option>] Brackets enclose optional material that may or may not
be included on the command line. For example,
[=< radix>] is an optional item that may be appended
to the SUFFIX command.

... Ellipses indicate that the preceding item can be repeated.

1 <item> 1
1 <item> J Braces indicate that one and only one of the enclosed en

tries must be selected. If the items are also enclosed by
brackets, they are optional and no choice is required. For
example,

f y)

INCLUDE

In)

Indicates a choice must be made to enter either Y or N.
The following example indicates that either A or B or
neither can be selected. The enclosed choices are printed
in a vertical column.

[{b}]

f <item>)
I <item> J - Braces followed by ellipses indicate that at least one of the

enclosed items must be selected. If the items are also en
closed by brackets, they are optional and no choice is
required. The items may be used in any order unless oth
erwise specified. For example,

A
B
C
D J ”■

indicates that a choice must be made to include one or
more of the items A, B, C, or D.

the underline denotes a valid abbreviation of the com
mand word.

8-4

EMV-51 Command Dictionary

Command Description Formats

In addition to the conventions described above, a standard form is used in this
chapter to describe each command. This helps in accessing the reference informa
tion at a glance.

The EMV-51 commands appear in alphabetical order as a reference guide for the
experienced user. Each command begins on a new page with the command key
word at the top outside margin on the page; the format is followed by a brief de
scription of the items required in the command and short examples are given as
illustrations of the command in use. This format is shown in figure 8-1.

CO[iUil[UilAl?^D KEYV/ORD
brief phrase describing command.

Command Format

KEYWORD < parameter 1 through parameter n>

< parameter 1>

 Description

< parameter n>
 Description

Comments

Comments related to operating the command.

Examples

A few brief illustrations of the command line.

Figure 8-1 Format of Command Descriptions

Special Command Format Terms

In addition to the notational conventions, the command format descriptions in
this manual contain general terms that are common to many commands:
<expression>
<source>
<command>

<string>
<destination>
<condition>

8-5

Command Dictionary EMV-51

Expression

An expression <expr> is composed of numerals, keywords, and symbolic
references. The expression is evaluated to a 16-bit number that replaces the origi
nal expression.

A numeral consists of one or more digits and, optionally a one character suffix that
specifies the desired number base. The value can be preceded by a unary sign that
indicates whether the value is positive or negative. Table 8-1 lists the number
bases and numerical digits recognized by EMV-51 software.

Table 8-1 Available Number Bases and Digits

Number Base Valid Digits Explicit Radix Example

Binary (base 2) 0,1 Y 11110011Y
Octal (base 8) 0-7 Q 363Q
Decimal (base 10) 0-9 T 243T
Hexadecimal (base 16) 0-9, A-F H F3H

Example:

123T Decimal numeric expression
12H*23H Hexadecimal numerals connected by an arithmetic operator

to form an expression.
.ABLE AND .BAK Symbolic references connected by a logical operator to form ‘

an expression.

String

The term string refers to a sequence of one or more alphanumeric characters en
closed in apostrophes (’), as shown below:

‘HELLO’ The apostrophes (’) enclose the string HELLO.

If a string contains an apostrophe, use two apostrophes to mark the apostrophe.
When the string is displayed on the screen, the emulator software displays the
double apostrophe as a single apostrophe. The following example contains an em
bedded apostrophe.

‘they”re’ Double apostrophe marks an embedded apostrophe.

When a string of characters is stored in memory, each character occupies one byte
or memory location. In the example given above, the string HELLO would occupy
5 memory locations. If the string has more than one character, the emulator uses
consecutive memory locations to store each character.

Source

The term <source> in command lines refers to an assembler mnemonic input to
the command. The <source pn> is the assembler mnemonic input file.

Destination

The term <destination> in command lines refers to the output for the command.
The < destination pn> is the output file.

8-6

EMV-51 Command Dictionary

Command

The term < command > in command lines refers to any valid EMV-51 command.
The <command list> is a sequence of EMV-51 commands.

Condition

A < condition> can have the same kinds of entries as <expr>. However, in a
< condition > only the least significant bit (LSB) of the result is tested.

Alphabetical Listing of Commands

The following pages contain an alphabetical list of the EMV-51 commands and
their command formats.

Command Format

ACC [= <expr>]

ACCUMULATOR
Display or change the

contents of the accumulator

where

<expr> specifies the 8-bit numeric value that replaces the current contents of
the accumulator. The value can be specified as a symbolic name or an
expression.

Comments

The accumulator (ACC) is a general purpose register used in data transfers and
arithmetic operations. The ACC command displays or changes the contents of the
register. When <expr> is used, it is evaluated to a 16-bit number and truncated
to the lower 8-bits.

Examples

ACC

displays the current contents of the accumulator. The numeric value is displayed
according to the default base.

ACC=10H

changes the contents of the accumulator to the value 10H.

8-7

Command Dictionary EMV-51

ASM
Assembles one line of instruction
mnemonics into program memory

Command Format

ASM I" fORG <expr>
|_[<source>

where

ORG <expr> changes the contents of the assembly location counter to the
16-bit value of <expr>. The expression consists of numeric
values and symbolic references.

<source> specifies a valid 8051/8751/8031 instruction mnemonic.

Comments

The ASM command displays the current value of the assembly location counter,
changes the current contents of the assembly location counter to the indicated
value, or assembles one line of 8051 microcontroller instructions into program
memory.

The assembly location counter is a pointer that indicates where the next available
location is in program memory. It is automatically incremented for each instruc
tion stored in memory and the new value is displayed.

When a new instruction is assembled into program memory, it is stored at the loca
tion indicated by the contents of the assembly location counter. Refer to the Mi
crocontrollers User’s Guide, order number 210359, for additional information on
the 8051 microcontroller instruction set.

Examples

ASM

displays the current address value in the assembly location counter.

ASM ORG 0

sets the assembly location counter to program memory location 0.

ANOP

assembles the NOP instruction into memory at the location pointed to by the as
sembly location counter.

8-8

EMV-51 Command Dictionary

Command Format

B
Display or change the contents of

the multiplication register

B [= <expr>]

where

<expr> specifies the 8-bit numeric value that replaces the current contents of
the B register. The value can be specified as a symbolic name or an
expression.

Comments

The multiplication register (B) is used as a multiplication register during arithmet
ic operations and a general purpose register for all remaining operations. The B
command displays or changes the contents of the register. When <expr> is used,
it is evaluated to a 16-bit number and truncated to the lower 8-bits.

Examples

B

displays the current contents of the B register. The numeric value is displayed ac
cording to the default base.

B = 10H

changes the contents of the B register to the value 10H.

8-9

Command Dictionary EMV-51

BASE
Displays of changes the base
for display of numeric data

Command Format

BASE S=
Y
H
T
Q

where

Y specifies binary as the base for display of numeric data.

H specifies hexadecimal as the base for display of numeric data.

T specifies decimal as the base for display of numeric data.

Q specifies octal as the base for display of numeric data.

Comments
The BASE command displays or changes the base for the display of numeric
values. The initial base is hexadecimal (H). All numeric values are displayed ac
cording to the contents of base.

Examples
BASE

displays the base for numeric values displayed on the screen.
BAS=T

changes the base to decimal.

BC
Clears all breakpoints

Command Format
BC

Comments
The BC command clears all breakpoints set by the user. Breakpoints are not recog
nized during emulation after the BC command is executed until set again.

Examples
BC

removes all breakpoints set by the user.

8-10

EMV-51 Command Dictionary

BRB
Enable or Disables

the branch breakpoint

Command Format
BRB[- {off}]

Comments
The BRB command enables or disables the branch breakpoint. Prior to the start of
GO emulation and if BRB is enabled, the emulator places a breakpoint at the loca
tion of the next instruction that causes a branch. The BRB breakpoint disables all
other breakpoints while it is active. During STEP emulation, the BRB breakpoint
is ignored. The default state of BRB is OFF.

The emulator does not distinguish between conditional branches that fail (fall
through) and those that pass (branch). The break occurs on the fetch of the
branch instruction, not on its outcome.

Examples
BRB=ON

enables the branch breakpoint.
BRB = OFF

disables the branch breakpoint.

EFJEAK
Displays a table containing all

break commands and their values

Command Format
BREAK

Comments
The BREAK command displays a table containing all breakpoint commands and
their current states. The display remains on the screen until a non-break command
is entered, such as the GO command. When a break command is entered with a
new state or content, the table is updated to reflect the new contents.

Examples
BREAK

displays a table consisting of all the break commands and their current state or
content. The table remains on the screen until a non-break command is entered.

8-11

Command Dictionary EMV-51

BRR
Specifies a range breakpoint

Command Format

BRR r_ (<expr1 > TO <expr2>
L“ lOFF

where

<expr1 > specifies the beginning address within the range of addresses. It can
be specified as an actual address, symbolic name, or an expression.

<expr2> specifies the ending address within the range of addresses. It can be
specified as an actual address, symbolic name, or an expression.

OFF disables the Range Breakpoint.

Comments

The BRR command specifies a range breakpoint between the limits of <exprl >
and <expr2>, where <exprl> is less than or equal to <expr2>. When break
points are enabled and program execution branches to an address within the speci
fied range during an emulation, the EMV-51 hardware stops the current emulation
and returns control to the user. The default state of BRR is OFF.

Examples

BRR=100H T0150H

sets a range breakpoint between addresses 100H and 150H.

BRR = .ABLE+ 4 TO .SETUP-2

sets a range breakpoint between the addresses indicated by the expressions
.ABLE+4and .SETUP-2.

BRR = OFF

disables the range breakpoint.

BRR

displays the current range setting.

8-12

EMV-51 Command Dictionary

BR<n>
Specifies up to four

address breakpoints

Command Format

BR<n> <expr>
OFF

where

< n > specifies a numeric value between 0 and 3 that indicates the desired ad
dress breakpoint.

<expr> consists of numeric values, symbol names, and mathematical opera
tors. The expression is evaluated to a 16-bit result.

OFF disables the specified address breakpoint.

Comments

The BR<n> command specifies from 1 to 4 address breakpoint: BRO, BRI, BR2,
and BR3. When the 8051 fetches an instruction at an address specified by an ad
dress breakpoint during an emulation, the emulation is stopped and control is re
turned to the user. The default state of the address breakpoints is OFF.

Examples

BR0=100H

sets an address breakpoint for address 100H.

BR2 = .ABLE + 5

sets an address breakpoint for address specified by the expression .ABLE+ 5.

BR3 = OFF

disables address breakpoint number 3.

BRO

displays the current breakpoint 0 setting.

8-13

Command Dictionary EMV-51

BV
Specifies a value breakpoint

Command Format
nv T_ f<register> <expr>)”|

L t<OFF> J J

where

<register> specifies one of the following registers of the 8051 microcontroller:
R0-R7 or ACC.

<expr> consists of numeric values, symbol names, and mathematical
operators. The expression is evaluated to 8 or 16 bits.

OFF disables the value breakpoint.

Comments

The BV command specifies a register and specific value as the value breakpoint. It
is used in the STEP emulation mode. The <register> is one of the 8051 micro
controller registers, while the value is an 8 or 16-bit number depending on the
register selected.

When the 8051 executes an instruction that references the specified register when
the register contains the indicated value, program emulation is stopped and control
is returned to the user. The default state of the BV breakpoint is OFF.

Examples

BV=ACC87H

specifies the accumulator when it contains the value 87H as the value breakpoint.
When the accumulator contains 87H during emulation, the emulator software
stops program execution and returns control to the user.

BV=OFF

disables the value breakpoint.

8-14

EMV-51 Command Dictionary

CBYTE
Display or modify contents of program memory

Command Format
P f TO <expr2> 1 “I F (<expr3> 1 f”,<expr> "I “|
LI LEN <expr4> J J L l<string> J L><string> J"JCBYTE <expr1 >

where

<expr1 > specifies a beginning address within program memory.

TO <expr2> specifies an ending address within program memory.

LENGTH <expr4> specifies a range of locations within program memory to be
displayed or operated on. The <expr4> indicates the
number of locations to be displayed.

<expr3> specifies the 8-bit value stored at the address specified in
<exprl>. If a value greater than OFFH is specified, the
software uses the least significant byte as the result. The
expression can consist of numerals, symbol names, and
arithmetic operators.

<string> specifies an alphanumeric string of characters that are
stored in memory beginning at <exprl>. Each character
in the string is stored in successive memory locations.

Comments

The CBYTE command displays or modifies the contents of program memory. The
command can display or modify the contents of EMV-51 program memory. The
user can read the contents of external program memory from 4K to 64K, but can
not modify the contents of that memory.

If the TO or LENGTH parameters are entered, the command displays the memory
contents at the indicated addresses. If the equal parameter (=) is entered, the
command modifies the contents of memory to the value specified by the user. The
optional TO, LENGTH, and equal sign can be combined within the command line
to address multiple memory locations.

Examples

CBYTE 0 TO 3FH

displays the contents of program memory locations 0 to 3FH.

CBYTE 0 LEN 9 = 1,2,CBYTE 56H

changes the contents of program memory locations 0 through 9 to the sequence 1,
2, and the contents of program memory location 56H. The sequence (1, 2,
CBYTE 56H) is repeated until all ten memory locations are changed.

8-15

Command Dictionary EMV-51

CDUWiP
Display content of program memory as
both hexadecimal and ASCII values

Command Format

CDUMP <expr1 > TO <expr2>

where

<expr1 > specifies the beginning address of a range of addresses to be
displayed.

TO <expr2> specifies the ending address of a range of addresses to be
displayed.

Comments

The CDUMP command displays the contents of program memory as hexadecimal
values and ASCII characters. The hexadecimal values are displayed on the left side
of the display, while the ASCII characters are displayed on the right side of the
display.

Examples

CDUMP80HTO83H

displays the contents of program memory locations 80 to 83H as hexadecimal
values and ASCII characters.

CDUMP.ABLE TO .FIN

displays the contents of program memory as hexadecimal values and ASCII
characters. The addresses are specified by the contents of the symbolic names
.ABLE and .FIN.

8-16

EMV-51 Command Dictionary

COUNT
Begins a program ioop

Command Format
COUNT <expr> <cr>

UNTIL Ccondition > <cr>
WHILE <condition> <cr>
<command> <cr>

END

where

<condition>

<expr> specifies the number of times the loop is repeated.

WHILE indicates that the loop terminates when the least significant bit of
the condition tested is false.

UNTIL indicates that the loop terminates when the least significant bit of
the condition tested is true.

indicates the test condition that satisfies the WHILE/UNTIL
clauses. Only the least significant bit (LSB) of the < condition > is
tested.

<command > is any EMV-51 command entered by the user that executes until
the test condition is met.

Comments
The COUNT...END command sequence forms a command loop that executes
until a specified count is reached or a specified condition is encountered. If the op
tional test condition is met during the loop execution, the programming loop ter
minates before the final count is reached. The optional test value is entered with
the WHILE or UNTIL clause.

Examples

COUNT 5
WHILE DBYTE 0 < .TOTAL
STEP
DBYTE 0= (DBYTE 0)4-1

END

the loop executes 5 times or until the contents of DBYTE 0 equals or exceeds the
value assigned to the symbolic name .TOTAL.

COUNT = .CNT
STEP
UNTIL DBYTE 0 = .TOTAL
DBYTE 0= (DBYTE 0)4-1

END

the loop executes 10T times or until the contents of DBYTE 0 equals the value as
signed to the symbolic name .TOTAL.

8-17

Command Dictionary EMV-51

DASM
Displays program memory
as instruction mnemonics

Command Format

DASM <expr1 > TO <expr2>

where

<expr1 > specifies the beginning address of the range of addresses to be
disassembled. It consists of numeric values, symbolic references,
and mathematical operators.

TO <expr2> specifies the end address of a range of addresses to be
disassembled. It consists of numeric values, symbolic references,
and mathematical operators.

Comments

The DASM command disassembles the contents of program memory and displays
the contents as mnemonic instructions. If symbolic display is enabled (via the
ENABLE command) and a match is found, the command displays opcode ad
dresses as symbolic names.

An instruction is displayed if its first byte is within the range of indicated
addresses. The address contained in <exprl> must point to the first byte of an
instruction. Otherwise, the command produces invalid results.

Examples

DASM 100HTO 150H

disassembles the contents of program memory locations 100H through 150H.

DAS .ABLE TO .BAKER

disassembles the contents of program memory beginning with the location indicat
ed by the contents of the symbolic name .ABLE and ending with the location in
dicated by the contents of the symbolic name .BAKER.

8-18

EMV-51 Command Dictionary

DBYTE
Display or modify contents

of internal data memory

Command Format
DBYTE <expr1 > f TO <expr2>

I LEN <expr4>
f<expr3> 1
l<string> /

,<expr> “1 1
_,<string>

where

<expr1 >

TO <expr2>

specifies a beginning address within internal data memory,

specifies an ending address within internal data memory.
The address must be between 0 and 7FH.

LENGTH <expr4> specifies a range of locations within internal data memory
to be displayed. The <expr4> indicates the number of lo
cations to be displayed. It ranges between 1 and 80H.

<expr3> specifies the 8-bit value stored at the address specified in
< exprl >. The value consists of numerals, symbol
names, and arithmetic operators.

<string> specifies an alphanumeric string of characters that are
stored in memory beginning at < exprl >. Each character
in the string is stored in successive memory locations.

Comments

The DBYTE command displays or modifies the contents of internal data memory,
depending on how the command is entered.

If the TO or LENGTH parameters are entered, the command displays the memory
contents at the indicated address. If the equal parameter (=) is entered, the com
mand modifies the contents of memory to the value specified by the user. The op
tional TO, LENGTH, and equal sign can be combined within the command line to
assign values to multiple memory locations.

Examples

DBYTE O TO 3FH

displays the contents of data memory locations 0 to 3FH.

DBYTE 0 LEN 9 = 56H

changes the contents of data memory locations 0 through 8 to 56H.

DBYTE 7 = ‘THIS IS A STRING'

changes the contents of data memory beginning at address 07H and continuing for
the length of the string.

8-19

Command Dictionary EMV-51

DDUMP
Display content of external data memory
as both hexadecimal and ASCII values

Command Format

DDUMP <expr1 > TO <expre>

where

<expr1 >

TO <expr2>

specifies the beginning address of a range of addresses to be
displayed.

specifies the ending address of a range of addresses to be
displayed.

Comments

The DDUMP command displays the contents of external data memory as hexa
decimal values and ASCII characters. The hexadecimal values are displayed on the
left side of the display, while the ASCII characters are displayed on the right side
of the display.

Examples

DDUMP 8H TO 4AH

displays the contents of data memory locations 8H to 4AH as hexadecimal and
ASCII values.

DDUMP .ABLE + 4TO .SEC + 10H

displays the contents of data memory as hexadecimal values and ASCII characters.

DEFINE
Defines symbolic names
or macro definitions

Command Format

DEFINE ':< string >
,<string> = <expr>

where

:<string> specifies the beginning of a macro definition where <string> is an
alphanumeric string of 2 to 32 characters, including the colon, that is
the name of the new macro.

8-20

EMV-51 Command Dictionary

.<string>

<expr>

specifies an alphanumeric string of 2 to 32 characters, including the
period, that becomes a user symbolic name.

specifies the 16-bit value to be assigned to the symbol name. It con
sists of numeric values, symbolic references, and mathematical
operators.

Comments

The DEFINE command performs two tasks:

1. Evaluates the expression entered with it and assigns the 16-bit result to the
symbolic name. Once assigned, the user can enter the symbolic name rather
than the numeric value or expression. The symbolic name is added to the
end of the EMV-51 user symbol table.

2. Begins a new macro definition where :< string> is the name of the new
macro. All commands following the DEFINE command are placed in the
new definition until the EM command, which terminates the definition.

Once the macro definition is created, the user can save it in a disk file with
the PUT command (described later in this chapter).

Examples

DEFINE .CHALK = .ABLE + FFH

assigns the result of the expression .ABLE+FFH to the new symbolic name
.CHALK.

DEF :NULL

begins a macro definition labeled :NULL. All commands following the DEFINE
command are entered into the definition until the EM command, which termi
nates the definition. The macro name is added to a user macro list maintained by
the emulator software.

DIR
Displays the names of all macros

Command Format

DIR

Comments

The DIR command displays the names of all macros in the user macro list. This in
cludes macros in RAM memory and in the temporary macro workfiles. The macro
text is not displayed.

8-21

Command Dictionary EMV-51

DISABLE
Disables the display of
symbolic names or macro text

Command Format

DISABLE (SYMBOLIC 1DlbAtJLt: ^EXPANSION/

Comments

The DISABLE command performs two functions:

1. Disables the display of symbolic names for the screen display commands:
DTRACE, ASM, and the entry or display of memory locations. When a
numeric value is encountered in one of the above commands, the value itself
is displayed according to the current BASE.

2. Disables the expansion of macro definitions prior to execution of the macro.
The default condition is the disable condition, where macro definitions are
not expanded.

Examples

DISABLE SYMBOLIC

disables the use of symbolic names for numeric values.

DISABLE EXPANSION

disables the expansion of macro definitions prior to execution of the macro.

DPTR
Display or change the contents
of the data pointer register

Command Format

DPTR [= <expr>]

where

<expr> specifies the 16-bit address value to be assigned to the data pointer
register. It can consist of numeric values, symbol names, and mathe
matical operators.

8-22

EMV-51 Command Dictionary

Comments

The data pointer register (DPTR) serves as the base register in indirect jumps,
table look-up instructions, and external data transfers. The DPTR command dis
plays or changes the contents of the data pointer register. When <expr> is used,
it is evaluated to a 16-bit value.

Examples

DPTR

displays the current contents of the data pointer register. The numeric value is dis
played according to the default base.

DPTR = 1 OOH

changes the contents of the data pointer register to the value 100H.

DTRACE
Displays a table containing
all trace display commands

Command Format

DTRACE

Comments
The DTRACE command displays a table containing the trace display commands
and their current condition, whether enabled or disabled. The table remains on
the screen until a non-trace display command is entered, such as the GO
command. When a trace display command is entered with a new state or content,
the table is updated to reflect the new contents.

Examples

DTRACE

displays a table consisting of the trace display commands and their current state or
content. The table remains on the screen until a non-trace command is entered.

8-23

Command Dictionary EMV-51

ENABLE
Enables the display of
symbolic names or macro text

Command Format

ENABLE (SYMBOLIC
(EXPANSION

Comments

The ENABLE command performs two functions:

1. The display of symbolic names for the screen display commands: DTRACE,
ASM, and the entry or display of memory locations. When a numeric value
corresponds with a value assigned to a symbolic name, the symbolic name is
displayed rather than the numeric value. Otherwise, numeric values are dis
played as a symbolic name plus an offset.

2. Enables the expansion of macro definitions prior to the execution of the
macro definition. The default state is macro expansion disabled.

Examples

ENABLE SYMBOLIC

enables the use of symbolic names for numeric values.

ENABLE EXPANSION

enables the expansion of macro definitions prior to the execution of the macro.

EVALUATE
Evaluates an expression
entered with the command

Command Format

EVALUATE <expr>

where

<expr> specifies an arithmetic expression or symbolic name that consists of
numeric values, symbolic references, and mathematical operators.
The expression is evaluated and a 16-bit result is generated.

8-24

EMV-51 Command Dictionary

Comments

The <expr> is evaluated and a 16-bit numeric value is produced. The value is dis
played in binary, octal, decimal, hexadecimal, and the ASCII equivalent. In
addition, the value is displayed as an offset from a symbol name that is less than
the value.

Examples

EVALUATE 30H + 23*(.ABLE + 4)

evaluates the <expr> 30H + 23H*(.ABLE+4) and displays the 16-bit result in
four bases, ASCII, and an offset from the nearest symbol name.

EVALUATE .ABLE

displays the value assigned to the symbolic name .ABLE and displays the result in
four bases, ASCII, and an offset from the nearest symbol name.

EXIT
Terminates the debugging session

and returns control to ISIS-PDS

Command Format

EXIT

Comments

The EXIT command terminates the debugging session and returns control ISIS-
PDS operating system. The user’s program and macros should be saved if desired
prior to entering the EXIT command.

Example

EXIT

terminates the current debugging session and returns control to the operating
system.

8-25

Command Dictionary EMV-51

FUNCTION
Displays or assigns function keys

Command Format

FUNCTION [= <n> :<string>]

where

< n > a numeric value between 0 and 9 inclusive.

<string> a pre-defined macro name, where the name consists of 2 to 9 alpha
numeric characters including the colon.

Comments

The FUNCTION command assigns macro names to the specified function keys.
Macros requiring parameters are not assigned to function keys. Function keys 1
through 4 are pre-defined as listed below:

Executes the MEMORY command and produces the table containing
the display/modify commands.

Executes the BREAK command and produces the table containing the
breakpoint commands.

Executes the DTRACE command and produces the table containing
the trace display commands.

Executes the REGISTER command and produces the table containing
the register control commands.

The function keys 1 through 4 can be re-defined, but special steps must be taken
to retrieve the original definitions. The two methods that can be used to retrieve
the original definitions are listed below:

1. EXIT the emulation session and reload the EMV-51 software by entering the
EMV51 command. This procedure retrieves the original function key
definitions.

2. Define a macro that duplicates the original function and assign the macro to
the desired function key.

The user can incorporate function keys in command files as described below:

1. Enter a numeric value within the range of 0 through 9. This value corre
sponds to the desired function key number.

2. Enter a carriage return.

When the command file is loaded with the INCLUDE command, the numer
ic value between the carriage returns executes as if the user had depressed
the FUNCT key and one of the numeric keys 0-9 on the keyboard.

8-26

EMV-51 Command Dictionary

Examples

FUNCTION = 0:DEMO
assigns the macro :DEMO to function key 0.

FUN = 5 :MULT
assigns the macro :MULT to function key 5.

FUN
displays all function key assignments.

NOTE

All predefined and user defined functions can be accessed by
pressing the number associated with the function without pressing
the FUNCT key.

GO
Begins full speed emulation

of the user’s program

Command Format

GO [[FROM] <expr>]
where

<expr> specifies an address where emulation is to begin. Consists of numeric
values, symbolic references, and mathematical operators. The expres
sion is evaluated to a 16-bit result.

Comments

The GO command begins program emulation from the address contained in the
program counter or from the address entered with the command. The GO com
mand differs from the STEP command as described below.

1. Breakpoints are checked in hardware with the GO command, where they are
checked in software with the STEP command.

2. Trace display controls are not checked during execution of the GO command.

Examples

GO
begins emulation at the address contained in the program counter and proceeds in
definitely or until a breakpoint is encountered.

G FROM 10OH
begins emulation at address 100H and proceeds indefinitely or until a breakpoint is
encountered.

8-27

Command Dictionary EMV-51

HELP
Displays general or specific
information about EMV-51 commands

Command Format
HELP [item]

where
item specifies an EMV-51 command or keyword.

Comments
The HELP command provides information about EMV-51 commands and
keywords. The user can enter multiple items with the command.

Examples
HELP

displays a list of the HELP items. The user can obtain assistance with any item in
the list.

HELP LOAD,LIST
displays information about the LOAD and LIST commands.

IF...THEN...ELSE
Conditionally executes
a series of commands

Command Format
IF <cond1 > [THEN] <cr>

[<command> <cr>...]

ORIF <cond2> <cr>
_[<command> <cr>]...

"ELSE <cr>
_[<command> <cr>]...

ENDIF
where
<cond1 >

<cond2>

<command>

specifies a conditional test whose 16-bit result is true or false.
Consists of numeric values, symbolic references, and mathe
matical operators.
specifies a conditional test whose result is true or false. Consists
of numeric values, symbolic references, and mathematical
operators.
specifies one or a list of EMV-51 commands to be executed if
the test condition is true.

Comments
The IF..THEN..ELSE conditional command sequence performs conditional exe
cution of command sequences. The <condl> and <cond2> specify a condition
al tests whose 16-bit results are true (low-order bit is a one) or false (low-order bit
is a zero). If the result is true, the command(s) following the conditional test are
executed. Otherwise, the ELSE or ENDIF commands are executed.

8-28

EMV-51 Command Dictionary

During command execution, the emulator software performs the following tests
on the IF..THEN..ELSE sequence:
1. If <condl> is true, execute the <command> following it and branch to

ENDIF.
2. If <condl> is false, test <cond2>. If true execute the command list fol

lowing <cond2> and branch to ENDIF. If multiple ORIF’s are present, test
each < cond2 > until one is true or all test false.

3. If <condl> and <cond2> are both false, execute the <command> fol
lowing the ELSE and branch to ENDIF.

The <command> specifies that one or more of EMV-51 commands are entered
by the user. The series of commands are executed and then control branches to
the ENDIF command.

Examples
IF DBYTE 100=1

STEP FROM 100
ELSE

CBYTEOTO 200
ENDIF

this example performs the conditional test DBYTE 100 = 1. If the test is true, the
command STEP FROM 100 is executed and control passes to the ENDIF
command. Otherwise the command CBYTE 0 TO 200 is executed.

If .G = 0THEN
STEP FROM 100H

ORIF.G = 1 THEN
.ABLE = .ABLE + 1
STEP FROM 200H

ORIF ,G = .ABSCAN THEN
CBYTEOTO 300H
,G = .G + 1

ELSE
GOFROM50H

ENDIF
In this example, the IF and ORIF commands perform conditional command exe
cution by testing for a specified condition. Depending on the test result, the emula
tor software performs from 1 to 3 conditional tests. If all the tests fail, the com
mand following the ELSE command is executed. If one of the tests passes, the
commands following the test are executed, and control passes to the ENDIF
command.

1F.T<3THEN
,ABLE = 10*.T
,T = .ABLE/1O
IF.T>1 THEN

.BAKER = .ABLE*.T/4H
,T = .BAKER/.ABLE
STEP FROM ,T COUNT=.ABLE
IF.T=1 THEN

STEP FROM .T COUNT = .BAKER
END

END
ELSE

STEP FROM ,TBR
ENDIF

In this example, the value of the symbolic label .T determines the execution se
quence of a series of nested IF commands. If the initial value of .T is less than 3
the testing begins. If the value of ,T is greater than 1, the second IF command is
executed. If the value of .T equals 1, the third IF command is executed.

8-29

Command Dictionary EMV-51

INCLUDE
Loads a macro definition
or command file

Command Format

INCLUDE <source pn>

where
< source pn> specifies the file name of the macro or command file.

Comments

The <source pn> is any valid ISIS-PDS device name followed by a filename as
described in the iPDS User’s Guide. The emulator software executes any valid
EMV-51 commands as they are loaded from the < source pn >.

Macro definitions are only loaded with the INCLUDE command. Since the first
command in the macro definition is the DEFINE command, the emulator software
recreates the macro and lists the definition on the screen. The DISABLE EXPAN
SION command has no effect when loading macros from a file.

Command files are also loaded with the INCLUDE command. A command file is
created prior to loading the EMV-51 software and consists of valid EMV-51
commands. Refer to the iPDS User’s Guide for additional information on com
mand files.

The INCLUDE command can be nested within any other command, including a
macro definition.

Examples

INCLUDE :F1’.MAC.SAV
loads the contents of filename MAC.SAV and executes the contents as they are
entered. In this case the file consists of macro definitions, but the file could be a
command file.

INCLUDE :CI:
loads the contents of filename :CI:. Since this file is the keyboard, the user can
enter EMV-51 commands as if the commands originated from a command file. A
control-Z must be entered to close the file.

INTERRUPT
Displays a table containing
the interrupt indicators

Command Format

INTERRUPT

8-30

EMV-51 Command Dictionary

Comments

The INTERRUPT command displays a table containing the Interrupt Enable (IE)
and Interrupt Priority (IP) registers, including the status of Interrupts In Progress
for priority 0 (IIPO) and priority 1 (IIP1). For IP, “0” and “1” indicate the priority
levels with level 1 priority being higher than level 0. A “1” indicates an interrupt is
enabled for IE, while a “1” indicates an interrupt in progress for both IIPO and
IIP1.

Examples

INTERRUPT
displays the interrupt table as described in the comments section.

Command Format

LIST
Sends a copy of the debugging

session to a disk file

LIST destination pn>
where
destination pn> specifies the output file that receives a copy of the debug

ging session.

Comments

The <destination pn> is any valid ISIS-PDS device name followed by a filename
as described in the iPDS User’s Guide. The emulator software sends a copy of all
input and output from the debugging session to the file.

The LIST command destroys any data that was initially in the file specified with
the command. The command is terminated by entering the following command:

LIST :CO:

Examples

LIST :F2:TEST.V3
saves a copy of all input and output from the debugging session to the file
TEST.V3 until the LIST :CO: command is entered.

LIST :LP:
saves a copy of all input and output from the debugging session to the line printer
until the LIST :CO: command is entered.

LIST :CO:
terminates the LIST command and closes the <source pn>.

8-31

Command Dictionary EMV-51

LOAD
Loads the user’s object code
and/or symbol table

Command Format

LOAD <source pn> [NOCODE] [NOSYMBOL]

where

<source pn> specifies the input file that contains the object code and symbol
table of the user’s program.

NOCODE specifies the user’s symbol table is loaded from the input file,
but not the object code.

NOSYMBOL specifies the user’s object code is loaded from the input file, but
not the symbol table.

Comments

Depending on the options selected with the command, the LOAD command loads
the user’s object code program and symbol table from the input file. Unless the
user specifies otherwise, the command defaults to loading object code and symbol
table. The command operates on EMV program memory.

The LOAD command will load non-relocateable (absolute) code in the Hex or
Object format. Thus, absolute assembler output or RL51 output can be loaded.

If the operation is not successful, an error message is displayed on the console.

Examples

LOAD :F1’.EMVDEM.OBJ

loads the user’s object code program and symbol table from the file
:F1:EMVDEM.OBJ.

LOAD :F2:EMVDEM.OBJ NOCODE

loads the user’s symbol table from the file :F2:EMVDEM.OBJ.

LOAD :F4:EMVDEM.OBJ NOSYMBOL

loads the user’s object code program without the symbol table from the file
:F4:EMVDEM.0BJ.

NOTE
The LOAD command does not check for duplicate symbols when
loading the symbol table. If the user loads the same program
twice, all symbol names will be duplicated in the user symbol
table.

8-32

EMV-51 Command Dictionary

Command Format

MACRO [;<string1 > [,:<string2 >,...]]

MACRO
Displays the text definition

of one or more macros

where

:<string> a predefined macro name the consists of 1 to 32 alphanumeric char
acters including the colon.

Comments

If MACRO command is entered by itself, the emulator software displays the defi
nitions of all user defined macros. Otherwise, the command displays the defini
tions of all macros entered with the command.

Examples

MACRO

displays the definitions of all user defined macros.

MACRO :SUM,:DIV

displays the definitions of the macros :SUM and :DIV.

8-33

Command Dictionary EMV-51

MEMORY
Displays format requirements
for display/modify commands

Command Format

MEMORY

Comments

The MEMORY command displays a table consisting of the display/modify com
mands (CBYTE, DBYTE, RBYTE, PBYTE, RBIT, CDUMP, and DDUMP) and
their format requirements. The table is displayed on the screen until the user
enters any command. When a command is entered, the emulator software displays
the results of the command, but does not preserve the MEMORY table.

Examples

MEMORY

displays a table containing the display/modify commands.

M

displays a table containing the display/modify commands.

P
Displays the last two
instructions emulated

Command Format

p

Comments

The P command displays the previous two instructions emulated with either the
GO or STEP commands. The command displays “NO DATA” if no instructions
have been emulated or Warning DO has occurred.

Examples

p
displays the last two 8051 instructions emulated with either the STEP or GO
commands.

8-34

EMV-51 Command Dictionary

PBYTE
Display or modify contents

of external data memory

Command Format

PBYTE < exprl > f TO <expr2>
I LEN <expr4> }][-{<expr3>

< string >
1 F,<expr>
J [_,<string>

where

< exprl > specifies a beginning address within external data memory.

TO <expr2> specifies an ending address within external data memory.
The address must be between 0 and 64K.

LENGTH <expr4> specifies a range of locations within external data memory
to be displayed. The <expr4> indicates the number of lo
cations to be displayed. It ranges between 0 and 64K.

<expr3> specifies the 8-bit value that will be stored at the address
specified in < exprl >. The expression consists of
numerals, symbol names, and arithmetic operators.

<string> specifies an alphanumeric string of characters that are
stored in memory beginning at < exprl >. Each character
in the string is stored in successive memory locations.

Comments

The PBYTE command displays or modifies the contents of external data memory,
depending on how the command is entered.

If the TO or LENGTH parameters are entered, the command displays the memory
contents at the indicated address. If the equal parameter (=) is entered, the com
mand modifies the contents of memory to the value specified by the user. The op
tional TO, LENGTH, and equal sign can be combined within the command line to
assign values to multiple memory locations.

Examples

PBYTE 0 TO 3FH

displays the contents of external data memory locations 0 to 3FH.

PBYTE 0 LEN 9 = 56H

changes the contents of external data memory locations 0 through 8 to the value
56H.

PBYTE 0 LEN 1K = 1,2,3,4

stores a repeating in external data memory beginning at location 0 and continuing
for the next 1024 locations. "r

8-35

Command Dictionary EMV-51

PC
Display or change the contents
of the program counter

Command Format

PC [= <expr>]

where

<expr> specifies a 16-bit memory address that replaces the current contents of
the program counter. It consists of numeric values, symbolic refer
ences, and mathematical operators.

Comments

The program counter (PC) indicates the next instruction to be executed. The PC
command displays or changes the contents of the register. When <expr> is used,
it is evaluated to a 16-bit value.

Examples

PC

displays the current contents of the program counter. The numeric value is dis
played according to the default base.

PC = 1OOH

changes the contents of the program counter to the value 100H.

8-36

EMV-51 Command Dictionary

PSW
Display or change the contents of

program status word register (PSW)

Command Format

PSW [= <expr>]

where

<expr> specifies the numeric value that replaces the current contents of the
PSW. Consists of numeric values, symbolic references, and mathe
matical operators. The expression is evaluated to a 16-bit result and
truncated to the lower 8 bits.

Comments
The program status word register (PSW) contains 8 flags that indicate the status of
microcontroller. These flags are listed below corresponding to the bit position with
the PSW.

bit 7 Carry flag (CY)
bit 6 Auxiliary carry flag (AC)
bit 5 User flag 0 (FO)
bit 4 Register bank select 1 (RBS1)
bit 3 Register bank select 0 (RBSO)
bit 2 Overflow flag (OV)
bit 1 Reserved flag not accessible to the user (LITL)
bit 0 Parity flag (P)

The PSW command displays or changes the contents of the PSW. When the con
tents are being changed, the user can enter the value as an 8-bit binary value, a
byte value, or an expression.

Examples

PSW

displays the current contents of the 8051 PSW. The numeric value is displayed as a
binary value.

PSW = 1

sets the parity flag and clears the remaining flags.

8-37

Command Dictionary EMV-51

PUT
Saves the definition of
user macros in a file

Command Format

PUT destination pn> {^CRO^ ‘■:<strlng>'~1 }

where

<destination pn> specifies the output file that receives a copy of the macro
definition.

<string> a pre-defined macro name, where the name consists of 2 to
32 alphanumeric characters including the colon.

MACRO specifies all macros currently residing in RAM or workfiles.

Comments

The PUT command saves macro definitions on the < destination pn>. The user
can specify from one to all macros currently residing in RAM or macro workfiles.
The <destination pn> can be any valid ISIS-PDS device attached to the iPDS.

If the specified macro name does not exist, it is created by the PUT command.

Examples

PUT :F2:MAC.SAV :DIV,:SUM

saves the macros :DIV and :SUM on the file :F2:MAC.SAV.

PUT :F2:MAC.SAV MACRO

saves all macro definitions currently in RAM on the file :F2:MAC.SAV.

PUT :LP: MACRO

sends a copy of all macro definitions currently in RAM or in the macro workfiles
to the line printer.

8-38

EMV-51 Command Dictionary

Command Format

RBIT
Display or modify contents
of bit-addressable memory

RBYTE <exor1 > I <~exPr2> 1 = f<expr3> 1 r,<expr> "| "j
HoYic <expri.> LEN <expr4> J J L l<string> J L<string> J"J

where

<expr1 > specifies a beginning address in bit-addressable data
memory that is between OH and OFFH.

TO <expr2> specifies an ending address in bit-addressable data
memory. The address must be between OH and OFFH.

LENGTH <expr4> specifies a count of locations in bit-addressable data
memory to be displayed. The <expr4> indicates the
number of locations to be displayed. It ranges between 0
and FFH.

<expr3>

<string>

specifies the 1-bit value that is stored at the specified
address. The expression consists of numerals, symbol
names, and arithmetic operators.

specifies an alphanumeric string of characters. Each charac
ter’s least significant bit is stored in successive memory
locations.

Comments

The RBIT command displays or modifies the contents of bit-addressable data
memory, depending on how the command is entered.

If the TO or LENGTH parameters are entered, the command displays the memory
contents at the indicated address. If the equal parameter (=) is entered, the com
mand modifies the contents of memory to the value specified by the user. The op
tional TO, LENGTH, and equal sign can be combined within the command line to
assign values to multiple memory locations.

Examples

RBIT20H to 27H

displays the contents of bit-addressable memory locations 20 to 27H.

RBIT DOH to D7H = 1

changes the contents of the program status word register (PSW) to the value FFH.

8-39

Command Dictionary EMV-51

RBS
Display or change the contents
of register bank select flags

Command Format

RBS [= <expr>]

where

<expr> specifies the numeric value that replaces the current contents of regis
ter bank select flags m the program status register. The 2-bit value can
be specified as a physical address, symbolic name, or an expression
with a value between 0 and 3, inclusive.

Comments

The 8051 microcontroller contains four banks of 8 general purpose registers num
bered RO through R7. The RBS command specifies one of the four banks of gener
al purpose registers that is the active register bank. When <expr> is used, it is
evaluated to a 2-bit value between the limits of 0 to 3, inclusive.

Examples

RBS

displays the current contents of the RBS flags in the program status register. The
numeric value is displayed according to the current base.

RBS = 1

changes the contents of the RBS flags in the program status register to the value
01, indicating general purpose register bank 1.

RBYTE
Display or modify contents of
special function register memory

Command Format

RBYTE <expr1 > r f TO <expr2>
LlLEN <expr4> }][={<expr3>

<string> }r,<expr>
|_. < string >

where

<expr1 >

TO <expr2>

specifies a beginning address within register memory.

specifies an ending address within register memory. The
address must be between 80H and FFH.

8-40

EMV-51 Command Dictionary

LENGTH <expr4> specifies a range of locations within register memory to be
displayed. The <expr4> indicates the number of locations
to be displayed. It ranges between 0 and 7FH.

<expr3> specifies the 8-bit value that will be stored al the specified
address. The value consists of numerals, symbol names,
and arithmetic operators.

<string> specifies an alphanumeric string of characters that are
stored in memory beginning at <exprl>. Each character
in the string is stored in successive memory locations.

Comments

The RBYTE command displays or modifies the contents of register memory,
depending on how the command is entered.

If the TO or LENGTH parameters are entered, the command displays the memory
contents at the indicated address. If the equal parameter (=) is entered, the com
mand modifies the contents of memory to the value specified by the user. The op
tional TO, LENGTH, and equal sign can be combined within the command line to
assign values to multiple memory locations.

Examples

RBYTE 80H TO 83H

displays the contents of register memory locations 80 to 83H.

RBYTE84H LEN 4 = 2

changes the contents of register memory locations 84H through 87H to the
value 2.

REGISTER
Displays the 8051 registers

and their contents

Command Format
REGISTER

Comments
The REGISTER command displays a table consisting of the 8051 registers and
their contents. The display remains on the screen until a non-register command is
entered. When a register command is entered, the table is updated to reflect the
new contents entered with the command.

Although the following command is not displayed with the REGISTER command,
it can be entered while the table of registers is displayed:

B

Examples
REG

displays a table containing the 8051 microcontroller registers and their contents.

8-41

Command Dictionary EMV-51

R<n>
Display or change the contents of
the general purpose registers

Command Format

R<n> [= <expr>]

where

< n > signifies a digit with the limits of 0 to 7 inclusive, that specifies one of
the general purpose registers RO through R7 within the register bank
selected via RBS.

<expr> specifies the numeric value that replaces the current contents of the
general purpose register. The 8-bit value can be specified as a physical
address, symbolic name, or an expression.

Comments

The 8051 microcontroller contains four banks of 8 general purpose registers num
bered RO through R7. Depending on the particular bank selected via the RBS
command, the R<n> command displays or modifies the contents of register.
When < expr> is used, it is evaluated to a 16-bit value and truncated to 8 bits.

Examples

RO

displays the current contents of general purpose register RO. The numeric value is
displayed according to the default base.

R2=1OH

changes the contents of general purpose register R2 to the value 10H.

8-42

EMV-51 Command Dictionary

REMOVE
Removes user-symbolic names

or macro definitions

Command Format

REMOVE.
,<string> [,.<string
:<string> [,:<string>,...]
SYMBOLS
MACRO

where

<string> name of user-defined symbol(s) in the symbol table that are 2 to 32
characters long including the period.

<string> name of user-defined macro(s) in RAM or the workfiles that are 2 to
32 characters long including the colon.

SYMBOLS specifies that all user symbolic names are removed from the user
symbol table.

MACRO specifies that all macro definitions are removed from RAM or the
workfiles.

Comments
The REMOVE command deletes from one to all user symbolic names from the
symbol table, or one to all macro definitions from RAM or the workfiles.

Examples
REMOVE .ABLE,.BAKER

removes the user symbolic names .ABLE and .BAKER.

REMOVE SYMBOLS

removes all user assigned symbolic names.

REMOVE :DIV

removes the macro definition :DIV.

REMOVE MACRO

removes all user macro definitions from memory.

8-43

Command Dictionary EMV-51

REPEAT
Begins command loop

Command Format

REPEAT <cr>

’WHILE <condition> <cr>
UNTIL <condition> <cr>

_<command> <cr>
END

where

WHILE indicates the < command list> executes as long as the Ccondi-
tion> entered with the WHILE command is true.

UNTIL indicates the < command list> executes as long as the < condi
tion > entered with the UNTIL command is false.

<condition> indicates the test condition that satisfies the WHILE/UNTIL
commands. The test condition consist of an arithmetic, logical,
or relational test, such as:

DBYTEO < .TOTAL

<command> is a sequence of EMV-51 commands entered by the user that exe
cutes until the test condition is met.

Comments

The REPEAT..END command sequence sets up a command loop that executes
until optional specific test conditions are met. The ESCAPE key can be used to
exit from REPEAT loops

The REPEAT..END command sequence with the WHILE clause, executes a
series of EMV-51 commands as long a test condition is true. The REPEAT..END
command sequence with the UNTIL clause executes a series of EMV-51 com
mands as long as a test condition is false. Both command loops permit the user’s
sequence of commands to control the number of times the command loop
executes. The REPEAT..WHILE and REPEAT..UNTIL command sequence can
appear anywhere in the loop.

Examples

REPEAT
WHILE DBYTE 0 < .TOTAL
ASM MOV.PO,#(DBYO)
DBY O = (DBY 0+1)

END
the commands execute while the contents ol DBYTE 0 equals or exceeds the
value assigned to the symbolic name .TOTAL.

8-44

EMV-51 Command Dictionary

REPEAT
UNTIL DBYTE 0 = .TOTAL
ASM MOV.PO,#(DBY0)
DBY 0= (DBY 0+1)

END

the commands execute until the contents of DBYTE 0 equals the value assigned
to the symbolic name .TOTAL.

Command Format

RESET

RESET
Resets emulator to
its default settings

Comments

The RESET command simulates a hardware RESET. Refer to the MCS-51 User’s
Manual for additional information on the hardware reset.

The command sets the DTRACE and BREAK commands to their default states.
The RESET command does not affect the SUFFIX and BASE commands, or the
function key assignments.

Examples

RESET

re-initializes the EMV-51 hardware and sets the DTRACE and BREAK com
mands to their default states.

8-45

Command Dictionary EMV-51

SAVE
Saves the user’s program in a file

Command Format
SAVE destination pn> T0 <expr2> [NOSYMBOL]

where

<destination pn> specifies the output file that receives a copy of the
user’s program.

<expr1 > TO <expr2> indicates a specific range of the user’s program that is
saved in the output file.

NOCODE specifies that the user’s program code is not saved.

NOSYMBOL specifies that the user’s symbol table is not saved.

Comments

Depending on the options selected with the command, the SAVE command puts a
copy of the user’s program and symbol table in the output file. The command op
tions default to saving the program code and symbol table.

If a program range is not specified, the emulator software saves the entire 4K of
EMV-51 program memory as the user’s program.

If the operation is not successful, an error message is displayed on the console.

Examples

SAVE :F1 :EMVDEM.SAV

saves a copy of the user’s program and symbol table in filename EMVDEM.SAV
on drive :F1:

SAVE :F3:EMVDEM.S3 10OH TO 1FFH

saves the range of addresses 100H to 1FFH of the user’s program and the symbol
table in filename EMVDEM.S3 on drive :F3:

SAVE :F2:EMVDEM.S2 NOCODE

saves the user’s program symbol table in filename EMVDEM.S2 on drive :F2:

SAVE :F4:EMVDEM.S4 NOSYMBOL

saves the user’s program without the symbol table in filename EMVDEM.S4 on
drive :F4:

8-46

EMV-51 Command Dictionary

Command Format

SP [= <expr>]

SP
Display or change the contents

of the stack pointer

where

<expr> specifies the memory location that replaces the current contents of the
stack pointer. The location can be specified as a physical address, sym
bolic name, or an expression that is evaluated to a 8-bit result.

Comments

The stack pointer (SP) indicates the top of the stack. The SP command displays or
changes the contents of the register. When <expr> is used, it is evaluated to a
8-bit value.

Examples

SP

displays the current contents of the stack pointer register. The numeric value is
displayed according to the default base.

SP = 70H

changes the contents of the stack pointer register to the value 70H.

8-47

Command Dictionary EMV-51

STEP
Begins step emulation
of user’s program

Command Format
STEP [[FROM] <expr>]["fgpUNT ” <expr1 > |

where

[[FROM] <expr>] specifies an optional starting address within the user’s
program. The <expr> consists of numeric values, symbol
ic names, and mathematical operators that are evaluated to
a 16-bit result.

COUNT= <expr1 > specifies an optional number of instructions to be emulated.

<expr1 > a numeric value between 0 and FFFFH inclusive.

BR enables software breakpoint checking.

Comments

The STEP command emulates the user’s program in a slow-down mode. During
STEP emulation, the EMV-51 software emulates one instruction and then checks
for the following items:

1. Trace display commands enabled. If trace display commands are set, the
emulator software displays from one to four lines of trace information about
the instruction emulated.

2. If BR is specified when the user enters the STEP command, the emulator
software performs software breakpoint checking. If a breakpoint is
encountered, the software stops the emulation and returns control to the
user.

NOTE
If a trace display command (TRn or TV) has turned off the soft
ware trace display, it will remain off permanently until another
trace display command which is set to turn on the software trace
display is executed, or until EMV-51 software is reset.

Emulation begins with the instruction pointed to by the program counter or the ad
dress specified in the STEP command (the [FROM] <expr> option).

The COUNT=<n> option permits a range of instructions to be executed. If the
COUNT= <n> option and the BR option are both specified, the BR option takes
precedence over the COUNT option.

8-48

EMV-51 Command Dictionary

Examples

STEP

emulates one instruction of the user’s program from the address contained in the
program counter. The emulator software checks for trace display commands after
each emulated instruction.

STEP FROM 100BR

begins emulation of the user’s program from address 100H and enables software
breakpoint checking. The emulator software checks for trace display commands
after emulating each instruction and then checks for breakpoints.

STEP FROM 10OH COUNT = 10

emulates 10 instructions of the user’s program, checking for trace display com
mands after each emulated instruction. The emulator software does not check for
breakpoints.

SUFFIX

Command Format

SUFFIX
H

T
Q

Displays or changes the default
base for input numeric data

where

Y specifies binary as the default suffix for input numeric data.

H specifies hexadecimal as the default suffix for input numeric data.

T specifies decimal as the default suffix for input numeric data.

Q specifies octal as the default suffix for input numeric data.

Comments
The SUFFIX command displays or changes the default suffix for numeric values
entered by the user. The default suffix is overridden when the user enters an
explicit suffix with a numeric value. The initial default suffix is hexadecimal (H).

Examples
SUFFIX

displays the default suffix for numeric values entered by the user.

SUF=T

changes the default suffix to decimal. Unless the user enters an explicit suffix with
a numeric value, all numeric values that are input are evaluated as base ten.

8-49

Command Dictionary EMV-51

SYMBOLS
Displays all user-assigned
symbolic names and values

Command Format
SYMBOLS

Comments
The SYMBOLS command displays all user-assigned symbolic names and their
values. The command does not display system symbolic names.

Examples
SYMBOLS

displays all user-assigned symbolic names and their values.

SYM

displays all user-assigned symbolic names and their values.

TMO
Display or change the contents
of timer/counter register 0

Command Format

TMO [= <expr>]

where

<expr> specifies the 16-bit numeric value that replaces the current contents of
timer/counter register 0.

Comments
The timer/counter register 0 (TMO) is in operations requiring timing operations
or event counters. The TMO command displays or changes the contents of the
register. When <expr> is used, it is evaluated to a 16-bit value.

Examples
TMO

displays the current contents of timer/counter register 0. The numeric value is dis
played according to the default base.

TM0=100H

changes the contents of timer/counter register 0 to the value 100H.

8-50

EMV-51 Command Dictionary

Command Format

TM1 [= <expr>]

TM1
Display or change the contents

of timer/counter register 1

where

<expr> specifies the 16-bit numeric value that replaces the current contents of
timer/counter register 1.

Comments

The timer/counter register 1 (TM1) is in operations requiring timing operations
or event counters. The TM1 command displays or changes the contents of the
register. When <expr> is used, it is evaluated to a 16-bit value.

Examples

TM1

displays the current contents of timer/counter register 1. The numeric value is dis
played according to the default base.

TM1=100H

changes the contents of timer/counter register 1 to the value 100H.

8-51

Command Dictionary EMV-51

WRITE
Evaluates an expression and displays
the results on the screen

Command Format
write f<string> 1 r,<string>
— c (<expr> J |_,<expr>

where

‘ <string >’ a sequence of alphanumeric characters.

<expr> specifies an arithmetic expression or numeric value. If an expression
is used, it is evaluated and replaced by a 16-bit result.

Comments

The WRITE command is used primarily inside of macro definitions to display
messages on the screen. The ,< string> consists of a message that is displayed
when the WRITE command is executed.

Example

WRITE *BOARD”S BAD’

displays the message BOARD’S BAD when the RETURN key is pressed. The
double apostrophe is displayed as an apostrophe.

(macro execution)
Executes macro definitions

Command Format

:<string> [<parameter1 >, <parameter2>,...]

where

:<string> a pre-defined macro name, where the name consists of 2 to 32
alphanumeric characters including the colon.

< parameter > specifies any parameter values required within the macro
definition.

Comments
The user executes macro definitions by preceding the macro name with the colon
(:).

8-52

EMV-51 Command Dictionary

If macro expansion is enabled with the ENABLE EXPANSION command, the
macro definition is listed prior to execution of the macro.

If the macro definition requires parameters, the parameters are entered with the
macro name. The parameters are entered as:

<parameter 1 >,<parameter2>,...

and sequentially replace the parameter place holder within the definition. Refer to
Chapter 6 for additional details on using parameters within macros.

Examples
:SUM

executes the macro :SUM

:DEMO 123,12,.ABLE

executes the macro :DEMO after substituting the parameters 123, 12, and .ABLE
into the macro definition.

(symbol handling)
Displays both system and user symbol
names or modifies user symbol names

Command Format
. <string> [= <expr>]

where

.<string> a pre-defined symbolic name consisting of 2 to 32 alphanumeric
characters including the period.

<expr> specifies the value to be assigned to the symbolic name. It consists of
numeric values, symbol names, and arithmetic operators and is eval
uated to a 16 - bit result.

Comments
The user generates the value assigned to system symbolic names or user symbolic
names by preceding the name with a period. The emulator software responds by
substituting the value assigned to the name for the name itself.

If the symbolic name is a user symbolic name, the user changes the value assigned
to the name with the = <expr> command modifier.

Examples
.ABLE

displays the value assigned to the symbolic name .ABLE

,CY

displays the current contents of the system carry flag

,ABLE = 123H

changes the contents of user symbolic name .ABLE to the value 123H.

8-53/8-54

c

c

c

APPENDIX A
INSTALLATION

Introduction

This appendix provides the installation instructions and the hardware specifica
tions for the EMV-51 Emulation Vehicle.

Installing the EMV-51

This section provides installation considerations and installation procedures for
the EMV-51.

Installation Considerations

The emulation processor on the user plug is an MOS integrated
circuit. MOS devices are easily damaged by static electricity, even
when the system is powered down. Avoid touching the pins or ex
posed portions of the chip. Do not allow objects to come in contact
with the chip. Handle the user plug by the edges. If downward
pressure is required when installing in the user socket, push down
only on the metal cover.

To minimize the system’s sensitivity to static electricity, i.e., electrostatic dis
charge (ESD):

a. Maintain a relatively high humidity (> 60%).

b. Use antistatic mats in the work area.

Installation Procedures

Prior to installing EMV-51 into the iPDS, the iPDS EMV PROM ADAPTER
must be installed in the iPDS. Refer to the section labeled PLUG-IN MODULE
ADAPTER in Appendix A in the iPDS User’s Guide for the installation
instructions.

The following step-by-step procedure is for the initial installation of the EMV-51.
The selection of optional jumper configurations is covered in later sections. The
emulator hardware setup is described first, followed by the emulator software
setup.

Figure A-l shows the EMV-51 emulator hardware. The emulator hardware con
sists of the controller, an 80-inch cable, and the emulator module.

A-l

Installation EMV-51

Figure A-l EMV-51 Emulator Hardware Components
0250

Once the emulator hardware is removed from the shipping carton, proceed as
follows:

1. Installing the Controller:

a. The Controller is inserted and removed from the right side of the Intel
Personal Development System. Figure A-2 shows insertion and remov
al of the Controller.

b. The Controller module has plastic ribs along the top and bottom of the
module, permitting insertion in one direction only. Insert the module
in the iPDS until it seats firmly against the connector.

2. Installing the Emulator Module

a. The emulator plugs into the socket normally occupied by the 8051 mi
crocontroller in the user’s product. The EMV-51 can operate without
connecting the emulator to the user’s product. Figure A-3 shows the
emulator connected to the user’s prototype in place of the prototype’s
microcontroller.

b. If the prototype hardware is to be used, remove the socket protector
from the emulator and attach the emulator to the prototype via the
40-pin socket. If necessary, insert 40-pin sockets between the emulator
and the prototype to clear other components. Otherwise leave the
socket protector attached to the emulator.

3. Installing the EMV-51 Software

a. As shipped, the EMV-51 software resides on a diskette. If the user has
a sinale disk drive iPDS, the emulator software must be copied onto the
system software diskette using the ISIS-PDS COPY command. Refer to
the iPDS User’s Guide for information on using the COPY command.

A-2

EMV-51
Installation

0251

Figure A-2 Installation in the Personal Development System

A-3

Installation EMV-51

0252

Figure A-3 Installation of Emulator Module in Prototype

b. Insert the system diskette into drive 0. If the user has a single-drive
iPDS, the system diskette must contain the emulator software. If the
user has a multiple-drive iPDS, insert the EMV-51 diskette in disk
drive :F1:, :F2:, or :F3:.

c. If the iPDS has not been initialized, press RESET to initialize the iPDS
system software and generate the ISIS-PDS sign-on message.

When the emulator software is loaded and executed, it selects the disk drive that
the software is loaded from as the default drive for the macro workfile. The work
file is a temporary storage area on disk that holds macro definitions. The emulator
software always assigns the name MAC.TMA to the workfile.
As shown below, the user can specify another disk drive as the workfile drive
when the emulator software is loaded.

d. If the user has a single-drive iPDS and the emulator software resides on
the system diskette, the following command is entered to load the
emulator software:

EMV51 Drive :F0: contains the workfile

If the user has a multiple-drive iPDS and inserted the emulator software
diskette in a drive :F2:, enter the following command:

:F2:EMV51 WORKFILE (:F1:) Specifies that drive :F1: contains the
• workfile, while the software is loaded

from drive :F2:.

After entering the file name EMV51, the ISIS-PDS operating system loads the
emulator software and EMV5I responds with a sign-on message. The following
screen display demonstrates loading the emulator software and the resulting sign-
on message.

A-4

EMV-51 Installation

EMV51 RETURN Enters EMV51 invocation. The ISIS-PDS operating
system loads and executes the EMV-51 software. The
software displays the sign-on message and asterisk
prompt shown in this display.

Jumper Configurations

The EMV-51 Emulator board contains five jumpers that select the supply voltage
source, the clock source, the reset source, and internal or external program
memory. These jumpers are listed in table A-l.

Table A-l. EMV-51 Emulator Jumper Descriptions

Jumper
Configuration Description

E1-E2 EA/pin strapped for standalone mode.
E1-E2 EA/ pin strapped for standalone mode.
E2-E3 EA/ state selected by user’s prototype

E4-E5 Emulator powered by EMV-51 controller
E5-E6 Emulator powered by user’s prototype

E7-E8 Reset provided by EMV-51
E8-E9 Reset provided by user’s prototype

E11-E12 Crystal provided by EMV-51
E14-E15
E11-E1O Crystal provided by user’s prototype
E13-E14

The following paragraphs describe the various configurations for the four jumpers.
Figure A-4 shows the jumper locations on the EM V-51 emulator board.

Selecting the Program Memory

Use jumper configuration E1-E2 for standalone operation. Use jumper E2-E3
when the user’s prototype selects the state of the EA/ pin. To use EMV-51 sup
plied code memory to debug code in a prototype with EA/ strapped low, use
jumper E1-E2.

A-5

Installation EMV-51

0396

FigureA-4 EMV-51 Emulator Jumper Locations

Selecting Supply Voltage

The jumper is moved to the E5-E6 position if supply voltage is provided by the
user’s prototype. If the EMV-51 controller is providing the supply voltage, the
jumper is moved to the E4-E5 position.

Selecting Oscillator Input

The jumpers are moved to the E10-E11, E13-E14 positions if the clock is supplied
by the prototype. When the jumpers are moved to the El 1 -El 2, E14-E15 position,
the clock is supplied by the emulator’s on-board crystal.

Selecting Reset Input

The jumper is moved to the E7-E8 position if the reset capacitor on the emulator is
to be connected to the 8051.

If a user’s prototype is to supply the reset signal to the 8051, the jumper is moved
to the E8-E9 position.

User Test Signals
The Emulator module has 6 terminal posts that supply signals to the user’s test
equipment. These signals indicate the internal state of various operations in the
8051 microcontroller. Table A-2 lists the signals supplied to the user and gives a
brief description of each signal, while Figure A-5 shows the location of the termi
nal posts.

A-6

EMV-51 Installation

0414

Figure A-5 EMV-51 Controller’s Terminal Post Location

The CLK signal indicates the first fetch of the first byte of an instruction from pro
gram memory (either the prototype’s program memory or the EMV-51’s 4K
RAM).

The falling edge of the ALE signal indicates that the 8051 microcontroller’s ad
dress bus contains a valid address. The signal is high at the start of every bus cycle.

The PSENE/ signal strobes data between the EMV-51 controller and the EMV-51
Emulator module. When the signal is low, data passes from the Controller to the
Emulator module.

The EMLJL signal is high when the EMV-51 is emulating the user’s program. The
signal is high for one instruction prior to the actual start of program execution and
remains high until the instruction that follows a breakpoint is fetched.

The rising edge of the EXTBRK signal, supplied by the user, stops the emulation
currently in progress. The signal is terminated in a 220/330 ohm resistor network.

If the user connects a logic analyzer to EMV-51, the EMUL signal is normally con
nected as a triggering input to the logic analyzer. The logic analyzer feeds a signal
to the EXTBRK input to halt EMV-51 during an emulation.

Table A-2. User Test Signals

Test Signal Description

CLK Instruction Fetch Clock
ALE Address latch Enable
PSENE/ Program Store Enable
EMUL Emulation
EXTBRK External Break Input
GND Signal Ground

Port 0 in Stand-Alone Mode

To be able to read and write the 8051 port 0 in a stand-alone mode, the port must
be pulled up by a resistor network, one resistor for each line on port 0. Figure A-6
shows schematically the necessary connections.

A-7

Installation EMV-51

40 PIN
USER PLUG

(P0.0) 39

(P0.1) 38

(P0.2) 37

(P0.3) 36

(P0.4) 35

(P0.5) 34

(P0.6) 33

(P0.7) 32
0801

Figure A-6 Port 0 Pullup Configuration

A-8

APPENDIX B
ERROR MESSAGES

This appendix contains a list of the error and warning messages produced by the
emulator software.

ERR 22:COPROCESSOR HAS FILE

An attempt was made to open or write to a file currently being written by the other
processor.

ERR 24:TOO MANY BREAKS

Too many breakpoints are set for this command to operate. Delete some of the
breakpoints and re-enter the command.

ERR 25:RELOCATABLE FILE

The command attempted to load a relocatable object file. Use the Assembler or
Linker to convert the file to absolute format, then repeat the command.

ERR 26:UNRESOLVED EXTERNALS

The command attempted to load a file with unresolved symbols. Use the Assem
bler or Linker to resolve the external symbol or name, then repeat the command.

ERR 52:UNWRITEABLE MEMORY

The last command attempted to write to external memory. Check command to
encure writing hasn’t been attempted above FFH.

ERR 80:SYNTAX ERROR

The command is ignored. Check command syntax and re-enter the command.

ERR 81 INVALID TOKEN

A token in the previous line is not properly formed, or is not appropriate for the
command context; for example, the entry CBYTE 300 when SUFFIX =Y
(binary).

ERR 83:INAPPROPRIATE NUMBER

Too many values were used for a specified range.

Q
ERR 85:ITEM ALREADY EXISTS

The previous DEFINE command referred either to a symbol already in the user’s
or system symbol table, or to a macro already in the macro definition table.

B-l

Error Messages EMV-51

ERR 86:ITEM DOES NOT EXIST

The symbol or macro reference in the previous command is not defined.

1. For a symbol, check version of code loaded, or define the symbol in the
current session.

2. For a macro, define or INCLUDE the macro definition in the current
session.

ERR 88:MACRO PARAMETER ERROR

A macro call contained more than ten actual parameters, or a parameter contained
too many characters. Check the definition of the macro.

ERR 89:MISSING CR-LF IN FILE

The current INCLUDE file does not end with a carriage return/line feed. Exit and
use the editor to correct the file.

ERR 8F:NON-NULL STRING NEEDED

A null string (apostrophes with no enclosed characters) was used where at least
one character is required, such as DBYTE 1 =

ERR 90:MEMORY OVERFLOW

The emulator workspace exceeded the amount allocated to it. The workspace con
tains the user symbol table and space for expansion of macros prior to their
execution. The command that produced the overflow is aborted, but the memory
already written remains as written. To reclaim workspace, remove some user
symbols.

ERR 92:COMMAND TOO LONG

The command exceeds the capacity of the emulator’s command buffer. Possibly
caused by too many operators. Break the command or expression into several
smaller units.

ERR 95:INVALID OBJECT FILE

The object file referenced in a LOAD command is not written in the proper
format. Perhaps it is a text file rather than an object file.

1. Select another file for loading.
2. EXIT and verify file type.

ERR 99:EXCESSIVE ITERATED DATA

The number of data items to be repeated in memory exceeds the buffer size for it
erated data (128 bytes).

Example: CBYTE 30 TO 1000H = RBYTE O TO 256T

B-2

EMV-51 Error Messages

ERR 9D:LINE TOO LONG

The input line exceeds 120 characters.

1. Use continuation lines (ampersand at end of line to identify intermedi
ate carriage return) to divide the command line into several input lines.

2. Break command into two or more shorter command lines.

ERR A4:MACRO FILE FULL

The temporary file MAC.TMA has used all the available space on the diskette
specified at invocation as the WORKFILE diskette. Save and remove macro defini
tions to make room for more, using the PUT and REMOVE MACRO commands.

ERR B3:OFFSET IS TOO LARGE

This error occurs when the an expression specified within an assembly mnemonic
instruction results in a relative offset that is larger than 8 bits.

ERR B9:NO HELP AVAILABLE

There is no help message for the item requested.

ERR BC:SYSTEM SYMBOL ERROR

Q Illegal operation on system type symbols, such as attempting to change the value
of a system symbol or using a multiple reference involving system symbols.

ERR E7:ILLEGAL FILENAME

The command specified a filename that does not conform to ISIS-PDS format
specifications. Check the ISIS-PDS User’s Guide for proper filename format.

Q ERR E8:ILLEGAL DEVICE

The command contained a reference to an ISIS-PDS device, but the reference is
illegal or unrecognizable. Check ISIS-PDS User’s Guide for proper device names.

ERR FO:NO SUCH FILE

Command specified file that does not exist on the designated diskette.

1. Verify the drive number and filename.
2. Check to see that the correct diskette is inserted in the drive.

Q

ERR F1 :WRITE-PROTECTED FILE

The command attempted to open a write-protected file for write access.

1. Select another file.
2. EXIT and remove write protection from the target file (refer to the

ISIS-PDS manual for details).

B-3

Error Messages EMV-51

ERR F3-.CHECKSUM ERROR

A checksum error in an object file was encountered during loading.
1. Select another file.
2. EXIT and create a correct object file.

ERR F6:D1SKETTE FILE REQUIRED

The command specified a device other than a diskette file, but the operation re
quires a diskette file.

ERR F9:ILLEGAL ACCESS

Command attempted to open a read-only device for write access (e.g., :CI: as a
LIST device), or attempted to open a write-only device for read access (e.g., :LP:
in LOAD command). Check command syntax for list of appropriate devices.

ERR FA:NO FILE NAME

The command references a diskette device, but omitted the filename; for
example: LOAD :F1:

ERR FF:NULL FILE EXTENSION

The command referenced a file terminated by a period, but the implied extension
is missing. Omit the period or include the extension (refer to the iPDS User’s
Guideior details on filenames and extensions).

WARNING DO

The instruction at the breakpoint was fetched but not executed because an inter
rupt occurred at or before the instruction. The breakpoint instruction is the first to
execute after the interrupt service routine.

WARNING D1

A breakpoint occurs on the first instruction of an interrupt service routine. The
break instruction executed normally, but the previous instruction did not execute.
The interrupted instruction is the first instruction to execute when emulation
resumes. Check for a breakpoint set at the address of the first instruction of the in
terrupt service routine.

WARN D2

This warning is displayed when beginning GO or STEP emulation and a timer is
enabled with an initial value of 0 or 1. This condition generates a spurious timer
overflow and forces an interrupt if interrupts are enabled.

B-4

EMV-51 Error Messages

WARN CB:TRUNCATED TO 8 BITS

This error occurs when an opcode, value, or an expression in a mnemonic instruc
tion to be assembled is greater than 8 bits. The value is truncated to the low 8 bits,
the warning is issued, and processing continues.

WARN CD:TRUNCATED TO 11 BITS

This error occurs when an expression value in the ACALL or AJMP instruction in
assembly is larger than 11 bits. The value is truncated to 11 bits, the warning error
message is issued, and processing continues.

Q

Q

O

B-5/B-6

APPENDIX C
CONFIDENCE TESTS

Confidence Test

This section describes the operation of the confidence test for the EMV-51. It is
not necessary to run this test prior to using the system. However, it is recommend
ed that the test be run when the emulator is initially installed.

The confidence test aids in troubleshooting the system if problems occur. Success
ful execution of the test demonstrates the complete operation of the system.

The confidence test assumes that ISIS-PDS is loaded and running. The test further
assumes that the EM V-51 is installed. The test runs as a utility under the ISIS-PDS
operating system and provides a set of subcommands that help verify the emulator.

To perform the confidence test:

1. Load the confidence test command under ISIS-PDS by entering the PCONF
command line.

2. Initialize the confidence test with the INIT E51C0N command.

3. Enter any of the nine confidence test commands to perform the 15 different
tests.

These steps are described in detail in the following sections. Notational conven
tions used throughout for command descriptions are introduced and explained in
Chapter 8.

PCONF Command

The PCONF command is shown in the following:

AO>PCONF
ISIS-PDS PCONF Vx.y*

The PCONF command is entered when the ISIS-PDS prompt is displayed indicat
ing that the operating system will accept a command. It loads the confidence test
program which displays a sign-on message and an asterisk prompt allowing the
user to enter the INIT E51CON command.

INIT E51CON Command

The INIT E51CON command produces the following display:

‘INIT E51 CON
EMV-51 CONFIDENCE TESTS, Vx.y
USER RETURN

After the INIT E51CON command is entered, another sign-on message and aster
isk prompt are displayed allowing the user to enter any of the nine confidence test
commands.

C-l

Confidence Tests EMV-51

Confidence Test Commands

The nine confidence test commands allow the user to specify the test sequence for
the 15 confidence tests and to control the reporting of results from the tests. The
nine commands are:

AbbreviationCommand

CLEAR CLE
ERROR ERR
DESCRIBE DES
EXIT EXI
IGNORE IGN
LIST LIS
RECOGNIZE REC
SUMMARY SUM
TEST TES orT

Any command consisting of four or more letters can be abbreviated to the first
three letters. Additionally, the TEST command can be abbreviated to T. The
TEST command is the command used to run the confidence tests.

Each of these commands is described in one of the following sections. The 15
confidence tests are described under the TEST command.

CLEAR Command

The format of the CLEAR command is:

p. p ctest number> [, <test number>]...
<test number> TO Ctest number>

where

Ctest number> specifies one of the 15 confidence tests by number (OOH
through OEH). Enter the hexadecimal value of the test
number.

The CLEAR command sets the execution count and error count to zero for the
test or tests specified. The execution count is the number of times the specified
test or tests have been run and the error count is the number of errors detected. If
no tests are specified, the CLEAR command clears the counts for all the tests. The
CLEAR command does not affect the status of a test. The status of a test indicates
whether the test is ignored or recognized. See the IGNORE and RECOGNIZE
commands.

To clear the execution count and error count for Tests 3, 4, and 5, enter:

CLEAR 3,4,5

I

H
U

i
i»I
I

DESCRIBE Command

The format of the DESCRIBE command is:

DESCRIBE
Ctest number> [, ctest number>]...
Ctest number> TO Ctest number>

C-2

EMV-51 Confidence Tests

where

<testnumber> specifies one of the 15 confidence tests by number (OOH
through OEH). Enter the hexadecimal value of the test
number.

The DESCRIBE command displays the name and the status of the test or tests
specified. The status of a test indicates whether the test is ignored or recognized by
the system. See the IGNORE and RECOGNIZE commands. If no tests are
specified, the name and status are given for all the tests.

To describe tests 3, 4, 5, and 6, when test 3 is being ignored by the system, enter
the following command:

DESCRIBE 3 TO 6
00003H BREAK REGISTER MEMORY TEST **** IGNORED ****
00004H BREAK/COMMAND MULTIPLEXER TEST
00005H RUNNING/INTD STATUS TEST
00006H BREAK SYNCHRONIZATION TEST

Note that test numbers are displayed in hexadecimal.

ERROR Command

The format of the ERROR command is:

ERROR = [<n>]

where

< n > is either 0 to display pass/fail messages or 1 to suppress them.

The default setting is 0 to display all pass/fail messages.

To find out the current display status, enter:

ERROR

To suppress pass/fail messages for the confidence tests, enter the following com
mand before running the tests with the TEST command.

ERROR = 1

EXIT Command

The format of the EXIT command is:

EXIT

The EXIT command ends the test session and returns control to ISIS-PDS.

IGNORE Command

IGNORE <testnumber> [, <test number>]...
<test number> TO <test number>

Confidence Tests EMV-51

where
<testnumber> specifies one of the 15 confidence tests by number (OOH

through OEH). Enter the hexadecimal value of the test
number.

The IGNORE command allows the user to declare the specified test or tests to be
ignored and not run.

To run all tests except 5, 6, and 8, enter the command:

IGNORE 5,6,8

LIST Command
The format of the LIST command is:

LIST destination>

where

<destination> specifies a valid ISIS-PDS device to receive any output from
the tests. See Chapter 8 for an explanation of destination.

The LIST command causes a copy of all subsequent output from the tests to be
sent to < destination >. The output includes prompts, user entered input, and
error messages. The output is also displayed on the display screen. If the Cdestina-
tion> is :CO:, there is no effect, since the console receives all the output anyway.

To copy all output on the line printer, enter the command:

LIST :LP:

RECOGNIZE Command

The format of the RECOGNIZE command is:

llvt_ ctest number> [, <test number>]...
<test number> TO <test number>

where

<testnumber> specifies one of the 15 confidence tests by number (OOH
through OEH). Enter the hexadecimal value of the test
number.

The RECOGNIZE command allows the user to declare the specified test or tests
to be recognized and run.

Assuming that tests 5, 6, 7, and 8 are currently ignored, enter the following com
mand to recognize 5, 7, and 8. Test 6 will continue to be ignored.

RECOGNIZE 5,7,8

SUMMARY Command

The format of the SUMMARY command is:

<test number> [,Ctest number>] . .
SUMMARY <testnumber> T0 <teStnumber> [EO1

C-4

EMV-51 Confidence Tests

where

<testnumber> specifies one of the 15 confidence tests by number (OOH
through OEH). Enter the hexadecimal value of the test
number.

EO specifies that only the tests with a non-zero error count will be
summarized.

The SUMMARY command displays the following information for each test or
tests specified:

• Test number

• Number of times the test was executed

• Number of times an error occurred during the test

• Status of the test (ignored or recognized)

The information displayed is accumulated since the last INIT E51C0N or CLEAR
command. If no test or tests are specified, summaries are displayed for all tests. If
EO is specified, a summary is displayed only for those tests with a non-zero error
count.

To display a summary of tests 3, 4, and 5, enter the command:

SUMMARY 3TO 5

The following display will appear on the CRT display screen.

00003H LINE PRINTER

00004H BREAK/COMMAND

00005H RUNNING/INTD

TEST EXECUTE 00002H TIMES,
00000H FAILURES
TEST EXECUTE 00002H TIMES,
00001 H FAILURES
TEST EXECUTE 00002H TIMES,
00000H FAILURES

Note that all test numbers and error counts are given in hexadecimal.

To display a summary of tests 3, 4, and 5 only if an error is detected, enter the
command:

SUMMARY 3TO 5EO
00004H BREAK/COMMAND TEST 00002H TIMES, 00001H FAILURES

TEST Command

The format of the TEST command is:

<test number> [,<test number>]... ON ERROR
TEST ON NOERROR

<test number> TO <test number> COUNT <nnnn>
FOREVER

where

<testnumber> specifies one of the 15 confidence tests by number (OOH
through OEH). Enter the hexadecimal value of the test
number.

C-5

Confidence Tests EMV-51

<nnnn> specifies the number of times the specified test or tests are to
be run. The value can be given in hexadecimal (H), decimal
(T), octal (Q), or binary (Y) by attaching the appropriate
suffix to the value. The default base is hexadecimal. The maxi
mum value of <nnnn> is 65,535 in decimal.

ON ERROR specifies that the tests will execute repeatedly if one or more
errors are detected.

ON NOERROR specifies that the tests will execute repeatedly if no errors are
detected.

COUNT <nnnn> specifies that the tests will execute in numerical order for
<nnnn> times. If <nnnn> = 0 or if COUNT is specified
with no < nnnn >, no tests will execute.

FOREVER specifies that the tests will execute in numerical order and
repeat until the user presses the ESC key.

The TEST command loads and runs the test or tests specified by the user. The
tests are executed in numerical order regardless of the order in which they were
entered. If no test number is specified, all currently recognized tests are executed.

To run all tests, enter the command:

TEST

To run tests 0 through OEH, enter the command:

TEST 0 TO OE

Note that the value OE is a hexadecimal value.

To run tests 2,4, 8, and 9, enter the command:

TEST 4,9,2,8

Note that the commands are loaded and run in numerical order.

To run tests 0 through 8 and repeat the failing test if an error is detected, enter the
command:

TEST OTO 8 ON ERROR

To run test 7 and repeat if no error is detected, enter the command:

TEST 7 ON NOERROR

To run tests 3 and 5 and repeat forever, enter the command:

TEST 3,5 FOREVER

To run tests 2 and 7 and repeat 5 times, enter the command:

TEST 2,7 COUNT 5

C-6

EMV-51 Confidence Tests

The following tests are available:

Test Number Function

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E

Program Memory Test
Command Memory Test
Break Register Memory Test
Break/Command Multiplexer Test
RUNNING/INTD Status Test
Break Synchronization Test
Break Detection Inputs
Address Line Test
Command Sequence End Detection
Interrogation “INTR1 ” Test
Program Memory Data Path
“MOVC” Logic Test
Interrupt at Break
Instruction Set Test
Miscellaneous Processor Tests

Almost all of these tests require some user interaction while running. If a response
is not received in a predetermined period of time, the test times out and is not
executed.

Each of these tests is described in the following sections.

Test 0 - Program Memory Test

Test 0 verifies the address uniqueness and data integrity of the program storage
memory.

Test 1 - Command Memory Test

Test 1 verifies the address uniqueness and data integrity of the command sequence
memory.

Test 2 - Break Register Memory Test

Test 2 verifies the address uniqueness and data integrity of the break register
memory.

Test 3 - Break/Command Multiplexer Test

Test 3 verifies the operation of the address line multiplexer into the break and
command memory.

Test 4 - RUNNING/INTD Status Test

Test 4 verifies that the “RUNNING” and the “INTD” status bits can be set and
cleared with control procedures. It verifies that the proper idle state data is sent to
the break address register.

Test 5 - Break Synchronization Test

C-7

Confidence Tests EMV-51

Test 5 verifies that the break point detection circuit and the stop emulation circuit
stop the emulation. This test fills the break register with data to break at any loca
tion executed.

Test 6 - Break Detection Inputs

Test 6 verifies that each of the four pairs of break register data in the break detector
sets the address compare line properly.

Test 7 - Address Line Test

This test verifies the address line data in the break address register.

Test 8 - Command Sequence End Detector

Test 8 verifies that asserting address line 8 under command sequence control stops
the sequence and returns the unit to the IDLE mode.

Test 9 - Interrogation “INTR1” Test

This test verifies that after writing to the general purpose emulator register in a
command sequence the correct data is brought out of the processor when the
“INTER” line is asserted in the control register.

Test A - Program Memory Data Path

This test single steps a two byte instruction (AA,55 - MOV R2,55) to verify the
program data path to the processor.

Test B - “MOVC” Logic Test

Test B verifies the command sequence to fetch a byte of code data from program
memory location with the address line number 11 asserted and not asserted.

Test C - Interrupt at Break

Test C verifies the operation of the simultaneous interrupt along with a
“breakpoint” logic by emulating a routine that forces a timer interrupt to occur
with an emulation break.

Test D - Instruction Set Test

This test loads an 8051 instruction set test into program memory and executes it.

Test E - Miscellaneous Processor Tests

Test E loads a routine that verifies the operation of the microprocessors internal
RAM, timers, interrupts, and serial port.

C-8

EMV-51 Confidence Tests

Confidence Test Error Messages

CONTROLLER FAILED TO INITIALIZE
STATUS EXPECTED: 05H, ACTUAL: xxH

After writing to the control register 20 times, the controller failed to reset to
the initial idle state.

PROGRAM
COMMAND MEMORY FAILED
BREAK REGISTER

DATA EXPECTED: eeH, ACTUAL: aaH, LOCATION: xxxxH
While testing one of the memory sets, a data or addressing error occurred at
location (xxxxH). The expected data (eeH) did not match the actual data
(aaH).

BREAK/COMMAND MEMORY MULTIPLEXER FAILED
SELECTOR STUCK LOW
SELECTOR STUCK HIGH
LOW NIBBLE FAILED TO SELECT
HIGH NIBBLE FAILED TO SELECT
Either the multiplexer select line does not change states or one of the multi
plexers is failing to change states.

RUNNING FAILED TO SET
INTD CLEAR

Control output sequences failed to cause one of the status inputs to change
properly.

IDLE BREAK ADDRESS FAILED
EXP: 0202, ACT: xxxxH

After putting the processor into an idle state, the break address did not con
tain the proper address.

BREAK SYNCHRONIZATION FAILED
BREAK ADDR-EXP: 0000H, ACT: xxxxH
NEXTADDR-EXP: 0001H, ACT: yyyyH

After setting the break register to break on any instruction and executing a
“NOP” instruction at location 0, the break address register failed to contain
the right data.

BREAK DETECTOR FAILED WITH 11H AS INPUTS
22H
44H
88H

One of the four pairs of inputs into the break detector failed to trigger a break
sequence.

ADDRESS LINE FAILURE
EXP: AAAAH, ACT: xxxxH

5555H
After executing a single step sequence to location AAAAH or 5555H, the
break address failed to contain the proper data.

END OF COMMAND SEQUENCE FAILED
In a command sequence, a jump to a trigger address failed to set the
“CMDEN” bit in the status register.

C-9

Confidence Tests EMV-51

“INTR1”DATA FAILED
EXPECTED: AAH, ACT: xxH

After loading the general purpose EMV register in the processor with a com
mand sequence and trying to read it back by asserting the “INTER” signal in
the control register, the data failed to match.

PROGRAM MEMORY DATA PATH FAILED
R2 DATA - EXP: 55H, ACT: xxH

After loading location 55H with a 55H and R2 with 00 and executing a se
quence (AAH, 55H - MOV R2, 55H), register R2 failed to contain a value of
55H.

“MOVC” SEQUENCE FAILED AT OOOOH
0800H

The execution of a “MOVC” failed to fetch the proper data.

INTERRUPT DURING BREAK FAILED
After executing a program sequence that causes an interrupt during break,
the status bit failed to indicate so.

INSTRUCTION SET FAILURE IN GROUP #xx
The processor failed the instruction set test.

TIMER x FAILED
INTERNAL RAM FAILURE
SERIAL PORT OUTPUT FAILED

These are errors that occurred while testing the internal functions of the
8051 processor.

C-10

INDEX

ACCUMLATOR command 8-7
Tutorial 4-3

Address breakpoints 5-1, 5-3, 8-13
Tutorial 1-7,5-3,5-11,6-12

Advanced commands 2-1,6-1 thru 6-19
Architecture overview 1-1,1-3
Arithmetic operators 7-2
ASM command 4-7 thru 4-8, 8-22, 8-24
Assembly location counter 4-7

o

0

-Q

o

Base 3-9, 8-6, 8-9, 8-10,8-49
BASE command 3-10, 8-10
BC command 5-2, 8-10
Branch breakpoints 5-2, 8-11
BRB command 5-1, 8-11

Tutorial 5-10
BREAK command 1-7, 5-3, 8-11

Tutorial 1-7, 5-3, 5-11
Breakpoint restrictions 5-2
B command 8-9
B register 8-9
BRR command 5-2, 8-12
Br<n> command 5-1, 8-13
BV command 5-2, 8-14

CBYTE command 4-4,4-5, 7-2 thru 7-3, 8-15
Tutorial 4-7, 6-11

CBYTE restrictions 7-3
CDUMP command 8-16
Chapter preview 1-10
CLEAR command C-2
Clearing breakpoints 5-2, 8-10
Clock A-5, A-6
Code memory 7-2 thru 7-3
Command categories 2-1
Command files 6-5 thru 6-6
Command line 2-2 thru 2-4, 8-1, 8-2
Command line editing 2-3, 8-2 thru 8-3
Command line execution 2-2, 8-2
Comment lines 2-2
Compound commands 6-7 thru 6-12
Conditional IF commands 6-7 thru 6-9, 8-28 thru 8-29
Confidence test C-l
Confidence test commands C-2 thru C-6
Confidence test error messages C-9
Content operators 7-3 thru 7-4
Continuation lines 2-2 thru 2-3, 8-2
Control characters 2-3, 8-3
Controller 1-1, 1-2, A-2, A-6, A-7
Controlling the display 2-3, 8-3
COUNT command 6-7, 6-12, 8-17

Tutorial 6-15
CTRL P 2-3, 8-3
CTRL Q 2-3, 8-3

Tutorial 1-9
CTRL R 2-3, 8-3

CTRL S 2-3, 8-3
Tutorial 1-9

CTRL X 2-3, 8-3
CTRL Z 2-3, 8-3

DASM command 1-8 thru 1-9, 4-8, 8-18
Tutorial 1-10

Data pointer register (DPTR) 4-1, 8-22 thru 8-23
DBYTE command 4-4 thru 4-5, 8-19, 8-44

Tutorial 6-2, 6-8, 6-9, 6-18
DBYTE content operator 7-3
DDUMP command 4-5, 8-20
DEFINE command 3-5,6-1, 6-2, 6-8, 8-20 thru 8-21

Tutorial 3-7, 3-8, 6-2, 6-9, 6-11, 6-14, 6-18, 6-18
DESCRIBE command C-2 thru C-3
Designing the product 1-5
Designing with the 8051 1-3
Destination 8-6
DIR command 6-3, 8-21

Tutorial 6-3
DISABLE command 3-8,6-6, 8-22

Tutorial 3-11, 6-6
DISABLE EXPANSION 6-4, 8-22

Tutorial 6-6
Display/modify commands 2-1,4-1 thru 4-8
Displaying register contents 4-1
DTRACE command 5-6 thru 5-8, 8-23

Tutorial 5-8

EA/jumper 4-5, A-5
Editing 2-3, 8-2 thru 8-3
EM command 6-2

Tutorial 6-2,6-8,6-9,6-11,6-14, 6-16,6-18
Emulation

Before emulation 1-4 thru 1-5
Definition 1-4
Procedure 1-6 thru 1-10
Purpose 1-3
With emulation 1-5

Emulation commands 2-1
Emulation session 1-6 thru 1-10,3-2 thru 3-4
Emulator 1-1,1-2,1-6, A-2
EMUL signal A-7
EMV-51 components

Hardware 1-1 thru 1-2, A-2
Software 1-3, A-2, A-4 thru A-5

EMV-51 demonstration program
Listing 1-11
Tutorials 3-4,3-7, 3-8, 3-9, 3-11,4-2,4-3,4-4,4-6, 4-7,

4-9, 5-3 thru 5-4, 5-7 thru 5-8, 5-10 thru 5-12, 6-2,
6-3, 6-4, 6-6, 6-7, 6-8 thru 6-9,6-10, 6-11 thru 6-12,
6-14 thru 6-19

EMV51 invocation
Tutorial 1-7,4-2

ENABLE command 3-8, 8-24
Tutorial 3-11

INDEX-1

Index EMV-51

Enable expansion 6-4
Tutorial 6-6

ERROR command C-3
ESC 2-3, 8-2
EVzXLUATE command 3-8, 8-24

Tutorial 3-8
EXIT command 3-10, 8-25, C-3

Tutorial 3-11
EXTBRK signal A-7
EXT10 4-4
EXT11 4-4
Expression 8-5, 8-6, 8-7, 8-8, 8-9
External data memory 7-3

FUNCTION command 6-12 thru 6-13, 8-26 thru 8-27
Tutorial 6-15

FUNCT S 2-3
FUNCT2 5-3
FUNCT 3 5-7
Function keys 6-12 thru 6-13

GO command 5-9, 5-10, 8-14, 8-27
Tutorial 1-10, 5-10, 6-11

Hardware 1-2
HELP command 8-28

Tutorial 3-1,3-2, 3-4
Help information 3-1

IF..THEN..ELSE 6-7 thru 6-8, 8-28
Tutorial 6-8 thru 6-10, 6-16 thru 6-19

IGNORE command C-3 thru C-4
INCLUDE command 6-5 thru 6-6, 8-30

Tutorial 6-6
INI51CON command C-l
Installation procedures

Controller A-2
Emulator module A-2
EMV-51 software A-2, A-4 thru A-5

INTERRUPT command 8-30 thru 8-13
Tutorial 4-4

Interrupt enable 4-3
Interrupt priority 4-3
Interrupts in progress 4-3
Item 8-4

Jumper configurations A-5
LIST command 3-3, 3-4, 8-31, C-4

Tutorial 3-4
List file 3-3, 3-4
LOAD command 1-7, 3-2, 3-3, 8-32

Tutorial 1-7, 3-4,4-2
Loading programs 1-7, 3-2 thru 3-4
Loading multiple programs 3-3
Logical operators 7-2,7-6

Macros 2-1, 2-2, 6-1 thru 6-19
MACRO command 6-3, 8-33

Tutorial 6-3

Macro definitions 6-1, 6-2
Macro execution 6-3 thru 6-4, 8-52

Tutorial 6-4, 6-6, 6-10, 6-12, 6-17, 6-19
Macro information 6-2 thru 6-3
Manipulating symbols 3-5
MEMORY command 4-6, 8-34

Tutorial 4-7
Memory contents 4-4, 4-5
Messages 2-1 thru 2-2
Modify commands 2-1
Multiplication register 8-9

Notational conventions 8-3 thru 8-4

ON ERROR C-6
ON NOERROR C-6
Operators 7-2, 7-6

Parameters 6-1 thru 6-2, 6-3
PC 4-1, 8-36
P command 5-10, 8-34

Tutorial 1-10, 5-10
PBYTE command 8-35
PCONF command C-l
Port 0 A-7, A-8
Prompts 2-1, 2-2
PSENE signal A-7
PSW 8-37
PUT command 6-5, 6-6, 8-38

Tutorial 6-6

Range breakpoints 5-2
RBIT command 8-39
RBS command 8-40
RBYTE command 8-40
RBYTE content operator 7-3
RECOGNIZE command C-4
REGISTER command 4-2,4-3, 8-41

Tutorial 4-3, 6-16, 6-18
Register contents

Displaying 4-1
Displaying INTERRUPT 4-3
Modifying 4-1

Register keyword names 4-1
Register value breakpoints 5-2
Relational operators 7-2, 7-6
REMOVE command 3-6, 6-5, 8-43

Tutorial 3-7, 6-6, 6-16, 6-18
REPEAT command 6-7, 6-11 thru 6-12, 8-44

Tutorial 6-8, 6-11
RESET command 3-10, 8-45
Reset input A-6
RETURN 2-3, 8-2
RUBOUT 2-3, 8-3

SAVE command 3-10, 8-46
Tutorial 1-10, 3-10

Saving programs 1-1'0, 3-10, 3-11
Setting breakpoints 5-1
Sint 4-4

INDEX-2

EMV-51 Index

Software 1-2, 1-7, 1-9, A-2, A-4 thru A-5
Source 8-6
SP command 4-1, 8-47
STEP command 5-8, 5-9, 8-48

Tutorial 5-12,6-9, 6-16,6-18
String 8-5, 8-6
Suffix 3-9
SUFFIX command 3-9, 8-4, 8-49

Tutorial 3-9
SUMMARY command C-4 thru C-5
Supply voltage A-6
SYMBOLS command 3-6, 8-50

Tutorial 3-7
Symbol handling 8-53
Symbolic reference

Assigning symbol names 3-5
Displaying symbol names 3-6
Manipulating symbols 3-5
Removing symbol names 3-6
Tutorial 3-7

Test 6 C-8
Test 7 C-8
Test 8 C-8
Test 9 C-8
Test A C-8
Test B C-8
Test C C-8
Test D C-8
Test E C-8
TMO 8-50
TM18-51
TimerO 4-4
Timerl 4-4
TR command 5-5

Tutorial 5-11
Trace 5-1, 5-4 thru 5-8, 5-11
TRn command 5-6, 5-7

Tutorial 5-7
TS command 5-5
TV command 5-6

TBn command 5-5
TD command 5-5

•Tutorial 5-11
TEST 0 C-7
Test 1 C-7
Test 2 C-7
Test 3 C-7
Test 4 C-7
Test 5 C-7 thru C-8

UPPERCASE 8-4
User publications 1-3
User test signals A-6 thru A-7
Utility commands 2-1,3-1 thru 3-11

Workfiles 8-1 thru 8-2
WRITE command 6-2, 8-2, 8-52

Tutorial 6-7,6-8, 6-14

INDEX-3

REQUEST FOR READER’S COMMENTS

EMV-51 Emulation Vehicle User’s Guide
162611-002

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME DATE

TITLE ____ _____________________________ _____ ______________________
COMPANY NAME/DEPARTMENT __ ______________________________ _________________________
ADDRESS__ ___________________________
CITY ------------------------------------- -------------------- STATE ZIP CODE

(COUNTRY)

Please check here if you require a written reply.

WE’D LIKE YOUR COMMENTS...
This document Is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Parkway.
Hillsboro, Oregon 97123

DSHO Technical Publications

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

