
iPDS™
PERSONAL DEVELOPMENT SYSTEM

USER'S GUIDE

Copyright © 1982, 1983, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Order Number 162606-003

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used
in accordance with the instruction manual, may cause interference to radio communications. It has
been tested and found to comply with the limits for a Class A Computing Device pursuant to Subpart J
of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference
when operated in a commercial environment. Operation of this equipment in a residential area is likely
to cause interference in which case the user, at his own expense, will be required to take whatever
measures may be required to correct the interference.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of In tel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

AEDIT
arrsus
BXP
COMMputer
CREDIT
i
iATC
I2ICE
ICE
iCS
iDBP
iDIS

Copyright 1983,IntelCorporation

iLBX
irn
iMMX
Insite
Intel
IntelBOS
Intelevision
inteligent Identifier
inteligent Programming
InteUec
InteUink

iOSP
iPDS
iRMX
iSBC
iSBX
iSDM
iSXM
Library Manager
MCS
Megachassis
MICROMAINFRAME

MULTIBUS
MULTICHANNEL
MULTIMODULE
Plug-A-Bubble
PROMPT
Promware
Ripplemode
RMX/80
RUPI
System2000
UPI

iii

'iv

REV. REVISION HISTORY DATE

-001 Original Issue 2/82

-002 Change Notice #1. Change pages, clarify COPY 10/82
command description. Expand Multimodule
application information, and character set data,
and correct front matter. Index references and
typographical errors.

-003 Incorporate Change Notice # 1, reformat, show 2/83
current installation of I/O connector, revise to be
system specific and reprint.

• (0.)

PREFACE

This manual describes the Intel Personal Development System OPDS™) and
provides the information needed to install, maintain, and operate the system and
the Intel System Implementation Supervisor for the system (ISIS-PDS).

There is a great deal of information in this manual. The order in which to read the
material depends on the goals of the reader. For example, Chapters 1 and 2
contain only background and overview information. The user who is interested in
using the system as quickly as possible can skip this material.

Figure 1 shows two possible paths through the manual: one for the user who is
,anxious to get started with the system as quickly as possible and the other for the
user who wishes to spend more time gaining background information prior to
actually starting with the system. Typically, a person who has had previous
experience with an interactive computer system will take the quick path while the
inexperienced user will choose the more leisurely path.

QUICKPATH

I FOLLOW HANDS-ON
EXAMPLETO INITIALIZE
SYSTEM.SKIP OTHER
EXAMPLES.

LEISURELY PATH

INSTALLSYSTEMJ
OPTIONSAS
DESCRIBED.

Figure 1 Paths Through the Manual
0281

The key to using the information in this manual is being able to access the needed
facts quickly. Features provided to aid in this process are: an Index for the entire
manual at the end of the manual, a Table of Contents for the entire manual at the
beginning of the manual, a detailed Table of Contents for each chapter at the
beginning of the chapter, and tabbed chapters to quickly find the desired section.
In addition, an overview is given below of the information in each chapter of the
manual.

v

Preface

vi

iPDS™User's Guide

• Chapter 1 contains overview information. It describes the features of the
basic system and describes the available options for the system. It also
contains information on the organization and use of this manual and related
publications.

• Chapter 2 contains background information. It outlines the process of
developing a microcompu ter- based product and illustrates how a
development system aids in this process.

• Chapter 3 describes the basic operator controls for the system and introduces
the operating system software in a hands-on demonstration.

• Chapter 4 describes the operating system commands from a functional point
of view, illustrating through hands-on examples how and when to use
particular commands.

• Chapter 5 describes the operating system commands in alphabetical order
and in a reference format for the experienced user.

• Chapter 6 describes the CREDIT text editing features unique to the iPDS
system . The editing macro CMACRO is explained. Command descriptions
and examples are found in the ISIS CREDIT CR T-Based Text Editor User's
Guide, manual order number 9800902.

• Chapter 7 describes the use of the DEBUG command. The material is
organized in a reference format with a brief introduction and hands-on
debugging session.

• Chapter 8 provides detailed technical information on the system. This
chapter is aimed at the systems programmer who will add customized I/O
drivers to the system. The information is organized in a reference format.

• Chapter 9 describes the use of the optional processor with the system.
Hands-on examples are included.

• Chapter 10 describes software for the PROM programmer option unique to
the iPDS system

• Appendix A describes step-by-step procedures for installing the system and
its options.

• Appendix B contains all the error messages for the operating system in a
standard format and describes error conditions. It also includes a detailed
description of the Confidence Test for the iPDS system.

• Appendix C contains reference tables for different number bases, for ASCII
code, for the control characters, and for the graphics characters.

• Appendix D contains a comparison of the ISIS-PDS operating system and
the ISIS-II operating system.

• Appendix E contains helpful hints for operating at maximum efficiency
depending on the configuration (the features and options available) of the
system being used.

• A glossary of technical terms and abbreviations is included for reference
after the last appendix.

Additional information on this manual and related publications is in Chapter 1.

SERVICE
INFORMATION

The best service for your Intel product is provided by an Intel Customer Engineer.
These professionals provide prompt, efficient, on-site installlation, preventive
maintenance, and corrective maintenance services required to keep your
equipment in the best possible operating condition.

The Intel Customer Engineer provides the service needed through a prepaid
service contract or on an hourly charge basis. For further information, contact
your local Intel sales office.

When the Intel Customer Engineer is not available, contact the Product Service
Center.

United States customers can obtain service and repair assistance from Intel
Corporation by contacting the Intel Product Service Center in their local area.
Customers outside the United States should contact their sales source (Intel Sales
Office or Authorized Distributer) for service information and repair assistance.

Before calling the Product Service Center, Have the following information
available:

1. The date you received the product.

2. The complete part number of the product (including dash number). On
boards, this number is usually silk-screened onto the board. On other MCSD
products, it is usually stamped on a label.

3. The serial number of the product. On boards, this number is usually stamped
on the board. On other MCSD products, the serial number is usually
stamped on a label mounted on the outside of the chassis.

4. The shipping and billing address.

5. If the Intel Product warranty has expired, a purchase order number is needed
for billing purposes.

6. Be sure to advise the Center personnel of any extended warranty agreements
that apply.

Use the following numbers for contacting the Intel Product Service Center:

Western Region call: (602) 869-4951
Midwest Region call: (602) 869-4392
Eastern Region call: (602) 869-4045
International call: (602) 869-4391

Always contact the Product Service Center before returning a product to Intel for
repair. You are given a repair authorization number, shipping instructions, and
other important information which helps Intel provide you with fast, efficient
service. If you are returning a product because of damage sustained during
shipment, or if the product is out of warranty, a purchase order is required before
Intel can initiate the repair.

vii

Service Information iPDS™User's Guide

If available, use the original factory packaging material, when preparing a product
for shipment to the Intel Product Service Center. If the original packaging material
is not available, wrap the product in a cushioning material such as Air Cap
SD-240, manufactured by the Sealed Air Corporation, Hawthorne, N.J. Securely
enclose it in a heavy-duty corrugated shipping carton, mark it "FRAGILE" to
ensure careful handling, and ship it to the address specified by the Intel Product
Service Center.

viii

WARNINGS
AND CAUTIONS

This section lists all the warnings and cautions in the order they appear in the
manual. Refer to the indicated page number for the context of the warning or the
caution.

PAGE

IWARNING I
Never remove the top cover. There is a risk of electric shock or fire
from high voltage. Repairs should be performed by qualified service
personnel only 1-4/A-7

Refer to Appendix A of this manual for installation instructions before
attempting to operate the system 3-1

Ensuring trouble-free storage of data on the flexible disk requires
proper care. Specific precautions follow:

• Return the disk to its envelope when not in use

• Do not touch or clean the recording surface

• Do not smoke around the disk

• Do not bend the disk or use paper clips or other mechanical
devices on it

• Use a felt tip pen on the user label, not a pencil or ball point pen

The following actions can also damage or modify the data stored on the
flexible disk:

• Turning the system on or offwith a disk inserted in the drive

• Opening the disk drive door while the drive select light is on

• Pressing the RESET switch while the drive select light is on ... 3-14/3-15

In addition, the use of the pause option (P) for the COPY, DIR, and
DELETE commands is prohibited when these commands are run from
a SUBMIT file. No error or warning message is issued; however, use of
the option can destroy files on one or more of the disks. 5-47

ix

Warnings and Cautions iPDS™User's Guide

PAGE

Do not operate the system in the carrying position. The system must be
opened and in the operating position to dissipate the heat properly. To
allow proper cooling of the unit, a minimum of six inches 05.24 em) of
clearance is recommended on all sides and the air vents must be clear
of any obstructions, A-3

IWARNING'

Changing the power cord involves hazardous voltage and current
levels. To avoid the risk of electric shock and fire, the power cord
should be changed only by qualified technical personnel. A-4

IWARNINGI
Installation of some of the options involves working with hazardous
voltage and current levels. To avoid the risk of electric shock and fire,
options should be installed only by qualified technical personnel. A-7

The plug-in module slot breaches the electrical shielding of the iPDS
system. There is a chance of electro-static discharge (ESD) passing, via
the plug-in module, to the internal circuitry of the iPDS system and
causing system RESET's, disk file damage, or component damage.
Ensure that the iPDS system is turned.OFF before inserting or remov-
ing any plug-in module. A-27

x

• (.7)

CHAPTERl
INTRODUCTION PAGE
Purpose 1-1
Typical Uses 1-1
Major Characteristics 1-1
System Components 1-1

Hardware 1-1
Basic Unit 1-2
Add-On Mass Storage 1-4
Dual Processors 1-5
Plug-In Modules 1-6
Multimodules 1-6

Software .. ;............................... 1-7
Operating System 1-8
Assemblers 1-8
High Level Languages 1-8
Utilities. .. 1-8
Other Software 1-8

Overview of System Publications 1-8
Hardware Installation and Checkout 1-9
System Operations. .. 1-9
Text Editing 1-10
Software Debugging 1-10
Systems Programming 1-10
Dual Processing 1-10
PROM Programming 1-10
Microprocessor Emulation 1-10
Multimodule Expansion 1-11
Applications Programming 1-11
Notational Conventions 1-11
Other Conventions 1-11
CAUTION, WARNING, and NOTE

Symbols 1-11
Commonly Used Terms 1-12

CHAPTER 2
DEVELOPMENT SYSTEMS
The Development Task 2-1

Software Development 2-1
Hardware Development 2-2
Integration 2-2
Production Testing ~ 2-3
Field Service 2-3

The Development Tools 2-4
Software Development Tools 2-4
Emulators 2-4
Summary :.... 2-5

Overview of the Development Cycle 2-6

CONTENTS I

CHAPTER 3
BASIC SYSTEM OPERATION PAGE
Hardware Operation 3-1

Rear Control Panel 3-2
Removable I/O Panel 3-3
Storage Area . .. 3-3
Powering the System On and Off 3-4
Keyboard "...................... 3-5
Display Screen 3-8
Disk Drives 3-10

Care and Use ofFlexible Disk 3-11
Bubble Memory 3-14
Other Components 3-14

Software Operation 3-15
Initialization 3-15

Error Conditions 3-17
User Configurations '.' 3-17
Commands 3-17
Command Lines 3-19

Command Line Defaults 3-20
Entering Command Lines 3-20

Entering Command Lines from the
Keyboard '.. 3-21
Editing Command Lines 3-21
Pausing the Display 3-22

Entering Command Lines from a File 3-22
Other Ways to Enter Command Lines , 3-23

Sample Initialization Session 3-23
Initializing the System from Disk 3-24
Duplicating the System Disk on Single Drive

Systems 3-25
Duplicating the System Disk on Multiple Drive

Systems 3-27
Entering Command Lines 3-28
Using Control Characters 3-34
Editing Command Lines 3-36
Initializing the System from Bubble

Memory 3-39
Running the Confidence Test . .. 3-42

CHAPTER 4
COMMAND APPLICATIONS
Functional Summary of Commands 4-1

System Management Commands 4-1
Sample System Management Commands 4-2

Device Management Commands 4-7
Formatting a Non-System Disk 4-8
Changing the System Input and Output

Devices 4-9
Using the Serial Port 4-12

File Management Commands. 4-14
Displaying a List of Files 4-14

xi

I

• 0

PAGE

CONTENTS
(continued)

PAGE

CHAPTER 7
DEBUG COMMAND
Software Debugging and the Development Task 7-1

DEBUG Features 7-1
DEBUG Command 7-2

Command Format. .. 7-2
Comments 7-2
Examples ;. 7-3

Overview of the Debugging Commands 7-4
110 Interface 7-4
Software Development 7-4

CHAPTER 6
CREDIT TEXT EDITOR
Introduction 6-1
Getting Started With the CREDIT Text Editor 6-1

Screen Mode Features 6-1
The CREDIT Display 6-1
The Keyboard 6-2
The Cursor 6-4

Command Mode Features 6-4
The CREDIT Display 6-4
The Keyboard 6-5
Disk File Use 6-5

Temporary Files , 6-6
Backup Files 6-7
Files Used By CREDIT Commands 6-7
Limits on Disk File Use 6-7
Performance and File Size 6-8

CMACRO.MAC 6-8
The CMACRO File 6-8

Cursor Movement Macros 6-8
Text Control Macros 6-9
Block Transfer Macros 6-9
File Formatting Macros 6-10
Data File Macros 6-11

Assigning and Removing File Attributes 4-18
Copying Files ;........ 4-21
Changing Filenames 4-22
Appending Files 4-22
Displaying a Text File on the CRT 4-23
Using Wildcard Characters 4-34
File Operations With a Single Drive

System 4-37
Text Editing Commands ;...... 4-40

Editing Text Files 4-40
Creating a Source Program 4-49

Program Development Commands 4-52
Creating an Object File 4-53
Debugging a Program 4-54

Program Execution Commands 4-59
Using the JOB Command 4-60
Automatic Job Execution 4-61
Configuring a User System

Automatically 4-65
Using the SUBMIT Command 4-66
Running the SUBMIT File 4-70

CHAPTERS
COMMAND DICTIONARY
Notational Conventions 5-1
Special Command Format Terms _. . .. 5-2

Device Names 5-2
Physical Devices 5-2

System-Defined Devices 5-3
User-Defined Devices. 5-3

Logical Devices 5-4
Filenames 5-5

Wildcard Filenames 5-6
Pathnames 5-6
Source 5-7
Destination 5-7
NandA 5-7
Jobfile 5-8

Command Description Format 5-8
Functional Summary of Commands 5-9
ASSIGN 5-10
ATTACH 5-13
ATTRIB 5-14
COPY (Transfers files) 5-16
COPY (Appends files) 5-19
DELETE 5-21
DETACH 5-23
DIR 5-24
ENDJOB 5-26
HELP 5-27
IDISK 5-28

xii r:

JOB .
RENAME .
SERIAL .
SUBMIT .
? .
@ .

/ .
.

FUNC <n> .
ESC .

5-30
5-32
5-33
5-36
5-42
5-43
5-44
5-45
5-46
5-47
5-48

I

• ®

. ,

PAGE

Entering Debugging Commands 7-5
Command Format for Debugging Commands 7-5
Entry Errors 7-5

Invalid Characters 7-5
Address Value Errors 7-6
Parameter Errors 7-6

Categories of Debugging Commands 7-7
Program Execution Commands 7-7
I/O Configuration Commands 7-7
I/O Control Commands 7-9
Memory Control Commands 7-9
Register Commands 7-9
Utility Commands 7-10

Sample Debugging Session 7-10
Debugging Commands in Alphabetical Order 7-17

A Assign Command 7-17
C Disassemble Command 7-19
D Display Memory Command 7-20
E Exit Command 7-21
F Fill Memory Command 7-22
FUNCT-R Manual Interrupt Command 7-22
G Execute Command 7-23
H Hexadecimal Add/Subtract Command 7-25
I Input Command 7-26
M Move Memory Command 7-26
N Single Step Command 7-28
o Output Command 7-28
Q Query Command 7-29
S Substitute Memory Command 7-31
T Disassemble Command 7-32
X Display/Modify Registers Command. 7-33

CHAPTERS
SYSTEM PROGRAMMER'S REFERENCE
Operating System Considerations 8-1

Needed Functions 8-2
Features of the ISIS-PDS Operating System 8-2

System Calls 8-3
Overview of System Calls 8-3
Functional Categories of System Calls 8-4

High Level System Calls 8-4
File I/O Operations 8-4
Disk Directory Maintenance 8-4
Console Device Assignment 8-4
Error Message Output 8-4
Program Loading and Execution 8-5
I/O Driver Extensions 8-5

Primitive System Calls 8-5
Peripheral I/O Routines 8-5
System Status Routines 8-5
I/O Driver Extensions 8-5

CONTENTS I.
(continued) .

PAGE

Differences Between High Level and Primitive
System Calls 8-5

System Call Format and Use 8-5
PL/M Calls 8-6
Assembly Language Calls 8-6

Assembly Language Calls to High Level
System Routines 8-7

Assembly Language Calls to Primitive
System Routines 8-8

Error Handling 8-8
System Calls in Alphabetical Order 8-9

Notational Conventions 8-9
General Format Terms 8-9
Description Formats 8-12
ATTACH 8-14
ATTRIB 8-16
CI '. .. 8-18
CLOSE............................... 8-19
CO 8-21
CONSOL 8-22
CSTS 8-24
DELETE 8-25
DETACH............................. 8-26
ERROR 8-28
EXIT. .. 8-30
10CHK 8-32
10DEF 8-34
10SET 8-36
LO 8-37
LOAD 8-38
MEMCK 8-40
OPEN 8-41
PO 8-44
READ 8-45
RENAME 8-48
RESCAN 8-50
RI 8-52
SEEK 8-53
SPATH 8-57
WHOCON 8-60
WRITE.............. 8-62

Example Programs Using System Calls 8-64
System Architecture 8-70

Memory Organization and Allocation 8-70
Interrupt Vectors...... 8-71
ISIS Resident Area 1 8-71
Buffer Area and ISIS Resident Area 2 8-71
User Programs and ISIS Non-resident

Area 8-72
Examples of Calculating the User Program

Base Address 8-73

xiii

A-I
A-I
A-5
A-6
A-7

A-I0
A-ll
A-ll
A-13
A-13
A-13
A-14
A-14
A-17
A-19
A-23
A-24
A-24
A-24
A-26

. A-27
A-27
A-27
A-27
A-27
A-28

PAGE

I/O Address Space 8-73
CRT and Keyboard I/O 8-75

Cursor Addressing and Graphics
Mode ~ 8-75

Serial I/O 8-76
Printer I/O 8-77
Multimodule I/O 8-78

Peripheral Device I/O Operations 8-80
File I/O 8-80
Dynamic File Control 8-82
Line Edited Files 8-82
Terminating Characters 8-83
Editing Characters 8-83
Reading from the Line Editing Buffer 8-83
Reading a Command Line 8-84

Disk File Types 8-85
Notation Used to Describe Records 8-85
MCS-80/85 Absolute Object File

Format 8-86
Disk Structure 8-88

General Disk File Structure 8-88
Blocks 8-89
Interleaving Factors '........... 8-91

System Disk Files 8-92
ISIS.PDS 8-92
ISIS.CLI 8-92
ISIS.TO 8-93
ISIS.LAB 8-93
ISIS.DIR 8-93
ISIS.FRE 8-95

Disk File Structure Summary ,............ 8-96

CHAPTER 9
DUAL PROCESSING
Introduction 9-1
Operating a Dual Processing System 9-1

Sharing the Keyboard ~ 9-2
Sharing the CRT Display 9-2
Sharing Disk Drives 9-4
Sharing Multimodules 9-5
Sharing Files 9-5

Temporary Files 9-6
Data Files 9-6

Initializing the System 9-7
Sample Dual Processing 9-8

Programming on a Dual Processing System 9-12
Shared Resources 9-13

Semaphores 9-13
Shared Multimodules 9-13
Shared Files 9-14

xiv

CONTENTS
(continued)

CHAPTER 10 PAGE
PROM PROGRAMMING
Firmware Development 10-1

EPROM Erasure 10-2
Overview of PROM Programming on the

System 10-3
Personality Modules 10-3
Plug-in Module Adapter Board 10-3
iPPS Software 10-3
PROM Programming Subsystem 10-4

iPPS Software 10-5
iPPS Initialization 10-5

Command Line Invocation ., ., 10-5
Invocation Via a SUBMIT File 10-6

iPPS General Operation 10-6
Major Functions '....... 10-6
iPPS Storage Devices 10-7

PROM Device 10-7
Buffer Device 10-7
File Device 10-8

Command Entry 10-9
Command Entry Editing 10-10

Form ofiPPS Commands 10-10

APPENDIX A
INSTALLATION INSTRUCTIONS
Installation Considerations .
Initial Installation Procedures .

Changing the Fuse .
Installing Options .

Removing the I/O Panel .
Connecting a Serial Device .

Configuring the CTS and RTS Lines .
Configuring the RXC and TXC Lines .
Configuring the DTR Line .
Configuring the RXD and TXD Lines .
Connecting a Serial Device .
Serial Interface Specifications .

Optional Processor .
Multimodule Adapter .
Multimodule .
Plug-in Module Adapter .
Plug-in Module .
Connecting a Line Printer .

Line Printer Interface Specifications .
Functional Description .

System Chassis .
Base Processor Board .
Keyboard .
Integral CRT .
Integral Disk Drive .
Power Supply ' .

PAGE

User Controls A-28
Optional Processor Board A-28
Optional Multimodule Adapter Board A-28
Optional Plug-in Module Adapter Board A-28

Specifications A-28

APPENDIXB
ERROR INDICATIONS
Command Entry Error Messages B-1
ISIS-PDS Exception and Error Handling B-2

Non-Fatal Errors B-2
Fatal Errors B-3
Console Interface Errors B-4
Error Messages in Numeric Order B-4

Resident ISIS Routines B-4
Console Interface Routines B-ll

Diagnostic Errors B-13
LED Indicators .. B-13
Diagnostic Error Messages B-14

Confidence Test. .. B-15
PCONF Command B-17
INIT CONPDS Command B-17
Confidence Test Commands B-17

CLEAR Command B-18
DESCRIBE Command B-18
ERROR Command B-19
EXIT Command :......... B-19
IGNORE Command B-19
LIST Command B-20
RECOGNIZE Command B-20
SUMMARY Command B-20
TEST Command B-21

Test 0 - CPU Test B-23
Test 1 - CRT Interface Test B-23
Test 2 - Programmable Timer Test B-23
Test 3 - Line Printer Interface Test B-23
Test 4 - Serial Interface Test B-23
Test 5 - Disk Semaphore Test B-24
Test 6 - Disk Drive Recalibrate and Ready

Test B-24
Test 7 - Disk Drive Seek and Read

Test B-24
Test 8 - Serial Loopback Test B-25
Test 9 - Disk Format Test B-25

CONTENTS
(continued)

PAGE

Test A - Formatted Disk Data Read
Test B-25

Test B - Disk Random Seek/Write/Read
Test B-26

Test C - Keyboard Echo Test B-26
Test D - Bubble Memory Seek and Read

Test B-26
Test E - Bubble Memory Random

Seek/Write/Read Test B-26
Test F - PROM Programmer Plug-in Module

Test B-27
Test 10 - 32K RAM Relocating Random Data

Test B-27
Confidence Test Error Messages B-27

APPENDIXC
REFERENCE TABLES
Hexadecimal To Decimal Conversion C-l
Base Conversions C-2
Powers of Two and Sixteen C-4
ASCII Code List C-5
ASCII Code Definition C-7
ASCII Code in Binary C-7
Control Codes C-8
Function Codes C-8
Graphics Codes and Escape Sequences C-9

APPENDIXD
ISIS-PDS AND ISIS-II
ISIS-PDS and ISIS-II Features D-l

APPENDIXE
TIPS FOR OPERATING EFFICIENTLY
Single Drive System E-l
Bubble Memory System E-4
Dual Processor System E-5

GLOSSARY

INDEX

xv

. (.)

TABLE TITLE PAGE
3-1 Keyboard Characters and Functions 3-6
7-1 Possible Values for < logical device> 7-17
7-2 Possible Values for < physical device> 7-18
7-3 Logical Devices 7-29
7-4 Possible Values for Physical Device. 7-30
7-5 Character Symbols for Register

Modification 7-34
8-1 Field Values and Physical Device

Assignment 8-32
8-2 Mask Values. .. 8-32
8-3 Interrupt Line Pin Numbers , 8-80
8-4 'System File locations 8-92
8-5 Values of System file Bit Maps 8-95

o

• ®

FIGURE TITLE PAGE
1-1 Typical Products Created With a Development

System 1-2
1-2 BasicSystem 1-3
1-3 System in Carrying Position 1-4
1-4 System With Options 1-5
1-5 Plug-In Modules 1-6
1-6 Overview of Operating System Software 1-7
2-1 Typical Product Development Cycle 2-1
2-2 Software Development Cycle 2-2
2-3 Hardware Development Cycle 2-2
2-4 Production Testing 2-3
2-5 Field Service 2-3
3-1 Basic System 3-1
3-2 Rear Panel Controls 3-2
3-3 Removable I/O Panel 3-3
3-4 Accessing the Storage Area 3-4
3-5 The Keyboard 3-5
3-6 Closing the Keyboard for Carrying 3-9
3-7 DisplayScreen 3-10
3-8 Disk Drive 3-11
3-9 Flexible Disk 3-11
3-10 Disk Insertion 3-13
3-11 Door Release on Disk Drives 3-13
3-12 Plug-in Modules 3-14
3-13 Flowchart ofInitialization Program 3-18
5-1 Format of Command Descriptions 5-8
6-1 The CREDIT Display 6-2
6-2 The Keyboard 6-3

xvi

TABLES I

TABLE TITLE PAGE
A-I Serial Interface Specifications A-14
A-2 Printer Interface Specifications A-26
A-3 Electrical Specifications for Printer

Interface A-26
A-4 Intel Personal Development System

Specifications , A-29
A-5 External Disk Drive Power Supply A-29
A-6 External Disk Drive Physical

Characteristics A-29
A-7 Power Supply A-29
A-8 Option Electrical Requirements A-30
B-1 8272 Status Registers B-6
B-2 7220 Status Registers B-9

FIGURES I

FIGURE TITLE PAGE
6-3 DiskFileUse 6-6
8-1 Internal and External Environment 8-1
8-2 Needed Capabilities 8-2
8-3 Format of System Call Descriptions 8-13
8-4 Memory Map 8-70
8-5 Interrupt Vectors 8-71
8-6 Record Format Conventions 8-85
8-7 Module Header Record 8-87
8-8 Content Record 8-87
8-9 Module End Record 8-87
8-10 Disk File Components 8-88
8-11 Pointer Block 8-89
8-12 Data Block 8-89
8-13 Relation of Data and Pointer Blocks 8-90
8-14 Pointer and Data Blocks in a File 8-91
8-15 Sector Interleaving 8-91
8-16 Directory Entry 8-93
8-17 Disk File Structure Summary 8-97
9-1 Split Screen Display 9-3
9-2 Logical and Physical Screens 9-4
10-1 Firmware Development Cycle 10-2
10-2 PROM Programming Subsystem. 10-4
A-I Lowering the Keyboard to Operating

Position A-2
A-2 Door Release on Disk Drive A-3
A-3 Power Cable A-3
A-4 Line Voltage Switch A-4
A-5 Power Switch A-5

FIGURES
(continued)

FIGURE TITLE PAGE FIGURE TITLE PAGE

A-6
A-8
A-9
A-9

A-lO

A-6 Changing the Fuse .
A-7 Removing the I/O Panel .
A-8 Using the Connector Locks .
A-9 Replacing the I/O Panel .
A-lO Schematics for the Serial I/O Interface .
A-'11 Removable Jumper Location and

Configuration. A-12
A-12 Removing and Replacing the Plug-in Type

Jumpers A-12
A-13 Mounting Locations for Optional

Processor A-15
A-14 Mounting Technique for Optional

Processor A-15
A-15 Aligning the Optional Processor Board A-16
A-16 Optional Processor Connection to Multimodule

Adapter. .. A-16
A-17 Mounting Locations for Multimodule

Adapter. .. A-17
A-18 Mounting Technique for the Multimodule

Adapter Board A-19

A-19 Aligning the Multimodule Adapter
Board .

A-20 Mounting Locations for Double Wide
Multimodule Boards .

A-21 Aligning Double Wide Multimodule
Boards .

A-22 Mounting Technique for Multimodule
Boards .

A-23 Mounting a Single Wide Multimodule
Board .

A-24 Removing Rear Panel Cutouts .

A-25 Connecting Cable to the Rear Panel
Cutouts .

A-26 Installing the Adapter Board
Assembly .

A-27 Cable Connection for Adapter
Assembly .

A-28 Installing Plug-in Module .
B-1 Diagnostic LED Indicators .

A-18

A-20

A-20

A-21

A-21
A-22

A-22

A-23

A-24
A-25
B-14

xvii/xviii

CHAPTER 1
INTRODUCTION

Purpose

The iPDS system supports the design and development of products that incorpo
rate Intel microprocessors or microcontrollers.

The system and its options aid in both hardware and software development for pro
ducts based on many different families of chips, such as the following:

• MCS-51 micro controller family

• MCS-85 general purpose microprocessor family

• iAPX-88 general purpose microprocessor family

Typical Uses

By incorporating microprocessors from these families, products can range in com
plexity from a simple process controller to an advanced microcomputer system.
Software can range from a single-purpose control program to a complex software
system. Figure 1-1 illustrates a few application projects which are produced with
the aid ofa development system.

The iPDS system is useful at all stages of product design from the initial idea to
customer support after the product is in the field. See Chapter 2 for further infor
mation on role of the development system in the product design cycle.

Major Characteristics

The development system supports integrated hardware and software development
by assembling or compiling source programs for execution and by emulating the
target microprocessor, the processor used in the product. Emulation is discussed
in Chapter 2.

The system optionally includes a PROM Programmer for programming EPROMS
as well as E2pROMs to store software in the target processor's memory..

Another feature of the development system is its portability; the basic system
weighs only 29 pounds and has a handle for carrying.

System Components

The system consists of both hardware and software components to aid in the devel
opment effort.

Hardware

The following sections describe the hardware components of the basic system and
options.

1-1

Introduction iPDS™ User's Guide

iPDS SYSTEM

iPDS SYSTEM

SMALL
BUSINESS
SYSTEM

0001

1-2

Figure 1-1 Typical Products Created With a Development System

Basic Unit

A single main enclosure and a detachable keyboard enclosure house the system
hardware. In operating position (see figure 1-2), the system is 8"H x 16"W x 20"L.

The keyboard detaches from the main enclosure and is connected to the develop
ment system with a flat ribbon cable. It consists of standard typewriter keys with
cursor control keys, a function key, and a system reset key. Chapter 3 contains a
complete description of the keyboard.

The main enclosure without the keyboard is 8"H x 16"W x 18"L and contains the
following parts:

• Base processor board

• 9-inch, Cathode Ray Tube (CRT) display unit, 80 characters by 24 lines

• 640K-byte formatted, 5-114 inch, flexible disk drive for mass storage

• Switching type power supply

iPDS™ User's Guide

0002

Figure 1-2 Basic System

The power plug, power on/off switch, 115/230 voltage selector switch, and CRT
contrast control knob are all on the rear panel as are the connectors for serial I/O,
printer I/O, and additional disk drives. See Chapter 3 for the operation of the
switches and controls and Appendix A for installation instructions and connector
specifications.

IWARNING I
Never remove the top cover. There is a risk of electric shock or
fire from high voltages. Repairs should be performed by qualified
service personnel only.

The base processor board contains the following parts:

• 8085A-2 Central Processor Unit (CPU) operating at 5MHz

• 64K bytes of Random Access Memory (RAM)

• 2K bytes of Read Only Memory (ROM) containing the initialization program
and diagnostics

• CRT and keyboard controller

• Flexible disk controller with port for three additional drives

• Emulator and PROM programmer port

• Serial input/output (I/O) port

• Line printer I/O port

Introduction

1-3

Introduction

1-4

iPDS™ User's Guide

The keyboard attaches to the front of the main enclosure for carrying the system;
it covers the CRT and flexible disk drive. The handle is attached to the front of the
main enclosure and folds out of the way when the system is in use. Figure 1-3
shows the iPDS system in the carrying position.

0003

Figure 1-3 System in Carrying Position

A storage area for cables and plug-in modules is on the top rear of the main
enclosure. A slot on the right side of the basic unit is provided for inserting the op
tional plug-in modules during use. A bail (metal bar) is on the bottom of the unit
to position the unit at an angle.

The basic system, without options, provides the foundation for microprocessor
product development. Additional hardware and software packages are available as
options to build on this foundation. The main enclosure houses the optional
system boards and accepts the optional plug-in modules for PROM programming
or target microprocessor emulation.

Figure 1-4 shows the iPDS system with an optional plug-in module (a PROM
programmer) and three additional flexible disk drives.

Add-On Mass Storage

For many applications, additional mass storage is a desirable feature. One choice is
to add mass storage through external disk drives. One to three external drives can
be added to the iPDS system. Each additional drive has a 640K-byte capacity
(formatted) for a maximum disk storage of 2.56M bytes. The first external drive
attaches to the rear of the main enclosure with a round cable. The other two exter
nal drives are connected to the rear of the previous external drive. Each additional
drive has its own power supply and is mounted in its own housing external to the
main system. See figure 1-4.

iPDS™ User's Guide Introduction

Figure 1-4 System with Options

Another choice for adding mass storage is through iSBX 251 Bubble Memory
Multimodules. A maximum of two bubble multimodules, with 128K-bytes each,
can be added to a system which already contains the multimodule adapter option.
The bubble memory is treated by the system as an additional disk drive with the
same file structure and directory structure as a diskette. Additional bubble
memory is recommended for systems requiring portability, since the bubble
memory boards are completely housed in the main enclosure.

Dual Processors

A second 8085A-2 processor board added to the system increases processing
throughput by allowing one program to run on one processor while another pro
gram is running on the other processor. For example, while one processor is
compiling or assembling a program, the other processor can be used to edit a text
file.

This option consists of a single board that is installed through the removable rear
panel of the main enclosure. The board contains an 8085A-2 microprocessor with
64K bytes of RAM and is functionally the same as the base processor. However, it
does not include the integrated serial and parallel I/O ports and cannot be used
with the PROM Programmer or Emulator plug-in modules. The two processors
share the flexible disk drives, CRT, and multimodules. The keyboard is used by
one processor at a time.

Software to control the optional board is included in the operating system. Optional
processor features that extend the capabilities of the development system are cov
ered in Chapter 9 of this manual.

1-5

Introduction

1-6

iPDS™ User's Guide

Plug-In Modules

Plug-in modules slide into a slot on the side of the main enclosure adding features
to the system. These options include both hardware and software. The following
plug-in modules are available (see figure 1-5):

• Emulators that provide debug capabilities for different families of micropro
cessors and microcontrollers

• PROM Programmer Personality Modules that accept different families of
PROMs for programming

For example, the EMV -51 emulator aids in debugging applications based on the
MCS-51 family of microcontrollers. The emulator hardware plugs into the side of
the iPDS system while the software runs on the base processor. Emulator debug
ging features are discussed in Chapter 2.

The PROM programmer personality modules plug into the slot on the side of the
system and allow programming and verification of Intel EPROMs and E2pROMs.

The PROM programmer software runs as a utility program under the operating
system.

PROM
PERSONALITY
MODULE

0005

Figure 1-5 Plug-In Modules

Multimodules

The development system can be expanded through the multimodule adapter
option which allows a maximum of four multimodule boards to be added. Multi
module boards are small, special function boards which use the iSBX bus to inter
face to the CPU.

The multimodule adapter board is installed through the rear panel of the system.

The iSBX multimodule boards available for the iPDS system are:

• iSBX 251 Bubble Memory Multimodule Board

• iSBX 350 Parallel Port Multimodule Board

iPDS™ User's Guide Introduction

• iSBX 351 Serial Port Multimodule Board

• iSBX 488 IEEE-488 Interface Multimodule Board

The iSBX 251 multimodule board is discussed in this chapter in the section entitled
"Add-On Mass Storage". The iSBX 350 and iSBX 351 provide parallel and serial
I/O in addition to the parallel printer port and the serial I/O port already on the
base processor board. The iSBX 488 provides additional system expansion
through the IEEE-488 General Purpose Interface Bus (GPIB).

Software routines for these multimodules must be provided by the user. Many of
these routines are available from the INSITE Software Library. See Chapter 8 of
this manual for technical information to aid in writing custom I/O drivers.

Software
The following software is supplied on the system disk:

• ISIS-PDS operating system

• Operating system commands

• CREDIT text editor

• DEBUG command

• Customer confidence test

• ASM-80 Macro Assembler

• MGS-80/85 software development utilities

Assemblers, high level languages, and utilities for different target microprocessors
are optionally available to aid the software development effort. See figure 1-6.

0148

PROM
PROGRAMMING
COMMANDS

DEBUG
MONITOR
COMMANDS

COMMAND
LINE
INTERPRETER

HIGH
LEVEL
LANGUAGES

MACRO
ASSEMBLERS

Figure 1-6 Overview of Operating System Software

1-7

Introduction

1-8

iPDS™ User's Guide

Operating System

The ISIS-PDS operating system provides an easy-to-use set of commands
(including a HELP command) to control system operations. it also 'includes a set
of routines that the systems programmer can incorporate into applications
software. The commands and routines provide powerful features to control disk
files, to handle I/O from different peripheral devices, and to control the execution
of programs in a standard way.

Assemblers

Macro assemblers produce relocatable object code for different families of micro
processors and microcontrollers, such as the MCS-85 and the MCS-51. The code
is compatible with the code produced by high level language compilers for the
same chip. Therefore, modules written in assembly language can be combined
with modules written in a high level language using the link and locate utilities.

High Level Languages

High level languages help to reduce system design and maintenance costs by allow
ing the programmer to design software at a more abstract level than with an
assembler. PL/M, a block structured language, is available for several families of
chips. Other languages available include FORTRAN and BASIC.

Utilities

Utility programs are available to edit text, to link and locate program modules, to
convert file formats, to debug MCS-80/85 programs, to program PROMs, and to
control emulation vehicles. All of these utilities aid in producing reliable, efficient
software.

Other Software

Since the ISIS-PDS operating system is functionally compatible with the ISIS-II
operating system, most ISIS-II software runs on the development system without
modification.

Overview of System Publications

A library of technical manuals support development work using the system and its
options. The basic manuals are shipped with the system, and additional manuals
are provided with the optional hardware or software packages to which they apply.

The Literature Kit shipped with the basic system contains a customer letter, a soft
ware registration card, other informational literature, and the following technical
manuals:

• iPDS™ User's GUide, order no. 162606

• iPDS™ PocketReference, order no. 162607

• MCS™_8085 Utilities User's GUidefor8080/8085-Based DevelopmentSystems,
order no. 121617

iPDS™ User's Guide

• ISIS-1I 808018085 Macro Assembler Operator's Manual, order no. 9800292

• 808018085 Assembly Language Programming Manual, order no. 9800301

• 808018085 Assembly Language Reference Card, order no. 9800438

• ISIS CREDIT™ CR T-Based Text Editor User's Guide, order no. 9800902

• iPDS™ Field Service Manual, order no. 143861.

A three-ring binder and tabs to mark the .beginning of each section of the user's
guide are provided.

Copies of the technical manuals are shipped with the products that they support.
Additional copies of any of these manuals may be ordered through the Literature
Department, Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 9505l.
The address is also on the back of the title page of this manual.

Use the order numbers shown above when placing an order. Use the order
number 164181 to order an extra three-ring binder.

The Literature Department also distributes other Intel literature, such as applica
tion notes, magazine article reprints, and brochures on new products.

NOTE
Because of the compatibility between the ISIS-II and ISIS-PDS
operating systems, some of the manuals provided for this devel
opment system refer to the ISIS-II operating system and were
written for the ISIS-II version of the software.

In these cases, the operation of the product is identical under
either system. The ISIS-II version of the manual is shipped with
the ISIS-PDS version of the product.

Hardware Installation and Checkout

The first material to consult upon receiving a new system or a new option is Ap
pendix A of this manual. Follow the installation instructions before attempting to
use the system or an option. Appendix A also contains specifications for I/O
connectors.

Hardware troubleshooting is covered in detail in the iPDS™ Field Service Manual,
order no. 143861, which contains schematic drawings, troubleshooting
procedures, and the theory of operation for the system. This guide is included in
the Literature Kit shipped with the system.

System Operations

Once the system is installed and ready to run, consult Chapters 3, 4, and 5 of this
manual. Chapter 3 explains how to initialize the system, how to use the disk
drives, how to give simple commands to the operating system, and how to adjust
operator controls on the system. The tutorial demonstration included in Chapter 3
illustrates system initialization, backing up the system disk, and running the confi
dence test. Running the confidence tests before proceeding to Chapter 4 is
recommended.

Introduction

1-9

Introduction

1-10

iPDS™ User's Guide

Chapter 4 provides more detailed information on the operating system commands
and gives examples of how and when they are used. The several tutorial demon
strations included in Chapter 4 illustrate how to use these commands.

Chapter 5 is organized as a reference guide for the operating system commands
and contains complete information for each command.

After becoming familiar with the material in Chapters 3, 4, and 5 of this manual,
consult the iPDS™ Pocket Rejerenceforsummaries of the commands.

Appendix E contains tips for efficient operation with specific system
configurations.

Text Editing

An important feature of the system is the CREDIT text editor. The editor is used
extensively in software development to enter the source code for the software
modules. To use the CREDIT editor, refer to Chapter 6 of this manual and the
ISIS CREDIT™ CR T-Based Text Editor User's Guide provided in the literature kit.

Software Debugging

The DEBUG command provides MCS-80/85 software debugging facilities. It is de
scribed in Chapter 7 of this manual.

Systems Programming

The operating system provides a set of system calls and standard I/O routines that
can be incorporated into a user-written program. A technical description of these
features can be found in Chapter 8.

Dual Processing

Information on the optional processor is in Chapter 9 of this manual. Installation
instructions for the board are in Appendix A.

PROM Programming

EPROM and E2PROM devices are programmed using the Intel PROM Program
ming Software (iPPS) that runs under the operating system and controls the op
tional PROM Personality Modules. An EMV/PROM adapter board is also required
to program PROMs on the iPDS development system. The iPPS commands are
covered in the iUP-2001201 Universal Programmer User's Guide, Order No. 162613.
Each Personality Module is shipped with a reference manual containing specifica
tions for the particular module. Installation instructions for the EMV/PROM adap
ter board and.the PROM personality module are in Appendix A.

Microprocessor Emulation

Each emulator is shipped with an operating instructions manual and a pocket refer
ence describing how to use the emulator.

iPDS™ User's Guide

Multimodule Expansion

A hardware reference manual is shipped with each iSBX multimodule board to
provide detailed specifications for the board. User-written I/O routines for multi
modules can be added to the operating system as described in Chapter 8. General
installation instructions for double and single wide multi module boards are given
in Appendix A.

Applications Programming

Each language provided for developing applications software is described in a pro
grammer's reference manual and an operating instruction manual. These two
manuals are sometimes combined into a single user's guide, and a pocket refer
enceis also provided.

Software development utilities are covered in the MCS-80/85 Utilities User's Guide
for 8080/8055-Based Development Systems.

Technical reference information on target microprocessors and microcontrollers
can be found in the family user's manual for the chip.

Notational Conventions

Throughout this manual, procedures and operations that can be carried out on the
system are described. Because of the general nature of many of these procedures
and operations, it is not possible or desirable to list all of the correct ways of carry
ing out a given task. Instead, general classes of procedures are described using spe
cial symbols or notational conventions. Notational conventions are described in
Chapter 5.

Other Conventions

In addition to notational conventions, several standard formats have been adopted'
in describing commands, system calls, and error messages. These formats are de
scribed prior to their use in Chapters 5, 7, and Appendix B.

CAUTION, WARNING, and NOTE Symbols

A section of text introduced by the symbol

gives instructions necessary to avoid possible damage to equipment or loss of
stored information.

A section of text introduced by the symbol

IWARNING I
gives instructions necessary for safety reasons.

Introduction

1-11

Introduction

1-12

iPDS™ User's Guide

A section of text introduced by the symbol

NOTE
gives emphasis to comments with special significance for the user.

Commonly Used Terms

Many special terms and abbreviations are encountered when using computer
products. In most cases, specialized vocabulary is needed to clearly explain the
technical concepts involved. However, to the new computer user, the unfamiliar
terminology can be a source of confusion and frustration.

To help the new computer user, a glossary is included before the Index to define
terms and abbreviations. Anyone unfamiliar with computer terminology should
skim over the glossary before starting on the rest of the manual, and then refer to
it later whenever it is needed.

CHAPTER 2
DEVELOPMENT SYSTEMS

The Development Task

A typical product development cycle is illustrated in figure 2-1 involving software
development, hardware development, integration, and testing.

A development system should aid in all phases of product development. The iPDS
development system can be used both in the software and hardware development,
as well as in production testing after the development and in customer support
after the product is in the field.

r-------------------------- l

I SCOPEOF INTEL PERSONAL DEVELOPMENT SYSTEM
WITH AN EMULATOR

I

--l\.. CONSTRUCT ~ VERIFY -
-v PROTOTYPE PROTOTYPE

HARDWARE v HARDWARE

I
r

_______ ...J

:>
I

~ r-, =) ~SPECIFY DESIGN r- INTEGRATE PRODUCTION INSTALL FIELD
PRODUCT PRODUCT 7" rV SYSTEM h/ TEST PRODUCT -V SERVICE

I
I
I ~ PREPARE =) TRANSLATE ~ VERIFY

I '---V
SOURCE SOURCE h/ OBJECT -CODE CODE CODE

I
IL ~ ~

0006

Figure 2-1 Typical Product Development Cycle

Software Development

Software development involves programming the target processor to correctly per
form the required task using instructions eventually stored in the product's own
memory. This effort requires the following software:

• Text editor program for creating the source code for the software

• Assembler or compiler with related support programs to produce a machine
readable form of the software

• Various utility programs that manipulate and test the software as it is devel
oped

With support programs that run under the Intel System Implementation Supervi
sor (ISIS-PDS), the software development phase of a project can be completed.
Software testing and debugging can be carried out with operating system programs
and with the aid of emulators available as system options.

The software development task is illustrated in figure 2-2.

2-1

Development Systems iPDS™ User's Guide

~ ASM I-
SOURCE LIB---v CODE

I-

{7
DEFINE

=>
DESIGN ~ WRITE

=> => h>
VERIFY

h> INTEGRATE- CODE
SOFTWARE SOURCE -,/ SOURCE - LINK LOC USING WITH
FUNCTION CODE CODE EMULATOR HARDWARE

/').

-=> PLM I-
SOURCE I-
CODE

0007

Figure 2-2 Software Development Cycle

Hardware Development

Hardware development involves designing the circuits that make up a product
(the microprocessor, memory, and input/output circuits) and designing the rela
tionship of these circuits to one another. As the hardware prototype is assembled,
it can be tested and debugged using the appropriate emulator.

If the product includes EPROMs, E2PROMs, or a part containing EPROM or
E2PROM, a PROM Programmer is required to store the control program in the
product's own memory. See figure 2-3.

PROGRAM
PROMS

~>
DEFINE

~
DESIGN ~ CONSTRUCT h> VERIFY h> INTEGRATE

PROTOTYPE WITHFUNCTION HARDWARE r--v PROTOTYPE OPERATIONS SOFTWARE

If '[

0008

Figure 2-3 Hardware Development Cycle

Integration

The integration of the hardware and the software involves further testing and
debugging, requiring the use of the emulator as well as the operating system sup
port software until the project is completed.

2-2

iPDS™ User's Guide

Production Testing

Development Systems

During manufacture of the new product, test programs running on the emulator
can be used to test samples and to maintain quality control during production.
Figure 2-4 illustrates production testing.

TESTING OF
USER'S PRODUCT
IN
MANUFACTURING

0009

Figure 2-4 Production Testing

Field Service

Because of its portability, the iPDS development system can be used as a diagnostic
tool in field service. Additionally, it can be used on-site for product installations
and customer training. Figure 2-5 illustrates the field service use of the system.

SERVICING OF
USER'S PRODUCT
IN FIELD

0010

Figure 2-5 Field Service

2-3

Development Systems

The Development Tools

iPDS™ User's Guide

The tools required to develop a microprocessor/microcontroller based product
differ from the tools used to develop electronic products not incorporating micros.

For a product without micros, the oscilloscope, the logic analyzer, and meters
serve as useful development tools. They provide the logic designer with signals
generated at different points in the circuit, allowing testing and debugging of the
hardware. Software development is not required for this type of product.

For micro-based products, however, the traditional electronics development tools
are not sufficient for two reasons. First, they do not support the software develop
ment required in a micro-based product. Second, many of the circuits and signals
previously available to the designer are integrated onto a single silicon chip and are
not accessible through the connector pins on the chip's package.

A development system, such as the iPDS system, provides software development
tools and emulators for many families of target micros to satisfy the requirements
of a micro-based development task. An optional PROM programmer for EPROMs
or E2PROMs is also available.

Software Development Tools

Writing the source code and debugging the resulting object code are the two most
time consuming parts of the software development cycle. Therefore, software de
velopment tools should concentrate on supporting these two parts of the cycle.

A development system text editor should ensure ease in entering source code and
should aiso provide high level commands such as block COpys, block MOVEs,
READs and WRITEs to files, and FIND/SUBSTITUTE text to correct errors.
Additionally, the editor should allow the automatic execution of sequences of
commands, so the user's time is not wasted performing repetitive editing tasks.

The ISIS-PDS CREDIT text editor is designed for software development
applications. Since it is a CRT-based text editor, it provides constant visual refer
ence to the text being edited, making text entry and text corrections easy. It pro
vides the advanced commands needed, including macros and compatibility with
the ISIS SUBMIT command, to automate repetitive editing tasks.

Language translators should reduce the time spent debugging the software by sup
porting modular program development and by producing debug data such as cross
reference lists and symbol tables. With the language translators available for the
iPDS system, program modules can be developed independently and can then be
linked and located to form a single software system. Both assemblers and high
level language translators produce debug data to reduce the time spent troublesh
ooting the software.

Emulators (discussed in the next section) also aid in the debugging and verifica
tion phase of the software development cycle.

Emulators

To debug a product 'efficiently, the user must be able to exercise the product (for
example, run the software) under controlled conditions and monitor the results.
By repeatedly exercising the product and comparing the expected results with the
actual results, the user can identify and solve the problems (bugs) in the product.

2-4

iPDS™ User's Guide Development Systems

An emulator has the features to provide a controlled environment for exercising
the product and, then, to monitor the results. It can duplicate the behavior of a
target microprocessor/microcontroller and, at the same time, can provide informa
tion to the user to aid in debugging the hardware and software being developed.

For example, emulators have a breakpoint feature that allows the user to specify a
portion of the program to be run real time and then stop. Once stopped at the
breakpoint, the emulator acts as a window to the internal registers and logic signals
that are inaccessible from the connector pins. In this way, the internal state of the
micro can be examined and altered. Data about the internal state of the chip can
also be collected and saved in a buffer called the trace buffer.

Additionally, the emulator accepts debug data, such as symbol tables, produced by
the language translators. The programmer can reference locations in the program
with the symbolic debug information, such as module names and variable names,
rather than by using absolute memory addresses.

Another advantage of using an emulator is that functional hardware is not required
to begin software debugging. The emulator duplicates the behavior of the target
micro and provides some resources, such as memory, that can be used until the
hardware prototype is more complete.

The software that controls the emulator consists of a set of commands that the
user can enter to directly control an interactive debugging session. Also, sequences
of emulator commands can be executed automatically providing the basis of manu
facturing and field test routines.

Summary

In summary, a development system should offer the following tools to support the
development task:

• Text editing facility

• Language support for software development

• Target microprocessor/microcontroller emulation

• PROM programming capability

In addition, a development system should provide features common to all comput
er systems:

• File handling utilities

• System configuration utilities

• Job control utilities

• Resource control utilities

• Support for common peripherals

All the tools offered on the development system should be compatible with one
another forming an integrated environment for development and testing of
products. The ISIS-PDS operating system ensures compatible tools provided for
micro-based development projects.

2-5

Development Systems

Overview of the Development Cycle

iPDS™ User's Guide

In this section, a summary is given of the sequence of events to follow in develop
ing a micro-based product using the iPDS development system and an emulator.

• Complete the specification for the prototype hardware design, software con
trollogic, and integrated system performance. The CREDIT text editor can
be used in preparing this document.

• Organize both the hardware and software design into logical blocks that are
understandable, have well-defined inputs and outputs, and are easy to test.
Methodical design techniques, such as top down structured design, reduce
the time required later for prototyping, programming, testing, and
modification. The CREDIT text editor helps in preparing reports on the de
velopment progress.

• Program the software modules in PL/M or assembly language, naming and
storing program modules as files under the operating system. Compile or
assemble the modules using the options necessary to produce debug data.
Link and locate the combinations ready for testing to create object code
(machine language) version containing the debug data. Manually, verify
each module as it is completed before running it on the machine. The
CREDIT text editor is used to enter the source code. A number of language
translators and development utilities are available to produce object code.
See the section on "High Level Languages" in Chapter 1 for further refer
ences on the languages available.

• As the software modules are ready for testing, load them into the emulator
and execute them. The emulator can be used before any prototype hardware
is available. The emulator provides single step execution, breakpoints, soft
ware trace capabilities, -and processor register examination for testing and
debugging the software. It also provides RAM in which the module can run,
allowing patches to be made quickly and easily. In later stages, PROM or
ROM can be substituted for the RAM in the prototype hardware.

• As software modules pass the initial stages of check-out, they can be loaded
in the emulator's memory for real-time testing.

• The emulator is plugged into the microprocessor/microcontroller socket of
the user's prototype system. Hardware prototyping can begin with the micro
socket alone. As each part of the hardware becomes available, it can be added
to the prototype. In this way, modules can be tested as they become
available. The emulator's ability to execute in single step mode, to examine
or modify the memory and processor registers, to trace .the program flow,
and to break in real time mode, provides the user with substantial power to
debug the hardware system.

• Debugging and testing can proceed through each hardware and software
module, using emulator commands to control execution, to check that each
module gets data or control information from the correct source, and to place
correct data in the proper locations for subsequent modules to use.

• Eventually, all hardware and software is tested together. The emulator is con
nected to the prototype through the prototype microprocessor/microcon
troller socket, so all operations of the system can be tested.

2-6

iPDS™ User's Guide Development Systems

• After the prototype has been completely debugged, the emulator can be used
to verify samples during production testing. The test procedures developed
for the final prototype testing can serve as the basis for production test and di
agnostic routines.

• The test and diagnostic routines used during manufacture can serve as the
basis for a set of field diagnostics used in service and repair of equipment in
the field.

In summary, the product should be designed methodically, and the development
system should be used at every step to increase efficiency during the project.

2-712-8

CHAPTER 3
BASIC SYSTEM OPERATION

Hardware Operation

The hardware subsystem consists of a CPU, memory, mass storage, and
peripherals. Figure 3-1 shows the outward appearance of the basic system. The
operating procedures for the hardware components are described in the following
section. Procedures are given for operating the rear panel controls, the keyboard,
and the disk drives.

Refer to Appendix A of this manual for installation instructions
before attempting to operate the system.

INTERNAL
FLEXIBLE
DISK DRIVE

0011

Figure 3-1 Basic System

3-1

Basic System Operation

Rear Control Panel

iPDS™ User's Guide

Figure 3-2 illustrates the rear panel and the location of basic operator controls.

L-.-J -c:::::::J ~

e

•••'Ae ~
[ille

$

@ ® ®
V~~~~~~ @

®
liD :: PDWER

~;
FUSE@

~:3A/120VAC @

CD~A~ 0 ~
1.5A/230VAC

P"'~: ~
0

IL-...J 1'----"

liD 1 I/D3

WARNING
DISCONNECT POWER
BEFORE CHANGING

+ VOLTAGE SETTING

~
::

EXT

II
0

DRIVE

® ~
PDWER ~r0 0 01~

®
H 1'---

+ I/D2 liD 4 120VAC 3A 60HZ@)
230VAC 1.5A 50 HZ

0013

Figure 3-2 Rear Panel Controls

POWER

POWER PLUG

The switch labeled POWER (upper right corner of rear
panel) turns on the power to the basic system and the
integral disk drive and resets the system.

The power cord is plugged into the socket labeled
POWER located in the lower right corner of the rear
panel.

VOLTAGE SELECT The voltage select switch can be set to 115 or 230 volts
to accommodate the available line voltage. .

CONTRAST

SERIAL I/O

LINE PRINTER

The contrast adjustment for the CRT display screen is
on the rear panel next to the serial I/O port.

The serial I/O connector accepts a plug for an RS-232
compatible device which is controlled by the base pro
cessor and is not accessible by the optional processor.
Technical information on the connector ·can be found
in Appendix A.

The line printer connector accepts a plug for a
Centronics*-compatible printer which is controlled by
the base processor and is not accessible by the optional
processor. Refer to Appendix A for information on the
connector.

*Centronics is a trademark of Centronics, Inc.

3-2

iPDS™ User's Guide Basic System Operation

EXT DRIVE The external drive connector allows up to three addi
tional flexible disk drives to be daisy-chained to the
system with flat ribbon cable. Refer to Appendix A for
instructions on connecting the external drives.

I/O 1 through I/O 4 Four multimodule I/O connectors are provided to
allow connection of peripherals to the optional multi
module boards. See Appendix A for installation
instructions.

Removable I/O Panel

The compartment behind the removable panel slides out from the rear of the
system to allow installation of optional boards. The panel contains four knockouts
for peripheral connection to the multimodule boards. See figure 3-2 for the knock
outs and figure 3-3 for the connectors. The tabs on the knockout must be cut prior
to tapping them out. Appendix A contains instructions for removing the knock
outs and installing connectors.

OPTIONAL
1/0 CONNECTORS

0014

Figure 3-3 Removable I/O Panel

Storage Area

A storage area is accessed from the top cover to allow the storage of two plug-in
modules with cables. See figure 3-4. Diskettes can also be stored safely in this area.

3-3

Basic System Operation

ACCESS
DOOR

Figure 3-4 Accessing the Storage Area

Powering the System On and Off

NOTE
Before powering the system on, see Appendix A for detailed in
stallation instructions including instructions for setting the line
voltage to 115 or 230 Vac and instructions for changing the power
connector to the type of connector required locally.

iPDS™ User's Guide

EMULATOR
MODULE
WITH
CABLE

0158

To turn the system on:

1. Ensure that the power cord is disconnected. See figure 3-2 for the location of
the plug.

2. Ensure that the Voltage Selector switch is set to the available line voltage.
See figure 3-2 for the location of the switch. See Appendix A for instructions
on setting the line voltage switch.

3. Connect the power cord to the system and to an external power source. See
figure 3-2 for the location of the iPDS power plug.

4. Set the POWER switch to ON. See figure 3-2.

3-4

iPDS™ User's Guide'

To turn the system off:

Basic System Operation

1. Remove all flexible disks as described in this chapter in the section entitled
"Disk Drives".

2. Hit the RESET key to ensure the disk head is back as far as possible.

3. Turn off the power to any external drives.

4. Turn off the power to the main system.

5. Insert the diskette card to transport unit.

Keyboard

Figure 3-5 shows the keyboard, the basic user interface to the system. Two plastic
guides on the back of the keyboard housing attach the keyboard housing to the
main enclosure. A flat cable connects the keyboard to the main processor board
through a slot on the front of the main enclosure below the flexible disk drive.
This cable plugs into a connector on the back of the keyboard housing as shown in
figure 3-5.

Through the keyboard, commands and data are entered to the operating system. A
temporary holding area in memory, called a line editing buffer, stores the charac
ters typed at the keyboard until the RETURN key is pressed or 122 characters are
entered.

Before pressing RETURN, commands and data can be edited or even canceled
from the buffer. After pressing RETURN, commands and data can be re-edited.
Command line editing and re-editing are described in detail at the end of this
chapter.

The keyboard includes an Auto Repeat feature. Any key that is held down will be
automatically repeated as if it were repeatedly pressed and released. This feature is
useful in editing text files.

TYPEWRITER
KEYS

I
a----MAIN

SYSTEM
CABLE

RESET

RESET

Figure 3-5 The Keyboard

BACKSPACE

]

- CURSOR
CONTROL
KEYS

0015

3-5

Basic System Operation . iPDS™ User's Guide

In addition to the standard typewriter keys, the keyboard has several special pur
pose keys. For example, the CTRL key works with other keys to form control
characters. Control characters perform control functions, such as line editing. Con
trol characters are listed in Table 3-1.

The FUNCT key also works with other keys to form function characters. Function
characters also perform control functions. For example, if the system contains
dual processors, the keyboard is assigned to either the .base processor or the op
tional processor through function characters as described in Chapter 9. The func
tion characters are also listed in Table 3-1.

The demonstration at the end of this chapter illustrates the use of these keys.
Some of the special keys are also discussed in connection with the operation of the
software.

Keyboard characters and the functions they perform are summarized in table 3-1.

Table 3-1 Keyboard Characters and Functions

KEY FUNCTION

EJ The CTRL (Control) key is used with other keys to perform control
functions. A key whose function is changed by the CTRL key is called a
control character. To enter a control character, hold down the CTRL key
while typing the character. This action is similar to using the SHIFT key on
a typewriter. A control character generates a single control code in the
line editing buffer even though two keys are pressed. Some examples of
control characters are CTRL-R and CTRL-S. Valid control characters are
defined below. Control characters are also used as commands within the
CREDIT Text Editor and are described in Chapter 6 and the ISIS CREDIT™
CRT-Based Text Editor User's Guide.

EJ0 CTRL-A inserts a character into a command line during command line
editing mode. See the ESC key.

EJm CTRL-B is used for two purposes. During command line editing mode, it
moves the cursor to the beginning of the command line being edited. It
also acts as an alternate ESC key when not in editing mode. It can be used
in the display of graphics symbols within programs that use the ESC key
for other purposes. See Chapter 8 for information on the use of graphics
symbols. Appendix C contains a chart of the graphics symbols available.

EJ~ CTRL-D deletes the preceding character during command line editing
mode. See the ESC key.

EJI]] CTRL-E is used in processing SUBMIT files. It is described in Chapters 4
and 5.

EJm CTRL-L moves the cursor to the end of the command line being edited
during command line editing mode. See the ESC key.

EJI!] CTRL-P causes a character that normally would be interpreted as a line.
editing character and perform an editing function (Control Characters,
RUBOUT, etc.) to be entered literally into the line editing buffer without

EJ[2]
performing any function.

CTRL-Q resumes the display after a CTRL-S.

EJrnJ CTRL-R displays the current contents of the line editing buffer.

3-6

iPDS™ User's Guide

Table 3-1 Keyboard Characters and Functions (continued)

Basic System Operation

I'

KEY FUNCTION

8m CTRL-S suspends the 'display on the CRT screen. This function is useful
when output from a program is scrolling off the screen too quickly.

80 CTRL-X performs two functions. It deletes the entire contents of the line
editing buffer without terminating the buffer. A number sign (#) is dis-
played followed by a carriage return and line feed. CTRL-X also terminates
the command line editing mode. See the ESC key.

8m CTRL-Z deletes the entire contents of the line editing buffer and also ter-
minates the buffer. It displays a carriage return and Iinefeed and the
operating system prompt appears as the first characters of the next line.

S The ESC (escape) key is used to enter command line editing mode to cor-
rect or change command lines. After editing mode has been entered,
several control characters can be used to modify the command line. It is
also used in the display of graphics symbols. See Chapter 8 for informa-
tion on graphics symbols.

8 The FUNCT key is used with other keys to perform predefined functions.
The functions are either user defined or are predefined by Intel supplied
software. To enter a function character, hold down the FUNCT key while
another key is pressed and then release both keys. Valid function charac-

~'"""~ ~HO.E~
ters are defined below and in Chapters 4,5, and 9.

FUNCT -HOME controls the assignment of the keyboard in dual processor
systems. See Chapter 9.

8m FUNCT -R is used to reload the ISIS-PDS operating system if interrupts
are enabled. See Chapter 9 for information on using this function in dual
processor systems. The RESET key generates a hardware reset for the
system.

Bm FUNCT -S switches between two speeds for the CRT display. The slower
rate is about ten times slower than the faster rate. See CTRL-S for another
character to control the CRT display.

Bm FUNCT-T alternately switches the keyboard between typewriter mode
and non-typewriter (caps locked) mode. In typewriter mode, non-shifted
keys result in lower case characters while shifted keys result in upper
case characters. In caps locked mode, all non-shifted alpha keys result in

8m upper case characters. Shifted keys result in the upper character for all
other keys.

FUNCT -0 through FUNCT -9 are user defined function keys. See Chapters
thru 4 and 5 for details on their use.

Bm
8m FUNCT 1is used in dual processor systems to control the display screen.

See Chapter 9 for more details.

8m FUNCT 1is used in dual processor systems to control the display screen.
See Chapter 9 for more details.

~HO.E~ The HOME key is used in text editing and with the dual processor option.
See Chapters 6 and 9.

8 The RESET switch generates a hardware reset for the entire system. The
top of the RESET switch is flush with the keyboard enclosure so it cannot
easily be pressed. This feature helps prevent accidental resets. When the
system is reset, any work in progress is terminated.

3-7

Basic System Operation

Table 3-1 Keyboard Characters and Functions (continued)

iPDS™ User's Guide

KEY FUNCTION

I~ETURN~ The RETURN key enters the carriage return and line feed characters into
the buffer. It also terminates the line edited input signaling the operating
system to read the entire buffer.

lm The RUBOUT key deletes the preceding character from the line editingOUT
buffer.

S In typewriter mode, the SHIFT key causes the next key pressed to be en-
tered as an uppercase ASCII code and to be displayed in its uppercase
form. In caps locked mode as well as typewriter mode, the SHIFT key

rn causes the upper character on all keys except alpha keys to be entered
and displayed.

E1 B The four keys with arrows are used as cursor control keys. The cursor is
the reverse video blank that appears on the CRT display screen. These
keys perform special functions described in Chapters 6 and 9, and the

[I] ISIS CREDITTM CRT-Based Text Editor User's Guide when used in the
CREDIT Text Editor or with the dual processor option.

Figure 3-6 illustrates how the keyboard is opened and closed. To open the system
into operating position:

1. Lower the bail.

2. Set the system on the table horizontally.

3. Lower the handle until it is flush with the system's housing.

4. Press the keyboard latch and pull the keyboard down.

To close the system for carrying:

1. Insert the plastic guides on the back of the keyboard into the tabs on the sys
tem's housing.

2. Raise the keyboard until it locks into place covering the CRT and disk drive.

3. Lift the handle away from the housing.

4. Raise the unit vertically on the table.

5. Push the bail against the bottom of the cabinet.

" Display Screen

Figure 3-7 shows the CRT display screen, the basic output device for the system.
Characters typed at the keyboard are displayed on the screen. Characters without
corresponding display symbols, e.g., control characters, are shown as a tilde (-).
Error messages and prompts for additional information are displayed by programs
on the screen. A cursor (the reverse video block) indicates where the next charac
ter will be displayed. Graphics symbols are described in Chapter 8.

3-8

iPDS™ User's Guide Basic System Operation

0016

OPERATING
POSITION

LATCH

OPENING
POSITION

CLOSING

Ope ning and Closing the KeyboardFigure 3-6

3-9

Basic System Operation iPDS™ User's Guide

0025

Figure 3-7 Display Screen

The 9-inch CRT has a display area that is 80 characters wide by 24 lines long. With
dual processors, this area can be divided between the processors by using the
FUNCT keys as described in Chapter 9.

Information on the display screen scrolls up from the bottom of the screen. Scroll
ing means that as new lines appear at the bottom of the screen, existing lines roll
up one at a time.

If the screen is scrolling too fast, the user can slow down the display by a factor of
ten by entering FUNCT-S. Alternate FUNCT-S characters restore the normal dis
play speed. The display can be stopped by typing the CTRL-S character. CTRL-S
stops the display as well as the program which was running. Any key pressed after
CTRL-S is ignored except CTRL-Q which restarts the display.

Disk Drives

Flexible disk drives are shown in figure 3-8. On the front of each drive is a door, a
door release mechanism, and a drive indicator which is lit during disk I/O
operations. The door release mechanism is shown in figure 3-11.

A maximum of three external drives can be daisy-chained to the development
system through the disk drive connector on the rear panel. The first drive is
attached to the connector on the rear panel. See figure 3-2. The second drive is at
tached to the connector on the rear of the first external drive. The third drive is at
tached to the connector on the rear of the second external drive. See figure 3-8.

3-10

iPDS™ User's Guide

LED INDICATOR

DRIVE DOOR

0018

Figure 3-8 Disk Drive

A power on/off switch is also located on the rear panel of external drives.

Care and Use of Flexible Disks

Basic System Operation

A 5 1/4" diameter flexible disk (96 Tracks per inch) is used with the system. It is a
double density, double sided disk (I6 sectors per side). Figure 3-9 shows a flexible
disk. The write enable notch determines whether or not data can be written to the
disk. If the notch is covered with the write protect tab, nothing can be written to
the disk. Write protect tabs are opaque, self-adhesive tabs supplied with the disk.

USER'S
LABEL

WRITE DOENABLE
NOTCH

LABEL ©oINDEX
SPINDLE HOLE
HOLE

READI 0WRITE
OPENING

JACKET

WRITE
PROTECT
TAB

PROTECTIVE
ENVELOPE

0019

Figure 3-9 Flexible Disk

3-11

Basic System Operation iPDS™ User's Guide

The spindle hole is used to align the disk inside the drive. The index hole is used
by the drive to locate the first sector of the disk. The read/write opening is the
point where the disk drive read/write head contacts the surface of the disk. The
jacket protects the surface of the disk. A user label can be marked to indicate the
contents of the disk and can be attached next to the disk label. Use a felt tip pen to
mark the user label.

The following precautions are recommended and should be followed to protect
diskettes. In addition to following these precautions, files containing valuable data
should be backed up at regular intervals. Backing up a file means making a dupli
cate copy of the file on a different diskette. The file will then be stored on two dif
ferent diskettes. If something happens to one of the diskettes, the file will still be
available on the other diskette. Back-up procedures are given in the examples at
the end of this chapter.

Ensuring trouble-free storage of data on the flexible disk requires
proper care. Specific precautions follow:

• Return the disk to its envelope when not in use

• Do not touch or clean the recording surface

• Do not smoke around the disk

• Do not bend the disk or use paper clips or other mechanical
devices on it

• Use a felt tip pen on the user label, not a pencil or ball point
pen

The following actions can also damage or modify the data stored
on the flexible disk:

• Turning on or turning off the power to the system or the
power to an external drive with a disk inserted in the drive

• Opening the disk drive door while the drive select light is on

• Pressing the RESET switch while the drive select light is on

Before inserting a flexible disk, be sure that power to the system and to any exter
nal disk drives is turned on, that the LED indicator is not on, and that the drive
motor is off. Insert the disk with the write enable notch as shown in figure 3-10.

The drives have a lever type door release. Close the door by pressing the latch to
the left and towards the drive as shown in figure 3-11.

To remove a disk, follow these steps:

1. Ensure that the drive indicator light and the drive motor are off. If the light
remains on for more than 30 seconds and a read/write operation is not in
progress (no head movement is detected), disengage the drive by pressing
FUNCT-R to reload the ISIS-PDS operating system.

3-12

iPDS™ User's Guide Basic System Operation

2. To remove the disk from the drive, flip the lever out and to the right. This
action releases the door and the disk can be removed. See figure 3-11.

3. Remove the disk and place it in its protective cover.

WRITE
ENABLE
NOTCH

Figure 3-10 Disk Insertion

DOOR
RELEASE

DOOR
RELEASE

0159

Figure 3-11 Door Release on Disk Drives

3-13

Basic System Operation

Bubble Memory

iPDS™ User's Guide

Each bubble memory multimodule board provides 128K bytes of additional mass
storage. The development system supports up to two bubble memory boards. The
operating system treats bubble memory the same as a disk. Bubble memory multi
module boards are treated as drive 4 and drive 5 by the operating system. Installa
tion instructions for the bubble memory multimodule boards are in Appendix A
of this manual. After installation, the bubble memory must be initialized with the
IDISK command as if it were a blank disk as described at the end of this chapter.
Technical details on the use of these boards are in Chapter 8.

Other Components

The plug-in modules, either emulators or the PROM programmer personality
modules, are shown in figure 3-12. They are inserted into the slot on the side of
the system and connect to the Plug-in Module Adapter Board. Operation of the
PROM modules specific to the iPDS system is covered in Chapter 10 of this
manual. Command descriptions and example of PROM programming are found in
the iUP-2001201 Universal Programmer User's GUide, order number 162613.
Emulator plug-in modules are covered in separate manuals.

PROM
PERSONALITY
MODULE

0005

Figure 3-12 Plug-In Modules

Multimodule boards are small single purpose boards that enhance the capabilities
of the system. See Chapter 1 for a list of multimodule boards available with the
system. Installation instructions for multimodule boards are in Appendix A. Infor
mation on software for these boards is in Chapter 8.

A printer with a Centronics*-compatible interface can be connected to the line
printer port on the rear panel of the system. See figure 3-2 for location of the
connector. Appendix A details the technical specifications for attaching a line
printer.

A serial device with an RS-232 interface can be connected to the serial port on the
rear panel of the system. See figure 3-2 for the location of the connector. Appendix
A details the technical specifications for attaching a serial device.

Dual processing is covered in Chapter 9. Installation of the additional processor
board is covered in Appendix A.

*Centronics is a trademark of Centronics, Inc.

3-14

iPDS™ User's Guide

Software Operation

Basic System Operation

The software subsystem is made up of the ISIS-PDS operating system, utility
programs, language translators, and user-written, application programs. The
system overview in Chapter 1 describes the available software and the correspond
ing manuals. Chapters 4-10 describe the operating system and many of the com
mands that are provided with it.

Operating the software involves, first, loading and running the operating system
and, then, loading and running programs under the control of the operating
system.

The sections "Initialization" and "Configuration" in this chapter describe how to
initially load and run the operating system.

Once ISIS is initially loaded, software operation consists of entering command
lines that cause programs to be loaded and run. Command lines are accepted by a
part of the operating system called the Command Line Interpreter (CLI). The CLI
loads and runs a program as specified in the command line. Later sections in this
chapter describe how to enter command lines to run programs.

Initialization

The operating system is contained in several files on the system disk or the system
bubble multimodule and must be loaded into the development system's memory
in a process called initialization or bootstrapping.

The system disk is the disk supplied by Intel containing the operating system files
needed to initialize the system. See the IDISK command in Chapter 5 for a more
specific description of the files required on a system disk. The disk supplied with
the system should be duplicated on another disk or on a bubble memory
multimodule. The new disk or bubble also becomes a system disk or system
bubble. At least one extra copy of the system disk should be maintained, so that
the system can still be initialized even if one of the system disks or bubbles is
destroyed. An example of the procedure for duplicating a system disk from the
disk supplied by Intel is given at the end of this chapter.

Initialization occurs when the system is powered on or when the RESET key on
the keyboard is pressed. Either action causes a program contained in the 2K bytes
of PROM to be executed. The PROM program performs a diagnostic test and
loads a bootstrap from the disk. The bootstrap program disables the 2K bytes of
PROM, enables 32K bytes of RAM, and loads the ISIS-PDS operating system.

To initialize the system from a system disk in the internal disk drive (drive 0),
power on the system, insert the system disk, and then press the RESET key.
These steps are described in detail in the following. First, the steps are givenfor a
system with no bubble memory installed.

1. Power on the development system. (The power switch is located on the
upper right side of the rear panel.) As soon as the system is powered on, the
diagnostic/loader program begins executing. This program attempts to ini
tialize the system from drive 0 (the internal disk drive). However, it is not
recommended that the system be powered on with a disk in the drive.

2. Power on any peripheral devices, such as printers or external disk drives.
Since the system disk is not yet inserted in the drive, the following message
is displayed:

NO BOOT DEVICE

3-15

Basic System Operation iPDS™ User's Guide

3. Place a system disk in drive O. Insert the disk as shown in figure 3-10. Drive 0
is initially used as the system drive.

4. Press the RESET key causing the diagnostic/loader program to search for a
disk again, this time initializing the system from drive O.

5. The message

ISIS-PDS, Vn.m

is displayed on the screen where n.m is replaced by the actual version
number for the system.

6. The operating system displays the prompt characters

AD>

on the screen indicating that commands can be entered.

7. If there is a file named ABOOT.CSD on the system drive, the base processor
automatically executes operating system commands from that file. This file
is used to initially configure a system and is described in more detail in Chap
ter 4.

To initialize from a system containing bubble memory (drive 4):

1. Make sure that no disk is in drive 0 (the internal disk drive).

2. . Make sure that a bubble multimodule that contains the operating system is
installed as drive 4. See Appendix A for installation instructions. See the
IDISK command in Chapters 4 and 5 for instructions on initializing the
bubble memory multimodule as a system disk.

3. Power on the development system. The program will first attempt to initialize
the system from drive O.

However, since there is no disk in drive 0, the attempt will fail. Since a
bubble memory multimodule is installed, the following message is displayed:

BOOT FROM BUBBLE? (Y or N)

This message is displayed when the bubble is present and no disk is in drive
0, or when the disk drive door is open.

4. Type Y in response to the message to complete the initialization from the
bubble multimodule in drive 4. (Insert a system disk in drive 0 and type N to
boot from disk when bubble memory is installed. Steps 5-7 from the previous
procedure will then occur.)

5. The message:

ISIS-PDS, Vn.m

is displayed on the screen where n.m is replaced by the actual version
number for the system.

3-16

iPDS™ User's Guide

6. The operating system displays the prompt characters

A4>

on the screen indicating that commands can be entered.

Basic System Operation

7. If there is a file named ABOOT.CSD on the system drive, the base processor
automatically executes operating system commands from that file. See Chap
ter 4 for information on creating ABOOT.CSD,.

8. Power on any peripheral devices, such as printers or external disk drives.

Initialization procedures for dual processor systems are covered in detail in Chap
ter 9. The initialization program flowchart is shown in figure 3-13.

As soon as the system is initialized for the first time, the system disk supplied by
Intel should be duplicated. At least two copies of the system disk should be main
tained in case one diskette is destroyed. The example at the end of this chapter
gives the procedure for duplicating the system disk.

Error Conditions

During the diagnostic phase of the initialization program, errors are indicated
either by four diagnostic LED indicators or by a message on the display screen.
The LED indicators are on the iPDS processor board and can be checked by hold
ing open the plug-in module door on the side of the system and looking through
the opening.

During the initialization phase when the operating system is loaded, errors are in
dicated by a message on the display screen.

Error conditions and messages are described in detail in Appendix B with instruc
tions on interpreting the LED indicators.

User Configurations

For some user applications, it is necessary to further initialize the system. For
example, the 8251 USART serial I/O device may need to be initialized automati
cally whenever the system is initialized.

ISIS-PDS allows the user to automatically run a program or a series of programs as
soon as the system is initialized with no operator interaction. Configuration is ac
complished by creating a special JOB file called ABOOT.CSD as described in Chap
ter 4 and Chapter 5 in the sections on the JOB command. This file contains the
commands necessary to configure the user's environment when the system is
initialized. The file must end with the ENDJOB command.

Commands

A command causes a program to be loaded and run under the control of the operat
ing system. To be more specific, most commands correspond to an object program
stored as a file on a disk or bubble memory device. To issue a command to the
operating system, enter the correct command line. The file containing the program
is then loaded into memory and run by the operating system. When the program
has finished running, it returns control to the operating system so that another
command can be issued. Some commands are embedded in the resident portion of
ISIS-PDS and are always present in memory. These commands are also run from
command lines but no disk file need be loaded.

3-17

Basic System Operation

3-18

DISPLAYS
"NO BOOT DEVICE"

SOUNDS BUZZER

DISPLAYS
"NO BOOT DEVICE"

0160

Figure 3-13 Flowchart of Initialization Program

iPDS™ User's Guide

iPDS™ User's Guide Basic System Operation

User written programs can also be run as commands. See Chapter 8 for further
information.

There are two different types of commands provided with the operating system: in
teractive and non-interactive commands.

An interactive command performs many different functions through a set of
subcommands. Subcommands are entered from the keyboard after the initial com
mand is issued and the .corresponding program is loaded. These subcommands are
processed by the program loaded, not by the ISIS-PDS command line interpreter.

Some interactive commands provided with ISIS-PDS are:

• CREDIT, which provides screen oriented text editing for source programs
and other documents

• DEBUG, which provides a minimumset of debugging commands

• LIB, which allows the user to manage a library of MCS-80/85 program
modules

Some of these commands are described in Chapters 4-10; others are in separate
manuals. See Chapter 1 for further references.

Non-interactive commands perform a single function through an ISIS-PDS com
mand line. Some non-interactive commands are:

• COPY, which duplicates a file from one device to another

• IDISK, which initializes a disk or a bubble memory multimodule

• DIR, which displays the files currently stored on the specified device

• HELP, which displays information about the system and other ISIS-PDS
commands

Most of these commands are described in Chapters 4 and 5; others are in separate
manuals. See Chapter 1 for further references.

Command Lines

To issue a command, the user must enter the correct command line. A command
line consists of two parts: a command name which corresponds to the filename
containing the program and the command parameters that are needed by individu
al commands. The entire command line is terminated by the RETURN key. The
general format for a command line is illustrated below using the notational con
ventions described in detail in Chapter 5. These conventions are used throughout
the manual to describe the format of commands.

{
< command name> <parameters>} RETURN

;<comment>

The angle brackets « » enclose general terms that must be replaced by a specif
ic member of the class specified. For example, < command name> is replaced by
a specific command name like COPY, DELETE, or RENAME. The braces ({ })
enclose a vertical list of items and imply a choice of one and only one of the items
listed.

3-19

Basic System Operation iPDS™ User's Guide

The command name is the same as the name of the file containing the program to
be run. The complete format of the command name is:

:<Iogical device name>:<filename>.<extension>

In most cases, the complete format need not be specified to run the program.
Instead, enter only the filename allowing the system to default the device name
and the extension as described below. The logical device name is a two-character
identifier enclosed by colons (r). The filename is one- to six-characters, and the
extension is one- to three- characters preceded by a period L).

Parameters are entered as a sequence of characters on the command line;
however, the number of parameters and the form in which they are entered vary
from command to command. In general, parameters specify the data used by the
command.

Some commands have no parameters. For other commands, a parameter could be
an input file identifier or an output device identifier. For example, an input file
identifier is a parameter for the COpy command.

Sometimes a command can perform one or more operations, and the parameter
identifies which operation to perform. For example, the IDISK command can ini
tialize a system disk or a non-system disk depending on the parameters entered on
the IDISK command line.

In addition to entering a command name with its associated parameters, a com
ment line may be entered. Comment lines are used primarily in SUBMIT files. See
the SUBMIT command in Chapters 4 and 5 for details. Comments are preceded by
a semicolon (;) and must be followed by the RETURN key.

Command Line Defaults

The default system drive (known by ISIS-PDS as :FO:) is initially assigned to drive
oor drive 4 depending on whether the system was initialized from the internal disk
drive or bubble memory. The system drive can be changed by the ASSIGN com
mand . The current system drive is displayed as the second character in the ISIS
PDS prompt (see the following section describing the ISIS-PDS prompt).

By storing command files on the default device, the device name need not be en
tered as part of the command name. Command files usually do not have an
extension, meaning the filename alone is usually enough to specify the command.

Default values for parameters vary from command to command and are discussed
in sections describing a particular command.

Entering Command Lines

Command lines can be entered either through the keyboard or from a file. They
are echoed on the display screen as they are entered. Non-displayable characters
are echoed as a tilde (e) unless they are preceded by a CTRL-P which enters them
literally into the buffer.

3-20

iPDS™ User's Guide

Entering Command Lines from the Keyboard

Basic System Operation

Whenever the ISIS-PDS prompt characters are displayed, a command line can be
entered from the keyboard. For example, the DIR command can be run by typing
the following on the keyboard:

DIR
.

The prompt characters are of the form:

Pd>

where P indicates the current processor and can be either A for the base processor
or B for the optional processor. The d is the number of the physical drive currently
assigned to :FO:, the system default disk device. It can be physical drive 0, 1, 2, 3,
4, or 5 depending on the last ASSIGN command.

The command line can not be greater than 122 characters. The display screen
echoes these characters as they are entered. After 77 characters have filled one dis
play line, the cursor automatically wraps around to the line below and the remain
ing 45 characters can be typed.

Editing Command Lines. The command line is actually stored in a buffer, a hold
ing area in memory, called the line editing buffer as it is typed on the keyboard.
The entire command line is presented to the operating system only after the
RETURN is typed. The RETURN terminates the line edited input.

A command line can be corrected in two ways: by entering control characters that
are only recognized prior to terminating the line edited input with the RETURN
key or by entering the editing mode and then using control characters that are
recognized during edit mode.

The following characters can only be used to edit a command line prior to terminat
ing the line edited input with the RETURN key. Most of these characters are con
trol characters, characters typed while the CTRL key is held down.

CTRL-R echoes a carriage return/linefeed on the display line fol
lowed by the current contents of the line editing buffer. CTRL-R
does not cancel or execute the contents of the buffer, nor does it
enter the command line editing mode described below. It is useful
if a teletype terminal is connected to the system for command line
input.

Elm
~.RUB
~

CTRL-X erases the entire buffer, but it must be typed before the
R.gTURN is entered. CTRL-X is echoed on the display line as a
"#" followed by a carriage return/linefeed, so the cursor is posi
tioned as the first character of the next line. CTRL-X does not ter
minate the line editing buffer, so no command line is presented to
the operating system. The operating system prompt does not·
appear in the next line.

CTRL-Z deletes the entire line editing buffer and terminates the
buffer, so the operating system prompt appears at the beginning
of the next line.

RUBOUT erases the most recently entered key.

3-21

Basic System Operation iPDS™ User's Guide

The following characters can be used to enter command line editing mode to cor
rect a command line either before or after the RETURN key has been pressed.
The ESC key can be pressed to enter editing mode and correct the most recent
command line. The most recent command line is displayed as it is stored in the
line editing buffer, and the prompt character> changes to + to indicate that edit
ing mode is in effect. The following keys can be used to modify and re-execute the
command line.

8[!]
8m
am
a0

B
~RETURN~

~..R...U...B...~

B
B

CTRL-A inserts any number of characters before the current
cursor position. Pressing CTRL-A the first time enters insert
mode. Then, any characters typed are inserted before the cursor.
Pressing CTRL-A a second time ends the insert.

CTRL-B moves the cursor to the beginning of the line.

CTRL-D deletes the character at the current cursor position
unless the cursor is at the end of the line. Then, the character
preceding the end of the line is deleted.

CTRL-L moves the cursor to the end of the line.

CTRL-X terminates the re-edit without executing the command
line and returns to ISIS for another command.

Press ESC a second time to execute the entire command line.

Press RETURN to execute the command line up to the current
cursor position.

Pressing the RUBOUT key is the same as pressing CTRL-D.

The left arrow, cursor control key moves the cursor to the left.

The right arrow, cursor control key moves the cursor to the right.

Only command lines of six or more characters (including spaces) are saved for re
editing.

Pausing the Display. Two control characters, CTRL-S and CTRL-Q, allow the
operator to control the scrolling of the display screen. CTRL-S stops the scrolling
of the output on the display screen and also stops the program generating the
display. The display remains stopped until a CTRL-Q is entered from the
keyboard. Any characters typed between the CTRL-S and the CTRL-Q are
ignored.

FUNCT-S switches the display speed between slow and fast scrolling.

Entering Command Lines from a File

Another way to enter command lines is from a command file. ISIS-PDS allows two
types of command files: SUBMIT files and JOB files. The SUBMIT file is a text file
that can be created with a text editor, such as the CREDIT text editor described in
Chapter 6. It contains command lines that appear in the file just as they would
appear if they were typed on the keyboard.

To execute the commands in the SUBMIT file, the SUBMIT program is run as an
operating system command. It submits command lines from the file to the operat
ing system as if they had been typed on the keyboard.

3-22

iPDS™ User's Guide

The SUBMIT command is described in detail in Chapters 4 and 5.

Basic System Operation

The JOB file is created with the JOB command and can be executed in several
ways as described in Chapters 4 and 5. The JOB command allows the user to type a
sequence of command lines at the keyboard which can then be executed in the se
quence in which they were typed. The JOB file must end with an ENDJOB
command.

Other Ways to Enter Command Lines

There are other ways to enter command lines which are variations and combina
tions of entering from the keyboard and of entering from a file.

Most of these additional methods involve an operating system command and are
discussed in Chapter 4 and Chapter 5.

Sample Initialization Session

The rest of this chapter contains a series of examples using screen displays,
comments, and key-in sequences. These examples illustrate the concepts intro
duced in this chapter.

The examples are complete, so that the key-in sequences can be entered to pro
duce the results shown in the screen displays. However, in some cases, operator
action besides keying in a command line is required. Thus, the comments should
be read prior to entering the key-in sequence. Also, many of the examples depend
on the output from the previous examples. In most cases, the examples should be
followed in order to guarantee the same results. Finally, in some of the examples,
the screen display shown may not be exactly the same as the display generated by
the user. In these cases, the exact display depends on the version of the operating
system and the order in which the examples were run.

3-23

Basic System Operation

Initializing the System from Disk

This example shows how to initialize a system from the disk in drive O.

iPDS™ User's Guide

@

@

@

@

@

@

@

@@@@@@
@ @
@ @
@ @
@ @
@@@@@@
@

@

@

@

@

@ @@@@@
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @@@@@.

@@@@@
@

@

@

@

@@@@@
@

@

@

@

@@@@@@

DIAGNOSTIC TESTING COMPLETED

ISIS-PDS, V1. D
AD>

3-24

Key-in Sequence

[3
am
8m

Comments

This example assumes that the bubble memory is not
installed. If the bubble memory multimodule is installed,
see the bubble memory example at the end of this
chapter. Power on the system with no disk in the drive.
When the red LED indicator on the drive goes off, insert
the system diskette and press the reset key. Immediately
after pressing the reset key, the character'A' appears on
the top line of the CRT screen. After a few seconds, the
initialization is complete and the screen appears as
shown. When the dual processor is installed, the top 2
lines are shown as reverse video with the letter 'B' on the
top line. Press the up arrow key two times while holding
down the FUNCT key to get rid of the display from the
dual processor.

iPDS™ User's Guide

Duplicating the System Disk on Single Drive Systems

In this series of examples, a back-up copy of the system disk is made.

AD> IDISK :FO:LEARN.PDS S P
SYSTEM DISKETTE
LOAD OUTPUT DISKETTE, THEN TYPE (CR)
LOAD SYSTEM DISKETTE, THEN TYPE (CR)
AD> COpy -. * TO *.* S P C
LOAD SOURCE DISKETTE, THEN TYPE (CR)
LOAD OUTPUT DISKETTE, THEN TYPE (CR)
COPIED :FD:ISIS.MAP TO :FD:ISIS.MAP
COPIED :FD:ASM8DTO :FO:ASM8D
COPIED :FD:ASM8D.OVD TO :FD:ASM8D.OVD
COPIED :FD:ASM8D.OV1TO :FO:ASM8D.OV1
COPlED : F0: ASM80.0 V2 TO : F0: ASM8 0.0 V2
COPIED: FO: ASM80. OV3 TO : FO: ASM80. OV3

Basic System Operation

(continued)

Key-in Sequence

IDISK :FO:LEARN.PDS S P

COpy *.* TO *.* S P C

~RETU3

Comments

Make a duplicate copy of system diskette.
First, initialize a new diskette with the
IDISK command. This example shows how
to run the IDISK command on a system with
a single disk drive. If a mistake is made in
typing any of these commands, use the
RUBOUT key to backspace and type the cor
rect characters. When more than one drive is
available, go to the section entitled
'Duplicating the System Disk on Multiple
Drive Systems.'

Remove the system diskette. Insert a new
diskette without a write protect tab and press
the RETURN key.

Remove the newly created diskette and
insert the system diskette. Press the
RETURN key. The operating system
prompt is then displayed.

The second step in duplicating the system
diskette is copying the files from the master
to the newly created diskette with the COpy
command.

The source diskette in this case is the system
diskette. Press the RETURN key to begin
reading files to be copied. Files are read until
the temporary storage area in memory is full.

Press the RETURN key after removing the
source diskette and inserting the newly creat
ed diskette. Files read from the source dis
kette and stored in memory are written to
the output diskette.

3-25

Basic System Operation iPDS™ User's Guide

Key-in Sequence Comments

A message is displayed for each file copied. The exact se
quence of messages depends on the software package
selected by the user and the files on the system disk.
When all the files are copied, re-insert the system
diskette. Press the RETURN key and more files are read
from the system diskette.

LOAD SOURCE DISKETTE, THEN TYPE (CR)
LOAD OUTPUT DISKETTE, THEN TYPE (CR)
COPIED :FD:ASM8D.OV4 TO :FD:ASM8D.OV4
COPIED :FD:ASM8D.OV5 TO :FD:ASM8D.OV5
COPIED: FD: ASXREF TO : FD: ASXREF
COPIED :FD:ASSIGN TO :FD:ASSIGN
COPIED: FD: ATTACH TO : FD: ATTACH
COPIED: FD: ATTRIB TO : FD: ATTRIB
LOAD SYSTEM DISKETTE, THEN TYPE (CR)
AD>

Key-in Sequence

~ RETURN~

Comments

Remove the system diskette and insert the diskette being
created. Press the RETURN key to continue copying.

The sequence of switching the source diskette and the
output diskette is repeated several more times to com
plete the copying of the system files. These steps are not
shown in detail.

3-26

iPDS™ User's Guide

Duplicating the System Disk on Multiple Drive Systems

Basic System Operation

In this example, a back-up of the system disk is made on a multiple drive system.

AD> IOISK :F1 :LEARN.POS S
SYSTEM DISKETTE
AD>COPV*.*TO :F1:*.*
COPIED: FD: ATTACH TO : F1: ATTACH
COPIED: FD: ATTRIB TO : F1: ATTRIB
COPIE D : F D: COPY TO: F1 : COPY
COPIED :FD:CREDIT TO :F1:CREDIT
COPIED: FD: CREDIT. MAC TO : F1: CREDIT. MAC
COPIED :FD:DEBUG TO :F1:DEBUG
COPIED: FD: DELETE TO : F1: DELETE
COPIED: FD: DETACH TO : F1: DETACH
COPlED : F D: DI R TO : F1: DI R
COPIED :FD:HELP TO :F1:HELP
COPIED :FD:HEXOBJ TO :F1:HEXOBJ
COPIED: FD: IDISK TO : F1: IDISK
COPIED :FD:IXREF TO :F1:IXREF
COPIED :FD:LIB TO :F1:LIB
COPIED :FD:LINK TO :F1:LINK
COPIED :FD:LINK.OVL TO :F1:LINK.OVL
COPIED :FD:LOCATE TO :F1:LOCATE
COPIED :FD:OBJHEX TO :F1:0BJHEX
COPIED: FD: PDS. HLP TO : F1: PDS. HLP
COPIED: FD: RENAME TO : F1: RENAME
COPIED :FD:SERIAL TO :F1:SERIAL
AD>

Key-in Sequence

" f

IDISK :170:LEARN.PDS S
~,. 'I~I ..

{','. J.

COpy *.* TO :F1 :*.*

Comments

Place a new diskette without a write protect tab
in drive 1 and enter the command as shown.
When the initialization is complete, the operat
ing system prompt is displayed.

After the IDISK command is complete, the
files are copied to the new disk to complete the
duplication. A message is displayed for each
file copied, and when all the files are copied,
the operating system prompt is returned. The
message for the first files coped will scroll off
the top of the screen.

3-27

iPDS™ User's Guide

Basic System Operation

Entering Command Lines'

The next series of examples illustrate how to enter a command line.

@

@

@

@

@

@

@

@@@@@@

@ @
@ @
@ @
@ @
@@@@@@

@

@

@

@

@

@ @@@@@

@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @@@@@

@@@@@

@

@

@

@
@@@@@

@

@

@

@

@@@@@@

DIAGNOSTIC TESTING COMPLETED

ISIS-PDS, V1. D

AD>

3-28

Key-in Sequence

8
Comments

Remove the system disk and insert the newly created dis
kette in drive o. Press the RESET key to re-initialize the
system. When the dual processor is installed, press the
uparrow key two times while holding down the FUNCT
key to get rid of the reverse video display at the top of the

screen.

iPDS™ User's Guide Basic System Operation

AD> DIR
DIRECTORY OF : rn . lEARN. PDS
NAME .EXT BlKS lENGTH ATTR NAME .EXT BlKS lENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COpy 36 8366 S CREDIT 80 19740 S
CREDIT . MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .PDS 16 3101 S

684
1456 FREE / 2544 TOTAL BLOCKS
AD>HELP COPY

Key-in Sequence

DIR ~RETURN~

HELP COpy ~RETURN~

Comments

The DIR command displays a list of the files on
the disk. In this case, the files on the disk in drive
oare displayed. The display will be similar to dis
play shown above. The exact display depends on
the files on the system disk. Notice that IDISK,
COPY, and DIR, are also files on the disk. The
file named HELP in the second column contains
the HELP command which displays information
about other operating system commands.

Typing HELP followed by the RETURN key dis
plays general help about the operating system.
Typing HELP followed by a command name dis
plays information about that command. In this
example, HELP is displayed for the COpy
command.

3-29

Basic System Operation iPDS™ User's Guide

COPY Appending files
COpy <srce 1> ,<srce 2>[, ..• , <srce n >] TO <dest> [B I U] [C] [P]

<srce 1>
thru
<scre n > Specifies the input files.
< des t > SPe cif i est he 0 u t put f i 1e .

Transferringfiles
COpy <srce> TO <dest> [{S IN}] [{B I U}] [J] [K] [L] [C] [P] [Q]

Pathname of input file, the file being copied.
Pathname of output file.
Copy only system files (with S attribute).
Copy only non-system files (without
attribute) .
No prompt if destination exists. Delete existing
file; copy source to newly created destination.
Same as B except existing file is not deleted
first.
Copy only fi les with User Defined attribute J.
Copy only files with User Defined attribute K.
Copy only files with User Defined attribute L.
Copy the source file's attributes.
Single drive COPY.
Prompt before processing.

B

U

<srce>
<dest>
S

N

J
K
L
C
P
Q

Comments

Information about the COPY command is displayed as a
result of entering the previous HELP command. The
square brackets ([]) indicate options. The simplest way
to transfer files without any options is: COpy < srce >
TO <dest>.

AD> COPY DIR TO CAT
COPIED :FD:DIR TO :FD:CAT
AD>

Key-in Sequence

COpy DIR TO CAT~RETu3

Comments

This command makes a duplicate of the
file, DIR, under the name CAT for
catalog. Thus, the file, CAT, also con
tains the directory command. The operat
ing system prompt is always returned
after the command is finished.

3-30

iPDS™ User's Guide Basic System Operation

AD> CAT
DIRECTORY OF : Fo: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COpy 36 8366 S CREDIT 80 19740 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .PDS 16 3101 S
CAT 28 6625

712
1428 FREE / 2544 TOTAL BLOCKS
AD>

Key-in Sequence

CAT ~RETURN~

Comments

This example illustrates that the file, CAT, contains the
directory. command. Typing CAT causes the file CAT to
be loaded and executed as a command. The same function
is performed as in the previous DIR command example.
The file CAT appears in the directory here and not in the
previous directory. This file was added to the directory
when it was created by the COpy command.

AD> RENAME CAT TO FILES
RENAMED CAT TO FILES
AD>

Key-in Sequence

RENAME CAT TO FILES

Comments

The RENAME command only changes the name
of the file specified.' It does not make a copy of
that file. In this case, the file CAT is renamed to
FILES. Thus, the file, FILES, is now a copy of
the directory command. Many of the operating
system command files can be renamed at user
convenience.

3-31

Basic System Operation iPDS™ User's Guide

AD> FILES
DIRECTORY OF : Fo: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COPY 36 8366 S CREDIT 80 19740 S
CREDIT. MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .PDS 16 3101 S
FILES 28 6625

712
1428 FREE / 2544 TOTAL BLOCKS
AD>

Key-in Sequence

FILES ~RETu3

Comments

Typing FILES is now equivalent to entering the DIR
command. Notice that the file CAT no longer appears in
the resulting list of files. The file, FILES, now appears in
its place.

AD> DELETE FILES
:Fo :FILES, DELETED

AD>

3-32

Key-in Sequence

DELETE FILES

Comments

The DELETE command removes the specified file from
the disk and from the directory. Now, the file, FILES, no
longer appears in the directory listing.

iPDS™ User's Guide Basic System Operation

AD> DIR
DIRECTORY OF : Fo: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COpy 36 8366 S CREDIT 80 19740 S
CREDIT. MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .PDS 16 3101 S

684
1456 FREE / 2544 TOTAL BLOCKS

Key-in Sequence

DIR ~ RETURN~

Comments

Enter the DIR command to verify that the file, FILES,
no longer appears in the directory.

AD> :FO:DIR
DIRECTORY OF : Fo: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COPY 36 8366 S CREDIT 80 19740 S
CREDIT. MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .PDS 16 3101 S

684
1456 FREE / 2544 TOTAL BLOCKS

Key-in Sequence

:FO:DIR [RET~3

Comments

The commands entered under the ISIS operating system
are actually programs. Many of these command programs
are stored in files on the disk and are loaded into memory
and executed when needed. Thus, the pathname of the
file is entered first on the command line. In this example,
the drive number portion of the pathname is entered re
sulting in the command being executed. If the drive
number is left off, logical drive 0 is assumed.

3-33

Basic System Operation iPDS™ User's Guide

Using Control Characters

The next series of examples illustrate how to use control characters.

Ao>OIRI
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 16 3840 I F ISIS .FRE 4 80 I
ISIS . TO 16 3840 I F ISIS .LAB 4 768 I
ISIS .PDS 52 12088 SI F ISIS .CLI 16 3113 SI
ISIS .MAP 4 512 S ASM80 60 14594 S
ASM80 .OVO 12 1847 SI ASM80 .OV1 12 2108 SI
ASM80 .OV2 12 2115 SI ASM80 .OV3 8 996 SI
ASM80 .OV4 100 24413 SI ASM80 .OV5 80 20037 SI
ASXRE 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COPY 36 8366 S CREDIT 80 19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOC ATE 60 15021 S OBJHEX 16 3347 S
PDS .HLP 72 17376 SI RENAME 12 2557 S
SERIAL 16 3148 S SUBMIT 20 4692 S
SYSPDS .LIB 16 3101 S

1088
1456 FREE / 2544 TOTAL BLOCKS
AD>

Key-in Sequence

DIR I [R-;T~~"N]

Comments

The DIR command only displays a list of the visible files
on the disk. A file may be assigned an attribute of I for
invisible. It then does not show up on a normal directory
listing. To include invisible files in the listing, use the
DIR command with the I option. This example also illus
trates the use of CTRL-S to stop the output on the CRT
display. Depending on when the CTRL-S is typed, the
display is similar to the screen shown.

~I~.~~ Use CTRL-Q to restart the display. The rest of the direc
tory is then displayed.

3-34

iPDS™ User's Guide Basic System Operation

AD> COPY CREDIT.MAC TO EDIT.MAC
COPY CREDIT. MAC TO EDIT.MAC#
COPY CREDIT.MAC TO EDIT2.MAC
AO>

Key-in Sequence

COPY CREDIT.MAC TO
EDIT.MAC

8[!]

COpy CREDIT. MAC TO
EDIT2.MAC

80

Comments

The control character CTRL-R typed before the
RETURN key is pressed causes the command
line currently being typed to be re-displayed.

The CTRL-R function is useful in applications
where a TTY (teletype) terminal is connected to
the system and used to input commands. TTY
terminals print the display on paper. They do not
have a rubout function. However, the RUBOUT
(or backspace) key still corrects typing errors as
the command line is being entered. The line
printed on the. TTY terminal shows both the
error and the correction. After a few corrections
on the same command line, the line may not be
readable. CTRL-R can then be used to re-display
the command line after the corrections so that it
is readable.

Type CTRL-X to delete the command buffer but
not close the buffer. The same command or a dif
ferent command can then be entered.

Type the COPY command into the buffer emp
tied by the previous CTRL-X. Then, type CTRL
Z. This deletes the buffer and closes it; returning
to the operating system prompt.

3-35

Basic System Operation

Editing Command Lines

The next series of examples illustrate how to edit a command line.

iPDS™ User's Guide

AD> COPY RENAME TO EDIT.TST
COPIED :FD:RENAME TO :FD:EDIT.TST

AD>$

AD+COPY RENAME TO EDIT. TST

Key-in Sequence Comments

COpy RENAME TO EDIT.TST This example is used to illustrate the

E3 command line editing features of the
RETURN operating system. This command copies

the file RENAME to the file EDIT.TST.

After the command is executed, (or
while it is still being entered before the
RETURN key is pressed), the ESC key
can be pressed to enter a mode where the
command line can be edited. The com
mand line previously entered (or the one
currently being entered) is re-displayed
with the cursor at the end of the line.
Several characters can then be used to
edit the line.

3-36

B
B
B
B
B

Type the control character CTRL-B to
move the cursor to the beginning of the
line.

Press the right arrow key five times to
move the cursor the R of REN AME.

iPDS™ User's Guide Basic System Operation

AD> COpy RENAME TO EDIT. TST
COPIED :FD:RENAME TO :FD:EDIT.TST
AD>$

AD+COPY TO EDIT. TST

Key-in Sequence Comments

Type the control character CTRL-D to delete the charac
ter R.

Type CTRL-D again to delete the E of RENAME.

Type CTRL-D four more times to delete the entire word
RENAME.

AD> COPY RENAME TO EDIT. TST
COPIED :FD:RENAME TO :FD:EDIT.TST
AD>$

AD+COPY CREDIT TO EDIT. TST

Key-in Sequence

CREDIT

Comments

Type the control character CTRL-A to begin an insert.
The screen opens up to allow any number of characters to
be entered.

Type the word CREDIT to replace RENAME.

Type CTRL-A again to end the insert. The screen closes
back up again.

3-37

Basic System Operation iPDS™ User's Guide

AD> COPY RENAME TO EDIT. TST
COPIED :FD:RENAME TO :FD:EDIT.TST
AD>$
AD+COPV CREDIT TO EDIT2. TST
COPIED: FD: CREDIT TO : FD: EDIT2. TST
AD>

3-38

Key-in Sequence

am
B
B
B
B

80
2

Comments

Type the control character, CTRL-L to move the cursor
to the end of the line.

Press the left arrow four times to move the cursor back to
the period before TST.

Type the control character, CTRL-A, to begin an insert.

Type the 2 key to insert the digit 2 in the filename.

Type CTRL-A to end the insert.

Type CTRL-L to move the cursor to the end of the line.

Press the RETURN key to execute the new edited
command. In addition to the features illustrated in this
example, characters may be replaced by moving the
cursor to the desired character and typing over it with a
single replacement character. When the cursor is at the
end of the line, the line is extended by typing characters.

Basic System Operation

iPDS™ User's Guide

The next series of examples illustrates how to initialize the system from bubble

memory.

Initializing the System from Bubble Memory

A
BOOT FROM BUBBLE? (Y or N) N

Key-in Sequence

N

Comments

With the bubble memory multimodule installed in J1/J2
power on the system. When the red LED indicator on the
internal disk drive goes off, insert the system disk. Then,
type the N key to initialize the system.

@

@

@

@

@

@

@

@@@@@@
@ @
@ @
@ @
@ @
@@@@@@
@

@

@

@

@

@ @@@@@
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @@@@@

@@@@@
@

@

@

@

@@@@@
@

@

@

@

@@@@@@

DIAGNOSTIC TESTING COMPLETED

ISIS-PDS, V],·O

AO>

Comments

The system is initialized from the disk in drive O. The
bubble memory is like a blank diskette and must be for-
matted before it can be used.

3-39

Basic System Operation

AD> IDISK :F4:BUBBLE.SYS S
SYSTEM DISKETTE
AD >COPY *.* TO :F4:*.*

Key-in Sequence Comments

iPDS™ User's Guide

IDISK :F4:BUBBLE.SYS S Enter the command as shown above to
format the the bubble memory.

When the initialization is complete, the
operating system prompt is displayed.

COpy ". * TO :F4: *.* After the IDISK command is done, the files
must be copied to the new disk to complete
the duplication. Key-in the command as
shown.

COPIED: FD: ATTACH TO : F4: ATTACH
COPIED: FD: ATTRIB TO : F4 : ATTRIB
COPIED :FD:COPY TO :F4:COPY
COPIED :FD :CREDIT TO :F4 :CREDIT
COPIED :FD:CREDIT.MAC TO :F4:CREDIT.MAC
COPIED :FD:DEBUG TO :F4:DEBUG
COPIED :FD:DELETE TO :F4:DELETE
COPIED: FD: DETACH TO : F4: DETACH
COPIED :FD:DIR TO :F4:DIR
COPIED :FD:HELP TO :F4:HELP
COPIED :FD:HEXOBJ TO :F4:HEXOBJ
COPIED :FD:IDISK TO :F4:IDISK
COPIED :FD:IXREF TO :F4:IXREF
COPIED :FD:LIB TO :F4:LIB
COPIED: FD: LINK TO : F4: LINK
COPIED :FD:LINK.OVLTO :F4:LINK·OVL
COPIED: FD: LOCATE TO : F4: LOCATE
COPIED :FD:OBJHEX TO :F4:0BJHEX
COPIED :FD:PDS.HLP TO :F4:PDS.HLP
COPIED :FD:RENAME TO :F4:RENAME
COPIED :FD:SERIAL TO :F4:SERIAL
COPIED: FD: SUBMIT TO : F4: SUBMIT
COPIED: FD: SYSPDS. LIB TO : F4: SYSPDS. LIB
AD>

Comments

A message is displayed for each file copied, and, when all
the files are copied, the operating system prompt is
returned. Now, the bubble memory can be used inter
changeably with a system disk. The files appearing in
copied message depend on the software package being
used.

3-40

iPDS™ User's Guide

Basic System Operation

BOOT FROM BUBBLE? CY or N> Y

Key-in Sequence

8
y

Comments

Remove the diskette from drive O. Press the RESET key.
The message shown above is displayed. Press the Y key
to initialize from bubble memory.

DIAGNOSTIC TESTING COMPLETED

ISIS-P DS, V1. 0
A4>

@@@@@
@

@

@

@

@@@@@"
@

@

@

@

@@@@@@

@ @@@@@
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @@@@@

@@@@@@
@ @
@ @
@ @
@ @
@@@@@@
@

@

@
@

@

@

@

@

@

@

@

@

Comments

The system will initialize from the bubble memory
device. See Appendix D for suggestions on the best use
of the bubble memory.

3-41

Basic System Operation

Running the Confidence Test

iPDS™ User's Guide

It is recommended that the confidence test be run before proceeding further to
ensure that the system is functioning properly. The confidence test is described in
detail in Appendix B. Before running these tests, use the IDISK command as de
scribed previously to generate one ISIS-PDS disk for each drive in the system.
Place an initialized disk in each drive in the system. The disk test is a read only
test, so the disk will not be harmed.

AO>PCONF

ISIS-PDS PCONF, V2.1
*INIT CONPDS
iPDS CONFIDENCE TESTS, V1.0
USER RETURN

*

3-42

Key-in Sequence

PCONF ~RETURN~

INIT CONPDS

Comments

Enter the PCONF command under ISIS-PDS to load the
test programs.

The INIT CONPDS commands are now ready for
execution. The USER RETURN line displayed on the
screen means that the confidence test has been initialized.

iP.DS™ User's Guide Basic System Operation

*DESCRIBE
OOOOH 8085 INSTRUCTIONS TEST
0001H CRT OUTPUT TEST
0002H TIMER TEST
0003H LINE PRINTER TEST
0004H SERIAL OUTPUT TEST
0005H FDC SEMAPHORES
0006H READY DRIVE DETERMINATION
0007H FDD SEEK AND READ TEST
0008H USART LOOPBACK TEST
0009H DISKETTE FORMATTER
OOOAH READ AFTER FORMAT TEST
OOOBH RANDOM WRITE/READ AFTER FORMAT
OOOCH KEYBOARD ECHO TEST
OOODH BUBBLE READ TEST
OOOEH BUBBLE RANDOM WRITE/READ
OOOFH PROM MODULE CHECKSUM TEST
0010H RELOCATING RAM TEST

*

**** IGNORED ****

**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****

Key-in Sequence

DESCRIBE

Comments

The DESCRIBE command displays a listing of the tests
available and the tests currently ignored. This screen
shows the tests initially recognized when CONPDS is
first run. Only these default tests are run in this example.
The other tests require iPDS options and/or user
interaction. See Appendix B for a complete description of
all the tests available. To run a test, it must be
recognized. Two CONPDS commands (IGNORE and
RECOGNIZE) are used to set up the tests to be run
based on the equipment and options in the system.

3-43

iPDS™ User's Guide

*TEST
TEST 0003H
TEST 0008H
TEST 0009H
TEST OOOAH
TEST OOOBH
TEST OOOCH
TEST OOODH
TEST OOOEH
TEST OOOFH
TEST 0010H
OOOOH 8085 INSTRUCTIONS TEST
0001H CRT OUTPUT TEST

**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
**** IGNORED ****
"PASSED' ,

Basic System Operation

Key-in Sequence

TEST [:ETURN]

Comments

The TEST command runs the tests recognized. Tests
03H and 08H through 10H are ignored. Tests OOH
through 02H and 04H through 07H are run. None of
these tests require user interaction. However, one of the
tests is a read only disk test, so there is disk activity
during the testing. In the initial state, pass/fail messages
are displayed for each test run.

0002H TIMER TEST ' 'PASSED' ,
0004H SERIAL OUTPUT TEST "PASSED"
0005H FDC SEMAPHORES ' 'PASSED' ,
0006H READY DRIVE DETERMINATION "PASSED"
DRV-O READY, DRV-1 N RDY, DRV-2 N RDY, DRV-3 N RDY

"PASSED' ,
0007H FDD SEEK AND READ TEST ' 'PASSED' ,
*EXIT
AD>

3-44

Key-in Sequence

EXIT ETUR~

Comments

This screen shows the rest of the displayafter the CRT
characters test. In this example, only one disk drive was
ready for the disk drive tests. See Appendix B for a
detailed description of the confidence test and other com
mands that can be run.

When the tests are complete, the EXIT command is en
tered to return to the ISIS-PDS operating system.

CHAPTER 4
COMMAND APPLICATIONS

Functional Summary of Commands

The commands recognized by the ISIS-PDS operating system can be divided into
six functional groups:

• System management group

• Device management group

• File management group

• Text editing group

• Program development group

• Program execution group

These groups are described in more detail in the following sections. The com
mands for each group are listed with that group. A reference is included for further
information on each command. Chapters that are mentioned refer to further infor
mation in this manual; titles refer to other manuals. Examples are also given to
show how to use these commands.

The examples in this chapter assume the disk that was created in the demonstra
tion in Chapter 3 is available. Many of the examples in this chapter and in the rest
of the manual assume the files created in previous examples.

Additionally, in some of these examples, the screen shown in the manual may not
exactly match the screen resulting from actually running the examples. However,
the differences are insignificant. For example, the version numbers actually ap
pearing on the screen when a command is run may differ from that shown in the
manual if a new version of the command is used.

System Management Commands

The system management commands display status and help information for the
system. Some of these commands also control the processors in a dual processor
system. The following commands are in this group and are described in the chap
ters indicated. Only the HELP command has a corresponding command file on the
disk. A sample dual processing session is given in Chapter 9.

HELP

IT]

8m

displays help information for operating system commands.
Chapter 5.

displays the version number of the current Command Line
Interpreter (CLI). Chapter 5.

reloads the ISIS-PDS operating system. Chapter 9.

4-1

Command Applications

8m
88
8m

8m

iPDS™ User's Guide

switches the CRT display speed between a slow and fast
speed. The slower speed is about ten times slower than the
faster speed. Chapter 3.

switches the keyboard between typewriter mode and non
typewriter mode. Chapter 3.

switches the current foreground and background
processors. Chapter 9.

increases the display for the foreground processor by one
line and decreases the background processor display by
one line. Chapter 9.

decreases the display for the foreground processor by one
line- and increases the background processor display by one
line. Chapter 9.

Sample System Management Commands

This series of examples illustrates the use of the commands .already described.

AO>?
CLIV1.0
AO>HELP

4-2

Key-in Sequence

? IE~UR~

HELP IET~

Comments

The? function displays the version number of the current
Command Line Interpreter. Note that ? is one example
of a command that does not correspond to a file on the
disk. The? command is always resident in memory.

The HELP command is one of the most important com
mands for the new user.

iPDS™ User's Guide Command Applications

** ISIS-PDSCOMMANDS

Help is available for the following commands, definitions, and e r-r-or- s .
Type HELP followed by the command name, the definition word, or the
error number.

ASM8D
COPY
DIR
JOB
OBJHEX

ASSIGN
DEBUG
ENDJOB
LIB
RENAME

ATTACH
DELETE
HEXOBJ
LINK
SERIAL

ATTRIB
DETACH
IDISK
lOCATE
SUBMIT

********************* SPECIAL FUNCTIONS *********************

'/' (assign console input)
'#' (assign output to CRT)
'?' (return ClI version)

"(quick single line submit)
'@' (display file on CRT>
ESCCline reedit)

********************* DEFINITIONS *********************

DEVICES FUNCTION KEYS
NOTATION WILDCARD CHARACTERS

KEYBOARD CONTROLS

Key-in Sequence Comments

8m

help dir ~-;T-~:]

HELP displays information about the system. Additional
information is displayed about any of the names shown in
this screen by typing HELP followed by the name.

Type T while holding down the FUNCT key to switch to
typewriter mode on the keyboard. Then, characters typed
at the keyboard are lower case unless the SHIFT key is
used. The output displayed on the CRT screen by a pro
gram is not affected by FUNCT-T.

Typing help dir returns information about the DIR
command.

4-3

Command Applications

DIR

iPDS™ User's Guide

Displays index of disk files on the specified disk
device

DIR [TO <pn>)[FOR <pn>ll<n>)[I I J I K I L I Flo I p I Z]

TO <pn> Device to receive directory listing.
FOR <pn>Scopeof the directory listing.
<n> Logical device form which files are listed.
I All files, including those with the invisible attri-

bute I, are listed.
J Only files with User Defined attribute J included.
K Only fileswith User Defined attribute K included.
L Only files with User Defined attribute L included.
F Fast listing; only filenames and extensions.
o Single column listing.
P Single drive directory.
Z Only summary line is listed.

AD>help esc

Key-in Sequence

help esc ~ETURN~

Comments

Type S while holding down the FUNCT key to slow down
the scrolling on the screen display.

Typing help esc returns information about the use of the
escape key for editing command lines.

ESC Re-edit previous command line or current command line and re
execute.

ESC

After entering command, the following keyboard commands can be used:

ESC
RETURN

CTRL-A
CTRL-B
CTRL-D
CTRL-L
CTRL-X
RUB OUT

Execute ent i re 1 i ne
Execute line up to current cursor position
Move cursor left
Move cursor right
Encloses characters to be in~erted

Move cursor to beginning of line
Delete character at current cursor
Move cursor to end of line.
Terminate re-edi t and return to ISIS
Same as CTRL-D.

4-4

AD >HELP FUNCTION

Key-in Sequence Comments

This is the resulting screen display showing the ESC key
information.

iPDS™ User's Guide

Key-in Sequence

Bm
8m

Command Applications

Comments

The FUNCT-T key combination returns the keyboard to
non-typewriter mode.

Typing FUNCT-S returns the screen to normal scrolling
speed. Both of these function key combinations act as
switches setting and resetting the function every other
time.

HELP FUNCTION Typing HELP followed by FUNCTION returns informa-
~ tion on the user-defined function keys.

~

FUNC-<n> Pressing the 'FUNC' key and a numerical key,
simultaneously, causes console input to be
input from the file JOS<n>.CSD. <n>'s value
is from 0 to 9.

FUNC:-R Pressing the 'FUNC' key and 'R' will cause a
software r a s e t . If running under DEBUG, it
will cause a break in user program execution.

FUNC-S Toggles the display rate of the CRT.

FUNC-T Toggles the keyboard between upper and lower
case·

FUNC-HOME Alternately switches the keyboard between
processors on a dual processing system. Also,
switches the bottom part of the screen with the
top part.

FUNC-r Increases by one line the display size of the
bottom half of the CRT screen in a dual process
ing system.

FUNC-<Down Arrow> Decreases by one line the display size of the
bottom half of the CRT screen in a dual process
ing system.

Comments

This is the screen display resulting from the HELP
FUNCTION command.

4-5

Command Applications iPDS™ User's Guide

ISIS-PDS, V1. 0
A0 > help wildcard

Key-in Sequence

BrnJ
8m

help wildcard

~ETURN~

Comments

Type R while holding down the FUNCT key to reset the
processo~ .

Switch to typewriter mode.

Type help wildcard to display information on wildcard
characters.

WILDCARD CHARACTERS

The wildcard characters <* and ?) can appear in a filename with the fol
lowing meanings. The chart below lists the commands that allow wildcard
characters.

* In a filename specifies a match to any characters and any number
of characters in that position.

? In a filename specifies a match to any single character in that
position .

. The commands that allow wi ldcard characters are:
ATTRIB
COpy < To Transfer), i. e. , non-appending form of the command.
DELETE
DIR

AO>

4-6

Key-in Sequence

8m

Comments

This screen is displays the information concerning wild
card characters.

Type the FUNCT-T combination to return to non
typewriter mode.

iPDS™ User's Guide

Device Management Commands

Command Applications

Many different devices can be connected to the development system for data stor
age and input/output operations. The operating system provides commands to
control some of these devices. The following device management commands are
covered in Chapter 5. The I, #, and FUNCT-<n> commands are not separate
files on the disk but are part of the operating system that is resident in memory at
all times.

IDISK initially prepares disks and bubble memory for use with the
operating system.

ASSIGN displays or assigns the mapping of physical to logical devices.

[2] re-assigns the system output to the CRT display screen.

~~oc.~ ~ < n > ~ changes the system input from the key board to the file
named JOB<n>.CSD where <n> is a one-digit number
from 0 to 9. Pressing < n> followed by the RETURN key is
the same as pressing FUNCT < n>. This function is useful
in executing often used commands such as the DIR com
mand and the HELP command. Examples are in the section
"Program Execution Commands" in this chapter.

changes the system input from the keyboard to a file or
device which is specified by the user. See the JOB command
for related information. An example of this command is
given in the "Program Execution Commands" of this
chapter. .

SERIAL initializes the serial I/O port.

ATTACH assigns a row of multimodules to a processor.

DETACH releases a row of multimodules from a processor.

4-7

Command Applications

Formatting a Non-System Disk

iPDS™ User's Guide

In this series of examples, a non-system disk is formatted on a multiple drive
system and then on a single drive system.

AD>IDISK :F1 :NONSYS.DSK
NON-SYSTEM DISKETTE
AD>

Key-in Sequence

IDISK :F1 :NONSYS.DSK

Comments

This command illustrates formatting a non
system diskette on a system with more than
one drive. The next screen display illustrates
formatting of a non-system disk on a single
drive system. See Chapter 3 for an example of
formatting a system disk.

Place a new diskette (without a write protect
tab) in drive 1. Enter the command as shown.
When the new disk is formatted, the operating
system prompt appears.

AD> IDISK :FO:NONSYS.DSK P
NON-SYSTEM DISKETTE
LOAD OUTPUT DISKETTE, THEN TYPE (CR)
LOAD SYSTEM DISKETTE, THEN TYPE (CR)
AD>

4-8

Key-in Sequence

IDISK :FO:NONSYS.DSK P

[RETU~~

Comments

This example shows how to format a non
systen diskette on a single drive system.
With the system disk in the drive, enter the
command line.

When the prompt appears, remove the
system diskette and insert the blank diskette
without a write protect tab. Then, press the
RETURN key.

When the next prompt appears, remove the
diskette being formatted, and insert the
system diskette. Then, press the RETURN
key. The operating system prompt appears.

iPDS™ User's Guide Command Applications

Changing the System Input and Output Devices

In the next few examples, the ASSIGN command is illustrated as it would be used
to assign logical device names recognized by the operating system to physical
devices.

LOGICAL PHYSICAL

: CI: : VI:
: CO: : VO:

BUBBLE
BUBBLE

D
1
2
3
4
5

:FD:
:F1:
:F2:
:F3:
: F4:
:F5:

AD>ASSIGN

AD>

Key-in Sequence

ASSIGN ~RETURN~

Comments

The ASSIGN command is a multiple purpose command.
In the simple form shown, it displays the mapping of ISIS
logical device names to the corresponding physical
devices of the system. This screen example shows the
default assignment after initializing the system from
drive O.

The ISIS logical device names are shown on the left and
the physical device names are shown on the right. These
names are explained in detail in Chapter 5. However, the
digits 0 through 5 refer to the disk devices and bubble
memory. The digit 0 is the internal disk drive, 4 is the
bubble memory installed at connector 11, and 5 is the
bubble memory installed at connector at 13. The digits 1
through 3 are the optional external disk drives.

4-9

Command Applications iPDS™ User's Guide

A4 >ASSIGN

LOGICAL PHYSICAL

: CI: : VI:
: CO: : VO:

BUBBLE

BUBBLE

4
D
1
2
3
5

: FD:
:F1 :
:F2 :
: F3:
: F4:
:F5:

A4>

Key-in Sequence Comments

8
ASSIGN [;3

8

Open the drive door and reset the system. This example
shows the default assignment after initializing the system
from the bubble memory multimodule.

Close the drive door and reset the system.

AD>ASSIGN :F1: TO 4

LOGICAL PHYSICAL

: CI: VI:
: CO: VO:

: FD:
:F1:
:F2 :
: F3:
: F4:
: F 5:

D
4
2
3
4
5

BUBBLE

BUBBLE
BUBBLE

AD>

Key-in Sequence Comments

ASSIGN :F1 : TO 4 In this example, the bubble memory multimodule in-
~ stalled at connector Jl is assigned to the logical device
~ :Fl:. This assignment is appropriate for a system with

bubble memory and no external disk drives.

4-10

iPDS™ User's Guide

AD>ASSIGN :F2: TO 5

LOGICAL PHYSICAL

Command Applications

: CI: VI:
: CO: VO:

: FD:
:F1:
:F2:
:F3:
: F4:
:F5:

AD>

Key-in Sequence

D
4
5
3
4
5

BUBBLE
BUBBLE

BUBBLE
BUBBLE

Comments

ASSIG N :F2: TO 5 This example shows how to assign the bubble memory at

8 - connector 13 to the logical device :F2:. This assignment is
RETURN appropriate for a system with bubble memory and no ex-

ternal drives.

4-11

Command Applications

AO>ASSIGN :F1:T02
LOGICAL PHYSICAL

: CI: VI:
:co: vo:
:FO: 0
:F1: 2
:F2: 5 BUBBLE
:F3: 3
:F4: 4 BUBBLE
:F5: 5 BUBBLE

AO>ASSIGN :CO:TO :FO:FILES.TXT
AO>

iPDS™ User's Guide

Key-in Sequence

ASSIGN :F1: TO 2~RETURN~

ASSIGN :CO: TO :FO:FILES.TXT

DIR ~RETURN~

Using the Serial Port

Comments

This example shows how to
reassign disk drives when a drive is
not working. This eliminates the
need to reconfigure or re-install the
other drives when one drive is not
working. Here, programs which
expect files to be on the logical
device, :FI:, can still be run.

This command assigns the system
output file on on drive O. The dis
play generated by the ASSIGN com
mand is not on the screen. This dis
play is stored in the file FILES.TXT
on drive O.

After changing the system output
device, type the DIR command. No
output appears on the screen. The
DIR command and the resulting
directory listing are stored in the
file FILES.TXT on drive O.

After running the DIR command,
enter the # command to return the
system output tothe CRT screen.

The next example shows the SERIAL command used to configure the serial port
and then the ASSIGN command to use the serial port in the system.

A0> SERIAL A 8=1200 P=N S=2 W=8
AO>ASSIGN :CO: TO :SO:
AO>

4-12

iPDS™ User's Guide

Key-in Sequence

SERIAL A 8=1 200 P=N S=2 W=8

[ETURN~

ASSIGN :CO: TO :SO: ~RETURN~

08

8

Command Applications

Comments

There are two steps in using a
serial device: first, configure the
system for the device with the
SERIAL command and, second,
assign the device to one of the sys
tem's logical devices with the
ASSIGN command. The SERIAL
command shown here prepares
the system for communication
with an asynchronous, serial
device at a speed of 1200 baud,
with no parity, with two stop bits
and with a word length of 8.

This command assigns the console
output (initially the CRT screen)
to the serial device. The output dis
play of the command showing the
new assignment of device appears
on the serial device. If no serial
device is connected, the display is
not echoed anywhere. There is no
way to way to determine what is ac
tually typed in further commands.

A quick way to re-assign the
system output device to the iPDS
CRT screen is with the #
command. Type # followed by the
return key, and the operating
system prompt is displayed on the
iPDS CRT screen, indicating that
system output is again echoed on
the CRT. The # command is
another example of a command
always resident in memory and not
corresponding to a file.

Reset all the assignments to their
defaults by pressing the RESET
key to reset the system.

4-13

Command Applications

File Management Commands

iPDS™ User's Guide

Two important features of the operating system are its device and file handling
capabilities. Several file management commands are provided with the operating
system. The following commands are covered in Chapter 5:

DIR

ATTRIB

COpy

DELETE

RENAME

displays a list of the files stored on a disk or on bubble memory.

displays and modifies the attributes of a file.

transfers files and appends files.

removes files from the disk.

changes the filename and/or extension of a file.

displays the contents of a file on the screen. This command is
in the part of ISIS-PDS that is resident in memory, and it does
not correspond to a command file on the disk.

Displaying a List of Files

The DIR command is used display available files.

AD> DIR FOR FILES.TXT
DIRECTORY OF : FD: lEARN PDS
NAME • EXT BlKS lENGTH ATTR NAME
FILES. TXT 8 1336

8
1432 FREE / 2544 TOTAL BLOCKS

AD>

• EXT BlKS lENGTH ATTR

4-14

Key-in Sequence

DIR FOR FILES.TXT

Comments

This example illustrates a form of the DIR command
that can be used to find out if a file exists on a drive
or not. Only the file requested in the FOR clause is
displayed in the listing. A search of all the files on
the disk is not needed. In this screen display, all the
directory information on the file is shown: the
filename, the number of blocks used by the file, the
length of the file in bytes, and any attributes set for
the file.

iPDS™ User's Guide Command Applications

AD >DIR 0
DIRECTORY OF : FO: LEA RN.PDS
NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S
ASM80 60 14594 S
ASXREF 20 4294 S
ASSIGN 16 3073 S
ATTACH 4 522 S
ATTRIB 24 4999 S
COpy 36 8366 S
CREDIT 80 19470 S
CREDIT .MAC 4 7 S
DEBUG 12 2502 S
DELETE 20 4699 S
DETACH 4 434 S
DIR 28 6625 S
HELP 16 3771 S
HEXOBJ 20 4344 S
IDISK 32 7035 S
IXREF 44 10216 S
LIB 44 10227 S
LINK 56 13074 S
LINK .OVL 20 4578 S
LOCATE 60 15021 S

Key-in Sequence

DIR 0 lE-;3
Comments

This sample display results from the DIR command with
the 0 option which lists the files in a single column with
all the directory information about each file.

Type the CTRL-S key combination to stop the scrolling
of the screen display. The resulting display depends on
when the CTRL-S is typed.

OBJHEX
RENAME
SERIAL
SUBMIT
SYSPDS. LIB
FILES. TXT

16 3347 S
12 2557 S
16 3148 S
20 4692 S
16 3101 S

8 1336 S
692

1432 FREE / 2544 TOTAL BLOCKS
AD>

Key-in Sequence Comments

Type the CTRL-Q combination to continue scrolling of
the screen display. This example shows the rest of the dis
play from the preceding command.

4-15

Command Applications

AO>OIR F
DIRECTORY OF : FO:LEARN. PDS
ISIS . MAP ASM80
ASXREF ASSIGN
ATTACH ATTRIB
COpy CREDIT
CREDIT .MAC DEBUG
DELETE DETACH
DIR HELP
HEXOBJ IDISK
IXREF LIB
LINK LINK.OVL
LOCATE OBJHEX
RENAME SERIAL
SUBMIT SYSPDS.LIB
FILES.TXT
1432 FREE / 2544 TOTAL BLOCKS
AO>

iPDS™ User's Guide

4-16

Key-in Sequence

DIR F ~RETURN~

Comments

This sample display shows the results from the DIR com
mand with the F option. The F option produces a fast list
ing without the detailed data of the normal directory
listing. The actual display may vary depending on the ver
sion of the operating system being used.

iPDS™ User's Guide

AO>OIROF
DIRECTORY OF :FO:LEARN.PDS
ISIS .MAP
ASM80
ASXREF
ASSIGN
ATTACH
ATTRIB
COPY
CREDIT
CREDIT • MAC
DEBUG
DELETE
DETACH
DIR
HELP
HEXOBJ
IDISK
IXREF
LIB
LINK
LINK .OVL
LOCATE
OBJHEX

Command Applications

Key-in Sequence

DIR OF ~ RETURN~

Comments

This example shows the results of combining the 0 and F
options.

Type the CTRL-S key combination to halt scrolling of the
screen display.

RENAME
SERIAL
SUBMIT
SYSPDS. LIB
FILES.TXT
1432 FREE/2544 TOTAL BLOCKS
AO>

Key-in Sequence Comments

Type the CTRL-Q combination to continue the scrolling
of the screen display. This example shows the rest of the
display from the preceding command. .

4-17

Command Applications iPDS™ User's Guide

AD>OIRZ
DIRECTORY OF : FD: LEARN. PDS
1432 FREE /2455 TOTAL BLOCKS
AD>

Key-in Sequence

DIR Z [RETUR::]
Comments

This screen display shows sample output from the DIR
command with the Z option. The Z option displays only
the summary line of the normal directory listing.

Assigning and Removing File Attributes

The following screens illustrate how attributes are assigned and how these attri
butes are used.

AD>ATTRIB FO:FILES.TXT J1

FILE CURRENT ATTRIBUTES
:FD:FILES.TXT J
AD>OIRJ
DIRECTORY OF : FD: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME
FILES • TXT 8 1336 J 8

1432 FREE / 2544 TOTAL BLOCKS
AD>ATTRIB OIR

FILE CURRENT ATTRIBUTES
:FD:DIR S

AD>ATTRIB CIR 11

FILE CURRENT ATTRIBUTES
:FD:DIR SI

AD>

.EXT BLKS LENGTH ATTR

Key-in Sequence Comments

4-18

ATTRIB FILES.TXT J1 The ATTRIB command assigns attributes to
files and removes attributes from files. See
Chapter 5 for a detailed explanation of
attributes. Here, the J attribute is assigned to
the file by specifying the file's pathname and
the attribute name followed by the digit 1. The
digit 1 sets the attributes; 0 resets it. Attributes
can be used to limit the scope of commands.

iPDS™ User's Guide

Key-in Sequence

DIR J [R-~T~3

ATTRIS DIR [R-~T~3

ATTRIB DIR 11 ~RETu3

Command Applications

Comments

When the DIR command is entered followed
by an attribute, the directory listing is pro
duced for only those files having the specified
attribute. Attributes can be combined to fur
ther limit the scope of files used in the
command.

The ATTRIB command can also be used to
display the current attributes of a file.

The Invisible attribute is set for the file DIR.
Invisible files are not included in a normal
directory listing.

AD> DIR
DIRECTORY OF : Fo: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRI8 24 4999 S
COpy 36 8366 S CREDIT 80 19740 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
FILES .TXT 8 1336 J

664
1432 FREE / 2544 TOTAL BLOCKS
AD>

Key-in Sequence

DIR ~RET3

Comments

Now that the file, DIR, has the Invisible attribute, it no
longer appears in the rlormal directory listing even
though it is still on the diskette.

4-19

CommandApplications iPDS™ User's Guide

AD> CIR I
DIRECTORY OF : FO: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 16 3840 I F ISIS .FRE 4 80 I F
ISIS . TO 16 3840 I F ISIS .LAB 4 768 I F
ISIS .PDS 52 12088 SI F ISIS .CLI 16 3113 SI F
ISIS .MAP 4 512 S ASM80 60 14594 S
ASM80 .OVO 12 1847 SI ASM80 .OV1 12 2108 SI
ASM80 .OV"2 12 2115 SI ASM80 .OV3 8 996 SI
ASM80 .OV4 100 24413 SI ASM80 .OV5 80 20037 SI
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COPY 36 8366 S CREDIT 80 19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 SI HELP 16 3771 S

Key-in Sequence

DIR I ~ RETURN~

Comments

This example shows the results from the DIR command
with the I option. Note that the I option differs slightly
from the use of the other attributes as options. When
other attributes are used as options, only files with the
specified option appear in the directory. When the I
option is used, Invisible files are included in addition to
the other files. Notice the files near the top of the listing
with the F attribute. The F attribute designates system
files used in formatting a new disk and should not be as
signed or removed.

Type CTRL-S to halt the scrolling of the screen.

PDS .HLP 72 17376 SI RENAME 12 2557 S
SERIAL 16 3148 S SUBMIT 20 4692 S
SYSPDS .LIB 16 3101 S FILES .TXT 8 1336

1096
1432 FREE /2544 TOTAL BLOCKS
AO>

Key-in Sequence

4-20

Comments

Type the CTRL-Q combination to continue scrolling the
screen display. Depending on the version of the operating
system used, directory listings may vary slightly, but the
listing will be similar to this one.

iPDS™ User's Guide Command Applications

AD>ATTRIB DIR 10
FILE

:FD:DIR
AO>

CURRENT ATTRIBUTES
S

Key-in Sequence

ATTRIB DIR 10

~ RETURN~

Copying Files

Comments

To remove an attribute from a file, specify the file's path
name and the attribute name followed by the digit 0 to
remove the attribute.

Two files are created with the COPY command in the next example. These files
will be used in later examples.

AD>COPY FILES.TXTTO FILES2.TXT
COPIED :FD:FILES.TXi TO :FD:FILES2.TXT
AD> COPY FILES.TXT TO FILES3.TXT
COPIED :FD:FILES.TXi TO :FD:FILES3.TXT
AD>

Key-in Sequence Comments

COpy FILES.TXT TO FILES2.TXT The file being copied (the source
~ file) was created in a previous
bd example. The COpy command is

used here to duplicate the source
file in the destination file. After
this command is complete, the file,
FILES2.TXT, contains a copy of
tlre datain FILES.TXT as indicated
in the message displayed.

COPY FILES.TXT TO FILES3.TXT The file, FILES3.TXT, contains a

~ RETURN ~ duplicate of the data in
FILES.TXT.

4-21

Command Applications

Changing Filenames

iPDS™ User's Guide

The name of a file can be changed with the RENAME command as shown in the
following example.

AD> RENAME FILES.TXT TO FILES1.TXT
RENAMED FILES. TXT TO fILES1. TXT
AD>

Key-in Sequence

RENAME FILES.TXT TO

FILES1.TXT ~ET~3

Appending Files

Comments

The RENAME command is used to rename the
source file. It does not create a new file nor does
it affect the content of the source file. There is
now no file named FILES.TXT; it is now named
FILES1.TXT.

The COPY command can also be used to append files as shown in the next
example.

AD> COpy FILES1.TXT, FILES2.TXT, FILES3.TXT TO FILES4.TXT
APPENDED: fD: fILES 1. TXT TO : fD: fILES 4. TXT
APPENDED: fD: f ILES2. TXT TO : fD: F ILES4. TXT
APPENDED :fD:fILES3.TXT TO :fD:FILES4.TXT
AD>

4-22

Key-in Sequence

COpy FILES1.TXT, FILES2.TXT,
FILES3.TXT TO FILES4.TXT

~RETu3

Comments

The COpy command can also be
used. to append files. If more than
one source file is specified, each
source is appended to the previous
source. In this case, the files created
in the previous examples are
appended. Since FILES 1. TXT,
FILES2.TXT, and FILES3.TXT all
contain the same data, FILES4.TXT
will contain three copies of this data.

iPDS™ User's Guide Command Applications

Displaying a Text File on the CRT

The @ command can be used to display a text file on the CRT. The COpy com
mand can also be used. However, with the @ command, several controls are
available that determine the speed of the display. The @ command also provides
other controls over the display of the file. Any byte in the file with no correspond
ing display character is displayed as a blank.

60 14594 S
16 3073 S
24 4999 S

ASM80
ASSIGN
ATTRIB

BUBBLE
BUBBLE

O.
1
2
3
4
5

: FO:
:F1:
:F2:
: F3:
: F 4:
: F5:

LOGICAL PHYSICAL

AO>@FILES1.TXT

: CI: : VI:
:CO: :FO:FILES.TXT

AO>DIR
DIRECTORY OF :FO:LEARN.PDS
ISIS • MAP 4 512 S
ASXREF 20 4294 S
ATTACH 4 522 S

Key-in Sequence Comments

@FILES1.TXT

~RETU3

The @ command is used to display the contents of a file
on the CRT screen. It should be used to display ASCII
files. The @ command displays the file until the screen is
full and then stops. In this case, the file, FILESl.TXT; is
displayed. Remember, the file was created by assigning
the system output to the file. Thus, the output from the
ASSIGN command appears first in the file. Then, the
DIR command was entered. So, the DIR command line
and the output from the DIR command appears next in
the file.

4-23

Command Applications iPDS™ User's Guide

COpy 36 8366 s CREDIT 80 19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOC ATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
FILES .TXT 4 0

688
1420 FREE / 2544 TOTAL BLOCKS
AO>#

AD>

Key-in Sequence

~ET~J

4-24

Comments

Press any key other than one of the @ commands (E, L,
Z, B, F, S, or P) to continue the display. The @ command
then displays the next screen of data from the file. The
RETURN key is used here.

The display is now at the end of the file. Notice the #
which was the command entered to change the output
back to the CRT screen in the example where
FILES.TXT was created. Press the E key to end the dis
play and return to the operating system.

iPDS™ User's Guide

Command Applications

AD> @FILES2.TXT

LOGICAL. PHYSICAL

:CI: :VI:
:CO: :FO:FILES.TXT

AD>DIR
DIRECTORY OF : FO: LEARN. PDS
NAME . EXT BlKS LENGTH ATTR
ISIS . MAP 4 512 S
ASXREF 20 4294 S
ATTACH 4 522 S

:FO:
:F1:
:F2:
:F3:
:F4:
:F5:

Key-in Sequence

o
1
2
3
4
5

BUBBLE
BUBBLE

Comments

NAME . EXT
ASM80
ASSIGN
ATTRIB

BlKS lENGTH ATTR
60 14594 S
16 3073 S
24 4999 S

@FILES2.TXT
This example show that FILES2.TXT contains the same
data as FILES 1.TXT. The @ command is another exam
ple of a command that is resident in memory. There is
not file, @, corresponding to this command.

COpy 36 8366 S CREDIT 8019470 SCREDIT ·MAC 4 7 S DEBUG 12 2502 SDELETE 20 4699 S DETACH 4 434 SDIR 28 6625 S HELP 16 3771 SHEXOBJ 20 4344 S IDISK 32 7035 SIXREF 44 10216 S LIB 44 10227 SLINK 56 13074 S LINK .OVL 20 4578 SLOCATE 60 15021 S OBJHEX 16 3347 SRENAME 12 2557 S SERIAL 16 3148 SSUBMIT 20 4692 S SYSPDS ·LIB 16 3101 SFILES .TXT 4 0
688

1420 FREE I 2544 TOTAL BLOCKS
AO>#

AD>

Key-in Sequence

IT RETURN]

m
Comments

Press any key to continue the display.

Again, this is the end of the file. Press the E key to end
the display and return to the operating system.

4-25

Command Applications

AD >@FILES3.TXT

LOGICAL PHYSICAL

: CI: : VI:
:CO: :FO:FILES.TXT

iPDS™ User's Guide

:FO:
:F1:
: F2:
:F3:
: F4:
:F5:

o
1
2
3
4
5

BUBBLE
BUBBLE

AO>DIR
DIRECTORY OF : FO: LEARN. PDS
NAME . EXT BLKS LENGTH ATTR
ISIS . MAP 4 512 S
ASXREF 20 4294 S
ATTACH 4 522 S

NAME . EXT
ASM80
ASSIGN
ATTRIB

BLKS LENGTH ATTR
60 14594 S
16 3073 S
24 4999 S

Key-in Sequence

@FILES3.TXT

ijRETURN~

Comments

This example shows that FILES3.TXT contains the same
data as FILESl.TXT and FILES2.TXT.

COPY 36 8366 S CREDIT 80 19470S
CREDIT . MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
FILES .TXT 4 0

688
1420 FREE I 2544 TOTAL BLOCKS
AO>#

AD>

4-26

Key-in Sequence

~ RETURN~

Comments

Press any key, except one of the @ command keys, to
continue the display.

Press the E key to end the display and return to the
operating system.

iPDSTM User's Guide

Command Applications

AD>@FllES4.TXT

LOGICAL PHYSICAL

BUBBLE
BUBBLE

n
1
2
3
4
5

:FO:
:F1 :
:F2:
:F3:
: F4:
:F5:

: CI: : VI:

:CO: :FD:FILES.TXT

AO>DIR

DIRECTORY OF : FO: LEARN. PDS

NAME • EXT BLKS LENGTH ATTR
ISIS . MAP 4 512 S
ASXREF 20 4294 S
ATTACH 4 522 S

NAME • EXT
ASM80
ASSIGN
ATTRIB

BLKS LENGTH ATTR
60 14594 S
16 3073 S
24 4999 S

Key-in Sequence Comments

@FILES4.TXT

~ETU3
In this example, the output file from the append opera
tion is displayed. This file should contain three copies of
the data in the other files.

4-27

Command Applications iPDS™ User's Guide

COPY
CREDIT . MAC
DELETE
DIR
HEXOBJ
IXREF
LINK
LOCATE
RENAME
SUBMIT
FILES . TXT

36 8366 S CREDIT 80 19470 S
4 7 S DEBUG 12 2502 S

20 4699 S DETACH 4 434 S
28 6625 S HELP 16 3771 S
20 4344 S IDISK 32 7035 S
44 10216 S LIB 44 10227 S
56 13074 S LINK .OVL 20 4578 S
60 15021 S OBJHEX 16 3347 S
12 2557 S SERIAL 16 3148 S
20 4692 S SYSPDS .LIB 16 3101 S

4 0
688

1420 FREE / 2544 TOTAL BLOCKS

AO>#

Press any key to continue the display

LOGICAL PHYSICAL

: CI: : VI:
:CO: :FO:FILES.TXT

Key-in Sequence Comments

[RETUR~

: C1: : VI:
:CO: :FO:FILES.TXT

: FO: 0
: F1: 1
:F2: 2
: F3: 3
: F 4: 4
: F 5: 5

BUBBLE
BUBBLE

AD> DIR
DIRECTORY OF : FO: LEARN. PDS
NAME . EXT BLKS LENGTH
ISIS . MAP 4 512
ASXREF 20 4294
ATTACH 4 522
COPY 36 8366
CREDIT . MAC 4 7
DELETE 20 4699
D1R 28 6625
HEXOBJ 20 4344
IXREF 44 10216
LINK 56 13074

ATTR
S
S
S
S
S
S
S
S
S
S

NAME
ASM80
ASSIGN
ATTRIB
CREDIT
DEBUG
DETACH
HELP
IDISK
LIB
LINK

.EXT

.OVL

BLKS
60
16
24
80
12

4
16
32
44
20

LENGTH
14594

3073
4999

19470
2502

434
3771
7035

10227
4578

ATTR
S
S
S
S
S
S
S
S
S
S

Key-in Sequence Comments

Press any key, except one of the @ command keys; to
continue the display. Continue pressing a key to continue
the display until the end of the file. At the end of the file,
the data has appeared three times and pressing a key to
continue the display has no effect.

4-28

iPDS™ User's Guide

Key-in Sequence

Command Applications

Comments

The @ command has several subcommands in addition
to E. Press the L key. This causes the command to enter
line mode where the file is displayed line by line instead
of page by page. .

Press the B key several times or hold it down until the
screen is blank. This causes the @ command to back up
1024 characters OK bytes) at a time. Eventually, the
beginning of the file is reached. Since the command is in
line mode, only the first line of the file is displayed. It is a
blank line, so the screen display is blank.

LOGICAL
: CI:
: CO:

: FO:
: F1:

PHYSICAL
: VI:
:FO:FILES.TXT

o
1

Key-in Sequence

~RET3

FT~3

~RETURN~

~ RETURN~

~RETu3

~ RETURN~

~RET3

Comments

Press any key (RETURN is shown here) until the first
line of the file appears. Press any key several times to dis
play the file one line at a time.

4-29

Command Applications iPDS™ User's Guide

:CO: :FO:FIlES.TXT

: FO: 0
:F1: 1
: F2: 2
: F3: 3
: F 4: 4
: F5: 5

BUBBLE
BUBBLE

AO>DIR
DIRECTORY OF : FO: lEARN. PDS
NAME .EXT BlKS lENGTH ATTR
ISIS .MAP 4 512 S
ASXREF 20 4294 S
ATTACH 4 522 S
COPY 36 8366 S
CREDIT .MAC 4 7 S
DELETE 20 4699 S
DIR 28 6625 S
HEXOBJ 20 4344 S
IXREF 44 10216 S
LINK 56 13074 S
lOCATE 60 15021 S

NAME
ASM80
ASSIGN
ATTRIB
CREDIT
DEBUG
DETACH
HELP
!DISK
LIB
LINK
OBJHEX

.EXT

.0Vl

BlKS
60
16
24
80
12

4
16
32
44
20
16

lENGTH ATTR
14594 S

3073 S
4999 S

19470 S
2502 S

434 S
3771 S
7035 S

10227 S
4578 S
3347 S

Key-in Sequence Comments

Press P to switch back to Page mode and display the file a
page at a time.

: F5: 5 BUBBLE

AD> DIR
DIRECTORY OF : FO: lEARN. PDS
NAME .EXT BlKS lENGTH ATTR NAME .EXT BlKS lENGTH ATTR

ISIS .MAP 4 512 S ASM80 60 14594 S

ASXREF 20 4294 S ASSIGN 16 3073 S

ATTACH 4 522 S ATTRIB 24 4999 S
COpy 36 8366 S CREDIT 80 19470 S

CREDIT • MAC 4 7 S DEBUG 12 2502 S

DELETE 20 4699 S DETACH 4 434 S

DIR 28 6625 S HELP 16 3771 S

HEXOBJ 20 4344 S IDISK 32 7035 S

IXREF 4

4-30

Key-in Sequence Comments

Press S to enter a Slow scroll mode. This causes the file to
be displayed slowly without stopping at the end of the
page. Press the CTRL-S to stop the display at any time.

iPDS™ User's Guide Command Applications

: F5: 5 BUBBLE

AO>DIR
DIRECTORY OF :FO:LEARN.PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COpy 36 8366 S CREDIT 80 19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
FILES .TXT 4 0

688
1420 FREE / 2544 TOTAL BLOCKS
AO>#
AD>

Key-in Sequence Comments

Press any key (the RETURN key is used here) to con
tinue the slow scroll display.

Press the F key to speed up the display. This causes the
file to be displayed in a Fast scroll mode until the end of
the file.

4-31

Command Applications iPDS™ User's Guide

ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COPY 36 8366 S CREDIT 80 19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK' .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
FILES .TXT 4 0

688
1420 FREE / 2544 TOTAL BLOCKS
AO>#

AO>

Key-in Sequence Comments

Press Z to display the last 1024 characters (1K bytes) of
the file.

Press E to end the display and return to the operating
system.

AO>COPY FILES1.TXTTO .co.

4-32

Key-in Sequence

COpy FILES1.TXT TO :CO:

Comments

The COpy command can also be used to
display the contents of a file on the CRT
screen. However, the display cannot be
controlled as with the @ command. The
specification :CO: is the pathname of the
console output device. This command
copies the file to the device currently as
signed to receive system output. Note
that displaying a non-ASCII file can have
unpredictable results.

iPDS™ User's Guide

Command Applications

: F4: 4 BUBBLE

: F5: 5 BUBBLE

AO>DIR
DIRECTORY OF : FO: LEARN· PD$

NAME .EXT BlKS lENGTH ATTR NAME .EXT BlKS lENGTH ATTR

1$1$.MAP 4 512 s ASM80 60 14594 S

ASXREF 20 4294 S ASSIGN 16 3073 s

ATTACH 4 522 S ATTRIB 24 4999 s

COpy 36 8366 s CREDIT 80 19470 s

CREDIT . MAC 4 7 s DEBUG 12 2502 s

DELETE 20 4699 S DETACH 4 434 s

DIR 28 6625 S HELP 16 3771 S

HEXOBJ 20 4344 S IDISK 32 7035 s

IXREF 44 10216 S LIB 44 10227 s

LINK 56 13074 S LINK .OVL 20 4578 s

LOCATE 60 15021 s OBJHEX 16 3347 S

RENAME 12 2557 s SERIAL 16 3148 S

SUBMIT 20 4692 S SYSPf)S .LIB 16 3101 S

FILES .TXT 4 0
688

1420 FREE /2544 TOTAL BLOCK$
AO>#
COPIED :FO:FILES1.TXT TO .c o .

AD>

Comments

This screen shows the results from entering the previous

command.

4-33

Command Applications

Using Wildcard Characters

iPDS™ User's Guide

Wildcard characters are placeholders that can be used in filenames to hold the
place of the actual filename character. For example, the * wildcard character takes
the place of any number of characters in a filename. The following examples show
the use of wildcard characters.

AD>DIR FOR FILES?*
DIRECTORY OF : Fo: LEARN. PDS
NAME • EXT BLKS LENGTH ATTR
FILES1 .TXT 8 1336 J
FILES3 • TXT 8 1336

NAME
FILES2
FILES4

44

.EXT

.TXT

.TXT

BLKS LENGTH ATTR
8 1336
8 4008

1396 FREE / 2544 TOTAL BLOCKS
AD> RENAME FILES1.TXT TO PROGA.SRC
RENAMED FILES1. TXT TO PROGA. SRC
AD> RENAME FILES2.TXT TO PROGA.OBJ
RENAMED FILES2.TXT TO PROGA.OBJ
AD> RENAME FILES3.TXT TO PROGA.BAK
RENAMED FILES3. TXT TO PROGA. BAK
AD> RENAME FILES4.TXT TO PROGA
RENAMED FILES4·TXT TO PROGA
AD>

Key-in Sequence

DIR FOR FILES?*

~RETu3

Comments

This example shows the use of the wildcard
characters: ? and *. The ? character can be
given as part of a filename. It substitutes for
any single character in the position where it
appears. The * character can be given as part
of a filename and substitutes for any number
of characters starting at the position where it
appears. Thus, the DIR command in this
example is for a directory of any file beginning
with the characters F I L E S, with any charac
ter in the sixth position and with any
extension. The result is shown in the screen.

RENAME FILES1.TXT TO The file, FILES l.TXT is renamed to
PROGA.SRC.~RETU3 PROGA.SRC

RENAME FILES2.TXT TO
PROGA.OBJ ~..

~

RENAME FILES3.TXT TO
PROGA.BAK

RENAME FILES4.TXT TO
PROGA

FILES2.TXT is renamed to PROGA.OBJ.

FILES3.TXT is renamed to PROGA.BAK.

FILES4.TXT is renamed to PROGA.

iPDS™ User's Guide Command Applications

AD> DIR FOR FILES?,·
DIRECTORY OF :Fo:LEARN.PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR

o
1396 FREE I 2544 TOTAL BLOCKS
AD> DIR FOR PROGA,·
DIRECTORY OF :Fo:LEARN.PDS
NAME • EXT BLKS LENGTH
PROGA • SRC 8 1336
PROGA • BAK 8 1336

ATTR
J
J

NAME
PROGA
PROGA

44

.EXT

.OBJ
BLKS LENGTH ATTR

8 1336
8 4008

1396 FREE I 2544 TOTAL BLOCKS
AD >ATTRIB PROGA,· J1

FILE CURRENT ATTRIBUTES
:Fo:PROGA.SRC J
:Fo:PROGA.OBJ J
:Fo:PROGA.BAK J
:Fo:PROGA J

AD> COPY·,· TO :F1 :.,. J
COPIED :Fo:PROGA.SRC TO :F1:PROGA.SRC
COPIED :Fo:PROGA.OBJ TO :F1:PROGA.OBJ
COPIED :Fo:PROGA.BAKTO :F1:PROGA.BAK
COPIED :Fo:PROGA TO :F1:PROGA
AD>

Key-in Sequence

DIR FOR FILES?*

~RETURN~

DIR FOR PROGA.*

~RETU3

ATTRIB PROGA.* J1

COpy *.* TO :F1 :*.*J

~ RETURN~

Comments

Verify that all the files are renamed.

The results of this command show that all the files
are renamed.

Backing up files means saving a copy of the files on a
second disk. Saving back-ups of important files is a
good practice to adopt to avoid losses, The first step
in backing up a group of files is to assign a unique at
tribute to all the files to be backed up. For this
example, the ATTRIB command is used to assign
the J attribute to the files to be backed up. The
ATTRIB command accepts wildcard filenames,

The second step in backing up a group of files is to
copy the files with the unique attribute. This exam
ple assumes a multiple drive system with a format
ted disk in drive 1. Use the non-system disk created
in a previous example, Also shown is the use of
wildcard filenames with the COPY command. The
unique attribute limits the scope of the wildcard file
specification. Here, all files with the J attribute set
are copied.

4-35

Command Applications

AD> DELETE PROGA.* a
:FD:PROGA.SRC, DELETE?N
: FD: PROGA. OBJ, DELETE? Y
:FD:PROGA.OBJ, DELETED
: FD: PROGA. BAK, DELETE? Y
:FD:PROGA.BAK, DELETED
: FD: PROGA, DELETE? Y
:FD:PROGA, DELETED

AD>DIR FOR PROGA.*
DIRECTORY or :FD: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME
PROGA .SRC 8 1336 J

8
1432 FREE /2544 TOTAL BLOCKS
AD>

• EXT BLKS LENGTH ATTR

iPDS™ User's Guide

Key-in Sequence Comments

DELETE PROGA.* Q RETURN This example shows the use of wildcard
characters to delete a group of files. The
Q option is used so that the command
prompts before deleting each file.

Because N is entered in response to the
first prompt, the file, PROGA.SRC, is
not deleted. Do not delete this file. It is
used in a later example.

Delete the other files specified.

4-36

DIR FOR PROGA.* The DIR command for PROGA.* veri
fies that all the files except PROGA.SRC
were deleted.

iPDS™ User's Guide

File Operations With a Single Drive System

Command Applications

Special considerations must be made to handle files efficiently on a single drive
system. The following examples illustrate the techniques of using a single drive
system. Appendix E contains some additional techniques and procedures for use
with single drive systems.

AD>COPY DIRTO DIR P
LOAD SOURCE DISKETTE, THEN TYPE (CR)
LOAD OUTPUT DISKETTE, THEN TYPE (CR)
COPIED :FD:DIR TO :FD:DIR
LOAD SYSTEM DISKETTE, THEN TYPE (CR)
AD>DIR FOR DIR P
LOAD SOURCE DISKETTE, THEN TYPE (CR)
DIRECTORY OF : FD: NONSYS. DSK
NAME • EXT BLKS LENGTH ATTR NAME
DIR 28 6625

28
2476 FREE I 2544 TOTAL BLOCKS
LOAD SYSTEM DISKETTE, THEN TYPE (CR)
AD>

• EXT BLKS LENGTH ATTR

Key-in Sequence

COpy DIR TO DIR P ~RETURN~

Comments

This screen is an example of copying to
disk other that the system disk on
single drive systems. The P option is
used to pause while the disks are alter
nately removed and inserted.

Press RETURN to begin the copy,
since, the source file is on the system
disk. When the source file is not on the
system disk, the system disk should be
removed and source disk inserted
before pressing the RETURN key.

Wait until the red LED on the drive is
off and motor has stopped, indicating
tha t the drive is not being accessed.
Remove the source diskette and insert
the output diskette. Press the
RETURN key to continue the copy.
Use the non-system diskette created in
a previous example as the output
diskette. The disk used for output must
have been formatted with the IDISK
command first.

(continued)

4-37

Command Applications

Key-in Sequence

DIR FOR DIR P [RET~3

4-38

iPDS™ User's Guide

Comments

When the file is copied, a message is
displayed and a prompt is issued to
insert the system disk. Remove the
output diskette and insert the system
diskette when the disk drive motor is
off. Press RETURN to end the copy
and return to the operating system.
When copying groups of files, there
may be several alternations of loading
the source and output diskette before
inserting the system diskette and
completing the copy. Be careful to
insert the correct diskette at each
prompt to ensure the correct copying of
data.

This is how to display a directory for a
disk other than the current system disk.
The P option causes the system to
pause to insert and remove diskettes.

When the prompt appears, and the disk
drive motor is off, remove the system
diskette and insert the diskette for
which a directory is required. Use the
non-system diskette from the previous
example.

A prompt is given after the directory is
'displayed. Remove the non-system dis
kette and insert the system diskette.
Press the RETURN key to return to the
operating system prompt.

iPDS™ User's Guide Command Applications

AD> COPY DIR TO FILES P
LOAD SOURCE DISKETTE, THEN TYPE (CR)
LOAD OUTPUT DISKETTE, THEN TYPE (CR)
COPIED :FD:DIR TO :FD:FILES
LOAD SYSTEM DISKETTE, THEN TYPE (CR)
AD> DELETE DIR P
LOAD SOURCE DISKETTE, THEN TYPE (CR)

:FD:FILES, DELETED
LOAD SYSTEM DISKETTE, THEN TYPE (CR)
AD>

Key-in Sequence

COPY DIR TO FILES P rr;E-;3

DELETE DIR P ~ETUR~

~ RETURN~

~RET3

Comments

Rename a file named DIR to a file
named FILES on a non-system disk
in a single drive system. The
REN AME command does not have
the P option and can only be used to
rename files on the system disk. Use
the COPY command followed by
the DELETE command to rename
files that are not on the system disk.

Remove the system disk and insert
the disk from which the file is to be
deleted. Press RETURN to delete
the file.

Remove the system disk and insert
the disk with the file to be
renamed. Press the RETURN.

When the prompt appears to load
the output diskette, do not remove
the disk. Press RETURN and the
file is duplicated with the new
name specified.

Delete the file DIR.

Remove the system disk and insert
the disk from which the file is to be
deleted. Insert the non-system disk
and press RETURN to delete the
file.

A message is displayed when the file
is deleted and a prompt is given to
load the system disk. Insert the
system disk. Press RETURN to
return to the operating system. Run
the DIR command to verify the
deletion. The command line is DIR
FORDIRP.

4-39

Command Applications

Text Editing Commands

iPDS™ User's Guide

The operating system provides a text editor to create and modify text files interac
.tively or through a command file. A text file can be a source program to be used as
input to an assembler or a language translator, or it can be a text document like a
letter or a manual. The text editor supplied with the operating system is:

CREDIT interactively creates and modifies text files. See chapter 6 for a
complete description of the macro editing file CMACRO provided
on the iPDS system diskette. Chapter 6 also explains the primary
differences between text editing with the iPDS system and text
editing on other Intel development systems. See the ISIS
CREDIT™ CR T-Based Text Editor User's Guide, for complete
details on text editing.

Editing Text Files

In the first series of editing examples, a file created in a previous example is edited
after first being renamed. A source program used in a later example is entered into
this file. There must be space on the disk for two times the size of the file being
edited.

AD> RENAME PROGA.SCR TO PPROGA.SRC
RENAMED PROGA. SRC TO PPROGA. SRC
AD> CREDIT PPROGA.SRC

4-40

Key-in Sequence

RENAME PROGA.SRC TO

PPROGA.SRC ~ RETURN~

CREDIT PPROGA.SRC ~RETURN~

Comments

The file named PROGA.SCRC is
renamed to PPROG A.SRC This
file is used in the next set of
examples.

The next set of examples illustrate
some simple editing techniques for
use with the CREDIT text editor.

iPDS™ User's Guide

ISIS-II CRT-BASED EDITOR V2.1
OLD FILE SIZE=1336 CHARACTERS

@

LOGICAL PHYSICALt

: CI: : VI: t
:CO: :FO:FILES.TXTt

: FO: 0t
:F1: 1t
: F2: 2t
: F3: 3t
:F4: 4 BUBBLEt
:F5: 5 BUBBLEt

t
AO>DIRt
DIRECTORY OF : FO: LEARN. PDSt
NAME • EXT BLKS LENGTH ATTR
ISIS • MAP 4 512 S
ASXREF 20 4294 S

ATTACH 4 522 S
COPY 36 8366 S

NAME • EXT

ASM80
ASSIGN
ATTRIB
CREDIT

BLKS LENGTH
60 14594
16 3073
24 4999
80 19470

Command Applications

Key-in Sequence Comments

When the CREDIT command line is entered, the screen
is cleared and the data from the file to be edited is
displayed. The file used was created in a previous example
and contains the system output of an ASSIGN command
and a DIR command from that example. The up arrow
character at the end of each line is the end of line
character.

The CTRL-Z function is used to delete text. The first
CTRL-Z typed causes an @ character to appear in the po
sition where the cursor was. This@ marks the beginning
of the text to be deleted.

Hold the down arrow key. The first @ remains at the top
of the screen. A second @ appears and moves down the
screen a line each time the down arrow is pressed. Hold
down the - key to move the @ to the right side of the
screen so it lines up over the last up arrow on the the
screen. The second @ marks the end of the text to be
deleted. Press CTRL-Z again and the text appearing on
the screen between the two @ markers is deleted from
the file. The remainder of the file now appears on the
screen taking the place of the deleted text. The vertical
bar at the bottom of the screen is the end of file character.

4-41

Command Applications iPDS™ User's Guide

@

CREDIT . MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
FILES .TXT 4 0 T

688T
1420 FREE / 2544 TOTAL BLOCKST

AO>#T
@

Key-in Sequence Comments

To delete this text, enter a CTRL-Z and use the cursor
control keys to move the second marker to the end of file
character. The cursor keys are the keys labeled with
arrows on the right side of the keyboard. Each key moves
the cursor in the direction of the arrow on the key cap.

Then, type CTRL-Z again to complete the deletion.

ISIS-II CRT-BASED TEXT EDITOR V2.1
OLD FILE SIZE=1336 CHARACTERS

C,VALUET
H,STARTT
M,CT
HT
A,HT
STOPT
LOOPT
PGMT

3980HT
55HT
6000HT
80HT

MVI
LXI
MOV
INX
MOV
CPI
JNZ
END

LOOP:

ORG
VALUE EQU
START EQU
STOP EQU

T

PGM:

4-42

iPDS™ User's Guide

Key-in Sequence

BORG B 39S0H ETUR~

VALUE B EQU B 55H

START B EQU B 6000H

STOP B EQU B SOH

[~ETU3 E;.,3
PGM: B MVI B C,VALUE

~RETU3

B LXI ~ TAB~ H,START ~RETURN~

LOOP: B MqV B M,C

B INX B H lE;.,3
B MOV B A,H [~~Tu3

B CPI B STOP ~RETu3

B JNZ BLOOP ~RETURN~

BEND B PGM ~RETu3

Command Applications

Comments

The part of screen under the dashed
line is called the text area. The the
text area is used to display the con
tents of the files as text is entered"
Only the vertical bar, end of file
character, appears in the text area
now. Enter the data as shown. As each
character is typed, the end of file
marker is moved one character to the
right. The TAB key moves the cursor
eight spaces the tight. The following
examples show how to correct errors
that might occur in typing this data.

4-43

Command Applications iPDS™ User's Guide

ISIS-II CRT-BASED TEXT EDITOR V2.1
OLD FILE SIZE=1336 CHARACTERS

VALUE

START
STOP

I

ORGG

EQU
EQU
EQU

3908Hl

55 Hl
6000Hl

80Hl

Key-in Sequence

[]
B

Comments

The extra G in ORG was not noticed until several lines
had been typed. Use the cursor control keys to move the
cursor to the extra G.

ISIS-II CRT-BASED TEXT EDITOR V2.1
OLD FILE SIZE=1336 CHARACTERS

ORG
VALUE EQU

START EQU
STOP EQU

I

Key-in Sequence

3908Hl

55 Hl
6000Hl

80Hl

Comments

4-44

Enter CTRL-D to delete the extra character. The
CTRL-D function deletes the single character at the posi
tion of the cursor.

iPDS™ User's Guide Command Dictionary

ISIS-II CRT-BASED TEXT EDITOR V2.1
OLD FILE SIZE=1336 CHARACTERS

ORG

VALUE EQ

START EQU
STOP EQU

I

Key-in Sequence

3908 Ht

55Ht
6000Ht

80Ht

Comments

ISIS-II CRT-BASED TEXT EDITOR V2.1

OLD FILE SIZE=1336 CHARACTERS

m
B

ORG
VALUE EQU
START EQU

STOP EQU

I

The U on the EQU on the second 'line was left off. Use
the cursor control keys to move the cursor to the space
following the Q.

3908 Ht

55 Ht
6000Ht

80Ht

Key-in Sequence Comments

To insert a single character, enter CTRL-C and, enter the
character to be inserted.

4-45

Command Applications

ISIS-II CRT-BASED TEXT EDITOR V2.1

OLD fILE SIZE=1336 CHARACTERS

ORG 3908HI
VALUE EQU 5 5 HI

START EQU 6000HI
STOP EQU 80HI

I
PGM: MVI c, VALUEr

LOOP MOV M,q

INX HI
MOV A, HI
CPI STOPI
JNZ LOOPI
END PGMI

iPDS™ User's Guide

rt
Key-in Sequence Comments

The line LXI H,START was omitted. Use the cursor con
trol keys to move the cursor to the L of LOOP.

ISIS-II CRT-BASED TEXT EDITOR V2.1
OLD fILE SIZE=1336 CHARACTERS

ORG 3908 HI
VALUE EQU 55HI
START EQU 6000HI
STOP EQU 80HI

I
PGM: MVI C,VALUEr

LXI H,STARTI
LOOP MOV M,q

INX HI
MOV A,HI
CPI STOPI
JNZ LOOPI
END PGMI

4-46

Key-in Sequence

B LXI B H,START

Comments

Enter CTRL-A to begin an insert of more than one
character. The first CTRL-A causes the screen to
clear at the point where the insert is to be made.

Type the line that was omitted. It appears on the
screen as it is typed. Enter CTRL-A again to end
the insert.

iPDS™ User's Guide

Command Applications

ISIS-II CRT-BASED TEXT EDITOR V2.1
OLD FILE SIZE=1336 CHARACTERS

ORG 3908HI
VALUE EQU 55HJ
START EQU bOOOHf
STOP EQU 80HI
I
PGM: MVI C,VALUEJ

LIx H,STARTI
LOOP MOV M, q

INX HJ
MOV A,Hf
CPI STOpr
JNZ LOOPJ
END PGMI

Key-in Sequence

m
[3

Comments

Here, LIX was typed instead of LXI. Use the cursor con
trol keys to move the cursor to the I of LIX.

ISIS-II CRT-BASED TEXT EDITOR V2.1
OLD FILE SIZE=133b CHARACTERS

ORG 3908HJ
VALUE EQU 55HJ
START EQU bOOOHI
STOP EQU 80HJ
I
PGM: MVI C,VALUEI

LXI H,STARTT
LOOP MOV M,q

INX HJ
MOV A, HJ
CPI STOPJ
JNZ LOOPJ
END PGMJ

Key-in Sequence

XI
Comments

Type XI to replace the characters I and X.

4-47

Command Applications

ORG
VALUE' EQU

iPDS™ User's Guide

3908Hr
55Hl

Key-in Sequence

IHO.E~ .

EX ~ RETURN~

Comments

Press the HOME key to enter the command line mode of
the CREDIT text editor. All the examples until now have
illustrated the screen mode of editing. The screen mode
allows interactive editing of text. The command line
mode allows commands to be entered to modify text. In
command mode, a prompt is displayed at the top of the
screen and commands are entered there. This area of the
screen is called the command area. More details on the
command line mode can be found in Chapter 6 and the
ISIS Credit CRT-Based Text Editor User's Guide.

The EX command exits from the CREDIT text editor
back to the operating system. The file containing the
edited text is updated to contain the new data.

*EX
EDITED TO PPROGA. SRC
AO>

Comments

This screen shows the results of the EX command. The
screen is cleared and the operating system prompt is
displayed.

4-48

iPDS™ User's Guide

Creating a Source Program

In this example, a new file is created with the editor and text is input.

Command Applications

AD> CREDIT DPROGA.DOC

Key-in Sequence Comments

CREDIT DPROGA.DOC A new file is created named DPROGA.DOC,
~ and documentation describing the program is
~ entered.

4-49

Command Dictionary

ISIS-II CRT-BASED TEXT EDITOR V2.1
NEW FILE

iPDS™ User's Guide

MODULE NAME: PPROGA l
PROGRAMMER: JOHN Q. PROGRAMMERl
DATE: 12/1/82l
PURPOSE: WRITES A VALUE TO A BLOCK OF MEMORYl
REGISTERS USED:A - MSB OF END ADDRESS OF BLOCK OF MEMORY BEING WRITTENl

C - VALUE BEING WRITTEN TO MEMORYl
HL- INITIALLY START ADDRESS OF BLOCK OF MEMORY BEINGWRITTENl

CHANGED DURING MODULE TO CURRENT BYTE OF MEMORY BEING l
WRITTEN·l

4-50

Key-in Sequence

MODULE NAME: B B
PPROGA [RETU-3

PROGRAMMER: [TAB~ B
JOHN Q. PROGRAMMER ~RETU3

DATE: [TAB~ [TAB ~ [TAB~ 12/1/82

[RETU~~

PURPOSE: B [TAB~ WRITES A

VALUE TO A BLOCK OF

MEMORY f;.,3
REGISTERS USED: [TAB~

A- MSB
OF END ADDRESS OF BLOCK
OF MEMORY BEING WRITTEN

~~~u3

[TAB~ [TAB~ C - VALUE BEING

WRITTEN TO MEMORY ~RETU3

[TAB~ [TAB~HL-INITIALLY START

Comments

The screen is cleared and the text
area is blank. The sign-on message
appears in the command area.
Enter the data as shown using any
editing commands necessary to cor
rect errors.



iPDST
I\1 User's Guide

Key-in Sequence

ADDRESS OF BLOCK OF
MEMORY BEING WRITTEN

[RETURN]

B B SPACE SPACE SPACE

SPACE SPACE SPACE
CHANGED DURING MODULE

TO CURRENT BYTE OF

MEMORY BEING ~RETURN~

B EJj WRITTEN. fTURN~

Comments

Command Dictionary

*EX
EDITED TO DPROGA. DOC
AD> DIR FOR ?PROGA.*
DIRECTORY OF : FO: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH
DPROGA • DOC 4 370 PROGA. BAK 8 1336
PPROGA • SRC 4 157

12
1428 FREE / 2455 TOTAL BLOCKS
AD>

Key-in Sequence Comments

8
EX IRETU3

DIR FOR ?PROGA.*

Press the HOME key to enter the command line
mode, and enter the EX command to return to the
operating system.

The DIR command is used to confirm the existence
of the two files just edited. More information on the
use of the CREDIT text editor can be found in the
ISIS-II CREDIT™ CR T-Based Text Editor User's
Guide, order number 9800902

4-51



Command Dictionary

Program Development Commands

iPDS™ User's Guide

The two main aspects of developing a computer-based product is the program or
software development and hardware development. The operating system offers a
number of languages for developing programs. In addition to language translators,
the following commands are provided to aid in software development. These com
mands are described in the manuals indicated.

LIB

LINK

allows the user to manage a library of MCS-80/85 program
modules. With the LIB command, libraries can be created,
modules can be added or deleted from them, and a list of the
modules in a library can be displayed. MCS™ -80/85 Utilities
User's Guide, order number 121617.

combines a number of object modules into a single object module
in an output file. MCS™_80/85 Utilities User's Guide, order
number 121617.

LOCATE converts relocatable object programs into absolute object pro
grams by supplying memory addresses throughout the program.
MCS™ -80/85 Utilities User's Guide, order number 121617.

HEXOBJ converts a program from hexadecimal file format to absolute
object format. MCS™ -80/85 Utilities User's Guide, order number
121617.

OBJHEX converts a program from absolute object format to hexadecimal
file format. MCS™ -80/85 Utilities User's Guide, order number
121617.

DEBUG provides a minimum set of debugging commands. Chapter 7.

IPPS is used with the PROM Personality Adapters to control the pro
gramming of EPROMs and E2PROMs. Chapter 10 and the
iUP-200/201 Universal Programmer User's Guide, order number
162613.

4-52



iPDS™ User's Guide Command Dictionary

Creating an Object File

The next two example uses the program entered into the file created previously by
the CREDIT text editor.

ISIS-II 8080/8085 MACRO ASSEMBLER, V4.1

ASSEMBLY COMPLETE, NO ERRORS
AD>

BlKS lENGTH
4 157
4 61
4 45

ATTR NAME • EXT
PPROGA • BAK
PPROGA • OBJ
PPROGA

28

AD>ASM80 PPROGA.SRC

AD> LOCATE PPROGA.OBJ
ISIS-II OBJECT lOCATER V3.0
AD>DIR FOR ?PPROGA.*
DIRECTORY OF : FO: LEARN. PDS
NAME • EXT BLKS lENGTH
DPROGA • DOC 4 374
PPROGA • SRC 4 157
PPROGA • lST 8 903

1412 FREE 1 2544 TOTAL BLOCKS
AO>

Key-in Sequence Comments

ASM80 PPROGA.SRC

~ RETURN~
The next examples illustrate a simple case of pro
gram development on the iPDS. Assemble the
previously entered program PPROGA.SRC. The
program PPROGA fills a block of memory with a
constant. The output file created by the assem
bler is named PPROGA.OBJ. This file must be
processed by the LOCATE command before it
can be run. A list file is also created by the assem
bler under the name PPROGA.LST.

LOCATE PPROGA.OBJ The program does not have any external
references, so it can be located without being
linked first. The LOCATE utility assigns absolute
memory addresses, where needed, in the
program. The program is located in memory
starting at address 3980H as determined by the
ORG statement in the program. The output file
created by the LOCATE utility is a file named
PPROGA with no extension. This file can be
loaded into memory and executed.

DIR FOR ?PROGA.* The DIR command shows the files created in the
development of the program PPROGA. The file
PPROGA.LST was created by the assembler and
contains a listing of the program. It can be dis
played with the @ command.

4-53



Command Dictionary

Debugging a Program

iPDS™ User's Guide

In the next series of examples, the object file created in the previous example is
debugged using the DEBUG command.

AD> DEBUG PPROGA

PDS DEBUGGER V.l0
=>3980

.C3980,9
3980 OE55 MVI
3982 210060 LXI
3985 71 MOV
3986 23 INX
3987 7( MOV
3988 FE80 (PI
398A (28539 JNZ
398D 38 DB
398E 3A8047 LDA

(,55
H,6000
M,(
H
A,H
80
3985
38
4780

.X
A=AA B=BB c-c c D=DD E=EE F=FF H=12 L=34 M=1234 P=3980 S=F1E2

.N1
3980 OE55 MVI (,55

4-54

Key-in Sequence

DEBUG PPROGA

~RETURN~

C3980,9

~RETU3

N1 ~~T~~~

Comments

The DEBUG command loads a program into memory
and allows the program to be run under controlled
conditions. The program just assembled and located is
run. The DEBUG program displays a sign on message
and then displays the starting address of the program
being debugged. A DEBUG command can be entered
whenever the DEBUG prompt, the period (,), appears.

The C command disassembles instructions starting at the
address specified for a count of the number of instructions
specified. Here, the starting address is 3980H and the
number of instructions to be disassembled is 9. The first
column contains the address, the second column shows
the hexadecimal value of the instruction starting at that
address, and third column gives the mnemonic for the in
struction starting at the address.

The X command displays the 8085 registers. All values
are hexadecimal. The program counter, P, contains the
address of the first instruction to be executed in the
program.

The N command executes the specified number of in
structions starting at the address currently in the program
counter and then halts program execution. The address,
the hexadecimal opcode and operands, and the instruc-
tion mnemonics are displayed for the instructions
executed. The N command can be used to single step
through a program, executing only one instruction at a
time. This technique for debugging is illustrated here.



iPDS™ User's Guide

.X
A=AA B=BB (=55 D=DD E=EE F=F7 H=12 L=34 M=1234 P=3982 S=F1E2

.N1
3982 210060 LXI H, 6000

.X
• A=AA B=BB (=55 D=DD E=EE F=F7 H=60 L=OO M=6000 P=3985 S=F1E2
.N1

3985 71 MOV M,(

Command Dictionary

.06000,6000
01234 567 8 9 A B ( D E F

6000 55 U

.N1 ------

3986 23 INX H

.X
A=AA B=BB (=55 D=DD E=EE F=D7 H=60 L=01 M=6001 P=3987 S=F1E2

.N1
3987 7( MOV A,H

Key-in Sequence

X E3
N1 E~3

N1 f~3

06000,6000

~ RETURN~

N1 [ETURN~

X ~RETU3

N1 ~RETU3

Comments

The value in the C register has changed to 55H, and pro
gram counter P has changed to 3982H.

One more instruction is executed, and the program is
halted. The address 6000H is the start address of the
block of memory to be filled with the constant 55H.

The registers are displayed again.The program counter
contains the value 3985H, the address of the next instruc
tion in the program.

One more instruction is executed. The value in the C
register is moved to memory, currently 6000H.

The 0 command displays the contents of the memory lo
cations requested. The underlines appear because only
one location was requested. They act as placeholders for
the adjacent 15 locations that would appear on the same
line if requested. The right end of the display contains the
ASCII character corresponding to the value in the
memory location. The underline also appears if there is
no displayable ASCII character for the value at the speci
fied memory location.

Another instruction which increments the HL register
pair is executed.

The registers are displayed.

This instruction checks the memory address so that the
loop can be ended when the end of the block of memory
being filled is reached.

4-55



Command Dictionary

.X
A=bO 8=88 (=55 D=DD E=EE F=D7 H=bO L=D1 M=bDD1 P=3988 S=F1E2

· N1
3988 FE8D (PI 8D

.X
A=bD 8=88 (=55 D=DD E=EE F=93 H=bD L=D1 M=bDD1 P=398A S=F1E2

.N1
398A (28539 J NZ 3985

.X
A=bO 8=88 (=55 D=DD E=EE F=93 H=bD L=D1 M=bDD1 P=3985 S=F1E2

• G3980,-398D
= > 398D

.X
A=8D 8=88 (=55 D=DD E=EE F=54 H=8D L=DD M=8DDD P=398D S=F1E2

· D6000,7FFF

iPDS™ User's Guide

4-56

Key-in Sequence

-X ~ RETURN~

N1 E~3

X ~RETURN~

N1 ~RETURN~

G3980,398D

IEET~~~

x 1E-;,3
D6POO,7FFF

~RETURN~

Comments

The registers are displayed showing that the A register
also contains the value 60H.

This instruction compares the value in the A register with
80H. This value is the MSB of the end of the block of
memory being filled. The loop no longer executes when
the program reaches 80H.

The flag register, shown as F, now contains 93H. The
zero flag is the sixth bit in the register and is set to a value
ofO.

Another instruction, which jumps to address 3985H if
the zero flag is off, is executed. Since the zero flag was
reset in the previous compare instruction, the jump
should take place.

When the registers are displayed, the program counter
contains the address 3985H for the next instruction to be
executed. This is the address of the beginning of the loop.
The loop is executed again.

The G command executes a program starting at the in
struction specified. A breakpoint is set at address 398DH.
The program halts when the entire block of memory is
filled and the loop no longer repeats.

The registers are displayed showing that register A con
tains the value 80H, the end value for the loop.

The block of memory from 6000H to 7FFFH is displayed.



iPDS™ User's Guide

012 3 4 5 678 9 A 8 C D E F
6000 5555 55 55 55 55 55 55 55 55 55 55 55 55 55 55
6010 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
6020 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
6030 5555 55 55 55 55 55 55 55 55 55 55 55 55 55 55
6040 555555 55 55 55 55 55 55 55 55 55 55 55 55 55
6050 55 55 55 5555 55 55 55 55 55 55 55 55 55 55 55

uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu

Command Dictionary

7F80 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
7F9o 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
7FAo 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
7F8o 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
7FCo 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
7FDo 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
7FEo 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
7FFo 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

Comments

uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu

The memory contains the value 55H which is the ASCII
code for the character U .

• XP 3980- F1 E2-3980
·53980 OE- 55-AA
.N1

3980 OEAA MVI C ,AA

• G3980,3980
= > 398D

.06000,7FFF

Key-in Sequence

XP 3980 ~ETU"~

Comments

The X command can also be used to change
the contents of registers. The XP form of the
command displays the current value of the P
register and allows that value to be changed.
It is changed to 3980H, the starting address of
the program. Thus, the next N command exe
cutes the program from its starting address.

(continued)

4-57



Command Dictionary

Key-in Sequence

S3980 SPACE AA SPACE

E~3

N1 ~RETU3

G3980,398D ~ETU3

D6000,7FFF ~ETU3

iPDS™ User's Guide

Comments

The constant value that is written to memory
is changed from 55H to AAH. This is done
with the S command which substitutes new
values in memory. The memory location con
taining the constant is the operand of the first
instruction. Since, the opcode is not changed,
press the space bar to increment to the next
address. Enter AA and the value is changed
in memory. The constant is not changed in
the file containing the program.

A single instruction is executed. Notice that
the value moved into the C register is AAH
this time.

The G command begins executing the pro
gram at 3980H with a breakpoint set at 398H
which is the address of the instruction follow
ing the loop.

The block of memory from 6000H to 8000H
is displayed again. It contains the value AAH.

012 3 4 5 6 7 8 9 ABC D E F
6000 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
6010 AA AA AA AA AAAA AA AA AA AA AA AA AA AA AA AA
6020 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
6030 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
6040 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
6050 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
6060 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
6070 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
6080 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
6090 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

7FCo AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
7FDo AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
7FEo AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
7FFo AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

.E

4-58

Key-in Sequence

ms
Comments

The E command exits from DEBUG and returns to the
operating system.



iPDST
I\1 User's Guide

Program Execution Commands

Command Dictionary

Programs can be executed under the control of the operating system in two ways:

• Interactively by typing the command line for each program to be executed

• Automatically (not requiring operator intervention) through the SUBMIT or
JOB capabilities of the operating system

SUBMIT files are implemented with the SUBMIT command and the. command.
The. command differs from the SUBMIT command in that only one line from the
SUBMIT file is read and executed and no intermediate file is created. Parameter
substitution is allowed in both cases.

Jobfiles are implemented with the following features in the operating system: the
JOB command, the ENDJOB command, the ASSIGN command, the / command,
FUNCT-<n>, and the ABOOT.CSD and BBOOT.CSD files. A jobfile differs
from a SUBMIT file in that no intermediate disk file is created and no parameter
substitution is allowed.

The operating system offers the following features, described in Chapter 5, for ex
ecuting commands.

<filename> loads and executes the object program named <filename>.

SUBMIT reads an input SUBMIT file, creates a command file con
taining ISIS commands, and executes commands in se
quence from the file created.

is a fast form of the SUBMIT command. One command line
is read from the SUBMIT file, transformed into an ISIS
command in memory, and executed. No intermediate file
is created.

FUNCT - < n > is also considered a device management command. It reads
command lines from a file named JOB<n>.CSD, where
< n > is a single digit from 0 to 9. Pressing < n> followed
by the RETURN key is the same as pressing FUNCT
<n>.

ASSIGN is also considered a device management command.
However, a form of ASSIGN can be used to run commands
from a file.

/ reads ISIS commands from a disk file and executes them in
sequence. The / command is also considered a device
management command.

JOB stores a sequence of frequently used ISIS commands in a
file as they are entered from the keyboard without execut
ing them until the sequence is completely entered. Then,
the commands can be executed in order, or they can be

.saved in the file and executed later with the / command.
Two jobfiles, ABOOT.CSD and BBOOT.CSD, deserve spe
cial mention. If either of these files is present
(ABOOT.CSD for Processor A and BBOOT.CSD for Pro
cessor B) when the system is initialized, commands are au
tomatically executed from the file. This feature can be used
to configure a system. An example is given later in this
chapter.

4-59



Command Dictionary

ENDJOB

ESC

iPDS™ User's Guide

stops the automatic execution of commands from a JOB file
and returns control to the keyboard. The ENDJOB com
mand is automatically inserted after a sequence of com
mands is entered under the control of the JOB command. If
a jobfile is created with the text editor, the user must enter
the ENDJOB command.

edits the previously entered or the current command line
and allows the new command line to be executed.

Using the JOB Command

A jobfile is one form of running programs automatically. In the next example, a
jobfile is created but not executed.

AO>JOBJOB1.CSD
=DIR FOR ?PROGA.*
=DELETE ?PROGA.*

AO>

4-60

Key-in Sequence

JOB JOB1.CSD

DIR FOR ?PROGA.*

[~-E~3

DELETE ?PROGA.*

ffiETURN~

Comments

There are several ways to enter commands and run
programs, other than under control of the operating
system: editing a command line to run a different pro
gram (shown at the end of Chapter 3), running several
programs with the JOB command and running several
programs with the SUBMIT command. When the
command line is entered the equal sign (=) prompt is
displayed. A file is created with the name specified on
the JOB command line. Here, the name is JOBl.CSD.

Enter the command lines shown. These commands
are not executed. Instead, the JOB prompt is displayed
after each command to allow another command to be
entered. There are three ways to exit from the JOB
command: CTRL-Z, the RETURN key, and the ESC
key. When a CTRL-Z is entered, the JOB is cancelled.
The commands entered are not saved and the job file
is not created. Control is returned to the operating
system.



iPDS™ User's Guide

Automatic Job Execution

This section of examples shows several techniques for runningjobfiles.

Command Dictionary

AD >JOB JOB1.CSD
=DIR

Key-in Sequence

JOB JOB1.CSD

[RETUR;]

DIR ~-E~3

[
RETu31

Comments

This example shows the second way to exit from the JOB
command. Press the RETURN key at the beginning of a
job line (after the = prompt) and the JOB command
ends. The commands entered are saved in the specified
file and are immediately executed in the sequence in
which they were typed. The JOB command appends an
ENDJOB command line at the end of the file, so that
when all the commands are executed, control is returned
to the operating system. The job file remains on the disk
and can be executed again later.

Ao>JOB JOB1.CSD
DIRECTORY OF :Fo:LEARN.PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COPY 36 8366 S CREDIT 80 19470 S
CREDIT . MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS . LIB 16 3101 S
JOB1 .CSD 4 50

720
1404 FREE / 2544 TOTAL BLOCKS
Ao>ENDJOB
AD>

Comments

This screen shows the result of the previous entries. The
third way to end a JOB command is to press the ESC key
at the beginning of a job line. The commands entered are
saved in the specified file, and the ENDJOB command
line is appended to the file. However, the commands are
not immediately executed.

4-61



Command Dictionary iPDS™ User's Guide

Ao>#1
Ao>DIR
DIRECTORY OF : Fo: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COPY 36 8366 S CREDIT 80 19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
JOB1 .CSD 4 50

720
1404 FREE / 2544 TOTAL BLOCKS
Ao>ENDJOB
AD>

Key-in Sequence Comments

8m There are four ways to run the commands in a job file
after exiting the JOB command: use the FUNCT key, use
the / command, use the/ ASSIGN command, and use the
automatic configuration feature of the operating system.
This example illustrates using the FUNCT key. This
method only works if the filename of the job file is in the
form JOB<n>.CSD where <n> is a digit from 0 to 9.
Press FUNCT<n> where <n> is the digit in the file
name to run the job file.

4-62



iPDS™ User's Guide Command Dictionary

Ao>/JOB1.CSD
AD> DIR
DIRECTORYOF :Fo:LEARN.PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COpy 36 8366 S CREDIT 80 19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOC ATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
JOB1 .CSD 4 50

720
1404 FREE / 2544 TOTAL BLOCKS
Ao>ENDJOB
AD>

Key-in Sequence

/JOB1.CSD

ETUR~

Comments

The / command is a second method of running the com
mands in the job file. Type / followed by the filename of
the job file, and the commands are executed. When the
ENDJOB command is reached, control is returned to the
operating system.

4-63



Command Dictionary iPDS™ User's Guide

LOGICAL PHYSICAL

AD >ASSIGN :CI: TO JOB1.CSD

BUBBLE
BUBBLE

o
1
2

3
4
5

:CI: :FO:JOB1.CSD
:CO: :vo:

:FO:
:F1:
:F2:
:F3 :
: F4:
:F5:

AD> DIR
DIRECTORY OF : FO: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COpy 36 8366 S CREDIT 80 19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S

Key-in Sequence Comments

ASSIGN :CI: TO JOB1.CSD

ETUR~
A third way to run the commands in a job
file is to· assign the system input device to
the job file as shown' in this example. The
operating system reads the job file for com
mand inpu t un til it encounters the
ENDJOB command. At this time, the
system is returned to the keyboard.

4-64



iPDS™ User's Guide

Configuring a User System Automatically

Command Dictionary

The next example shows a jobfile being used as a configuration file. A configura
tion file is run automatically when the system is initialized. For example, the
ASSIGN command could be run to set up the required logical to physical device
mapping for a system. Alternately, the SERIAL command could be used followed
by the ASSIGN command to first configure the serial port and then map the serial
device to the ISIS logical console device. The ATTACH command could be occur
in a configuration file for a system containing multimodules. Finally, the confi
dence tests could be executed automatically from a configuration file.

A0> RENAME JOB1.CSD TO ABOOT.CSD
RENAMED JOB1. CSD TO ABOOT. CSD
AO>

Key-in Sequence

RENAME JOB1.CSD TO ABOOT.CSD

8

Comments

When there is file named
ABOOT.CSD (BBOOT.CSD
for the optional processor) on
the system disk used to initial
ize the system, this file is au
tomatically run as a job file
when the system is reset.
Rename the job file contain
ing the DIR command to
ABOOT.CSD. Then, press
the RESET key. As soon as
the system is initialized, this
file is read and executed as a
job file.

4-65



Command Dictionary iPDS™ User's Guide

ISIS-PDS, V1,0
AD>DIR
DIRECTORY OF : Fo: LEARN. PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASM80 60 14594 S
ASXREF 20 4294 S ASSIGN 16 3073 S
ATTACH 4 522 S ATTRIB 24 4999 S
COpy 36 8366 S CREDIT 80 .19470 S
CREDIT .MAC 4 7 S DEBUG 12 2502 S
DELETE 20 4699 S DETACH 4 434 S
DIR 28 6625 S HELP 16 3771 S
HEXOBJ 20 4344 S IDISK 32 7035 S
IXREF 44 10216 S LIB 44 10227 S
LINK 56 13074 S LINK .OVL 20 4578 S
LOCATE 60 15021 S OBJHEX 16 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4692 S SYSPDS .LIB 16 3101 S
ABOOT .CSD 4 50

720
1404 FREE I 2544 TOTAL BLOCKS
Ao>ENDJOB
AD>

Key-in Sequence

8m
8m

Comments

This screen shows the result of entering the previous
command. A good application for an automatic configura
tion file is in a dual processor system with a terminal con
nected to the serial port as the base processor's console
device. The first command in the file could be the
SERIAL command required to configure the terminal.
This could be followed by the ASSIGN commands neces
sary to assign the system input and output (:CI: and :CO:)
to the terminal. Another good application is in a system
using a multimodule. The configuration file could contain
the ASSIGN and ATTACH commands and the other
commands necessary to load the I/O driver for the
multimodule.

Using the SUBMIT Command

In the next series of examples, the SUBMIT command is illustrated. Notice the
differences between SUBMIT files andjobfiles as this example is presented.

4-66

AD>CREDIT BCKUP1.CSD

Key-in Sequence

CREDIT BCKUP1.CSD

~~-;3

Comments

In addition to entering operating system com
mands a single command line at a time and enter
ing them through a job file, SUBMIT files can also
be used. A SUBMIT files is a text file containing
operating system commands and created with an
editor. Here, CREDIT is used to create a
SUBMIT file.



iPDS™ User's Guide Command Dictionary

ISIS-II CRT-BASED TEXT EDITOR V2.1
NEW FILE

ATTRIB %0 to J1 f
COPY%OTO%1 J%2f

rr

Key-in Sequence

ATTRIB 0/00 J1 ~ RETURN~

COpy %0 to 0/01 J 0/02 ~~-;3

Comments

Enter the commands shown. The dif
ferences between a SUBMIT file and a
job file are as follows:

Parameters can be passed to a
SUBMIT file. The %0, %1, and
%2 in the file act as placeholders
and can be assigned different
values each time the SUBMIT
file is run. SUBMIT files can be
interrupted to allow interactive
input. The CTRL-E in the file
shown illustrates this feature. As
soon as the line with CTRL-E is
run, the submit file halts and
allows input from the keyboard.
The next CTRL-E returns to the
correct place in the SUBMIT file
for further input. SUBMIT files
can be nested. Thus, the
SUBMIT command can appear
in a SUBMIT file. There is no
ENDJOB command at the end of
a SUBMIT file. Therefore, two
SUBMIT files can be appended
to create one larger SUBMIT file.

A job file can be edited to delete the
ENDJOB command. Then, it can be
run as a SUBMIT file. A SUBMIT file
with no nesting, no interactive input,
and no parameters can be edited to
add an ENDJOB command. Then, it
can be run as a job file.

4-67



Command Dictionary

. ATTRIB %0 to J1l
COpy %0 TO %1 J %2l

u

Key-in Sequence Comments

iPDS™ User's Guide

[HOME~

EX ~RETURN~

Press the HOME key and exit from CREDIT.

*EX
EDITED TO BCKUP1. CSD
AO>CREDIT BCKUP2.CSD

Key-in Sequence Comments

CREDIT BCKUP2.CSD Create a second SUBMIT file called
BCKUP2.CSD.

ISIS-II CRT-BASED TEXT EDITOR V2.1
NEW FILE

DELETE%OQl

u
DIRFOR%Ol
I

4-68

Key-in Sequence

DELETE %0 Q ~RETURN~

80S
DIR FOR %0 IRETU3

Comments

Enter the commands shown.



iPDS™ User's Guide Command Dictionary

DELETE %0 QI

"
DIR FOR %01
I

Key-in Sequence

8
EX ~RETURN~

Comments

Exit from CREDIT. There are two ways these two
SUBMIT files can be run together: BCKUP1.CSD can be
edited to add a SUBMIT command at the end to SUBMIT
BCKUP2.CSD, or the two files can be appended as
shown in the next example.

*EX
EDITED TO BCKUP2.CSD
AD> COPY BCKUP1.CSD, BCKUP2.CSD TO BACKUP.CSD
APPENDED :Fo:BCKUP1.CSD TO :Fo:BACKUP.CSD
APPENDED :Fo:BCKUP2.CSD TP :Fo:BACKUP.CSD
AD>

Key-in Sequence Comments

CO~Y BCKUP1.CSD, BCKUP2.CSO This command appends the two
TO BACKUP.CSO ~ SUBMIT files to create a single

.:~ SUBMIT file named BACKUP.
CSD.

4-69



Command Dictionary

Running the SUBMIT File

iPDS™ User's Guide

In this example, the same SUBMIT file that was just entered is run first on a single
drive system and then on a multiple drive system.

AD>SUBMIT BACKUP(?PROGA.*, ?PROGA.*,P)
AD>ATTRIB ?PROGA.* J1

FILE CURRENT ATTRIBUTES
:FD:DPROGA.DOC J
:FD:PPROGA.BAK J
:FD:PPROGA.SRC J
:FD:PPROGA.OBJ J
:FD:PPROGA.LST J
:FD:PPROGA J

AD>COPY ?PROGA. * TO ?PROGA. * J P
LOAD SOURCE DISKETTE, THEN TYPE (CR)ua E
LOAD OUTPUT DISKETTE, THEN TYPE (CR)
COPIED: FD: DPROGA. DOC TO : FD: DPROGA. DOC
COPIED: FD: PPROGA. BAK TO : FD: PPROGA. BAK
COPIED: FD: PPROGA. SRC TO : FD: PPROGA. SRC
COPIED :FD:PPROGA.OBJTO :FD:PPROGA.OBJ
COPIED: FD: PPROGA. LST TO : FD: PPROGA. LST
COPIED: FD: PPROGA TO : FD: PPROGA
LOAD SYSTEM DISKETTE, THEN TYPE (CR)
AD>TE

4-70

Key-in Sequence

SUBMIT BACKUP.CSO (?PROGA.*,
?PROGA.*,P) ~.

~

Comments

This example shows how to run
the SUBMIT file just created.
The file has three parameters.
All three parameters are
specified. Wildcard filenames
are given for the first two
parameters (%0 and %1) and
the P option is specified for the
third parameter. The P option is
appended to the COpy com
mand line causing a copy for a
single drive system to take place.
The E is the display given when
the CTRL-E is read from the
file. The SUBMIT command
stops reading from the submit
file and takes input from the
keyboard.

The files to be copied are on
disk currently in the drive.
Press the RETURN key and
COpy command begins. When
the files have been read, the
prompt to load the output dis
kette appears. Remember, the
system is still accepting input
from the keyboard.



iPDS™ User's Guide

Key-in Sequence

f~3

~RETURN~

Command Dictionary

Comments

Remove the system diskette
and insert another diskette. Use
the non-system diskette created
in a previous example. Press
RETURN. The files are copied
with a message displayed for
each file. When the last copy is
complete, the system prompts
to load the system diskette. The
system is still accepting input
from the keyboard.

Remove the non-system dis
kette and insert the system
diskette. Press RETURN. Enter
a CTRL-E to return to the cor
rect place in the SUBMIT file
now that the interactive input is
ended.

AO>DELETE ?PROGA.* Q

:FO:DPROGA.DOC, DELETE?Y
: FO: DPROGA. DOC, DELETED
:FO:PPROGA.BAK, DELETE?Y
: FO: PPROGA. BAK, DELETE D
: FO: PPROGA. SRC, DELETE? N
: FO: PPROGA. OBJ, DELETE? Y
:FO:PPROGA.OBJ, DELETED
: FO: PPROGA. LST, DELETE? Y
:FO: PPROGA. LST, DELETED
: FO: PPROGA, DELETE? Y
:FO:PPROGA, DELETED

AO>TE

Key-in Sequence Comments

The next command that runs from the SUBMIT file is
the DELETE command. The 1E is displayed as soon as
the CTRL-E from the file is read. The system halts to
allow interactive input from the keyboard in response to
each prompt. PPROGA.SRC is not deleted, while all the
other files are. The files may not be deleted in the order
shown. The actual order depends on previous examples.

As soon as the CTRL-E is entered at the keyboard, the
system returns to the correct place in the SUBMIT file.

4-71



Command Dictionary . iPDS™ User's Guide

:FD:PPROGA, DELETE? Y
: FD: PPROGA, DELETED

AD>lE
AD>DIR FOR ?PROGA.*
DIRECTORY OF : FD: LEARN. PDS
NAME • EXT BLKS LENGTH ATTR NAME
PPROGA • SRC 4 157 J

4
1412 FREE / 2544 TOTAL BLOCKS
AD> :FD:SUBMIT RESTORE :FD:BACKUP.CS( :VI:)
AD>

• EXT BLKS LENGTH ATTR

Comments

The rest of the SUBMIT file is run without interruption.
The final command line run before returning to the
operating system is a special form of the SUBMIT com
mand generated by the SUBMIT command when the end
of the SUBMIT file is reached. It restores the keyboard as
the system input device.

AD>SUBMIT BACKUP (?PROGA.·,:F1 :?PROGA.·,,)
AD>ATTRIB ?PROGA.* J1

FILE CURRENT ATTRIBUTES
:FD:DPROGA.DOC J
:FD:PPROGA.BAK J
:FD:PPROGA.SRC J
:FD:PPROGA.OBJ J
:FD:PPROGA.LST J
:FD:PPROGA J

AD>COPY ?PROGA.* TO :F1:?PROGA.* J
COPIED: FD: DPROGA. DOC TO : FD: DPROGA. DOC
COPIED :FD:PPROGA.BAK TO :FD:PPROGA.BAK
COPIED :FD:PPROGA.SRC TO :FD:PPROGA.SRC
COPIED :FD:PPROGA.OBJ TO :FD:PPROGA.OBJ
COPIED :FD:PPROGA.LST TO :FD:PPROGA.LST
COPlED : FD : PPR"O GA TO : FD: PPROGA

AD>lElE

4-72

Key-in Sequence

SUBMIT BACKUP (?PROGA.*,

:F1 : ?PROGA.*,,) ~RETu3

Comments

The same SUBMIT file is run for multi
ple drive systems. Insert the non
system diskette created in a previous
example in drive 1. Enter the SUBMIT
command as shown. Notice the second
parameter contains a drive specifica
tion. The third parameter is not given.
The COpy command is run without
the P option.

The SUBMIT file is run until the
CTRL-E is read. Since no keyboard
input is required at this point in the
example, enter a CTRL-E from the
keyboard to immediately switch back
to the file.



iPDS™ User's Guide Command Dictionary

AD> DELETE ?PROGA. * Q
:FD:DPROGA.DOC, DELETE?Y
: FD: DPROGA. DOC, DELETED
:FD:PPROGA.BAK, DELETE?Y
: FD: PPROGA. BAK, DELETED
:FD:PPROGA.SRC, DELETE?N
: FD: PPROGA. OBJ, DELETE? Y
:FD:PPROGA.OBJ, DELETED
: FD: PPROGA. LST, DELETE? Y
:FD:PPROGA.LST, DELETED
: FD: PPROGA, DELETE? Y
: FD: PPROGA, DELETED

AD>tE

Key-in Sequence

mE]
rn8
[ID8
rn8
rnE3
rnE3
am

Comments

The system returns to the SUBMIT file and runs the next
command. The second CTRL-E is read from the file and
the system halts again allowing keyboard input. Enter the
responses to the prompts as shown. The order of the files
to be deleted may vary depending on the previous exam
ples run. Enter a CTRL-E to switch back to the SUBMIT
file.

: FD: PPROGA, DELETE? Y
: FD: PPROGA, DELETE D

AD>tE
AD>DIR FOR ?PROGA.*
DIRECTORY OF : FD: LEARN. PDS
NAME • EXT BLKS LENGTH ATTR NAME
PPROGA • SRC 4 157 J

4
1412 FREE / 2544 TOTAL BLOCKS
AD> :FD:SUBMIT RESTORE :FD:BACKUP.CS( :VI:)
AD>

Comments

• EXT BLKS LENGTH ATTR

The SUBMIT file is completed without further
interruption. Further information on SUBMIT can be
found in Chapter 5.

4-73/4-74



• (0

Notational Conventions

CHAPTERS
COMMAND DICTIONARY

Because of the many different ways that a single command can be entered, it is not
possible or desirable to list every correct entry. Instead, the general format of the
command is described using special symbols or notational conventions.

Notational conventions are symbols that have been adopted to help describe
operating system commands. These symbols are not part of the command itself
but are used to precisely describe the format of the command.

The special characters used in these conventions have no significance to the
operating system and are only meaningful in describing a class of correct command
entries. For example, items enclosed in brackets are optional parts of a command.
The brackets themselves would never be entered on a command line, but the item
within the brackets could optionally be included.

UPPERCASE Characters shown in upper case must be entered exactly
as shown. Uppercase is used to denote command key
words as shown in the following example:.

RENAME <filename 1 > TO <filename 2>

< class name> Angle brackets denote general terms that must be re
placed by a specific member of the class referenced. For
example, < filename> would be replaced by a valid ISIS
PDS filename and < address> would be replaced by a
valid address. The commonly used general terms are dis
cussed below. Often, a numeric suffix is added to distin
guish different items of the same class. For example,
< filename 1> and < filename 2> refer to two different
filenames.

[< option> ] Brackets enclose optional material that mayor may not
be included on the command line. For example,
[< switch >] is an optional item that may be appended to
the COpy command if certain actions are desired.

Ellipses indicate that the preceding item can be repeated.

{
< ite m > }
<item>

Braces indicate that one and only one of the enclosed en
tries must be selected. If the items are also enclosed by
brackets, they are optional and no choice is required. For
example,

{~}
indicates a choice must be made to enter either Y or N.
The enclosed choices are printed in a vertical column.

5-1



Command Dictionary

{
< item > }
<item> '"

pu nctuation

iPDS™ User's Guide

Braces followed by ellipses indicate that at least one of the
enclosed items must be selected. If the items are also en
closed by brackets, they are optional and no choice is
required. The items may be used in any order unless oth
erwise specified. For example,

U} ...
indicates that a choice must be made to include one or
more of the items A, B, C, or D.

Punctuation other than ellipses, braces, and brackets
must be entered as shown. For example, the commas and
parentheses in the following command must be entered:

SUBMIT <command name> «parm1 >,<parm2>,<parm3»

Special Command Format Terms

In addition to notational conventions, the command format descriptions in this
manual contain the following general terms that are common to many commands:

<device name> ·<source>
<filename> <destination>
<extension> < n >
<pathname> <a>

<jobfile>

These terms are described in detail in the following sections before they are used
in command descriptions.

Device Names

Device names are system-assigned names in the form:

:<device name>:

<digit>

The: < device name>: form is one form recognized by ISIS commands. Device
names are recognized for physical devices and logical devices. Physical device
names can be assigned to system-defined devices or to user-defined devices. Logi
cal device names are system defined.

Physical Devices

Physical devices are hardware units that are separate from the processor itself and
are used for input and output of data for the processor. The operating system
recognizes and handles a wide range of devices, such as disk drives, bubble
memory devices, a printer, a keyboard, and a CRT display screen.

Some of these devices, called system-defined devices, have I/O drivers included
in the operating system. Other devices, called user-defined devices, can be defined
by the user, and the user-written I/O driver can be added to the operating system.

5-2



iPDS™ User's Guide Command Dictionary

System-Defined Devices. System-defined devices are devices which can be ac
cessed without modifying the operating system. That is, system-defined devices
are predefined; I/O driver routines are provided by ISIS-PDS for accessing them.
The names assigned for system-defined devices are:

:VI: Video terminal keyboard (input only)
:VO: Video terminal screen (output only)
:81: Device connected to Serial port (input only)
:80: Device connected to Serial port (output only)
:LP: Device connected to Line Printer po-rt (output only)
:TR: Teletype Paper Tape Reader connected to Serial port (input only)
:TP: Teletype Paper Tape Punch connected to Serial port (output only)
:HR: High Speed Paper Tape Reader connected to Serial port (input only)
:HP: High Speed Paper Tape Punch connected to Serial port (output only)

The TR, TP, HR, and HP devices are the same as the SI and SO devices. These
device names were added to maintain compatibility with previous versions of the
ISIS operating system.

The operating system also provides I/O support for six disk devices: four disk
drives and two bubble memory multimodules. However, the names assigned to
these physical devices vary from the form of the preceding physical device names.
The physical disk devices are named as follows:

a Physical disk drive 0 (input and output)
1 Physical disk drive I (input and output)
2 Physical disk drive 2 (input and output)
3 Physical disk drive 3 (input and output)
4 Bubble memory multimodule I (input and output)
5 Bubble memory multimodule 2 (input and output)

Disk drive 0 is the internal disk drive, and drives I through 3 are external drives in
the order in which they are connected to the system. Bubble memory multimodule
I is the bubble memory device installed in connector 11 and bubble memory multi
module 2 is the bubble memory device installed in connector 13. See Appendix A
for installation instructions.

User-Defined Devices. User-defined devices are devices for which the user must
provide customized I/O routines. The system recognizes the following names for
user-defined devices:

:L1: User list device
:11: User console input device
:01: User console output device
:R1: User reader input device 1
:P1: User punch output device 1
:R2: User reader input device 2
:P2: User punch output device 2

The Rl , PI, R2, and P2 devices were incorporated to maintain compatibility with
previous versions of ISIS. Refer to Chapter 8 for further information on generating
custom I/O drivers for user-defined devices and on adding these drivers to the
operating system.

5-3



Command Dictionary

Logical Devices

iPDS™ User's Guide

Logical devices do not exist physically as a printer or disk drive physically exists.
They are symbolic device names that the operating system recognizes to provide
flexibility for input or output of data. These devices are assigned by the ASSIGN
command to one of the physical devices described above. Logical devices recog
nized by the operating system are the logical disk devices, the console input
device, the console output device, and the byte bucket.

The logical disk devices can be assigned to one of the physical disk drives or to one
of the bubble memory multimodules or to the byte bucket. They are named as
follows:

:FO: Logical disk device 0
:F1: Logical disk device 1
:F2: Logical disk device 2
:F3: Logical disk device 3
:F4: Logical disk device 4
:F5: Logical disk device 5

Logical disk device 0 (:FO:) is always the system default disk device, meaning that,
ifno disk device is specified, the system assumes the device :FO:. :FO: is initially as
signed to the boot device, drive 0 or bubble memory 4. By ASSIGNing :FO: to
some other disk device, any physical disk drive or bubble memory multimodule
can become the system default disk device.

The console provides interactive control over the system. It is the device from
which commands are entered and to which system messages are sent. The logical
console device names are as follows:

:CI: Console input
:CO: Console output

The ASSIGN command can be used to assign any physical input device (including
a disk file) as the console input and any physical output device (including a disk
file) as the console output.

:CI: is always a line edited file;:CO: is its associated echo file. A line edited file is a
temporary buffer in memory that contains the command line characters as they are
keyed in at the keyboard. These characters can be edited using the editing control
characters described in Chapter 3. An echo file is a file containing the echoed char
acters from the line edited file. As data is input to :CI:, it is echoed on :CO:. Both
files are always open, i.e., accessible at all times.

The keyboard (:VI:) and screen (:VO:) are initially the :CI: and :CO: respectively.
As characters are typed at the keyboard, they are echoed on the screen. However,
some other physical device, such as a disk file or a user-defined device, may be as
signed as the console I/O. A printer can also be assigned as the console output.
Whenever an end of file, generated by the ENDJOB command, is encountered on
the :CI: device, :CI: is automatically changed back to the keyboard (:VI:).

The byte bucket is a logical I/O device which acts as an infinite sink for bytes when
written to and a file of zero length when read from. It is used for data that is not to
be saved or displayed. In software development, a write only device can be useful
in simulating I/O and also in isolating a bad file without creating more bad data by
copying the suspected file to the write only device. The system name assigned to
the byte bucket is:

:88: Byte bucket

5-4



iPDS™ User's Guide

Filenames

Command Dictionary

A major purpose of the operating system is to ease the programming task of imple
menting files on disk devices. Many programs operate on files or produce files as
their output. Programs themselves are contained in files and are executed under
the operating system by entering the name of the file.

A file is a sequence of 8-bit bytes. Programs receive information by reading from
files and transmit information by writing to files. Each file must be fully contained
on one physical device. Usually, files are thought of as disk files or bubble memory
files. However, non-disk devices can also be thought of as single file devices that
can be opened, written, and read.

Filenames provide a standard way of identifying and accessing files. All system
files come with system assigned names. The user assigns names to files created
with commands such as CREDIT or COPY. The filename for a file on a non-disk
device is blank.

The term filename refers to both the name of the file and its extension, if any.
Each file on a disk must have a unique filename. The general format for a filename
is:

< name>. < extension>

where

<name>

<extension>

is a one to six character name assigned to a file. The char
acters may be alphabetic or numeric.

is a one to three character modifier created for a name.
An < extension> is optional when the file is created, but
if .<extension> is specified, it must always be used
when referencing the file.

Examples of valid filenames are:

REPORT.TXT
SYMBOL.SRC

PROG.OSJ
A.S

P3987.V1
COpy

DIR
RENAME

Default extensions are predefined extensions that certain programs assume when
no extension is provided. Default extensions are designed to save the time when
entering commands.

Examples of default extensions are:

.OBJ

.CS

.BAK

.TMA

.TMB

Output from translator program
Output from SUBMIT program
Output from CREDIT program
Temporary output from PLM80, ASM80, and CREDIT program on
Processor A
Temporary output from PLM80, ASM80, and CREDIT program on
Processor B

Default extensions are explained further under the individual commands which
assign and use them. It is recommended that such extensions not be assigned to
user created files. The extension .TMP cannot be used under ISIS-PDS. If .TMP is
assigned to a file by the user, it is automatically converted to .TMA, and it may
then conflict with one of the defaults.

5-5



Command Dictionary

Wildcard Filenames

iPDS™ User's Guide

A wildcard filename uses wildcard characters to specify multiple files which share
characters in their filenames. Several operating system commands allow the wild
card characters to replace the standard characters in a filename or extension.
Entering a command with a wildcard filename has the same effect as entering the
command more than once with a single filename each time.

The two wildcard characters are:

* Asterisk specifies a match to any number of characters.
? Question mark specifies a match to a single character. It does not match a

blank character.

For example, the asterisk can be used to match any name or any extension in the
disk directory:

ABC.* matches any filename with the name ABC and any or no extension.
*.PLM matches any filename with the extension .PLM, such as

MYPROG.PLM.

The asterisk can also be used to match the names or extensions with the same first
characters:

AB* .HEX matches any filename with AB as the first two characters of the
name and HEX as the extension. This example would match
ABC~HEX,ABXYZ.HEX, or AB.HEX.

An asterisk preceding the initial character in a name or extension is not valid, for
example, *B.HEX and *.*B are not a valid wildcard filenames. However, *.* is a
valid wildcard filename.

Each question mark substitutes for a single character that can be a wildcard match.
For example,

A?B.HEX matches any filename beginning with A and with B as the third
character and with an extension of .HEX.

A??*

Pathnames

matches any filename with a three character name beginning with
A and with an extension of any length.

A pathname uniquely specifies a file to be used in an operating system command.
It consists of the device name directly followed by the filename (if there is a
filename) without separating spaces. Single file devices, such as the line printer,
do not have filenames. Pathname is sometimes abbreviated < pn > in command
descriptions. The format for a disk file pathname is:

[:F < n >:] <filename>

where

< n > is the logical disk drive number from 0 to 5 as described
previously. If no device is specified, the default disk device
(:FO:) is assumed.

<filename> follows :F< n>: with no intervening space and consists of
two parts: a < name> followed by an < extension> .

5-6



iPDS™ User's Guide

The format for non-disk files is:

:<device name>:

where

Command Dictionary

<device name> is any valid non-disk device name as described
previously.

The following examples illustrate actual pathnames of disk files as well as a
common use of extensions.

:F1 :PROGA.SRC for the source code for a program
:F1 :PROGA.LST for the listing from the translator
:F1 :PROGA.OBJ for the object code
:F1 :PROGA.LNK for the linked object code
:F1 :PROGA for the code located at absolute addresses

Note that all these files have the same name and are distinguished only by their
extensions. Extensions allow the different file types associated with a given pro
gram to be distinguished.

The following examples show the pathnames for some of the single file devices in
the system: .

:CO: for the current console output file
:VI: for the keyboard file
:81: for the serial input file

Source

The term <source> in a command line refers to the input to the command. The
< source pn> is the input file.

Destination

The term < destination> in a command line refers to the output for the
command. The < destination pn> is the output file.

NandA

The lower case letter <n> refers to a number usually used as a suffix for some
other part of the command.

W<n>

means W followed by a number. The range of values that < n> can take on is
specified in the command where it is used.

The letter < a> refers to an alphanumeric string of characters. The range of values
that <a> can take on is defined in the command where it is used.

5-7



Command Dictionary

Jobfile

iPDS™ User's Guide

The term <jobfile> refers to a file which contains operating system command
lines and which is processed by commands such as JOB to execute a series of pro
grams in batch mode.

Command Description Formats

In addition to the conventions described above, a standard form is used in this
chapter to describe each command. This helps to access the reference information
at a glance.

The operating system commands appear in alphabetical order as a reference guide
for the experienced user. Each command begins on a new page with the command
keyword at the top outside margin on the page; the syntax is followed by a brief de
scription of the items required in the command; and short examples are given as
illustrations of the command in use. This format is shown in figure 5-1.

Some of the examples use the logical drives :F1:, :F2:, and :F3:. These examples
can usually berun on a single drive system by assigning all logical drives to drive O.

COMMAND KEYWORD
brief phrase
describing command.

COMMAND FORMAT

KEYWORD <parameter , through parameter n>

<parameter , >
••••••••• Description ••••••••••

<parameter n>
••••••••• Description ••••••••••

COMMENTS

Comments related to operating the command.

EXAMPLES

A few brief illustrations of the command line.

0161

Figure 5-1. Format of Command Descriptions

5-8



iPDS™ User's Guide

Functional Summary of Commands

Command Dictionary

The command categories discussed in Chapter 4 are repeated below for reference.
Only categories and commands described in this chapter are listed.

The System Management Group

HELP
?

The File Management Group

ATTRIB
COpy
DELETE

DIR
RENAME
@

The Device Management Group

ASSIGN
ATTACH
DETACH
IDISK
SERIAL
#
/
FUNCT <n>

The Program Execution Group

ASSIGN
ENDJOB
JOB
SUBMIT

/
ESC
FUNCT <n>

5-9



Command Dictionary

ASSIGN

Maps logical devices
to physical devices

Command Format

{
:CI:

ASSIGN :CO:
< logical disk device>

where

iPDS™ User's Guide

TO < console input device> }
TO <console output device>
TO < physical disk device>

<console input device> specifies a physical device to be used for
console input. Valid devices are :VI:, :SI:, :11:,
:BB:, or the pathname ofa disk file.

<console output device> specifies a physical device to be used for
console output. Valid devices are :VO:, :SO:,
:01:, :BB:, or the pathname ofa disk file.

< logical disk device> specifies one of the ISIS-PDS logical disk
device names. Valid names are :FO:, :F1:, :F2:,
:F3:, :F4:, and :F5:.

< physical disk device> specifies one of the ISIS-PDS physical disk
device names. Valid names are 0, 1,2,3,4, or 5.

Comments

The ASSIGN command is used to change the assignment of logical devices to
physical devices. It also displays the new assignment after the change is made.
Entering the ASSIGN command without any parameters displays a listing of the
current device assignments.

After initializing the system from drive 0, the assignments are as follows:

5-10

LOGICAL

:CI:
:CO:

:FO:
:F1 :
:F2:
:F3:
:F4:
:F5:

PHYSICAL

:VI:
:VO:

o
1
2
3
4
5

BUBBLE
BUBBLE



iPDS™ User's Guide Command Dictionary

The logical devices that can be assigned are shown in the left column and the
physical devices to which they are currently assigned are shown in the right
column. The console input and console output are initially assigned to the key
board and CRT display respectively. The logical disks :FO: through :F3: are initially
assigned to the four disk drives, 0 through 3, respectively; and logical disks :F4:
and :F5: are initially assigned to the two bubble memories, 4 and 5, respectively.

After initializing the system from the bubble memory multimodule, the assign
ments are as follows:

LOGICAL

:CI:
:CO:

:FO:
:F1 :
:F2:
:F3:
:F4:
:F5:

PHYSICAL

:VI:
vo.

4
o
1
2
3
5

BUBBLE

BUBBLE

The only difference is with the disk drive assignment. The disk :FO: is assigned to
bubble memory 4, :F1: is assigned to disk drive 0, :F2: to disk drive 1, :F3: to disk
drive 2, and :F4: to disk drive 3.

Disk drive 0 is the internal drive and disk drives 1, 2, and 3 are the optional exter
nal drives. Bubble memory 4 is the bubble memory multimodule installed at
connector 11 of the multimodule adapter board and bubble memory 5 is the
bubble memory multimoduleinstalled at connector 13 of the multimodu1e
adapter. See Appendix A for installation instructions for these devices.

The system default disk device is always :FO:. If no disk device is specified in a
pathname, the drive to which :FO: is currently assigned is used. The ISIS-PDS
system prompt in the form Ad> (or Bd> for the optional processor) shows the
number of the physical drive, d, to which :FO: is currently assigned.

Since :FO: is the system default device, it must always be assigned to a physical
device that contains a system disk with all the commands needed, or the system
does not operate correctly. For example, assume that :FO: is assigned to drive 0
and :F3: is assigned to drive 3 and that the two drive assignments are to be
switched. If :FO: is re-assigned first to drive 3, drive 3 must contain an ISIS-PDS
system disk. Otherwise, the second ASSIGN command can never be made.

Examples

The commands

ASSIGN :F3: TO 0
ASSIGN :FO: TO 3

switch the assignment for :FO:and :F3:.

The commands

ASSIGN :CO: TO :SO:
ASSIGN :CI: TO :SI:

change the console input and output devices to the device connected to the serial
port. These two commands allow a terminal connected to the serial port to provide

5-11



Command Dictionary iPDS™ User's Guide

interactive control over the system. The primitive calls :CI: and :CO: still go to the
iPDS keyboard. See the "A Command" in chapter 8.

The command

ASSIGN :CI: TO :F1 :CMDFIL.TXT

changes the console input assignment to the file, :FI :CMDFIL.TXT. The system
immediately begins reading this file and executing commands from it. The last
command in the file must be an ENDJOB command to return control to the
keyboard, :VI:, at the end of the file.

The command

ASSIGN :CO: TO :F1 :LOGFIL.TXT

changes the console output assignment to the file, :FI:LOGFIL.TXT. The system
immediately stops echoing user input and command output messages on the CRT
display and begins saving them in the file. The first text in the file is the output
from the ASSIGN command:

PHYSICAL

:VI:
:F1 :LOGFIL.TXT

LOGICAL

:CI:
:CO:

:FO:
:F1 :
:F2:
:F3:
:F4:
:F5:

o
1
2
3
4
5

BUBBLE
BUBBLE

After this command, anything typed at the keyboard would have to be typed blind
since the characters are no longer echoed on the CRT screen. This command
would be useful as the first command in a jobfile. Commands would be executed
automatically from the jobfile and a record of the output would be saved in the log
file for later examination.

5-12



iPDS™ User's Guide

Command Format

ATTACH < multimodule row>

where

Command Dictionary

ATTACH

Assigns multimodule
row to a processor

< multimodule row> specifies which multimodule row to attach: 0 to
attach the first row and 1 to attach the second row.

Comments

The ATTACH command only applies to systems with the optional iSBX Multi
module Adapter board. The adapter board has four connectors for up to four multi
module boards: two in row 0 which correspond to multimodule connectors J 1 and
J2 and two in row 1 which correspond to multimodule connectors J3 and J4. See
Appendix A for a figure showing the location of these connectors.

To use non-bubble multimodules, the multimodule row that contains the device
must be attached to the processor. Once the row has been attached to a processor,
that processor can access either multimodule on the row. On systems with a single
processor, the ATTACH command assigns the specified row to the processor. See
Chapter 9 for information on running commands on the optional processor.

Some multimodules use one multimodule connector and cover the other connec
tor in the same row. In this case, attaching a row only makes one multimodule
device available to the processor.

The operating system considers the bubble multimodule to be a sharable device
like a disk drive. Bubble multimodules need not be ATTACHed to a processor
before accessing them through the operating system. Attempting to ATTACH a
multimodule row that contains bubble memory results in an error. The error
message displayed in this case is:

61 MODULE ALREADY ASSIGNED TO BUBBLE

If a multimodule pair is already attached to a processor and the ATTACH com
mand is run again, the following message is displayed:

60 MODULE ALREADY ASSIGNED

See Chapter 8 for information on using multimodules.

Examples

The command

ATTACH 1

attaches the multimodules in Row 1 (13 and J4) to the processor.

ATTACH 0

attaches the multimodules in Row 0 rn and J2).

5-13



Command Dictionary

ATTRIB

Displays and modifies
attributes of disk files

Command Format

W<n>
I<n>
S<n>

ATTRIB <pathname> F<n> [0]
J<n>
K<n>
L<n>

where

iPDS™ User's Guide

<pathname> specifies the file whose attributes are being displayed or
modified. Wildcard characters are valid.

< n > is a numeric suffix following the particular attribute that
specifies whether that attribute is set or reset. If < n> is 0,
the attribute in question is reset, Le., turned off. If < n>
is 1, the attribute is set.

W is the write protect attribute. A file cannot be written to
with this attribute set.

is the invisible attribute. An invisible file is not displayed
in the normal listing of files on the disk. See the DIR
command.

5-14

S

F

o

is the system attribute. A file with this attribute is an inte
gral part of the operating system and should be present on
any System Disk.

is the format attribute. This attribute is used by the ISIS
PDS operating system and the IDISK command.
Normally, the user should not assign or remove this attri
bute from a file.

are user defined attributes. They can represent any type of
file the user wishes.

is the Query option which causes the ATTRIB command
to prompt before actually changing or displaying the
attributes.

<pathname>, MODIFY ATTRIBUTES?

The Q option is used if a wildcard filename is entered on
the command line. This option causes ATTRIB to prompt
for each specific pathname. Answering Y or y displays and
changes the attributes. Any other response leaves that
file's attributes unmodified and continues processing.



iPDS™ User's Guide

Comments

Command Dictionary

The command may be entered with a pathname containing wildcard characters so
that attributes can be displayed or modified for a family of files at one time.

If no attributes are entered, the current settings are displayed for all the attributes.
If attributes are changed, the new settings for all attributes are displayed after the
change is made.

Any combination of attributes can be specified on a single command. If the same
attribute is specified more than one time, the last occurrence of that attribute is
the one used by the command. All other occurrences of the same attribute are
ignored.

An error occurs when the pathname does not specify a disk file or when the disk
file specified does not exist.

The ATTRIB command cannot be used in a single drive system to change the attri
butes of a file that is not on the system disk currently in the drive.

Examples

The command

ATTRIB :F1 :MYFILE.TXT WO 10SO J1 K1 L1

sets the J, K, and L attributes while turning off the W, I, and S attributes for
MYFILE.TXT on the physical drive to which :Fl: is assigned. The new attributes
are displayed for the file.

ATTRIB :F1 :*.* WO 10SO JO KO LO

turns off the W, I, S, J, K, and L attributes for all files on the drive to which :Fl: is
currently assigned. The new attributes are displayed.

The command

ATTRIB :F4:PROG.SRC W1 11 S1 JO KO LO Q

prompts as follows before setting the W, I, and S attributes and turning off J, K,
andL.

:F4:PROG.SRC, MODIFY ATTRIBUTES? Y

Typing Y causes the attributes to be modified. The new attributes are displayed for
the file.

5-15



Command Dictionary

COpy

Transfers
files

Command Format

iPDS™ User's Guide

COpy <sourcepn>TO <desIPn>[ {~} ] [{~} ] l{ ~} ... ] l{ ~ }... ]

where

<source pn > is the pathname of the input file, the file being copied.
Wildcard characters are allowed.

TO < dest pn > is the pathname of the output file. If wildcard characters
are used in the source pathname, they must also be used
in the destination pathname. The destination filename
and extension default to the source filename and
extension. However, if allowed to default, the destination
device name must be different from the source device.
Otherwise, the P option is assumed and a single drive
copy sequence is run. See P below.

S specifies that only files with the S attribute set and the F
attribute not set is included in the COPY. This option is
used to copy system files after a system disk has been
initialized. See the ATTRIB command for further infor
mation on attributes.

N specifies that only files with the Sand F attribute not set
is included in the COPY. Only non-system and non
format files will be copied. See the ATTRIB command for
further information on attributes.

B suppresses the prompt that is normally displayed if the
destination file exists.

<dest pn > ALREADY EXISTS, DELETE?

The existing destination file is deleted and a new destina
tion file is created with a copy of the source file.

5-16

u

c

is the same as B (the prompt is suppressed) except that
the existing file is not deleted first. The new destination
file is copied over the existing destination file.

copies the attributes (except for the F attribute) that are
set for the source file. If the destination file already exists
and has any attributes set, they are retained in addition to
the source file attributes. Without the C option, the desti
nation file only has attributes that are retained from the
existing destination file if there are any. The F attribute is
not copied even with the C option.



iPDS™ User's Guide

P

Q

{~ }

Comments

Command Dictionary

is used on single drive systems to copy a file from one
disk to another disk using the same drive. The program
halts and prompts

LOAD SOURCE DISKETTE, THEN TYPE (CR)

Load the disk containing the file to be copied and press
the RETURN key. When it is necessary to switch disks,
the system halts and prompts

LOAD OUTPUT DISKETTE, THEN TYPE (CR)

The two prompts alternate until the file is copied. Then,
the program halts and prompts

LOAD SYSTEM DISKETTE, THEN TYPE (CR)

to terminate the COpy and return to the operating
system. P is automatically assumed as a default and need
not be specified if the source name and the destination
name are the same, including the device specification.

causes the program to display the prompt:

COpy < source pn > TO < destination pn >?

A response of "Y" or "y" causes the copy to take place.
Otherwise, no copy is made for the specific file displayed.
Q is used on wildcard copies to allow a decision on a file
by file basis whether or not to perform the copy.

specifies that only files with the J, K, or L attribute set are
included in the COPY. If J, K, and L are combined, they
are ANDed to determine which files' are copied. For
example, if J and K are both specified, only files with
both J and K set are copied. If J, K, and L are specified,
only files with all three attributes set are copied. See the
ATTRIB command for more information on these
attributes.

This form of the COpy command copies one file to another, See the following
command description for another form of the COPY command that appends a
series of source files.

If the source file is specified with wildcard characters, there are only two ways to
specify the destination file. In the first way, the destination filename and extension
is the same as the source filename and extension. Only the device is specified.

COPY :F1 :*.TXT TO :F3:

is the same as:

COPY :F1 :*.TXT TO :F3:*.TXT

The second way of specifying the destination name when the source contains wild
card characters allows the files to be renamed while they are being copied. The

5-17



Command Dictionary iPDS™ User's Guide

destination file is specified with the same mask as the source file. There are three
rules that determine if the source and destination names have the same mask.

1. For every position in the source wildcard name which contains an *, the cor
responding position in the destination wildcard name must contain an * also.

2. For every position in the source wildcard name which contains a ?, the corre
sponding position in the destination wildcard name must contain either an *
or a ? wildcard character.

3. For every position in the source wildcard name which contains no wildcard
character, the corresponding position in the destination wildcard name must
contain no wildcard character.

In following these rules, the command

COPY :F2:P?O?1.* TO :F4:A?O?1.*

is valid while the command

COPY :F2:P?O?1.* TO :F4:SKILL

is not valid. To summarize, the parts of the source and destination names that are
explicitly entered must be the same length, and wildcard tokens used in the source
name must be used in the same position in the destination name.

The Nand S options only affect wildcard copies. They have no effect if non
wildcard filenames are used. The J, K, and L options affect both wildcard and non
wildcard copies.

On a single drive copy sequence (using the P option), after the source diskette has
been inserted one time, the system remembers its identification. If the wrong
source is inserted after subsequent LOAD SOURCE DISKETTE prompts, an
error message is given and the user can insert the correct diskette.

WRONG DISKETTE IN DRIVE < n >
LOAD SOURCE DISKETTE, THEN TYPE -(CR)

The default for the COPY command with wildcard characters is to copy only non
format files, that is, files without the F attribute set. The S, N, J, K, and L options
define a different scope to limit the files copied.

The message

COPIED <source pn > TO <destination pn >

is displayed as each file is copied.

A COpy from the console input (:CI:) to a port or a file requires special
consideration. This copy command is not terminated until the buffer space (40
Kbytes) is exceeded, Of an end-of-file character (CTRL-Z) is detected. Be sure to
terminate COpy commands in this category with CTRL-Z.

5-18



iPDS™ User's Guide

Examples

The command

COpy :CI: TO :80: <cr>
Any text
CTRL-Z

Command Dictionary

copies the console input (Any text < cr>) to the serial output port. This command
is not completed until the end-of-file character (CTRL-Z) is sent.

The command

COPY MYFILE.TXT TO :F2:0LD.TXT

copies the file MUFILE.TXT from :FO: to :F2: and renames it to OLD.TXT.

The command

COPY:F3:*.* TO :F2:

copies all non-format files from :F3: to :F2:. None of the files are renamed.

COpy :F3:*.* TO :F2: NCQ

copies only non-system, non-format files (files without the F or S attribute set)
from :F3: to :F2:. This command copies the files as well as any attributes for those
files and prompts before each copy so specific files can be skipped and not copied.
Notice the space between :F2: and the options NCQ. Without this space, the
system would interpret NCQ as the destination filename.

COpy

Appends
files

Command Format

COpy <source pn 1 >,<source pn 2>[,<source pn 3>, ...,<source pn n >]

TO <destination pn >[ {~} ] [P]

where

<source pn 1 >

<source pn 2 >

< source pn 3 >

<source pn n>

specifies the first input file and cannot contain
any wildcard characters.

specifies the second input file to be appended to
the first and cannot contain any wildcard

. characters.

specifies the third input file to be appended to the
second and cannot contain any wildcard
characters.

specifies the last input file to be appended and
cannot contain any wildcard characters.

5-19



Command Dictionary

TO <destination pn >

B

U

P

Comments

iPDS™ User's Guide

specifies the output file that contains all the
inputs in the order they are entered. The < desti
nation pn> must not be the same as any of the
sources. It cannot contain any wildcard
characters.

suppresses the prompt that is normally displayed
when the destination file already exists.

<destination pn > ALREADY EXISTS,
DELETE?

The existing destination file is deleted and a new
destination file is created copied from the source
file.

is the same as B (the prompt is suppressed)
except that the existing file is not deleted first.
The source file is copied over the existing desti
nation file without deleting the file first.

is used on single drive systems to copy a file from
one disk to another disk using the same drive.
The program halts and prompts

LOAD SOURCE DISKETTE, THEN TYPE (CR)

The disk containing the file to be copied is then
loaded the and the RETURN key pressed. When
it is necessary to switch disks, the system halts
and prompts

LOAD OUTPUT DISKETTE, THEN TYPE (CR)

The two prompts alternate until the file is copied.
Then, the program halts and prompts

LOAD SYSTEM DISKETTE, THEN TYPE (CR)

to terminate the COpy and return to the operat
ing system. P is assumed as a default and need
not be specified if the source name and the desti
nation name are the same, including the device
specification.

This form of the COpy command appends each source file to the previous source
file instead of making a copy of a single file as with the previous form of the COPY
command.

If a comma (,) appears in the source pathname for the COpy command, it is as
sumed that the source files is appended to one another in the order in which they
are entered.

None of the pathnames can contain wildcard characters. The destination pathname
must be different from any of the source files.

The command terminates and returns to the operating system if any source file is
missing.

The message

APPENDED (source pathname > TO (destination pathname >
is displayed on the console output device after the copy is complete for each
source file.

5-20



iPDS™ User's Guide

Examples

The command

Command Dictionary

COPY FILE1 ,FILE2,FILE3 TO FILE4

first copies FILE! to FILE4 and then appends FILE2 and FILE3 to the output in
FILE4. All files have a blank extension and are on the physical drive to which :FO:
is assigned.

COPY :F2:FILE1 ,:F4:FILE2,:F3:FILE3 TO :FO:FILE4

performs the same action except that the input files are located on different logical
drives.

DELETE

Removes files
from the disk

Command Format

DELETE < path name 1> [pathname 2> ,..., < pathname n»l [{~} ... ]

where

< path name 1 > thru
< pathname n>

Q

P

specifies the file or files to be removed from the
disk. These specifications can contain wildcard
characters.

causes the program to display the prompt

<pathname>, DELETE?

for each file before the file is deleted. A response of
"Y" or "y" causes the file to be deleted.
Otherwise, the file is not deleted and processing
continues. Q is used on wildcard deletes to allow a
decision on a file by file basis whether or not to
delete the file. It can also be used on single file
deletes. If a sequence of files is specified, the
prompt is only for the last file specification.

is used on single drive systems to delete a file from
a disk other than the system disk using one drive.
The program halts and prompts

LOAD SOURCE DISK, THEN TYPE (CR)

The the disk containing the file to be deleted is
then loaded and the RETURN key is pressed .
When the delete is done, the program stops and
prompts

LOAD SYSTEM DISK, THEN TYPE (CR)

to terminate the delete and return to the operating
system.

5-21



Command Dictionary

Comments

As each file is deleted, the message

<pathname>, DELETED

is displayed on the console output device.

iPDS™ User's Guide

If the pathname does not specify a disk file or if the disk file specified does not
exist, an error message is displayed on the console output device.

Examples

The command

DELETE FILE1.TXT

removes FILEI.TXT from the drive to which :FO: is currently assigned.

DELETE :F4:PROG? .SRC Q

removes all files from :F4: with an extension of .SRC and a filename beginning
with the letters PROG and with any character in the fifth position. This command
also prompts before deleting any files. Specific files that should not be deleted can
be skipped.

For example,

:F4:PROGA.SRC, DELETE? Y
:F4:PROGA.SRC, DELETED
:F4:PROGB.SRC, DELETE? Y
:F4:PROGB.SRC, DELETED
:F4:PROGZ.SRC, DELETE? N

By responding with a Y to the first two prompts and an N to the third prompt, the
first two files are deleted and the third file remains on the disk.

The command

DELETE :F4:*.CSD, :F4:* .BAK Q

prompts for the :F4:*.BAK files but does not prompt for the :F4:*.CSD files.

5-22



iPDS™ User's Guide

Command Format

DETACH < multimodule row>

where

Command Dictionary

DETACH

Releases multlrnodule
row from processor

< multimodule row> is 0 to detach the first row of multimodules and 1 to
detach the second row of multimodules.

Comments

This command only applies to systems with the optional Multimodule Adapter
board. The adapter board has four connectors for up to four multimodule boards:
two in row 0 which correspond to multimodule connectors J1 and J2 and two in
row 1 which correspond to multimodule connectors J3 and J4. See Appendix A for
the location of these connectors. Once the row has been attached to a processor,
that processor can access either multimodule on the row.

The DETACH command releases the specified row from the processor on which
the command runs. See Chapter 9 for information on running commands on the
optional processor.

The operating system considers the bubble multimodule as a sharable device like a
disk drive. Bubble multimodules need not be attached to or detached from a
processor. Attempting to DETACH a multimodule row that contains bubble
memory results the following error message being displayed:

61 MODULE ALREADY ASSIGNED TO BUBBLE

Examples

The command

DETACH 0

detaches the multimodules in Row 0 (11 and J2) from the processor executing the
command. See Chapter 9 for more information on dual processing.

5-23



Command Dictionary

DIR

Displays index
of disk files

COMMAND FORMAT

DIR [TO <pn>)[FOR <pn>)[<n>) [I] [{ ~ } ... ] [{n... ]
where

iPDS™ User's Guide

5-24

TO <pn >

FOR <pn>

<n>

{~ }

F

o

P

specifies the device or file pathname to receive the output of
the directory listing. The default is the current console
device (:CO:). The TO clause may only appear once.

displays the directory listing only for the file or files
specified. The < pn > may contain wildcard characters,
thereby specifying more than one file. The < pn> must
specify a complete filename; a logical drive specification is
not allowed. See the < n> option below for specifying a logi
cal drive. The FOR clause may only appear once.

is a digit from 0 to 5 which specifies the logical disk device
being indexed. The default for < n> is 0 for :FO:. Only one
drive can be specified. If more than one < n> is entered on
the command line, the last one entered is used and the
others are ignored. If < n> is specified and the FOR clause
also gives a device name, < n> overrides the device given
in the FOR clause.

specifies that files with the Invisible attribute set are to be
included in the list with the other files.

, .

specifies that only files with the user-defined J, K, or L attri
bute are to be listed. If J, K, and L are combined, they are
ANDed to determine which files are displayed. For
example, if J and K are specified, only files with both J and
K attributes set are included in the directory listing. See the
ATTRIB command for more information on these
attributes.

specifies a Fast listing. Only the filenames, extensions, and
the summary line are given.

specifies a single column listing of files. Otherwise, the
output is double column.

is used on single drive systems to stop the program after it is
loaded into memory, allowing another disk to be inserted.
The prompt

LOAD SOURCE DISK, THEN TYPE (CR)

is issued. The the disk requiring a directory listing is then
loaded and the RETURN key is pressed. When the directory
is finished, the system prompts



iPDS™ User's Guide

z

Comments

Command Dictionary

LOAD SYSTEM DISK, THEN TYPE (CR)

Remove the source disk, insert the system disk, and press
the RETURN key.

specifies a listing of only the summary line. The information
on files is omitted. The Z option overrides other options
given.

The DIR command lists information about the files on a disk to the output device
specified in the TO clause. If no device is specified, the current console device
(:CO:) is assumed.

Each entry in the directory listing contains the following information:

• Filename and extension

• Number of bytes in the file

• Number of disk blocks allocated to the file

• Attributes currently set for the file

The last line is a summary containing the number of blocks available on the disk
and the total number of blocks available on the disk. A directory listing is illustrat
ed in Chapter 4.

Examples

The command

DIR 1

displays a listing of the files on logical disk :Fl: except files with the I attribute set.

The command

DIR 1 I

performs the same action except that files with the I attribute set are also displayed
resulting in a listing of all files, i.e., all files are displayed from the disk.

DIRTO :LP:

lists the files currently on :FO:on the line printer.

DIR FOR :FO:PROG? .SRC JKL

displays a list of files on :FO:which meet the following criteria:

• Have the J, K, and L attributes set

• Have an extension of .SRC

• Have a filename beginning with PROG and with any character as the fifth
letter.

5-25



Command Dictionary

The command

. DIRZ

iPDS™ User's Guide

displays only the summary line for :FO: showing the number of blocks in use on
the disk.

DIROOF

lists only the filenames and extensions in single column format for files on :FO:.

ENDJOB

Terminates a file
used as console input

Command Format

ENDJOB [<comment>]

where

(comment)

Comments

is user defined. For example, the comment can contain the
job name.

The ENDJOB command is used to terminate a file currently being used as console
input, so that an end of file error (See ISIS error 29 in Appendix B.) does not
occur. An end of file error causes a software reset and the operating system is
reloaded.

ENDJOB is automatically appended to the end of the file created by the JOB
command. It should also be added as the last command of any job file not created
by the JOB command. For example, if the user creates a file with the CREDIT text
editor to be run by the / command, ENDJOB should be the last command in the
file.

The ENDJOB command is an example of an ISIS-PDS command that is always
resident in memory. There is no file that corresponds to this command, so it need
not be loaded into memory to be run.

Examples

The command

ENDJOBJOB9

terminates the JOB file with the comment showing that the file terminated is JOB9.

ENDJOB

appears as the last command in a JOB file to terminate that file.

5-26



iPDS™ User's Guide

Command Format

HELP[J ~~:~mand name> I]1<tOPIC>

where

Command Dictionary

HELP

Displays help
information for ISIS-PDS

< n > is the number, up to three digits, of an ISIS error
message.

<command name> is the name ofa valid ISIS command.

< topic> is a term for which help is available.

Comments

Entering the HELP command without specifying any parameters causes every
ISIS-PDS command and topic for which help is available to be displayed.

Entering the command with a valid error number causes the error message to be
displayed on the screen.

Entering the command with a valid ISIS command name causes the command
format and related information to be displayed on the screen.

Entering the command with a valid topic term causes information about that topic
to be displayed on the screen.

Examples

The command

HELP COPY

displays the format and a description of the COPY command.

HELP 29

displays the text of error message 29.

HELP

displays a list of all topics and commands for which help is available.

An example showing the output of the HELP command is given in Chapter 4.

5-27



Command Dictionary

IDISK

Initializes a disk
for ISIS-PDS use

Command Format

IDISK :F<n~:<volume id>[.<vol ext>l[ {~} ... ]

where

:F < n >: specifies the logical disk to be initialized.

iPDS™ User's Guide

<volume id >. <vol ext> specifies the volume name to be assigned to
the disk being initialized as a one- to six- char
acter name. The extension (one- to three
characters) is not required. No blank spaces
are allowed between the device name and the
filename.

P is the pause option for initializing a disk on a
single drive system. The following prompt is
displayed

LOAD OUTPUT DISKETTE, THEN TYPE
(CR)

After inserting the disk to be initialized, press
the RETURN key. When required, the prompt

LOAD SYSTEM DISKETTE, THEN TYPE
(CR)

is displayed. Place the system disk back in the
drive and press the RETURN key to return to
the operating system.

S

Comments

causes a system disk to be created. The files
ISIS.LAB, ISIS.FRE, ISIS.DIR, ISIS.TO,
ISIS.PDS, and ISIS.CLI are put on a system
disk. Otherwise, a non-system disk is created.
When a non-system disk is initialized,
ISIS.PDS and ISIS.CLI are omitted.

Single drive mode is specified by the P option, but is also assumed if :FO: is
specified.

A non-system disk can be made into a system disk without reinitializing it by using
the COPY command with the C option to copy ISIS.PDS and ISIS.CLI from a
system disk. The C option does not copy the F attribute for these two files. The
ATTRIB command should be used to assign the F attribute to the files.

To IDISK from a drive other than physical drive 0, first use the ASSIGN command
to change the assignment of :FO: to the physical drive desired as the IDISK input.
Then, the IDISK command uses the alternate physical drive as the input for files
required.

5-28



iPDS™ User's Guide

Examples

The command

IDISK :F3:NEWVOL S
SYSTEM DISKETTE

Command Dictionary

initializes a system disk on :F3: named NEWVOL. The message SYSTEM DIS
KETTE indicates that the S option was used.

IDISK :F2:VOL2
NON-SYSTEM DISKETTE

initializes a disk on :F2: called VOL2 as a non-system disk.

The command

IDISK :FO:VOL3
SYSTEM DISKETTE

initializes a disk on the logical disk device :FO: assuming the P option. The follow
ing message is displayed:

LOAD OUTPUT DISKETTE, THEN TYPE (CR)

At the end of the initialization, the following message is displayed:

LOAD SYSTEM DISKETTE, THEN TYPE (CR)

Remove the new system disk and insert the old system disk and press RETURN
or simply press RETURN since the newly created disk is also a system disk.

5-29



Command Dictionary

JOB

Batches commands and
executes from a file

Command Format

JOB [<jobfile >]

where

iPDS™ User's Guide

<jobfile> is the pathname of the file that contains the commands speci
fied by the user. If no pathname Is specified,
:FO:JOB<a>.CSD is the default where <a> is A for Proces
sor A and B for Processor B.

Comments

After entering the JOB command, the equal sign prompt (=) appears. Commands
can be entered as usual; however, they are saved in memory and are not executed
immediately.

There are three ways to end this mode of entering commands that are saved in
memory:

• Press the RETURN key two times in a row to save the commands in the file
specified by <jobfile>. An END JOB command is appended to the last com
mand entered, and the commands are executed from <jobfile> in the order
in which they were entered.

• Press CTRL-Z to return to standard input mode and delete any commands al
ready entered. No job file is created.

• Press the ESC key to save the commands previously entered in the file speci
fied by <jobfile>. An END JOB command is appended to the last command
entered, but the file is not executed. The user is returned to the standard
input mode.

If a job file is created, it can be executed later with the ASSIGN command or the /
command, or it can be edited first and then executed. If the file is named in the
form

JOB<n>.CSD

where <n> is a digit from 0 to 9, the file can be executed as a user defined
function. See FUNCT < n> .

If the commands entered overflow the available memory, the effect is the same as
if ESC had been typed. The commands are saved in the file specified by <jobfile >
with the ENDJOB command appended to the end of the file, and the system is re
turned to the standard input mode.

The JOB command is ignored if it appears in a command file, Le., nesting of JOB
commands is not allowed. Note that the SUBMIT command allows nesting.

5-30



iPDS™ User's Guide Command Dictionary

An error occurs if the system cannot open the file after the RETURN or ESC key
is pressed and the user is prompted to enter a new filename.

The JOB command is another command that is always in memory. It does not
have to be loaded from a disk file to be run.

Examples

The command

JOB :F1 :JOB1.CSD

accepts keyboard input in batch mode to be saved in a file on :Fl: named
JOBl.CSD.

JOB

accepts keyboard input in batch mode to be saved in a file on :FO: named
JOBA.CSD if run on Processor A and JOBB.CSD if fun on Processor B. Processor
A is the processor that comes with the system, and Processor B is the optional pro
cessor that can be added. See Chapter 9 for more information on dual processing.
If the same command is run again, it overwrites the existing JOBA.CSD.

JOB JOB9.JOB

accepts keyboard input in batch mode to be saved in a file on :FO: named
JOB9.JOB.

JOB :F4:JOB2

accepts keyboard input in batch mode to be saved in a file on :F4: named JOB2
with a blank extension.

The command

JOB ABOOT.CSD

creates a jobfile on :FO: that is executed every time that Processor A is initialized.
A jobfile named BBOOT.CSD is executed every time Processor B is initialized.
ABOOT.CSD and BBOOT.CSD must contain an ENDJOB command so that con
trol is returned to the keyboard after the configuration jobfile is run.

5-31



Command Dictionary

RENAME

Changes the filename or
extension of a disk file

Command Format

RENAME <old path name > TO < new path name >

iPDS™ User's Guide

where

<old path name > specifies the old name of the file to be changed. Wild
card characters are not allowed. The file being
renamed must not be write protected. Use the
ATTRIB command to remove write protection.

<new pathname> specifies the new name for the file. The <new path
name> must specify the same physical device as the
source. Wildcard characters are not allowed.

Comments

The two pathnames must specify the same physical disk device; however, the logi
cal disk device can differ. For example, :Fl: can be used for the old pathname and
:F2: for the new pathname as long as :Fl: and :F2: are assigned to the same physical
device. If the new pathname specifies an existing file (new pathname already
exists), the program prompt:

<new pathname> ALREADY EXISTS, DELETE?

Type "Y" or "y" to delete the existing file. Otherwise, the program terminates, re
turning the system prompt.

The RENAME command cannot be used on a non-system disk in single drive
systems. To rename a file on a non-system disk in a single drive system, use the
COpy command with the P option. Then, use the DELETE command with the P
option to remove the original file. An example is given in Chapter 4 for this
procedure.

The message

RENAME <old filename> TO <new filename>

is displayed when each file is renamed.

Examples

The command

RENAME PROGA.SRC TO PROGB.SRC
RENAMED PROGA.SRC TO PROGB.SRC

renames the file PROGA.SRC to PROGB.SRC on :FO:.

RENAME :F3:NEWDOC.TXT TO :F3:0LDDOC.TXT
RENAMED :F3:NEWDOC.TXT TO :F3:0LDDOC.TXT

renames the file NEWDOC.TXT to OLDDOC.TXT on :F3:.

5-32



iPDS™ User's Guide,

Command Format

Command Dictionary

SER~Al

Configures the 8251 USART and the 8253
Timer for the serial output port

There are two formats for the SERIAL command: one for synchronous mode and
one for asynchronous mode. For synchronous mode, the format is:

SERIAL S [P= <a> W= <n1 > E=O C= <n3> 1= <n4>]

where

S

P=<a>

W= <n1 >

E=O

C= <n3>

1=<n4>

specifies the synchronous mode of data transfer. P, W, E, C,
and I are the only valid parameters in synchronous mode.

specifies the parity. The value of < a> can be

E for even parity
o for odd parity
N for no parity

The default is P=N.

specifies the word size. The value of < nl > can be

5 for a 5-bit word size
6 for a 6-bit word size
7 for a 7-bit word size
8 for an 8-bit (one byte) word size

The default is W = 8.

specifies the source of the synchronization character. The
value of 0 is for internal synchronization. The iPDS system
does not support external synchronization.

specifies the use of a synchronization character. The value
of <n33> can be

ofor double synchronization character
1 for single synchronization character

The default is C = 0, and the two default synchronization
characters are both 50H. The command prompts for the
value of the character or characters to be used for
synchronization.

specifies an 8251 USART command as a numeric value. If
no value is specified, the default command is 37H. See the
Component Data Catalog for a description of the commands.

5-33



Command Dictionary

For asynchronous mode, the format is:

SERIAL A[P= <a> S= <n1 > B= <n2> W= <n3> 1= <n4>]

where

iPDS™ User's Guide

5-34

A

P=<a>

s= <n1 >

B= <n2>

W=<n3>

1=<n4>

specifies the asynchronous mode of data transfer. P, S, W,
and B are the only valid parameters in asynchronous mode.

specifies the parity. The value of <a> can be:

E for even parity
o for odd parity
N for no parity

The default is P=N.

specifies the number of stop bits. The value of < n1 > can
be:

1 for one stop bit
1.5 for one and a half stop bits
2 for two stop bits

The default is S=2.

specifies the baud rate. The value of < n23 > can be:

110 for a 110 baud rate
150 for a 150 baud rate
300 for a 300 baud rate
600 for a 600 baud rate

1200 for a 1200 baud rate
2400 for a 2400 baud rate
4800 for a 4800 baud rate
9600 for a 9600 baud rate

19200 for a 19200 baud rate

The default is B= 9600.

specifies the word size. The value can be:

5 for a 5-bit word size
6 for a 6-bit word size
7 for a 7-bit word size
8 for an 8-bit (one byte) word size

The default is W=8.

specifies an 8251 USART command as a hexadecimal value.
If no value is specified, the default command is 37H. See the
Component Data Catalog for a description of the commands.



iPDS™ User's Guide

Comments

Command Dictionary

The SERIAL command programs the 8251 USART and the 8253 Timer chips for
synchronous or asynchronous transmission or reception of data. The user should
understand the 8251 and the 8253 before using this command. Refer to the current
edition of the Intel Component Data Catalog for further information on the 8251
and the 8253.

In some applications, the SERIAL command could be in the ABOOT.CSD file so
that the USART is automatically configured whenever the system is initialized.
Two ASSIGN commands could also appear to assign the ISIS-PDS console device
(:CO: and :CI:) to :SO: and :SI:.

Any parameters thatare left off the command line take on the default values as in
dicated previously.

Numeric values for the B and I parameters and for synchronization characters can
be entered in any number base: binary (B), octal (0 or Q), decimal (D), or hexa
decimal (H) by appending the base suffix shown in parentheses to the numeric
value. Hexadecimal values beginning with the digits A to F should be entered with
leading zeroes. The default base, if no suffix is appended, is decimal.

Examples

The command

SERIAL S P=E W=5 E=O C=O

configures the serial port to synchronous mode with even parity, a word length of
5 bits, external synchronization on output, and two bytes used for synchroniza
tion. The command prompts twice for the two synchronization characters to use. If
C = 1 were specified, only one prompt would be given.

INPUT SYNC CHAR (NUMERICAL VALUE) = > 20H
INPUT SYNC CHAR (NUMERICAL VALUE) = > 20H

The ASCII code for the space character (20H) is entered for both characters.

The command

SERIAL A P=N S=2 W=8 8=1200

configures the port for asynchronous mode, with no parity, 2 stop bits, a word
length of8 bits, and a baud rate of 1200.

5-35



Command Dictionary

SUBMIT

Executes commands
from a disk file

Command Format

iPDS™ User's Guide

SUBMIT <pn> [«parameterO>,<parameter 1 >, ...,<parameter9>)]

where

<pn>

< parameter 0 >
thru < parameter 9 >

Comments

is the pathname of the file containing the command
lines to be executed automatically. If no extension
is supplied, SUBMIT assumes an extension of
.CSD. A file with a blank extension can be used by
typing the filename followed by a period L). More
details on the content of this file follow.

are the values (up to 31 characters) assigned to
formal parameters in the command file. Parameters
are discussed in more detail in the following
section.

To run the SUBMIT command in the most straightforward way:

1. First, use CREDIT to create a text file containing an operating system com
mand on each text line. The command should be typed exactly as it would
normally be entered from the keyboard including the RETURN key at the
end of the line. If any keyboard responses are expected by the command,
these should also be entered in the order they would normally occur.

2. Type the SUBMIT command line with the pathname of the text file contain
ing the commands. The commands in the text file are run in the order in
which they appear in the file.

The following sections describe the operation of the SUBMIT command in more
detail.

Chapter 4 contains an example of the SUBMIT command and the JOB command
where both are compared.

The Input File

The input file specified in the SUBMIT command line defines the sequence of
ISIS-PDS commands to be executed. It is referred to as the Command Sequence
Definition file and has a default extension of .CSD. Some ISIS commands have re
strictions when used in a .CSD file. For example, the DEBUG command cannot
be run under SUBMIT.

The .CSD file must contain commands in the exact sequence they are to run. The
commands cannot· be out of order. Also, any keyboard responses required by a
specific command must follow that command line and must be in the order expect
ed by that command.

5-36



iPDS™ User's Guide Command Dictionary

The commands in the .CSD file may contain placeholders which name constant or
variable values, i.e., formal parameters.

The SUBMIT command reads the .CSD file specified in the command line and
copies it to a temporary file substituting the actual values of parameters. This file is
referred to as the Command Sequence file and has the same filename as the .CSD
file with an extension of .CS. The .CS file is deleted when the SUBMIT command
is finished.

Parameters

The SUBMIT command allows up to 10 formal parameters to appear in the .CSD
file. Each formal parameter appears in place of an actual value of the form:

%<n>

where <n> is a digit 0 to 9 and no spaces separate the % and the digit.

The actual parameters (the values for the formal parameters) are specified in the
SUBMIT command line as < parameter 0> through < parameter 9> . Each actual
parameter can be up to 31 characters. The actual parameters are enclosed in paren
theses and are separated from one another by a comma.

To use a comma, a space, or a parentheses in a parameter, enclose the parameter
in single quotes. For example,

(IDATE: May 15,1981 ',TIME: 10:00')

The two spaces after DATE:, the space after MAY, the comma and space after 15
are treated as part of the parameter while the comma after 1981' is a delimiter and
separates the first parameter from the second. The value that appears in the .CS
file for the first formal parameter is:

DATE: May 15,1981

The value that appears in the .CS file for the second formal parameter is:

TIME: 10:00

To use quotes in a parameter, type a pair of extra single quotes. One single quote
appears as part of the parameter.

For example, the parameter:

TIME'

should be entered as:

lilTIME'"

To skip one of the formal parameters and supply no actual value for it, type two
adjacent commas in the parameter list on the SUBMIT command line.

5-37



Command Dictionary iPDS™ User's Guide

For example, assume that the file COPY.CSD, the input to the SUBMIT
command, contains the following:

ATTRIB :F1 :%0 WO
DELETE :F1 :%0
COPY %0 TO :F1 :%0
ATTRIB :F1 :%0 W1

This example assumes that :FO: and :Fl: are assigned to different physical drives.
A SUBMIT command line toexecute this file is:

SUBMIT COPY(PROGA)

The file COPY.CS, created by the SUBMIT program, would then contain:

ATTRIB :F1 :PROGA WO
DELETE :F1 :PROGA
COPY PROGA TO :F1 :PROGA
ATTRIB :F1 :PROGA W1
:FO:SUBMIT RESTORE :FO:COPY.CS (:VI:)

The last command in the sequence, inserted by SUBMIT at run time, terminates
the SUBMIT command and returns to keyboard input mode. It is discussed in fol
lowing sections.

Interactive Usage

IfCTRL-E appears in a .CSD file, the current console input device (the .CSD file)
is changed to the keyboard. Then, the user may enter input from the keyboard.
Typing CTRL-E at the keyboard restarts the SUBMIT command sequence.

To enter CTRL-E in the .CSD file, either the literalizing feature or the hexadeci
mal entry feature of the CREDIT text editor must be used. See the ISIS CREDITM

CR T-Based Text Editor User's Guide for instructions on entering characters literally
or entering hexadecimal values. The hexadecimal value for CTRL-E is 05H.

Do not edit the .CSD file when entering data at the keyboard during a CTRL-E
portion of SUBMIT.

Example

Assume that the input file to SUBMIT contains the following command lines:

CREDIT :F3:PROGA.SRC
CTRL-E
ASM80 :F3:PROGA.SRC
LOCATE :F3:PROGA.OBJ
:F3:PROGA

The SUBMIT command begins executing commands read from the file. When the
CTRL-E is read, the SUBMIT program stops reading the file for input and
switches to keyboard input. The user can interactively edit the source program
text file at this time. Only command line editing is allowed when the CREDIT text
editor is run under SUBMIT. After the editing session is ended, the user enters
CTRL-E at the keyboard to switch back to reading the file for operating system
input. SUBMIT resumes reading at the third line and assembles, locates, and runs
the program.

5-38



iPDS™ User's Guide

Advanced Usage

Command Dictionary

This section describes how SUBMIT processes the input .CSD file. Because of the
way that SUBMIT processes the command file, SUBMIT commands can be nested
to any level in the .CSD file. Processing of a nested .CSD file is illustrated in the
example.

In general, the steps in executing a .CSD file are:

1. SUBMIT creates a .CS file and copies the .CSD file to it, substituting actual
values for formal parameters.

2. SUBMIT generates a special command (a RESTORE form of the SUBMIT
command) for the end of the .CS file that points to the most previous
console input device. Thus, when SUBMIT finishes processing the .CS file,
it can return either to the keyboard or to the correct line of the next higher
nested SUBMIT file.

These two steps are described in detail in the rest of this section.

When SUBMIT first begins, it copies the .CSD file, the input file created by the
user, to the .CS file substituting actual parameters for formal parameters. Also,
when creating the .CS file, SUBMIT attaches a command at the end of the file of
the form:

SUBMIT RESTORE <pn) «previous input>[,<block>,<byte)])

where

< pn > is the pathname of the current console input device,
i.e., the name of the current .CS file.

« previous input» is the pathname of the previous console input
device enclosed in parentheses. If SUBMIT was run
from the keyboard, this would be :VI: to return to
the keyboard for further input. If SUBMIT was
nested (run from another .CS file), the previous
input would be the pathname of the .CS file that in
voked SUBMIT.

,< block> is only specified if the previous input is a .CS file.
The < block) identifies the block in the previous
.CS file where SUBMIT left off. Thus, SUBMIT can
return to the command following the nested
SUBMIT command. Blocks are 128 bytes each start
ing at block O.

,< byte> is only specified if the previous input is a .CS file.
The < byte3 > identifies the byte within the block
specified where SUBMIT left off. Thus, SUBMIT
can return to the command following the nested
SUBMIT command. The byte count starts at byte 0
to byte 127 for each block.

When the RESTORE version of the SUBMIT command is executed from a .CS
file, that .CS file is deleted, and control returns to the previous console input
device.

5-39



Command Dictionary

The execution sequence of nested SUBMIT files is summarized as follows:

I. Read the SUBMIT command line nested in the current .CS file.

iPDS™ User's Guide

2. Create the .CS file for the nested SUBMIT .CSD file substituting actual
values for formal parameters.

3. Place the RESTORE version of the SUBMIT command at the end of the new
.CS file to return to the command after the nested SUBMIT.

4. Change the console input to thenew .CS file.

5. Execute the new .CS file until the RESTORE version of the SUBMIT com
mand is run.

6. Delete the new .CS file and return to the old .CS file to finish execution.

The highest level of the .CS file returns control to the keyboard by running the RE
STORE version of SUBMIT with :VI: as the previous input.

Normally, the RESTORE version is generated by the SUBMIT command and is
never entered by the user. However, if a SUBMIT command is terminated early
because of an error, it can be restarted after the error is corrected by entering the
RESTORE version of the command from the keyboard. The user must calculate
the correct block and byte of the .CS file to continue executing in the correct place.

For example, if the SUBMIT command terminates because the drive specified for
a file to be copied is offline, the command can be restarted at the COPY command
after the drive is made available.

The following is an example of processing a nested SUBMIT command. For this
example, the file COPY.CSD from the example in the section "Parameters" is
used. This example assumes that :FO: and :FI: are ASSIGNed to different physical
devices. It contains the following text:

ATTRIB :F1 :%0 WO
DELETE :F1:%0
COPY %0 TO :F1 :%0
ATTRIB :F1 :%0 W1

To execute this .CSD file, a SUBMIT command must be issued passing the actual
value of the formal parameter %0. For this purpose, the file BACKUP.CSD is
created containing the following two SUBMIT commands:

SUBMIT COPY(PROGA)
SUBMIT COPY(PROGB)

The SUBMIT command to start execution is:

SUBMIT BACKUP

The .CSD· extension is assumed in this command line. The SUBMIT command
creates the file BACKUP.CS containing the following text:

SUBMIT COPY(PROGA)
SUBMIT COPY(PROGB)
:FO:SUBMIT RESTORE :FO:BACKUP.CS(:VI:)

5-40



iPDS™ User's Guide

The first SUBMIT command is run creating the file COPY.CS as follows:

ATTRIB :F1 :PROGA WO
DELETE :F1 :PROGA
COPY PROGA TO :F1 :PROGA
ATTRIB :F1 :PROGA W1
:FO:SUBMIT RESTORE :FO:COPY.CS{:FO:BACKUP.CS,O,19)

Command Dictionary

When the last command in this file (the RESTORE version of SUBMIT) is run,
COPY.CS is deleted and control returns to the 19th byte in block 0 of the file
BACKUP.CS, i.e., the second SUBMIT command in the file BACKUP.CS.
SUBMIT calculates the correct byte and block for return and generates the RE
STORE version of the SUBMIT command.

The second SUBMIT command creates a second COPY.CS file as follows:

ATTRIB :F1 :PROGB WO
DELETE :F1 :PROGB
COpy PROGB TO :F1 :PROGB
ATTRIB :F1 :PROGB W1
:FO:SUBMIT RESTORE :FO:COPY.CS{:FO:BACKUP.CS,O,39)

When the last command in this file is run, COPY.CS is deleted again and control
returns to the 39th byte in block 0 of the file BACKUP.CS, i.e., the third command
line in the file BACKUP.CS:

:FO:SUBMIT RESTORE :FO:BACKUP.CS{:VI:)

The third command is the RESTORE version of SUBMIT for the highest level of
nesting. It returns control to the keyboard, :VI:.

Technical Information

Any program running under the ISIS-PDS operating system and receiving its
input from the :CI: device can be run by SUBMIT, if there is sufficient buffer
space for all the open files.

The ISIS-PDS operating system allows six disk files to be open at a time. Each
open file requires two to three 128-byte buffers from the user's memory addresses
3180H to 3980H. See Chapter 8 for a detailed discussion of buffer space
requirements.

Regardless of the number of nested SUBMITs, the SUBMIT command itself re
quires only one open file at a time and, thus, 128 bytes from the user's buffer
space. However, some programs such as CREDIT or IPPS can open additional
files. When running these programs under SUBMIT, the six open file limit can be
exceeded creating an error.

Error Messages

The SUBMIT command produces three error messages in addition to those pro
duced by the ISIS-PDS operating system. All three are fatal errors.

ILLEGAL SUBMIT PARAMETER occurs' when the parameter contains
illegal characters. For example, parame
ters are not enclosed in single quotes
when the quotes are required.

5-41



Command Dictionary

ARGUMENT TOO LONG

TOO MANY PARAMETERS

iPDS™ User's Guide

occurs when the parameter on the com
mand line is longer than 31 characters.

occurs when more than 10 values are
specified on the command line.

In addition, the use of the pause option (P) for the COPY, DIR,
and DELETE commands is prohibited when these commands are
run from a SUBMIT file. No error or warning message is issued;
however, use of the option can destroy files on one or more of the
disks.

Examples

The command

SUBMIT SRCOBJ(PROGA)

runs the commands in file SRCOBJ.CSD on :FO:. The first parameter in this file
takes on the value PROGA.

See Chapter 4 for an example of developing and creating a SUBMIT file.

?.
Displays the version
of the command line interpreter

Format

?

Comments

The? command displays the version number of the Command Line Interpreter
(CLI). The display is of the form:

CLI Vn.m

where n.m is replaced by the actual version number.

The? command is always present in memory. It does not correspond to a disk file
containing the? program like the COPY command.

The? command must be followed by the RETURN key.

Examples

If the 1.0 version of the CLI is running the display is:

?
CLI V1.0

5-42



iPDS™ User's Guide

Command Format

@ <pathname> [4]

where

< pathname > specifies a file to be displayed on the screen.

Command Dictionary

@

Displays the contents
of a file on the screen

4 specifies that tabs in the text file is displayed as 4 spaces in
stead of8.

Comments

After entering the command, the first 19 lines of the file are output to the screen
and a pause occurs. Any of the following characters can then be entered at the
keyboard:

P switches to page mode and continues. The file is displayed 21
lines at a time. Pressing any character causes the next 21 lines to
be displayed and then halt.

S switches to slow scroll mode and continues. The file is displayed
continuously scrolling at a slow speed.

F switches to fast scroll mode and continues. The file is displayed
continuously scrolling at a fast speed.

E exits back to the operating system.

L switches to line-by-line mode and continues. The file is displayed
a line at a time, pausing after each line. Press any character to
continue.

B backs up 1024 characters and continues. The B command can be
pressed repetitively to return to the beginning of the file.

Z prints the last lK bytes of the file, sets the mode to F, and halts.

CTRL-S pauses the display. Press any character to continue.

< a > any other character continues the display after a halt from a
CTRL-S, the end of a page on Page mode, or the end of a line on
Line mode.

Any commands can be entered at any time, even during a paused display.

When the end of the file is reached, the E command must be entered to exit back
to the operating system.

Lines longer than 77 characters automatically wrap around to the next physical
line on the console output device.

5-43



Command Dictionary iPDS™ User's Guide

The @ command is an example of a command that is always present in memory.
There is no corresponding file containing the @ program that must be loaded into
memory to run the @ command.

Examples

The command

@MYDOC.TXT

displays the contents of the file MYDOC.TXT.

@PROG.SCR4

displays the contents ofPROG.SRC with any tabs in the file displayed as 4 spaces.

/

Assigns a file as the
console input device

Command Format

/ <pathname>

where

<pathname> is the pathname ofajobfile or device to be used as console
input device. If no extension is specified, .CSD is
assumed. If <filename> is followed by a dot (.) but no
extension follows, the dot is ignored and < filename>
with a blank extension is used.

Comments

The / command is a shorthand form of the ASSIGN :CI: TO <pathname>
command. It can be used to change the assignment of the console input device to a
jobfile or to a device. The jobfile can be a command file created with the JOB com
mand or with the CREDIT text editor and with the ENDJOB command at the end.
The / command is always present in memory. There is no corresponding / file to
be loaded to run the / command.

The last command in the jobfile should be the ENDJOB command. Otherwise, an
ISIS error 29 is generated and the system is reinitialized.

The / command can appear in a SUBMIT file or a JOB file, but, after the / com
mand is complete, the SUBMIT or JOB command is not resumed.

If a CTRL-E appears in the command file, input switches to the keyboard. Type
CTRL-E to resume input from the file.

The / command is faster than SUBMIT because it does not have to create an inter
mediate file as SUBMIT does. An intermediate file is not required because
parameters cannot be passed.

5-44



iPDS™ User's Guide

Examples

The command

I:F1 :CMDFIL

Command Dictionary

takes the console input from the file CMDFIL.CSD on :Fl: instead of from the
keyboard.

The command

I:F3:CMDFIL.

takes the input from the file on :F3: with the name CMDFIL and with a blank
extension.

The command

1:81:

switches the input to the serial input device.

See Chapter 4 for examples of the SUBMIT command, the JOB command, and the
1command.

#

Re-assigns console output
to the CRT screen

Command Format

#

Comments

The # command is a shorthand form of the ASSIGN :CO: TO :VO: command. It
restores the console output device to :VO: which is the CRT display screen. This
command is used after the ASSIGN command has assigned the console output to
some other physical device. The # command is always present in memory and
does not correspond to a file that must be loaded to run the command.

The # command must be followed by a RETURN.

Examples

The command

#

switches the console output from a file, the printer, or some other output device
back to the CRT screen.

5-45



Command Dictionary

•

Fast single line
SUBMIT command

Command Format

iPDS™ User's Guide

-<pathname> [«parameter O>,<parameter 1 >,...,<parameter
9»]

where

<pathname>

<parameter 0>
thru < parameter 9 >

Comments

is the pathname ofajobfile containing a single com
mand line. The default extension is .CSD. If a file
name is followed by a dot (.) but no extension is
specified, the filename with a blank extension is
used. More details on the content of this file are de
scribed in the SUBMIT command.

are the values (up to 31 characters) assigned to
formal parameters in the .CSD file.

The. command reads a single line from the .CSD file, substitutes actual values for
any formal parameters in the file, and executes the resulting command. Only 122
characters for the command line are allowed after all substitutions are made. The.
command operates the same as SUBMIT except that no intermediate file (.CS file)
is created, only one command is read and executed, and the command file may
contain a blank extension. All substitutions for formal parameters are made in
memory. Thus, the. command is faster than SUBMIT for a single command line.
Nesting of. commands is not allowed.

See the SUBMIT command for further details on parameters.

Examples

The command

.:F1 :CMDFIL (15,25)

performs the SUBMIT command with CMDFIL.CSD on :Fl: as the job file. The
value 15 is substituted for any %0 formal parameters, and 25 is substituted for any
%1 formal parameters.

.:F1 :CMDFIL. (:F2:CMD.FIL)

performs the SUBMIT command with the file CMDFIL on :Fl: as thejob file, sub
stituting the value :F2:CMD.FIL for all occurrences of the formal parameter %0.

5-46



iPDS™ User's Guide

Command Format

FUNCT-<n>

where

Command Dictionary

FUNCT <n>
Assigns the file JOB < n > .CSD

as the console input device

< n > is a digit from 0 to 9. The digit specifies the JOB file to be used as
console input.

Comments

FUNCT 0 through FUNCT 9 are user defined function keys. Typing a digit from 0
to 9 while holding down the FUNCT key causes the file named JOB< n> .CSD to
be used as the console input. The file should contain operating system commands.
The operation of the function keys is similar to the operation of the / command
except that a default pathname is used for the input file and it need not be
specified.

Pressing the number < n> followed by the RETURN key is the same as pressing
FUNCT <n>.

The job file must have been previously created with CREDIT or with the JOB
command. If CREDIT is used to create the file, the last command in the file must
be ENDJOB. If the JOB command is used to create the file, the ENDJOB com
mand is automatically appended to the file by the JOB command.

See the JOB command for further information on creating job files.

Examples

The command

FUNCTO

switches the console input to the file JOBO.CSD on :FO:. The number sign and
digit 0 are displayed on the screen (#0).

FUNCT1

switches the console input to the file JOBl.CSD on :FO:, the system default logical
disk. The number sign and the digit 1 are displayed on the screen (# 1).

5-47



Command Dictionary

ESC

Re-edits and re-executes
the most previous command line

Command Format

ESC

Comments

iPDS™ User's Guide

Instead of entering a command line at the operating system prompt, the ESC key
can be pressed to edit the most recent command line. The ESC key can also be
pressed during a command line entry to edit the command line entered so far.
Then, the entire command line is displayed as it is stored in the command line in
terpreter line editing buffer. The following keys can be used to modify and re
execute the command line.

CTRL-A CTRL-A inserts any number of characters before the current
cursor position. Pressing CTRL-A the first time enters insert
mode. Then, any characters typed are inserted before the
cursor. Pressing CTRL-A a second time ends the insert.

CTRL-B CTRL-B moves the cursor to the beginning of the line.

CTRL-D CTRL-D deletes the character at the current cursor position
unless the cursor is at the end of the line. Then, the character
preceding the end of the line is deleted.

CTRL-L CTRL-L moves the cursor to the end of the line.

CTRL-X CTRL-X terminates the re-edit without executing the command
line and returns to ISIS for another command.

ESC Press ESC a second time to execute the entire command line.

RETURN Press RETURN to execute the command line up to the current
cursor position.

RUBOUT Pressing the RUBOUT key is the same as pressing CTRL-D.

< - The left arrow, cursor control key moves the cursor to the left.

- > The right arrow, cursor control key moves the cursor to the
right.

Only command lines of six or more characters, including spaces, are saved for re
editing.

The ESC key can also be used to repeatedly execute a command.

5-48



iPDS™ User's Guide

Examples

Entering the command line:

RENAME MYFILE.TXT TO OLDFIL.TXT

Command Dictionary

After this command has run, typing the ESC key causes the command line to be
displayed for editing and re-execution.

ESC
RENAME MYFILE.TXT TO OLDFIL.TXT

Then, the following editing steps can be taken to change the command and re
execute it.

1. Use the left arrow to move the cursor to the M of MYFILE.TXT.

2. Press CTRL-A and type:

:F1 :

3. Press CTRL-A to complete the insert.

4. Use the right arrow to move the cursor to the 0 ofOLDFIL.TXT.

5. Press CTRL-A and type:

:F1 :

6. Press CTRL-A to complete the insert.

7. Press CTRL-D three times to delete the OLD ofOLDFIL.TXT.

8. Press CTRL-L to move the cursor to the end of the line.

9. Press the ESC or RETURN key to execute the' entire command line. Ifstep 8
were not done, the ESC key would execute the entire command line and the
RETURN key would execute the command line down to the :F1: of the desti
nation file resulting in an invalid command.

5-49/5-50



CHAPTER 6
TEXT EDITING

Introduction

A text editor is a program that aids in creating and modifying text files. Text files
are files containing alphanumeric characters, i.e., each byte in the file is interpreted
as a character according to the ASCII code. The byte values and corresponding
characters for ASCII codes are in Appendix C.

With the CREDIT text editor, text is entered by typing characters at the keyboard.
The text is stored in a file that can later be modified by CREDIT editing commands
or can be processed by other commands. For example, when the text file contains
the source code for a program, a language translator can process it to create ma
chine code.

A tutorial session illustrating the use of text editing is given in Chapter 4.

Getting Started with the CREDIT™ Text Editor

This chapter includes information, ~ecific to the iPDS system, for using the
CREDIT editor. The ISIS CREDIT T CRT-Based Text Editor User's Guide, order
number 9800902 describes the simplified, intermediate, general, and advanced
command formats. Screen mode and command mode editing functions, CREDIT
text editor features, and screen and command line mode editing commands are
covered. Included in the CREDIT manual is, creating macros with macro
commands, entering and correcting editing commands, using delimiters, and tuto
rial sessions illustrating all aspects of editing using the CREDIT text editor.

Screen Mode Features

The CREDIT™ Display

The iPDS screen displays 24 lines. When the command line has been entered, the
screen clears and divides it into two parts as illustrated in figure 6-1. In screen
mode, the bottom 20 lines, called the text area, display text from the file. In the re
maining lines at the top, the sign-on message, error messages, and status
messages are displayed. In screen mode, all operations are performed in the text
area, and the message area at the top of the screen not accessible to the user. The
text area and message area are separated by a line of five dashes.

In the screen mode, any ASCII code with an associated character is displayed on
the screen as that character. A code with no associated character is displayed as an
up arrow <0. Codes displayed as an up arrow can be pointed to with the cursor and
replaced or deleted like any other character.

The end of the file is displayed as a vertical bar <I) .

6-1



Text Editing

COMMAND
AREA --- +-WI~

TEXT
AREA ---.-.+--1.

ISIS-II CRT-BASED EDITOR V2.1
OLD FILE SIZE =52 CHARACTERS

Qll
JANUARYl
FEBRUARYl
MARCHl
Q2l
APRILl
MAYl
JUNEf

Figure 6-1 The CREDIT™ Display

iPDS™ User's Guide

The Keyboard

All characters typed at the keyboard are read by the editor. However, some of
these characters have a special meaning. They do not simply represent text data,
and are not written to the text file. When editing in screen mode, text is entered
through the development system keyboard to be saved in a disk file. Commands
are also entered through the keyboard, but are not saved in the file.

Figure 6-2 shows the keyboard. Character codes generated by the keys are inter
preted as ASCII codes by the editor. The keys that perform special functions and
are not normally entered as data into the file are listed below.

IHOME~

The CTRL key is used for entering control characters. Control
characters are entered by pressing a character while holding down
the CTRL key similar to the way SHIFTed characters are entered.
Many screen mode functions are entered as control characters.
For example, in screen mode, the insert text command is CTRL
A.

The HOME key switches to command mode from screen mode.

rr===fT1 In screen mode, the cursor control keys (-t- n move the
~ cursor in the direction indicated by the arrow. See the section

rr=:Jl 0 later in this chapter for complete description of cursor
lbd lbd movements.

[)]

6-2



iPDS™ User's Guide

~,RUB
~

B

Text Editing

In either screen or command mode, the ESC key terminates
commands. When ESC is pressed, <BREAK> is displayed in
the message area of the screen.

The RUBOUT key deletes the previously entered character when
inserting text in screen mode. Otherwise, the RUBOUT key
moves the cursor one position to the left without deleting the
character.

The TAB key positions the cursor to the next tab set on the line.
Its operation is similar to a typewriter tab. The default for tab set
tings is every 8 characters. Tab settings can be changed using the
Alter command described in the section "Advanced Editing Tech
niques" in the ISIS CREDIT™ CR T-Based Text Editor User's
Guide.

The backslash (\) is the default literalizing character. It allows
characters that normally perform some function to be entered
into the file as data (literalized) instead. The character following
the backslash is taken as data. The backslash itself can be entered
as data in a file by typing two backslashes in a row. The second
one is literalized and is entered as data in the file. The literalizing
character can be changed from the backs lash to any other charac
ter by using the Alter command. See the section on "Alter Com
mands" in the ISIS CREDIT ™ CR T-Based Text Editor User's
Guide.

AMPERSAND
(&)

REVERSE
SLASH
(\)

RUB
OUT

l------t1r-CURSOR
CONTROL
KEYS
(4)

HOME

0205

Figure 6-2 The Keyboard

All other characters are accepted as data and are entered in the text file, or they are
invalid. Any invalid character causes a warning beeper to sound and no action to
occur. An example of an invalid character is a command character entered in the
middle of an insert or delete command.

6-3



Text Editing

6-4

iPDS™ User's Guide

The RETURN key is accepted as data and is entered into the file as a pair of
characters, and it also acts as a line terminator. A line of text consists of a character
string terminated by a carriage return-linefeed. This pair of characters, called the
line terminator, is entered in the file as a ODH and OAHwhen the RETURN key is
pressed. Lines are not limited to 80 characters (the width of the display), but it is
generally easier to work with a file when each text line fits on a display line.

The line terminator is displayed as one character on the screen, the up arrow (t).
Most screen editing functions treat the terminator as one character.

The Cursor

The CREDIT editor maintains a pointer that marks a character in the text file.
Changes are made relative to this pointer. For example, deleting a character erases
the character designated by the pointer. Insertions are made immediately preced
ing the pointer.

In the screen editing mode, the cursor, the reverse video block, reflects the cur
rent position of the pointer.

In screen mode, when the cursor is pointing to an area of the screen that does not
contain any characters, no edit commands are accepted. The warning beeper
sounds when an attempt is made to enter commands with the cursor pointing to an
area containing no characters. However, the CTRL-Z command to delete charac
ters can be completed with the cursor pointing to an area containing no characters.

There are no characters between the line terminator and the next line or beyond
the end of file marker.

Command Mode Features

The CREDIT™ Display

When the command line is first entered under the ISIS-PDS operating system, the
CREDIT text editor clears the screen and divides it into two parts as shown pre
viously in figure 6-1. The CREDIT editor initially enters screen mode. Pressing
the HOME key switches to command line mode.

In command line mode, the top area of the screen, called the command area, is the
only area accessed by the user. In fact, the text area is erased as commands are
entered. The asterisk prompt displayed in the command area indicates that a com
mand can be entered.

When the command line mode is first entered, the text area contains the residual
display of the file left over from previous screen editing operations. As commands
are entered at the keyboard, they are displayed in the command area. As soon as
the command area exceeds the top three lines, the entire text area is erased allow
ing commands to fill the screen. Once the screen is full of commands, it scrolls up
one line at a time as new commands are entered.

In the command line mode, ASCII codes with an associated graphics character are
displayed as an up arrow (1). The up arrow character is displayed as two up arrows
(t t) to distinguish it from codes with no associated graphics character.

The text area is not used in command line mode.



iPDS™ User's Guide

The Keyboard

When editing in command line mode, commands are entered at the development
system keyboard to indirectly modify the text in a file. Data to be added to the text
file is entered as a parameter to a command. Data is not directly entered into the
file as in screen mode.

Figure 6-2 shows the keyboard. Some of the keys perform special functions in the
command line mode of editing as listed below.

The CTRL key is used for entering control characters. Control
characters are entered by pressing a key while holding down the
CTRL key. Some commands are entered using control keys. For
example, CTRL-V switches from command line editing to screen
editing.

In either mode, the ESC key aborts commands. When ESC is
pressed, < BREAK> is displayed in the command area of the
screen.

Text Editing

~.R...U..B...~

o

The RUBOUT key deletes the previous character when in com
mand line mode.

Many of the commands in command line mode require a string of
characters as a parameter. The string of characters must be
delimited by a valid delimiter character. CTRL-B is a special
delimiter character that causes the string to be interpreted as
hexadecimal values rather than as ASCII codes. This character is
discussed in the ISIS CREDIrM CR T-Based Text Editor User's
Guide.

The ampersand is used as a continuation character for command
lines. This character is discussed in the ISIS CREDIrM CR T
Based Text Editor User's Guide.

The semicolon is used to separate multiple commands entered on
a single command line. This character is discussed in the ISIS
CREDIrM CRT-Based Text Editor User's Guide.

The HOME key, the cursor control keys, the TAB key, and the backslash key do
not perform any special command line editing function.

In command line mode as in the screen mode, the RETURN key is entered as two
characters in the file (carriage return, ODH, and linefeed, OAH).

Disk File Use

The CREDIT editor stores text in disk files and loads the text into memory for
editing. Usually, only a part of the file is loaded into memory at a given time, since
the entire file usually does not fit in memory. Often, files in addition to the one
containing the text are needed during an editing session. These files are temporary
files created by the editor, backup files created by the editor, and files used by dif
ferent CREDIT commands. See figure 6-3

6-5



I
I r----- --,
L - -.: GET FIL. CMD I

L J

Text Editing

FILE. TXT

Temporary Files

FILE. TXT

CREDT 1. TMA

r-- ------,
I

r- - ~ CREDT 2. TMA I
: L ..J

r-------,
I I

- ... CREDT 3. TMA I
L J

I
I
I
I
I r-------l
L - - -.J READ. FIL

I IL -.I

r-------,
L - - - -.J WRITE. FIL I

I IL J

Figure 6-3 Disk File Use

iPDS™ User's Guide

FILE. BAK

FILE. TXT

0207

6-6

In addition to the old edit file containing the source text data, the following tempo
rary files are created by the text editor during an editing session:

• An output file called CREDT1.TMA contains the modified text data during
the editing session. When the session is ended with the EXIT command,
CREDTl.TMA is renamed. When no name is supplied on the CREDIT com
mand line (as part of the TO clause), the old file is renamed with the exten
sion of .BAK, and CREDT1.TMA is renamed to the old edit file. When the
TO clause is supplied, CREDTI.TMA is renamed to the file specified as part
of the TO clause on the command line.

• A temporary file called CREDT2.TMA is created only when a part of the file
no longer resident in memory is edited.

• A temporary file called CREDT3.TMA may also be created to store the
modified text data during an editing session.



iPDS™ User's Guide

CREDT1.TMA, CREDT2.TMA, and CREDT3.TMA are reserved filenames and
should not be assigned to files. When the TO clause is used on the CREDIT com
mand line, they are created on the same drive as the file specified in the TO clause.
Otherwise, they are created on the same drive as the old file being edited. None of
the temporary files appear in the directory unless the operating system is reloaded
(for example, when RESET is- pressed) before the editing session is terminated.
However, the temporary files can be viewed in the directory on a dual processing
system by running the DIR command on one processor while an editing sessiori is
in progress on the other processor. See figure 6-3.

Backup Files

When an existing file is edited and no TO clause is specified, it is renamed with the
same filename and an extension of .BAK when the editing session is ended with
the EX command. Thus, after changes are made, the previous version of the file is
still available.

When a backup file already exists from previous editing, it is automatically deleted
and replaced by the version of the file prior to the current editing session. See
figure 6-3.

Several rules must be followed to successfully use the backup feature:

• The .BAK version of the file should not be deleted.

• The .BAK version of the file should not be edited.

• The .BAK version of the file should not be write protected; don't set the
write attribute to 1.

If the .BAK version is deleted, no backup is available.

If the .BAK version is edited, the changes made are not reflected in the original;
the original version is copied to the backup version, not vice versa. The first time
the original is accessed through the editor, the .BAK version is replaced by the cur
rent version, wiping out any changes made in the backup file.

If the .BAK version is write protected, the editing session cannot be ended with
the EX command unless a filename other than the source file for the output is
specified. Only EQ or EX with a filename parameter is accepted. When EQ is used,
all changes from the editing session are lost.

Files Used by CREDIT™ Commands

In command line mode, the XC and XM commands use a temporary file named
CREDT3.TMA. Some of the advanced CREDIT commands use additional files.
The section on "Advanced Editing Techniques" in the ISIS CREDrrM CRT
Based Text Editor User's Guide describes file use in more detail. See figure 6-3 for
an illustration of disk file use by the CREDIT editor.

Limits on Disk File Use

The ISIS-PDS operating system allows a maximum of six files to be open at any
one time. This leaves three files for user applications after allowing for the three
files that the CREDIT editor can open. Normally, this number is not exceeded.
However, the user should exercise judgment in opening files for access. Files
should be closed when not being accessed.

Text Editing

6-7



Text Editing

6-8

iPDS™ User's Guide

Editing under the control of the SUBMIT program uses one of the available user
files. SUBMIT file requirements must be considered when using the CREDIT
editor with SUBMIT. When more than six files are opened at a time, a fatal error
occurs, and the iPDS operating system is re-initialized.

Performance and File Size

The size for CREDIT files is limited only by the storage device. There must be
enough space available on the diskette or bubble to hold the file, the backup file,
and the temporary files that the editor uses. The free space on the disk must be
two times as great as the size of the file being edited.

The CREDIT text editor works best when files are restricted to 20K bytes or less
(the size of the text buffer in memory). Files less than 20K bytes can be loaded
into memory, and all editing functions can be performed in memory with a mini
mum of disk accesses. A file with 20K bytes is about four 8 1/2 x 11 pages of writ
ten text.

CMACRO.MAC

The CMACRO File

The file named CMACRO.MAC contains several macro definitions provided with
the CREDIT editor to aid in editing text. The macros are described briefly in this
section. Some of the macros are illustrated in the previous editing examples. They
are listed according to the following functional areas:

• Cursor Movement Macros

• Text Control Macros

• Block Transfer Macros

• File Formatting Macros

• Data File Macros

The CMACRO.MAC file can be loaded with the G command or with the MACRO
option on the CREDIT command line. In either case, the macros are available
after they are loaded. The G command to be entered in the command line mode to
load the CMACRO file is:

G CMACRO.MAC

The CREDIT command line to use to load the macro definitions when invoking
the editor is:

CREDIT <pathname1 > [TO <pathname2> MACRO(CMACRO.MAC)]

Cursor Movement Macros

The cursor movement macros provide for fast positioning of the cursor in the text
file. They perform the same function as holding down the cursor control keys. All
the cursor control macros' can be invoked in the screen mode of editing by entering
the control character that is the name of the macro.



iPDS™ User's Guide Text Editing.

am
8[!]

CTRL-B 'returns the cursor to the first character of the line where
the cursor is located. This first character of a line is the first char
acter that follows the most recent line terminator.

CTRL-L moves the cursor to the last character of the line where
the cursor is located. The last character of a line is the line ter
minator character. If the current .line does not have a line
terminator, a NOT FOUND message is displayed. If the cursor is
currently at the line terminator, it is moved to the next line
terminator.

CTRL-U moves the cursor to the line terminator of the previous
line.

CTRL-W searches for the next space character in the file.
Usually, the effect is to move the cursor to the next word in the
file. However, there are exceptions. For example, there is usually
no space between the last word on a line and the first word on the
next line. Therefore, CTRL-W at the last word on a line skips the
first word of the next line.

CTRL-H searches for the next period character (.) in the file.
Usually, the effect is to move the cursor to the next sentence in
the file. However, there are exceptions. For example, sentences
that end in a ? or ! are skipped. Also, periods do not indicate the
end of a sentence, e.g., decimal points.

Text Control Macros

The text control macro (c) is invoked in screen editing mode by entering the
macro execution command, CTRL-F, followed by the name of the macro, c.

Brne The c macro centers any line that is less than 80 characters long
on a single 80 character screen line. The macro should be used at
the end of the file after entering the line to be centered. Position
the cursor at the space following the last character of the line to be
centered. Do not type a RETURN at the end of the line. Invoke
the macro by entering CTRL-F followed by c, the macro name. If
used within the text file instead of at the end of the file, position
the cursor at the space character between the last character on the
line and the line terminator. An extra line terminator is put into
the file and must be deleted.

Block Transfer Macros

The block transfer macros allow block transfers of text within screen mode of
editing. There are four macros that are used to transfer the text, All the macros are
invoked by entering the control character that is the name of the macro.

CTRL-X sets tag 1 at the cursor location. If tag 1 was previously
set, it is reset by this macro. Tag 1 marks the beginning of the text
to be transferred. The character at tag 1 is included in the transfer.

CTRL-Y sets tag 2 at the cursor location. If tag 2 was previously
set, it is reset by this macro. Tag 2 marks the end of the text to be
transferred. The character at tag 2 is not included in the transfer.

6-9



Text Editing

6-10

iPDS™ User's Guide

CTRL-Q moves the block of text defined by the CTRL-X and
CTRL-Y macros. The text is deleted from its current location and
inserted at the location immediately preceding the cursor. The
cursor is then moved to the first character of the inserted block of
text.

CTRL-R copies the block of text defined by the CTRL-X and
CTRL-Y macros. The text is inserted immediately preceding the
cursor. The cursor is then moved to the first character of the in-
serted block of text. The source block of text is not affected by the
copy.

File Formatting Macros

The file formatting macros are used to reformat files for printing. These macros
are invoked from command line mode by entering the MF command followed by
the name of the macro.

The f macro formats a file for pagination and printing. It cannot be
used on a file that is already formatted for pagination and printing
(i.e., a file that f has already been run on). The file being format
ted can contain no tilde characters. Do not interrupt this macro
after it has started processing the text. This macro allows files to
be edited as a single block of text and formatted and paged sepa
rately for printing when editing is complete. The macro moves
the cursor to the beginning of the file and inserts an initial form
feed character. The macro than advances 58 lines and sets up a
page ending decision by displaying lines 49 through 58, followed
by the page ending prompt (" TOP OF FORM .,"), fol-
lowed by lines 58 through 69. The macro then queries

Do you want to start a new page here?

If the response is no (N), the top of form indicator is moved up
one line and the query .

How about here?

is made. Each N response moves the top of form indicator up one
line. At line 48 or at the first yes (y) response, the macro inserts a
form feed character in place of the top of form indicator. The
macro then advances another 58 lines and repeats the process.

-This process continues until there are less than 58 characters in
the file. The macro then returns to the start of the file and inserts
two lines after every form feed character. The first of the two in
serted lines contains the word PAGE and a tilde as a position hold
ing character for the page number. See the p macro to assign page
numbers. This line is the top line on every page. The second of
the two inserted lines is blank separating the page number from
the text.

r The r macro removes the formatting characters from a file. Do
not interrupt the r macro after it has started processing a file. The
macro jumps to the start of the file and searches for the form feed
characters. When a form feed is found, it deletes three lines to
remove the pagination. Then, the file can be edited without dis
turbing the formatting. It can be reformatted prior to printing
again.



iPDS™ User's Guide Text Editing

p (< n > ) The p( < n > macro replaces each tilde character inserted by the
format character with the page number specified by < n>. The
macro must be invoked once for each page to be numbered. The
macro jumps to the start of a file "and searches for the position
holding character. It substitutes the page number specified for the
position holding character. When no more position holding char
acters remain, the macro displays the message NOT FOUND on
the command line.

Data File Macros

The data file macros include one macro to read a data file and one macro to write a
data file. These macros are invoked in command line mode with the MF command
followed by the name of the macro. These macros use the OR, OW, R, and W
commands described in the ISIS CREDIT™ CRT-Based Text Editor User's Guide.

i«pathname>,<n» The i macro inserts the specified number of lines
< n> from the specified file < pathname > into
the file being edited. All reads startfrom the first
line of the data file. The number of lines to be
read can exceed the number of lines in the data
file, in which case the entire file is read. The data
is inserted in the file being edited at the character
preceding the cursor. The data file is closed after
it is read. The cursor is moved to the first charac
ter of the data inserted into the file being edited
unless the insert is made at the beginning of the
file. Then, the cursor is moved to the end of the
block of text inserted.

o( < path name >, < n » The 0 macro writes all or part of the file being
edited to another disk file specified as
< pathname>. The file being written need not
exist. When the file does exist, its contents are
lost. The <n> specifies the number of lines to
write. It can be either positive or negative. If
positive, the macro writes the number of lines
specified from the cursor. If negative, the macro
writes the number of lines specified preceding
the cursor. The number of lines specified can
exceed the number of lines in the file being
edited in which case the entire file from the
cursor is written. The text in the file being edited
is not affected by the write.

NOTE
All further information needed to use the CREDIT text editor is
covered in the ISIS CREDIrM CRT-Based Text Editor User's
Guide, included in the iPDS system's literature kit.

6-11/6-12



CHAPTER 7
DEBUG COMMANDS

Software Debugging and the Development Task

Writing programs is an essential part of the development task for microprocessor
based products. The software engineer requires tools to help verify program
modules and isolate errors that can occur in software routines. The isolation and
correction oferrors in a program is called debugging.

As a minimum aid to debugging software, is stopping program execution at speci
fied points, called breakpoints, and displaying the status of the machine. By
comparing the actual machine status with the expected status at the breakpoint,
errors in the software can be isolated.

There are a number of tools available that satisfy this minimum requirement. At
one end of the spectrum, emulators provide breakpoint and display commands as
well as a wide range of other features to control and monitor the hardware and soft
ware of a microprocessor-based product. As a software debugging aid, emulators
are typically powerful enough for debugging complex programs in high level
languages.

The emulator itself consists of both hardware and software separate from the hard
ware and software of the user system being debugged and, resulting in no overhead
on the user system. Symbolic debugging (where memory locations are referenced
as symbols defined by the programmer instead of as addresses), trace data collec
tion (where sequences of machine states are stored for later examination), and ad
vanced control structures (to control the operation of the target machine) are only
some of the features found in emulators.

More information on emulation and emulators can be found in Chapter 2 of this
manual and in the manuals on specific emulators.

While not offering all the features of an emulator, software debugging tools such
as the DEBUG commands are adequate for isolating errors in assembly language
programs running on existing hardware. The DEBUG commands provide
breakpoints, display commands, and other features to aid in debugging software
written for the MCS-85, the iPDS processor.

Debug Features

The DEBUG utility provides the following features:

• Loads an MCS-85 program into the iPDS memory from a file

• Executes the program with breakpoints

• Steps through the program executing a specified number of instructions at a
time

• Displays and modifies the iPDS memory

• Displays and modifies the iPDS I/O ports

• Displays and modifies the iPDS processor registers



Debug Commands

• Disassembles instructions from memory

• Configures custom I/O drivers for the system

iPDS™ User's Guide

With these features, it is possible to monitor the internal state of the processor
during program execution. The programmer can verify that the actual processor
state and memory contents match the expected state and contents at specific
points during the execution of the program. The programmer can also save time
testing possible corrections by modifying program memory from within DEBUG.

Debug Command

This section describes the initial loading and operation of the DEBUG command,
a utility program that runs under the control of the ISIS-PDS operating system.

Since the DEBUG command runs on the same machine as the software to be
debugged, it cannot occupy the same memory space as the software to be
debugged. The DEBUG command uses locations from EE50H to F6COH (the top
of user memory). These locations are not available to the user program being
debugged. However, the DEBUG command does modify the value of the top of
user memory returned by the MEMCK system call, so any user routines that use
high memory locations as an offset of the value returned by MEMCK still work
properly. The MEMCK system call returns a value of ECCOH when DEBUG is
present in memory.

Command Format

DEBUG [<command line>]

where

<command line> is an optional parameter. If specified, DEBUG loads an
executable program to be debugged; otherwise, no pro
gram is loaded. The < command line> is the valid
ISIS-PDS command required to run the executable
program. A <'command line> is of the form:

<pathname> [<parameters>]

where < pathname > is a valid ISIS pathname for the
file containing the program to be debugged, and < pa
rameters> are any parameters required on the com
mand line by the program.

Comments

As soon as the DEBUG command is entered, it signs on with the message:

iPDS DEBUGGER Vm.n

where m.n is replaced by the actual version number.

7-2



iPDS™ User's Guide Debug Commands

If an executable 8080/8085 program is specified, the DEBUG command loads that
program, displays the contents of the iPDS CPU program counter preceded by the
character: .

=>

and then prompts for a debugging command:

Any debugging command can be entered after the period prompt character
appears. An input line can be terminated without execution by typing the ESC
key. For example, the G command begins execution of the program at the speci
fied starting address with up to two breakpoints. All the commands are described
in this chapter.

Any time the program halts at a breakpoint, the next entry point is displayed
preceded by the character:

=>

The DEBUG prompt (.) appears on the following line so that any debugging com
mand can be entered. Other debugging commands display and modify the contents
of iPDS memory or the iPDS CPU registers.

To return to the operating system, do one of the following:

• Enter the debugging command:

E

• Execute an EXIT system call to return to the ISIS-PDS operating system
(See Chapter 8 for an explanation of system calls)

• Press RESET key to reinitialize the system

Examples

In the following example, the DEBUG command loads a program named LIST
with a starting address of 3680H. The file FILE.TXT is a parameter required by the
LIST program. The AO> is the ISIS prompt. The G command executes the LIST
program.

AO> DEBUG LIST FILE.TXT
iPDS DEBUGGER V1.0
=>3680
.G

The following commands execute the same program setting a breakpoint at ad
dress 36AOH and returning to the operating system with the E command as soon
as the breakpoint is reached.

AO> DEBUG LIST FILE.TXT
iPDS DEBUGGER V1.0
= >3680
.G,-36AO
= >36AO
.E
AO>

7-3



Debug Commands iPDS™ User's Guide

In the following example, the DEBUG command is invoked without loading a pro
gram to debug.

AO>DEBUG
iPDS DEBUGGER V1.0

Overview of the Debugging Commands

The debugging commands perform the following functions:

• Configure the 110 interface to all standard peripheral devices except disks

• Aid in the software development of8080/8085-based programs

I/O Interface

A physical device is an actual peripheral device connected to the system, e.g., a
line printer, a terminal, or a modem. The term logical device refers to a symbolic'
device name assigned to a physical device. This name is recognized by the operat
ing system to provide flexibility for input and output of data.

The DEBUG command recognizes four logical devices: a console device, a reader
device, a punch device, and a list device. However, the 110 routines for these
devices are different from the 110 routines used by the ISIS-PDS operating system
for the console, reader, punch, and list devices.

By assigning a specific physical device to one of the logical devices, the correspond
ing data stream is routed to the specified peripheral. Debugging commands are
provided to configure a system by assigning physical devices to logical devices.

The DEBUG program does not handle disk 110.

Software Development

Debugging commands are provided to help debug MCS-80/85-based programs.
These commands allow the user to:

• Display and modify the iPDS memory and iPDS CPU registers

• Disassemble MCS-80/85 instructions in iPDS memory

• Initiate execution of an MCS-80/85 program on the iPDS CPU

• Insert breakpoints in an MCS-80/85 program before execution

• Step through a program, stopping after a specified number of instructions

• Access user written 110 routines

• Directly input and output data to iPDS 110 ports

7-4



iPDS™ User's Guide

Entering Debugging Commands

Debug Commands

Debugging commands can be entered at the keyboard anytime that the DEBUG
prompt (a period) is displayed at the left side of the screen followed by the cursor.
All commands are single alphabetic characters,

Some of the commands require parameters; for others the parameters are
optional. Parameters can be either alphabetic or numeric as specified for each
command. All numeric parameters are entered as 1 to 4 hexadecimal digits (0-9
and A-F). Do not append the letter H to the numeric value.

Normally, commands are executed after the RETURN key is pressed. Anyexcep
tions to this rule are explained in the individual command descriptions. To termi
nate a command during execution or during command entry, use the ESC key.

Command Format for Debugging Commands

The general format ofa debugging command is:

<command > [<parameters>]

where

<command> is the single alphabetic character for the command.

< parameters> are one or more values that vary from command to
command. For example, two addresses are required as
parameters for the D command.

Parameters can be alphabetic or numeric. Numeric parameters can be entered as 1
to 4 hexadecimal digits. If more than 4 digits are entered, only the last 4 digits en
tered are used by the command. For example, the value 123456 is treated as 3456
in hexadecimal by the command. A comma or a space can be entered in place of a
comma shown in the format for a command. If a comma is not shown in the com
mand format, do not enter a space or a comma in the command line. For example,
in most cases, a space is not allowed after the command letter.

Entry Errors

The debugging commands check for the following error conditions:

• Invalid characters

• Address value errors

• Parameter errors

Invalid Characters

The DEBUG utility checks the validity of each character entered at the keyboard.
As soon as an invalid character is encountered, a number sign (#) is displayed and
the command is terminated. The DEBUG prompt is displayed on the following
line and another command can be entered. In the following example, 4 is rejected
because it is riot a valid command:

.4#

7-5



Debug Commands iPDS™ User's Guide

The first character entered must be a valid command; otherwise, it is rejected. All
addresses must be entered in hexadecimal, Any character other than 0-9 and A-F
is rejected. In the next example, G is not a valid digit.

.D1000,1 FFG#

In the following example, the space after the command character X is rejected be
cause the space is not allowed.

Address Value Errors

Many commands require two addresses where the first address is lower than the
second. If the first address given is higher than the second, the operation is per
formed on the single address specified first.

For example, if the following command is entered to fill memory from address
900H to 1000H, the DEBUG utility would place an OFFH in address 1000H and do
nothing else .

.F1000,900,FF

No error message is given to indicate that only a single byte was filled instead of
100Hbytes.

The valid range of address is OOOOH through OFFFFH. If addresses higher than
OFFFFH are entered, only the last four digits are used by the command. For
example, if 10000H is entered instead of 1000H, the address is evaluated as
OOOOH. In the following example, the actual command that is executed is
FOOOO,9000,FF filling 9000H bytes of memory with the constant OFFH.

.F10000,9000,FF

This command erases the memory used by the operating system and by the
DEBUG command. The system must then be reinitialized to run.

Parameter Errors

If the correct number of parameters is not entered, the debugging command re
places the DEBUG prompt with a number sign (#) and displays the DEBUG
prompt on the following line to accept a new command.

For example, the D command requires two parameters. If only one is given,
DEBUG replaces the prompt on the D command line with a number sign (#) and
returns the DEBUG prompt on the following line .

.D011

becomes

#D011

7-6



iPDS™ User's Guide

Categories of Debugging Commands

The debugging commands are grouped into the following categories:

• Program execution commands

• I/O configuration commands

• I/O control commands

• Memory control commands

• Register commands

• Utility commands

Program Execution Commands

Debug Commands

The program execution commands are used to run the program to be debugged.
They provide breakpoints to halt the program at a specified address. Then, other
DEBUG commands can be used to monitor the machine status. For example,
CPU registers, memory locations, and I/O ports can be checked at a breakpoint to
verify that they contain the expected data. The commands are:

G (Execute) Transfers control to the loaded program and optionally sets
one or two breakpoints.

N (Step) Executes a specified number of instructions starting at the ad
dress currently in the Program Counter. The disassembled in
structions are displayed as they are executed.

FUNCT -R Manually stops program execution. This function can be used
to interrupt a program that is in an infinite loop.

I/O Configuration Commands

The DEBUG utility recognizes four logical devices:

• Console (CO, en
• Reader (Rl)

• Punch (PO)

• List (LO)

The terms Reader and Punch were chosen to maintain compatibility with earlier
systems that supported paper tape readers and paper tape punches.

The I/O configuration commands select the physical device that receives the logi
cal device data.

The DEBUG commands that control the system I/O configuration are:

A (Assign) Assigns a physical device to a logical device

Q (Query) Displays the devices currently assigned

7-7



Debug Commands iPDS™ User's Guide

The characteristics of the physical device must match the characteristics of the log
ical device to which it is assigned. Therefore, only a subset of the available
peripherals can be validly assigned to a given logical device. The characteristics of
the four logical devices are as follows:

• The Console (CO, en is an interactive, character-oriented input and output
device.

• The Reader (RO is a serial input device.

• The Punch (PO) is a serial output device.

• The List device (LO) is a character-oriented output device that accepts a
character from the calling program and outputs it to an external medium in
alphanumeric characters that can be read by the user.

An I/O driver routine is required for each physical device before it can be assigned
to a logical device. The DEBUG software provides I/O driver routines for the fol
lowing physical devices:

• Internal iPDS video terminal, CRT and keyboard (can be assigned to any log
ical device)

• Serial device attached to the serial I/O connector and configured with the
SERIAL command (see Chapter 5) (can be assigned to any logical device)

• Line printer attached to the parallel I/O connector (can be assigned to the
List logical device)

• Batch device where the currently assigned Reader logical device is also as
signed as the Console input and the currently assigned List logical device is
also assigned as the Console output (can be assigned to CO and CO

The batch device permits a non-interactive mode where commands are input from
the Reader and executed by the operating system. A file containing ISIS com
mands must be prepared on the Reader device. In preparing the command file,
enter commands in exactly the same way as if the system were in interactive
mode. Each command should end with a carriage return/linefeed pair of
characters. The prompt character should not appear as part of the command file.
The last command in the file should re-assign the Console to prevent DEBUG
commands from reading off the end of the file.

The user must provide I/O driver routines for the following physical devices:

• User Defined Device 1 where the user provides the I/O driver routines for
the device (can be assigned to the Console, Reader, Punch, or List logical
device as long as the characteristics of the physical device match the charac
teristics of the logical device)

• User Defined Device 2 where the user provides the I/O driver routines for
the device (can be assigned to the Reader or Punch logical device as long as
the characteristics of the physical device match the characteristics of the logi
cal device)

User defined I/O drivers are accessed by configuring them with the A command.
See the A command for more information.

7-8



iPDS™ User's Guide

I/O Control Commands

Debug Commands

The I/O control commands allow data to be read from and written to the iPDS I/O
ports one byte at a time. These commands can be used to verify that the I/O ports
contain the correct data at a breakpoint during the execution of a program.

If the port does not contain the expected data or if the part of the program that
writes to I/O ports is not available yet, the correct data can be written to the port
with these commands, so that debugging can continue on the parts of the program
that are available. There are two commands for accessing the iPDS I/O ports:

I (Input) Reads and displays a single byte from the specified input port

o (Output) Writes the specified byte to the specified output port ..

Memory Control Commands

There are six commands for accessing the iPDS memory. The commands that read
memory can be used for RAM as well as PROM and ROM. The commands that
write to memory can only be used with RAM but no error is given if writing to
PROM or ROM occurs. All of these commands with the exception of the S com
mand can be terminated while running by pressing the ESC key.

The memory control commands can be used to verify that a memory location con
tains the correct data at a breakpoint during the execution of a program.

If the memory location does not contain the expected data or if the part of the pro
gram that writes to memory is not available yet, the correct data can be written to
the memory location with these commands, so that debugging can continue on the
parts of the program that are available.

These commands can also be used to disassemble program memory and modify
the program in memory (patch the program). The ability to patch a program in
memory allows minor programming errors to be corrected without having to exit
from DEBUG, modify the source program, and retranslate it. The memory control
commands are:

D (Display)

F (Fill)

M (Move)

S (Substitute)

Displays a specified range of memory

Fills a specified range of memory with a specified
constant value

Copies the contents of a specified range of memory
into another area of memory

Modifies memory on a byte-by-byte basis

C (Disassemble Code) Displays specified memory range as MCS-85 in
structions

T (Disassemble Code) Displays the specified number of MCS-85 instruc
tions starting at the MCS-85 Program Counter (PC)

Register Commands

The register commands can be used to verify that the CPU registers contain the
correct data at a breakpoint during the execution of a program. If a register does

7-9



Debug Commands iPDS™ User's Guide

not contain the expected data or if the part of the program that writes to the register
is not available yet, the correct data can be written to the register with these
commands, so that debugging can continue on the parts of the program that are
available.

The register commands can also be used to set the program counter, so that the
program being debugged can be run from a controlled Ctar'mg location. The regis-
ter commands are: .. .,./.

X (Display Form) Displays the contents of all registers

X (Modify Form) Changes the contents ofa single register

Utility Commands

The utility commands are:

E (Exit) Returns to the ISIS-PDS operating system

H (Hexadecimal) Adds and subtracts two hexadecimal numbers

Sample Debugging Session

The following sample debugging session illustrates most of the debugging
commands.

However, before this sample can be run, an object program must be created to
debug. The program loaded and run under DEBUG control is the sample program
(PROGA.SRC) entered with the CREDIT text editor in the ISIS CREDIT ™
CR T-Based Text Editor User's Guide.

The first few examples show how to create an object file that can be loaded and run
under the control of DEBUG.

The source code for the program is given below for convenience. It should be en
tered under the CREDIT editor with the command line:

CREDIT PROGA.SRC

The source listing for the file that should be entered into PROGA.SRC follows:

EXTRN ISIS
EXTRN CO
EXTRN CI

ORG 4000H
EXIT EQU 9

EBLK: DW ESTAT
ESTAT: DS 2

-START: MVI B,1AH

LOOP: CALL CI

MOV C,A
CALL CO (continued)

7-10



iPDS™ User's Guide

CMP B
JNZ LOOP
MVI C,EXIT
LXI D,EBLK
CALL ISIS

END START

AO>ASM80PROG~SRC

ISIS-II 8080/8085 MACRO ASSEMBLER, V4.1

ASSEMBLY COMPLETE, NO ERRORS
AD> LINK PROGA.OBJ,SYSPDS.L1B TO PROGA.LNK
ISIS-II OBJ ECT LINKER V3. 0
AD> LOCATE PROGA.LNK
ISIS-II OBJECT LOCATER V3. 0
AD> DEBUG PROGA

PDS DEBUGGER V1. 0
=>4004

Debug Commands

Key-in Sequence

ASM80 PROGA.SRC ~RETURN~

LINK PROGA.OBJ,SYSPDS.LIB
TO PROGA.LNK E3

RETURN

LOCATE PROGA.LNK ~RETURN~

DEBUG PROGA ~RETURN~

Comments

Assemble the program.

Since the program contains external
references to system calls, link it
with the system library as shown in
this command line.

Locate the program to assign
memory locations where needed
before running..

Use the DEBUG command line to
load the program to be debugged.
The program start address is dis
played below the sign-on message.

7-11



.X
A=AA B=BB C=CC D=DD E=EE F=FF H=12 L=34 M=1234 P=4004 S=F1E2
.G,-4009

=>4009
.X
A=4D B=1A C=CC D=DD E=EE F=10 H=12 L=34 M=1234 P=4009 S=F1E2
.N1

4009 4F MOV C,A

Debug Commands

..C4004,9
4004 061A
4006 CD03F8
4009 4F
400A CD09F8
400D B8
400E C20640
4011 OE09
4013 110040
4016 CD4000

MVI
CALL
MOV
CALL
CMP
JNZ
MVI
LXI
CALL

B,1A

F803
C,A

F809
B
4006
C,09
D,4000
40

iPDS™ User's Guide

7-12

Key-in Sequence

C4004,9 ~ RETURN~

G,4009 ~RETURN~

N1 [RET~3

Comments

The C command disassembles the number of instruc
tions specified. The second, forth, and ninth instruc
tions are system calls.

Display the registers. Notice that the program
counter, P, is set to 4004H, the beginning address of
the program.

Use the G command to start the program from the ad
dress specified or from the program counter if no ad
dress is specified. A breakpoint is set at location
4009H, the address of the instruction following the
system call.

The first system call inputs a character from the
keyboard. Here, the character entered is M. As soon
as the character is entered, the program returns from
the system call to execute the next instruction at ad
dress 4009H. However, a breakpoint is set here, so
the program halts.

While the program is halted, any DEBUG command
can be entered. Enter the X command to display
registers. The program counter is pointed at 4009H.
The ASCII code for M, 4DH, is in register A.

Execute the number of instructions specified. The N
command also displays the disassembly information
for the instructions. This instruction moves the value
in the A register to the C register.



iPDSTI\I User's Guide

·x
A=4D 8=1A C=4D D=DD E=EE F=10 H=12 L=34 M=1234 P=400A S=F1E2
.G,-4000

M=>400D

·X
A=4D 8=1A C=4D D=DD E=EE F=80 H=12 L=34 M=1234 P=400D S=F1E2
. Nl

400D 88 CMP 8

·x
A=4D 8=1A C=4D D=DD E=EE F=14 H=12 L=34 M=1234 P=400E S=F1E2
. Nl

400E C20640 JNZ 4006

·x
A=4D 8=1A C=4D D=DD E=EE F=OO H=12 L=34 M=1234 P=4006 S=F1E2
.G,-4009

= > 4009

·Nl
4009 4F MOV C,A

Debug Commands

Key-in Sequence Comments

X ~ETU~] Display the registers again. This time both the A and C
registers contain 4DH, the ASCII code for M.

G,400D ~RETURN~ Issue the G command is again with a breakpoint set at
400D H. This system call displays the character just
typed at the keyboard. Notice the M displayed on the
screen. Use the G command with a breakpoint set at the
instruction following the system call to DEBUG within
a system call.

X [;ET~3 Display the registers. This instruction compares the

~RET3
value keyed with the value in the B register. If the two

N1 are the same, the program ends. Otherwise, another
character can be entered and displayed.

X ~ RETURN~ The flag register (F) has changed. The sixth bit in the F
register should have been set to zero from the compare
instruction.

N1 ~ RETURN~ Execute a single instruction. The program loops if the
zero flag is zero.

X ~RETU3 The program counter is set to 4006H to loop through
the program again.

G,4009 ~RETu3 Give the G command with a breakpoint at address
4009H to halt the program on returning from the

@] system call. Enter the character D while the program
waits for keyboard input.

N1 ~ RETURN~ Single step to execute the instruction to move the value
in the A register to the C register.

7-13



Debug Commands iPDS™ User's Guide

.T3
400A CD09F8 CALL F809
400D 88 CMP 8
400E C20640 JNZ 4006

• XC 44- 00·43
.G,4000

D=>400D
.XA44-1A
.N2

400D 88 CMP 8
400E C20640 JNZ 4006

.X
A= 1 A 8 = 1 A C= 4 4 D= 4 3 E = EE F = 5 4 H= 12 L = 34M = 12 34 P,=4011 S= F 1 E2

7-14

Key-in Sequence

T3 ~RETu3

XC SPACE 43 ~ RETURN~

G,400D ~RETURN~

XA ~ETU~3

1A ~ET~3

N2 ~RETURN~

X ~RET3

Comments

The T command disassembles the number of
instructions specified starting with the instruc
tion at the program counter.

The X command can also be used to change the
registers. First, type XC and press the space
bar. The current value of the C register is
displayed. Type 43 to change this to the ASCII
code for the character C. Now, when the pro
gram is run the character C is displayed instead
ofD.

Issue the G command with a breakpoint at ad
dress 400DH. The character, C, is displayed by
the system call.

Change the value in the A register to lAH.
This is the value used to end the program loop.
Step through two instructions with the N
command. The zero flag should be set to one
after the compare and the Jump should not be
made.

Display the registers to verify that the jump is
not taken. Notice the flag register has the value
54H. The sixth bit, the zero flag is set to one.
The program counter has the value 4011H, so
the program will not run through the loop again.



iPDS™ User's Guide

• F5000,50FF,58
• D5000,50FF

012 3 4 5 6 7 8 9 A 8 ( D E F
5010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5020 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5030 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5040 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5050 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5060 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5070 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5080 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5090 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
50Ao 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
5080 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
50(0 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
50Do 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
50Eo 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
50Fo 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

Debug Commands

Key-in Sequence

F5000,50FF,58 EU"~

D5000,50FF lE~URN]

Comments

Sometimes it is useful to fill memory with a
constant when debugging. This screen shows
an example of the F command which fills the
block of memory specified with the constant
specified.

Display a block of memory with the D
command. Here, the block filled with the
constant 58H, the ASCII code for X, is
displayed.

• M5000,50FF,6000
• D6000,60FF

012 3 4 5 6 7 8 9 A 8 ( D E F
6010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6020 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6030 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6040 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6050 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6060 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6070 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6080 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6090 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
60Ao 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6080 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
60(0 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
suuo 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
snru 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
6oFo 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

Key-in Sequence

M5000,50FF,6000 ~RETURN~

D6000,60FF lET~

Comments

A specified block of memory can also be
moved to a specified destination with
the M command.

Display the destination block to verify
the move.

7-15



Debug Commands iPDS™ User's Guide

. S400F 06-40 40-06

.Q
c=c
R=S
p=s
L=C

.AR=C

.Q
C=C
R=C
p=s
L=C

• H5000,6000
BODO FOOD

.E
AD>

Key-in Sequence

S400F SPACE 40 SPACE

06 ~RETURN~

AR=C ~RETl3

Q ItH~":]

HSOOO,6000 ~ET~3

7-16

Comments

Memory can be interactively changed with
the S command. Type S followed by the ad
dress of the first byte of memory to be
changed. The content of this location is dis
played followed by a dash. To change this
byte, type a hexadecimal value. To leave it un
changed press the space bar. Press the space
bar at any time to continue displaying the next
memory location. Press the RETURN key to
end ,the interactive memory editing and
return to DEBUG.

The Q command displays the current assign
ment of physical devices to the DEBUG logi
cal devices (different from the ISIS logical
devices) .

The A command changes the default assign
ment of devices. A physical device must be
properly connected before the assignment of
the device has any meaning.

It is often useful to compute hexadecimal
values when debugging assembler language
programs. The H command computes the
sum and difference of the two hexadecimal
values specified. The first result displayed is
the sum and second is the difference.

Exit from DEBUG and return to the ISIS
operating system.



iPDST
I\1 User's Guide

Debugging Commands in Alphabetical Order

Debug Commands

The rest of this chapter describes the individual debugging commands in a refer
ence format using the notational conventions explained in Chapter 5. The com
mands appear in alphabetical order.

A
Assign logical device

to physical device

Command Format

A < logical device> = < physical device>

where

< logical device>

< physical device>

Comments

specifies the logical device to which a physical
device is assigned.

specifies which physical device is to be assigned.

The possible values for < logical device> are shown in Table 7-1.

Table 7-1 Possible values for < logical device> .

Single Letter Symbol
Device

for < logical device>

C Console
R Reader
p Punch
L List

7-17



Debug Commands iPDS™ User's Guide

Table 7-2 gives the possible values for each < physical device> and the valid
matches with logical devices.

Table 7-2 Possible values for <physical device>

Logical Device
Single Letter Symbol

Device
for < physical device>

CONSOLE S Serial I/O Device
C CRT Terminal
B Batch Mode Device
1 User Defined Device 1

READER S Serial I/O Device
C CRT Terminal
1 User Defined Device 1
2 User Defined Device 2

PUNCH S Serial I/O Device
C CRT Terminal
1 User Defined Device 1
2 User Defined Device 2

LIST S Serial I/O Device
C CRT Terminal
L Line Printer
1 User Defined Device 1

The default assignments are:

c=c
R=S
P=S
L=C

The Batch Device is a non-interactive mode of operation where the currently as
signed Reader Device is used as the Console input device and the currently as
signed Punch Device is used as the Console output device.

The User Defined Devices 1 and 2 require a user-written I/O driver program. This
program must be added to the ISIS operating system with the IOSET system call.
See Chapter 8 for instructions on adding a user written I/O driver to the operating
system.

Examples

To assign a serial I/O device as the Console:

.AC=S

To assign a user defined device as the Reader:

.AR=1

To assign a serial I/O device as the List Device:

.AL=S

7-18



iPDS™ User's Guide Debug Commands

Given the previous assignments, the following command assigns the User
Defined Device 1 (the current Reader Device) as the Console input and the Serial
Device (the current List Device) as the Console output:

.AC=B

To reassign the Console I/O to the CRT Terminal, the following command must
be entered from the current console input, User Defined Device 1:

.AC=C

c
Disassemble code at

specified memory locations

Command Format

C <start address> 1<n >

where

< start address>

<n>

Comments

is the beginning of the memory range to be
disassembled. The < start address> must be given in
hexadecimal. Do not append the letter H to the start
address value.

is the hexadecimal number of instructions to be
disassembled.

Both the < start address> and the < n> are required. They must be separated by
a space or a comma.

The instructions at the specified addresses are displayed on the current List device
as MCS-80/85 mnemonics.

The display is listed in the format shown in the following example.

Example

To disassemble four instructions starting at memory location 4004H, enter the fol
lowing command:

.C4004,4
4004 061 A MVI B,1A
4006 CD03F8 CALL F803
4009 4F MOV C,A
400A CD09F8 CALL F809

7-19



Debug Commands

D
Display specified
memory range

Command Format

D< start address>, < end address>

where

iPDS™ User's Guide

< start address>

<end address>

Comments

is the beginning of the memory range to be displayed.
The <start address> must be given in hexadecimal
and must be less than or equal to the < end
address>. Do not append the letter H to the start ad
dress value. If < start address> is greater than or
equal to < end address>, the single byte located at
the < start address> is displayed.

is the end of the memory range to be displayed. The
address must be given in hexadecimal. Do not
append the letter H to the hexadecimal value.

Both the <start address> and the <end address> are required. They must be
separated by a space or a comma.

The contents of the specified addresses are displayed on the current List device in
hexadecimal and ASCII.

The memory display is listed in the format shown in the following example.

• The address at the left of each line is the address of the first byte on that line.

• Sixteen bytes are displayed on each line in hexadecimal, followed by the six
teen ASCII characters represented by each byte.

• An underline appears at any position in the display that is not inthe specified
range or for any non-printable ASCII byte.

• If the start address is not on a sixteen byte boundary, the first line contains
underlines from the previous sixteen byte boundary to the first character in
the range specified for display.

'\

• If the end address is not on a sixteen byte boundary, the last line contains un
derlines from the last character in the range specified to the next sixteen byte
boundary.

• If the entire range is less than sixteen bytes, the entire range appears on a
single line with underlines in positions not included in the range specified.

7-20



iPDSTl\1 User's Guide

Examples

To display the contents of memory locations C09H through C2AH:

Debug Commands

023456789 ABC D E F
OC09 __ .__ __ __ __ __ __ _ 40 30 CD A4 2D 22 47 - - - - - - - - - @ 0 __ - " G
OC10 30 3E 09 CD 80 2D D2 1E OC 21 4A 30 36 37 3A 4A 0 > _ _ _ ! J 0 6 7 : J
OC20 20 11 47 30 CD E3 2C EB 3E 04 __ : _ __ __ _ 0 - G 0 - - ' - > - # _

The value 40H that appears under column 9 is the value at address OC09. Double
underlines precede this value because the previous addresses are not part of the
range specified. The 16 corresponding ASCII characters follow column OFH. Un
derlines appear for out of range values and for non-ASCII codes.

To display the contents of the single location 0100H:

.D01 00,01 00
o 1 2 3 4 5 6 7

0100 01 _

Note that the command:

.D0100

8 9 ABC D E F

produces an error because the second required parameter is not specified. The
prompt (.) is replaced with the number sign (#), and the DEBUG prompt is dis
played on the following line so a command can be entered. Both the start and end
address must be specified.

#D0100

E
Exit to the ISIS-PDS

operating system

Command Format

E

Comments

The E command returns controls to the ISIS-PDS operating system as indicated by
the operating system prompt.

Example

To return to the ISIS operating system enter:

E

7-21



Debug Commands

F
Fill memory
with constant

Command Format

F<start address>, <end address>, <constant>

where

iPDS™ User's Guide

< start address>

<end address>

<constant>

Comments

is the beginning of the memory range to be filled with
the < constant>. The < start address> should be
given in hexadecimal and should be less than or
equal to the < end address >. Do not use the letter H
for hexadecimal values. If < start address> is greater
than or equal to < end address>, the single byte
located at the < start address> is filled with the
< constant>.

is the end of the memory range to be filled with the
< constan t >. The address must be given in
hexadecimal.

is the byte to be written to the specified address
range. The < constant> must be given in
hexadecimal.

All three parameters are required. The execution of this command may be ter
minated by typing the ESC key. This command should not be used to write over lo
cations below 3BFDH where ISIS routines are located.

Example

To initialize memory locations 4000H through 402FH with OOH, enter the
command:

.F4000,402F,OO

FUNCT-R
Return to DEBUG

Command Format

FUNCT-R

Comments

This function key performs a manual interrupt during the execution of the G
command. This command can be used in case the program being debugged begins
executing an infinite loop.

7-22



iPDS™ User's Guide

Example

If the G command has been given to run a program, type FUNCT-R

= >xxxx

Debug Commands

halts the program and returns the DEBUG prompt. The actual address where the
program halts appears in place of xxxx.

G

Command Format

G[ <start address>] [, < breakpoint 1 > [, < breakpoint 2>]]

Execute program
with breakpoints

where

< start address>

< breakpoint 1 >

<breakpoint 2>

Comments

is an optional parameter that specifies the address to
be placed in the program counter. The program
loaded begins executing at this address. The address
must be entered as a hexadecimal value. If < start ad
dress> is not specified, the address currently in the
program counter is used.

specifies an instruction address where the program
stops executing and return to the DEBUG prompt.
The address must be entered as a hexadecimal value.
If < breakpoint 1> is not specified, the program does
not halt.

specifies a second instruction address where the pro
gram stops executing and return to the DEBUG
prompt. The address must be entered as a hexadeci
mal value. If neither breakpoint is specified, the pro
gram runs without halting.

A breakpoint is the address of the first byte of an instruction within the program.
When a breakpoint is specified, the first byte of the instruction at the breakpoint is
replaced by the I-byte software interrupt instruction, RST 1. Then, when the
breakpoint is reached during program execution:

• The program stops executing.

• The single byte RST 1 instruction is replaced by the original instruction at
the breakpoint address.

• DEBUG displays the address of the breakpoint (now containing the original
instruction) as the next program entry point for subsequent execution.

• The Program Counter contains the breakpoint address (now containing the
original instruction) .

• The DEBUG prompt is displayed.

Then, debugging commands can be used to check the contents of registers or
memory in the program.

7-23



Debug Commands iPDS™ User's Guide

When the breakpoint is reached, the instruction at the breakpoint is not executed
before returning to the DEBUG prompt. The address of the breakpoint instruction
becomes the next entry point. This instruction is then executed when the G com
mand is given again unless the Program Counter is altered before the G command
is given.

To specify breakpoints with the G command:

1. Enter G optionally followed by the start address

2. Type a comma or a space

3. The G command displays a dash.

4. Enter the first breakpoint address.

5. If a second breakpoint is not desired, press the RETURN key to execute the
command.

6. To enter a second breakpoint, type a comma or space; the G command dis
plays a dash; enter the second breakpoint address followed by the RETURN
key.

If the command contains a syntax error, no breakpoints are set. The command
must be re-entered and the breakpoints specified again.

Both breakpoints are eliminated the first time that the system halts. To resume ex
ecution with one or both of the same breakpoints, re-enter the command with the
breakpoints.

Unpredictable results occur when breakpoints are set within an ISIS-PDS system
call routine. When debuggingprograms containing ISIS system calls, set the break
points at the instruction before or after the system call.

Examples

To begin executing at the address currently in the program counter:

.G

To execute a program whose entry address is 4000H:

.G4000

To execute a program whose entry address is 4000H and to set a breakpoint at
40CFH:

.G4000,-40CF
= >40CF

The characters = > indicate the next entry point of the program.

To execute a program whose entry point is 4000H and to set two breakpoints at
40CFH and 5000H: .

.G4000,-40CF,-5000
= >5000

Here, the instruction at 40CFH was never executed, so when the instruction at ad
dress 5000H was fetched, the program was interrupted.

7-24



iPDS™ User's Guide

Command Format

H<number1 >,<number2>

where

Debug Commands

H
Hexadecimal

add and subtract

< number 1 > is the first number to be added. The value supplied for
< number 2> is subtracted from this value. The number
must be entered as a hexadecimal value. Do not append the
letter H to this value.

< number 2> is the second number to be added. This value is subtracted
from < number 1>. The number must be entered as a hexa
decimal value. Do not append the letter H to this value.

Comments

The numbers can contain a maximum of four hexadecimal digits. Negative num
bers must be entered in twos complemented form.

The command displays two four-digit hexadecimal values as the result. The first is
the sum of the two numbers and the second is the difference between the two
numbers. Negative numbers are displayed in twos complement form.

If more than four digits are entered, the command uses the rightmost four digits.
The leading digits are lost.

Example

To add E49H and IIIH and to subtract IIIH from E49H:

.HE49,111
OF5A OD38

7-25



Debug Commands

I
Input byte
from iPDS port

Command Format

I < port address>

where

< port address> is the iPDS port address to be read. The port address
must be given in hexadecimal. Do not append the
letter H to the address. The single byte read at the port
address specified is displayed on the current list device
in hexadecimal.

Comments

The display returned shows the port address followed by the value read at that
port. The MCS-85 port address assignments on the iPDS system are listed in Chap
ter 8 in the section "I/O Address Space."

Example

The command

.IOCO
CO=>OD

reads the value at the Keyboard/CRT data port (I/O port address OCOH). The
value at this address is the last value typed in at the keyboard, a carriage return.
Thus, the ASCII code for carriage return, ODH, is displayed.

M
Move block
of memory

Command Format

M< start address> I < end address> I < destination address>

where

7-26

< start address> is the address of the first byte to be moved.
The < start address> must be given in hexa
decimal and must be less than or equal to the
<end address>. Do not append the letter H
to the address. If < start address> is greater
than or equal to < end address>, the single
byte located at the <start address> is
moved.



iPDS™ User's Guide

<end address>

<destination address>

Comments

Debug Commands

is the address of the last byte of memory to
be moved. The address must be given in
hexadecimal. Do not append the letter H to
the address.

is the address to which the first byte is
moved. Each subsequent byte is moved to
the location one higher than the previous
byte.

The data is moved on a byte-by-byte basis. The first byte is moved, then the
second byte, and so on. The data in the original location is not destroyed. Any data
at the destination address is overlaid.

Because the command works on a byte-by-byte basis, the destination address
should not be within the range of the source addresses. If it is within the range of
the source addresses, the operation is attempted. By the time the command
reaches the end of the block, the source data has been overlaid by the first data
moved. No error indication is given.

The move command can be terminated while in progress with the ESC key.

Examples

To move data currently at address 4000H through 4100H to address 5000H
through 5100H:

.M4000,4100,5000

To move the data currently at address 4000H through 4FFFH to address 4800H
through 57FFH:

.M4800,4FFF,5000

.M4000,47FF,4800

If this move were done with a single command, the second 7FFH bytes would be a
copy of the first 7FFH bytes because 4800H through 4FFFH would be overlaid by
the first 7FFH bytes before they could be copied.

7-27



Debug Commands

N
Execute a specified
number of instructions

Command Format

N<step count>

where

iPDS™ User's Guide

<step count> specifies the number of instructions to execute starting at
the program counter. The value is given in hexadecimal.
Do not append the letter H to the value.

Comments

The N command executes the specified number of instructions and then stops.
The disassembly information is displayed for each instruction executed. Unpre
dictable results occur if the N command is used to execute instructions within an
ISIS system call routine. To debug a program containing ISIS system calls, use the
N command up to the system call; then, use the G command with a breakpoint set
at the instruction following the system call.

The ESC key can be used to return to DEBUG when stepping through the program
with the N command.

Example

To execute four instructions starting at the address in the program counter of
400DH, enter the following command:

.N4
400D 88 CMP8
400E C20640 JNZ 4006
4011 OE09 MVI C,09
4013 110040 LXI D,4000

o
Output byte
to I/O port

Command Format

0< port address>, < databyte >

where

7-28

< port address>

<databyte>

is the iPDS port address to be written. The port address
must be given in hexadecimal. Do not append the
letter H to the address.

specifies the single byte of data in hexadecimal that is
to be written to the I/O port specified.



iPDS™ User's Guide

Comments

Debug Commands

The MCS-85 port address assignments on the iPDS system are listed in Chapter 8
in the section "I/O Address Space." The command displays the byte output fol
lowed by the port to which it was written.

Example

To output the byte 37H (a command to initialize the 8251 Serial USART chip) to
the 8251 Command/Status Port (91 H), enter the following command:

.091,37
37= >91

Q

Query current
devices assigned

Command Format

Q

Comments

The Query command displays the status of the system I/O devices. It displays a list
of the logical devices and the physical devices currently assigned to them. No
parameters are allowed with this command.

Table 7-3 shows the four logical devices.

Table 7-3 Logical Devices

Single Letter Symbol
Device

for < logical device>

C Console
R Reader
P Punch
L List

7-29



Debug Commands

Table 7-4 gives the possible values for each physical device assigned.

Table 7-4 Possible Values for Physical Device

iPDS™ User's Guide

Logical Device
Single Letter Symbol

Device
for <physical device>

CONSOLE S Serial I/O Device
C CRT Terminal
B Batch Mode Device
1 User Defined Device 1

READER S Serial I/O Device
C CRT Terminal
1 User Defined Device 1
2 User Defined Device 2

PUNCH S Serial I/O Device
C CRT Terminal
1 User Defined Device 1
2 User Defined Device 2

LIST S Serial I/O Device
C CRT Terminal
L Line Printer
1 User Defined Device 1

The default assignments are:

c=c
R=S
p=s
L=C

The Batch Device is a non-interactive mode of operation where the currently as
signed Reader Device is used as the Console input device and the currently as
signed Punch Device is used as the Console output device.

The User Defined Devices 1 and 2 require a user-written I/O driver program as do
the High Speed Paper Tape Reader and Punch.

Example

To list the current assignments of physical devices to logical devices, enter:

.0

The following assignments could be displayed indicating that a CRT terminal is as
signed as the Console and a user defined device is assigned to the Reader and
Punch while a line printer is assigned as the List Device.

c=c
R=1
P=2
L=L

7-30



iPDS™ User's Guide

Command Format

8 <address>,[ <databyte > ll.I <databyte >] .,.

where

Debug Commands

s
Substitute memory

interactively

<address> specifies an address. This value must be given in
hexadecimal. Do not append the letter H to the value.

<databyte> specifies the single byte of data in hexadecimal that is to re
place the byte currently at the location specified by
< address>. This parameter is optional. No changes are
made if < databyte > is left off.

Comments

The S command is operated as follows:

1. Enter the command and the address followed by a comma or space.

2. The current contents of the address are displayed followed by a dash.

3. Do one of the following:

• Modify the contents by entering a new byte in hexadecimal.

• Look at the next sequential byte of data by entering a comma or space.

• End the command without modifying the data by pressing the
RETURN key.

• Repeat any combination of the first tw.o choices ending with the
RETURN key.

Examples

The following command illustrates the byte by byte replacement of data in
memory. The dash character (-) is displayed by the system following the current
content of each sequential location of memory.

.84000,3A-,56-00,49-

The value 3AH at address 4000H is not changed; the value 56H at address 4001H
is replaced with OOH; the value 49H at address 4002H is not replaced; the
RETURN key is pressed to terminate the command and return to the DEBUG
prompt. The characters typed by the user are:

84000,,00,

7-31



Debug Commands

T
Disassemble code
relative to Program Counter

Command Format

T<n>

where

iPDS™ User's Guide

<n> is the number of instructions relative to the Program Counter to be
disassembled. It is specified in hexadecimal. Do not append the letter
H to the value.

Comments

Memory is disassembled starting at the location of the Program Counter. The
number of instructions specified are displayed on the current List device as
MCS-80/85 mnemonics.

The display is listed in the format shown in the following example.

Example

To disassemble the contents of 4 instructions starting at the program counter (in
this example, 4004H), enter the command:

.T4
4004 061A MVI B,1A
4006 CDD3F8 CALL F803
4009 4F MOV C,A
40DA CDD9F8 CALL F8D9

7-32



iPDS™ User's Guide

Command Format

Display Form

x

Modify Form

X <register> ,[<data>][, <data >l ...

where

< register> is the single character register name.

Debug Commands

}(

Display/modify
registers

< data> specifies one or two bytes of data to be placed in the register.
The < data> must be entered in hexadecimal.

Comments

The display form of the command displays the contents of all the registers. The
modify form displays and optionally changes the contents of the registers one at a
time.

The modify form of the command functions the same as the Substitute command.
It operates as follows:

1. Enter the command and a single letter symbol for a register.

2. The contents of the specified register is displayed, followed by a dash.

3. Do one of the following:

• Modify the contents by entering new bytes in hexadecimal. If the regis
ter is a two byte register, enter two bytes (four digits). For single byte
registers, enter a single byte (two digits).

• Look at the contents of the next sequential register by entering a
comma. See the following list for the sequence of registers.

• End the command without modifying the data by pressing the
RETURN key.

• Repeat any combination of the first two choices ending with the
RETURN key.

Table 7-5 lists the single character symbol for the registers that can be modified in
the sequence in which they are displayed.

7-33



Debug Commands iPDS™ User's Guide

Table 7-5 Character Symbols for Register Modification

Symbol Register Size of Register

A CPU A Register 1 Byte
B CPU B Register 1 Byte
C CPU C Register 1 Byte
0 CPU 0 Register 1 Byte
E CPU E Register 1 Byte
F CPU Flag Byte 1 Byte
H CPU H Register 1 Byte
L CPU L Register 1 Byte
M CPU Hand L Registers Combined 2 Bytes
P CPU Program Counter 2 Bytes
S CPU Stack Pointer 2 Bytes

The Flag Byte is displayed in the following 8-bit format:

456 321 0

I
1_~_LcarrY F ,ag
. . Undefined

Parity Flag
----------- Undefined

'---------------- Auxiliary Carry Flag
'------------------- Undefined

Zero Flag
'---------~-------------- Sign Flag

7

Examples

The following example shows the use of the display form of the X command:

.X
A=22 8=00 C=OD 0=07 E=OO F=02 H=F2 L=07 M=F207 P=F209 S=F1 C6

The flag byte F has the value 02 which is 0000 0010 in binary. Thus, no flags are
set.

In the next example the registers starting with the C register are modified.

.XC 00-,07-,00-40,02-,F2-,07-,F207-4CCC,F2D9-420C,F1 C6-,

The contents of each register are displayed in sequence starting with the specified
register. To change the register contents, a hexadecimal value is entered. To go to
the next sequential register, a comma or space is entered.

7-34



CHAPTERS
SYSTEM PROGRAMMER'S REFERENCE

Operating System Considerations

An operating system is a group of programs, or software routines, that provide the
software (as opposed to the hardware) environment in which user programs run.
The ISIS-PDS operating system provides two levels of software environment:
both an operating and a programming environment. See figure 8-1.

The operating environment is the external environment of the iPDS system. It is
the environment with which an operator interacts when running programs on the
system.

Figure 8-1 Internal and External Environment

The external environment is provided by the Command Line Interpreter (CLI).
The CLI interprets command lines entered from the console (usually the
keyboard) and then loads and executes the corresponding program from a disk file.

Chapter 3 describes the characteristics of this environment, i.e., how to enter
commands. Chapters 4-7 and Chapter 10 describe some of the command programs
supplied with the system. Other commands are described in separate manuals.

The programming environment is the internal environment of the iPDS system. It
is the environment in which the programs interact as they run on the system. It is
the environment which a systems programmer sees when writing programs to run
on the system.

8-1



System Programmer's Reference iPDS™ User's Guide

The internal environment of the iPDS system is provided by a set of system calls.
The system calls activate routines within the ISIS-PDS internal environment. This
internal environment is described in this chapter.

Needed Functions

Operating systems typically provide features that aid in the software development
task as shown in figure 8-2.

OPERATING
SYSTEM

I I
~

LOADS AND
UNIFORMLY PROVIDES
HANDLES UNIFORM I/O

EXECUTES ERROR TO
PROGRAM CONDITIONS PERIPHERALS

I I
~ ~! !~ ~

COMMAND CRTI DISK DRIVESI SERIAL
MEMORY PROGRAM LINE KEYBOARD PRINTER BUBBLE 1/0
MANAGEMENT OVERLAYS SCANNING PRINTER MEMORY DEVICE

TERMINAL

0209

Figure 8-2 Needed Capabilities

Most operating systems control the execution of programs, such as language
translators, utilities, or application programs. This involves several functions,
such as managing the memory resources of thesystem, scanning command lines,
and managing overlays.

The typical functions of an operating system also include the management of
peripheral devices attached to the system hardware. Devices supported often in
clude a console device such as a keyboard and CRT display, a hardcopy output
device such as a line printer, and mass storage devices such as flexible disk drives
or bubble memory.

Many operating systems also provide a uniform method of handling exception and
error conditions detected during the execution of a program.

Features of the ISIS-PDS Operating System

The ISIS-PDS operating system provides all the features needed in an operating
system through a collection of routines called the KERNEL. These routines,
referred to as system calls, form the internal environment which a programmer
sees when writing software to run on the iPDS system.

8-2



iPDS™ User's Guide

System Calls

System Programmer's Reference

This section describes the system calls in detail in terms of their operations and the
parameters required from the user program. First, an overview is given of the
system calls and their functions.

Overview of System Calls

System call routines are part of the ISIS operating system. They can be called by
user-written programs to perform I/O and other system services on the Personal
Development System. They free the programmer from rewriting routines, such as
I/O routines, that are already embedded in the operating system, and they also pro
vide a standard interface for all modules and systems developed.

Under the ISIS-PDS operating system, a number of MCS-80/85 language transla
tors can be used to build program modules. The resulting programs then run
under ISIS on the iPDS system. In this environment, the program may call upon
ISIS routines for a variety of services which already exist as part of the operating
system. This frees the programmer from having to code routines that are already
available.

An overview of the steps involved in making a system call from a PL/M module
and from an ASM module is given next. Detailed descriptions of how to make
system calls are provided later in the chapter.

When a system call is used in a PL/M program module, an external procedure is
declared for it. Then, within the PL/M module, a procedure call is made to the ex
ternally declared procedure.

In an ASM-80 program, an external symbol is declared for the entry point to the
system call. (In some cases, the external symbol is ISIS; in others, it is the name of
the system call.) Then, in the assembly module a CALL instruction to the external
symbol is given.

In either case, with PL/M-80 or with ASM-80, the relocatable module is linked
with the file SYSPDS.LIB which provides the correct address of the system call
routine.

There are 27 system call routines available. These are grouped into two broad
categories: high level routines and primitive routines. The high level routines per
form I/O operations and related maintenance services at the file level; they also
provide program execution services. The ISIS primitive routines perform I/O op
erations and related services at the byte level. The high level system calls are:

• File I/O operations for disk and other peripherals. OPEN, CLOSE, READ,
WRITE, SEEK, RESeAN, SPATH

• Disk directory maintenance. ATTRIB, DELETE, RENAME

• Console device assignment. CON SOL, WHOCON

• Error message output. ERROR

• Program loading and execution and return to CLI. LOAD, EXIT

• Multimodule Sharing ATTACH, DETACH

8-3



System Programmer's Reference

The primitive routines are:

• Peripheral I/O routines. CI, CO, RI, PO, LO

• System status routines. CSTS, IOCHK, IOSET, MEMCK

• Custom I/O driver extension. IODEF

Functional Categories of System Calls

iPDS™ User's Guide

A summary of the high level and primitive system calls organized by function
follows.

High Level System Calls

The high level system calls perform I/O operations at the file level. They also pro
vide program loading and execution services as well as error handling and console
I/O.

File I/O Operations. Seven system calls are available for controlling file I/O for
disk and other peripherals: OPEN, CLOSE, READ, WRITE, SEEK, RESCAN,
and SPATH. These routines open files for read or write operations, move the
pointer in an open file, and close files when they are finished.

With these calls, a program can transfer variable length blocks of data between
standard peripheral devices and a memory buffer area in the user program. To
clarify the effect of system calls on files, two integer quantities, LENGTH and
MARKER, are associated with each file in this description.

LENGTH is the number of bytes in the file. For some files, such as the keyboard
input, the LENGTH is potentially infinite. For other files, such as the input from a
serial device, the LENGTH is unknown until the file is completely read in. The
LENGTH ofa file increases as the file is written.

MARKER is the number of bytes already read from or written to the file. It is only
associated with open files. The range of MARKER is zero to LENGTH.
MARKER is a pointer to the next byte to be read from or written to the file. The
value of MARKER can be changed with the SEEK and RESCAN system calls.

Disk Directory Maintenance. There are three system calls in this group:
ATTRIB, DELETE, and RENAME. They perform maintenance functions on disk
directories. ATTRIB changes the attributes of a file in the directory, DELETE
removes a file from the directory, and RENAME assigns a new name to a file in
the directory.

Console Device Assignment. There are two system calls in this group: CONSOL
and WHOCON. They perform control functions for the logical console device.
CONSOL assigns the console devices to physical devices and WHOCON returns
the name of the current console device.

Error Message Output. The ERROR system call allows a program to send a
message to the console.

8-4



iPDS™ User's Guide System Programmer's Reference

Program Loading and Execution. The LOAD and EXIT system calls run pro
grams from disk files and return control to the CLI. The LOAD system call can be
used to transfer control to an overlay and then back to the main program.

I/O Driver Extensions. Two system calls aid in adding user defined I/O drivers
to the system. ATTACH and DETACH are used to assign non-bubble multi
module devices to one of the processors before the processor can access those
devices.

Primitive System Calls

The ISIS primitives perform I/O operations at the byte level. They also perform
system status checking and provide for adding I/O drivers to the operating system.
The ISIS-PDS primitive system calls are the equivalent of monitor calls on the
Series II and the Intellec 800 development systems. The calls are used to talk to
the chips that interface to the device driver.

Peripheral I/O Routines. The five I/O routines provide standard I/O interface to
the console (CI and CO), list device (LO), and a serial device (RI and PO).

System Status Routines. The four system status routines allow the user program
to check the console status (CSTS), to check the assignment of I/O devices
(IOCHK), and to check the top of user memory (MEMCK). Additionally, the
IOSET routine assigns I/O devices.

I/O Driver Extensions. The IODEF system call adds I/O drivers to the system.

Differences Between High Level and Primitive System Calls

The physical devices used with a high level call are the logical devices for the primi
tive system call. Bubble memory and disk drives do not have primitive system
calls.

System Call Format and Use

All system calls alter the CPU registers; save any values it needed later. None of
the system calls use the stack.

The ISIS-PDS system routines can be called from programs written in a number of
MCS-80/85 languages. If a system call is made in a program, that program must be
linked with the file SYSPDS.LIB using the LINK program to supply the absolute
addresses of the system routines to the calling program.

Some of the system call primitives are used as functions. In PL/M, they are de
clared as a typed procedure and can be invoked as part of an expression or a
parameter list rather than being CALLed. The calling sequence given for each
system routine indicates whether it is invoked by a CALL or is used as a function.
In assembly language, the functions return values to a register.

8-5



System Programmer's Reference

PL/M Calls

To use ISIS system calls in a PL/M program:

iPDS™ User's Guide

1. Declare a procedure as an external with the name of the system call desired.
Include the variable declarations for all formal parameters used by the
system call.

2. Before the procedure is called, declare and assign the proper values to the
actual parameters to be passed to the procedure.

3. Invoke the procedure, passing the parameters.

A PL/M program interfaces to ISIS by performing calls to procedures. The PL/M
program must include external procedure declarations so that the proper proce
dures (declared as public procedures) from SYSPDS.LIB will be included in the
program by LINK. For most system calls, the procedure declaration is untyped;
but some system calls serve as functions and, therefore, are typed as either BYTE
or ADDRESS.

The external procedure declaration must also include variable declarations for the
parameters to be passed to the procedure. The parameters can be of type AD
DRESS or of type BYTE, depending on the system call.

Each system call description gives the calling sequence and an example.

Assembly Language Calls

To use ISIS system calls in assembly language programs:

1. Define the system call entry point as an external.

2. Make any EQUs, DWs, or DSs needed for parameters to be passed to the
routine.

3. Load the value of the parameters to be passed into the proper register or
memory location.

4. Use the assembly language CALL instruction to call the system routine
entry point, previously defined as an external.

The interface between the MCS-80/85 Assembly Language Program and ISIS is
accomplished by declaring an external symbol for the entry point to the system
routine and then using the CALL instruction to that externally defined label. The
symbol to define as an external for each system call is given in the description of
that system call.

Parameters are passed from an assembly language program using the processor
registers and memory as required by the routine. These are specified in the de
scription of the particular system call.

Assembly language calls to system calls change the contents of the processor
registers. If the value of a register must be preserved, it should be saved before the
system call.

Each system call description includes the calling sequence and gives an example.

8-6



iPDS™ User's Guide System Programmer's Reference

Assembly Language Calls to High Level System Routines. Assembly language
system calls differ from PL/M in several respects. In PL/M, each system routine
has a corresponding procedure that is declared and called. In assembly language,
all the high level system routines are accessed by a CALL to a single entry point
labelled ISIS. (The remaining ISIS primitives use a mnemonic for the routine as
the external label for the entry point. These mnemonics are described in the dis
cussion of the particular call.)

For all high level system calls, the C register must contain the number of the
system call desired and the DE register pair must contain the address in memory
of a table of parameters required by the system call. The detailed steps follow:

1. Define ISIS as an external label:

EXTRN ISIS

2. Use an EQU statement to equate the number of the desired system call with
a symbol according to the following table:

SYSTEM CAll

OPEN
CLOSE
DELETE
READ
WRITE
SEEK
lOAD
RENAME
CONSOl
EXIT
ATTRIB
RESCAN
ERROR
WHOCON
SPATH
ATTACH
DETACH

NUMBER

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

3. Use DS and DW statements to set up a template for a table to hold the re
quired parameters.

4. With assembly language instructions, store the appropriate values for the
parameters in the table.

5. Store the number of the system call in the C register.

6. Store the address of the table of parameters in the D and E register pair.

7. Insert the following instruction in the program:

CAll ISIS ;Call the operating system.

The file SYSPDS.LIB must be linked to the program and provides the absolute ad
dress of the ISIS entry point.

All the high level system calls require two parameters. The first is a number,
passed in register C, that identifies the system call; the second is an address,
passed in register pair DE, specifying the memory location of the additional
parameters required by the system call.

8-7



System Programmer's Reference iPDS™ User's Guide

Usually, the system call numbers are defined in EQU statements before they are
referenced in the program, so that they can be referenced symbolically. The table
shown in step two above lists the high level system calls by number. These equates
are assumed in the assembly language examples given throughout this chapter.
Only the specific calls used in a program need to be defined in that program.

Assembly Language Calls to Primitive System Routines. Calls to ISIS primi
tives are similar to other system calls. The difference is that each ISIS primitive
has its own mnemonic label for its entry point instead of the single ISIS label.
These labels are defined as externals. The parameters required by ISIS primitives
vary, and they are stored in the processor registers before the call instruction is
given. The CALL is made to the label for the entry point and any values returned
are stored in the processor registers.

The mnemonics used for the entry points are:

CI
CO
LO
RI
PO
CSTS
IOCHK
IODEF
IOSET
MEMCK

For example, the call to output a character to the console is:

EXTRN CO ;ENTRY POINT FOR CO SYSTEM CALL

MOV C,M ;LOAD CHARACTER TO BE DISPLAYED INTO THE C
REGISTER

CALLCD ;OUTPUTTHECHARACTER

Error Handling

Most of the high-level system calls return fatal and non-fatal error numbers in a
status byte that can be tested by the calling program.

If a non-fatal error occurs, no action is performed by the system call and control re
turns to the calling program. The error number is returned as a two-byte value to
the calling program.

If a fatal error occurs, a message containing the error number is displayed on the
CRT screen and the CLI is reloaded.

The error numbers returned by each system routine are listed in the description of
that routine. Error numbers are described in Appendix B.

8-8



iPDS™ User's Guide

System Calls in Alphabetical Order

System Programmer's Reference

In this section, each system routine is described. Certain conventions are followed
in the descriptions so the information can be easily accessed. For every
description, notational conventions, general format terms, and a similar format
are used.

Notational Conventions

The notational conventions used here are consistent with the conventions used
throughout the manual as described in Chapter 5.

General Format Terms

The parameters passed to system calls assume certain uses. The name chosen for
each parameter indicates its use. All the general terms used for parameter names
are listed in this section after a brief discussion that highlights some of them.

A name used by every routine, is < status$ptr>. This is the address of a location
which contains a non-zero error code if the system call could not complete its task
normally.

Two other parameter names are < conn> and < conn$ptr >. ISIS maintains a list
of twelve devices or files that a program can access during its execution, i.e., a
table of file access connections.

The connection is a number, named and declared in the user program, that corre
sponds to a file to be accessed from the program. In other words, it connects the
file to the user program. The user program also supplies the pathname of the
device or file as an ASCII string. The ASCII string must conform to the format
given for pathnames:

: <device name>: <filename>.<extension >

However, it may have leading spaces (ASCII code 20H). The pathname cannot be
terminated by a letter, a digit, a colon (r), or a period L); but a space may be used.
The OPEN system call maintains this pathname and its connection number as an
entry in a table. Thereafter, the connection specifies the file or device that the user
program can read, write, seek, rescan or close.

This table of connections is also called an Active File Table, and the entries in it
are Active File Table Numbers (AFTNs). Only files with AFTNs, i.e., that are in
the Active File Table, can be used for I/O operations. Reads, writes, opens, and all
other file operations refer to the connection or AFTN rather than the device and
file name. During execution, the program can access multiple files, but only six
may be open at one time (not counting the console input and console output).
When I/O actions for a given file are complete, it can be closed so that another file
can be opened.

Be careful not to confuse the AFTN with the PL/M construction .AFTN. The
period (.) specifies the address of the memory location where the AFTN is stored.

To reduce the potential confusion, the term <conn> is used to refer to the con
nection number and < conn$ptr> to refer to the address of the connection
number (the pointer to the connection number). The <$ptr> is appended to
another term to indicate a pointer to the other item. In PL/M examples, the dot
operator (.) precedes names to indicate the address of the name.

8-9



System Programmer's Reference iPDS™ User's Guide

Similarly, < path$ptr> represents the address of a memory location containing
the pathname string. In PL/M calls to the system routines, simply use the dot oper
ator (.) to provide the address of the variable declared for use in the system
routine.

In order to READ and WRITE a file, several questions must be answered:

1. How many bytes are to be transferred?

2. To (or from) where?

3. From (or to) what memory locations?

In the system call descriptions, 0) is supplied as the parameter < count>; (2) is
supplied as the parameter < conn> described previously; and (3) is supplied as
the parameter < buffer$ptr >, the address of the locations to be read from or writ
ten to.

The following chart lists the parameters in alphabetical order and lists the system
calls in which they are used.

8-10

Parameter Name

<access>

< actual$ptr >

<atrb>

< block$ptr >

<buf$ptr>

<byte$ptr>

<char>

<ci$path$ptr>

Routines Using Parameter and Brief Definition

OPEN
2-byte number telling how the file is to be used, i.e.,
read or write or update.

READ
2-byte pointer to the actual number of bytes suc
cessfully read.

ATTRIB
2-byte number indicating which attribute to change.

SEEK
2-byte pointer to the block number.

READ, WHOCON, WRITE
2-byte pointer to the area declared for reading from
(or writing to) a file; for read and write, it should be
at least COUNT bytes long or undefined results will
occur.

SEEK
2-byte pointer to the byte number.

CO, lO, PO
Byte value output to the console, the serial device,
or the printer.

CONSOl
2-byte pointer to ASCII string containing the path
name of the console input device.



iPDST
I\1 User's Guide

Parameter Name

< config$byte >

<conn>

<conn$ptr>

< control$sw >

<co$path$ptr>

<count>

<echo>

<entry$point>

< entry$ptr >

<errnum>

<function$code>

<info$ptr>

< load$offset >

<mode>

<mmio$row>

System Programmer's Reference

Routines Using Parameter and Brief Definition
(continued)

IOSET
Byte value used to assign I/O devices.

CLOSE, READ, RESCAN, SEEK, WHOCON,
WRITE
2-byte connection number to a file or device.

OPEN
2-byte pointer to the connection number.

lOAD
2-byte value indicating where to transfer control
after the load.

CONSOl
2-byte pointer to ASCII string containing the path
name of the console output device.

READ, WRITE
2-byte value that specifies the number of bytes to
read from or write to a file.

OPEN
2-byte connection number for the echo file when a
line edited file is opened.

IODEF
2-byte address of the entry point of the user written
I/O driver.

lOAD
2-byte address of the location to which the loaded
program should return after execution.

ERROR
2-byte error number to output to the console.

IODEF
Byte value that identifies which I/O driver is being
added.

SPATH
2-byte pointer to the memory area containing file
description data.

lOAD
2-byte offset value added to the load address causing
the program to load at the adjusted address.

SEEK
2-byte value representing the direction and type of
the seek operation.

ATTACH, DETACH
2-byte value specifying which multimodule row is
being attached or detached.

8-11



System Programmer's Reference

Parameter Name

< newpath$ptr >

<oldpath$ptr>

<onoff>

<path$ptr>

<status$ptr>

Description Formats

iPDS™ User's Guide

Routines Using Parameter and Brief Definition
(continued)

RENAME
2-byte pointer to the new pathname of the file being
renamed.

RENAME
2-byte pointer to the old pathname of the file being
renamed.

ATTRIB
2-byte number indicating whether the attribute is to
be set or reset.

ATTRIB, DELETE, LOAD, OPEN, SPATH
2-byte pointer to the pathname of the accessed file.

All routines but EXIT and the primitives.
2-byte pointer to the error numbers generated
during the system call.

In addition to the conventions just described, each of the system calls is described
using the same format to aid in accessing the needed information at a glance. This
format is shown in figure 8-3. The system calls are described in alphabetical order.
Each description begins on a new page with the system call keyword on the top out
side margin of the page.

1. First, the purpose of the system call is given.

2. Second, the parameters are described in the order required by the system
call. Two pieces of information are supplied for every parameter.

"Input parameter." or "Output parameter." is the first information given for
each parameter. All the parameters listed are supplied by the calling program
to the system call. In this context, output parameter refers to the destination
address ofa value returned by the system call.

The second piece of information provided for every parameter is the parame
ter size. All parameters are either one-byte or two-byte. All high level system
calls use two-byte parameters.

3. Third, the error numbers are listed. These are the ISIS error numbers that
can be returned for that system call. The error numbers are explained in Ap
pendix B.

4. Fourth, a PL/M section shows the format of the PL/M procedure declaration
and the format of the PL/M procedure call and gives an example.

5. Fifth, an assembly language section shows shows the calling sequence in an
ASM-80 program and gives an example.

NOTE
The examples provided use symbolic names, labels, and variable
names. If several of the example calling sequences are combined
into a single program, the symbols, labels, and variable names
may have to be modified to avoid duplicate symbol errors.

8-12



iPDS™ User's Guide System Programmer's Reference

SYSTEM CALL NAME
brief phrase
describing routine

Description

A brief paragraph or two describing use of the system call.

Parameters

Parameter
••••••••• Description ••••••••••

Parameter n
••••••••• Description ••••••••••

Error Numbers

Fatal:

Non-Fatal:

PL/M Calling Sequence

n l , n2, n3,

n1, n2, n S,

., nm

• , nm

Explanation and example of the calling sequence.

Assembly Language Calling Sequence

Explanation and example of the calling sequence.

0224

Figure 8-3 Format of System Call Descriptions

8-13



System Programmer's Reference

ATTACH
Assigns multimodule row
to processor

Description

iPDS™ User's Guide

The ATTACH call assigns a row of multimodules to a processor. The program sup
plies the multimodule row, and the ATTACH call returns the status. See the
DETACH call.

Parameters

Two parameters are required by ATTACH in the following order. They can be
passed in a PL/M procedure or through the C register and the DE register pair
from an assembly language program.

< mmio$row > Input parameter. Two byte. Value can be:

0- 110 Connectors 11 and J2.
1 - 110 Connectors J3 and J4.

<status$ptr> Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers

Fatal: 33.

Non-fatal: 60,61.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

ATTACH:
PROCEDURE « mmio$row >, <status$ptr» EXTERNAL;

DECLARE «mmio$row>,<status$ptr» ADDRESS;
END ATTACH;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE MULTIMODULE ADDRESS;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL ATTACH(MULTIMODULE,.STATUS);
IF STATUS < > 0 THEN ...

Notice that a variable was declared for the status, and then the dot operator was
used to pass the address ofthis value as required by the system call.

8-14



iPDS™ User's Guide System Programmer's Reference

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled ABLK) is
stored in the DE register pair before the CALL instruction.

; ATTACH

EXTRN ISIS
EQU 15

; TEST ERROR STATUS

; BRANCH TO EXCEPTION ROUTINE
; REST OF PROGRAM
; PARAMETER BLOCK FOR ATTACH
; MULTIMODULE ROW
; ATTACH STATUS

2
2

; LINK TO ISIS ENTRY POINT
; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS...

C,ATTACH ; LOAD IDENTIFIER
D,ABLK ; ADDRESS OF PARAMETER BLOCK
ISIS
ASTAT
A
EXCEPT

MVI
LXI
CALL
LDA
ORA
JNZ

ATTACH

ABLK:
ATTROW: DS
ASTAT: DS

8-15



System Programmer's Reference

ATTRIB
Change the attributes
of a file

Description

iPDS™ User's Guide

The ATTRIB call allows a program to change an attribute of a disk file. The pro
gram supplies the name of the file, the attribute to be changed, and its new value.
The ATTRIB call returns a status code.

Parameters

Four parameters are required by ATTRIB in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<path$ptr>

<atrb>

<onoff>

< status$ptr >

Error Numbers

Input parameter. Two byte. Pointer to the ASCII string
(maximum of 15 bytes) containing the name of the file.
The ASCII string can contain leading spaces but no em
bedded spaces. It must be terminated by a character
other than a letter, digit, colon (:), or period L). A
space can be used.

Input parameter. Two byte. Number indicating which at
tribute is to be changed:

0- invisible attribute
1 - system attribute
2 - write protect attribute
3 - format attribute
4 - user defined attribute
5 - user defined attribute
6 - user defined attribute

Input parameter. Two byte. Value indicating whether at
tribute is to be set (turned on) or reset (turned off). The
value is stored in the low order bit of the low order byte.
A value of 1 specifies the attribute to be set, and a value
of 0 specifies that it be reset.

Output parameter. Two byte. Address in memory of the
two-byte error number. If the error number is 0, no
error occurred.

Fatal: ·1 , 24, 30, 33

Non-fatal: 4,5, 13,23,26,28

8-16



iPDS™ User's Guide

PL/M Calling Sequence

The form of the declaration of the external procedure is:

System Programmer's Reference

ATTRIB:
PROCEDU RE « path$ptr >, < atrb >, <onoff >, < status$ptr»
EXTERNAL;

DECLARE « path$ptr >, < atrb >, <onoff >, < status$ptr»
ADDRESS;

ENDATTRIB;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE FILE(15) BYTE;
DECLARE STATUS ADDRESS;

Values are then assigned to "the declared variables which are used as actual
parameters. Finally, the procedure is called passing the actual parameters.

CALL ATTRIB(.FILE,2,0,.STATUS);
IF STATUS < > °THEN ...

Notice that a variable was declared for the filename and the status, and then the
dot operator was used to pass the addresses of these values as required by the
system call. This example clears the Write Protect attribute of the file.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series of DW, DS, and
DB directives. Then, the address of the beginning of the block (labelled ABLK) is
stored in the DE register pair before the CALL instruction.

; ATTRIB

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
ATTRIB EQU 10 ; SYSTEM CALL IDENTIFIER

; SAVE REGISTERS ...
MVI .C,ATTRIB ; LOAD IDENTIFIER
LXI D,ABLK ; ADDRESS OF PARAMETER BLOCK
CALL ISIS
LDA ASTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT ; BRANCH TO EXCEPTION ROUTINE

; REST OF PROGRAM
ABLK: ; PARAMETER BLOCK FOR ATTRIB

DW FILE3 ; ADDRESS OF FILENAME
ATRB: DW ° ; ATTRIBUTE IDENTIFIER
VALUE: DW I ; ATTRIBUTE VALUE

DW ASTAT ; POINTER TO STATUS

ASTAT: DS 2 ; STATUS (RETURNED)
FILE3: DB, 'OPSYS.CLI '

8-17



System Programmer's Reference

CI
Input character
from console

Description

iPDS™ User's Guide

The CI call reads a character entered at the system console device and returns it as
a byte variable in PL/M or in the A register in an assembly language program.
Once called, the routine loops until a character is entered. The character entered is
not echoed on the console output device. The actual device from which the charac
ter is read depends on the value set by the IOSET system call. The CI system call is
notused by the ISIS operating system to read the :CI: device.

Parameters

None.

Error Numbers

Fatal: None.

Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

CI:
PROCEDURE BYTE EXTERNAL;
ENDCI;

Notice that this is a typed procedure or function and can be used in an expression
or parameter list. There are no actual parameters to declare, so the function is
called without any further declarations. Assuming an array has been set up to re
ceive a sequence of characters, the following program receives those characters
into the array.

DO WHILE BUFFER(lNDEX) < > CR;
INDEX = INDEX + 1
BUFFER(lNDEX) = CI;
END;

Assembly Language Calling Sequence

From an assembly language program, the label CI is defined externally instead of
the label ISIS, because CI is a primitive ISIS routine. The character is returned in
the A register.

;CI
EXTRN CI ; ENTRY POINT FOR CIIN ISIS
CALL CI; GET CHARACTER

; CHARACTER RETURNED IN "A"
; REGISTER

8-18



iPDS™ User's Guide

Description

System Programmer's Reference

CLOSE
Terminate I/O operations

to a file

The CLOSE call removes a file from the Active File Table (AFT) and releases the
buffers allocated for it by the OPEN command. Each file should be closed whenev
er I/O processing is complete. The program supplies the connection number of the
file to be closed and the CLOSE call returns an error code. The EXIT system call
also closes all open files except the console.

Parameters

Two parameters are required by CLOSE in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by. the
DE register pair for an assembly language program.

<conn>

< status$ptr >

Error Numbers

Fatal: 33

Non-fatal: 2

Input parameter. Two byte. Connection number
(AFTN) returned for a random access file when it was
opened.

Output parameter. Two byte. Pointer to two-bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

CLOSE:
PROCEDURE «conn >, <status$ptr» EXTERNAL;

DECLARE «conn>,<status$ptr» ADDRESS;
END CLOSE;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE AFT$IN ADDRESS;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL CLOSE(AFT$IN,.STATUS);
IF STATUS < > a THEN ...

Notice that a variable was declared for the status, and then the dot operator was
used to pass the addresses of this value as required by the system call.

8-19



System Programmer's Reference

Assembly Language Calling Sequence

iPDS™ User's Guide

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled CBLK) is
stored in the DE register pair before the CALL instruction.

; CLOSE

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
CLOSE EQU 1 ; SYSTEM CALL IDENTIFIER

; SAVE REGISTERS ...
MVI C,CLOSE ; LOAD IDENTIFIER
LXI D,CBLK ; ADDRESS OF PARAMETER BLOCK
CALL ISIS
LDA CSTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT ; BRANCH TO EXCEPTION ROUTINE

, ...
CBLK: ; PARAMETER BLOCK FOR CLOSE
CAFTN: DS 2 ; FILE IDENTIFIER

DW CSTAT ;POINTER TO STATUS

CSTAT: DS 2 ; STATUS (RETURNED)

8-20



iPDS™ User's Guide

Description

System Programmer's Reference

co
Output character

to console

The CO call sends a single character to the system console device. From PL/M, a
byte variable is used for the character. From an assembly language program, the
character must be in the C register. The actual device to which the character is writ
ten is determined by the value set by the IOSET system call. The CO system call is
notused by the ISIS-iPDS operating system to write to the :CO: device.

Parameters

The parameter required by CO can be passed in a PL/M procedure call or through
the C register from an assembly language program.

<char> Input parameter. Byte. The character to be output.

Error Numbers

Fatal: None.
Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

co:
PROCEDURE «char» EXTERNAL;

DECLARE « char» BYTE;
END CO;

The actual parameter must be declared in the program prior to making the call.

DECLARE CHAR BYTE;

A value is then assigned to the declared variable which is used as an actual
parameter. Finally, the procedure is called passing the actual parameter.

CALL CO(CHAR);

Assembly Language Calling Sequence

From an assembly language program, the label CO is defined externally instead of
the label ISIS, because CO is a primitive ISIS routine.

;CO
; SAVE REGISTERS

EXTRN CO ; ENTRY POINT FOR CO ISIS
MOV C,M; LOAD CHARACTER TO BE OUTPUT INTO "c"

; REGISTER
CALL CO ;OUTPUTTHECHARACTER

8-21



System Programmer's Reference

CONSOL
Change
console device

Description

iPDS™ User's Guide

The CONSOL call allows a program to change the console input and output
devices, i.e., reassign the physical device named by :CI: ·and :CO:. The program
supplies the name of the new console I/O device. The CONSOL call returns an
error code.

Parameters

Three parameters are required by CONSOL in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

< ci$path$ptr > Input parameter. Two byte. Pointer to the ASCII string
(IS-bytes maximum) containing the name of the file to
be used for console input. The ASCII string can contain
leading spaces but no embedded spaces. It must be ter
minated by a character other than a letter, digit, colon
(i), or period C). A space can be used. If the specified
file cannot be opened, a fatal error occurs. If :CI: is
specified for the input file, the current input assignment
is not changed.

<co$path$ptr > Input parameter. Two byte. Pointer to the ASCII string
(IS-byte maximum) containing the name of the file to
be used for console output. The ASCII string can con
tain leading spaces but no embedded spaces. It must be
terminated by a character other than a letter, digit,
colon (:), or period (.). A space can be used. If the speci
fied file cannot be opened, a fatal error occurs. If :CO: is
specified for the output file, the current output assign
ment is not changed.

< status$ptr > Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers

Fatal: 1,4,5,12,13,14,22,23,24,28,30,33

Non-fatal: None; all errors are fatal.

8-22



iPDS™ User's Guide

PL/M Calling Sequence

The form of the declaration of the external procedure is:

System Programmer's Reference

CONSOl:
PROCEDURE « ci$path$ptr >, < co$path$ptr>, < status$ptr »
EXTERNAL; .

DECLARE « ci $path$ptr >, < co$path$ptr >, < status$ptr »
ADDRESS;

END CONSOl;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE INFllE(6) BYTE;
DECLARE OUTFllE(6) BYTE;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CAll CONSOL(.INFllE,.OUTFllE,.STATUS);
IF STATUS < > a THEN ...

Notice that variables were declared for the filenames and status, and then the dot
operator was used to pass the addresses of these values as required by the system
call.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up with a series of DW, DS, and DB directives.
Then, the address of the beginning of the block (CBLK) is stored in the DE regis
ter pair before the CALL instruction.

CONSOl

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
CONSOl EQU 8 ; SYSTEM CAll IDENTIFIER

; SAVE REGISTERS ...
MVI C,CONSO; lOAD IDENTIFIER

l
lXI D,CBlK ; ADDRESS OF PARAMETER BLOCK
CAll ISIS

CBlK:
DW

DW

DW

; PARAMETER BLOCK FOR CONSOLE
INPUT ; POINTER TO NAME OF CONSOLE

; INPUT FilE
OUTPUT ; POINTER TO CONSOLE OUTPUT

; FilE
CSTAT ; POINTER TO STATUS

CSTAT: DS
INPUT: DB
OUTPUT: DB

2
':SI:'
':SO:'

; STATUS (RETURNED)
; INPUT CONSOLE FilE
; OUTPUT CONSOLE FilE

8-23



System Programmer's Reference

CSTS
Return console
input status

Description

iPDS™ User's Guide

The CSTS call tests the console device to determine if a character is ready for
input. It returns a value of OOH if no character is ready for input since the last
console status and a value of FFH if a character is ready. The status is returned as a
byte variable in PL/M or in the A register in an assembly language program. The
console device and console status routines can be changed by using the IOSET
system call.

Parameters

None.

Error Numbers

Fatal: None.

Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

CSTS:
PROCEDURE BYTE EXTERNAL;
END CSTS;

Notice that this is a typed procedure or function and can be used in an expression
or parameter list.

There are no actual parameters to declare, so the function is called without any fur
ther declarations. In the following example, the status is used as a test condition
for another routine.

IF CSTS THEN ...

Assembly Language Calling Sequence

From an assembly language program, the label CSTS is defined as an external in
stead of the label ISIS, because CSTS is a primitive ISIS routine. The status is re
turned in the A register.

;CSTS
EXTRN CSTS ; ENTRY POINT FOR CSTS IN ISIS

; SAVE REGISTERS
CALL CSTS ;GETCHARACTER

; CHARACTER RETURNED IN "A"
; REGISTER

8-24



iPDS™ User's Guide

Description

System Programmer's Reference

DELETE
Delete a file from

the disk directory

The DELETE call removes a specified file from its disk. The file must not be open.
The disk space allocated to the file is released and can be used for another file. The
program supplies a pointer to the name of the file to be deleted. The DELETE call
returns an error code.

Parameters

Two parameters are required by DELETE in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<path$ptr>

< status$ptr >

Error Numbers

Input parameter. Two byte. Pointer to the ASCII string
(IS-byte maximum) containing the name of the file.
The ASCII string can contain leading spaces but no em
bedded spaces. It must be terminated by a character
other than a letter, digit, colon (r), or period (.). A
space can be used.

Output parameter. Two byte. Pointer to two-bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Fatal: 1, 24, 30, 33

Non-fatal: 4,5,13,14,17,23,28,32

PL/M Calling Sequence

The form of the declaration of the external procedure is:

DELETE:
PROCEDURE « path$ptr >, < status$ptr » EXTERNAL;

DECLARE «path$ptr>,<status$ptr» ADDRESS;
END DELETE;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE FILENAME(15) BYTE;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL DELETE(.FILENAME,.STATUS);
IF STATUS < > °THEN ...

8-25



System Programmer's Reference iPDS™ User's Guide

Notice that a variable was declared for the filename and status, and then the dot
operator was used to pass the addresses of these values as required by the system
call.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled DBLK) is
stored in the DE register pair before the CALL instruction.

; DELETE

EXTRNISIS
EQU 2DELETE

MVI
LXI
CALL
LDA
ORA
JNZ

C,DELETE
D,DBLK
ISIS
DSTAT
A
EXCEPT

; LINK TO ISIS ENTRY POINT
; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS ...
; LOAD IDENTIFIER
; ADDRESS OF PARAMETER BLOCK

; TEST ERROR STATUS

; BRANCH TO EXCEPTION ROUTINE

DBLK:

DSTAT:
DFILE:

DETACH
Release multimodule row
from a processor

Description

DW
DW

DS
DB

; PARAMETER BLOCK FOR DELETE
DFILE ; POINTER TO FILENAME
DSTAT ; POINTER TO STATUS

2 ; STATUS (RETURNED)
'FILE.EXT' ; NAME OF FILE TO BE DELETED

The DETACH call releases a row of multimodules from a processor. The program
supplies the multimodule row, and the DETACH call returns an error. See the
ATTACH call.

Parameters

Two parameters are required by DETACH in the following order. These can be
passed in a PL/M procedure or through the C register and the DE register pair
from an assembly language program.

8-26

<mmio$row>

<status$ptr>

Input parameter. Two byte. Value can be:

0- I/O Connectors 11 and J2.
1 - I/O Connectors J3 and J4.

Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.



iPDS™ User's Guide

Error Numbers

Fatal: 33.

Non-fatal: 60,61.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

System Programmer's Reference

DETACH:
PROCEDURE « mmio$row >, < status$ptr» EXTERNAL;

DECLARE «mmio$row>,<status$ptr» ADDRESS;
END DETACH;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE MULTIMODULE ADDRESS;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL DETACH(MULTIMODULE,.STATUS);
IF STATUS < > 0 THEN ...

Notice that a variable was declared for the status, and then the dot operator was
used to pass the address of this value as required by the system call.

Assembly Language Calling Sequence

From an assembly language program, the label DETACH is defined as an external
instead of the label ISIS, because DETACH is a primitive ISIS routine. The multi
module row must be in the C register.

; DETACH

EXTRN ISIS
DETACH EQU 15

; TEST ERROR STATUS

MVI
LXI
CALL
LDA
ORA
JNZ

; LINK TO ISIS ENTRY POINT
; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS ...

C,DETACH ; LOAD IDENTIFIER
D,DBLK ; ADDRESS OF PARAMETER BLOCK
ISIS
DSTAT
A
EXCEPT ; BRANCH TO EXCEPTION ROUTINE

DBLK:
DETROWDS

DSTAT: DS

2

2

; PARAMETER BLOCK FOR LOAD
; MULTIMODULE ROW

; DETACH STATUS

8-27



System Programmer's Reference

ERROR
Output error message on
system console

Description

iPDS™ User's Guide

The ERROR call allows a program to send an error message to the current console
output device. The program supplies the ISIS error number of the message to be
displayed. The ERROR call returns a status code.

Parameters

Two parameters are required by ERROR in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program. -

<errnum>

< status$ptr >

Error Numbers

Fatal: 33

Non-fatal: None.

Input parameter. Two byte. Error number to display on
the CRT screen. The error number must be in the low
order eight bits of the parameter. Only the numbers 101
to 199 inclusive should be used for user programs. the
other numbers are reserved for ISIS. The system dis
plays the message in the form:

ERROR nnn, USER PC mmmmm

where nnn is the error number specified in the call and
mmmm is the return address of the calling program.

Output parameter. Two byte. (for assembly language
only). Pointer to two bytes in memory reserved for the
error number. If the error number is 0, no error
occurred.

PLIM Calling Sequence

The form of the declaration of the external procedure is:

ERROR:
PROCEDURE «errnum » EXTERNAL;

DECLARE «errnum» ADDRESS;
END ERROR;

Notice that the status parameter is not used in the PL/M call.

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE ENUM ADDRESS

8-28



iPDS™ User's Guide System Programmer's Reference

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL ERROR(ENUM);

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled EBLK) is
stored in the DE register pair before the CALL instruction.

; ERROR

EXTRN ISIS
EQU 12ERROR

MVI
LXI
CALL

; LINK TO ISIS ENTRY POINT
; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS ...

C,ERROR; LOAD IDENTIFIER
D,EBLK ; ADDRESS OF PARAMETER BLOCK
ISIS

EBLK:
ERRNUM: OS

OW

ESTAT: OS

2 ; NUMBER OF ERROR TO BE PRINTED
ESTAT ; POINTER TO STATUS

2 ; STATUS (RETURNED)

8-29



System Programmer's Reference

EXIT
Terminate program and
return to ISIS

Description

iPDS™ User's Guide

The EXIT call terminates execution and returns to ISIS-PDS. All open files are
closed, with the exception of :CO: and :CI:. The current console assignment is not
changed, unless the terminated program specifies a change. (See IOSET).

Parameters

From PL/M, no parameters are supplied. In an assembly language program, only
the pointer to the location for the error code is supplied.

<status$ptr>

Error Numbers

Fatal: None.

Non-fatal: None.

Output parameter. Two byte. (for assembly language
only) Pointer to two bytes in memory reserved for the
error number. If the error umber is 0, no error occurred.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

EXIT:
PROCEDURE EXTERNAL;
END EXIT;

There are no actual parameters to declare, so the call is made without any further
steps. For example:

CALL EXIT;

8-30



iPDS™ User's Guide System Programmer's Reference

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled EBLK) is
stored in the DE register pair before the CALL instruction.

; EXIT

ESTAT ; POINTER TO STATUS

2 ; STATUS FIELD

MVI
LXI
CALL

, ...
EBLK:

DW
, ...
ESTAT: DS

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
EXIT EQU 9 ; SYSTEM CALL IDENTIFIER

; SAVE REGISTERS ...
C,EXIT ; LOAD IDENTIFIER
D,EBLK ; ADDRESS OF PARAMETER BLOCK
ISIS

8-31



System Programmer's Reference

IOCHK
Check system I/O

configuration

Description

iPDS™ User's Guide

The IOCHK call is a function and returns a byte value that describes the current as
signment of the physical devices to logical devices. The IOCHK call assignments
are used by the low level system calls, not by the high level calls. The Logical
devices are: Console, Reader, Punch, and List. The byte is divided into 4 two-bit
fields interpreted as follows:

BITS

76 54 32 1 0

I
I

I CONSOLE

READER

PUNCH

LIST

The terms Reader and Punch were used to be consistent with previous versions of
ISIS that support paper tape reader and punch devices. Table 8-1 shows the possi
ble values of each field in the byte returned and gives the physical device assign
ment for that value.

Table 8-1 Field Values and Physical Device Assignment

VALUE LIST PUNCH READER CONSOLE

00 SO SO SI SI/SO
01 va va VI VINO
10 LP UD (4) UD (2) 8ATCH
11 UD (6) UD (5) UD (3) UD (0/1/7)

SI is the serial input; SO is the serial output. VI is the video input (keyboard); VO
is the video output (CRT screen). LP is the line printer. UD is a user defined
device; the numbers in parentheses refer to the function codes in the IODEF call.
BATCH assigns the current reader device as the console input and the current list
device as the console output.

To isolate the two-bit field for a particular logical device from the byte returned,
logicallyAND the IOCHK byte with one of the mask values shown in Table 8-2.

Table 8-2 Mask Values

DEVICE HEX BINARY

CONSOLE 03H 000000118
READER OCH 000011008
PUNCH 30H 0011 00008

LIST COH 110000008

8-32



iPDS™ User's Guide System Programmer's Reference

To check for a physical device code, AND the IOCHK byte with one of the follow
ing mask values:

CONSOLE .51/50 OOH 0000 00008 PUNCH SO OOH 0000 00008
VIIVO 01 H 0000 00018 VO 10H 0001 00008
8ATCH 02H 0000 00108 UD(4) 20H 0010 00008
UD(0/1/7) 03H 0000 00118 UD(5) 30H 0011 00008

READER SI OOH 0000 00008 LIST SO OOH 0000 00008
VI 04H 0000 01008 VO 40H 0100 00008
UD (2) OBH 0000 10008 LP BaH 1000 00008
UD (3) OCH 0000 11008 UD(6) COH 1100 00008

Parameters

None.

Error Numbers

Fatal: None.

Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

10CHK:
PROCEDURE 8YTE EXTERNAL;
END 10CHK;

Notice that this is a typed procedure or function and can be used in an expression
or parameter list.

There are no actual parameters to declare, so the function is called without any fur
ther declarations.

IF 10CHK AND MASK 1 = a THEN ...

Assembly Language Calling Sequence

From an assembly language program, the label IOCHK is defined as an external in
stead of the label ISIS, because IOCHK is a primitive ISIS routine. The character is
returned in the A register.

;IOCHK
EXTRN 10CHK; ENTRY POINT FOR 10CHK IN ISIS

; SAVE REGISTERS ...
CALL 10CHK ; GET STATUS 8YTE

; CHARACTER RETURNED IN "A"
; REGISTER

8-33



System Programmer's Reference

IODEF
I/O definition
routine

Description

iPDS™ User's Guide

Up to eight user written I/O drivers can be added to extend ISIS I/O capabilities.
Each driver can be assigned one of the following function codes.

o User defined console input
1 User defined console output
2 User defined serial input 1
3 User defined serial input 2
4 User defined serial output 1
5 User defined serial output 2
6 User defined parallel output (list device)
7 User defined console status routine

Only one program can be assigned to anyone code at a time. The program can be
changed but two cannot be assigned to the same code at the same time. These
codes correspond to the numeric assignment codes in the I/O configuration
routine. See the IOSET call.

A user defined console device requires three routines: one for input, one for
output, and one to check status. The user-written console status routine should
return a value of OOH if a character is not ready for input and a value of FFH if a
character is ready for input. The value should be returned in the A register for as
sembly language or in a byte variable for PL/M.

To link user written drivers to the ISIS primitive I/O routines, call IODEF and
supply two parameters: the function code from the list above and the entry point of
the driver routine. Do not locate drivers in RAM reserved for ISIS. Hardware in
formation to aid in adding the I/O driver to the operating system can be found at
the end of this chapter.

When IODEF is called, the driver must be present in memory. The driver can be
loaded with the load system call.

Parameters

Two parameters are required by IODEF in the following order. They can be passed
in a PL/M procedure or through the C register and the DE register pair from an as
sembly language program.

8-34

< function$code >

<entry$point>

Input parameter. Byte. Value from 0 to 7 corre
sponding to the driver being added. For example, 0
is used to add a console input routine. Refer to the
previous list for the code.

Input parameter. Two byte. Pointer to the entry
point for the I/O driver being added. The I/O driver
must be in memory before IODEF is called.



iPDS™ User's Guide

Error Numbers

Fatal None.

Non-fatal: None.

PLIM Calling Sequence

The form of the declaration of the external procedure is:

System Programmer's Reference

10DEF:
PROCEDURE « fu nction$code >, <entry$point » EXTERNAL;

DECLARE «function$code » BYTE;
DECLARE «entry$point» ADDRESS;

END 10DEF;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE FCODE BYTE;
DECLARE ENTRY$POINT ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL 10DEF(FCODE,ENTRY$POINT);

Assembly Language Calling Sequence

From an assembly language program, the label IODEF is defined as an external in
stead of the label ISIS, because IODEF is a primitive ISIS routine. The character to
output must be in the C register.

; IODEF
EXTRN 10DEF ; ENTRY POINT FOR 10DEF IN ISIS

; SAVE REGISTERS ...
MOV C,M ; LOAD FUNCTION CODE
LXI D,ADDRESS; LOAD REGISTER DE WITH ADDRESS

OF
; I/O ROUTINE

CALL 10DEF ; CALL 10DEF TO SET UP AN ISIS JUMP
TO
; USER DEFINED I/O ROUTINE

8-35



System Programmer's Reference

IOSET
Set system I/O
configuration

Description

iPDS™ User's Guide

The IOSET call modifies the system I/O configuration assignments. The program
supplies the new configuration assignments as a byte value. Refer to IOCHK for a
description of fields in this byte.

Parameters

One parameter is required by IOSET. It can be passed in a PL/M procedure or
through the C register from an assembly language program.

< config$byte >

Error Numbers

Fatal: None.

Non-fatal: None.

Input parameter. Byte. Value coded to contain the new
configuration assignments. See IOCHK for a descrip
tion of the fields in this byte.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

IOSET:
PROCEDURE « config$byte » EXTERNAL;

DECLARE « config$byte » BYTE;
END IOSET;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE CONFIG$BYTE BYTE;.
Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL IOSET(CONFIG$BYTE);

Assembly Languag'e Calling Sequence

From an assembly language program, the label IOSET is defined as an external in
stead of the label ISIS, because IOSET is a primitive ISIS routine. The character to
output must be in the C register.

;IOSET
EXTRN IOSET ; ENTRY POINT FOR IOSET IN ISIS

; SAVE REGISTERS ...
MOV C,M ; LOAD CONFIGURATION CODE
CALL IOSET; ASSIGN NEW DEVICES

8-36



iPDS™ User's Guide

Description

System Programmer's Reference

LO
Output character

to list device

The LO call takes a single character and sends it to the current list device for
output. From PL/M, a byte variable is used for the character. From an assembly
language program, the character must be in the C register. The LO system call is
not used by the operating system to write to the :LP: device.

Parameters

One parameter is required by LO. It can be passed in a PL/M procedure or through
the C register from an assembly language program.

<char> Input parameter. Byte. The character to be output.

Error Numbers

Fatal: None.

Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

LO:
PROCEDURE «char» EXTERNAL;

DECLARE «char» BYTE;
END LO;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE CHAR BYTE;

A value is then assigned to the declared variable which is used as an actual
parameter. Finally, the procedure is called passing the actual parameter.

CALL LO(CHAR);

Assembly Language Calling Sequence

From an assembly language program, the label LO is defined as an external instead
of the label ISIS, because LO is a primitive ISIS routine. The character to output
must be in the C register.

;LO
EXTRN LO ; ENTRY POINT FOR LO ISIS

; SAVE REGISTERS ...
MOV C,M; LOAD CHARACTER TO BE OUTPUT INTO "C"

; REGISTER
CALL LO ; OUTPUT THE CHARACTER

8-37



System Programmer's Reference

LOAD
Load an executable program
and transfer control

Description

iPDS™ User's Guide

The LOAD call allows a program to load an absolute object module. After the file
is loaded, control is passed to the loaded program, or the calling program. The pro
gram supplies the name of the absolute object module to load and also supplies a
switch that indicates where to transfer control after loading. The LOAD call re
turns an error code.

Parameters

Five parameters are required by LOAD in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<path$ptr>

< load$offset >

< control$sw >

<entry$ptr>

< status$ptr >

Error Numbers

Input parameter. Two byte. Pointer to the ASCII
string (IS-byte maximum) containing the name of the
file to be loaded. The ASCII string can contain leading
spaces but no embedded spaces. It must be terminated
by a character other than a letter, digit, colon (:), or
period L). A space can be used.

Input parameter. Two byte. Value to be added to the
load address causing the program to be loaded at an ad
justed address. This does not mean that the program is
relocatable. Usually, the code cannot be executed at
the offset address.

Input parameter. Two byte. Value indicating where to
transfer control after the load.

o-Return control to the calling program.
1 - Transfer control to the loaded program.

If the program is not a main program, its entry point is
zero, which causes control to vector through address O.

Input parameter. Two byte. Pointer to an area in
memory reserved for the address of the loaded pro
gram's entry point. This value is used when < con
trol$sw> is O. A zero is returned if the program is not
a main program.

Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Fatal: 1, 15, 16, 24, 30, 33

Non-fatal: 3, 4, 5, 12, 13, 22, 23, 28, 34

8-38



iPDSTM User's Guide

PLIM Calling Sequence

The form of the declaration of the external procedure is:

System Programmer's Reference

LOAD:
PROCEDURE

(< path$ptr >, < load$offset>, < control$sw >, < entry$ptr >,
< status$ptr » EXTERNAL;

DECLARE
(< path$ptr >, < load$offset>, < control$sw >, < entry$ptr >,
<status$ptr» ADDRESS;

END LOAD;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE FILENAME(15) BYTE;
DECLARE ENTRY ADDRESS;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL LOAD(.FILENAME,O,1,.ENTRY,.STATUS);

IF STATUS < > 0 THEN ...

Notice that a variable was declared for the filename, the entry point, and the
status, and then the dot operator was used to pass the addresses of these values as
required by the system call.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled LBLK) is
stored in the DE register pair before the CALL instruction.

;LOAD
EXTRN ISIS ; LINK TO ISIS ENTRY POINT

LOAD EQU 6 ; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS ...

MVI C,LOAD ; LOAD IDENTIFIER
LXI D,LBLK ; ADDRESS OF PARAMETER BLOCK
CALL ISIS
LDA LSTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT ; BRANCH TO EXCEPTION ROUTINE

, ...
LBLK: ; PARAMETER BLOCK FOR LOAD

DW LFILE ; POINTER TO FILENAME
BIAS: DW 0 ; OFFSET ADDRESS
RETSW:DW 0 ; RETURN SWITCH

DW ENTRY ; POINTER TO ENTRY
DW LSTAT ; POINTER TO STATUS

ENTRY: DS 2 ; ENTRY POINT (RETURNED)
LSTAT: DS 2 ; STATUS (RETURNED)
LFILE: DB 'FILE.EXT' ; SAMPLE FILE NAME

8-39



System Programmer's Reference

MEMCK
Return highest RAM
address in user memory

Description

iPDS™ User's Guide

The MEMCK call returns the highest memory address of contiguous memory
available to the user. This address is the highest address available below the ISIS
resident area 2. On the iPDS system, MEMCK should always return a value of
OF6COH unless the DEBUG command is running. Then, it returns a value of
OECCOH.

Parameters

None.

Error Numbers

Fatal: None.

Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

MEMCK:
PROCEDURE ADDRESS EXTERNAL;
END MEMCK;

Notice that this is a typed procedure or function and can be used in an expression
or parameter list.

There are no actual parameters to declare, so the function is called without any fur
ther declarations.

TOP$MEMORY = MEMCK ...

Assembly Language Calling Sequence

From an assembly language program, the label MEMCK is defined as an external
instead of the label ISIS, because MEMCK is a primitive ISIS routine. The address
is returned in the HL register pair.

;MEMCK

EXTRN MEMCK; ENTRY POINT FOR MEMCK IN ISIS
; SAVE REGISTERS ...

CALL MEMCK ; GET ADDRESS IN HL REGISTER

8-40



iPDS™ User's Guide

Description

System Programmer's Reference

OPEN
Initialize file for

I/O operation

The OPEN call initializes the Active File Table and allocates buffers that are re
quired for the I/O processing of the specified file. No input from or output to a file
may occur until it has been OPENed. To open a file for line-edited access, use the
< echo> parameter. The user supplies the pathname and the mode of access

.desired for the file after it is opened. The OPEN call returns the connection
number and the error code.

Parameters

Five parameters are required by OPEN in the following order. These can be passed
in a PL/M procedure call or stored in a table in memory pointed to by the DE regis
ter pair for an assembly language program.

<conn$ptr>

<path$ptr>

<access>

Output parameter. Two byte. Pointer to a value which
contains the two-byte connection number (AFTN) for
the file being opened. All other accesses to the file refer
to this connection number. The console output and
console input are permanently assigned connection
numbers of 0 and 1 respectively. In addition, a program
can have six files open at one time.

Input parameter. Two byte. Pointer to the ASCII string
(I5 byte maximum) containing the name of the file to
be opened. The ASCII string can contain leading spaces
but no embedded spaces. It must be terminated by a
character other than a letter, digit, colon (i), or period
(.). A space can be used.

Input parameter. Two byte. Value indicating the access
mode for the file being opened.

A value of 1 specifies that the file is open only for input:
READ. MARKER is set to 0 and LENGTH is
unchanged. If the file doesn't exist, a non-fatal error
occurs.

A value of 2 specifies that the file is open only for
output: WRITE. MARKER and LENGTH are set to O.
If the file doesn't exist, a disk file is created with the file
name specified at location <path$ptr>, and all attri
butes of the file are reset: O. If the file already exists, it
will be written over. All information will be lost. If the
existing file has the format or write-protect attribute, a
non-fatal error occurs.

A value of 3 specifies that the file is open for update:
READ and WRITE. MARKER is set to O. LENGTH is
unchanged for existing files and is set to 0 for new files.
If the file does not exist, a new file is created with the
filename at location <path$ptr> , and all attributes are
reset: O.

8-41



System Programmer's Reference

<echo>

<status$ptr>

Error Numbers

iPDS™ User's Guide

Opening a file for an access mode that is not valid causes
a non-fatal error. For example, opening a line printer
for input.

Input parameter. Two byte. If the file being opened is
for line editing, <echo> is the two-byte connection
number (AFTN) of the echo file. If the file being
opened is not for line editing, the LSB of < echo> con
tains O. If the console output is the echo file, the MSB of
< echo> must be non-zero, since the permanently as
signed connection number for console output is also O.
For example, use an AFTN of OFFOOH for :CO:. The
echo file must be previously opened for output (access
value of Z).

Output parameter. Two byte. Address in memory of the
error number. If the error number is 0, no error
occurred.

Fatal: 1,7,24,30,33

Non-fatal: 3, 4, 5, 9, 12, 13, 14, 22, 23, 25, 28, 63

PL/M Calling Sequence

The form of the declaration of the external procedure is:

OPEN:
PROCEDURE «conn$ptr>, <path$ptr>, <access>, <echo>,

<status$ptr> )
EXTERNAL;

DECLARE «conn$ptr>, <path$ptr>, <access>, <echo>,
< status$ptr »

ADDRESS;
END OPEN;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE AFT$IN ADDRESS;
DECLARE FILENAME (15) BYTE DATA (':F1 :MYPROG.SRC ');
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CAL LOPEN(.AFT$I N,.FILE NAME,1,0,.STATUS) ;
IF STATUS < > °THEN ...

Notice that a variable was declared for the connection number, the filename, and
the status, and then the dot operator was used to pass the addresses of these values
as required by the system call. In this example, the file is opened in Read Mode as
specified by the value 1 following the filename.

8-42



iPDS™ User's Guide

Assembly Language Calling Sequence

System Programmer's Reference

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled OBLK) is
stored in the DE register pair before the CALL instruction.

EXTRN ISIS
EQU 0

MVI C,OPEN
LXI D,OBLK

CALL ISIS
LOA oSTAT
ORA A
JNZ EXCEPT

;OPEN

OPEN

OBLK:

OW
OW

ACCESS: OW

ECHO: OW

OW
OAFT: OS
OSTAT: OS
OFILE: DB

OAFT
OFILE
I

o

oSTAT
2
2
':FO:FILE.EXT'

; LINK TO ISIS ENTRY POINT
; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS ...
; LOAD IDENTIFIER
; ADDRESS OF PARAMETER
BLOCK

; TEST ERROR STATUS

, BRANCH TO EXCEPTION
ROUTINE

, PARAMETER BLOCK FOR
OPEN
; POINTER TO AFT
; POINTER TO FILENAME
; ACCESS, READ = I, WRITE =
2,
; UPDATE = 3
; IF ECHO < > 0,
; ECHO = AFTN OF
; ECHO OUTPUT FILE
; POINTER TO STATUS
; AFTN (RETURNED)
; STATUS (RETURNED)
; FILE TO BE OPENED

8-43



System Programmer's Reference

PO
Output character
to punch device

Description

iPDS™ User's Guide

The PO call takes a single character and sends it to the currently assigned punch
device for output. The term punch was used to be consistent with earlier versions
of ISIS that supported a paper tape punch device. From PL/M, a byte variable is
used for the character. From an assembly language program, the character must be
in the C register. The PO system call is not used by the operating system to write to
:CO: or to :SO: devices.

Parameters

One parameter is required by PO. It can be passed in a PL/M procedure or through
the C register from an assembly language program.

<char> Input parameter. Byte. The character to be output.

Error Numbers

Fatal: None.

Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

po:
PROCEDURE «char» EXTERNAL;

DECLARE «char» BYTE;
END PO;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE CHAR BYTE;

A value is then assigned to the declared variable which is used as an actual
parameter. Finally, the procedure is called passing the actual parameter.

CALL PO(CHAR);

8-44



iPDS™ User's Guide

Assembly Language Calling Sequence

System Programmer's Reference

From an assembly language program, the label PO is defined as an external instead
of the label ISIS, because PO is a primitive ISIS routine. The character to output
must be in the C register.

;PO
EXTRN PO ; ENTRY POINT FOR PO ISIS

; SAVE REGISTERS
MOV C,M; LOAD CHARACTER TO BE OUTPUT INTO IIC"
CALL PO ;OUTPUTTHECHARACTER

READ
Transfer data from

file to memory

Description

The READ call transfers data from an open file to a memory location specified by
the calling program. See the section on "Line Edited Files" for further
information. The user supplies the connection number of the file and the number
of bytes to be read. The READ call returns the count of the bytes actually read, a
pointer to the buffer containing the bytes read, and the error status code.

Parameters

Five parameters are required by READ in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<conn> Input parameter. Two byte. Connection number (AFTN)
returned for the file when it was opened. The connection
number is always 1 for the console input.

< buf$ptr > Input parameter. Two byte. Pointer to the buffer in user
memory space that will receive data from the open file.
The buffer must be at least as long as the < count> de
scribed below. If the buffer is too short, memory locations
following the buffer are overwritten.

<count> Input parameter. Two byte. Number of bytes to be trans
ferred from the file to the buffer.

<actual$ptr> Input parameter. Two byte. Pointer to location in the user
memory space reserved for the two byte value of the
number of bytes successfully read. The actual number of
bytes read is determined by READ and added to the
value of MARKER (the file pointer) as well as being re
turned to the user. The actual number of bytes transferred
is never greater than < count>.

8-45



System Programmer's Reference iPDS™ User's Guide

For line edited files, the actual number of bytes is never
more than the number of bytes in the line edited buffer.
When a file is not line-edited, the number of bytes is
equal either to COUNT or MARKER whichever is less.

<status$ptr> Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers

Fatal: 24,30, 33

Non-fatal: 2, 8

PLIM Calling Sequence

The form of the declaration of the external procedure is:

READ: .
PROCEDURE «conn >, <buf$ptr>, <count>, <actual$ptr>,

< status$ptr»
EXTERNAL;

DECLARE «conn >, <buf$ptr>, <count>, <actual$ptr>,
< status$ptr > )

ADDRESS;

END READ;

The actual parameters must be declared in the program prior to making the call.
An example of declared actual parameter follows:

DECLARE AFT$IN ADDRESS;
DECLARE BUFFER(256) BYTE;
DECLARE ACTUAL ADDRESS;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL READ(AFT$IN,.BUFFER,256,.ACTUAL,.STATUS);

IF ACTUAL = 0 THEN ...

Notice that a variable was declared for the buffer, the actual number of bytes read,
and the status, and then the dot operator was used to pass the addresses of these
values as required by the system call.

8-46



iPDS™ User's Guide

Assembly Language Calling Sequence

System Programmer's Reference

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled RBLK) is
stored in the DE register pair before the CALL instruction.

; READ

EXTRNISIS
EQU 3READ

MVI
LXI
CALL
LDA
ORA
JNZ

; LINK TO ISIS ENTRY POINT
; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS ...

C,READ ; LOAD IDENTIFIER
D,RBLK ; ADDRESS OF PARAMETER BLOCK
ISIS
RSTAT ; TEST ERROR STATUS
A
EXCEPT; BRANCH TO EXCEPTION ROUTINE

RBLK:
RAFT: DS

DW
RCNT: DW

DW
DW

ACTUAL: DS
RSTAT: DS
RBUF: DS

; PARAMETER BLOCK FOR READ
2 ; FILE AFTN
RBUF ; ADDRESS OF INPUT BUFFER
256 ; LENGTH OF READ REQUESTED
ACTUAL; POINTER TO ACTUAL
RSTAT ; POINTER TO STATUS
2 ; COUNT OF BYTES READ (RETURNED)
2 ; STATUS (RETURNED)
256 ; INPUT BUFFER

8-47



System Programmer's Reference

RENAME
Change disk
filename

Description

iPDS™ User's Guide

The RENAME call allows a program to change the name of a disk file. The pro
gram supplies a pointer to the old name and the new name. The RENAME call re
turns an error code.

Parameters

Three parameters are required by RENAME in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<oldpath$ptr> Input parameter. Two byte. Pointer to the old path
name as an ASCII string (15 byte maximum) in
memory. The string can contain leading spaces, but no
embedded spaces. It must be terminated by a character
other than it letter, a digit, a colon (:), or a period (.).
A space (ASCII code 20H) can be used.

< newpath$ptr > Input parameter. Two byte. Pointer to the new path
name as an ASCII string (15 byte maximum) in
memory. The device name must be the same as the
device name in the old pathname. The string can con
tain leading spaces, but no embedded spaces. It must
be terminated by a character other than a letter, a digit,
a colon (i), or a period (.). A space (ASCII code 20H)
can be used.

< status$ptr > Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers

Fatal: 1, 24, 30, 33

Non-fatal: 4,5,10,11,13,17,23,28

PLIM Calling Sequence

The form of the declaration of the external procedure is:

RENAME:
PROCEDURE «oldpath$ptr>, <newpath$ptr>, <status$ptr»
EXTERNAL;

DECLARE «oldpath$ptr>, < newpath$ptr>, <status$ptr»
ADDRESS;

END RENAME;

8-48



iPDS™ User's Guide System Programmer's Reference

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE OFILE(16) BYTE;
DECLARENFILE(16) BYTE;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL RENAME(.OFILE,.NFILE,.STATUS);
IF STATUS < > a THEN ...

Notice that variables were declared for the filenames and the status, and then the
dot operator was used to pass the addresses of these values as required by the
system call.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up with a series of DW, DS, and DB directives.
Then, the address of the beginning of the block (RBLK) is stored in the DE regis
ter pair before the CALL instruction.

RENAME

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
RENAME EQU 7 ; SYSTEM CALL IDENTIFIER

; SAVE REGISTERS ...
MVI C,RENAME ; LOAD IDENTIFIER
LXI D,RBLK ; ADDRESS OF PARAMETER BLOCK
CALL ISIS
LDA RSTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT ; BRANCH TO EXCEPTION ROUTINE

, ...
RBLK: ; PARAMETER BLOCK FOR RENAME

DW FILE2 ; POINTER TO OLD FILENAME
DW FILEI ; POINTER TO NEW FILENAME
DW RSTAT ; POINTER TO STATUS

RSTAT: DS 2 ; STATUS (RETURNED)
FILEI: DB 'FILE.NEW' ; NEW NAME OF FILE
FILE2: DB 'FILE.OLD' ; OLD NAME OF FILE

8-49



System Programmer's Reference

REseAN
Position marker to
beginning of line

Description

iPDS™ User's Guide

The RESCAN call is used on line-edited files only. It allows your program to move
the pointer to the beginning of a logical line that has already been read. Thus, the
next READ call starts at the beginning of the last logical line read. The line is not
re-echoed because it is echoed only when it is input from the console. The READ
does not input the line from the file but only from the line editing buffer in
memory. The user supplies the connection number of the file and the RESCAN
call returns an error code.

Parameters

Two parameters are required by RESCAN in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<conn> Input parameter. Two byte. Connection number (AFTN)
returned for a random access file when it was opened.

<status$ptr> Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers

Fatal: 33

Non-fatal: 2,21

PL/M Calling Sequence

The form of the declaration of the external procedure is:

RESCAN:
PROCEDURE «conn >, <status$ptr» EXTERNAL;

DECLARE «conn>,<status$ptr» ADDRESS;
END RESCAN;

The actual parameters must be declared in the program prior to making the call.
An example ofdeclaring actual parameters follows:

DECLARE AFT$IN ADDRESS;
DECLARE STATUS ADDRESS;

8-50



iPDS™ User's Guide System Programmer's Reference

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL RESCAN (AFT$IN,.STATUS);
IF STATUS < > a THEN ...

Notice that a variable was declared for the status, and then the dot operator was
used to pass the address of this value as required by the system call.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled RBLK) is
stored in the DE register pair before the CALL instruction.

RESCAN

; STATUS (RETURNED)2

2
RSTAT

MVI
LXI
CALL
LOA
ORA
JNZ

, ...
RBLK:
RAFT: DS

DW

RSTAT: DS

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
RESCAN EQU 11 ; SYSTEM CALL IDENTIFIER

; SAVE REGISTERS ...
C,RESCAN; LOAD IDENTIFIER
D,RBLK ; ADDRESS OF PARAMETER BLOCK
ISIS
RSTAT ; TEST ERROR STATUS
A
EXCEPT ; BRANCH TO EXCEPTION ROUTINE

; PARAMETER BLOCK FOR RESCAN
; FILE IDENTIFIER
; POINTER TO STATUS

8-51



System Programmer's Reference

RI
Input character from
serial device

Description

iPDS™ User's Guide

The RI call reads a character entered at the currently assigned reader device and re
turns it as a byte variable in PL/M or in the A register in an assembly language
program. The term reader is used to be consistent with previous versions of ISIS
that supported a paper tape reader. The RI system call is not used by the operating
system to read from the :CI: or :SI: devices.

Parameters

None.

Error Num"ers

Fatal: None.

Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

RI:
PROCEDURE BYTE EXTERNAL;
ENDRI;

Notice that this is a typed procedure or function and can be used in an expression
or parameter list. There are no actual parameters to declare, so the function is
called without any further declarations. Assuming an array has been set up to re
ceive a sequence of characters, the following program receives those characters
into the array.

DO WHILE BUFFER (INDEX) < > CR;
INDEX = INDEX + 1
BUFFER(lNDEX) = RI;
END;

Assembly Language Calling Sequence

From an assembly language program, the label RI is defined as an external instead
of the label ISIS, because RI is a primitive ISIS routine. The character is returned
in the A register.

;RI
EXTRN RI ; ENTRY POINT FOR CIIN ISIS

; SAVE REGISTERS ...
CALL RI ; GET CHARACTER

; CHARACTER RETURNED IN "A"
; REGISTER

8-52



iPDS™ User's Guide

Description

System Programmer's Reference

Positions disk
file marker

The SEEK call allows a program to determine or to change the value of MARKER
(the file pointer). SEEK can only be used with files opened for read or update. See
the OPEN call. The MARKER can be changed in four ways: moved forward,
moved backward, moved to a specific location, or moved to the end of the file. A
non-fatal error is issued if a SEEK is made on a write only file. The user supplies
the connection number for the file, the seek mode, and a value that specifies how
far to move the MARKER. The SEEK call returns a status code.

Parameters

Five parameters are required by SEEK in the following order. These can be passed
in a PL/M procedure call or stored in a table in memory pointed to by the DE regis
ter pair for an assembly language program.

<conn>

<mode>

< block$ptr >

<byte$ptr>

<status$ptr>

Input parameter. Two byte. Connection number
(AFTN) returned for a random access file when it was
opened.

Input parameter. Two byte. Value from 0 to 4 that indi
cates what action to take. The block and byte parameters
represent the current MARKER position or calculate
the desired offset, depending on the value of mode. A
detailed discussion follows.

Input parameter. (Output parameter in mode 0.) Two
byte. Pointer to the two-byte value used for the block
number. A block is 256 bytes, the same as a disk sector.
However, the SEEK system call treats a block as 128
bytes to maintain compatibility with previous versions
of the ISIS operating system. Depending on the mode,
the block number is one of three values: the address of
the block to which MARKER is to be moved, the
number of blocks forward or backward to move the
MARKER, or the current block address of MARKER.

Input parameter. (Output parameter in mode 0,) Two
byte. Pointer to a two-byte value used for the byte
number. Depending on the mode, the byte number is
one of three values: the address of the byte to which
MARKER is to be moved, the number of bytes forward
or backward to move the MARKER, or the current byte
address of MARKER.

Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

8-53



System Programmer's Reference

Return Marker Location: Mode = 0

iPDS™ User's Guide

Under this mode, the system returns a pair of block and byte values (at < block$
ptr> and, <byte$ptr> that signify the current position of the MARKER. For
example, if the MARKER were just beyond the first block of the file, the system
would return the number 1 and 0 in the addresses assigned to block and byte
respectively. Block values are counted from O. Byte values are counted from 0 to
128. The value of MARKER is given by the following formula:

128 * (block number) + byte number

Move.Marker Backward: Mode = 1

If the mode value is 1, the marker is moved back toward the beginning of the file.
The block and byte parameters determine how many bytes the marker is moved.
For example, if block is equal to 0 and byte is equal to 382, the marker is moved
backward 382 bytes. To define an offset of N, use block and byte values according
to the following formula:

128 * (block number) + byte number

If N is greater than MARKER, the prescribed action would place the MARKER
before the beginning of the file. In this case, MARKER is set to 0 and a non-fatal
error occurs.

Move Marker to Specific Location: Mode = 2

In this mode, the marker is moved to a specific position in the file defined by the
block and byte parameters. For example, if block is equal to 27 and byte is equal to
63, MARKER will be moved so that the 64th byte of block 27 will be the next one
read or written. Similarly, if both block and byte are set to 0, the marker is moved
to the beginning of the file. If the file is open for update and the prescribed action
would place the marker beyond the end of the file, the new position of the marker
becomes the end of the file. Thus, LENGTH becomes equal to MARKER. Note
that the system does not guarantee that initialized data areas are skipped over.

Move Marker Forward: Mode = 3

In this mode, the marker is moved ahead toward the end of the file. The block and
byte parameters define the offset N according to the following formula:

128 * (block number) + byte number

If the file is open for update and the prescribed action would place the marker
beyond the end of the file, the new position of the marker becomes the end of the
file. Thus, LENGTH becomes equal to MARKER. Note that the system does not
guarantee that initialized data areas are skipped over.

If the extension of a file by SEEK causes an overflow on the disk, a fatal error is
reported, either during the SEEK or when the program tries to WRITE to the ex
tended area of the file.

If an attempt is made to extend a file that is open for READ only, the marker is set
to the former end-of-file and a non-fatal error occurs.

8-54



iPDS™ User's Guide

Move Marker to the End of the File: Mode = 4

System Programmer's Reference

If the mode value is 4, the marker is moved to the end of the file. Block and byte
parameters are ignored.

NOTE
For a file opened for update, moving the MARKER can allocate
more space than LENGTH requires, i.e., than is subsequently
written with data. A DIR will shown the allocated locations as
being used. However, data can still be written to these locations.

Error Numbers

Fatal: 7, 24, 30, 33

Non-fatal: 2, 19,20,27,31,35

PL/M Calling Sequence

The form of the declaration of the external procedure is:

SEEK:
PROCEDURE «conn>, <mode>, <block$ptr>, <byte$ptr>,

< status$ptr»
EXTERNAL;

DECLARE «conn>, < mode>, < block$ptr>, <byte$ptr>,
<status$ptr> )

ADDRESS;
END SEEK;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE AFT$IN ADDRESS;
DECLARE BLOCKNO ADDRESS;
DECLARE BYTENO ADDRESS;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL SEEK(AFT$IN,O,.BLOCKNO,.BYTENO,.STATUS);
IF STATUS < > °THEN ...

Notice that a variable was declared for the block number, the byte number, and
the status, and then the dot operator was used to pass the addresses of these values
as required by the system call.

8-55



System Programmer's Reference

Assembly Language Calling Sequence

iPDS™ User's Guide

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled SBLK) is
stored in the DE register pair before the CALL instruction.

;SEEK

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
SEEK EQU 5 ; SYSTEM CAll IDENTIFIER

; SAVE REGISTERS ...
MVI C,SEEK; lOAD IDENTIFIER
lXI D,SBlK; ADDRESS OF PARAMETER BLOCK
CAll ISIS
lDA SSTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT; BRANCH TO EXCEPTION ROUTINE

8-56

SBlK:
SAFT: DS
MODE: DS

DW
DW
DW

,
BlKS: DS
NBYTE: DS
SSTAT: DS

2
2
BlKS
NBYTE
SSTAT

2
2
2

; PARAMETER BLOCK FOR SEEK
; FilE IDENTIFIER
; TYPE OF SEEK
; POINTER TO BlKS
; POINTER TO NBYTE
; POINTER TO STATUS

; NUMBER OF SECTORS TO SKIP
; NUMBER OF BYTES TO SKIP
; STATUS (RETURNED)



iPDS™ User's Guide

Description

System Programmer's Reference

SPATH
Obtain file

information

The SPATH call allows a program to obtain information relating to a specified file.
The program supplies a pointer to the name of the file and the address ofa 12-byte
location in which the system will return the information. In PL/M, the 12-bytes
can be handled as an array or a record. The information returned by this call in
cludes the device number, the file name and extension, the device type, and the
disk drive type.

Parameters

Three parameters are required by SPATH in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<path$ptr>

<info$ptr>

Input parameter. Two byte. Pointer to the ASCII string
OS-byte maximum) containing the name of the file. The
ASCII string can contain leading spaces but no embedded
spaces. It must be terminated by a character other than a
letter, digit, colon (i), or period L). A space can be used.

Output parameter. Two byte. Pointer to a 12-byte location
in memory reserved for the return information. After the
call is complete, the memory buffer will contain the fol
lowing information.

Byte 0
Byte 1-6
Byte 7-9
Byte 10
Byte 11

Logical Device Number
Filename
Extension
Physical Device Type
Drive Type

More information on these values follows the error
numbers.

<status$ptr> Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers

Fatal: 33

Non-fatal: 4, 5, 23, 28

8-57



System Programmer's Reference

Information Block

The possible values for byte 0, the device number are:

o= logical disk device 0
1 = logical disk device 1
2 = logical disk device 2
3 = logical disk device 3
4 = logical disk device 4
5 = logical disk device 5
6 = serial input device
7 = serial output device
8 = CRT input device (keyboard)
9 = CRT output device (display screen)

10 = User defined console input device
11 = User defined console output device
12 = Teletype paper tape reader
13 = High speed paper tape reader
14 = User defined reader device 1
15 = User defined reader device 2
16 = Teletype paper tape punch
17 = High speed paper tape punch
18 = User defined punch device 1
19 = User defined punch device 2
20 = Line printer
21 = User defined printer device 1
22 = Byte bucket (a pseudo output device)
23 = Console input device
24 = Console output device

Bytes 1-6 are the ASCII characters for the ISIS filename.

Bytes 7-9 are the ASCII characters for the ISIS file extension.

There is no period character separating the filename from the extension.

iPDS™ User's Guide

Byte 10 is the device type and defines the type of peripheral with which the file is
associated. The values are:

o= Sequential Input
1 = Sequential Output
2 = Sequential 110
3 = Random 110

Byte 1l is the drive type. This byte only has meaning if the device is a disk, that is
the device type is 3. Then, the values for the drive type are:

o= Bubble memory not present
1 = Double density diskette
2 = Bubble device

8-58



iPDS™ User's Guide System Programmer's Reference

PL/M Calling Sequence

The form of the declaration of the external procedure is:

SPATH:

PROCEDURE « pa th$ptr >, < info$ptr >, < status$ptr»
EXTERNAL; .

DECLARE «path$ptr>, <info$ptr>, <statussptr > ADDRESS;

END SPATH;

The actual parameters must be declared in the program prior to making the call. In
this example of declaring actual parameters, the 12-bytes of information will be in
a record.

DECLARE FILENAME (15) BYTE;
DECLARE FILlNF STRUCTURE (DEVICE$NO BYTE,

FILENAME (6) BYTE,
FILE$EXT (3) BYTE,
DEVICE$TYPE BYTE,
DRIVE$TYPE BYTE);

DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL SPATHCFILENAME,.FILlNF,.STATUS);

IF STATUS < > 0 THEN ...

Notice that a variable was declared for the filename, the file information, and the
status, and then the dot operator was used to pass the addresses of these values as
required by the system call.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled SBLK) is
stored in the DE register pair before the CALL instruction.

; SPATH

FILEN
BARRAY
SSTAT
15
12
2

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
SPATH EQU 14 ; SYSTEM CALL IDENTIFIER

; SAVE REGISTERS ...
MVI C, SPATH; LOAD IDENTIFIER
LXI D,SBLK; ADDRESS OF PARAMETER BLOCK
CALL ISIS
LDA SSTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT; BRANCH TO EXCEPTION ROUTINE

; PARAMETER BLOCK FOR SPATH
; POINTERTO FILE NAME
; POINTER TO BYTE ARRAY
; POINTER TO STATUS
; FILE NAME FIELD
; ARRAY FOR DATA
; STATUS (RETURNED)

SLBK:
DW
DW
DW

FILEN: DS
BARRAY: DS
SSTAT: DS

8-59



System Programmer's Reference

WHOCON
Determine file assigned
as system console

Description

iPDS™ User's Guide

The WHOCON call allows it program to determine what file is assigned as the cur
rent system console device. The program requests the information, and the
system call returns the filename.

Parameters

Three parameters are required by WHOCON in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<conn>

<buf$ptr>

< status$ptr >

Error Numbers

Fatal: 33

Non-fatal: None.

Input parameter. Two byte. Connection number
(AFTN) to indicate whether the console input or
console output file is desired. Both have permanently as
signed AFTNs. A value of 0 indicates console output; a
value of 1 indicates console input.

Input parameter. Two byte. Pointer to a IS-byte buffer
reserved for the return information, the pathname of
the file currently assigned as the console input or
console output. The name is returned as an ASCII
string terminated by a space.

Output parameter. (for assembly language only) Two
byte. Pointer to two bytes in memory reserved for the
error number. If the error number is 0, no error
occurred.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

WHOCON:
PROCEDURE « conn>, < buf$ptr » EXTERNAL;

DECLARE «conn>,<buf$ptr» ADDRESS;
ENDWHOCON;

Notice that the error status is not returned to a PL/M program.

8-60



iPDS™ User's Guide System Programmer's Reference

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE BUFF$IN(15) BYTE;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL WHOCON(1 ,.BUFF$IN);

Notice that a variable was declared for the buffer, and then the dot operator was
used to pass the addresses of this value as required by the system call.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series ofDW, DS, and
DB directives. Then, the address of the beginning of the block (labelled WBLK) is
stored in the DE register pair before the CALL instruction.

;WHOCON

EXTRN ISIS ; LINK TO ISIS ENTRY POINT
WHOCON EQU 13 ; SYSTEM CALL IDENTIFIER

; SAVE REGISTERS ...
MVI C,WHOCON ; LOAD IDENTIFIER
LXI D,WBLK ; ADDRESS OF PARAMETER

BLOCK
CALL ISIS

, ...
WBLK:
WID: OS 2 ; I/O IDENTIFIER

OW WBUF ; POINTER TO WORK BUFFER
; (FILLED BY WHOCON)

DW WSTAT ; POINTER TO STATUS

WSTAT: DS 2 ; STATUS (RETURNED)
WBUF: OS 15

8-61



System Programmer's Reference

WRITE
Transfer data from
memory to a file

Description

iPDS™ User's Guide

The WRITE system call transfers data from a specified location in memory to an
open file. The user supplies the connection number of the file being written to, a
pointer to the buffer containing the data to be written, and a count of the number
of bytes to be written. The WRITE call returns an error code.

Parameters

Four parameters are required by WRITE in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<conn>

<buf$ptr>

<count>

< status$ptr >

Error Numbers

Input parameter. Two byte. Connection number
(AFTN) returned for the file when it was opened. The
connection number is always 0 for the console output.

Input parameter. Two byte. Pointer to the buffer in user
memory space that contains the data to be written.

Input parameter. Two byte. Number of bytes to be trans
ferred from the file to the buffer. The value of
< count> is added to MARKER. If this results in
MARKER being greater than LENGTH, then
LENGTH is set equal to MARKER, i.e., the file is
extended. The number of bytes actually written is equal
to <count>. If the buffer length is less than < count>,
memory locations outside of the buffer are written to
the file.

Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Fatal: 7,24,30,33

8-62

Non-fatal: 2, 6



iPDS™ User's Guide

PL/M Calling Sequence

The form of the declaration of the external procedure is:

System Programmer's Reference

WRITE:
PROCEDURE «conn >, <buf$ptr>, <count>, <status$ptr» EXTERNAL;

DECLARE «conn >, <butsptr >, <count>, <statussotr> ADDRESS;
END WRITE;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameter follows:

DECLARE AFT$OUT ADDRESS;
DECLARE BUFFER(256) BYTE;
DECLARE STATUS ADDRESS;
DECLARE ERR$MESSAGE BYTE (*) DATA ('This is an error
message' ,ODH,OAH)

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.
Notice that the address specified as the actual parameter for buffer pointer is in the
form:

.«string literal»

The period causes the use of the address of the location where the string literal,
given inside of parentheses and single quotes, is stored.

CALL WRITE (O,.ERR$MESSAGE,LENGTH (ERR$MESSAGE) ,.STATUS);
IF STATUS < > °THEN ...

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The address of the beginning of the parameter block (labelled WBLK) is
stored in the DE register pair before the CALL instruction.

; WRITE

EXTRNISIS
WRITE EQU 4

MVI
LXI
CALL
LDA
ORA
JNZ

; LINK TO ISIS ENTRY POINT
; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS ...

C,WRITE ; LOAD IDENTIFIER
D,WBLK ; ADDRESS OF PARAMETER BLOCK
ISIS
WSTAT ; TEST ERROR STATUS
A
EXCEPT ; BRANCH TO EXCEPTION ROUTINE

, ...
WBLK:
WAFT: OS

OW
WCNT: OW

OW
WSTAT: OS
WBUF: DS

2
WBUF
256
WSTAT
2
256

; PARAMETER BLOCK FOR WRITE
; FILE AFTN
; ADDRESS OF OUTPUT BUFFER

; POINTER TO STATUS
; STATUS (RETURNED)
; OUTPUT BUFFER

8-63



System Programmer's Reference iPDS™ User's Guide

Example Programs Using System Calls
The first three example programs show how to use the system calls to add a
custom I/O driver to the system. The first program is written in PL/M-80 and as
sumes that the I/O driver is for a list device and, thus, is for output only. The func
tion code for a List device is 6; the entry point for the driver is OE800H.

This program adds the I/O driver for the user-defined list device to the system,
and then loads the driver program stored in the absolute object file file
:F1:PRINT.DRV. This program must be rerun every time the system is reset. It
can be placed into a configuration file (ABOOT.CSD or BBOOT.CSD) as described
in Chapters 4 and 5, and then it will be automatically loaded each time the system
is reset.

Example 1:

PRINT$DRIVER:DO; I*Beginning of main module*/

I*Declare external procedures IODEF and LOAD* /

IODEF:PROCEDURE (FCODE,ENTRY$POINT) EXTERNAL;
DECLARE (FCODE) BYTE;
DECLARE (ENTRY$POINT) ADDRESS;

END IODEF;

LOAD:PROCEDURE (FILENAME, LOAD$OFFSET, CONTROL,
ENTRY, STATUS) EXTERNAL;

DECLARE FILENAME ADDRESS;
DECLARE LOAD$OFFSET ADDRESS;
DECLARE CONTROL ADDRESS;
DECLARE ENTRY ADDRESS;
DECLARE STATUS ADDRESS;

END LOAD;

I*Declare variables used in the program*/

DECLARE
FCODE BYTE,
ENTRY ADDRESS,
FILENAME (*) ADDRESS INITIAL (':F1 :PRINT.DRV'),
OFFSET (*) ADDRESS INITIAL (0),
RETURN$SWITCH (*) ADDRESS INITIAL (0),
STATUS ADDRESS;

I*Setu p variables and call1ODEF to add driver* /

FCODE = 6;
ENTRY = OEBOOH;
CALL IODEF (FCODE,ENTRY);

I*Load the driver from the file* /

CALL LOAD (.FILENAME,OFFSET,RETURN$SWITCH,.ENTRY,.STATUS);

END PRINT$DRIVER;

In the next example, an I/O driver for a serial device is added to the operating
system. Since the device is both input and output, it is being added as User Reader
1 and User Punch 1. The function codes are 2 and 4, respectively. The entry point
for the reader portion of the code is OEOOOH and for the punch portion of the code
isOE800H.

8-64



iPDS™ User's Guide System Programmer's Reference

This program adds I/O drivers for the User Reader device and the User Punch
device to the system, and then loads the driver program stored in the absolute
object file :FI :SERIAL.DRV. This program must be rerun every time the system
is reset. It can be placed into a configuration file (ABOOT.CSD or BBOOT.CSD)
as described in Chapters 4 and 5, and then it will be automatically loaded each time
the system is reset.

Example 2:

SERIAL$DRIVER:DO; /*Beginning of main module*/

/*Declare external procedures IODEF and LOAD* /

IODEF:PROCEDURE (FCODE,ENTRY$POINT) EXTERNAL;
DECLARE (FCODE) BYTE;
DECLARE (ENTRY$POINT) ADDRESS;

END IODEF;

LOAD:PROCEDURE (FILENAME, LOAD$OFFSET, CONTROL,
ENTRY, STATUS) EXTERNAL;

DECLARE FILENAME ADDRESS;
DECLARE LOAD$OFFSET ADDRESS;
DECLARE CONTROL ADDRESS;
DECLARE ENTRY ADDRESS;
DECLARE STATUS ADDRESS;

END LOAD;

/*Declare variables used in the program*/

DECLARE
FCODE BYTE,
ENTRY ADDRESS,
FILENAME (*) ADDRESS INITIAL (':F1 :SERIAL.DRV'),
OFFSET (*) ADDRESS INITIAL (D),
RETURN$SWITCH (*) ADDRESS INITIAL (D),
STATUS ADDRESS;

/*Setup and call1ODEF for the reader portion of the driver*/

ENTRY = DEDDDH;
FCODE = 2;
CALL IODEF (FCODE,ENTRY);

/*Setup and call1ODEF for the punch portion of the driver*/.
ENTRY = DE8DDH;
FCODE = 4;
CALL IODEF (FCODE,ENTRY);

CALL LOAD (.FILENAME,OFFSET,RETURN$SWITCH,.ENTRY,.STATUS);

END SERIAL$DRIVER;

In the next example, an I/O driver for a console device is added to the operating
system. Since the device is both input and output, it is being added as User
Console Input and User Console Output. An additional console status routine
must be added as well. The status routine should return a value of OOH if a charac
ter is not ready for input and a value of OFFH if a character is ready for input. The
value should be returned in the A register for assembly language and in a byte
variable for PL/M.

8-65



System Programmer's Reference iPDS™ User's Guide

The function cod~s are 0, 1, and 7, respectively. The entry point for the console
input portion of the code is OEOOOH, for the console output portion of the code is
OE800H, and for the console status portion of the code is OD500H.

This program adds all three I/O routines to the system, and then loads the program
with all the routines stored in the absolute object file :Fl:CONSOL.DRV. This pro
gram must be rerun every time the system is reset. It can be placed into a configu
ration file (ABOOT.CSD or BBOOT.CSD) as described in Chapters 4 and 5, and

.then it will be automatically loaded each time the system is reset.

Example 3:

CONSOL$DRIVER:DO; I*Beginning of main module*/

I*Declare external procedures IODEF and LOAD* /

IODEF:PROCEDURE (FCODE,ENTRY$POINT) EXTERNAL;
DECLARE (FCODE) BYTE;
DECLARE (ENTRY$POINT) ADDRESS; .

END IODEF;

LOAD:PROCEDURE (FILENAME, LOAD$OFFSET, CONTROL, ENTRY, STATUS) EXTERNAL;
DECLARE FILENAME ADDRESS;
DECLARE LOAD$OFFSET ADDRESS;
DECLARE CONTROL ADDRESS;
DECLARE ENTRY ADDRESS;
DECLARE STATUS ADDRESS;

END LOAD;

I*Declare variables used in the program*/

DECLARE
FCODE BYTE,
ENTRY ADDRESS,
FILENAME (*) ADDRESS INITIAL (':F1 :CONSOL.DRV'),
OFFSET (*) ADDRESS INITIAL (0),
RETURN$SWITCH (*) ADDRESS INITIAL (0),
STATUS ADDRESS;

I*Setup and call1ODEF for the console input portion* /

ENTRY = OEOOOH;
FCODE = 0;
CALL IODEF (FCODE,ENTRY);

I*Setup and call1ODEF for the console output portion*/

ENTRY = OE800H;
FCODE = 1;
CALL IODEF (FCODE,ENTRY);

I*Setup and call1ODEF for the console status portion*/

ENTRY = OD500H;
FCODE = 7;
CALL IODEF (FCODE,ENTRY);

CALL LOAD (.FILENAME,OFFSET,RETURN$SWITCH,:ENTRY,.STATUS);

END CONSOL$D"RIVER;

8-66



iPDS™ User's Guide System Programmer's Reference

Each of the three programs shown must be compiled using the PL/M-80 compiler,
linked with SYSPDS.LIB and PLM80.LIB using the LINK command, and then
located using the LOCATE command. The output of the LOCATE command
should be a file named as specified in each example.

The next two examples illustrate two programs, one written in PL/M and one writ
ten in MCS-80/85 Assembly Language, with identical functions. Both programs
allow a file to be typed into the :CO: device by specifying:

TYPE < filename>

rather than

COpy <filename> TO :CO:

The PL/M program called TYPE must be compiled, linked with SYSPDS.LIB and
PLM80.LIB, and located to file "TYPE" before it can be executed. The assembly
language program must be assembled, linked with SYSPDS.LIB, and located
before it can be executed.

Example 4:

TYPE:DO;
DECLARE BUFFER(128) BYTE;
DECLARE ACTUAL$COUNT ADDRESS;
DECLARE STATUS ADDRESS;
DECLARE AFT$IN ADDRESS;
DECLARE READ$ACCESS LITERALLY '1 ';

OPEN:PROCEDURE (AFT,FILE,ACCESS,MODE,STATUS) EXTERNAL;
DECLARE (AFT,FILE,ACCESS,MODE,STATUS) ADDRESS;

END OPEN;

CLOSE:PROCEDURE (AFT,STATUS) EXTERNAL;
DECLARE(AF~STATUS)ADDRESS;

END CLOSE;

READ: PROCEDU RE (AFT,BUFFER, COUNT,ACTUAL,STATUS) EXTER NAL;
DECLARE (AFT,BUFFER,COUNT,ACTUAL,STATUS) ADDRESS;

END READ;

WRITE:PROCEDURE (AFT,BUFFER,COUNT,STATUS) EXTERNAL;
DECLARE (AFT,BUFFER,COUNT,STATUS) ADDRESS;

END WRITE;

EXIT:PROCEDURE EXTERNAL;
END EXIT;

ERROR:PROCEDURE (ERRNUM) EXTERNAL;
DECLARE (ERRNUM) ADDRESS;

END ERROR;

/*Read the console file to get the parameter string.
For this example, the command entered is:

TYPE ASM.LST

At this point, the console input buffer contains

AS M . L S T CR LF */

8-67



iPDS™ User's Guide System Programmer's Reference

CALL READ (1,.BUFFER,128,.ACTUAL$COUNT,.STATUS);
CALL OPEN (.AFT$IN,.BUFFER,READ$ACCESS,O,.STATUS);
IF STATUS> 0 THEN CALL ERROR (STATUS);

I*The file ASM.LST is now open for input.*/

ACTUAL$COUNT = 1;
DO WHILE ACTUAL$COUNT < > 0;

CALL READ (AFT$IN,.BUFFER,128,.ACTUAL$COUNT,.STATUS);
IF STATUS> 0 THEN CALL ERROR (STATUS);
CALL WRITE (O,.BUFFER,ACTUAL$COUNT,.STATUS);
IF STATUS> 0 THEN CALL ERROR (STATUS);

END;

CALL WRITE (O,.('COPY COMPLETED',ODH,OAH),16,.STATUS);
CALL CLOSE (AFT$IN,.STATUS);
IF STATUS> 0 THEN CALL ERROR (STATUS);
CALL EXIT;

END;

The next example program also called TYPE is written in MCS-80/85 Assembly
Language and is equivalent to the preceding PL/M-80 program.

Example 5:

Sample Program
,
OPEN EQU 0
CLOSE EQU 1
READ EQU 3
WRITE EQU 4
EXIT EQU 9
ERROR EQU 12

EXTRN ISIS

CSEG
BEGIN:

;BEGINNING OF CODE SEGMENT

LXI SP,STCKA + 4
MVI C,READ ;READ THE CONSOLE
LXI D,RBLK
CALL ISIS
LDA STATUS
ORA A
JNZ ERR

MVI C,OPEN
LXI D,OBLK
CALL ISIS
LDA STATUS
ORA A
JNZ ERR
LHLD AFT
SHLD CAFT

,
LOOP:

MVI C,READ
LXI D,RBLK

8-68

;OPEN THE INPUT FILE

;READ THE INPUT FILE





System Programmer's Reference iPDS™ User's Guide

ACTUAL: DS 2
DW STATUS

,
XBLK:

OW STATUS

,
EBLK:
STATUS: OS 2

OW STATUS

,
BUFFER: OS 128

,
STCKA: DS 4
,
END BEGIN

Another example of an assembler language program using the CI and CO primitive
system calls is given in Chapter 7. Also, an application note (AP-80, ISIS-II
System Calls) is available that describes two other Assembly Language programs
using ISIS system calls. This application note is available from the Intel Literature
Department, order number 121559.

System Architecture

The topic of system architecture is divided into four categories for discussion:
memory organization and allocation, I/O address space, peripheral device input
and output, and disk structure.

Memory Organization and Allocation

The organization of the development system's memory under the ISIS-PDS
operating system is shown in the figure 8-4.

END OF RAM = OFFFFH

START OF BUFFER = 3000H

END OF USER AREA = F6COH

TOP OF BUFFER < = 3980H

0210

START OF ISIS = 003FH

START OF RAM = OOOOH

ISIS RESIDENT
AREA 2

USER PROGRAMS
AND ISIS
NONRESIDENT
AREA

---------
BUFFER AREA

ISIS
RESIDENT
AREA 1

INTERRUPT
VECTORS

"

Figure 8-4 Memory Map

8-70



iPDS™ User's Guide

Interrupt Vectors

System Programmer's Reference

The operating system reserves restart interrupts 5.5, 6.5, and 7.5 for use by the
keyboard, the flexible disk drive, and software reset, respectively. Additionally, in
terrupt 1 is reserved for use by the DEBUG command and software reset 7.5.

Interrupt 0 and interrupts 2 through 7 are available to the user. For example,
custom I/O driver routines can use these interrupts.

The interrupt vectors are located at addresses as shown in figure 8-5. These are the
only locations below 3000H which should be loaded with user code. Only three
bytes per vector are available for user code starting at the address shown in figure
8-5. The operating system does not load the user interrupt vectors; the systems
programmer must load the required vectors within the user program.

RST 7.5 (RESERVED)

RST7 (USER)

RST 6.5 (RESERVED)

RST 6 (USER)

RST 5.5 (RESERVED)

RST 5 (USER)

TRAP

RST 4 (USER)

RST3 (USER)

RST 2 (USER)

RST1 (RESERVED)

RST0 (USER)

------------

RESERVED
------------

-----------

RESERVED
----------

RESERVED
f----------

RESERVED
1-----------

RESERVED
f---------

40H

3CH

3BH

38H·3AH

34H

33H

3OH·32H

2CH

2BH

28H·2AH

24H

23H

20H·22H

1BH

18H·1AH

13H

10H·12H

08H·OFH

03H

OOH·02H

0211

Figure 8-5 Interrupt Vectors

ISIS Resident Area 1

The ISIS resident area 1 is reserved for the kernel, the collection of ISIS routines
that are always present in memory. The kernel is protected from a program load
operation and cannot be overlaid. However, it is not protected from an executing
user program and can accidentally be destroyed by writing to this area of memory.

Buffer Area and ISIS Resident Area 2

The buffer area and ISIS resident area 2 are used for I/O buffers of 256 bytes each.

Buffers are dynamically allocated and deallocated according to the I/O needs of
user programs. These requirements come from explicit system calls in the source
code or are generated from the source code by the language translator used.

8-71



System Programmer's Reference iPDS™ User's Guide

There is one permanent I/O buffer used by ISIS for line edited input from the
console. Line edited input is described in later sections of this chapter.

The minimum number of buffers allocated is 3 (including the permanent console
buffer); the maximum is 19. Thus, the top of the buffer area varies dynamically. If
a user program needs more than two buffers, space may be allocated from the
buffer area at the expense of the user program area. The maximum top of the
buffer area is 3980H, since only half of the buffer space is allocated from the buffer
area.

User Programs and ISIS Nonresident Area

User programs and ISIS nonresident routines, such as the CLI, commands,
utilities, and language translators, are loaded into the area above the buffer area
and below the ISIS resident area 2.

The origin point of user programs is specified by commands to LOCATE or by the
ORG statement in assembly language programs. It should be at least 3180H to
allow for the minimum of three buffers. The higher a program's base address, the
more buffers can be allocated up to a maximum of 19. In general, more buffer
space means that more disk files can be opened simultaneously by the program.

The base address of a user program can either be calculated as described in the fol
lowing paragraphs, or it can be assigned to 3980H allowing the maximum number
of buffers.

To write a program that is independent of the type of device used for files and also
independent of how it is called (from SUBMIT or interactively from the
keyboard), allow the maximum number of buffers, 19. The program base address
is then 3980H.

On the other hand, if memory space is needed by the program, the lowest possible
base address can be calculated. To calculate the lowest possible base address for a
given program, the number of buffers required by the program must first be
established. Use the following rules as a guideline. File I/O is discussed later in
this chapter.

1. Each open disk file requires two buffers until the file is closed.

2. An open line edited file (including the permanent console line edited file) re
quires one buffer until the file is closed. For a disk file used as line edited
input, this buffer is in addition to the two buffers required by rule 1.

3. A system call that accesses a disk directory requires two buffers during the
processing of the system call. The buffers are released on return to the calling
program. The system calls that may access a directory are LOAD, DELETE,
RENAME, ATTRIB, and CONSOL when it specifies a disk file.

4. When the CONSOL system call assigns the console input or output device to
a disk file, three buffers are required for the console input file and two more
are required for the console output file. These buffers are required until the
console is re-assigned. If a program is to be called from a SUBMIT file, these
file buffers must be taken into account when calculating the buffer area.

The buffer area must be large enough for the maximum number of buffers allocat
ed simultaneously divided by two. Since only half the buffer space comes from the
buffer area. The other half comes from ISIS resident area 2. The top of the user
area can be obtained by the MEMCK system call.

8-72



iPDS™ User's Guide

A formula to determine the required size of the buffer area is:

N * 256/2 or N * 128

System Programmer's Reference

where N is the decimal value of the maximum number of buffers allocated simul
taneously by the program as determined by the rules listed previously. The value
256/2 or 128 gives the number of bytes for each required buffer that is allocated
from the Buffer Area of memory. Remember that there are 256 bytes/buffer, and
half the buffer is allocated from the Buffer Area.)

If an attempt is made to LOCATE a program below 3180H (fewer than 3 buffers
allocated), an error message is generated by the LOCATE utility.

To calculate the program base address, add the size of the buffer area as calculated
above to the start of the buffer area in memory (3000H or 12288 in decimal). This
can be done using the following formula:

12288 + (128 * N)

where N is the decimal value for the maximum number of buffers allocated simul
taneously by the program as determined by the rules listed previously. Address
12288 (3000H) is the beginning of the buffer area. The value 128 is from the previ
ous formula.

Examples of Calculating the User Program Base Address. A program that has
no system calls, does not assign the console to a disk file, and is not called by a
command in a disk file only requires the minimum of three buffers. Therefore, it
can have a base address of 12672 or 3180H.

12288 + (128 * 3) = 12672

If the program is changed to open one disk file, it needs five buffers, and the base
address must be 12928 or 3280H.

12288 + (128 * 5) = 12928

If the same program is called from a SUBMIT file and then defines the console
output as a disk file, five more buffers will be needed, requiring an address of
13568 or 3500H:

12288 + (128 * 10) = 13568

Assume a program opens a line edited disk file (3 buffers) and an echo file on disk
(2 buffers). Console input is open but is not assigned to a disk file, so the mini
mum number of three buffers are also required for console and system use. The
program base address is 13312 or 3400H.

12288 + (128 * 8) = 13312

I/O Address Space

The iPDS CPU (an MCS-80/85) can address 256 (0 - OFFH) I/O ports. These
ports are assigned as follows:

8-73



System Programmer's Reference

Port Address Port Function

iPDS™ User's Guide

C3H
C4H - CFH

DOH
01 H- DFH
EOH - E2H

E3H
E4H - EFH

FOH
F1H- FFH

OOH - OFH
10H - 1FH
20H - 2FH
30H - 3FH
40H - 4FH
50H - 5FH
60H - 6FH
70H - 7FH

80H
81H
82H
83H

84H - 8FH
90H
91H

92H - 9FH
AOH- A1H
A2H - AFH

BOH
B1H

B2H - BFH
COH
C1H

Reserved
EMV/PROM Programmer Interface
Reserved
Reserved
Multimodule Chip Select J1
Multimodule Chip Select J2
Multimodule Chip Select J3
Multimodule Chip Select J4
8253 Counter 0 (Baud Clock)
8253 Counter 1 (Disk Motor-On Timer)
8253 Counter 2 (Disk Index Timer)
8253 Mode Select
Reserved
8251 A Serial I/O Data
8251 A Serial I/O Command Status
Reserved
Interrupt Controller 8259A Read/Write
Reserved
FDC 8272 Main Status Register
FDC 8272 Data Register Read/Write
Reserved
CRT/KYBD 8255A Port A Data Read/Write
CRT/KYBD 8255A Port B Bit 0 through 7

PBO RQFD-B(A) (Disk Request)*
PB1 RQMO-B(A) (MMIO J1 /J2 Hequest)"
PB2 RQM1-B(A) (MMIO J3/J4 Request)"
PB3 Disk Ready
PB4 MPSTO (MMIO Present J1)
PB5 MPST1 (MMIO Present J2)
PB6 MPST2 (MMIO Present J3)
PB7 MPST3 (MMIO Present J4)

C2H CRT/KYBD 8255A Port C Bit 0 through 7
PCO RQFD-A(B) (Disk Request)
PC1 RQMO-A(B) (MMIO J1 /J2 Request)
PC2 RQM1-A(B) (MMIO J3/J4 Request)
PC3 KBINT, (Kybd Interrupt)
PC4 STBA/B (CRT/KYBD Data Strobe)
PC5 ISF, (Input Buffer Full)
PC6 ACKA/B (CRT/KYBD Data Acknowledge)
PC7 OBFA/B (Output Buffer Full)

8255A Control Byte
Reserved
FDC Terminal Count
Reserved
Line Printer 8255A
PROM Programming/Emulator Power Control
Reserved
Boot ROM Disable
Reserved

*Signals from the other processor.

8-74



iPDS™ User's Guide System Programmer's Reference

In the following descriptions, it is assumed that the user is familiar with I/O pro
gramming techniques and with the I/O chips used. Refer to the current Intel
Component Data Catalog for further information. Refer to Appendix A for the pin
assignments and I/O signals.

CRT and Keyboard I/O

This section describes the keyboard characters available and their interpretation
by the system. It also describes the graphics characters.

Most of the keyboard characters are sent to ISIS by the CRT/Keyboard controller
as the ASCII code corresponding to the character. The following exceptions to this
rule may affect user-written programs that read characters input at the keyboard:

1. Triple key operations are undefined. For example, pressing the FUNCTION
key, the SHIFT key, and some other key simultaneously does not have a
defined effect.

2. The up arrow key generates the code 1EH instead of CTRL-l. The left arrow
key generates the code 1FH instead ofCTRL+-.

3. The FUNCTION key only has affect with upper case alpha characters and the
digits 0-9. The result of these function characters is that the ASCII code for
the character with the most significant bit set is sent to the processor (except
for FUNCT-R, FUNCT-S, and FUNCT-T). Lower case function characters
are converted to the corresponding upper case function character and sent as
an upper case function character.

4. The following function characters are processed directly by the
CRT/Keyboard controller and are not sent to the processor:

FUNCT-T
FUNCT-S
FUNCT-HOME
FUNCT-l
FUNCT- !
FUNCT-R

Typewriter/Non-typewriter mode switch
CRT scrolling speed switch
Processor keyboard/screen assignment switch
Increase size of lower half of split screen display
Decrease size of lower half of split screen display
Interrupt processor currently assigned

Cursor Addressing and Graphics Mode. The cursor location on the CRT screen
can be programmed. To control the cursor location from a program, output an
ESC (lBH) followed by another ASCII character as defined below. Use the CO
system call two times to output the two bytes (lBH, < ASCII code». Since the
cursor location is relative to a full screen; in a split screen with dual processors, the
cursor may not appear on the physical screen.

ESC, A Move the cursor up one line.

ESC, B Move the cursor down one line.

ESC, C Move the cursor to the right one character.

ESC, D Move the cursor to the left one character. If the cursor is at the first
character of a line, it is wrapped around to the last character of the
previous line.

ESC, E Home cursor and clear the screen.

ESC, H Home the cursor.

8-75



System Programmer's Reference iPDS™ User's Guide

ESC, J Erase from the current location of the cursor to the end of the
screen.

ESC, K Erase the line containing the cursor from the cursor to the end of
the line.

The following sequence moves the cursor to a specified address on the screen. The
address is given as an x,y coordinate with an offset of 20H. Thus, to move the
cursor to the first character (character 0) on the first line (line 0), the address
would be 20H,20H.

ESC, Y, <x >, <y> Move the cursor to the address specified in the third
and fourth bytes output. Use the CO system call to
output the bytes. Add 20H to the absolute values for
< x> , and < y> , since the CRT/Keyboard controller
subtracts 20H from the value it receives. This offset
is used to be compatible with other products.

In addition, the CRT/Keyboard controller is capable of generating a set of graphics
characters that can be displayed on the screen by a user-written program.

The steps to follow in writing a program to output graphics characters to the screen
are:

1. Enter graphics mode by outputting the sequence ESC, G. Use the CO system
call two times to output the two bytes (lBH, 47H).

2. Move the cursor to the desired location by outputting one of the cursor loca
tion control sequences to the CRT screen. Use the CO system call to output
the cursor control sequences described previously'.

3. Use the CO system call to output the code for the desired graphics symbol or
ASCII character. The ASCII codes and the codes for graphics symbols are
given in Appendix C.

4. Repeat steps 2 and 3 until the entire graphics display is completed.

5. Exit from graphics mode by outputting the sequence ESC, N. Use the CO
system call two times to output the two bytes (I BH, 4EH).

The escape sequences to enter and exit graphics mode are:

ESC,G Enter graphics mode. In graphics mode, any control characters
(OOH-IEH except 02H, alternate escape, or IEH, escape) that are
output will be displayed as the graphics symbol corresponding to
the code. The codes and their corresponding graphic symbols are
given in Appendix C. Other characters (20H-7EH) will be displayed
as the corresponding ASCII characters.

ESC, N Exit from graphics mode.

Serial I/O

ISIS provides an I/O driver and operating system commands for the serial I/O
port. The following information is provided for those who wish to write a custom
ized I/O driver.

The 8253 Programmable Interval Timer is used to provide software control for the
baud rate on the serial I/O port.

8-76



iPDS™ User's Guide

Intended Baud Programmable Baud Rate Generator
Rate to be Used Nominal Output Frequency (KHz)

19200 19.2
9600 9.6 153.6
4800 4.8 76.8 307.2
2400 2.4 38.4 153.6
1200 19.2 76.8

600 9.6 38.4
300 4.8 19.2
150 2.4 9.6
110 1.76 7.04

System Programmer's Reference

The 8253 Programmable Timer generates the frequencies shown in the preceding
table corresponding to the desired baud rate. The frequency required for a given
baud rate depends on the 8251 mode instruction (IX, 16X, or 64X). The maxi
mum allowable frequency deviation is ± 1%.

The I/O address assignment for this baud rate generator, the 8253, is:

80H: Load Counter 0 with value to generate frequency corresponding to
desired baud rate on an output instruction, Read Counter 0 on an
input instruction

83H: Counter 0 Mode Select

The input frequency to the counter is 1.53846 MHz ± 0.1%. This frequency is the
value to be divided by the IX, 16X, or 64X frequency in the preceding chart to
generate the value to load into the counter.

The serial I/O port consists of an 8251A USART and RS-232 receivers and
drivers. It provides full duplex asynchronous communication from 110 to 19200
baud using 7 bits plus a parity bit.

The port may be jumpered to use the internal 8253 Programmable Timer or an ex
ternal timer as a clock. The clock can provide a signal either 16 times or 64 times
the actual baud rate. See the Installation Instructions in Appendix A for setting the
jumper.

The I/O addresses for the 8251 USARTare:

90H: Data I/O

91 H: Command/Status

Printer I/O

The printer port for Processor A uses an 8255 Programmable Parallel Interface.
The 8085 I/O address assignment is:

8085 Port Address

E2H:

EOH:

E1H:

Function

Write Data to 8255 Port A (PAO - PA7)

Read 8255 Port C (PCO-PC3)
Write 8255 Port C (PC4-PC7)

Write Control Byte

8-77



System Programmer's Reference iPDS™ User's Guide

The assignments for the bits in Port A and Port C on the 8255 are shown in the fol
lowing chart:

Port No. Function Mode

PAO DATAO Output
PA1 DATA1 Output
PA2 DATA2 Output
PA3 DATA3 Output
PA4 DATA4 Output
PA5 DATA5 Output
PA6 DATA6 Output
PAl DATA? Output
PCO SELECT Input
PC1 BUSY Input
PC2 ACK Input
PC3 FAULT Input
PC4 STB Output
PC5 PRIME Output
PC6 N/C
PC? N/C

The 8255 control bytes are the Mode Select Byte and the Bit Set/Reset Byte. The
Mode Select Byte is output at 8085 port E1H. A value of 87H (l000 0111) selects
the following mode assignment for the 8255:

8255 Port A (PAD - PA7) Output
8255 Port C (PCO- PC3) Input
8255 Port C (PC4 - PC7) Output
8255 Port B (PBO - PB7) Output *
* Used for Plug-in Module Adapter Power On/Off Control

The Bit Set/Reset control byte is output at the 8085 port EOH and provides single
bit set/reset control for PC4-PC7 of Port C on the 8255. The following chart gives
the value that is output at the 8085 port EOH to set and reset bits PC4-PC7 of Port
C.

8255 Port Set Reset

PC4 09H(00001001B) OBH(00001000B)
PC5 OBH (00001011 B) OAH (0000101 OB)
PC6 ODH(00001101B) OCH(00001100B)
PC? OFH (00001111 B) OEH (0000111 OB)

M ultimodule I/O

Up to four 8-bit iSBX MultimoduleTM boards are supported with some
restrictions. Sixteen bit Multimodules are not supported. Only non-DMA mode
I/O is supported. Only limited power consumption boards are supported. See the
power supply specification in Appendix A. See the Intel iSB~ Bus Specification,
order no. 142686, for further information on the multimodule bus interface.

Most of the information required for using Multimodules is contained in the Hard
ware Reference Manual for each Multimodule. Some of the additional precautions
which should be followed when using Multimodules with the iPDS system are as
follows:

• Multimodule interrupts are returned to the INTR line of the CPU (both base
and optional processor). These interrupts are maskable.

8-78



iPDS™ User's Guide System Programmer's Reference

• Multimodule interrupts are sent to both processors in a dual processor
system. Mask off the other processors interrupts. The base processor should
enable only those interrupts ISIS does not allow. (See the ATTACH call).

• Data cannot be transferred between a Multimodule and a processor unless
the proper semaphores are first set up.

• The ATTACH and DETACH commands (chapter 5) must be uset to com
municate with Multimodules in the iPDS system.

Communication between the Multimodule Adapter board and wither the base or
optional processor board is controlled by an 8255 Programmable Peripheral Inter
face (PPI) chip on each processor board. The following I/O port address list covers
the ports needed to use Multimodules in the iPDS system.

Port Address Port Function Comments

40H - 47H

48 - 4FH

50H - 57H

58H - 5FH

60H - 67H

68H - 6FH

70H -77H

78H -7FH

AOH

A1H

C1H

C2H

Multimodule Chip Select J1

Multimodule Chip Select J1

Multimodule Chip Select J2

Multimodule Chip Select J2

Multimodule Chip Select J3

Multimodule Chip Select J3

Multimodule Chip Select J4

Multimodule Chip Select J4

Interrupt Controller R/W

Interrupt Controller R/W

PPI Port B, bits 0 through 7
PBO-RQFD

PB1-RQMO

PB3 - Disk Ready
PB4 - MPSTO
PB5 - MPST1
PB6 - MPST2
PB7 - MPST3

PPI Port c, bits 0 through 2
. PCO- RQFD

PC1-RQMO

PC2 - RQM1

Functions selected by A processor
for MMIO at 11
Functions selected by B processor
for MMIO at 11
Functions selected by A processor
for MMIO at 12
Functions selected by B processor
for MMIO at 12
Functions selected by A processor
for MMIO at 13
Functions selected by B processor
for MMIO at 13
Functions selected by A processor
for MMIO at 14
Functions selected by B processor
for MMIO at 14
Used to set up the 8259A Inter
rupt Controller for the Control
Register. See Table 8-3 for pin
assignments.
Used to set up the 8259A Inter
rupt Controller for the Data
Register. See Table 8-ff for pin
assignments.

Disk semaphore (Semaphore
available = 1)
MMIO 11/12 semaphore
(Semaphore available = 1)

Multimodule present at 11
Multimodule present at 12
Multimodule present at 13
Multimodule present at 14

Set disk request bit and turn disk
motor on (Motor ON=O)
Enable Multimodules at 11/12
(MMIO Enable =0)
Enable Multimodules at 13/14·
(MMIO Enable=O)

8-79



System Programmer's Reference iPDS™ User's Guide

C3H PPI Control Byte, bits 0 through 2
bit 0 - Request the MMIO semaphore

(Request semaphore= 1)
bit 1 - Request Multimodules 11/12

(Request MMIO = 1)
bit 2 - Request Multimodules J3/14

(Request MMIO= 1)

Table 8-3 shows the pin numbers of the interrupt lines from the MMIO to the
8259A interrupt controller chips.

Table 8-3 Interrupt Line Pin Numbers

MMIO Pin Number
U-5 and U-6

8259A Pin Number

J1 Pin12 IRO-OPin 18
J1 Pin 14 IR1-0Pin19
J2 Pin 14 IR2-0 Pin 20
J2 Pin 12 IR3-1 Pin 21
J3 Pin 14 IRO-1 Pin 22
J3 Pin 12 IR1-1 Pin 23
J4 Pin 14 IR2-1 Pin 24
J4 Pin 12 IR3-1 Pin 25

Peripheral Device I/O Operations

One of the most important features of an operating system is its I/O capabilities.
The ISIS-PDS operating system provides a simple and uniform method of identify
ing each peripheral device and each file. By assigning symbolic names to devices
and files, system resources can be accessed without requiring the user to remem
ber the physical addresses of each device and each file.

The following sections describe file I/O, dynamic file control, line edit files, and
disk file types.

File I/O

A device is a peripheral connected to the system hardware. A device name is of the
form:

:<device>:

where < device> is a two-character mnemonic assigned by the system to a sup
ported peripheral. A complete list ofISIS-PDS devices and names is given in Chap
ter 5 as well as a discussion of logical and physical device names, filenames, and
pathnames.

A file is an abstraction of a peripheral device and is a collection of information in
machine readable form. The term file refers to the data stored on a peripheral
device. A file is formally defined as a sequence of8-bit values, or bytes.

No file can exist on more than 1 device. In particular, a disk file must reside entire
lyon one diskette.

8-80



iPDS™ User's Guide System Programmer's Reference

A filename is of the form:

< name>. <extension>

where <name> is a sequence of one to six characters. The initial character must
be a letter or a digit. The < extension> is a sequence of one to three characters:
letters or digits.

For all non-disk devices, the filename is blank. Thus, the device named :LP: is
identical to the file with the pathname :LP:. Pathnames are described in Chapter 5.
All disk devices must have a non-blank filename.

User programs perform I/O by making calls to the ISIS kernel, i.e., system calls.
All I/O occurs to and from files, not devices, and is status driven rather than inter
rupt driven. (Interrupts 1, 5.5, 6.5, and 7.5 are reserved for ISIS and must not be
masked or altered by user programs.) Programs receive information by reading
from an input file and transmit information by writing to an output file. Files are
accessed by their pathnames; see Chapter 5 for a discussion of pathnames.

ISIS-PDS usually does not interpret the byte values of a file as having any special
meaning. The exception is with line edited files described in a later section of this
chapter. However, the CLI, as well as some commands and user-written
programs, may expect a certain kind of value to be present.

For example, the CLI expects the byte values of a file to represent a sequence of
machine language instructions that can be loaded into memory and executed. If a
text file is executed, unpredictable results may occur.

See later sections of this chapter for information on disk file types and disk file
formats.

Four files (disk files, the byte bucket, the console input file, and the console
output file) deserve further attention.

One of the major purposes of ISIS-PDS is to implement files on diskettes and
bubbles. A diskette is the recording medium for 5-1/4" flexible disks while a
bubble is the recording medium for bubble memory.

A drive is the mechanism on which the recording medium is mounted. A disk is
the drive together with a mounted diskette or bubble.

The term disk is often used in place of diskette and bubble to refer to either record
ing medium.

Disk files are discussed in greater detail later in this chapter.

The byte bucket is a virtual I/O file with a pathname of :BB:. The byte bucket acts
as an infinite sink for bytes when written to and as a file of zero length when read
from. The :BB: device can be used as the line printer and serial I/O devices on the
optional processor, since the optional processor cannot access line printer and
serial devices. Multiple opens of :BB:are allowed. Each open is treated as the open
of a different file and returns a different connection number (Active File Table
Number). See the OPEN system call for a description of connection numbers
(AFTNs).

The operating system supports a virtual console which is implemented as two files,
an input file with a pathname of :CI: and an output file with a pathname of :CO:.
(Since these are non-disk files, the nine character filename is blank, and the path
name is the same as the device name.) These two files are always open. :CI: is
always a line edited file; :CO: is its associated echo file. Line edited files and echo
files are discussed in a later section.

8-81



System Programmer's Reference iPDS™ User's Guide

Both :CI: and :CO: are pseudonyms for the file corresponding to an actual physical
device. At initialization, :CI: and :CO: refer to the video terminal (:VI: and :VO:
respectively), i.e., the keyboard and CRT. User programs can change the two
halves of the console to different physical devices.

The ASSIGN command can also be used to change the assignment of the console.
The :CI: assignment is automatically redefined to the keyboard whenever an end
offile is encountered.

The CLI always obtains its command lines from the physical device currently as
signed to the console.

Dynamic File Control

Dynamic file control means that file access (I/O operations) are under program
control at runtime. With ISIS-PDS, a list of twelve files or devices to be used by a
program can be maintained while physical access is restricted to a smaller group of
six files actually in use at anyone time. The existence and maintenance of the list
of devices is accomplished through ISIS system calls and can make I/O operations
more efficient. See the discussion of the Active File Table and the OPEN system
call for further information.

Line Edited Files

Data read from input files can be filtered through an ISIS module called the line
editor. Files read in this way are called line edited files. They are the only files
whose byte values are interpreted: specially by ISIS.

ISIS assumes that the byte values of a line edited file represent ASCII characters.
Three groups of ASCII characters are given special meaning by ISIS: characters
that terminate a line, editing characters, and function characters. Function charac
ters are described in Chapter 9. Terminating characters and editing characters are
described in later sections of this chapter.

Line edited files are provided for (but not restricted to) the case of a user typing
characters at a keyboard. They allow the input to be edited until correct prior to
being read by the READ system call. Editing is accomplished by entering
characters, called editing characters, that are interpreted as having special meaning
by ISIS.

By supplying a parameter in the OPEN system call, line edited files can be read.
Thus, a file is a line edited file by virtue of its access method, not because of any in
trinsic attribute of the file.

Every line edited file has an echo file associated with it. The echo file reflects the
current contents of the line edited file. The previously opened echo file is also
specified in the OPEN system call. If no echo is desired, the byte bucket (:BB:) can
be opened as the echo file.

Line edited files are partitioned into segments, called logical lines, according to
the following rules. Linefeed and escape are referred to as break characters.

1. A linefeed (LF) is inserted following every carriage return (CR). Any LF
that follows a break character is removed from the buffer and ignored.

2. A logical line is defined as all the characters between two break characters
plus the terminating break character (the line terminator).

8-82



iPDS™ User's Guide System Programmer's Reference

3. . If all logical lines are shorter than 122 uncancelled characters, the parti tioning
is complete. Lines longer than 122 uncancelled characters are further parti
tioned into two segments. The first segment is the longest proper substring
that is less than 121 uncancelled characters; the second is the remaining
characters.

4. Rule 3 is applied until all long lines are eliminated.

Uncancelled characters include only those characters remaining after the line has
been edited. The editing characters do not count as uncancelled characters. Ter
minating characters and function characters do count as uncancelled characters. A
READ to a line edited file obtains a maximum of one line at a time.

Terminating Characters

While a line is being entered from an input device, it is accumulated into a 122
character line editing buffer. While still in the buffer, the line can be changed
using the editing characters described below. No data is transferred to the program
reading the line edited file until the line is terminated. The line editing buffer can
be terminated in one of three ways:

• A linefeed character (ASCII code OAH) is entered. Linefeed is automatically
appended to the carriage return (ASCII code ODH) when the RETURN key
is pressed

• A non-editing character is entered as the 122nd character

A line feed which is the first (and therefore the only) character in a line has no
effect. It is ignored and there is no echo. This feature permits disk files with CR LF
terminators to be used as line edited files. The CR generates a LF automatically
yielding a CR LF LF, but the second LF is removed from the buffer and ignored.

The ESCAPE character is 'echoed as a dollar sign (S).

Editing Characters

A READ system call transfers no characters from a line until the line has been
terminated. During the physical input, the line is accumulated in the line editing
buffer and can be modified with the editing characters described in Chapter 3.

Reading From the Line Editing Buffer

When the line has been terminated, the next (i.e., pending) READ system call
transfers the specified number of bytes from the line editing buffer to the request
ing program buffer. When the number of bytes entered to the buffer is greater
than the number requested by the program, ISIS keeps track of the characters read
and returns the remaining bytes in response to subsequent READs.

For example, if the line editing buffer contains 100 characters and a READ system
call is issued with a count of 50, the first 50 characters are transferred to the
requesting program buffer. The next READ system call transfers characters start
ing at the 51st character. The term MARKER is used in later discussions to refer
to the position of the next byte to be processed in a file.

If the READ system call requests 100 bytes and the line editing buffer only con
tains 50 bytes, only 50 bytes are transferred.

8-83



System Programmer's Reference iPDS™ User's Guide

A READ system call returns bytes from only one logical line at a time. This means
no more than 122 characters can be read. If the READ system call requests 200
bytes, only 122 bytes are transferred.

When all the characters in the line editing buffer have been read, the buffer pointer
is positioned after the last character. The buffer contents are not destroyed. In fact,
the RESCAN system call can be used to reposition the buffer pointer to the begin
ning of the buffer and the line can be !ead again.

When the buffer has been completely read, with the pointer after the last
character, a new READ system call will transfer new input from the line edited file
into the line editing buffer. When the line is terminated, the number of characters
requested by the READ are transferred to the program.

Reading a Command Line

Reading a command line from the console input device is a special case of reading
a line edited file.

When a command is entered at the console, it is collected in the line editing buffer
and is not available to the CLI until it is terminated. The CLI reads only the com
mand name (down to the first space) and then loads the disk file corresponding to
that name. The file should bean absolute MCS-80/85 object module.

The line editing buffer pointer is positioned after the command name. Thus, the
loaded program can issue a READ system call to transfer the first parameter, or it
can issue a RESCAN system call to position the pointer to the beginning of the
buffer and re-read the command name.

For example, suppose the following command has been entered:

AO>COPY :F1 :PROGA TO :FO:PROGB

The line editing buffer for the console input file contains 29 characters as follows.
CR represents the carriage return (ASCII code ODH) and LF represents the line
feed (ASCII code OAH).

COP Y : F 1 : PRO GAT 0 : F 0 : PRO G B CR LF
12345678901234567890123456789

10 20

The CLI reads the characters COPY and loads the file with the pathname
:FO:COPY. The buffer pointer is left pointing to the fifth character, a space follow
ing COPY. The file :FO:COPY is a program that issues a READ system call to read
in the parameters, the names of the source and destination files to be copied.

When the buffer pointer passes the CR LF characters, the line is terminated and
the next READ system call inputs new data from the console input to the line edit
ing buffer.

Remember that when control is passed from the CLI to the loaded program, the
buffer pointer is positioned after the command name, not after the CR LF. If there
are no parameters for the command, the next READ system call returns to the
requesting program the CR LF left over from the previous command line.

8-84



iPDS™ User's Guide System Programmer's Reference

For example, suppose the following command line is entered to run a user
program:

AO>PROGA

and the line editing buffer contains:

PROGACR LF
1234567

When the program is loaded into memory, the line editing pointer is at the CR. If
subsequent input is expected by the user written program PROGA, an extra
READ system call must be issued to clear the buffer of the CR LF terminating
characters.

If the program does not request any console input, the remaining CR LF termina
tor is cleared by ISIS before a new command line is read by the CLI.

Disk File Types

With the exception of line edited files described in a previous section, the operat
ing system makes no assumptions about and places no interpretation on the bytes
in the data blocks of files. Data blocks are described in a later section. However,
certain programs assume the data to be formatted and interpret the data in certain
ways.

The CLI expects the file it loads into memory to be an MCS-80/85 absolute object
file. Intel language translators, linkers, and locators produce files of the expected
format.

An absolute object file contains a form of machine language instructions and data
that permit the file to be loaded into memory for execution. In addition, it may
contain control information that may govern the loading process. An absolute
object file can be used to program a ROM or a PROM.

Fields in absolute object files are all reserved for use by Intel even if they are not
described. Any use of or modification to these fields may interfere with the proper
functioning of the program. The MCS-80/85 absolute object file format is summa
rized below for convenience.

Notation Used to Describe Records. The record format diagrams use the conven
tions shown in figure 8-6:

B
[] 1 1 C7~

0213

Figure 8-6 Record Format Conventions

8-85



System Programmer's Reference iPDS™ User's Guide

The first rectangle represents a single-byte field, the second rectangle represents a
two-byte field, and the third broken rectangle represents a field of a variable
number of bytes.
Some records contain a field or a series of fields that may be repeated. These are in
dicated by the REPEATED or RPT brackets in the diagrams.

Any field that contains a name has the following internal structure: the first byte
contains a number from 1 to 255 inclusivewhich indicates the number of the re
maining bytes in the field. These remaining bytes are interpreted as a byte string.
Most translators constrain these values to ASCII codes of printing characters.

Any field with an X through it contains unspecified information and is not relevant
to the translator.

MCS-80/85 Absolute Object File Format. The format of an absolute object file
contains three record formats:

Module Header Record
Content Record
Module End Record

A proper absolute object file contains these record formats in the following order:

• One Module Header Record

• One or More Content Records

• One Module End Record

It may also contain other records between the Module Header Record and the
Content Record. These fall into two categories:

• Extraneous records containing symbolic debug information which will be ig
nored by the CLI

• Erroneous records containing relocation information which indicates that
the information is still in relocatable form. The file will be rejected by the CLI

The Module Header Record, Content Record, and Module End Record all share
the following organization: the first byte identifies the record and is called the
RECORD TYPE, the next two bytes contain a number called RECORD
LENGTH, the last byte in every record is the CHECKSUM field. The RECORD
LENGTH is the total number of bytes in the record exclusive of the first three
bytes, the RECORD TYPE and the RECORD LENGTH. The CHECKSUM con
tains the two's complement of the sum, modulo 256, of all the other bytes in the
record.

Module Header Records are RECORD TYPE number 02H; Content Records are
RECORD TYPE number 06H; and Module End Records are RECORD TYPE
number 04H. Extraneous records have the RECORD TYPE numbers of 08H,
OEH, 10H, 12H, 16H, 18H, or 20H depending on how they were created. Errone
ous records have all other numbers.

In addition to the common fields, the module header record (see figure 8-7) con
tains the module name field. Every module has a name. A valid module name con
tains between 1 and 31 characters each of which must be an uppercase letter (A, B,
C, ... , Z), a digit (0, 1, 2, ... , 9), a question mark (?), or the at sign (@). The first
character may not be a digit. .

8-86



iPDS™ User's Guide

0214

Figure 8-7 Module Header Record

System Programmer's Reference

The Content Record (see figure 8-8) provides contiguous data, from which a
memory image may be constructed for a portion of memory.

.......--:.....1.- -'-_........ ---"'-----' ..+.,. I.. ·1 ~~~ 1
0215

Figure 8-8 Content Record

The OFFSET field specifies the absolute location of the first data byte.

Following the OFFSET are one or more DATA bytes. Thus, this record provides
N consecutive bytes of a memory image from OFFSET through OFFSET + N - 1,
inclusive.

The Module End Record (see figure 8-9) has a MODULETYPE (MODTYPE)
field with a value of 0 or 1. If the value is 1, the module is a main program. If the
value is 0, the module is not a main program.

If the module is a main program, the OFFSET field specifies the module's execu
tion start address. Otherwise, this field has no significance, but it must be present.

0216

Figure 8-9 Module End Record

The OPTIONAL INFORMATION field may not be present depending on the lan
guage translator used. It contains debug information.

8-87



System Programmer's Reference

Disk Structure

iPDS™ User's Guide

This section describes the structure of disks and disk files at the byte level. The in
formation is not necessary to use the system calls described previously. Disk
devices are discussed in Chapter 5. This section deals with the disk media and the
structure of the files recorded on it.

Bubble memory multimodules are treated as virtual disk devices. Both flexible
disks and bubble memory are organized into tracks and sectors. All flexible disks
contain 80 tracks which are divided into 32 sectors of 256 bytes each. (Sixteen sec
tors are on side 0 and sixteen on side 1.) Bubble memory contains 16 tracks with
32 sectors of256 bytes each. Disk capacities are given in the following chart.

Diskette Bubble Memory

Tracks/Disk 80 16
Sectors/Track 32 32
Sectors/Disk 2560 * 512
Bytes/Sector 256 256
Bytes/Disk 655,360 131,072
* Only 2544 sectors available to the user.

General Disk File Structure

Each disk contains a number of files. Each file is made up of 256-byte blocks. Each
block corresponds to one disk sector, which is a hardware addressable unit. See
figure 8-10. ISIS-PDS system files and commands occupy about 400 sectors on a
system disk and 50 sectors on a non-system disk.

FILE

256 BYTES 256 BYTES 256 BYTES 256 BYTES 256 BYTES

0217

8-88

Figure 8-10 Disk File Components

Each sector on a disk has a unique address by which it can be accessed. The address
consists of a one-byte track number and a one-byte sector (block) number. Tracks
are numbered 0-79 on a diskette and 0-15 on bubble memory. The sectors on a
track are numbered 1-32 on both diskettes and bubble memory. The address of a
block is also referred to as a pointer to that block. Related blocks are linked togeth
er by pointers. That is, two of the bytes in a block may contain the address of a
related block.



iPDS™ User's Guide System Programmer's Reference

Blocks. A block is the data in one sector. There are two types of blocks in a file:
pointer blocks and data blocks. Pointer blocks contain nothing but pointers to
other blocks as shown in figure 8-11.

1'-_-Fr.~~;R~I

f.- PREV-1.- NEXT~ 123DATABLOCKPOINTERS------.

S=SECTOR #
T=TRACK #

Figure 8-11 Pointer Block

RESERVED
250'\-255

0218

All files begin with a pointer block that is called the header block. If the file con
tains fewer than 123 data blocks, the header block is the only pointer block in the
file. If there are more than 123 data blocks, there is an additional pointer block for
every 123 data blocks. For example, a file of 300 data blocks contains 3 pointer
blocks, including the header block.

The first two pointers. in a pointer block are links to other pointer blocks in the file.
The first link contains the address of the previous pointer block. The header block
always contains zeros in this field because there is no previous pointer block in the
file. The second link contains the address of the next pointer block in the file. The
last pointer block in the file has zeros in this field.

Following the links to other pointer blocks are 123 pointers to the data blocks in
the file followed by six reserved bytes. If a pointer contains zeros, then no data
block has been allocated for the pointer. A zero pointer does not necessarily mark
the end of the file.

Data blocks, as shown in figure 8-12, have no particular format, since they contain
user data.

(FORMATIS CONTEXT·DEFINED)

0219

Figure 8-12 Data Block

8-89



System Programmer's Reference iPDS™ User's Guide

Data blocks are fundamentally different from pointer blocks. Data blocks are visi
ble to users; they contain the information that is transferred by read and write
operations. Pointer blocks, on the other hand, are invisible to users; the data they
contain is of interest only to the system. Data blocks can be thought of as destina
tions with pointer blocks as paths to those destinations. To access user data in a
file, ISIS follows a path of pointers to a data block.

The relationship of pointer and data blocks is shown in figure 8-13.

•••

•••

0285

Figure 8-13 Relation of Data and Pointer Blocks

Figure 8·J4 shows an example file which consists of data in five blocks: DATA 1
through DATA 5. The diagram-in figure 8-14 is simplified in that it shows only
four sectors per track instead of 32 and only two data pointers per pointer block in
stead of 123. The file begins at the header block which contains pointers to the first
two data blocks, DATAl and DATA2.

The header block is linked to a second pointer block at sector 3 of track 8. The
second pointer block contains pointers to DATA3 and DATA4. It is linked back to
the header block and forward to the last pointer block at sector 1 of track 9.

The third pointer block contains the last data pointer in the file. Because it is the
last pointer block, it contains a backward link to the second pointer block but no
forward link .

.Notice that it is the data pointers which order the data blocks for sequential access.
The physical locations of the data blocks and the pointer blocks are irrelevant. Be
cause of this ability to scatter files on the disk, the system can make efficient use of
available space. Note also the data capacity is reduced by the number of pointer
blocks on a disk.

8-90



iPDS™ User's Guide System Programmer's Reference

DATA1

(UNALLOCATED)

~_II_~
IPREY INEXT I

EErrEEEEJDATA3TAACK 71 .....

4

DATA4

(UNALLOCATED)

3

(UNALLOCATED)

IPREY INEXT I

mrrrn
2

DATA5

DATA2

__I 1 1 1 _

(UNALLOCATED)

TAACKSI II~~
IPREY INEXT I

TAACK9~
SECTOR 1

0220

Figure 8-14 Pointer and Data Blocks in a File

Interleaving Factors. Interleaving factors are used to speed up the sequential
access of blocks on the same track. Often a program reads a block, processes that
block, reads the next block, and so on. If the blocks were stored in physically adja
cent sectors, the disk drive read/write head would pass by the second sector while
the program was processing the first sector. The program would have to wait one
full disk revolution for the read/write head to seek the second sector again. The
effect of an interleaving factor of 3 is shown in figure 8-15.

10 9

18 0221

Figure 8-15 Sector Interleaving

Physical sector addresses are shown outside the track (which is simplified for the
drawing to show only 18 sectors). Logical sector addresses, which are the basis for
accessing blocks stored in the sectors, are shown on the track .

. With interleaving, a program which reads and processes every block in logical se
quence has a processing window equivalent to the time it takes for two sectors to
pass by the head.

8-91



System Programmer's Reference iPDS™ User's Guide

Assuming that processing each block takes slightly less time than is available in
this window, all 18 blocks can be processed in three revolutions of the disk. With
out interleaving, 18 revolutions would be required.

The ISIS-PDS operating system uses an interleaving factor of 4 except for Track 0,
Sectors 1-16 which has an interleaving factor of 1. Track 0 contains the file ISIS.TO
which is formatted at 128 bytes/sector and contains information needed to initial
ize the system. The interleaving information is used by the IDISK command when
disks are formatted.

System Disk Files

All ISIS non-system disks contain four system files: ISIS.TO, ISIS.LAB, ISIS.DIR,
and ISIS.FRE. These are created automatically when the disk is initialized.

The location of these files is fixed as shown in table 8-4. The FROM and THRU
values are given in the form T,S where T is the track number and S is the sector
number. The values are given in hexadecimal.

Table 8-4 System File Locations

Double Density
Bubble Memory

Mini-Diskette
File Name

FROM THRU FROM THRU

ISIS.TO (Header) 00H,11 H 00H,11H . 00H,11 H 00H,11 H
(Data) 00H,12H 00H,20H 00H,12H 00H,20H

ISIS.LAB (Header) 01H,01 H 01 H,01 H 01 H,01 H 01 H,01 H
(Data) 01H,02H 01 H,04H 01 H,02H 01 H,04H

ISIS.DIR (Header) 27H,01 H 27H,01 H 00H,01 H 00H,01 H
(Data) 27H,02H 27H,10H 00H,02H 00H,04H

ISIS.FRE (Header) 27H,11 H 27H,11 H 00H,05H 00H,05H
(Data) 27H,12H 27H,14H 00H,06H 00H,08H

On a system disk, 6 files are reserved for the operating system. These are:
ISIS.PDS, ISIS.eLI, ISIS.TO, ISIS.LAB, ISIS.DIR, and ISIS.FRE. Note that four
of these appear on a non-system disk as well. In addition to these six files, there
are a number of command files containing programs and a library file named
SYSPDS.LIB.

ISIS.PDS

This file contains the ISIS kernel, that is, the resident system routines.

isrs.cu

This file contains the command line interpreter which occupies part of the user
program area of memory.

8-92



iPDS™ User's Guide System Programmer's Reference

ISIS.TO

This file contains a program called TOBOOT. When the RESET button is pressed,
this file is read in from the disk. Once it is loaded into memory, TOBOOT begins
executing. This program reads the contents of ISIS.PDS and displays the ISIS sign
on message. If an attempt is made to initialize the system from a non-system disk,
TOBOOTdisplays the message:

NON-SYSTEM DISKETTE

on the screen. When running from a hardware reset, TOBOOT then returns control
to the initialization PROM. If running from a FUNCT-R (a software reset),
TOBOOT stops after attempting to initialize from the system diskette.

ISIS.LAB

The first nine bytes of this file contain the disk label stored as nine ASCII charac
ters with a six-character name and a three-character extension.

The rest of the bytes are undefined except for the last 256 bytes (corresponding to
Track 1, Sector 4) which are filled with repetitions of the ASCII characters:

DIAGNOSTICSECTOR

These bytes are used by diagnostic programs described in Appendix A.

ISIS.DIR

Each disk contains one directory. This file contains 15 data blocks (3 for bubble
memory); each block has room for 16 directory entries. One entry is used for each
file on the disk, so there is room in the directory for 240 files (48 for bubble
memory). Each directory entry is 16 bytes long and is formatted as shown in figure
8-16.

o

USER
DEFINED
ATTRIBUTES

o. INVISIBLE

1· SYSTEM

1...--__ 2· WRITE PROTECT

3· RESERVED

~:~~]
L-- 6.K

1...----- 7. FORMAT
0222

Figure 8-16 Directory Entry

8-93



System Programmer's Reference

The following chart explains the field names used in figure 8-16.

iPDS™ User's Guide

8-94

PRESENCE

FILENAME

EXTENSION

ATTRIBUTES

is a flag which can contain one of three values:

OOH: The file associated with this entry is on the
disk.

7FH No file is associated with this entry; the con
tent of the rest of the entry is undefined. The
first entry with its flag set to 7FH marks the
current logical end of the directory; directory
searches stop at this entry.

FFH The file named in this entry once existed on
the disk, but is currently deleted. The next
file added to the directory will be placed in
the first entry marked FFH. This flag cannot,
therefore, be used to find a file that has been
deleted, unless no other files have been
created or written since the deletion. A value
of FFH should be thought of as marking a
free directory entry.

is a string of up to 6 non-blank ASCII characters
specifying the name of the file associated with the
directory entry. If the filename is shorter than six
characters, the remaining bytes contain OOH. For
example, the name ALPHA would be stored as
41H 4CH SOH 48H 41H OOH.

is a string of up to three non-blank ASCII charac
ters that specify an extension to the filename. Ex
tensions often identify the type of data in the file
such as OBJ for object module or PLM for PL/M
source module. As with filename, unused posi
tions in the extension field are filled with zeroes.

are bits that identify certain characteristics of the
file. A 1 bit indicates that the file has the attribute,
while a 0 bit means that the file does not have the
attribute. The bit positions and their corresponding
attributes are listed below (bit 0 is the low order or
rightmost bit, bit 7 is the leftmost bit):

0: Invisible. Files with this attribute are not
listed by the DIR command unless the I
option is used. All system files are invisible.

1 : System. Files with this attribute are copied to
any disk being initialized as a system disk.

2: Write Protect. Files with this attribute
cannot be opened for output or for update,
nor can they be deleted or renamed.

3: Reserved.

4-6: J, K, and L. User defined attributes.



iPDS™ User's Guide System Programmer's Reference

7: Format. Files with this attribute are treated
as though they are write protected. Some of
the system files have this attribute. It should
not be given to other files.

Attributes can be written with the ATTRIB com
mand or the ATTRIB system call.

EOFCOUNT contains the number of the last byte in the last
data block of the file minus 1. If the value of this
field is 80H, for example, the last byte in the file is
byte number 129 in the last data block.

NUMBER OF DATA BLOCKS is a two-byte variable indicating the number of
data blocks currently used by the file. To calculate
the current number of bytes in the file, use the fol
lowing formula:

(NUMBER OF DATA BLOCKS) * 256 + EOF COUNT + 1

HEADER BLOCK POINTER is the address of the file's header block. The low
order byte in this field is the sector number, and
the high order byte is the track number. The
system finds a disk file by searching the directory
for the name, then using the header block pointer
to seek the beginning of the file.

ISIS.FRE

This file contains a bit map of the disk, with each bit position representing one
cluster of the disk. A cluster is 4 blocks or 4 sectors of the disk. Since there are 32
sectors/track, each byte of the bit map represents one track on the disk. For
diskettes, the bit map is 80 bytes long and for bubble memory the bit map is 16
bytes long.

If abit in the bit map is 1, the corresponding cluster is allocated, that is, in use as a
pointer block and/or as data blocks. If a bit in the bit map is 0, the corresponding
cluster is free space on the disk. When a file is deleted, the bits that correspond to
the clusters it previously occupied are reset to O.

Table 8-5 shows the values of the bit maps for the system files located at tracks
OOH, 01H, and 27H on the mini-diskette and tracks 0 and 1 on the bubble memory.

Table 8-5 Values of System File Bit Maps

TrackOOH Track 01H Trace 27H

Mini-diskette OFFH 01H 01FH
ISIS.TO ISIS.LAB ISIS.FRE

ISIS.DIR

Bubble Memory OF3H 01H
ISIS.TO ISIS.LAB
ISIS.DIR
ISIS.FRE

8-95



System Programmer's Reference iPDS™ User's Guide

ISIS uses a pre-allocation scheme to allocate disk space to requesting programs. A
pre-allocation table is maintained in memory containing a list of available clusters.
These clusters have already been set on in the bit map, so they will not be allocated
by any other program.

If a program requests disk space and there are no clusters available in the pre
allocation table, ISIS gets 5 clusters and sets the bit map in ISIS.FRE for these 5
clusters. One of these clusters is made available to the requesting program. The
other four are saved in memory in a pre-allocation table for future requests.

This technique saves time since ISIS only has to access the disk one time to allocate
5 clusters. Thus, if the system is reset before clusters 2-5 are used, they will
remain allocated but will never be usable again.

Disk File Structure Summary

Figure 8-17 provides an overall view of the most important elements in the file
structure. Some simplifications have been made for clarity. There are only four
directory blocks, pointer blocks contain only four data block addresses, and so on.
However, the key relationships of file elements are shown.

8-96



iPDS™ User's Guide System Programmer's Reference

DIRECTO

FILE
"IOTA"

DIRECTORY
P.B. LINK POINTERS HEADER

BLOCK

PRE\'INEXT D~R I D~R I D~R I DIR
4

RY

r *
DIRECTORY 1 DIRECTORY 2 DIRECTORY 3 DIRECTORY 4

ALPHA BETA~GAMMA~ DELTA EPSILON ZETA IETA ITHETA IOTA I I I I I I
It t t t t t t t l

I
TO FILE HEADER BLOCKS

* "IOTA"
P.B. LINK POINTERS HEADER

BLOCK

i<1 DATA IDATA IDATA IDATA
iccc~cc.c~::::c; NEXT 1 2 3 4

I

r +
DATA BLOCK 1 DATA BLOCK 2 DATA BLOCK 3 DATA BLOCK 4

"IOTA"
P.B. LINK POINTERS 2ND POINTER

BLOCK

PREV I~E~T DATA IDATA IDATA IDATA
5 6 7 8

I

r 1
DATA BLOCK 5 DATA BLOCK 6 DATA BLOCK 7 DATA BLOCK 8

t

POINTER
VALUES: ~DELETED I.•..•..•..•......•..•..•..•.....•..•..•..•..•....•.•.....•..•..•..•.•.•.•.•.•...•..•..•..•.•..•..•....•.....·.•·•·.•.··.·..•..•.1ALWAYS•••• •••••• ZERO

.--, CURRENTLYL--..J UNDEFINED

EOF

0223

Figure 8-17 Disk File Structure Summary

8-97/8-98



CHAPTER 9
DUAL PROCESSING

Introduction

Dual processing is a capability which increases the processing power of the iPDS
system. It requires adding an optional processor board to-the system. Controlled
by software that is already included in the ISIS-PDS operating system, a different
program can be run on each processor at the same time providing greater process
ing throughput. More jobs can be run during the same time on a dual processor
system than on a single processor system.

For example, at the same time one processor is compiling one file of source code,
the other processor can be used to edit another file. The result is an increase in
throughput with more jobs processed during the same time period.

The processor supplied with the system is referred to as the base processor or Pro
cessor A. The add-on processor is referred to as the optional processor or Processor
B.

Both the base processor and the optional processor are functionally equivalent
8085 CPUs each with 64K bytes of dynamic RAM and an additional 2K bytes of
bootstrap ROM. Both processors share the keyboard, the CRT display unit, the
disk drives, and the multimodules. The built-in serial and parallel interfaces are
available only to the base processor. If serial and parallel I/O ports are required for
the optional processor, they can be added through multimodules.

Operating a Dual Processing System

Operating a dual processing system is similar in most respects to operating a
system with only the base processor. Each processor runs the ISIS-PDS operating
system and ISIS programs using its own 64K byte memory space, independent of
the other processor.

Programs are run the same on the base processor as on.the optional processor with
few exceptions. Commands that use the :LP:, :SO:, or :SI: devices cannot be run
on the optional processor. These I/O ports can only be accessed from Processor A.
For example, the SERIAL command returns an error if run on Processor B since
the serial port is only part ofProcessor A.

Once the keyboard is assigned to a given processor, commands can be entered to
and run on that processor as described in previous chapters of this manual. The
keyboard is initially assigned to Processor A (the base processor). The special
function, FUNCT-HOME, is used to switch the keyboard between the two
processors.

Special operating procedures that apply only to dual processing systems fall into
the following categories:

• Initializing the system

• Sharing the keyboard

• Sharing the CRT display

9-1



Dual Processing

•
•
•

Sharing disk drives

Sharing multimodules

Sharing files

iPDS™ User's Guide

Each category is described in the following sections.

The function key (FUNCT) is used for many of the special operations required in
dual processing systems. It is used with other keys to perform a special function.
For example, FUNCT used with the up arrow key is used to increase the screen
size for the processor to which the keyboard is currently assigned. To perform a
special function, hold down the FUNCT key while pressing the other key and then
release both keys. This operation is similar to the way that the SHIFT key is used
in typing.

Sharing the Keyboard

The single keyboard on the systemis.assigned to only one processor at a time.
Initially, it is assigned to Processor A. It can be switched to Processor B using the
special function, FUNCT-HOME. Subsequent use of FUNCT-HOME alternates
the keyboard assignment between Processor A and Processor B.

Commands are entered at the keyboard as described in previous chapters of this
manual and are run on the processor currently controlling the keyboard. Com
mand lines entered at the keyboard are echoed on the lower part of the display
screen. The prompt characters on the display screen indicate the current processor
to which the keyboard is assigned.

The prompt:

An>

is for Processor A while the prompt:

Bn>

is for Processor B. The letter n represents the drive number of the physical disk
device currently assigned to the :FO: logical disk device, the system drive. Initially,
n can be either 0 if the system is initialized from disk or 4 if the system is initialized
from bubble memory. Logical and physical devices are discussed in Chapter 5.

The FUNCT-R combination, allows the processor currently assigned the keyboard
to be reset independently of the other processor. The operating system is loaded
from the physical drive currently assigned to :FO: to the memory of the processor
currently controlling the keyboard when FUNCT-R is typed.

Several keys are interpreted and processed by the CRT/Keyboard controller rather
than by one of the two processors. These keys, such as CTRL-S, FUNCT-S,
FUNCT-T, will affect the keyboard and display for both processors even if entered
when the keyboard is assigned to only one processor.

Sharing the CRT Display

The iPDS display screen is divided between the two processors as shown in figure
9-1. The bottom part of the screen is assigned to the processor which currently



iPDS™ User's Guide

2 LINES OF
PHYSICAL
DISPLAY AREA
ASSIGNED TO
PROCESSOR
WITHOUT
KEYBOARD
(REVERSE
VIDEO)

22 LINES OF
PHYSICAL
DISPLAY AREA
ASSIGNED TO
PROCESSOR
WITH
KEYBOARD

Figure 9-1 Split Screen Display

Dual Processing

,
I

I
I,

I...,.:~-t-- 2 LINES OF
LOGICAL
DISPLAY AREA
ASSIGNED TO
PROCESSOR
WITH
KEYBOARD
(NOT SEEN
BY USER)

0017

controls the keyboard. The top part of the screen, displayed on the screen in
reverse video, is assigned to the other processor. The two parts of the screen are
switched each time FUNCT-HOME is used to change the keyboard assignment.

Each processor has a full 24 lines of logical display. However, less than 24 lines
may actually appear on the physical screen. The number of lines appearing on the
screen for each processor is controlled by the user through special function keys.

8m
8m

increases by one line the display size of the bottom part of the
CRT screen (the part of the screen used by the processor current
ly in control of the keyboard).

decreases by one line the display size of the bottom part of the
CRT screen (the part of the screen used by the processor current
ly in control of the keyboard).

When the system is initialized, the bottom portion of the screen contains 22 lines,
and the top portion of the screen contains 2 lines.

The top two drawings in figure 9-2 represent the 24 logical lines of display output
for each processor. The portion of each output enclosed in dashed lines will actual
ly appear on the CRT display screen, if Processor A controls the keyboard and 22
lines are assigned to it. This is shown in the bottom left drawing. The bottom two
drawings illustrate the actual lines displayed when Processor A controls the key
board and when Processor B controls the keyboard and 22 lines are assigned to the
processor controlling the keyboard.

9-3



Dual Processing

PROCESSOR A

iPDS™ User's Guide

PROCESSOR B

LINE 1 OF PROCESSOR A
LINE 2 OF PROCESSOR AI IT:~ gT:~~m: :- - - - - - - - - -- - - - 1

I LINE 5 OF PROCESSOR A
I LINE 6 OF PROCESSOR A

LINE 7 OF PROCESSOR A
I LINE 8 OF PROCESSOR A
I LINE9 OF PROCESSOR A

I
II NE10 OF PROCESSOR A
LINE 11 OF PROCESSOR A

I LINE 12 OF PROCESSOR A
LINE 13 OF PROCESSOR A

I LINE 14 OF PROCESSOR A
I LI NE15 OF PROCESSOR A

LINE 16 OF PROCESSOR A
I LINE 17 OF PROCESSOR A
I LINE 18 OF PROCESSOR A

LINE 19 OF PROCESSOR A
I LINE 20 OF PROCESSOR A
I LI NE21 OF PROCESSOR A

LINE 22 OF PROCESSOR A
I LINE 23 OF PROCESSOR A
L liNU 4..Q..F ~OC~SQ!!.A .J

KEYBOARD ASSIGNED TO
PROCESSOR A

LINE 23 OF PROCESSOR 8
LINE 24 OF PROCESSOR 8
LINE 3 OF PROCESSOR A
LINE 4 OF PROCESSOR A
LINE 5 OFP~OCESSOR A
LINE 6 OF PROCESSOR A
LINE7 OF PROCESSOR A
LINE8 OF PROCESSOR A
LINE 9 OF PROCESSOR A
LINE 10 OF PROCESSOR A
LINE 11 OF PROCESSOR A
LINE 12 OF PROCESSOR A
LINE 13 OF PROCESSOR A
LINE 14 OF PROCESSOR A
LINE 15 OF PROCESSOR A
LINE 16 OF PROCESSOR A
LINE 17 OF PROCESSOR A
LINE 18 OF PROCESSOR A
LINE 19 OF PROCESSOR A
LINE 20 OF PROCESSOR A
LI NE21 OF PROCESSOR A
LINE 22 OF PROCESSOR A
LINE 23 OF PROCESSOR A
LINE24 OF PROCESSOR A

LINE 1 OF PROCESSOR 8
LINE 2 OF PROCESSOR 8
LINE3 OF PROCESSOR 8
LINE 4 OF PROCESSOR 8
LINE 5 OF PROCESSOR 8
LINE 6 OF PROCESSOR 8
LINE 7 OF PROCESSOR 8
LINE8 OF PROCESSOR 8
LINE 9 OF PROCESSOR 8
LINE 10 OF PROCESSOR
LINE 11 OF PROCESSOR
LINE 12 OF PROCESSOR
LINE 13 OF PROCESSOR
LINE 14 OF PROCESSOR
LINE 15 OF PROCESSOR
LINE 16 OF PROCESSOR
LINE 17 OF PROCESSOR
LINE 18 OF PROCESSOR
LINE 19 OF PROCESSOR
LINE20 OF PROCESSOR
LINE 21 OF PROCESSOR
LINE 22 OF PROCESSOR

ru~g~~mSofi----------------,

L '=.!.N!...2~O!.!'!2C~~R..!. .J

KEYBOARD ASSIGNED TO
PROCESSOR B

LINE 23 OF PROCESSOR A
LINE 24 OF PROCESSOR A
LINE 3 OF PROCESSOR 8
LINE 4 OF PROCESSOR 8
LINE 5 OF PROCESSOR 8
LINE 6 OF PROCESSOR 8
LINE 7 OF PROCESSOR 8
LINE8 OF PROCESSOR 8
LINE 9 OF PROCESSOR 8
LINE 10 OF PROCESSOR B
LINE 11 OF PROCESSOR B
LINE 12 OF PROCESSOR B
LINE 13 OF PROCESSOR B
LINE 14 OF PROCESSOR B
LINE 15 OF PROCESSOR B
LINE 16 OF PROCESSOR B
LINE 17 OF PROCESSOR B
LINE 18 OF PROCESSOR B
LINE 19 OF PROCESSOR B
LINE 20 OF PROCESSOR B
LINE 21 OF PROCESSOR B
LINE 22 OF PROCESSOR B
LINE 23 OF PROCESSOR B
LINE 24 OF PROCESSOR B

0254

Figure 9-2 Logical and Physical Screens

Commands that are entered through the keyboard are echoed on the bottom part
of the screen and are run on the processor to which the keyboard is assigned. .The
operating system prompt characters indicate which processor will receive the key
board input: Processor A or Processor B.

The cursor character appears as a reverse video prompt on the lower part of the
screen and indicates the position where the next character will appear. The cursor
is invisible on the reverse video part of the screen.

Sharing Disk Drives

Disk drive sharing is transparent to the user operating a dual processing system.
Only one processor can access a drive at a time. The internal operating system soft
ware uses a semaphore to enforce the access rights of the processor.

9-4



iPDS™ User's Guide Dual Processing

Even though operating procedures are not affected by the sharing of disks, the
user can experience a slowdown in operations if both processors are constantly
using the same drive. One processor must wait while the other processor completes
its disk access. The drive contention between the two processors also results in un
desirable head thrashing on the drive itself.

Therefore, it is recommended that dual processing systems use at least two disk
drives, one for each processor. The ASSIGN command described in Chapter 5 is
used to assign a different drive as the system device for each processor. Each pro
cessor can still access any physical device by specifying the logical device name
that is currently assigned to it. However, the physical device to which :FO: is as
signed is always used as the default for implicit disk requests. Thus, assigning :FO:
to different physical devices for each processor can greatly reduce contention be
tween the two processors for the drives.

Sharing Multimodules

The.four connectors on the multimodule adapter board are labelled J1, J2, J3, and
J4. The technique used to share the four Multimodules is to group two connectors
into a single multimodule row. Row 0 contains connectors J1 and J2, while Row 1
contains connectors J3 and J4. Each row can then be assigned to only one proces
sor at a time. While one processor accesses one row, the other processor can access
the other row. However, both rows can also be assigned to the same processor.

For a processor to access a multimodule, the multimodule row must be attached to
the processor with the ATTACH command described in Chapter 5. (The
ATTACH system call described in Chapter 8 achieves the same result within a
program.) Attaching a row sets the semaphore associated with the row, so the pro
cessor can access either multimodule on the row without interference from the
other processor and without having to set and clear the semaphore on each access.

When the processor is through with the multimodule row, the row should be
detached with the DETACH command described in Chapter 5 to clear the
semaphore. (The DETACH system call described in Chapter 8 achieves the same
result within a program.)

The ATTACH command assigns the specified row to the processor currently in
control of the keyboard. The DETACH command removes the row from the pro
cessor currently in control of the keyboard. Both commands are entered from the
keyboard. The corresponding system calls are executed from an assembly language
or PL/M program.

NOTE
The bubble memory multimodule is treated as a disk device and
does not need to be attached or detached before it is accessed. An
attempt to attach or detach bubble memory generates an error
message. See the previous section on the sharing of disk devices
for more information.

Sharing Files

Only one processor can open a file for write or update at anyone time with the ex
ceptions of the byte bucket, :BB:, and the console assignments :CI:, and :CO:. This
restriction is enforced by the operating system and is transparent to the user. A

9-5



Dual Processing iPDS™ User's Guide

non-fatal error message is issued by the operating system if the user attempts to
write to the same file from both processors at the same time. Both processors can
read from the same file at the same time.

Temporary Files

Some of the programs that use temporary work files allow the user to specify the
names for these files. If no names are given, the program uses a set of default
names. In this case, the user can avoid any conflicts by letting the program assign
unique names to the work files.

However, the restriction on writing files does not limit the same program from
running on both processors at the same time, even in the case of programs that
create temporary files. If a program creates a temporary file, the temporary file is
assigned an extension of .TMA if it is created by a program running on Processor
A or .TMB if it is created by a program running on Processor B. Thus, each tempo
rary file has a unique filename and does not conflict with the temporary files creat
ed by the same program running on the other processor.

Because of the way the operating system assigns names for temporary files, the
user must be careful when creating files with .TMP-like extensions.

• If a file is created by a program running on Processor A with a .TMP
extension, it will actually appear with a .TMA extension. On Processor B, the
file will appear with a .TMB extension.

• A file that is renamed from Processor A with a .TMP extension will actually
appear with a .TMA extension. On Processor B, the extension will appear
.TMB.

• Further, a .TMA file cannot be renamed to an extension of .TMP from Pro
cessor A. The RENAME command will attempt to delete the .TMA file. If
deleted, the file can no longer be renamed. If a .TMA file is renamed to a
.TMP file from Processor B, it will actually be renamed to a .TMB file.

• A .TMB file cannot be renamed to an extension of .TMP from Processor B.
The RENAME command will attempt to delete the .TMB file. If deleted, the
file can no longer be renamed. If a .TMB file is renamed to a .TMP file from
Processor A, it will actually be renamed to a .TMA file.

• If a .TMP extension is specified for a file to be deleted from Processor A, the
same file with the.TMA extension is actually deleted. On Processor B, the
file with a .TMB extension is actually deleted.

A file with a .TMB extension can be deleted from Processor A by specifying the
filename and the extension .TMB or .TMP. A file with a .TMA extension can be
deleted from Processor B by specifying the filename and a .TMA or .TMP.

Data Files

The same data file cannot be written by both processors at the same time. For
example, if the attempt is made to write to the same destination file from both
processors,one processor will open the file and write to it while the other processor
waits. Then, when the first processor closes the file, the other processor will be
able to access the file and write to it overwriting the previous version.

9-6



iPDS™ User's Guide Dual Processing

When copying or renaming files from both processors or when performing other
operations that involve writing to files from both processors, consideration should
be given to the effects of writing to the same file from both processors.

Additionally, when using some ISIS commands like COpy and RENAME, the
command accesses the directory. Thus, the other processor must wait until the
entire command is completed and the directory is released before it can perform
its COpy or RENAME on the same disk device.

Initializing the System

The operating system is contained in several files stored on disk or in bubble
memory. These files must be loaded into the development system's memory in a
process called initialization. During initialization, either the internal disk drive
(drive 0) or the bubble memory device (drive 4) contains the operating system
files. The device from which the system files are loaded is called the system drive.

In a dual processing system, both processors can be initialized from the same
system drive, or one can be initialized from drive 0 while the other is initialized
from drive 4.

The hardware reset (RESET key) initializes both processors. The software reset
(FUNCT-R) resets only the processor to which the keyboard is currently assigned.
This processor is reset from its current system default drive and no assignments
are changed.

To reset both processors from the internal disk drive, follow the initialization
procedure given in Chapter 3 for initializing Processor A from the internal disk
drive. Then, switch to the optional processor by pressing the FUNCT-HOME key.
Repeat the same procedure to complete the initialization for Processor B.

To reset both processors from the bubble memory multimodule, follow the proce
dure given in Chapter 3 for initializing Processor A from bubble memory. Then,
switch to Processor B with the FUNCT-HOME key and repeat the procedure to
complete the initialization for Processor B.

To reset the two processors from different devices, start the procedure given in
Chapter 3 for initializing Processor A from bubble memory. When the BOOT
FROM BUBBLE? prompt appears, do one of the following steps:

• To initialize Processor A from bubble memory and Processor B from the disk
in drive 0, answer the BOOT FROM BUBBLE? prompt on Processor A with
a Y. Switch to Processor B with FUNCT-HOME. Place a system disk in drive
oand answer N to the BOOT FROM BUBBLE? prompt that appears on Pro
cessor B.

• To initialize Processor B from bubble memory and Processor A from the disk
in drive 0, insert a system disk in drive 0 and answer the BOOT FROM
BUBBLE? prompt on Processor A with an N. Switch to Processor B with
FUNCT~HOME. Remove the system disk in drive 0 and answer Y to the
BOOT FROM BUBBLE? prompt that appears on Processor B.

9-7



iPDS™ User's Guide

Dual Processing

Sample Dual Processing Session

The following screens show some typical uses of an optional processor.

ISIS-PDS, V1. 0

B1>

*OR

EXTRN ISISt

EXTRN COl

EXTRN crt

ORG 4000Ht

EXIT EQU 91

1
EBLK: DW ESTATl

ESTAT: DS 2t

1
START: MVI B,lAHl

1
LOOP: CALL CIt

1
MOV c . At

CALL cot

CMP Bt

Key-in Sequence

CREDIT PROGA.S~C {ETu3
8

OR SPACE

Comments

The file PROGA.SRC is being ed
ited. A file on the disk contains a
block of code to be added to
PROGA.SRC, but the name of the
.file is unknown.

9-8

81>OIROFOR *.SRC
DIRECTORY Of :FO:LEARN.PDS
NAME • EXT • BlK LENGTH ATTR NAME

S
PROGA • SRC 8 937 PROGB

12

1228 FREE / 2544 TOTAL BLOCKS

81>

.EXT

.SRC

BLKS LENGTH ATTR

4 388



iPDS™ User's Guide

Key-in Sequence

~""C'~ B
DIR 0 FOR *.SRC ~RETURN~

Dual Processing

Comments

To find the name without exiting from
CREDIT, switch to the other processor by
pressing FUNCT-HOME, and run a DIR
command on Processor B. The default
system device for Processor B is drive 1
(Bl » while it is drive 0 for Processor A.
Because of disk contention when both pro
cessors use the same default drive, it is
recommended that dual processor system
have at least two disk devices. The
ASSIGN command should be used to set
the system default device to different disks
for each processor.

1228 FREE / 2544 TOTAL BLOCKS

B1>

*OR PROGB.SRC

*

EXTRN ISISI

EXTRN COt
EXTRN CIt

ORG 4000HI

EXIT EQU 9t

t
EBLK: DW ESTATt

ESTAT: DS 2t

t
START: MVI B,1 AHt

t
LOOP: CALL CIt

t
MOV c ,At

CALL COt

CMP Bt

Key-in Sequence

~'"'""~ ~HOME~

PROGB.SRC FETU3

Comments

Type FUNCT-HOME again to switch back. to
Processor A and finish entering the OR
command. Exit from the editor with the EX
command.

9-9



Dual Processing

A1>

80 >ASM80 PROGA.SRC

ISIS-II 8080/8085 MACRO ASSEMBLER, V4.1

ASSEMBLY COMPLETE, NO ERRORS
BO>

iPDS™ User's Guide

Key-in Sequence

ASM80 PROGA.SRC ~RETURN~

Comments

Another application for dual processor
systems is to start an assembly on one
processor, and switch to the other pro
cessor to edit a module. Here a new
example is started where the system
device for Processor A is drive 1 and
for Processor B is drive O.

ASSEMBLY COMPLETE, NO ERRORS
BO>

A1 > CREDIT DFIL

9-10

Key-in Sequence

~""c.~ [HOME~

8m
CREDIT DFIL ~RETURN~

Comments

Switch to Processor A; use the FUNCT- 1 to
display several lines from Processor B so the as
sembly output can be monitored. Enter the
CREDIT command to monitor a module on Pro
cessor A.



iPDS™ User's Guide Dual Processing

ISIS-II 80/8085 MACRO ASSEMBLER, V4.1

ASSEMBLY COMPLETE
Bo>

A1 > DEBUG PROGA ~\

PDS DEBUGGER V1. 0
=>4004

• S4004 06-1 A-1 A

Key-in Sequence

8m
DEBUG PROGA ~RETu3

S4004SPACE SPACE 1A

= > 4004
• S4004 06- 1A-1A

BO>CREDIT P~OGA.SRC

B0> SUBMIT ALL (PROGA)

Comments

PROGA is being debugged on Processor A
when an error is discovered. This error can
be "quickly corrected by patching memory
within DEBUG. However,the file containing
the program is not changed; With a dual pro
cessor system, the original source program
stored on a different drive (drive 0) can be
corrected on the other processor without ex
iting from DEBUG.

Key-in Sequence

FUNCT-l
CREDIT PROGA.SRC

change the source file
SUBMIT ALL (PROGA)

E~~3
ETUR~

Comments·

On Processor B, change the source
program with CREDIT and then
run a SUBMIT file named ALL
that reassembles, links, and locates
the source file.

9-11



Dual Processing

Bo>SUBMIT ALL (PROGA)

A1> DEBUG PROGA

PDS DEBUGGER V1. 0
=> 4000

• S4004 06- 4A-1A

iPDS™ User's Guide

Key-in Sequence

8B
Comments

Return to Processor a and continue debugging the object
code that was patched in memory while the assembly,
link, and locate run on Processor B.

ISIS-PDS, V1. 0
B1>

AD>
ISIS-PDS, V1. 0
AD>

Key-in Sequence Comments

While on Processor A, press FUNCT-R to reset Processor
A without disturbing the programs running on Processor
B.

Programming on a Dual Processing System

When programming on a dual processing system, special consideration must be
given to the techniques used to share certain system resources (the keyboard, the
CRT display, disk drives, and multimodules). The techniques used by the operat
ing system to share the system resources are described in this section.

9-12



iPDS™ User's Guide Dual Processing

A program can determine which processor it is executing on by doing a RIM in
struction in assembly language (or an R$MASK instruction in PL/M-80). The
RIM instruction reads eight bits of data. The Most Significant Bit (MSB) of the
data read is from the SID pin of the MCS-85 processor chip. If the MSB is not set
(i.e., is zero), the program is running on Processor A. If the MSB is set (i.e., is
one), the program is running on Processor B.

Shared Resources

The sharing of resources between the two processors must be handled with care to
prevent collisions where both processors are trying to use the same peripheral for
different jobs at the same time. Collisions can result in loss of data and processing
time. The the ISIS-PDS operating system provides built in mechanisms to prevent
collisions.

The keyboard is assigned to either the base processor or the optional processor at a
given time.

The CRT display unit is shared between the two processors through a split screen mode.
The screen is split horizontally into two sections with the top section displaying
output from the processor without a keyboard and the bottom section displaying
output from the processor with the keyboard. The number of lines allocated to
each processor can be changed by the user dynamically from 0 to 24 lines.

No matter how many lines are allocated to each processor, the processor itself be
lieves it has a full 24 lines of display. Lines that do not appear on the screen are
stored in memory.

The two processors use a semaphore to share the disk drives and multimodules.

Semaphores

To ensure that only one processor uses a shared disk or multimodule at a time,
there is a hardware semaphore associated with the disk and with each of the two
multimodule rows (connectors Jl/12 and connectors J3/J4). Before trying to use a
disk or multimodule, the processor checks the semaphore to see if the device is
available. If the semaphore is 1, the device is available. The processor then clears
the semaphore, uses the device, and resets the semaphore when it is finished.

If the device is busy (the semaphore is set to 0), the processor waits until the
device is available. The checking of semaphores is done internally by the system
calls involved and is transparent to the programmer using the system calls.

Shared Multimodules

The multimodule adapter board allows up to four multimodules to be added to the
system. The four multimodule connectors are grouped into two rows of two multi
modules each. See figure A-19 for the location of the multimodule connectors.
Connectors Jl and J2 form row 0 and connectors J3 and J4 form row 1. Each row is
associated with a semaphore flag as discussed above, so the processor accesses
both devices on a row by attaching the row. The ATTACH system call is used
within a program to set the semaphore. The other row may then be accessed by the
other processor. When finished, the processor must detach the row to clear the
semaphore with the DETACH system call within the program.

9-13



Dual Processing iPDS™ User's Guide

,A single bubble memory multimodule takes the space of both connectors on a
row; so each row can support only one bubble memory multimodule or two non
bubble multimodules. Bubble memory multimodules contain files just as disk
drives and are subject to the mechanism controlling access to files.

Shared Files

To ensure that only one processor can open a given disk or bubble memory file at a
given time for a write, a list of all the files currently open is maintained by the
Keyboard/CRT controller. Processor A and Processor B can only open a file after
getting permission from the controller.

For example, the controller would not give permission to Processor A to open a
file for reading if Processor B had the same file open for write operations. A file
could only be opened for write operations if the other processor did not have the
file open at all. Both processors can open the same file for reading at the same time.

When a processor closes a file, it notifies the Keyboard/CRT controller so the file
can be removed from the open file list.

All interactions with the Keyboard/CRT controller are handled by the ISIS-PDS
system calls transparently to the systems programmer using the system calls.

9-14



CHAPTER 10
PROM PROGRAMMING

Firmware Development

Microcomputer based systems are a central element in t~e design of electro~ic
products. A typical development effort for a system consists of repeated design
cycles:

• First, the design is implemented in a hardware prototype

• Then, the prototype is tested to determine if it meets the needs of the applica
tion

Any failures during testing lead to repetitions of the cycle until the performance of
the product is adequate.

Development cycles for microcomputer systems are characterized by the develop
ment of software-both data and programs. See figure 10-1. Programs are se
quences of coded machine instructions held in the microcomputer memory. The
machine executes the instructions to fulfill the needs of the particular application.
The application is developed by integrating the hardware and the software.

Once the software is perfected, it is often installed permanently into a type of Read
Only Memory (ROM). Software or data frozen in ROM is referred to as firmware.
Firmware is used in systems design because of its relative low cost, high speed,
and data' non-volatility (firmware is retained even when power to the system is
turned off) .

Intel provides a number of ROM memory components for the firmware develop
ment effort including two general types of ROM: mask programmable and electri
cally programmable.

Firmware for mask programmable ROM is fabricated into the ROM during
manufacture. This is often the cost effective method for including firmware in a
mass produced product.

Programmable ROM (PROM) devices allow the firmware to be electrically pro
grammed when the device is used rather than when the device is manufactured.
Electrical programming is accomplished by specifying a particular address with
data and then applying the required voltage to the appropriate pin.

There are three kinds of PROM: non-erasable bipolar PROMs, ultraviolet Erasable
PROMs (EPROMs), and Electrically Erasable PROMs (E2PROMS). Bipolar
PROMs can be electrically programmed only once and, thereafter, permanently
retain their data. However, EPROMs can be erased by exposure to ultraviolet
light. E2PROMs are electrically erased similar to the way they are electrically
programmed.

EPROMs and E2PROMs allow flexibility during the firmware development cycle
because they can be repeatedly erased and reprogrammed. Some components,
such as the 8751, have built-in EPROM in addition to other logic.

10-1



PROM Programming iPDS™ User's Guide

For design convenience, Intel components containing EPROM have pin
compatible counterparts containing mask programmable ROM instead of
EPROM. This allows the re-programmable EPROM version to be used during pro
totype development and the masked ROM version to be used for the final mass
production.

ORDER MASK·

DEVELOP STORE
PROGRAMMED

~ h>
VERIFY PROM

~ ROM VERSION
SOFTWARE SOFTWARE OPERATION IN OF VERIFIED
TO BE STORED r-v IN EPROM OR PROTOTYPE ---v FIRMWARE
IN ROM E' PROM SYSTEM OR CREATE

MASTER EPROM

A

/1
ERASE KrPROM

0255

Figure 10-1 Firmware Development Cycle

Eprom Erasure

In some cases, sections of non-blank EPROMs are programmed; however,
EPROMs to be programmed are normally in their blank (erased) state.

EPROMs are erased by exposing the integrated circuit to ultraviolet light through
a window provided on the chip package. Erasure occurs when the exposure light
has a wavelength shorter than approximately 4000 Angstroms.

Sunlight and certain types of florescent lamps have wavelengths in the 3000-4000
Angstrom range. Constant exposure to room level florescent lighting could erase
the typical EPROM in about 3 years, while it would take approximately 1 week to
erase when exposed to direct sunlight.

If the EPROM device is exposed to these lighting conditions for extended periods
of time, the device window should be covered with an opaque label (available
from Intel) to prevent unintentional erasure.

The optimum light for erasing EPROMs has a wavelength of 2537 Angstroms.
The integrated dose (UV intensity X exposure time) for erasure should be a mini
mum of 15 W-sec/cm2. The erasure time is approximately 15 to 20 minutes using
an ultraviolet lamp with 12,000 uW /cm2 power rating. The EPROM should be
within 1 inch of the lamp tubes during erasure.

The EPROM should not be powered up during erasure. If the EPROM device is
powered up during erasure, the internal current paths effectively cancel the energy
being provided by the UV light, and the device is not erased.

Consult the section on "PROM and ROM Programming Instructions" in the Intel
Component Data Catalog for further information on erasing EPROM components.
Information on erasing E2PROMs can also be found in the catalog. Individual
device specifications contain further erasure information.

10-2



iPDS™ User's Guide

Overview of Prom Programming on the System

PROM Programming

The Intel Personal Development System supports programming of E2PROMs,
EPROMs, and other circuits that have built-in EPROM or E2PROM through the
use of the following hardware and software:

• Personality Module

• Plug-in Module Adapter Board

• Intel PROM Programmer Software (iPPS)

Personality Modules

Personality Modules are small units that are installed in the side of the iPDS
system. They plug into a connector on the Plug-in Module Adapter board and
allow the development system to program a specific family of PROM devices.

Some PROM families consist of a single unique PROM while others comprise
many specific PROMs. Consult the current Intel Component Data Catalog or Intel
Systems Data Catalog for further information on the Personality Module required
for specific PROMs. To program a given PROM device, the appropriate Personali
ty Module must be installed.

Each Personality Module is shipped with a User's Guide which contains detailed
information on that particular module. The information covered includes the
following:

• PROM devices supported by the Personality Module

• Installation of PROM devices in the module

Plug-In Module Adapter Board

The Plug-in Module Adapter Board is used for both PROM Personality Modules
and Emulators. It provides the hardware interface between the Plug-in Modules
and the rest of the system.

iPPS SOFTWARE

The iPPS software is a utility that runs under the ISIS-PDS Operating System. The
iPPS software provides a foundation for programming and verifying all Intel
components that contain EPROM and E2PROM. A variety of these components
exist including memory components and other integrated circuits that have built
in PROM.

The iPPS commands control the operation of the Personality Module installed in
the development system. They provide the following capabilities needed to pro
gram PROMs:

• Reading and writing data to and from disk files

• Mapping data for a particular PROM word size

• Modifying the data in the memory Buffer

10-3



PROM Programming

• Interleaving data for different addressing schemes

• Programming the contents of a particular PROM device

• Reading back the contents of the PROM device

iPDS™ User's Guide

• Verifying the contents of the PROM device by comparing it to the contents
of the memory buffer

In general, the steps for programming a PROM device are:

1. Produce a file containing the data or the program (object code version) to be
stored in the PROM device.

2. Install the appropriate Personality Module for the PROM device to be
programmed.

3. Install the PROM device in the.Personality Module.

4. Run the iPPS software under the ISIS-PDS operating system.

5. Use the iPPS commands necessary to transfer the data or program to the
PROM device.

PROM Programming Subsystem

The hardware and software used to program PROMs on the iPDS system can be
viewed as a iPDS subsystem for PROM programming. Figure 10-2 illustrates the
system data flow and logical devices in this subsystem. All data transfers are
handled by the iPPS software and the firmware uploaded from the Personality
Module board.

The three major system logical devices are shown with arrows indicating the direc
tions of data flow between these devices. The development system contains the
Buffer and File devices while the Personality Module contains the PROM device.

DEVELOPMENT SYSTEM

""
iPPS .-- iPPS .---

ISIS·PDS
BUFFER ----.. SOFTWARE FILE------.

~

PERSONALITY
MODULE

PERSONALITY PERSONALITY PROM
MODULE MODULE DEVICE(S)

FIRMWARE

0257

Figure 10-2 PROM Programming Subsystem

10-4



iPDS™ User's Guide

iPPS Software

PROM Programming

This section covers the operation of the Intel PROM Programming Software
(iPPS). This software runs as a command under the ISIS-PDS operating system.
The iPPS provides a set of subcommands, called iPPS commands, to program
PROM devices.

iPPS Initialization

The iPPS software can be initialized from a command line entered at the keyboard
or through the SUBMIT job facility.

The following files are necessary for normal iPPS operation and should be on a cur
rently accessible disk:

• IPPS is the main command file that is loaded and executed by the
ISIS-PDS operating system.

• IPPS.ERR is the error message file containing strings for tlie iPPS error
messages.

• IPPS.HLP is the help message file containing text explanations of the
iPPS commands.

• IPPS.OVO is an overlay file containing part of the iPPS software that is
loaded during normal operations.

• IPPS.OV1 is an overlay file containing part of the iPPS software that is
loaded during normal operations.

• IPPS.OV2 is an overlay file containing part of the iPPS software that is
loaded during normal operations.

Once initialized, a number of subcommands called iPPS commands are available
to program PROMS. Some examples of iPPS commands are the TYPE command,
the WORKFILES command, the FORMAT command, the COPY command, and
the EXIT command. For IPPS command descriptions see the iUP-2001201 Univer
sal Programmer User's Guide, order number 162613.

Command Line Invocation

The iPPS software is invoked as a command under ISIS-PDS with' the following
format: •

[:F<n>:]IPPS

where :F< n>: is used to specify the drive on which the iPPS files are located. For
example, if the iPPS files are located on disk device 1 then the iPPS software
would be invoked by entering the command:

:F1 :IPPS

followed by the RETURN key.

The notational conventions used to describe commands are covered in Chapter 5
and in the section "Notation for Format Descriptions" in the iUP-200/201 Univer
sal Programmer User's Guide.

10-5



PROM Programming iPDS™ User's Guide

The iPPS software expects all IPPS files to be on the same drive. For example, if
iPPS is run from drive 1, it expects IPPS.ERR and IPPS.HLP to be on drive 1.

If the drive containing the iPPS files is the system default drive, the command line
is:

IPPS

loads and executes the iPPS program from the current system default drive.

After the IPPS command is keyed in, the iPPS software is loaded and executed.
The following sign-on message is displayed:

INTEL PROM PROGRAMMING SOFTWARE (PDS) Vn.m
INTEL COPYWRIGHT 1980,1981,1982,1983
PPS>

Vn.m is the current version (n) and revision (m) of the software. PPS> is the
main iPPS prompt and indicates that the iPPS software is ready to receive
commands. The EXIT command returns control to ISIS-PDS.

Invocation Via a SUBMIT File

The iPPS software can also run under the control of a SUBMIT file. SUBMIT is an
ISIS-PDS command that allows a disk text file to be used as input for further ISIS
commands or as command inputs to utilities running under ISIS. Thus, a SUBMIT
file can contain the ISIS command line to invoke iPPS and then a sequence of com
mands for iPPS itself.

The SUBSTITUTE and ALTER commands cannot be run from a SUBMIT file
since they require extensive interactive input. The iPPS software recognizes com
ments in a SUBMIT control file as any characters following a semicolon (i). For
more information on the SUBMIT command, consult Chapter 5 of this manual.

iPPS General Operation

This section describes the major functions of iPPS commands, the logical devices
recognized by iPPS, and the operation of iPPS commands.

Major Functions

The purpose of iPPS is to program PROMs on the Personal Development System.
iPPS recognizes a compact set of commands for doing this. The commands operate
on three major storage devices: PROM, Buffer, or File.

The major functions of iPPS are:

• To read and write data on any of the three, major storage devices (PROM,
Buffer, or File)

• To modify data in the Buffer

• To display or print the data stored in any of the major storage devices on the
console or list on the printer

10-6



iPDS™ User's Guide PROM Programming

• To check for an unprogrammed PROM and to allow the data in the Buffer to
be overlayed with the bits in the PROM device. This determines whether the
PROM can be programmed even though it is not blank.

• To format data for different programmable devices (ie., selecting different
PROM word sizes and using interleaving techniques)

• To accommodate the following Intel absolute file formats during any opera
tions that require files: 8080 Hex ASCII, 8080 Absolute Object, 8086 Hex
ASCII, 8086 Absolute Object, and 286 Absolute Object. Intel assemblers
and compilers- produce files in these formats. The 8080 Absolute Object
format is described in Chapter 8. The 8051 assembler produces files in 8080
Absolute Object format.

iPPS Storage Devices

iPPS transfers data between any two of the three logical storage devices: PROM,
Buffer, or File. The data flow relationship among these logical devices is illustrated
in figure 10-2. These devices are defined in the following sections.

PROM Device The PROM device is plugged into a socket on the Personality
Module. .

During iPPS operations, the size of the PROM device varies based on the most
recent TYPE command. The default address boundaries for the PROM device are
o to the (PROM size - 1). The PROM device is not recognized by iPPS until a
TYPE command is issued. The TYPE command sets the appropriate size according
to the type of PROM device specified. See the TYPE command description for fur
ther details.

Buffer Device The Buffer device is a section of development system memory
(created and maintained by the iPPS software). It provides a temporary area where
data can be held and modified. Its boundaries can exist anywhere in a virtual ad
dress range from 0 to 16777215 (0 to 224-1) .

When the iPPS software is initialized, the Buffer start address is set to 0 and the
Buffer end address is set to 8K-1. This implies an initial Buffer size of 8K bytes
(the default Buffer size when no PROM type is specified).

During subsequent iPPS operations, the size and boundaries can vary as deter
mined by specific iPPS commands. The Buffer start address is determined by the
most recent command that changed the lower boundary of the Buffer. The Buffer
end address is determined by the following expression:

(Buffer Start address) + (Buffer size - 1)

The TYPE command affects both the size and location of the Buffer in important
ways. For example, the TYPE command always resets the Buffer start address to
O. The most recent TYPE command determines the size of the Buffer. See the
TYPE command description for further details.

The size of the Buffer is determined as follows:

• It is equal to the size of the PROM if the PROM type has been specified by
the TYPE command.

• It is initialized to 8K bytes when iPPS is invoked.

10-7



PROM Programming iPDS™ User's Guide

The need for a virtual Buffer on user disk arises when the PROM size exceeds 8K
bytes. Then, iPPS software creates a virtual Buffer area using temporary file space
on disk. iPPS software allows the user to specify the device on which the virtual
Buffer is created.

Two temporary work files are used to accomplish this virtual Buffer. Their file
names are IPPS.BUF and IPPS.TMA. These temporary files are created on the
disk device specified by the most recent WORKFILES command. If no previous
WORKFILES command was issued and a temporary work file is required, iPPS
displays the prompt:

WORKFILES (:FX:) ?, X=

This prompt requests a number identifying the disk device to use for temporary
work files. During subsequent Buffer operations, iPPS automatically swaps data in
and out of development system memory to the work files on the specified device.

The work file device remains the same until the next WORKFILES command.
See the WORKFILES command for more details. The temporary files are deleted
either when the EXIT command is executed or when a new PROM type is selected
that is less than 8K in size.

File Device The File device is a logical device containing data stored in an ISIS
PDS disk file. The File device is specified within iPPS commands by the ISIS-PDS
file specification format:

:<device>: <filename>. <extension>

See Chapter 5 for more information on ISIS-PDS device and file specifications.
The data is stored in the disk file in one of three Intel formats: 8080 Hexadecimal,
8080 Object, 8086 Hexadecimal, 8086 Object, or 286 Object. iPPScan read any of
these formats as input. However, all iPPS commands that output to a File destina
tion produce files of the 286 format.

The iPPS file device has address boundaries that exist in the range from 0 to
16777215 (0 to 224_1) . These boundaries are determined as follows:

• The file's lowest address is the lowest address encountered while reading in
the file.

• The file's highest address is the highest address encountered while reading in
the file.

If the file was created by iPPS (i.e., it was a destination device in an iPPS
command) these boundaries are determined by the specific command issued.

When the specified address range is not present in the file being read, the missing
range is written in the PROM with the blank state of the currently selected PROM.
If the destination device is the Buffer, those non-existent sections are not affected
in the Buffer.

With commands that use the File device as a source, iPPS only reads the actual
data from the file and ignores any other information in the file. The nature of the
extra information depends on how the file was produced. For example, if the file
was produced by a compiler, the file can contain special information used later for
debugging.

Since the information is ignored when read by iPPS, if iPPS is then used to copy
the data back to a file, the debug information is not in the newly written file. If the
data is written back to the original file, the debug information is permanently lost.

10-8



iPDS™ User's Guide

Command Entry

PROM Programming

iPPS commands consist of a command keyword to identify the command followed
by other keywords and their associated parameters to make up the arguments of
the command. Arguments are separated from each other by at least one space
(extra spaces are ignored) .

A command line is terminated by the RETURN key. No action is taken on the
command until the RETURN key is detected unless the ESC key is pressed, in
which case, the command is terminated. The command line is then verified for the
correct format and executed if correct. If the command syntax (format) is illegal
the following error message is displayed:

-SYNTAX ERROR- <specific error>.

If a required keyword is omitted, iPPS prompts for the keyword and its associated
parameters. If the keyword is entered but its parameters are omitted, either a
default value is assumed if applicable, or an error message is displayed if no default
is applicable. Some commands also assume default keywords. All commands can
be entered in either lower or upper case ASCII.

Input lines may be longer than the 80 character screen line. If the input line ex
ceeds the screen display line, it automatically wraps around to the next screen line
until 127 characters are entered or the RETURN key is pressed.

Commands that are longer than one input line (greater than 127 characters) can
be continued in successive lines. The continued line must contain an ampersand
(&) as the last non-blank character preceding the RETURN.

Command inputs are accumulated character-by-character in a line input buffer.
The maximum continued command line is 255 characters (including ampersands,
spaces, and RETURNs). The maximum non-continued line size is 127 characters
(including the final RETURN) .

iPPS keywords can be entered in their entirety or as any unique abbreviation
(normally, only the first character is required). For example, command keywords
ofC, CO, COP, and COPY are all interpreted as the COPY command.

The command keyword can be entered without arguments, in which case iPPS
prompts for further needed input; the command keyword and its first argument
can be entered, in which case iPPS prompts for the remaining input arguments re
quired for that command.

iPPS accepts numeric entries in anyone of four number bases: Binary (Y), Octal
(0 or Q), Decimal (T), or Hexadecimal (H). Numbers can be entered in any of
these bases by appending the appropriate single letter identifier to specify the base;
for example, 11111111 Y, 377Q, 255T,or FFH. An explicit number base identifier
overrides the default number base (which is initially hexadecimal).

10-9



PROM Programming iPDS™ User's Guide

To illustrate these command entry features, the examples below show different
ways in which the same COPY command can be entered.

COPY PROM(O,FF) TO BUFFER(O)

C P(O,11111111 Y) TO B
; Here valid abbreviations are used for keywords.
; Binary is used for the number base.
;Note: The default offset value above is 0.

;Command entered by prompts FROM? and TO?:
C
FROM? PR(O,FF)
TO? BU

copy pr(O,7FF)
TO? b

Command Entry Editing

A new command in the line editing buffer can be edited using ISIS-PDS command
line editing features as described in Chapter 5.

Form of iPPS Commands

Descriptions of notation, special iPPS format terms, the general command format,
command switches, a functional summary of commands, each iPPS command,
and sample PROM programming sessions are found in the iUP-2001201 Universal
Programmers Users GUide, order number 162613.

NOTE
The iUP-200/201 Users Guide is intended for use with the Intel
iUP-200/201 Universal Programmer to store programs and data
into programmable read-only memory (PROM) devices. Disre
gard the sections of that manual referring to off-line operation,
and URAM installation and operation.

10-10



APPENDIX A
INSTALLATION INSTRUCTIONS

Installation Considerations

The physical characteristics (width, height, depth, weight) of the system are given
in table A-4. Be sure that the installation work area accommodates the system and
supports the weight of the basic system and options.

A minimum of six inches 05.24 ern) of clearance is recommended on all sides of
the iPDS system to allow proper cooling of the unit. Keep the iPDS air vents clear
of any obstructions.

The power cords for the system plug into three-conductor power outlets. The
round pin is the safety power ground. If three-conductor power outlets are not
available, do not use three-prong to two-prong adapters. Have a qualified electri
cian rewire the power outlets to accommodate the third wire ..

The power plugs shipped with the system are for 120 Vac, three-prong outlets
found in the United States and Canada. If the power outlets in a region differ,
follow the instructions in the next section for changing the power plugs.

To minimize the system's sensitivity to static electricity, i.e., electrostatic dis
charge (ESD):

a. Maintain a relatively high humidity (> 60%).

b. Use antistatic mats in the work area.

Save the shipping carton and shipping material in case it is needed later for ship
ping the system.

Initial Installation Procedures

The following step-by-step procedure is for the initial installation of the basic
system. The installation of options is covered in later sections.

The system is shipped fully assembled and tested. Once the system is removed
from the shipping carton, proceed as follows.

1. Place the system in operating position as shown in figure A-I.

a. Lower the bail to raise the unit. The bail is the metal bar on the bottom
of the unit.

b. Lower the handle until it rests against the base of the system.

c. Place the unit on the work surface so that it rests on the bottom feet
and the bail.

d. Press the keyboard latch to release the keyboard. Lower the keyboard
to operating position.

A-I



Appendix A

BAIL

POSITIONING
BAIL

LOWERING
THE HANDLE

iPDS™ User's Guide

PLASTIC TAB

OPERATING
POSITION

LOWERING
THE KEYBOARD

0258

A-2

Figure A-I Lowering the Keyboard to Operating Position



iPDS™ User's Guide

Do not operate the system in carrying position. The system must
be opened and in operating position to dissipate the heat properly.
A minimum of six inches 05.24 em) of clearance is recommend
ed on all sides and the air vents must be clear of any obstructions,
to allow proper cooling of the unit.

2. Remove the cardboard insert from the disk drive by opening the drive door
as shown in figure A-2. Pull the drive door release out and to the right. The
insert protects the drive while transporting the system. Use it whenever
moving the system. See figure A-2.

Appendix A

DOOR
RELEASE

DOOR
RELEASE

0159

Figure A-2 Door Release on Disk Drive

3. If the power outlets in the region do not match the power plugs supplied with
the iPDS system, cut off the power plug supplied with the system and install
the appropriate power connector for the area. See figure A-3. The power
cable is a three-conductor cable. The brown wire is the power line, the blue
wire is neutral, and the green wire with the yellow stripe is the ground wire in
conformance with the lEe color coding standard. Do not connect the system
to the power outlet yet.

~====~~.. BLUE(NEUTRAL)

BROWN (POWER)

--=--..l'l""""'!!!!!l_ GREEN(GROUND)

0259

Figure A-3 Power Cable

A-3



Appendix A iPDS™ User's Guide

IWARNING I
Changing the power cord involves hazardous voltage and current
levels. To avoid the risk of electric shock and fire, the power cord
should be changed only by qualified technical personnel. Turn the
power off.

4. Use a small object, such as a screwdriver, as a lever to set the line voltage
switch to the appropriate value. See figure A-4. Slide the switch to the right
(labelled 115 V) for 90-132 Vac operation or to the left (labelled 230 V) for
198-264 Vac operation.

MAIN
POWER

--------.........- Frrg?FH

POSITION
0260

Figure A-4 Line Voltage Switch

5. If the line voltage in the region is between 198 and 264 Vac, replace the 3A
fuse installed in the system with the 1.6A 250 Vac fuse provided in the plastic
accessories package. Instructions for replacing the fuse are in the following
section.

6. Turn the power off as shown in figure A-5. Connect the power cable to the
AC power outlet and to the power connector on the lower right corner of the
rear panel.

A-4



iPDS™ User's Guide Appendix A

POWER
ON

r---+-l--ll-- POWER
OFF

0262

Figure A-5 Power Switch

7. Press the power switch to turn on the system as shown in figure A-5.

Unless options are to be installed, the installation procedure is now complete.

As soon as the system is on, a diagnostic program stored in a system PROM is au
tomatically run to check the system components. Failures detected by the diagnos
tic program are described in Appendix B. If all the components pass the test, the
system can be initialized as described in Chapter 3. After the system is initialized,
back up the system disk as described in Chapter 3. The confidence test also de
scribed in Chapter 3 (described in detail in Appendix B) should be run as part of
the initialization procedure.

Changing the Fuse

The fuse must always be replaced by another fuse with the proper value for the
line voltage. For a 90-132 Vac line voltage, use a 3 ampere slow blow fuse. For a
198-264 Vac line voltage, use a 1.5 or 1.6 ampere slow blow fuse.

To replace the fuse:

1. Turn the power off and unplug the main power plug.

2. Using a flat blade screwdriver or a small coin, turn the fuse holder counter
clockwise as shown in figure A-6.

3. Once loosened, slide the fuseholder and fuse out as shown.

A-5



Appendix A iPDS™ User's Guide

----1-+-.__ MAIN
POWER
SWITCH
(IN OFF
POSITION)

~----++-I- COIN

Figure A-6 Changing the Fuse

FUSE

FUSE HOLDER

0261

A-6

4. Replace the fuse in the holder with a new fuse of an amperage rating and size
corresponding to the line voltage normally selected for the machine. These
amperage ratings are specified as follows:

Fuse Protection: 90-132 Vac, use 3 ampere slow blow fuse
198-264 Vac, use 1.5 or 1.6 ampere slow blow fuse

5. Slide the fuse and fuseholder back in and tighten by pressing in and turning
the fuseholder clockwise at the same time.

6. The main power plug can now be plugged back into the power source. The
system can be turned on.

IWARNING I
Never remove the top cover. There is a risk of electric shock or
fire from high voltage. Repairs should be performed by qualified
service personnel only.

Installing Options

This section provides installation instructions as well as hardware specifications
for the iPDS options.



iPDS™ User's Guide

IWARNING ~

Installation of some of the options involves working with hazar
dous voltage and current levels. To avoid the risk of electric shock
and fire, options should be installed only by qualified technical
personnel.

Removing the I/O Panel

Installation of some of the options requires removal of the I/O panel on the rear
panel of the iPDS unit.

1. Turn the system off and disconnect the power plug.

2. Remove the four retaining screws from the rear I/O panel. See figure A-7.

3. Pull the I/O panel/board assembly out about six inches from the rear of the
unit. The circuit boards are connected to the rear panel and slide out as the
I/O panel is removed.

4. Disconnect the keyboard cable (labelled J7), the disk drive cable (labelled
J3), and the plug-in adapter board cable (labelled J6 if installed) by moving
the connector locks on either side of the connector toward the PC board;
away from the cable connectors. Moving the connector locks pushes the
cable out of the connector. See figure A-7 for locations of the cables. See
figure A-8 for details about connector locks.

5. Slide out the panel/board assembly about six inches additional anddiscon
nect the power cable (labelled 110) and the CRT cable (labelled J8). The
power and CRT cables do not have connector locks.

6. Slide out the assembly the rest of the way.

To replace the I/O panel:

1. With the system off, align the circuit boards with the card guides as shown in
figure A-9.

2. Slide the boards into the chassis about six inches and reconnect the power
cable (labelled J 10) and the CRT cable (labelled J8).

3. Slide the boards in an additional six inches and reconnect the keyboard cable
(labelled J7), the disk drive cable (labelled J3), and the plug-inmodule adap
ter board cable (labelled J6 if installed). To reconnect these cables, push the
connector locks back up to nearly the 'lock position. Plug cables into the cable
connectors. Push the connector locks into the lock position. See figure A-8.

4. Slide the boards in the rest of the way until the I/O panel/board assembly is
fl ush with the rest of the rear panel.

5. Replace the four retaining screws.

6. Connect the power cord.

7. Power the system back on.

Appendix A

A-7



Appendix A

A-8

CRT CABLE
(J8) --~~

POWER CABLE ~
(J10) ~

BASE
PROCESSOR
BOARD

DISK DRIVE
CABLE(J3)

POWER CABLE
(J10)

Figure A-7 Removing the I/O Panel

iPDS™ User's Guide

KEYBOARD
CABLE(J7)

\;~ -I:-__ EMV/PROM
CABLE(J6)

DISKDRIVE
CABLE(J3)

0263



iPDS™ User's Guide

LOCK
POSITION

REMOVAL
POSITION

Figure A-8 Using the Connector Locks

CARD
GUIDES

Figure A-9 Replacing the I/O Panel

1290

0264

Appendix A

A-9



Appendix A iPDS™ User's Guide

Connecting a Serial Device

The system provides an EIA RS-232-C interface for asynchronous data transfer by
using the 8251 A USART controller chip. Several jumpers on the base processor
board allow the user to reconfigure the iPDS serial I/O connector to be compatible
with devices attached to the serial port. The iPDS system is shipped with jumpers
installed to make the serial port appear asa Data Communication Equipment
(DTE) device to be connected to its serial port when serial port and the jumpers
controlling the serial port configuration.

• The RTS (Request To Send) signal from the 8251A USART is shipped con
nected to the CTS (Clear To Send) signal from the device to the USART.
The CTS signal from the USART is shipped connected to the RTS signal
from the device to the USART. In effect, this configuration jumpers the RTS
and CTS lines for local communication for example, with a terminal. The
user can reconfigure these lines so that the 8251A RTS is connected to the
external RTS line and the 8251 A CTS is connected to the external CTS line
by changing the plug-in type jumper. This configuration provides for remote
communications, for example, using a modem. See figure A-10.

E E E
18 17 19L...-__-t---+-----<.-__... J2.5 CTSUSART

CTS RTS L...- -. J2.4 RTS

INTERNAL CLOCK

>------------i[>o-

NOTES:
1. THE iPDS DEFAULT JUMPER SET·

TING (SOLID LINES) IS FOR A DCE
DEVICE. TO SET THE iPDS UP FOR
DTE OPERATION, CHANGE JUMP·

-----... J2·20 DTR ERS AS INDICATED BY DOTTED
LINES.

2. CONVENTIONS FOR TRANSMIT·
TED FROM AND RECEIVED BY
WOULD REVERSE IF JUMPERS
WERE RECONFIGURED.

E25 f1
TE24

r---,
.r-,--, INOTE1

E~E~
26~ 28~ 2~ 29~

USART

USART

DSR DTRJ2·6
DSR

J2·2 TXD
L-+-_~ (TRANSMITTED

FROM EXT TO PDS)

NOTE 2

J2·3 RXD
L...- -.. (RECEIVED BY

EXT FROM PDS)

0256

Figure A-tO Schematics for the Serial I/O Interface

A-IO



iPDS™ User's Guide

• The TXC (Transmit Clock) signal and the RXC (Receive Clock) signal to
the 8251 A USART are each connected with a plug-in type jumper to an inter
nal clock line. The user can disconnect the internal clock and substitute an
external clock signal by changing the two jumpers. The clock signal is used to
generate the baud rate for the transmission. See figure A-I O.

• The DTR (Data Terminal Ready) signal from the 825lA USART is shipped
jumpered to the DTR line on the serial I/O connector on the rear panel. If
the DTR signal is not needed for the serial device connected, the user can
disconnect this line by changing the plug-in type jumper. See figure A-IO.

• The TXD (Transmit Data) signal from the 825lA USART is shipped con
nected to the RXD (Receive Data) line on the serial I/O connector on the
rear panel. The RXD (Receive Data) signal to the 825lA USART is shipped
connected to the TXD (Transmit Data) line on the serial I/O connector on
the rear panel. In effect, this configuration crosses the transmit and receive
data lines for compatibility with many terminals. The user can reconfigure
these lines so that the 8251 A TXD signal is connected to the external TXD
line and the 825lA RXD signal is connected to the external RXD line by
changing the plug-in type jumpers. See figure A-IO.

Configuring the CTS and RTS Lines

To connect the 825lA CTS signal with the external CTS line and the 825lA RTS
signal with the external RTS line, change two jumpers as follows:

1. Turn the system off and disconnect the power cable.

2. Remove the I/O panel and slide out the panel/board assembly about 4 or 5
inches as described previously. Do not remove any cables.

3. Locate pins El7 (CTS signal to the 825IA), El8 (RTS signal from the
8251 A), E19 (CTS line on the external serial connector), E20 (RTS line on
the external serial connector), E21 (CTS line on the external serial
connector), and E22 (RTS signal from the 8251 A) on the base processor
board. Pins El7 and El8 are connected with a plug-in type jumper when
shipped from the factory as are pins E20 and E2l. See figure A-II.

4. Unplug the two jumpers and plug back in to connect pin El7 with El9 and to
connect pin E20 with E22. See figure A-12.

5. Replace the I/O panel/board assembly as described previously.

Configuring the RXC and TXC Lines

To use an external clock signal to generate the baud rate, change the two jumpers
that connect RXC and TXC to an internal clock signal as follows:

1. Unplug the system is unplugged and disconnect the power cable.

2. Remove the I/O panel and slide out the panel/board assembly about 4 or 5
inches as described previously. Do not remove any cables.

3. Locate pins Ell (TXC signal to the 825IA), El2 (internal clock signal), El3
(external transmit clock signal), El4 (RXC signal to the 825IA), El5
(internal clock signal), and El6 (external receive clock signal) on the base
processor board. Pins Ell and El2 are connected with a plug-in type jumper
when shipped from the factory as are pins El4 and E15. See figure A-IO.

Appendix A

A-ll



Appendix A iPDS™" User's Guide

E 26 27

~
~
28 29

E 15 14 16

.~

.~
E 12 11 13

EXTERNAL CLOCK

REMOTE
CONFIGURATION

TRANSMIT AND
RECEIVE
NOT CROSSED

E 15 14 16

~.
~.

E 12 11 13

E 26 27

reTil
l.!.W

28 29

INTERNAL CLOCK
(AS SHIPPED)

LOCAL
CONFIGURATION
(AS SHIPPED)

TRANSMIT AND
RECEIVE CROSSED
(AS SHIPPED)

~---- ICONFIGURING THE CTS AND RTS L1NESI

,-.------1CONFIGURING THE RXD AND TXD L1NESl

,..------------ ICONFIGURING THE RXC AND TXC L1NESI

ICONFIGURING THE DTR LINEI---~

DTR LINE
CONNECTED
(AS SHIPPED)

E24 fil
23l!.J

25 •

DTR LINE
NOT CONNECTED

E24 •

23 rel
25l.!.1

E
18 fil
17l!J

19 •

21 rel
20l.!J

22 •

E
18 •

17 ['il
19l!J

21 •

20 fil
22l!..1

Figure A-tt Removable Jumper Location and Configuration
0266

REMOVING REPLACING

0267

Figure A-t2 Removing and Replacing the Plug-in Type Jumpers

A-12



iPDS™ User's Guide

4. Unplug the two jumpers and plug back in to connect pin Ell with E13 and to
connect pin E14 with E16. See figure A-l1.

5. Replace the I/O panel/board assembly as described previously.

Configuring the DTR Line

To disconnect the DTR line from the serial I/O connector on the rear panel:

1. Unplug the system and disconnect the power cable.

2. Remove the I/O panel and slide out the panel/board assembly about 4 or 5
inches as described previously. It is not necessary to remove any cables.

3. Locate pins E23 (DTR signal from the 825lA), E24 (DTR line on the exter
nal serial connector), and E25 (DTR signal from the 8251 A, same as E23)
on the base processor board. Pins E23 and E24 are connected with a plug-in
type jumper when shipped from the factory. See figure A-II.

4. Unplug the two jumpers and plug back in to connect pin E23 with E25. See
figure A-12.

5. Replace the I/O panel/board assembly as described previously.

Configuring the RXD and TXD Lines

To connect the RXD line to the RXD signal from the 8251 A and the TXD line to
the TXD signal from the 8251A, change the two jumpers that connect the RXD
signal and TXD signal to the data lines as follows:

1. Unplug the system and disconnect the power cable.

2. Remove the I/O panel and slide out the panel/board assembly about 4 or 5
inches as described previously. Do not remove any cables.

3. Locate pins E26 (TXD from the 8251A), E27 (TXD line on the external
serial connector), E28 (RXD line on the external serial connector), and E29
(RXD signal to the 8251A) on the base processor board. Pins E26 and E28
are connected with a plug-in type jumper when shipped from the factory as
are pins E27 and E29. See figure A-II.

4. Unplug the two jumpers and plug back in to connect pin E26 with E27 and to
connect pin E28 with E29. See figure A-12.

5. Replace the I/O panel/board assembly as described previously.

Connecting a Serial Device

After configuring the serial interface for the device to be connected, proceed as
follows:

• Attach the cable from the serial device to the serial I/O connector on the
iPDS rear panel. The I/O connector is aD-subminiature 25 pin female
connector. The required mating connector is aD-subminiature 25 pin male,
AMP205208-l.

Appendix A

A-13



Appendix A

A-14

iPDS™ User's Guide

Serial Interface Specifications

Table A-I gives the specifications for the serial I/O connector. The serial interface
conforms to the EIA RS-232.;C electrical standards. Pins 2, 3, 4, 5, 15, 17, and 20
are user controlled lines as previously described.

Table A-I Serial Interface Specifications

Pin Signal Function

1 CHASSISGND Chassis Ground
2 TXD Transmitted Data Out
3 RXD Received Data In
4 RTS Request To Send
5 CTS Clear To Send
6 DSR Data Set Ready
7 GND Signal Ground
8 Not Used
9 Not Used

10 Not Used
11 Not Used
12 Not Used
13 Not Used
14 Not Used
15 TXC Transmit Clock
16 Not Used
17 RXC Receive Clock
18 Not Used
19 Not Used
20 DTR Data Terminal Ready
21 Not Used
22 Not Used
23 Not Used
24 Not Used·
25 Not Used

Optional Processor

The optional processor board is mounted on the base processor board between the
base processor and the CRT. To install the optional processor board, follow these
steps:

1. Unplug the system and disconnect the power cable.

2. Remove the I/O panel/board assembly as described previously.

3. Find the four mounting locations on the base processor board. See figure
A-I3.

4. Secure the four 1/4 inch stand offs to each of the mounting locations on the
base processor board with the 1/4 inch x 6/32 inch screws. See figure A-I4.

5. Align the optional processor board mounting holes over the four spacers in
stalled on the base processor board. See figure A-15.

6. Secure the optional processor board to the top of the spacers with the nylon
nuts. See figure A-I4.



iPDS™ User's Guide

MOUNTING
HOLE

DUMMY-~

LOAD

BASE
PROCESSOR
BOARD

OPTIONAL
PROCESSOR
BOARD

Figure A-I3 Mounting Locations for Optional Processor

0268

Appendix A

NYLON
SCREW

STANDOFF
HEX
NUT

C~E
PROCESSOR
BOARD

~CE CopnONAL
PROCESSOR PROCESSOR
BOARD BOARD

0270

Figure A-I4 Mounting Technique for Optional Processor

A-IS



Appendix A iPDS™ User's Guide

CABLE

0269

A-16

Figure A-IS Aligning the Optional Processor Board

7. Remove the dummy load from J4. This dummy load is shipped installed in
the system. See figure A-I3. The dummy load is required for running the
system without the optional processor

8. Attach the 50-conductor ribbon cable from the connector on the optional
processor board to connector J4 on the base processor board. See figure A-15
for the location of the connector.

9. If a multimodule adapter has been installed, connect the 34-conductor
ribbon cable from the .multimodule adapter board to connector J2 on the op
tional processor board. See figure A-I6.

10. Replace the I/O panel/board assembly as described previously.

Figure A-I6 .Optional Processor Connection to Multimodule Adapter



iPDS™ User's Guide

Multimodule Adapter

The multimodule adapter board is installed like the optional processor board. It is
mounted on the base processor board between the base processor and the storage
area.

To install the multimodule adapter board, follow these steps:

1. Unplug the system and disconnect the power cable.

2. Remove the I/O panel/board assembly as described previously.

3. Find the five mounting locations (holes A and C) on the base processor
board. See figure A-I 7.

Appendix A

BASE
PROCESSOR
BOARD MULTI MODULE

ADAPTER
BOARD

MOUNTING HOLE

0271

Figure A-I7 Mounting Locations for Multimodule Adapter

4. Secure the five 1/4 inch spacers to each of the mounting locations on the
base processor board with 6-32 x 0.25 inch screws. See figure A-I8.

5. Find the six multimodule mounting locations (holes B and C) on the multi
module adapter board. See figure A-I7.

6. Secure the five 1/2 inch nylon standoffs to the five locations labelled B in
figure A-I7 using the nylon 6-32 x 0.25 inch screws.

7. Align the multimodule adapter board mounting holes over the five spacers
installed on the base processor board. See figure A-19.

A-I?



Appendix A iPDS™ User's Guide

SCREW

STANDOFF

SCREW

0273

Figure A-IS Mounting Technique for the Multimodule Adapter Board

A-I8

BASE
PROCESSOR
BOARD

MULTIMODULE
ADAPTER
BOARD

Figure A-19 Aligning the Multimodule Adapter Board

0272



iPDS™ User's Guide

8. . With the remaining 1/2 long nylon standoff, secure the multimodule adapter
board to the spacer projecting through the sixth mounting location on the
multimodule board (labelled C in figure A-17).

9. Secure the multimodule adapter board to the top of the remaining standoffs
with the nylon nuts (the holes labelled A). See figure A-18.

10. Attach the 50-conductor ribbon cable from connector on thernultimodule
adapter board to connector J5 on the base processor board. See figure A-18
for the location of the connectors.

11. If an optional processor has been installed, connect the 34-conductor ribbon
cable from the connector on the multimodule adapter board to connector J2
on the optional processor board. See figure A-16.

12. Replace the I/O panel/board assembly as described previously.

Multimodule

The Multimodule Adapter Board contains four iSBX connectors labeled 11
through J4, each of which accepts one, single wide, multimodule board. The four
connectors are divided into two groups of two connectors each. Multimodules,
such as the iSBX 251 Bubble Memory Multimodule, are double wide and take the
space of two boards although they only use one connector. thus, only two bubble
memory multimodules ca~ be installed on the adapter board.

The instructions for installing a double wide multimodule board such as the
bubble memory multimodule on the adapter board follow.

1. Disconnect the system power cable and remove the I/O panel/board assem
bly as described previously.

2. Find the mounting location on the multimodule adapter board. See figure
A-20.

3. Locate pin 1 of the iSBX connector (PI) on multimodule board and on the
multimodule adapter board. Use connector 11 on the adapter board if the
bubble memory is used for physical disk device 4 and J3 if the bubble
memory is used for physical disk device 5. See figure A-20.

4. Align pin 1 of connector PI with pin 1 ofconriector Jl or J3. See figure A-21.

5. Align the mounting holes on the multimodule board with the spacers already
attached to the multimodule adapter board. See figure A-21.

6. Secure the multimodule board to the top of the spacers with three 1/4 inch x
6-32 inch screws. See figure A-22.

7. Discard the remaining spacers and screws.

8. Replace the I/O panel board assembly as described previously.

Installation instructions for a single wide multimodule are similar to the instruc
tions for a double wide multimodule given above. Only one mounting location is
used per single wide multimodule board. See figure A-23.

Appendix A

A-19



Appendix A iPDS™ User's Guide

MULTIMODULE
ADAPTER
BOARD

B
MOUNTING
LOCATION

C
MOUNTING
LOCATION

MULTIMODULE
BOARD

BMOUNTING
HOLES

0274

Figure A-20 Mounting Locations for Double Wide Multimodule Boards

A-20

MULTIMODULE
ADAPTER
BOARD

.~

MULTIMODULE
BOARD

Figure A-21 Aligning Double Wide Multimodule Boards

0275



iPDS™ User's Guide

_-I--f-- CONNECTOR
J1

--..,
-.,/

Appendix A

BASE
PROCESSOR
BOARD

MULTIMODULE
BOARD

0276

Figure A-22 Mounting Technique for Multimodule Boards

0277

Figure A-23 Mounting a Single Wide Multimodule Board

A-21



Appendix A iPDS™ User's Guide

For some multimodules (the parallel I/O multimodule, for example), a cable must
be run from the multimodule board to a mounting hole for the I/O connector on
the rear panel. The cable is provided with the multimodule board. (No cable is re
quired for some multimodules, such as the bubble memory multimodule.) Four
cutouts are provided on the rear I/O panel for this purpose. Use a drafting knife or
a similar tool to remove one of the panels (see figure A-24).

1. Attach the connector plate on the I/O connector using the hardware
provided. See figure A-25.

2. Attach the connector to the mounting hole using the screws, lock washers a
nuts. See figure A-25.

3. Attach the other end of the cable to the multimodule board.

4. Slide the assembly back into the chassis replacing the rear panel.

CUTOUT

A-22

1291

Figure A-24 Removing Rear Panel Cutouts

FLAT WASHER
LOCK WASHER

~T CONNECTOR PLATE

o

1206

Figure A-25 Connecting a Cable to the Rear Panel Cutouts



iPDS™ User's Guide

Plug-In Module Adapter

The Plug-in Module Adapter board is installed in the main chassis between the
base processor and the plug-in module door on the right side of the system. To in
stall this board, proceed as follows:

1. Disconnect the system power cable and remove the I/O panel/board assem
bly as described previously.

2. Find the mounting locations for the adapter board assembly on the support
bracket. See figure A-26.

3. Insert the adapter board assembly into the card guides and slide it fully into
the unit.

4. Attach the adapter board assembly to the support bracket as shown in figure
A-26.

5. Slide the boards a few inches into the system and attach the 50-conductor
ribbon cable from the connector on the plug-in module adapter board to
connector J6 on the base processor board. See figure A-26 for the location of
the connectors.

6. Replace the I/O panel/board assembly as described previously. See figure
A-27.

Appendix A

CONNECTOR J6
ON BASE
PROCESSOR
BOARD

EMV/PROM
ADAPTER
BOARD

0279

Figure A-26 Installing the Adapter Board Assembly

A-23



Appendix A iPDS™ User's Guide

EMV/PROM
ADAPTER
CABLE AFTER
CONNECTION

~t+---~-jjf--~ ~~X~~~~ER
INSTALLATION

0280

A-24

Figure A-27 Cable Connection for Adapter Assembly

Plug-In Module

The plug-in module slot breaches the electrical shielding of the
iPDS system. There is a chance of electro-static discharge (ESD)
passing, via the plug-in module, to the internal circuitry of the
iPDS system and causing system RESETs, disk file damage, or
component damage. Ensure that the iPDS system is turned OFF
before inserting or removing any plug-in module.

The plug-in module (either an emulator or a PROM personality adapter) is insert
ed and removed from the slot on the right side of the iPDS system. Align the plas
tic guides and slide the module in and out as shown in figure A-28.

Connecting a Line Printer

To connect a line printer to the system:

1. Attach the printer cable connector to the D-Subminiature 25-pin female
connector on the rear I/O panel. Use an Intel Centronics* cable with a D
Subminiature male AMP205208-1, or equivalent as the mating connector.

Line Printer Interface Specifications

Tables A-2, and A-3 summarize the electrical specifications and pin assignments
for the printer connector on the iPDS rear panel. The standard Centronics* printer
interface is used.

·Centronics is a trademark of Centronics, Inc.



iPDS™ User's Guide

II

Figure A-28 Installing Plug-in Module

Appendix A

0149

A-25



Appendix A

A-26

iPDS™ User's Guide

Table A-2 Printer Interface Specifications

Pin Signal Function

1 DATA 0 Data Line 0
2 DATA 1 Line 1
3 DATA 2 Data Line 2
4 DATA 3 Data Line 3
5 DATA 4 Data Line 4
6 DATA 5 Data Line 5
7 DATA 6 Data Line 6
8 DATA 7 Data Line 7
9 GND Protective Ground

10 GND Protective Ground
11 GND Protective Ground
12 GND Protective Ground
13 FAULT/ Indicates a Printer Fault Condition
14 STB/ Clock for Data to Printer
15 GND Protective Ground
16 ACK/ Indicates the Printer Received Character
17 BUSY Indicates the Printer Is Not Ready
18 GND Protective Ground
19 PRIME/ Resets the Printer Logic
20 Not Used
21 GND Protective Ground
22 SELECT Indicates that Printer is Ready
23 GND Protective Ground
24 GND Protective Ground
25 CHASSISGND Chassis Ground

Table A-3Electrical Specifications for Printer Interface

Inputs

Signal VILmax. VIHmin. ilL max. Termination

SELECT .8V 2.0V -12 rna 470 ohms to 5 V
BUSY .8V 2.0V -12 rna 470 ohms to 5 V
ACK/ .8V 2.0V -12 rna 470 ohms to 5 V
FAULT/ .8V 2.0V -12 rna 470 ohms to 5 V

Output

Signal Type IOLmax. IOH max. VOL max. VOH min.

DATA 0-7 Totem Pole 12 rna -10ma 0.4 V 2.4 V
STB/ Open Collector 16 rna --- 0.4 V 2.4 V
PRIME/ Open Collector 16 rna - - - 0.4 V 2.4 V

Functional Description

In this section, a functional description is given for the components of the iPDS
development system. Referto the iPDS Field Service Manual, order no. 143861,
for further details on the theory of operation of the system.



iPDS™ User's Guide

System Chassis

The system chassis is 8"H x 16"W x 18"L and contains the CRT, the power supply,
a double density double sided 5 1/4" disk drive, the base processor board installed
in a card guide, three additional card guides (for the optional processor, the plug-in
module adapter board option, and the multimodule adapter board option), and
cables.

The rear panel includes connectors for the serial I/O channel, a line printer, the ex
ternal disk drives, and the optional multimodule boards.

A separate ASCII keyboard connects to the front of the main chassis with a flat
ribbon cable. The keyboard can be attached to the front of the main chassis cover
ing the CRT and integral disk drive.

A handle is attached to the front of the chassis for carrying the unit.

A storage compartment is located at the rear of the chassis and opens from the top
to allow storage of two plug-in modules with cables.

Base Processor Board

The base processor board occupies a card slot parallel to and at the left of the disk
drive. The main processor on the board is an 8085A-2 processor running at 5.0
MHz operating frequency, a 200 ns clock period. Included on the board are 64K
bytes of read/write memory (RAM), 2K bytes of read only memory (ROM), a
serial I/O port, a line printer port, a plug-in module interface, an interrupt system,
a programmable timer, a keyboard/CRT controller, a disk controller, and a multi
module interface.

Keyboard

There are no electronics in the keyboard enclosure which is 2"H x 15"W x 8"D.
The keyboard can be attached or detached from the main chassis and is connected
with a flat, jacketed, shielded cable to the keyboard/CRT controller on the base
processor board. The keyboard contains the standard typewriter keys plus a control
key, a function key, cursor control keys, and a reset key.

Integral CRT

The CRT is a 9-inch, raster scan monitor displaying 24 lines of 80 characters each.
The horizontal scan rate is 15.6 KHz; the vertical scan rate is 60 Hz. The bandwidth
is 18 MHz.

Integral Disk Drive

The integral disk drive is a 5 1/4", 96 tracks per inch unit with two read/write
heads. There are 80 tracks on each side of the diskette, each with sixteen 256-byte
sectors. The formatted capacity of the unit is 640K bytes. A signal cable connects
the unit to the disk controller on the base processor, and a power cable from the
power supply provides the + 5 Vde and the + 12 Vde required by the unit.

Appendix A

A-27



Appendix A

A-28

iPDS™ User's Guide

Power Supply

The power supply is a switching type power supply with a maximum input of 130
watts and an output of88 watts with four regulated DC voltages.

User Controls

The user controls the system through ,the keyboard and the switches and controls
on the rear panel. A rocker switch is used as the power on/off switch. A two posi
tion switch selects the input voltage of 120 Vac or 230 Vac. The CRT contrast con
trol is mounted on the base processor and projects through the rear panel.

Optional Processor Board

The optional processor board occupies a card slot parallel to the base processor and
between the base processor and the CRT. It is half the size of the base processor
board, but it is functionally equivalent to the base processor with an 8085A-2
CPU, 64K bytes of RAM, and 2K bytes of ROM. It has a connector for the multi
module adapter board and a connector for the base processor board. It does not
contain a serial I/O port, a line printer port, a plug-in module port, a programmable
timer, a keyboard/CRT controller, or a disk controller. The keyboard, CRT, disk
drives, and multi modules are shared between the processors. .

Optional Multimodule Adapter Board

The multimodule adapter board occupies a card slot parallel to the base processor
and directly behind the optional processor. It is about half the size of the base pro
cessor board. It provides system expansion by allowing a maximum of four multi
module boards to be connected. The adapter board is connected to each processor
with a cable that provides signals and power. The multimodule adapter board sup
ports 8-bit multi modules only and does not support DMA mode of I/O. Double
width multimodules are supported. They use one connector on the adapter board,
but the adjacent connector cannotbe used.

Optional Plug-In Module Adapter Board

The optional plug-in module adapter board occupies a card slot parallel to the base
processor and between the base processor and the plug-in module door on the
right side of the main chassis. It is directly behind the disk drive and is about half
the size of the base processor board. It is connected to the base processor board
and contains the interface between the base processor an any plug-in module that
is used.

Specifications

Tables A-4, A-5, A-6, A-7, and A-8 summarize the environmental, physical, and
electrical characteristics of the system.



iPDS™ User's Guide

Table A-4 Intel Personal Development System Specifications

Environmental Characteristics

Operating Temperature: 5°C to 35°C
Non-operating Temperature: - 40°C to 62°C
Operating Relative Humidity: 20% to 80%
Non-operating Relative Humidity: 5% to 95%
Cooling: convection through vents and

forced air cooling on disk drive.

Physical Characteristics

Main Chassis: Width: 16" (40.64 ern)
Height: 8.15" (20.70 ern)
Depth: 17.5" (44.45 em)
Weight: 271b (12.22 kg)

Keyboard: Width: 15" (38.1 ern)
Height: 2" (5.08 ern)
Depth: 7.5" (19.05 ern)
Weight: 21b (0.91 kg)

AC Requirements:

90-132 Vac, 47-63 Hz, single phase
180-264 Vac, 47-63 Hz, single phase

Table A-S External Disk Drive Power Supply

AC Requirements:

90-132 Vac, 47-63 Hz, single phase
180-264 Vac, 47-63 Hz, single phase

Table A-6 External Disk Drive Physical Characteristics

Height Depth Width Weight

7 inches 12 inches 5 inches 7 pounds
17.78 cm 30.48 cm 12.70 cm 3.17 kg

Table A-7 Power Supply

Voltage Programmer Multimodule Board Emulator/PROM

+5V 2.35A - - - - -
+12V 0.8 A - -- - -
-12 volts 0.1 A - - - - -
+VCC (+5V) - - - -- 2.5A
+VSW (+5.7 V) * - - - -- 0-135 rna
+VHSW (+8 to +27 V) * - - - -- 0- 50 rna
-VLSW (-12V) * - - - - - 0-200 rna

* Under Program Control

Appendix A

A-29



Appendix A

Table A-8 Option Electrical Requirements

iPDS™ User's Guide

A-3D

Option Electrical Requirements (Max. in Amperes)

Power Supply Optional EMV/PROM Multimodule iSBX iSBX iSBX iSBX
Voltage Processor Adaptor Adaptor 350 351 251 488 EMV iUP

+5 volts 1.0 0.3 0.6 0.62 0.53 0.37 0.6 2.5 0.7
+12 volts - 0.16 - - 0.03 0.4 - - 0.85
-12 volts - 0.05 - - 0.03 - - - 0.4

Note: Maximum option power requirements must no exceed 33.6 watts for any configuration.



APPENDIX B 'I
ERROR INDICATIONS .

Command Entry Error Messages

When an error is made in entering a command line, the Command Line Interpret
er (CLI) displays a message based on the error number returned by ISIS routines.
Error numbers are explained in the next section. The CLI then returns the ISIS
prompt so another command can be entered.

The general form of error messages is:

< stri ng > I < message>

where

<string> is the part of the command line in which the error was
detected.

< message> is the error message.

Error messages are listed below in alphabetical order in a standard format as
follows:

LINE 1 IS THE <message> AS IT APPEARS ON THE DISPLAY SCREEN.
Indented below the message are possible reasons for the error occurring, ac
tions taken by the system due to the error, and possible actions open to the
user to recover from the error.

The <string> part of the display is not shown in the list below. It precedes the
< message> and varies depending on what was entered. For other messages not
listed below, see the description of the particular command in which the message
occurred.

ILLEGAL DISK LABEL
The label supplied is not valid for a disk label. See the IDISK command in
Chapter 5 for rules on disk labels.

ILLEGAL SUBMIT PARAMETER
An error was made in the actual parameter to be substituted for a formal
parameter in a command sequence file. See the SUBMIT command in Chap
ter 5.

INCORRECTLY SPECIFIED FILE
The pathname entered was not in the correct format. Check the format for
pathnames in Chapter 5.

INVALID SYNTAX
There is an error in the command as entered. Check the command format in
Chapter 5.

MODE IS MISSING
On the SERIAL command, the parameter that specifies the mode, A for
asynchronous or S for synchronous, is missing.

B-1



Error Indications iPDS™ User's Guide

MODULE NOT AVAILABLE
An attempt was made to ATTACH a multimodule row that was already
attached.

MULTI-MODULE ROW MUST BE a OR 1
The row specified on the ATTACH or DETACH command was not 0 or 1.

NOSUCH FILE
The file specified was not found in the directory for the disk specified.

PARAMETER TOO LONG
The parameter on the SUBMIT command line exceeded the maximum of 31
characters. See the SUBMIT command in Chapter 5.

TOO MANY PARAMETERS
More actual parameters were supplied than were defined or the maximum of
10 actual parameters on the SUBMIT command line was exceeded. See the
SUBMIT command in Chapter 5.

UNRECOGNIZED SWITCH
Certain options (switches) can be used depending on the ISIS command
entered. Check the specific command format in Chapter 5 for valid options.

ISIS-PDS Exception and Error Handling

One of the capabilities that an operating system provides is a uniform method of
handling error conditions. Resident ISIS routines, i.e., system calls, detect two
types of errors: fatal and non-fatal. In addition, console interface routines detect
errors in command entries. Every error is designated by a decimal number as
follows:

1-99 inclusive Resident ISIS routine error numbers

100-199 inclusive Reserved for User Programs

200-255 inclusive Console interface routine error numbers

These numbers are listed and explained in a later section of this appendix.

Non-Fatal Errors

A non-fatal error is one from which recovery is possible. A non-fatal error results
in the appropriate error number being returned to the program in which the error
was found. The program can then take the proper corrective action, i. e., display a
message, close all open files, etc.

An example of a non-fatal error is a pathname typed in an invalid format. The pro
gram requiring the pathname can repeatedly prompt until it receives a valid path
name or it can display an error message and return to the ISIS prompt so further
commands can be entered.

Non-Fatal Error Numbers Returned to Programs by ISIS System Calls

B-2

OPEN
READ
WRITE
SEEK

3,4,5,9, 12, 13, 14,22,23,25,28,63
2,8
2,6
2,19,20,27,31,35



iPDS™ User's Guide

RESCAN
CLOSE
DELETE
RENAME
ATTRIB
CONSOL
WHOCON
ERROR
lOAD
EXIT
SPATH

Fatal Errors

2,21
2
4,5,13,14,17,23,28,32
4,5,10,11,13,17,23,28
4,5, 13,23,26,28
None; all errors are fatal
None
None
3,4,5, 12, 13,22,23,28,· 34
None
4,5,23,28

Error Indications

A fatal error is one from which no recovery is possible. A fatal error results in the
program in which the error was detected being terminated and a message being dis
played on the cold start console output device. If possible, the CLI is reloaded and
executed. Otherwise, the system must be hardware reset by pressing the RESET
key. An example of a fatal error is a disk hardware error.

The format of the fatal error message displayed by ISIS is:

ERROR <nnn>, USER PC <xxxx>

where

< nnn > is the error number displayed in decimal.

< xxxx > is the contents of the program counter when the error occurred
displayed in hexadecimal.

As a general rule, if it is possible to reload the CLI, the ISIS prompt is given on the
display line following the error message. The only exception to this rule is error 24
which displays a further message. See error 24 in the following section for details.

To receive help in diagnosing a fatal error, type HELP < n> where < n> is the
error message number that is displayed. See the HELP command in Chapter 5 for
further information.

Fatal Error Numbers Returned as Messages by ISIS System Calls

OPEN
READ
WRITE
SEEK
RESCAN
CLOSE
DELETE
RENAME
ATTRIB
CONSOl
WHOCON
ERROR
LOAD
EXIT
SPATH
ATTACH
DETACH

1,7,24,30,33
24,30,33
7,24,30,33
7,24,30,33
33
33
1,24,30,33
1,24,30,33
1,24,30,33
1,4,5,12,13,14,22,23,24,28,30,33,63
33
33
1, 15, 16,24,30,33
None
33
33,60,61
33,60,61

B-3



Error Indications

Console Interface Errors

iPDS™ User's Guide

If an error is made in entering a command line, the CLI displays a message based
on the decimal error number returned by the console interface routines. The CLI
then returns the ISIS prompt, so another command can be entered.

The error numbers returned by the console interface routines are listed and ex
plained in the following section.

Error Messages in Numeric Order

In the following list, the error numbers preceded by an uppercase F are always
fatal errors. If the error number is not preceded by an uppercase F, it is a non-fatal
error except when it is returned by the CONSOL system call. All CONSOL errors
are fatal errors. See the charts on the preceding pages.

Resident ISIS Routines

a No error was detected by the ISIS resident routine.

F NO FREE BUFFER. The memory area from 3000H to program origin
is used for I/O buffers. Too few buffers were allocated to meet the cur
rent request in addition to earlier requests or the number of buffers al
located exceeded the maximum limit of 19 allowed buffers. See Chapter
8 for information on how to allocate buffers..

2 ILLEGAL AFTN ARGUMENT. Illegal Active File Table Number
(AFTN) argument supplied. For example, the file being read was not
opened. AFTNs are described in Chapter 8.

3 TOO MANY FILES OPEN. At most, six files can be active at one time.
One of the six files currently opened must be closed before another can
be opened.

4 INCORRECTLY SPECIFIED FILE. For example, the number of char
acters entered- for the filename might have exceeded the maximum of
six allowed characters. Filename conventions are discussed in Chapter
5.

5 UNRECOGNIZED DEVICE NAME. For example, the device name
:PR: might have been entered for printer instead of :LP:. Device names
are discussed in Chapter 5.

6 ATTEMPT TO WRITE TO INPUT DEVICE. Only output devices can
be written to. See Chapter 5.

F 7 INSUFFICIENT DISK SPACE. The disk is full. Make sure that the in-
tended disk was actually specified.

8 ATTEMPT TO READ FROM OUTPUT DEVICE. Some devices are
output only and cannot be read. See Chapter 5.

9 DISK DIRECTORY FULL. There is no room on the specified disk's
directory to add a filename. The limit is 240 files for a diskette directory
and 48 files for a bubble memory directory.

10 NOT ON SAME DISK. Pathnames do not specify the same disk. The
RENAME system call requires two pathnames on the same device. See
Chapter 8 for information on the RENAME system call.

B-4



iPDS™ User's Guide Error Indications

11 FILE'ALREADY EXISTS. A file cannot be given a name already in use. '
Check the spelling of the filename specified. See Chapter 8 for informa
tion on the RENAME system call.

12 FILE IS ALREADY OPEN. Only the Console Input and the Console
Output can be opened more than one time. Check the spelling of the
pathname specified. See Chapter 8 for information on the OPEN
system call.

13 NO SUCH FILE. The specified filename could not be found in the
directory of the disk in the specified drive. Make sure that the drive and
the filename were correctly entered.

14 WRITE PROTECTED. A write protected file was encountered on
WRITE, RENAME, DELETE. The write protect attribute was set on a
file to be written.

F 15 CANNOT LOAD INTO ISIS AREA. Attempt to load memory reserved
for ISIS, i.e., below 3000H. This operation is not allowed.

F 16 ILLEGAL FORMAT RECORD. An attempt was made to load a file that
was not in the absolute module format required. The filename may
have been mistyped.

17 NOT A DISK FILE. An attempt was made to RENAME or DELETE a
non-disk file. Disk pathnames are discussed in Chapter 5.

18 ILLEGAL ISIS COMMAND. This error results when an ISIS system
call is made with an illegal command number. See Chapter 8 for infor-
mation on system calls. .

19 ATTEMPTED SEEK ON A NON-DISK FILE. Seeks on physical
devices other than a disk drive or the Byte Bucket are not allowed. See
Chapter 8 for information on the SEEK system call.

20 ATTEMPTED BACK SEEK TOO FAR. MARKER is already set to
zero indicating the beginning of the file. See Chapter 8 for information
on the SEEK system call.

21 CAN'T RESCAN. An attempt was made to RESCAN a file not opened
for line editing. See Chapter 8 for information on the OPEN and
RESCAN system calls.

22 ILLEGAL ACCESS MODE TO OPEN. Only 1, 2, and 3 are valid for
input (read), output (write), and update (both read and write)
respectively. See Chapter 8 for information on the OPEN system call.

23 MISSING FILENAME. A filename was expected but was not supplied.
See Chapter 8.

F 24 DISK ERROR. When error number 24 occurs, a second message is dis
played On addition to the ERROR 24 USER PC < xxxx > message) as
follows:

DRIVE <n> STATUS = <a> <b > <c> <d> <e> <f> <9>

where

< n > represents the drive number of the disk with the hardware
error.

B-5



Error Indications iPDS™ User's Guide

The status bytes <a> - <g> are displayed only for disk drives. They
are taken from data stored on the 8272 Disk Controller chip. Refer to
Table B-1 for further information on the status registers.

< a> Contents of status register O. See Table B-1.

< b > Contents of status register 1. See Table B-1.

< c > Contents of status register 2. See Table B-1.

< d > The cylinder number being accessed on the disk. A cylinder
corresponds to the two tracks on opposite sides of the disk sur
face that can both be accessed without moving the read/write
head of the disk drive. The cylinder number corresponds to the
track number.

<e> The head number being accessed. The head number can be
either 0 or 1 depending on which side of the disk is being
accessed.

< f > Sector number. See Table B-1.

<g> The number of bytes per sector. A value of 0 represents 128
bytes/sector and 1 represents 256 bytes/sector.

For bubble memory, only one byte of status is displayed from
the 7220 Bubble Memory Controller chip.

<a> Contents of the status register. See Table B-2 for more
information.

Table B-1 8272 Status Registers

Main Status Register

B-6

BIT
NUMBER DESCRIPTION

0 If set, FDD (Flexible Disk Drive) number 0 is in the Seek mode.

1 If set, FDD number 1 is in the Seek mode.

2 If set, FDD number 2 is in the Seek mode.

3 If set, FDD number 3 is in the Seek mode.

4 If set, a read or write command is in progress.

5 If set, the FDC (Flexible Disk Controller) is in the non-DMA mode. This bit is set
only during the execution phase in non-DMA mode. Transition to 0 state inidi-
cates that execution phase has ended.

6 Indicates direction of data transfer between FDC and Data Register. If set, then
a transfer is from the Data Register to the Processor. If not set, then a transfer
is from the Processor to the Data Register.

7 Indicates Data Register is ready to send or receive data to or from the
Processor.



iPDS™ User's Guide

Table B-1 8272 Status Registers (continued)

8272 Status Register 0

Error Indications

BIT
NUMBER DESCRIPTION

0 Used with Bit 1 to indicate the Drive Unit Number, 0-3, at the interrupt.

1 Used with Bit 0 to Indlcate the Drive Unit Number, 0-3, at the interrupt.

2 Indicates the state of the head at the interrupt.

3 When the FDD is in the not-ready state and a read or write command is issued,
this flag is set. If a read or write command is issued to Side 1 of a single sided
drive, then this flag is set.

4 When a fault Signal is received from the FDDt or it the Track 0 Signal fails to
occur after 77 step pulses (recalibrate command) then this flag is set.

5 When the FDC completes the SEEK command, this flag is set to 1 (High).

6 bit 6= 1 and bit 7= 1
Abnormal termination because during command execution, the ready signal
from the FDD changed state.

bit 6=0 and bit 7= 1
Invalid Command which was issued was never started.

7 bit 6= 1 and bit 7=0
Abnormal termination of command. Execution of command was started, but
was n~ver successfully completed.

bit 6=0 and bit 7=0
Normal termination of command. Command was completed and properly
executed.

B-7



Error Indications

Table B-1 8272 Status Registers (continued)

8272 Status Register 1

iPDS™ User's Guide

B-8

BIT
NUMBER DESCRIPTION

0 When the FDC cannot detect the ID Address Mark after encountering the index
hole twice, this flag is set.

When the FDC cannot detect the Data Address Mark or the Deleted Data Ad-
dress Mark, this flag is set. Also, at the same time, the Missing Address Mark
in the Data Field of Status Register 2 is set.

1 During execution of WRITE DATA, WRITE DELETED DATA, or Format A Cylin-
der Command, if the FDC detects a write protect signal from the FDD, then this
flag is set.

2 During execution of READ DATA, WRITE DELETED DATA, or SCAN Command,
if the FDC cannot find the Sector specified in the IDR Register, this flag is set.

During execution of the READ ID Command, if the FDC cannot read the ID field
without an error, then this flag is set.

During execution of the READ A Cylinder Command, if the starting sector
cannot be found, then this flag is set.

3 Not used. This bit is always 0 (low).

4 When the FDC is not serviced by the main system during data transfers within
a certain time interval, this flag is set.

5 When the FDC detects a CRC error in either the ID field or the data field, then
this flag is set.

6 Not used. This bit is always 0 (low).

7 When the FDC tries to access a sector beyond the final sector of a cylinder,
this flag is set.



iPDS™ User's Guide

Table B-1 8272 Status Registers (continued)

8272 Status Register 2

Error Indications

BIT
NUMBER DESCRIPTION

0 When the data is read from the medium, if the FDC cannot find a Data Address
mark or a Deleted Data Address Mark, then this flag is set.

1 This bit is related to bit 2 of Status Register 1. When the content of C on the
medium is different from that stored in the IDR and the content of C is FF, then
this flag is set.

2 During execution of the SCAN Command, if the FDC cannot find a sector on the
cylinder which meets the condition, then this flag is set.

3 During execution of the SCAN Command, if the condition of "equal" is satisfied,
this flag is set.

4 This bit is related to bit 2 of Status Register 1. When the contents of C·on the
medium is different from that stored in the IDR, this flag is set.

5 When the FDC detects a CRC error in the data field, then this flag is set.
I

6 During execution of the READ DATA or SCAN Command, if the FDC encounters
a Sector which contains a Deleted Data Address Mark, this flag is set.

7 Not used. This bit is always 0 (low).

Table B-2 7220 Status Registers

BIT
NUMBER DESCRIPTION

o The FIFO register on the 7220 has data available to be read or written.

1 When set, a parity error has been detected in the last data byte sent to the
7220.

2 When set, an uncorrectable error has been detected in the last data block
transferred.

3 When set, a correctable error has been detected in the last block of data
transferred.

4 When set, indicates that a timing error has occurred or that the host system
has failed to keep up with the 7220. Also, indicates that no bootloop sync word
was found during initialization or a write bootloop command was issued when
the WRITE BOOTLOOP ENABLE bit was not set.

5 When set, the last command was unsuccessful and was not completed.

6 When set, the last command was successfully completed.

7 When set, indicates that the 7220 is in the process of executing a command.
When not set, the 7220 is ready to accept a command.

B-9



Error Indications iPDS™ User's Guide

An example of a disk error 24 is given to show how to interpret these error codes.
Suppose that, after running the DIR 1 command to display the directory of drive
1, the following error message is displayed on the screen.

ERROR 24 USER PC 4EDD
DRIVE 1 STATUS = 41 1 1 27 0 1 1

From the first line of display, the error is error number 24 and the program counter
is pointing to address 4EDDH. The second line of display can be summarized as
follows: .

PHYSICAL DRIVE NUMBER:
STATUS REGISTER 0:
STATUS REGISTER 1:
STATUS REGISTER 2:
TRACK NUMBER:
HEAD NUMBER:
SECTOR NUMBER:
FORMAT:

1
41H

1
o

27H
o
1

256 bytes/sector

The three status registers can be written in binary with the following interpreta
tions of the bits. Bits not needed for the interpretation are not described.

STATUS REGISTER 0: 01000001

01 000 o 01

L bit 0 is 1 and bit 1 is 0; interpret as
drive 1; should match DRIVE
NUMBER.

bit 3 is 0; interpret as head 0; should
match HEAD NUMBER.

1...- bit 6 is 1 and bit 7 is 0; interpret as
abnormal termination of FDC
command.

STATUS REGISTER 1: 00000001

0000000 1

T bit 0 is 1; interpret as either missing
Sector (ID) Address Mark or as miss
ing Data Address Mark.

STATUS REGISTER 2: 00000001

0000000 1

T bit 0 is 1; interpret as missing Data
Address Mark.

If there is a missing Data Address Mark, it is possible-that the disk has not been
formatted as in this case.

B-lO



iPDS™ User's Guide Error Indications

25 ILLEGAL ECHO FILE. An echo file must have an AFTN between °
and 255 and must already be open for output. See Chapter 8 for infor
mation on echo files.

26 ILLEGAL ATTRIBUTE IDENTIFIER. This error refers to the second
parameter in the ATTRIB system call. Only 0, 1, 2, or 3 are valid mean
ing invisible, system, write protect, or format attributes respectively.
See Chapter 8 for more information on the ATTRIB system call.

27 ILLEGAL SEEK COMMAND. This error refers to the MODE parame
. ter in the SEEK system call. See Chapter 8 for more information.

28 MISSING EXTENSION. An expected file extension was not supplied.'

F 29 EOF ON CONSOLE INPUT. Premature End of File (EOF) detected
on the console input device.

F 30 DRIVE NOT READY. The drive specified was not ready. For example,
a DIR command was given and no disk was in the drive. This is a fatal
error and the system must be reinitialized.

31 CAN'T SEEK ON WRITE ONLY FILE. SEEKs can only be executed
on read or update files. See Chapter .8 for further information on the
SEEK system call.

32 CAN'T DELETE OPEN FILE. A file must be closed before it can be
deleted.

F 33 ILLEGAL SYSTEM CALL PARAMETER. A parameter specified in a
system call was outside the valid range for that parameter.

34 BAD RETURN SWITCH ARGUMENT TO LOAD. The return switch
parameter in the LOAD system call was not set to 0, 1, or 2. See Chap
ter 8 for further information on the LOAD system call.

35 SEEK PAST EOF. An attempt was made to extend a file opened for
input by seeking past the End of File (EOF). See Chapter 8 for further
information on the SEEK system call.

60 MODULE ALREADY ASSIGNED. An attempt was made to attach a
multimodule row that is already attached to other processor.

61 MODULE ALREADY ASSIGNED TO BUBBLE. An attempt was
made to attach a multimodule row that is contains a bubble memory
multimodule.

62 ILLEGAL TRACK ADDRESS. An illegal track address was given on a
direct disk access.

63 FILE OPEN FOR WRITE OR UPDATE BY OTHER PROCESSOR.
An attempt was made to open or write to a file currently being written
by the other processor.

Console Interface Routines

201 UNRECOGNIZED SWITCH. Certain options (switches) can be used
depending on the ISIS command entered. Check the specific command
format in Chapter 5 for the valid options.

B-l1



Error Indications

B-12

iPDS™ User's Guide

202 UNRECOGNIZED DELIMITER. A character was encountered that was.
not valid for a name or a delimiter.

203 INVALID SYNTAX. There is an error in the command as entered.
Check the command format in Chapter 5. .

206 ILLEGAL DISKETTE LABEL. The label supplied is not valid for a disk
label. See the IDISK command in Chapter 5 for rules on disk labels.

207 NO END STATEMENT. Thejob file is missing an end statement.

208 CHECKSUM ERROR. There may be a format error in the file read.

209 RELO FILE SEQUENCE ERROR. An illegal record sequence was
detected in an object module file.

210 INSUFFICIENT MEMORY. The amount of RAM required is not
available.

211 RECORD TOO LONG. A record longer than allowed was encountered.

212 ILLEGAL RELO RECORD. A bad record was encountered in an object
module.

213 FIXUP BOUNDS ERROR. An illegal fixup record was specified in an
object module file.

214 ILLEGAL SUBMIT PARAMETER. An error was made in the actual
parameter to be substituted for a formal parameter in a command se
quence file. See the SUBMIT command in Chapter 5.

215 ARGUMENT TOO LONG. The number of characters in an actual argu
ment for a SUBMIT file cannot exceed 31 characters. See the SUBMIT
command in Chapter 5.

216 TOO MANY PARAMETERS. More actual parameters were supplied
than were defined in the SUBMIT file. See the SUBMIT command in
Chapter 5.

217 OBJECT RECORD TOO SHORT. This error may be caused by an I/O
error in the file to be loaded.

218 ILLEGAL RECORD FORMAT. The record format did not match the
Intel standard for object module records.

219 PHASE ERROR. The expected input for a step in the translation pro
cess was not correctly supplied for the LINK command.

220 NO END-OF-FILE. There is an error in the internal format of the speci
fied object module file. Retranslate and relink the source module.

221 SEGMENT OVERFLOW. The output segment cannot be greater than
64K bytes. Relink the modules.

222 UNRECOGNIZED RECORD. There is an error in the internal format
of the specified object module file. Retranslate and relink the source
module.

223 BAD FIXUP RECORD POINTER. There is an error in the internal
format of the specified file. Retranslate and relink the source module.



iPDS™ User's Guide Error Indications

224 ILLEGAL RECORD SEQUENCE. There in an error in the internal
format of the specified object module file. Retranslate and rei ink the
source module.

227 ·COMMAND REQUIRES '(', There is a missing left parenthesis in the
command line. Re-enter.the command line correctly.

230 DUPLICATE SYMBOL FOUND. An attempt was made to add a
symbol that already exists.

231 FILE ALREADY EXISTS. The file specified in a CREATE command
.. already exists.

232 UN-RECOGNIZED COMMAND. Check to make sure that the com
mand was correctly entered..

-Diagnostic Errors

During system initialization, errors are indicated in two possible ways:

• By the four diagnostic LED indicators

• By a message on the display screen

LED Indicators

The four LED indicators are shown in figure B-1. All four indicators are lit when
the system is initially powered on. Then, they are turned off one at a time as the
component being tested passes the test. If the system fails to initialize, the problem
can be determined by checking to see which LED indicators are still lit.

The LEOs are located on the base processor circuit board. By holding open the
swinging door for the plug in module, these indicators can' be seen as shown in
figure B-1 if the Plug-in Adapter Board is installed. If the Adapter Board is not
installed, the LEOs will appear the same except that the cutout in the Adapter
Board is not present.

B-13



Error Indications

Figure B-1 Diagnostic LED Indicators

iPDS™ User's Guide

0202

From left to right, they are the optional processor indicator, the power on
indicator, the base processor indicator, and the CRT/Keyboard indicator. The fol
lowing chart summarizes the possible error conditions.

OPT BASE CRT/
PROC POWER PROC KYBD Failure

OFF OFF OFF OFF Power Supply
ON ON ON ON CRT/Keyboard Section, Main Board
ON ON ON OFF Processor Section, Main Board
ON ON OFF OFF Optional Processor Board
OFF ON OFF OFF Failure indicated by error message on

CRT screen.

Diagnostic Error Messages

The following error messages may occur during initialization of the system.

BUBBLE BOOT FAILED
After ten retries, Track 0 of the bubble memory device could not be read.

FDD FAILED TO BOOT
After ten retries, Track 0 of drive 0 could not be read successfully.

B-14



iPDS™ User's Guide Error Indications

FDD FAILED TO RECAL
After two recalibrate commands were issued, the flexible disk drive failed to
turn in the proper status.

NO BOOT DEVICE
There is no disk in drive 0, and no bubble memory controller is installed in
connector 11 of the Multimodule Adapter Board. The system cannot be
initialized.

NON-SYSTEM DISK
The disk in drive°is not a system disk; there are no further disk operations.

BOOT FROM BUBBLE? (Y OR N)
If there is not a disk in drive °and a bubble memory controller is available in
connector J 1 of the Multimodule Adapter Board, the system prompts with
this message to initialize from the bubble memory device. Type Y on the key
board to continue. Type N to retry the disk. Any other response causes the
warning buzzer to sound.

RAM ERROR <addr>/<ee>/<aa>
The program memory failed a pattern test at address <addr> where <ee>
is the expected data and < aa> is the actual data displayed in hexadecimal.

ROM CHECKSUM ERROR <ee>/<aa>
The ROM pattern check failed where <ee> is the expected pattern and
< aa> is the actual pattern displayed in hexadecimal.

WAITING FOR CONTROL OF FOC
The processor has timed out in the semaphore wait loop. If nothing else
happens, there is a problem with the semaphore. Another message is dis
played if the semaphores are working. This message normally appears briefly
during a system initialization.

WAITING FOR CONTROL OF MMIO-O
The processor has timed out in the semaphore wait loop. If nothing else
happens, there is a problem with the semaphore. Another message is dis
played if the semaphores are working.

WAITING FOR CONTROL OF MMIO-1
The processor has timed out in the semaphore wait loop. If nothing else
happens, there is a problem with the semaphore. Another message is dis
played if the semaphores are working.

Confidence Test

This section describes the operation of the confidence test for the iPDS system. It
is not necessary to run this test prior to using the system. However, it is recom
mended that the test be run when the system is initially installed. See the hands-on
initialization session in Chapter 3 for an example of running the confidence test.

The confidence test aids in troubleshooting the system if problems occur. Success
ful execution of the test demonstrates the complete operation of the system.

The confidence test assumes that ISIS-PDS is loaded and running. The test runs as .
a utility under the operating system and provides a set of subcommands that help
verify the system.

B-15



Error Indications iPDS™ User's Guide

IfISIS-PDS cannot be successfully loaded, refer to the description of the power on
diagnostic errors in a previous section of this appendix. The power on diagnostics
provide an 85% confidence check of the system.

The confidence test verifies the following parts of the main processor board:

• CPU

• Program Memory

• Keyboard/CRT Interface

• Programmable Timer

• Line Printer Interface

• Serial I/O Interface

• Disk Controller

• Disk Drives

• Semaphores (used in dual processing systems)

The confidence test also verifies the following parts of the optional processor
board:

• CPU

• Program Memory

• " Keyboard/CRT Interface

• Disk Controller

• Disk Drives

• Semaphores (used indual processor systems) "

Also, the confidence test checks:

• Magnetic Bubble Memory Multimodules

• PROM Programmer Plug-in Modules

The test for each emulator plug-in module is included with the emulator. It is de
scribed in the appropriate emulator user manual.

To perform the confidence test:

1. Load the confidence test command under ISIS-PDS by entering the PCONF
command line.

2. Initialize the confidence test with the INIT CONPDS command.

3. Enter any of the nine confidence test commands to perform the 17 different
tests.

These steps are described in detail in the following sections. Also, see the hands-on
demonstration of the confidence test in the initialization session in Chapter 3.
Notational conventions used for command descriptions are explained in Chapter 5.

B-16



iPDS™ User's Guide

PCONF Command

The PCONF command is shown in the following:

AO>PCONF
ISIS-PDS PCONF Vx.y
*

Error Indications

The PCONF command is entered when the ISIS-PDS prompt is displayed indicat
ing that the operating system will accept a command. It loads the confidence test
program which displays a sign-on message and an asterisk prompt allowing the
user to enter the INIT CONPDS command.

INIT CONPDS Command

The INIT CONPDS command is shown in the following:

*INIT CONPDS
iPDS CONFIDENCE TESTS, Vx.y
USER RETURN

After the INIT CONPDS command is entered, another sign-on message and aster
isk prompt are displayed allowing the user to enter any of the nine confidence test
commands.

Confidence Test Commands

The nine confidence test commands allow the user to specify the test sequence for
the 17 confidence tests and to control the reporting of results from the tests. The
nine commands are:

Command Abbreviation

CLEAR CLE
ERROR ERR
DESCRIBE DES
EXIT
IGNORE IGN
LIST
RECOGNIZE REC
SUMMARY SUM
TEST

EXI

LIS

TES crT

Any command consisting of four or more letters can be abbreviated to the first
three letters. Additionally, the TEST command can be abbreviated to T. The
TEST command is the command used to run the confidence tests.

Each of these commands is described in one of the following sections. The 17
confidence tests are described under the TEST command.

Numeric values required in these commands can be given in hexadecimal (H),
decimal (T), octal (Q), or binary (y) by attaching the appropriate suffix to the
value. The default base (if no suffix is given) is hexadecimal.

B-1?



Error Indications

CLEAR Command

The format of the CLEAR command is:

CLEAR {{ <test number> [, <test number> l} ...}
<test number> TO <test number>

where

iPDS™ User's Guide

<test number> specifies one of the 17 confidence tests by number (OOH
through lOH). Enter the hexadecimal value of the test
number.

The CLEAR command sets the execution count and error count to zero for the
test or tests specified. The execution count is the number of times the specified
test or tests have been run and the error count is the number of errors detected. If
no tests are specified, the CLEAR command clears the counts for all the tests. The
CLEAR command does not affect the status of a test. The status of a test indicates
whether the test is ignored or recognized. See the IGNORE and RECOGNIZE
commands.

To clear the execution count and error count for Tests 3,4, and 5, enter:

CLEAR 3,4,5

DESCRIBE Command

The format of the DESCRIBE command is:

DESCRIBE {{ <test number> [, <test number> l} ...}
<test number> TO <test number>

where

<test number> specifies one of the 17 confidence tests by number (OOH
through 1OH). Enter the hexadecimal value of the test
number.

The DESCRIBE command displays the name and the status of the test or tests
specified. The status of a test indicates whether the test is ignored or recognized by
the system. See the IGNORE and RECOGNIZE commands. If no tests are
specified, the name and status are given for all the tests.

To describe tests 3, 4, 5, and 6, when test 3 is being ignored by the system, enter
the following command:

DESCRIBE 3 TO 6
00003H LINE PRINTER TEST **** IGNORED ****
00004H SERIAL OUTPUT TEST
00005H FDC SEMAPHORES
00006H READY DRIVE DETERMINATION

Note that test numbers are displayed in hexadecimal.

B-18



iPDST
J\1 User's Guide

ERROR Command

The format of the ERROR command is:

ERROR=[<n>]

where

< n > is either 0 to display pass/fail messages or 1 to suppress them.

The default setting is 0 to display all pass/fail messages.

To find out the current display status, enter: .

ERROR

Error Indications

To suppress pass/fail messages for the confidence tests, enter the following com
mand before running the tests with the TEST command.

ERROR = 1

EXIT Command

The format of the EXIT command is:

EXIT

The EXIT command ends the test session and returns control to ISIS-PDS.

IGNORE Command

IGNORE {{ <test number> [, <test number> l} ...}
<test number> TO <test number>

where

<test number> specifies one of the 17 confidence tests by number (OOH
through 10H). Enter the hexadecimal value of the test
number.

The IGNORE command allows the user to specify a test or tests to be ignored. The
ignored tests will not be run. Tests that are not applicable to the optional processor
are automatically ignored when they are run on the optional processor. Also, the
tests that check Magnetic Bubble Memory Multimodules and the PROM Program
mer Plug-in Modules are automatically ignored by the system. The user must
enter the RECOGNIZE command to include the tests for the Bubble Memory and
PROM Programmer options.

For example, to run all tests except 5,6, and 8, enter the command:

IGNORE 5,6,8

B-19



Error Indications

LIST Command

The format of the LIST command is:

LIST <pathname>

where

iPDS™ User's Guide

< path name > specifies a valid ISIS-PDS device to receive any output from
the tests. See Chapter 5 for an explanation of ISIS
pathnames. .

The LIST command causes a copy of all subsequent output from the tests to be
sent to < pathname>. The output includes prompts, user entered input, and error
messages. The output is also displayed at the current console device (on the display
screen). If the < pathname> is :CO:, there is no effect, since the console receives
all the output anyway.

To copy all output to the line printer, enter the command:

LIST :LP:

RECOGNIZE Command

The format of the RECOGNIZE command is:

RECOGNIZE {{<test number> [,<test number>]} ...}
<test number> TO <test number>

where

<test number> specifies one of the 17 confidence tests by number (OOH
through 10H). Enter the hexadecimal value of the test
number.

The RECOGNIZE command allows the user to declare the specified test or tests
to be recognized and run. This command can be used to include the test for the
Bubble Memory Multimodule or the PROM Programmer Plug-in Module if these
options are available in the system.

Assuming that tests 5, 6, 7, and 8 are currently ignored, enter the following com
mand to recognize 5, 7, and 8. Test 6 will continue to be ignored.

RECOGNIZE 5,7,8

SUMMARY Command

The format of the SUMMARY command is:

SUMMARY {I <test number> [,<test numberc-I] ...} [EO]
<test number> TO <test number>

where

<test number> specifies one of the 17 confidence tests by number (OOH
through 1OH). Enter the hexadecimal value of the test
number.

B-20



iPDS™ User's Guide

EO

Error Indications

specifies that only the tests with a non-zero error count
will be summarized.

The SUMMARY command displays the following information for each test or
tests specified:

• Test number in hexadecimal

• Number of times the test was executed

• Number of times an error occurred during the test

.• Status of the test (ignored or recognized)

The information displayed is accumulated since the last INIT CONPDS or
CLEAR command. If no test or tests are specified, summaries are displayed for all
tests. If EO is specified, a summary is displayed only for those tests with a non-zero
error count.

To display a summary of tests 3, 4, and 5, enter the command:

SUMMARY 3 TO 5

The following display will appear on the CRT display screen.

00003H LINE PRINTER TEST EXECUTED 00002T TIMES, OOOOOT FAILS
00004H SERIAL OUTPUT EXECUTED 00002T TIMES, 00001 T FAILS
00005H FDC SEMAPHORES EXECUTED 00002T TIMES, OOOOOT FAILS

Note that all test numbers are in hexadecimal and error counts are in decimal.

To display a summary of tests 3, 4, and 5 only if an error is detected, enter the
command:

SUMMARY 3 TO 5 EO
00004H USART TEST EXECUTED 00002T TIMES, 00001 T FAILS

TEST Command

The format of the TEST command is:

TEST [{<test number> [, ~test number>1 ...}]
<test number> TO <test number>

where

[{

ON ERROR }]ON NOERROR
COUNT < nnnn >
FOREVER

<test number> specifies one of the 17 confidence tests by number (OOH
through 1OH). Enter the hexadecimal value of the test
number.

ON ERROR specifies that the tests will be executed repeatedly if one
or more errors are detected.

ON NOERROR specifies that the tests will be executed repeatedly until
any errors are detected.

B-2!



Error Indications iPDS™ User's Guide

COUNT < nnnn > specifies that the tests will be executed in numerical
order for < nnnn> times. If < nnnn> = 0 or if
COUNT is specified with no < nnnn>, no tests will be
executed. The maximum value of < nnnn> is 65,535
in decimal.

FOREVER specifies that the tests will be executed in numerical
order and repeat until the user presses the ESC key.
Tests will not stop on failures and all errors will be
logged in the error table. Errors can be displayed with
the SUMMARY command.

The TEST command loads and runs the test or tests specified by the user. The
tests are executed in numerical order regardless of the order in which they were
entered. If no test number is specified, all currently recognized tests are executed.

To run all tests (0 through lOR), enter the command:

TEST

To run tests 2,4,8, and 9, enter the command:

TEST 4,9,2,8

Note that the commands are loaded and run in numerical order.

To run tests 0 through 8 and repeat the failing test only if an error is detected,
enter the command:

TEST 0 TO 8 ON ERROR

To run test 7 and repeat until any error is detected, enter the command:

TEST 7 ON NOERROR

To run tests 3 and 5 and repeat forever, enter the command:

TEST 3,5 FOREVER

To run tests 2 and 7 and repeat 5 times, enter the command:

TEST 2,7 COUNT 5

The following tests are available:

Test Number Processor Function

B-22

o
1
2
3
4
5
6
7
8
9

A
B

A,B
A,B
A
A
A
A,B
A,B
A,B
A
A,B
A,B
A,B

CPU Test
CRT Interface Test
Programmable Timer Test
Line Printer Interface Test
Serial Interface Test
Disk Controller Semaphore Test
Disk Drive Recalibrate and Ready Test
Disk Drive Seek and Read Test
Serial Loopback Test
Disk Format Test
Formatted Disk Data Read Test
Disk Random Seek/Write/Read Test



iPDS™ User's Guide

C
D
E
F

10

A,B
A,B
A,B
A
A,B

Error Indications

Keyboard Echo Test
Bubble Memory Seek and Read Test
Bubble Memory Random Seek/Write/Read Test
PROM Programmer Plug-in Module Test
32K RAM Relocating Random Data Test

The letter A indicates that the test can run on Processor A (the base processor),
and B indicates that the test can run on Processor B (the optional processor). The
following tests are ignored when the confidence test is first run and must be includ
ed with the RECOGNIZE command before they can be run: 3, 8,9, A, B, C, D, E,
F, and 10.

The ignored tests require some user interaction while running. If a response is not
received in a predetermined period of time, the test times out and is not executed.

The following tests require the use of the semaphore: 2, 5, 6, 7, 9, A, B, D, and E~

If these tests are run on both processors at the same time,one processor will get
failures due to semaphore timeouts.

Each of these tests is described in the following sections.

Test 0 - CPU Test

Test 0 verifies the operation of the 8085 microprocessor by executing the instruc
tion set and monitoring the results.

Test 1 - CRT Interface Test

Test 1 first displays a line of all the printable ASCII characters. Then, one line of
each character is displayed.

Test 2 - Programmable Timer Test

.Test 2 loads the timer counters with a test count value and verifies that it counts
down within the prescribed time interval based on a software timing loop. This test
is only valid for the base processor, since the optional processor does not have a
programmable timer.

Test 3 - Line Printer Interface Test

Test 3 sends a form feed, several lines of incrementing test data, and a line each of
ASCII test characters to the line printer port. The printer must be in a ready condi
tion when this test executes. Any other status condition, such as busy, not ready,
or no printer attached causes the test to fail. This test only runs on the base
processor, since the optional processor does not include a line printer interface.

Test 4 - Serial Interface Test

Test 4 verifies the operation of the 8251 USART controller chip on the base pro
cessor board. This test transmits a string of ASCII characters to verify that the
transmitter portion of the 8251 USART controller chip is working. The receiver
portion of the USART controller is tested in another test. This test only runs on
the base processor, since the optional processor does not include a serial interface.

B-23



Error Indications

Test 5 - Disk Semaphore Test

iPDS™ User's Guide

Test 5 clears the disk controller semaphore and tests the drive-ready status at the
semaphore port for a not true condition. It then sets the semaphore and tests the
status for a true condition. Finally, it turns the semaphore off again and tests for a
not true condition. The disk controller semaphore allows both processors to share
the disk in dual processor systems.

Test 6 - Disk Drive Recalibrate and Ready Test

Test 6 initializes a table indicating which disk drives can be tested. Test 6 must be
run once before running test 7. If the condition of a drive is changed during
testing, test 6 must be run again to correct the table before running test 7.

Test 6 sets the disk controller semaphore and cycles through all four drives, issuing
two recalibrate and sense-interrupt-status command sequences. After the second
sequence, the command completion status and track-zero status are checked. If
either is invalid, the drive is flagged in the table as not-ready.

NOTE
Tests 6 and 7 require ISIS-PDS formatted disks. The disk should
be formatted with the IDISK command. These tests do not de
stroy any data on the disk.

If the status indicates that the drive is available, a read-ID command sequence is
issued to determine if a disk is inserted in the drive. If no disk is inserted, the table
entry for that drive is flagged not-ready. If the drive is available and a disk is
inserted, the drive is flagged as ready.

After testing all four disk drives, if at least one is ready, the test is passed. An infor
mation message is displayed on the CRT indicating the status of the drives. Ifnone
of the four drives is ready, the test is failed. The disk controller semaphore is
cleared at the end of the test.

Test 7 - Disk Drive Seek and Read Test

Test 7 sets the disk controller semaphore and verifies all drives flagged as ready in
the table setup by test 6. Each drive should contain a disk previously initialized
with the ISIS IDISK command. Each drive is tested 10 times with the following
sequence:

• Seek to the last cylinder

• Issue read-ID command for heads 0 and 1

• Seek to track 1

• Issue a read-data for sector 4, head 0

• Verify that the data read at sector 4 is the data written there when the disk
was initialized under ISIS.

B-24



iPDS™ User's Guide Error Indications

Sector 4 of track 1 is the last sector of the file ISIS.LAB. It is not used as part of the
disk volume identifier file, but it is initialized by the the IDISK command with six
teen contiguous repetitions of the string:

DIAGNOSTICSECTOR

If no drives are flagged as ready in the table setup by test 6, test 7 fails. At the end
of test 7, the disk controller semaphore is cleared. The disk is not destroyed and
can be used under ISIS-PDS.

NOTE
Tests 6 and 7 require ISIS-PDS formatted disks. The disk should
be formatted with the IDISK command. These tests do not de
stroy any data on the disk.

Test 8 - Serial Loopback Test

Test 8 is run with the transmit data line of the 8251 USART controller chip tied
back to the receive data line. These two lines can be tied with special loopback
connector (use a DB25 connector and short Pin's 2 and 3 to each other) or with the
test switch 'on a modem.

Test 8 sends an incrementing data sequence from OOH to FFH to the transmit data
line and tests the receiver input on the receive data line for the correct data.

Test 9 - Disk Format Test

Test 9 formats a disk on the drive or drives specified. Test 9 prompts the user to
enter blank disks in any drive to be tested.

** WARNING - DISKS FORMATTED WITH THIS TEST ARE NOT
COMPATIBLE WITH ISIS. **

- INSERT TEST DISKETTES
- HIT ESCAPE TO ABORT THIS TEST
- HIT ANY OTHER KEY TO CONTINUE

As soon as a disk is inserted into the drive to be tested, press any key other than
ESCAPE.

Zero to four disks may be formatted at a time. The data written to the disk is the
track number.

Note that sector numbers 1-16 (OIH through 10H) are on Side 0 of the disk.
Sector numbers 17-32 (lIH through 20H) are on Side 1 of the disk.

Test A - Formatted Disk Data Read Test

Test A reads the data written to the disk or disks by test 9 using the drives that
have diskettes inserted in them. This allows the disk drives to be tested for align
ment compatability.

B-25



Error Indications

Test B - Disk Random Seek/Write/Read Test

iPDS™ User's Guide

Test B uses the same disk or disks formatted by test 9 for random seek, write, and
read testing. The drive to be tested is the same drive used in test 9. A random
number generator selects which of the specified drives to test and which cylinder
and sector number to test. The random number then becomes the seed for the
random data written to the sector. Test B runs until terminated by the user pressing
the ESC key. The disk controller semaphore is cleared when the test is completed.

NOTE.
The disk format used in tests 9, A, and B is not compatible with
Tests 6 or 7 or with ISIS-PDS, and the disks used in these tests
must be initialized with the IDISK command before being used
under ISIS.

Test C - Keyboard Echo Test

Test C echoes the data entered from the keyboard to the CRT display to allow
visual verification of the data. The test continues until the ESC key is pressed two
times in a row.

Test D - Bubble Memory Seek and Read Test

Test D determines if either or both Bubble Memory Multimodules are present and
sets the appropriate multimodule semaphores. Each bubble multimodule should
have been initialized previously with the ISIS IDISK command. Then, each
bubble is tested 10 times with the following sequence:

• Seek to page 140 which is the same as track 1 sector 4

• Issue a read-data command sequence for 4 pages (the entire sector 4)

• Verify that the data read at sector 4 is the data written by the IDISK com
mand when the bubble memory was initialized

Sector 4 of track 1 is the last sector of the file ISIS.LAB. It is not used as part of the
disk volume identifier file, but it is initialized by the the IDISK command with six
teen contiguous repetitions of the string:

DIAGNOSTICSECTOR

If no multimodule connectors contain bubble memory, test D fails. At the end of
test D, the multimodule semaphores are cleared.

Test E - Bubble Memory Random Seek/Write/Read Test

Test E determines if either or both Bubble Memory Multimodules are present and
then sets the appropriate multimodule semaphores. Then, it seeks to random sec
tors on the bubble memory. After seeking to random sectors, it writes and then
reads random data at these sectors to verify that the controller and storage
medium are operating correctly. This test runs until the user terminates it by press
ing the ESC key. The semaphores are cleared when the test is ended. A screen
message is displayed indicating read/write and page number test activity.

B-26



iPDS™ User's Guide

NOTE
The disk format used in test E is not compatible with Test D or
with ISIS-PDS, and the bubble memory must be initialized with
the IDISK command before being used under ISIS.

Test F - PROM Programmer Plug-in Module Test

Error Indications

Test F reads the personality program from the PROM Plug-in Module and com
putes the checksum on the program to verify the operation of the PROM plug-in
module.

Test 10 - 32K RAM Relocating Random Data Test

Test IOH tests one half of the 64K bytes of RAM while the test resides in the other
half. When one half is tested, the code relocates itself to the half that is already
tested and tests the other half. Test IOH continues until the system is reinitialized.
Each successful pass through a 32K bank of memory is indicated by printing an
asterisk on the screen. Each error is displayed on the screen. The memory is tested
with a random data pattern.

Confidence Test Error Messages

CPU TEST FAILED TEST GROUP: <xxx>
While executing the8085A instruction set test, an invalid result was detected
on the instruction set group < xxx> .

TIMER FAILURE - COUNTER <n> EXP: <xxxx>-<xxxx> ACT: <yyyy>
After doing a software timing loop, the actual contents of the timer counter
( < Yyy Y> ) did not match the ex pected con ten ts range
( < xxxx > - < xxxx > ). The value of < n> can be 0 or 1 to specify which
counter was being tested when the error occurred.

LP FAILURE - <cause>
The line printer test failed. Possible values of < cause> are NOT READY,
BUSY TIMEOUT, or FAULT.

USART FAILURE - XMTR-RDY TIMEOUT
The transmitter ready signal failed to go high within an allotted time interval.

USART RCVD DATA ERROR
EXP: <ee> ACT: <aa>
The loopback data «aa» did not match the transmitted data «ee».
The value following EXP is the data transmitted; the value following ACT is
the data received.

FDC SEMAPHORE FAILED TO <cond> DRIVE-READY
While setting or clearing the disk controller semaphore, the status bit on the
semaphore port failed to follow the signal. The value of <cond> can be
either SET or CLEAR depending on the action being taken at the time of the
failure.

B-2?



Error Indications iPDS™ User's Guide

FDC SEMAPHORE TIMEOUT
A test requiring the disk controller semaphore to be set failed, since the
semaphore could not be set within 3 seconds.

DRV-O <stat>, DRV-1 <stat> DRV-2 <stat> DRV-3 <stat>
This is a status message from test 6 indicating which drives were found ready
to be tested by test 7. The value of < stat> can be either READY or N RDY
for each drive.

NO DRIVES READY
No disk drives were found ready by test 6.

FDD SEEK FAILED ON DRIVE # <d >
EXP STATUS = <aa> <bb >
ACT STATUS = <aa> <bb >

The disk drive seek test failed. The drive number on which the test failed is
shown in place of < d >. The expected status and actual status are displayed
from status register 0 « aa> of the disk controller chip. The present cylin
der number «bb» is also displayed. Refer to Table B-1 for the interpreta
tion of the status.

FDD READ FAILED ON DRIVE #<d>, TRK= <t>, SEC= <s>, HD= <h>
FDC STATUS =<aa> <bb > <cc> <dd> <ee> <ff> <99>

STO ST1 ST2 C H R N
The disk drive read test failed. The first line shows the drive number, < d>,
the track number, <t>, the sector number, <s>, and the head number
< h > where the read was attempted. The second line shows the actual status
of the 8272 disk controller chip from status registers 0 « aa> ), 1 « bb>),
and 2 «cc». The actual cylinder number «dd», head number
«ee», ready status «ff», and number of bytes/sector «gg» are
also displayed. Refer to Table B-1 for the interpretation of the status.

FDDWRITE FAILED ON DRIVE #<d>, TRK= <t>, SEC= <s >, HD= <h >
FDC STATUS =<aa> <bb > <cc> <dd> <ee> <ff> <99>

STO ST1 ST2 C H R N
The disk drive write test failed. The first line shows the drive number, < d>,
the track number, < t >, the sector number, < s>, and the head number
< h > where the read was attempted. The second line shows the actual status
of the 8272 disk controller chip from status registers 0 «aa», 1 «bb»,
and 2 «cc». The actual cylinder number «dd», head number
( < ee > ), ready status « ff'> ), and nurnber of bytes/sector « gg» are
also displayed. Refer to Table B-1 for the interpretation of the status.

FDD FORMAT FAILED ON DRIVE #<d>, TRK=<t>, SEC=<s>,
HD=<h>
FDC STATUS =<aa> <bb > <cc> <dd > <ee> <ff> <99>

STO ST1 ST2 C H R N
The disk drive format test failed. The first line shows the drive number,
<d>, the track number, <t>, the sector number, <s>, and the head
number <h> where the read was attempted. The second line shows the
actual status of the 8272 disk controller chip from status registers 0 ( < aa> ),
1 «bb», and 2 (x cc>-). The actual cylinder number «dd», head
number « ee > ), ready status « ff> ), and number of bytes/sector
«gg» are also displayed. Refer to Table B-1 for the interpretation of the
status.

B-28



iPDS™ User's Guide Error Indications

FDD DATA COMPARE FAILED ON DRIVE # <d >
LOC: <xx> EXP: <ee> ACT: <aa> TRK: <tt> SEC: <55> HD: <hh >

The data read and compare test failed. The test data « aa> actually read on
drive <d> did not compare to the data expected «ee» at the offset speci
fied by « xx». The track number < tt>, sector number <ss>, and head
number < hh > are also displayed.

BUBBLE DATA ERROR ON DRIVE #<d>
LOC:<xx> EXP: <ee> ACT: <aa> TRK:<tt> SEC: <55>

The test data « aa » actually read at the offset specified by « xx > did
not compare to the expected data ( < ee > ). The track nurn ber < tt> and the
sector number <ss> are also displayed.

PERSONALITY CODE CHECKSUM ERROR
EXP: <eeee> ACT: <aaaa>

The checksum computed on the personality program read from the PROM
Programmer Plug-in Module was not correct. The actual « aaaa > and ex
pected ( < eeee > ) checksums are displayed.

< xxxx > / < ee > / < aa >
The random data «aa» actually read at the memory location specified by
< xxxx > was not the expected data « ee > ). This display appears during
the RAM test.

B-29/B-30



APPENDIXC
REFERENCE TABLES

Hexadecimal to Decimal Conversion

The following table is for hexadecimal to decimal and decimal to hexadecimal
conversion. To find the decimal equivalent of a hexadecimal number, locate the
hexadecimal number in the correct position and note the decimal equivalent. Add
the decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position.
Subtract the decimal number shown in the table from the starting number. Find
the difference in the table. Continue this process until there is no difference.

MOST SIGNIFICANT BYTE LEAST SIGNIFICANT BYTE

DIGIT4 DIGIT3 DIGIT2 DIGIT1

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1 024 4 64 4 4
5 20480 5 1 280 5 80 5 5
6 24576 6 1 536 6 96 6 6
7 28672 7 1 792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
0 53248 0 3328 0 208 0 13
E 57344 E 3548 E 224 E 14
F 61 440 F 3840 F 240 F 15

7654 3210 7654 3210

BYTE BYTE

C-l



Appendix C

Base Conversions

iPDS™ User's Guide

C-2

DEC BIN HEX OCT DEC BIN HEX OCT

0 0000 0000 00 000 51 0011 0011 33 063
1 0000 0001 01 001 52 0011 0100 34 064
2 0000 0010 02 002 53 0011 0101 35 065
3 0000 0011 03 003 54 0011 0110 36 066
4 0000 0100 04 004 55 0011 0111 37 067
5 0000 0101 05 005 56 0011 1000 38 070
6 0000 011 0 06 006 57 0011 1001 39 071
7 0000 0111 07 007 58 0011 1010 3A 072
8 0000 1000 08 010 59 0011 1011 38 073
9 0000 1001 09 011 60 0011 1100 3C 074

10 0000 1010 OA 012 61 0011 1101 3D 075
11 0000 1011 08 013 62 0011 1110 3E 076
12 0000 1100 OC 014 63 0011 1111 3F 077
13 0000 1101 00 015 64 01000000 40 100
14 00001110 OE 016 65 01000001 41 101
15 00001111 OF 017 66 01000010 42 102
16 0001 0000 10 020 67 01000011 43 103
17 0001 0001 11 021 68 01000100 44 104
18 0001 0010 12 022 69 01000101 45 105
19 0001 0011 13 023 70 01000110 46 106
20 0001 0100 14 024 71 01000111 47 107
21 0001 0101 15 025 72 01001000 48 110
22 0001 0110 16 026 73 01001001 49 111
23 0001 0111 17 027 74 01001010 4A 112
24 0001 1000 18 030 75 01001011 48 113
25 0001 1001 19 031 76 01001100 4C 114
26 0001 1010 1A 032 77 01001101 40 115
27 0001 1011 18 033 78 01001110 4E 116
28 0001 1100 1C 034 79 01001111 4F 117
29 0001 1101 10 035 80 0101 0000 50 120
30 0001 1110 1E 036 81 0101 0001 51 121
31 0001 1111 1F 037 82 0101 0010 52 122
32 0010 0000 20 040 83 0101 0011 53 123
33 00100001 21 041 84 0101 0100 54 124
34 0010 0010 22 042 85 0101 0101 55 125
35 0010 0011 23 043 86 0101 0110 56 126
36 00100100 24 044 87 0101 0111 57 127
37 0010 0101 25 045 88 0101 1000 58 130
38 0010 011 0 26 046 89 0101 1001 59 131
39 00100111 27 047 90 0101 1010 5A 132
40 0010 1000 28 050 91 0101 1011 58 133
41 0010 1001 29 051 92 0101 1100 5C 134
42 0010 1010 2A 052 93 0101 1101 50 135
43 0010 1011 28 053 94 01011110 5E 136
44 0010 1100 2C 054 95 0101 1111 5F 137
45 0010 1101 20 055 96 01100000 60 140
46 00101110 2E 056 97 01100001 61 141
47 00101111 2F 057 98 01100010 62 142
48 0011 0000 30 060 99 01100011 63 143
49 0011 0001 31 061 100- 01100100 64 144
50 0011 0010 32 062 101 01100101 65 145



iPDS™ User's Guide

Base Conversions (continued)

DEC BIN HEX OCT DEC BIN HEX OCT

102 01100110 66 146 153 1001 1001 99 231
103 01100111 67 147 154 1001 1010 9A 232
104 011 b 1000 68 150 155 1001 1011 9B 233
105 01101001 69 151 156 1001 1100 9C 234
106 01101010 6A 152 157 10011101 90 235
107 01101011 6B 153 158 1001 1110 9E 236
108 01101100 6C 154 159 1001 1111 9F 237
109 01101101 60 155 160 10100000 . AO 240
110 01101110 6E 156 161 10100001 A1 241
111 01101111 6F 157 162 10100010 A2 242
11? 0111 0000 70 160 163 10100011 A3 243
113 0111 0001 71 161 164 10100100 A4 244
114 0111 0010 72 162 165 10100101 A5 245
115 0111 0011 73 163 166 10100110 A6 246
116 0111 0100 74 164 167 10100111 A7 247
117 0111 0101 75 165 168 10101000 A8 250
118 0111 0110 76 166 169 10101001 A9 251
119 0111 0111 77 167 170 10101010 AA 252
120 0111 1000 78 170 171 10101011 AB 253
121 0111 1001 79 171 172 10101100 AC 254
122 0111 1010 7A 172 173 10101101 AO 255
123 0111 1011 7B 173 174 10101110 AE 256
124 0111 1100 7C 174 175 10101111 AF 257
125 0111 1101 70 175 176 1011 0000 BO 260
126 0111 1110 7E 176 177 10110001 B1 261
127 0111 1111 7F 177 178 10110010 B2 262
128 10000000 80 200 179 1011 0011 B3 263
129 10000001 81 201 180 1011 0100 B4 264
130 10000010 82 202 181 10110101 B5 265
131 10000011 83 203 182 1011 0110 B6 266
132 10000100 84 204 183 1011 0111 B7 267
133 10000101 85 205 184 1011 1000 88 270
134 10000110 86 206 185 1011 1001 B9 271
135 10000111 87 207 186 1011 1010 BA 272
136 10001000 88 210 187 1011 1011 BB 273
137 10001001 89 211 188 1011 1100 BC 274
138 10001010 8A 212 189 1011 1101 BO 275
139 10001011 8B 213 190 1011 1110 BE 276
140 10001100 8C 214 191 10111111 BF 277
141 10001101 80 215 192 11000000 CO 300
142 10001110 8E 216 193 11000001 C1 301
143 10001111 8F 217 194 11000010 C2 302
144 1001 0000 90 220 195 11000011 C3 303
145 1001 0001 91 221 196 11000100 C4 304
146 1001 0010 92 222 197 11000101 C5 305
147 1001 0011 93 223 198 .11000110 C6 306
148 1001 0100 94 224 199 11000111 C7 307
149 1001 0101 95 225 200 11001000 C8 310
150 1001 0110 96 226 201 11001001 C9 311
151 1001 0111 97 227 202 11001010 CA 312
152 1001 1000 98 230 203 11001011 C8 313

Appendix C

C-3



Appendix C

Base Conversions (continued)

iPDS™ User's Guide

DEC BIN HEX OCT DEC BIN HEX OCT

204 11001100 CC 314 230 11100110 E6 346
205 11001101 CD 315 231 1110 0111 E7 347
206 11001110 CE 316 232 11101000 E8 350
207 1100 1111 CF 317 233 11101001 E9 351
208 1101 0000 DO 320 234 11101010 EA 352
209 1101 0001 D1 321 235 1110 1011 EB 353
210 1101 0010 02 322 236 11101100 EC 354
211 1101 0011 D3 323 237 11101101 ED 355
212 1101 0100 04 324 238 11101110 EE 356
213 1101 0101 05 325 239 11101111 EF 357
214 11010110 D6 326 240 1111 0000 FO 360
215 1101 0111 D7 327 241 1111 0001 F1 361
216 1101 1000 D8 330 242 1111 0010 F2 362
217 11011001 D9 331 243 1111 0011· F3 363
218 1101,1010 DA 332 244 1111 0100 F4 364
219 11011011 DB 333 245 1111 0101 F5 365
220 1101 1100 DC 334 246 1111 0110 F6 366
221 1101 1101 DD 335 247 11110111 F7 367
222 1101 1110 DE 336 248 1111 1000 F8 370
223 1101 1111 DF 337 249 1111 1001 F9 371
224 11100000 EO 340 250 1111 1010 FA 372
225 11100001 E1 . 341 251 1111 1011 FB 373
226 11100010 E2 342 252 1111 1100 FC 374
227 11100011 E3 343 253 1111 1101 FD 375
228 11100100 E4 344 254 11111110 FE 376
229 11100101 E5 345 255 11111111 FF 377

Powers of Two and Sixteen

Powers of Two

n

Conversion Between Powers of
2 and 16

256 8 20 =160

512 9 24 =161

1 024 10 28 =162

2048 11 212 =163

4096 12 216 =164

8192 13 220 =165

16384 14 224 =166

32768 15 228 =167

65536 16 232 =168

131 072 17 236 =169

262144 18 240 = 1610

524288 19 244 =1611

1 048576 20 248 =1612

2097152 21 252 = 1613

4194304 22 256=1614

8388608 23 260 = 1615

16777216 24 264 =1616

C-4



iPDS™ User's Guide

Powers of Sixteen

16 n n

1 0
16 1

256 2
4096 3

65536 4
1 048576 5

16777216 6
268435456 7

4294967296 8
68 719476 736 9

1 099 511 627 776 10
17 592 186 044 41 6 11

281 474976710656 12
4503599627 370 496 13

72057 594037927936 14
1 152921 504606846976 15

ASCII Code List

Decimal Octal Hexadecimal Character Decimal Octal Hexadecimal Character

0 000 00 NUL 32 040 20 SP
1 001 01 SOH 33 041 21 !
2 002 02 STX 34 042 22 "
3 003 03 ETX 35 043 23 #

4 004 04 EOT 36 044 24 $

5 005 05 ENQ 37 045 25 %

6 006 06 ACK 38 046 26 &
7 007 07 BEL 39 047 27
8 010 08 BS 40 050 28 (

9 011 09 HT 41 050 29 )

10 012 OA LF 42 052 2A *
11 013 OB VT 43 053 2B +
12 014 OC. FF 44 054 2C ,
13 015 00 CR 45 055 20 -
14 016 OE SO 46 056 2E
15 017 OF SI 47 057 2F /
16 020 10 OLE 48 060 30 0
17 021 11 OC1 49 061 31 1
18 022 12 OC2 50 062 32 ·2

19 023 13 OC3 51 063 33 3
20 024 14 OC4 52 064 34 4
21 025 15 NAK 53 065 35 5
22 026 16 SYN 54 066 36 6
23 027 17 ETB 55 067 37 7
24 030 18 CAN 56 070 38 8
25 031 19 EM 57 071 39 9
26 032 1A SUB 58 072 3A :
27 033 1B ESC 59 073 3B
28 034 1C FS 60 074 3C <
29 035 10 GS 61 075 30 =

30 036 1E RS 62 076 3E >
31 037 1F US 63 077 3F ?

Appendix C

C-5



Appendix C

ASCII Code List (continued)

iPDS™ User's Guide

C-6

Decimal Octal Hexadecimal Character Decimal Octal Hexadecimal Character

64 100 40 @ 96 140 60 \
65 101 41 A 97 141 61 a
66 102 42 8 98 142 62 b
67 103 43 C 99 143 63 c
68 104 44 D 100 144 64 d
69 105 45 E 101 145 65 e
70 106 46 ·F 102 146 66 f
71 107 47 G 103 147 67 9
72 100 48 H 104 150 68 h
73 101 49 I 105 151 69 i
74 102 4A J 106 152 6A j

75 103 48 K 107 153 68 k
76 104 4C L 108 154 6C I
77 105 4D M 109 155 6D m

78 106 4E N 110 156 6E n
79 107 4F a 111 157 6F 0

80 100 50 P 112 160 70 P
81 101 51 Q 113 161 71 q
82 102 52 R 114 162 72 r

83 103 53 S 115 163 73 s
84 104 54 T 116 164 74 t
85 105 55 U 117 165 75 u
86 106 56 V 118 166 76 v
87 107 57 W 119 167 77 w
88 100 58 X 120 170 78 x
89 101 59 Y 121 171 79 Y
90 102 5A Z 122 172 7A z
91 103 58 [ 123 173 78 {

92 104 5C \ 124 174 7C I
93 105 5D 1 125 175 7D }

94 106 5E 1\ 126 176 7E -
95 107 5F B 127 177 7F DEL



iPDS™ User's Guide

ASCII Code Definition

Abbreviation Meaning Decimal Code

NUL' NULL Character 0
SOH Start of Heading 1
STX Start of Text 2
ETX "End of Text 3
Ear End of Transmission 4
ENQ Enquiry 5
ACK Acknowledge 6
BEL Bell 7

BS I Backspace 8
HT Horizontal Tabulation 9
LF Line Feed 10
VT Vertical Tabulation 11
FF Form Feed 12
CR Carriage Return 13
SO Shift Out 14
SI Shift In 15

OLE Data Link Escape 16
DC1 Device Control 1 17
DC2 Device Control 2 18
DC3 Device Control 3 19
DC4 Device C-ontrol4 20
NAK Negative Acknowledge 21
SYN Synchronous Idle 22
ETB End of Transmission Block 23
CAN Cancel 24

EM End of Medium 25
SUB Substitute 26
ESC Escape 27

FS File Separator 28
GS Group Separator 29
RS Record Separator 30
US Unit Separator 31
SP Space 32

DEL Delete 127

ASCII Code in Binary

MSB 0 1 2 3 4 5 6 7

LSB 000 001 010 011 100 101 110 111

0 ·0000 NUL OLE SP 0 @ P 0 P
1 0001 SOH DC1 ! 1 A Q a q
2 0010 STX DC2 " 2 B R b r
3 0011 ETX DC3 # 3 C S c s
4 0100 EaT DC4 $ 4 0 T d t
5 0101 ENQ NAK % 5 E U e u
6 0110 ACK SYN & 6 F V f v
7 0111 BEL ETB 7 G W g w
8 1000 BS CAN < 8 H X h x
9 1001 HT EM ) 9 I Y i y
A 1010 LF SUB * : J Z j z
B 1011 VT ESC + K [ k {

C 1100 FF FS , < L I I
0 1101 CR GS - = M ] m }

E 1110 SO RS > N f n -
F 1111 SI VS / ? a - 0 DEL

Appendix C

C-7



Appendix C iPDS™ User's Guide

Control Codes

Control characters can be used to generate the ASCII codes from OOH through
1FH from the keyboard.

Character Code in Hexadecimal

CTRL-@ 00
CTRL-A 01
CTRL-B 02
CTRL-C 03
CTRL-O 04
CTRL-E 05
CTRL-F 06
CTRL-G 07
CTRL-H 08
CTRL-I 09
CTRL-J OA
CTRL-K OB
CTRL-L OC
CTRL-M 00
CTRL-N OE
CTRL-O OF

Character Code in Hexadecimal

CTRL-P 10
CTRL-Q 11
CTRL-R 12
CTRL-S 13
CTRL-T 14
CTRL-U 15
CTRL-V 16
CTRL-W 17
CTRL-X 18
CTRL-Y 19
CTRL-Z 1A
CTRL-< 1B
CTRL-\ 1C
CTRL-> 10
CTRL-.6. *

CTRL- - **

C-8

* - Use Tto generate the code 1EH.
** - Use +- to generate the code 1FH.

The iPDS CRT responds to CTRL-G (ASCII Bell), CTRL-H (ASCII Backspace) ,
CTRL-J (ASCII Linefeed), CTRL-M (ASCII Carriage Return), CTRL- [ (ASCII
Escape).

Function Codes

Function codes are only defined for uppercase alpha characters A-Z and numeric
characters 0-9. FUNCT-A through FUNCT-Z and FUNCT-O through FUNCT-9
(except FUNCT-R, FUNCT-S, and FUNCT-T) are sent to the processor as the
ASCII code corresponding to the alphanumeric character with the MostSignificant
Bit (MSB) set. FUNCT-R, FUNCT-S, and FUNCT-T are used by the
CRT/Keyboard controller and are not sent to the processor.

Function codes for lower case alpha characters (FUNCT-a through FUNCT-z) are
identical to the corresponding codes for the upper case alpha characters. The lower
case is converted to upper case when combined with the FUNCT key. The codes
for other FUNCT characters are undefined except for FUNCT-HOME, FUNCT-T,
and FUNCT- ! which are used in dual processor systems.

NOTE
Sending non-ASCII codes to the CRT, i.e., codes greater than
7FH produces undefined results except in the case of FUNCT-R,
FUNCT-S, FUNCT-T, FUNCT-HOME, FUNCT-f, and FUNCT-!.



iPDS™ User's Guide

Graphics Codes and Escape Sequences

The following chart shows the graphics symbols available and the corresponding
hexadecimal value that creates that symbol when output to the CRT screen when
in graphics mode. ASCII characters are no more than 5 x 7 on a 7 x 10 background
while graphics characters use the full 7 x 10 area. The use of graphics characters is
described in Chapter 8.

In graphics mode, any control characters (OOH-IFH except 02H and IBH) that are
output to the console will be displayed as the graphics symbol corresponding to the
code. The code 1BH is the ESCAPE code and 02H is the alternate ESCAPE code.
These two codes are used in graphics mode to generate escape sequences. Other
characters (20H-7EH) will be displayed as the corresponding ASCII characters.

The escape sequences are:

Appendix C

ESC,A
ESC,S
ESC,C
ESC,D
ESC, E
ESC,H
ESC,J
ESC,K

ESC,G
ESC,N

Move the cursor up one line.
Move the cursor down one line.
Move the cursor to the right one character.
Move the cursor to the left one character.
Home the cursor and clear the screen.
Home the cursor.
Erase from the current cursor location to the end of the screen.
Erase the line that contains the cursor from the cursor to the end
of the line.
Enter graphics mode.
Exit graphics mode.

The escape sequences and the methods of programming in graphics mode are de
scribed in detail in Chapter 8.

C-9



Appendix C

01}J4~b

OOH

01}34~6

0,
2

3

4

5
1-1-1- 1-1-1-

7
~I-I- I- .....~
1-1-1- f-I-I-
1-1-1- I-~~---- ---06H

0'23456

OBH

0123456

10H

0'23456

1SH

0'234~6

1AH

C-IO

01}J4~b

01H

0123456

0--'" ...... "'"
,1-1-1- 1-1-1-

2~1-1- 1-1-1-

3

4

5

7

07H

0'23456

OCH

0'23456

11 H

0'234~6

16H

0123456

01CH

0'134~b

03H

0123456

08H

01234~6

OOH

0123456

12H

0123456

17H

0123456

010H

0'}J4~6--- ---
,I--~ 1--I-

04H

0123456

09H

0'23456

0123456

13H

0123456

18H

0'234~6

01EH

iPDS™ User's Guide

0'23456

OSH

0123456

OAH

0123456

14H

19H

0'23456

01FH

0012A



APPENDIXD
ISIS-PDS AND ISIS-II

ISIS-PDS and ISIS-II Features

Table D-l compares ISIS-II features with ISIS-PDS features.

Table D-l. ISIS-II and ISIS-PDS Features

Feature ISIS-II ISIS-PDS

Disk Drives 8"-Single Side Single Density; 5 l/A" Double Side
8" Single Side Double Density; Double Density and
14" Hard Disk Bubble Memory

Sector Size 128 bytes/sector 256 bytes/sector

Automatic JOB Run at Boot No Yes

Select Console at Boot Yes No

Monitor I/O Driver Yes (in ROM) Yes (as part of ISIS)

Debug Commands Yes Yes; includes single
line disassembler;
step execution; and
I/O commands

Reload ISIS A1 Interrupt switch FUNCT-R

Return to Monitor Interrupt 0 FUNCT-R while in
DEBUG

HELP Command No Yes

FORMAT Command Yes No (uses IDISK only)

SERIAL Command No Yes
I

ASSIGN Command No Yes

ATTACH Command No Yes

DETACH Command No Yes

D-I



Appendix D

D-2

iPDS™ User's Guide

Table D-l. ISIS-II and ISIS-PDS Features (continued)

Feature ISIS-II ISIS-PDS

Dual Processors No Yes (shared devices)

RAM Used by ISIS 12K bytes 14K bytes (including
the monitor
I/O driver)

Supports RI, PO Yes No
primitive I/O drivers

Supports SI, SO No Yes
primitive I/O drivers

ISIS-II User System Calls Yes Yes

User-defined File Attributes No Yes

ISIS-II Directory Structure Yes Yes (includes user-
defined attributes

Command Line Interpreter Yes Yes (extended)

Bit Map Yes Yes (uses cluster
pre-allocation
scheme;
each bit represents
four sectors)

Most programs that are written under ISIS-II will also run under ISIS-PDS.

Use the FTRANS File Transport Utility product to transfer files between other
Intel microcomputer development systems and the iPDS Personal Development
System.



APPENDIXE
TIPS FOR OPERATING EFFICIENTLY

Single Drive System

A strategy that a user could follow to create large programs with just the single disk
drive is described in this section.

Three types of disk are needed:

a) Source disk with system commands, the CREDIT text editor, and language
translator.

b) LINK/LOCATE disk (only needed for programs larger than 56K bytes) with
system commands (except CREDIT) and the LINK, LOC~TE, and LIB
commands.

c) Emulator/PROM Programmer disk with the system commands (except
CREDIT) and LINK, LOCATE, LIB, EMV software for the emulator being
used, and iPPS software for PROM Programming.

The Source disk is used to create and contain the source program, the list files, and
the object files created by the language translator.

If the program is less than 56K, the relocatable object files created by the translator
should be copied directly to the Emulator/PROM Programmer disk to be linked,
located, debugged, and copied to PROMs.

If the program is greater than 56K, the relocatable object modules created by the
translator should be copied to the the LINK/LOCATE disk to be linked and
located. After being located, the executable object files should be copied to the
Emulator/PROM Programmer disk for debugging and PROM programming.

In the rest of this section, an example is considered to illustrate the use of the
single drive system.

The following assumptions are made for this example.

• The source disk contains 82K bytes of system files and 99K bytes for an as
sembler leaving the user with 459K bytes available on the source disk.

• The lengths of the files in bytes are:

Source file

List file

=1 * x

=3 * x

TMA/TMB files =3.5 * x

Object files =0.5 * x (with symbols)

0.2 * x (without symbols)

where x is the length of the source file.

• All user source modules are 100 lines.

E-l



Appendix E

E-2

iPDS™ User's Guide

• Each source line is 25 bytes.

• Listing files are saved on the disk.

• The Emulator/PROM Programmer disk contains 50K bytes for system files
(without CREDIT), 96K bytes for EMV software (EMV-5I) , 36K for iPPS
software, and 30K for LINK, LOCATE, and LIB commands. The total of
212K bytes leaves 428K bytes of disk space for the user on the
Emulator/PROM Programmer disk.

• The LINK/LOCATE disk contains 50K bytes of system files (without
CREDIT) and 30K for the LINK, LOCATE, and LIB commands. The total
of 80K bytes leaves 560K bytes of disk space for the user on the
LINK/LOCATE disk.

Table E-1 shows the number of modules and size of the object program based on
these assumptions. The calculations used are given following the table.

Table E-l Module Number and Object Program Size

Free Space Number of Modules Executable Object File Size

Source Disk 459K bytes 36 modules 17.5K bytes
LINK/LOCATE Disk 560K bytes 229 modules . 111 .OKbytes
EMV/iPPS Disk 428K bytes 116 modules 56.0K bytes

About 40 source files of 100 lines each are possible on one source disk, assuming
that each source module is 100 lines and each line is 25 bytes. The following calcu
lations can then be made.

100 source lines * 25 bytes/line = 2500 bytes/source module

3.5 * 2500 = 9K for TMA/TMB files

Each source file then requires:

2500 bytes - source file
1250 bytes - object file with symbols (500 bytes actual object file)
7500 bytes -Iisting files

11250 bytes - total space for each source file through assembly

Subtract the 9K bytes of temporary files from the 459K bytes of user disk space to
get 450K bytes of disk space for source files on the source disk. If each source file
requires about 11K bytes then:

450K/11K = about 40 source files on each source disk

Then, the following calculations can be made:

40 files * 1250 bytes/object file & symbols= 48K bytes of object
file per disk

36 files * 1250 bytes/object file & symbols= 44K bytes of object
file per disk 1



iPDS™ User's Guide

36 files * 500 bytes of actual object code = 17.5K bytes of actual
object code per disk

Since the COpy command copies 44K bytes at one time, 'if only 36 files
are used, the disk will not have to be swapped to transfer all the object
files to the EMV/iPPS disk.

About 116 object modules can be linked and located on the EMV /iPPS disk at one
time. This figure is derived from the following calculations.

Assuming that the link. file and the execution file are the same as the total for all
the object files, then 3x is the total for all three where x is the size of all the object
files. Since there are 428K bytes of user space on the EMV/iPPS disk,

3x = 428K bytes of free disk space on the EMV/iPPS disk
x = 142K1)ytes for the 'total object files

If there are 1250 bytes/object module (from the previous calculations), then,

142K bytes of object module space/1250 bytes per object module
. = 116 object modules

500 bytes ofactual object code/module * 116 modules
= 56K actual code

About 152 object modules can be linked and located on the LINK/LOCATE disk.
This figure is derived from the following calculations.

Assuming that the link file and the execution file are the same as the total for all
the object files, then 3x is the total for all three where x is the size of all the object
files. Since there are 560K bytes of user space on the LINK/LOCATE disk,

3x = 560K bytes offree disk space on the LINK/LOCATE disk
x = 186K bytes for the total object files

If there are 1250 bytes/object module (from the previous calculations), then,

186K bytes of object module space/1250 bytes per object module
= 152 object modules

500 bytes of actual object code/module * 152 modules
= 74K actual code

About 229 object modules can be linked on a single LINK/LOCATE disk.
However, the object modules would have to be deleted after linking them and the
new linked file would be located using the disk space from the object modules.

2x = 560K bytes of free disk space on the LINK/LOCATE disk
x = 280K bytes for the total object files

If there are 1250 bytes/object module (from the previous calculations), then,

280K bytes of object module space/1250 bytes per object module
= 229 object modules

500 bytes of actual object code/module * 229 modules
= 111K actual code

Appendix E

E-3



Appendix E

E-4

iPDS™ Use~'s Guide

On a single drive system, the user must manually swap disks in and out of the
single drive. This swapping is one of the added time factors in using a single drive
system. The COPY command copies 44K bytes at each swap. Thus, the number of
swaps required. to translate and debug a program depends primarily on the size of
the program. Table E-2 summarizes the number of swaps required and the
number of each type of disk required to generate the software relative to the size
of the program. The figures used are based on the previous calculations.

Table E-2 Summary of Number of Disks and Swaps Required

Code Size Source Disks Link/Locate Disks EMV /iPPS Disks Number of Swaps

1K- 17.5K 1 0 1 1
18K- 35.5K 2 0 1 3
40K- 53.5K 3 0 1 5
54K- 71.5K 4 1 1 10
72K- 89.5K 5 1 1 12-13*
90K -107.5K 6 1 1 16*

• Worst case

Bubble Memory System

Each bubble memory device contains 128K bytes of storage space. It is recom
mended that the bubble memory be used as the system disk device only if a disk
drive is not available. The system files use about TBDK of space and would leave
only TBDK for the user.

The access times for bubble memory are faster than for disk drives. For example,
copying a 4K file using bubble memory takes 7 seconds while it takes 14 seconds
to make the same transfer on disk drives. Therefore, short programs that are run
often and data files that are frequently accessed should be stored in bubble
memory.

The following are typical applications for the bubble memory device:

• By using the bubble memory for all .TMA or .TMB files when translating the
source code to object code, the translation (assembler or compiler) will run
faster.

• The bubble memory can also be used to store all work files created by the
emulator software (EMV program) and the PROM programming software
(iPPS) program. By storing the workfiles in bubble memory, these programs
will run faster.

• Short programs that are run often can be stored in bubble memory to reduce
the load time of the program. The tradeoff in storing programs on bubble
memory is between space (l28K available) and speed of access. If a program
is not used often, it can be stored on disk.

• The bubble memory can be used to store diagnostic programs that are run for
quality control in a manufacturing environment. Here, the programs are fre
quently loaded and the environment may not be suitable for disks. Both fac
tors make the bubble memory a good alternative.



iPDS™ User's Guide

• The bubble memory device can also be used as the system disk and to store
diagnostics for the user's product in field service applications where disks are
not easily available.

Dual Processor System

A system with an optional processor installed should have at least two disk drives.
One drive should be assigned as the system disk device (:FO:) for one of the
processors, while the other drive is assigned as the system disk device (:FO:) for
the other processor. Otherwise, disk contention caused by both processors trying
to access the same physical device significantly degrades processing speeds on
both processors.

The system disk device is the default used to access command files and data files
when no explicit drive specification is given. Thus, each drive used as a system
disk device should contain a system disk and all the necessary command files that
will be used.

The dual processor system can be used in a debugging environment as follows.
While debugging a program on Processor A using the EMV software, a bug can be
patched in memory. However, the corrected code is not updated in the source file.

Without exiting from the emulator, the user can switch to Processor B, correct the
source code using the CREDIT text editor and retranslate the program using a
SUBMIT file that assembles/compiles, links, and locates the program.

After the SUBMIT file is started, the user can switch back to Processor A and con
tinue debugging the patched code while monitoring the progress of the SUBMIT
file.

While running a program on either processor, if a filename is needed, the DIR ,
command can be run on the other processor to find the correct name. Then, the
user can return to the first processor and continue running the program without
having entered an incorrect name.

Appendix E

E-5/E-6



GLOSSARY

absolute object module an object module that has already been linked and
located and contains all the necessary instructions and
information so it can be executed on the target
microprocessor,

access

address

allocate

argument

array

ASCII

assembler

assembly language

asynchronous data
transmission

attribute

backup copy

base address

base processor

batch processing

the ability to use all or part of the system, for example,
to access a file.

a location in memory or on a system device.

to designate a resource, such as memory, for a specific
use.

a variable supplied with a command. The result of the
command depends on the values of its arguments.

a sequence of items, such as a memory component is
an array of bits.

American Standard Code for Information Interchange.
A convention adopted for representing alphanumeric
values as byte values.

a program that translates assembly language source
code into object code.

a programming language whose instructions are closely
related to the instruction set of the target processor.

a method of transmitting data where the rate of trans
mission varies. Each byte of data is preceded by one or
more start bits and followed by one or more stop bits.
Compare with synchronous transmission.

a characteristic of a disk file, specified in the directory
containing the file. The attributes of an ISIS-PDS disk
file are invisible, write-protect, format, system, and
three user defined attributes.

an additional copy of data saved to prevent loss of data
in case the original copy is destroyed. It is a good prac
tice to save backup copies of all disk files.

the number to which an offset number is added to pro
duce the actual address.

the processor originally supplied with the iPDS system.
See Processor A and optional processor.

a method of running a group of jobs in sequence with
out requiring operator intervention. The ISIS operating
system offers several commands for batch processing.
See the SUBMIT and JOB commands.

Glossary-l



Glossary

Glossary-2

baud rate

binary

bit

block

bootstrap

breakpoint

bubble memory

buffer

byte

byte bucket

eLi

close file

command

command file

command line

compiler

configuration

connection

console

iPDS™ User's Guide

rate of transmission of serial data. On the iPDS system,
the baud rate is the number of bits transmitted per
second.

referring to the base two number system..

a binary digit (either 0 or 1) or a unit of information
storage with only two possible values.

a collection of information handled as a single unit. For
example, on the iPDS system, a disk block is 256 bytes
of data corresponding to a sector on the disk.

to initialize the system to accept programs and data. On
the iPDS system, to load the ISIS-PDS operating
system. Boot is an abbreviated form of bootstrap.

a specific location in a program where execution of the
program should be halted.

a storage device based on magnetic bubbles which can
be present or absent, thereby representing binary data.
Bubble Memory Multimodules are used as alternate
disk devices on the iPDS system.

an area of memory reserved for expediting input and
output operations.

a sequence of eight consecutive binary digits treated as
a single value.

a pseudo-device for input or output of data.

Command Line Interpreter. An ISIS-PDS program that
interprets command lines and loads and executes the
program specified in the command line.

an operation that removes a file from being accessed. A
file can be accessed only when it is opened.

an instruction to the operating system or to a program
running under the control of the operating system.

a file containing a program that is run when a command
line is issued.

the entry made by a user to invoke a command.

a 'program that translates high-level language source
code into object code.

a description of a computer system.

a description of how to access a file used by systems
programmers.

the primary device used for interactive input and
output in a system. On the iPDS system, the keyboard
is the standard console input device and the CRT
screen is the 'standard console output device.



iPDS™ User's Guide

control character

controller

CPU

CRT

cursor

cylinder

data block

debug

default value

delimiter

destination

development system

device

device driver

device name

a single character command given at the keyboard by
entering the CTRL key and another key simul
taneously. Control characters perform such functions
as displaying the contents of the line editing buffer,
deleting the contents of the line editing buffer, and
stopping the console output.

a hardware element that enables a processor to manipu
late one or more I/O devices of a specific type.

Central Processor Unit. The component of a computer
system that controls the rest of the system.

Cathode Ray Tube. A vacuum tube with a screen used
for displaying data similar to a TV screen.

a marker used on CRT screens to indicate where data
will appear next. On the iPDS system, a reverse video
block is used as the cursor.

on the iPDS system, one cylinder consists of two
tracks, one on each surface of the disk. With the bubble
memory multimodule, one cylinder is the same total
number of bytes as one track.

under ISIS-PDS, a sector (256 bytes) on the disk con
taining actual data of a file. See pointer block.

to locate and correct errors in a program. The iPDS
system provides the DEBUG command to aid in this
process.

the value of an input parameter that is assumed by a
program if no value is explicitly given.

under ISIS-PDS programs, a character that separates
parts of a command line. A space and a comma are
common delimiters.

the device used to receive the output from a data
transfer.

a computer system designed especially to support the
development of computer based products, both hard
ware and software.

a piece of peripheral equipment, such as a printer, that
is attached to a system and can be accessed by the
system.

a program used to control an I/O device.

a string of characters recognized by the operating
system, that identifies a physical input or output
device. It consists of four characters: a colon, followed
by two alphanumeric characters, followed by another
colon. Examples of device names are :Fl:, :CI:, :LP:,
and :BB:.

Glossary

Glossary-3



Glossary

Glossary-4

directory

disk

dual processing

dynamic

emulator

entry point

environment

EOF

EPROM

E2PROM

error

error handling

exception

extension

fatal error

file

file name

iPDS™ User's Guide

a table present on each disk that contains a list of all the
files on that disk giving the name, length, location and
attribute for each file.

a term designating the 51,4" flexible diskette used as a
recording medium in disk drives or the recording
medium of the bubble memory.

a capability of the iPDS system which allows programs
to be run simultaneously on two different processors.

the capacity of data; memory, or other entities of being
changed while a program is running.

a module composed of' hardware, firmware, and soft
ware that aids the designer of a microcomputer system
in developing and debugging the hardware and
software.

the first instruction to be executed in a program or
subroutine.

the files, memory, and hardware resources available to
the system.

End of File.

Erasable Programmable Read Only Memory.

Electrically Erasable Programmable Read Only
Memory.

a mistake caused by a program that is currently running.

the ability of an operating system or user program to
deal with error conditions.

error.

the optional part of a filename, consisting of one to
three alphanumeric characters preceded by a period.

an error in the system that makes it impossible for a
program to continue running and causes the system to
reinitialize.

a collection of information that may be read or written
by an operating system command. It may correspond to
a physical device such as a printer which has only one
file associated with it or it may be one of many files on a
multiple file device such as a disk drive.

a character string recognized by the operating system,
that identifies a file. It consists of a name of one to six
alphanumeric characters, followed by an optional
extension. Examples of filenames are PROG A,
PROGA.SRC, and ISIS.BIN.



iPDS™ User's Guide

firmware

format

graphics mode

hardware

hexadecimal

initial ization

instruction.

interface

interleaving, on disk

computer programs stored in a physical device such as
ROM that can be used in a machine.

the general form of a command that defines the se
quences of symbols that produce an acceptable
command. See syntax.

a mode in which characters output to the console can
be graphics characters.

the electronic circuits that comprise a computer.

number system with a base of 16 and with digits of 0-9
and A, B, C, D, E, and F.

the process of establishing, the beginning environment
of a computer system including powering on hardware
and loading software.

command in a program that tells the computer what to
do.

common boundary between two parts of a system.

the technique of storing consecutive blocks of a file at
non-adjacent locations on the disk. This technique en
hances the access time.

Glossary

interleaving, on PROMs the technique of storing consecutive bytes on different
PROM devices to allow two 8-bit PROMs to be con
nected in parallel to produce a 16-bit wide memory
device.

interpreter

interrupt

interrupt level

invocation line

I/O

I/O system

iteration

job

jobfile

a program that directly executes a high-level language
source code or intermediate code, so that the source
code need not be translated into object code. An exam
ple of an interpreter is BASIC-80.

a break in the execution of a program such that the pro
gram can be resumed after the interrupt is processed.

a priority assigned to an interrupt.

the command line used to run a program.

Input/Output.

the collection of routines that handles input and output
to peripheral devices.

a repetition.

a program that can be run under the control of the ISIS
PDS operating system.

a file containing ISIS-PDS command lines.

Glossary-5



Glossary

Glossary-6

K (Kilo)

library

link

load

locate

logical name

line terminator

machine state

macro

mass storage device

memory

microcontroller

microprocessor

monitor

multimodules

multimodule row

nesting

non-system disk

iPDS™ User's Guide

1024.

a file created by the LIB utility that contains one or
more object modules that can be accessed by a single
ISIS filename. Libraries are used in the LINK utility.

the process of combining program modules to run as a
single program.

to transfer data, usually a program, from a file into
memory.

the process of assigning physical addresses in a
program.

a symbolic name assigned to a device by which a user
accesses that device. See physical name.

characters used to end a line. Under ISIS-PDS, the car
riage return followed by a linefeed terminates a line.

the conditions of all the elements of the processor: the
registers, the stack pointer, and the program counter.

a group of commands identified by a single name and
executed by entering that single name.

a device used to store large files of data externally.

a component of a microcomputer where data and pro
grams are stored external to the processor.

an LSI component containing all of the necessary parts
of a computer: a processing unit, a clock, I/O ports, and
memory.

an LSI component containing the CPU of a computer.

Under ISIS-PDS, the DEBUG program is referred to as
a monitor program.

small circuit boards provided as options for the iPDS
system to add specific capabilities to the system. For
example, the bubble memory multimodule provides
additional mass storage.

on the iPDS system, four multimodules may be added.
They are grouped into two rows of two each.

the relationship between subroutines such that one su
broutine is embedded within another. CREDIT macros
can be nested.

Under ISIS-PDS, a disk that does not contain all the
system files necessary to initialize the system. It con
tains the files ISIS.TO, ISIS.LAB, ISIS.DIR, and
ISIS.FRE. To make a non-system disk into a system
disk, copy the files ISIS.PDS and ISIS.CLI from a
system disk to the non-system disk.



iPDS™ User's Guide

notational conventions conventions adopted throughout a manual to describe a
system.

Glossary

object code

object file

octal

offset

open file

operating system

optional processor'

options

origin point

overlay

parameters

path name

peripherals

physical name

plug-in modules

pointer

pointer block

code produced by a compiler or assembler that can be
either relocatable or absolute. See relocatable object
code and absolute object code.

file containing object code.

number system using a base of 8.

value added to a base to produce the actual value
desired.

an operation that allows a file to be accessed. Different
programs have limits on the number of files that can be
opened at a time.
a collection of programs that provide the functional (as
opposed to the physical) environment in which other
programs work.

On the iPDS system, an additional processor can be
added to the system to increase the processing
throughput. See Processor B and base processor.

enhancements that can be added to the system. a part
of a command line that is not required, but may be en
tered to modify the operation of the command.

the address of the first instruction to be executed in a
program or subroutine. See entry point.

a portion of a program that is not loaded from disk im
mediately when the program is run but is loaded when
needed by the program. '

a quantity that can be given a different value to change
the operation of a command.

the device name and file name used to identify and
access a file.

external devices used for input, output, and storage of
data.

the identifier used internally by the system to access a
peripheral device.

small, hand-held units available as options for the iPDS
system to add capabilities such as emulation and
PROM programming to the system.

a value used to direct access to a location containing
data.

a sector in a disk file that contains pointers to data
blocks. Also, header block. See data block.

Glossary-7



Glossary

Glossary-8

port

procedure

PROM

prompt

Processor A

Processor B

RAM

real-time
breakpoi nts

relocatable
object code

reset

resource

ROM

sector

semaphore

serial device

software

source

source code

switch

iPDS™ User's Guide

an arrangement of circuitry on a microprocessor that
allows a byte or word of data to be input from or output
to an external device.

a named block of PL/M code that is not executed at the
point where it is written but may be activated from
other points in the program by referring to its name.

Programmable Read Only Memory.

a sequence of characters displayed on the CRT screen
by an interactive program to indicate that the program
is ready to accept command input.

base processor.

optional processor.

Random Access Memory. RAM can be used to read
and write data.

a feature of some debugging tools where breakpoints
that are set do not slow down the processing speed.

object code produced by a compiler or assembler that
can be linked with other modules and then located to
produce absolute object code.

to restore system to its initial state. On the iPDS
system, the RESET key on the keyboard performs a
hardware reset to the system.

devices available to the system for processing data.

Read Only Memory.

256 contiguous bytes on a disk.

a bit that used as to signal that a resource is currently
being used, so that both processors do not attempt to
access the same resource at the same time.

device that transfers data a bit at a time. On the iPDS
system, provisions are available to connect a serial
device.

programs and data used to control computer hardware..

device used to provide input for a data transfer.

high level language or assembler language version of a
program.

same as options on a command line. A part of the com
mand line that is not required but may be entered to
modify the operation of the command.



iPDS™ User's Guide

symbolic debugging

synchronous data
transmission

syntax

system

system call

system disk

system files

tab

tag

text editor

throughput

top down design

track

translator

vectored interrupt

. volatile

volume

volume id

a debugging environment where symbols can be used
to access memory locations (or any other values)
rather than physical addresses.

a method of transmitting data where the rate of trans
mission is a constant. See asynchronous data
transmission.

same as format.

a group of components, both hardware and software,
designed to perform some task.

a routine in a system that may be called to perform an
operation from a program..

a disk containing all the files necessary to initialize the
system. The files are ISIS.TO, ISIS.LAB, ISIS.DIR,
ISIS.FRE, ISIS.CLI, and ISIS.PDS.

files containing the ISIS-PDS operating system.

a key on the keyboard that moves the cursor to the next
tab stop.

in the CREDIT text editor, a marker that designates a
location in the text file.

a program used to enter and modify and store text in
disk files.

the number of programs that can be processed during a
given amount of time. The throughput is increased on a
dual processor system because two programs can be
run during the same time period.

a method of designing programs in an organized way in
which the program is decomposed into independent
modules which can be programmed separately using,
for example, the procedure facility in PL/M.

a group of sectors on one surface of the disk.

a program that translates program source code into
object code.

a scheme where an interrupt causes the system to jump
to a constant location called the vector.

characteristic of being erased when power is removed.
When applied to memory, RAM is volatile memory.
Magnetic Bubble Memory, PROM, EPROM, and
ROM are non-volatile.

disk.

label used to identify disk.

Glossary

Glossary-9



Glossary

Glossary-lO

wildcard designation

workfile

write protect

iPDS™ User's Guide

method used to designate a class of names such as file
names with certain character positions variable.

file used by some programs to temporarily store data
during processing. Workfiles are created and main
tained by programs when needed.

characteristic of file such that the file cannot be erased.



INDEX

When more than one page is listed for an item, the italicized page numbers (for example, 3-11) are primary references;
other pages are secondary references or examples.

#,4-7,4-12,4-13,5-45
%,4-68 thru 4-71, 5-38
&

IPPS, 10-11

ISIS-PDS wildcard substitution, 4-34 thr.u 4-36, 4-51,
4-53, 4-60, 4-70, 4-72, 5-6 .~'

DEBUG prompt, 4-54 thru 4-~9, 7-3
ISIS-PDS command, 5-46

notational convention, 5-1
/,5-47
:BB:,5-4
:CI:,5-4
:CO:,5-4
:F<n>:,5-4
:HP:,5-3
:HR:,5-3
:11:,5-3
:Ll:,5-3
:LP:,5-3
:01:,5-3
:Pl:,5-3
:P2:, 5-3
:Rl:,5-3
:R2:,5-3
:SI:,5-3
:SO:,5-3
:TP:, 5-3
:TR:,5-3
:VI:, 5-3
:VO:, 5-3
< >,3-19, 5-1, 10-12
<n>,5-6
?

ISIS-PDS command, 4-1, 5-42
wildcard character

ISIS-PDS, 4-35, 5-6
@ , 4-23, 5-43
[]

notational convention, 5-1 thru 5-2,
{ }

mnotational convention, 3-19,5-1,
;,6-5

A command
DEBUG, 7-17

Absolute Object File Format, 8-86, 10-10
access system call parameter, 8-10

accessing
devices, 5-2 thru 5-8,8-3, 8-80

'. files, 5-3 thru 5-8, 8-3, 8-88
actual$ptr system call parameter, 8-10
address, 7-6, 7-19, 7-20, 7-22, 7-23, 7-26, 7-27, 7-28,

7-31, 8-70,8-71, 8~7 thru 8-74, 8-79 thru 8-80
AFtN,8-9
An>, 3-21,9-2
An+,3-21
appending files, 4-21, 5-16
arrow keys, 3-8, 6-2, 6-4
ASCII

characters, C-6 thru C-9
codes, C-6 thru C-9
files, 8892

ASM-80/85, 1-7,4-53,8-6
Assembly language service routine usage, 8-6

equates for system calls, 8-7 thru 8-8
ASSIGN command

ISIS-PDS, 4-9, 5-10
Assign command

DEBUG, 7-19
atrb system call parameter, 8-10
ATTACH

ISIS-PDS command, 5-13
System call, 8-14

ATTRIB
ISIS-PDS command, 4-18 thru 4-19,5-14
System call, 8-16

attributes, 5-14,8-94
Auto configuration, 3-17, 4-60, 4-61, 3-17,4-60,4-61,

5-31 thru 5-32
Auto repeat feature on keyboard, 3-5

backing up
files, 3-12,4-72 thru 4-74
disk, 3-15,3-25,3-27,4-74 thru 4-75

backslash
CREDIT, 6-3

base address calculation, 8-72
basic system

installation, A-I thru A-5
introduction, 1-1 thru 1-12

batch program execution, 4-60 thru 4-74,5-31,5-37
baud rate modification, 4-7, 4-12 thru 4-13, 5-36,

8-76 thru 8-77
binary number base

conversion tables, C-2
IPPS, 10-9

bipolar PROM, 10-1

Index-I



Index

blank state of PROM, 10-3
block$ptr system call parameter, 8-10
blocks

disk, 8-88 thru 8-90
Bn>,9-2
Bn+, 3-22
boot, 3-16, B-15 thru B-17
breakpoints

DEBUG command, 7-1, 7-28
software development, 2-5, 2-6

bubble memory multimodule
drive numbers, A-19
installation, A-19 thru A-22
use, 3-14, 3-40 thru 3-44, 5-3, £-5

buf$ptr system call parameter, 8-12
buffer

file, 8-46, 8-62, 8-71 thru 8-73
IPPS, 10-7 thru 10-8 .

byte$ptr system call parameter, 8-10
byte bucket, 5-4

Ccommand
DEBUG, 7-21

calls
system, 8-3 thru 8-63

care of disks, 3-11
categories

DEBUG commands, 7-7
ISIS-PDS commands, 4-1, 4-2, 4-7, 4-14, 4-40, 4-52,

4-59, 5-9
system calls, 8-3 thru 8-4

CAUTION
flag, 1-11

Change commands
I/O ports from DEBUG, 7-28, 7-33
memory from DEBUG, 7-26, 7-31, 7-34
registers from DEBUG, 7-34

char system call parameter, 8-10
CI (console input)

system call, 8-18
ci$path$ptr,8-10
CLEAR command, B-18
CLI, 3-15,4-1,5-42,8-1,8-81
CLOSE

system call, 8-19
CO (Console Output)

system call, 8-21
code conversion commands

HEXOBJ,4-52
OBJHEX, 4-52

command files
ISIS-PDS, 4-60 thru 4-74, 5-32,5-41

command formats
DEBUG, 7-5 thru 7-6
ISIS-PDS, 5-1 thru 5-9

command line interpreter, 1-8,3-15,4-1,5-42,8-1,8-81
command line mode

CREDIT, 6-4 thru 6-5

Index-2

iPDS™ User's Guide

command notational conventions, 5-1 thru 5-2,
command

defaults
ISIS-PDS,3-21

descriptions
CREDIT, 6-1 thru 6-12
DEBUG, 7-1 thru 7-34
IPPS, 10-5
ISIS-PDS, 5-10 thru 5-50

editing, 3-21,5-52
entry

DEBUG, 7-4 thru 7-5
IPPS, 10-9
ISIS-PDS, 3-21 thru 3-23

format
DEBUG, 7-5
ISIS-PDS, 3-19, 5-2 thru 5-9

line, 3-19
syntax

DEBUG, 7-5
ISIS-PDS, 3-19, 5-2 thru 5-9

comments
IPPS, 10-6
ISIS-PDS,3-19

concatenation
ISIS-PDS COPY command, 5-16

Confidence Tests, 3-42 thru 3-44, B-15 thru B-29
config$byte system call parameter, 8-10
configurations, 3-17,4-59,4-65, 5-32, 8-5, 8-64
conn system call parameter, 8-11
conn$ptr system call parameter, 8-11
connections, 8-9 thru 8-10
CONPDS commands, B-16 thru B-27
CONSOL

system call, 8-22
console

assignment, 4-9, 5-10,8-22
determination of console device, 5-11,8-32
device, 5-4

control$sw system call parameter, 8-11
control characters, 3-6 thru 3-8,3-21,3-22,6-2 thru 6-5
control panel, 3-2 thru 3-3
conversion tables, C-l thru C-5
converting

number bases, C-l thru C-5
files

absolute object to hexadecimal, 4-52
hexadecimal to absolute object, 4-52

CO system call, 8-21
co$path$ptr, 8-11
COpy command

ISIS-PDS, 4-22, 5-16 thru 5-21
COUNT

in system call, 8-47
count system call parameter, 8-11
creating a file

COPY, 5-16
CREDIT, 6-1

CREDIT command, 6-3



iPDS™ User's Guide

CRT
CREDIT, 6-4
input, 8-18
ISIS-PDS,3-10
output, 8-21

CS file, 5-37 thru 5-42
CSD file, 5-37 thru 5-42
CSTS (Console input Status)

system call, 8-26
CTRL key, 3-6 thru 3-7,3-22,3-23,6-2 thru 6-3
CTRL-A

ISIS-PDS, 3-7,3-22,5-49
CTRL-B, 5-48
CTRL-D

ISIS-PDS, 3-6,3-22,5-49
CTRL-E,5-38

ISIS-PDS, 3-6,
CTRL-L,5-48
CTRL-P

ISIS-PDS, 3-6
CTRL-Q

ISIS-PDS, 3-6,3-10,3-22
CTRL-R

ISIS-PDS, 3-6
CTRL-S

ISIS-PDS, 3-7, 3-10, 3-23
CTRL-X

ISIS-PDS, 3-7,5-48
CTRL-Z

ISIS-PDS, 3-7
cursor, 3-10,6-4

D command
DEBUG, 7-22

DEBUG command, 4-52, 4-54, 7-2 thru 7-4
debugging programs, 2-1 thru 2-6,4-54 thru 4-55,

7-11 thru 7-21
decimal

IPPS, 10-9
defaults

IPPS,IO-6
ISIS-PDS,3-20

DELETE
ISIS-PDS command, 4-14, 4-36,5-21
system call, 8-25

deleting
ISIS-PDS

command lines, 3-7, 3-19,5-49
. files, 4-14, 4-35, 5-22

from a program, 8-25
DESCRIBE command, B-18
design

hardware, 2-2
software, 2-1

design cycle, 2-1
DETACH

ISIS-PDS command, 5-23
system call, 8-26 thru 8-27

Index

determining the console assignment, 5-11,8-32 thru 8-33
determining the memory space, 8-40
determining the processor, 9-14
device

management, 4-7
names, 5-3 thru 5-4

diagnostics, B-16 thru B-18
DIR

ISIS-PDS command, 4-14, 5-24
directory

content, 8-95
listing, 4-14 thru 4-15,5-24

disk
addressing, 8-88 thru 8-97
backup, 3-12,3-15,3-25,3-27
care, 3-11
directory, 4-14, 5-25,8-95
drives

configuration, A-29
external, 1-4, 3-10, A-29
logical, 5-4, 5-10
installation of, A-3
integrated, 1-2, 3-10
internal, 1-2, 3-10
operation of, 3-10
physical, 5-2 thru 5-3, 5-10
single drive system, 4-37, £-1

errors, B-2 thru B-5, B-ll thru B-13, B-14 thru B-15,
B-27 thru B-29

files, 4-14, 5-5,8-80
formatting, 3-25, 3-27, 5-28

-initializing, 3-15, 3-24, 3-39, 5-28
insertion into drive, 3-12 thru 3-13
media, 3-11,8-81
non-system, 3-15,4-6, 5-32, 8-92, 8-93
removal from, 3-12 thru 3-13
system, 3-15,3-25,3-27,5-29,8-92,8-93

diskette, See disk
display

CREDIT, 6-1, 6-4
input, 8-18
ISIS-PDS,3-1O
output, 8-23

documentation, 1-8
dot operator in PL/M, 8-9
drive

configuration, A-26
external, 1-4, 3-10 thru 3-11
logical, 5-4,5-10
installation of, A-3
integrated, 1-2, 3-10
internal, 1-2, 3-10
operation of, 3-10 thru 3-11
physical, 5-2 thru 5-3, 5-10
single disk drive system, 4-37, £-1

Ecommand
DEBUG, 7-24

echo file, 5-4, 8-81

Index-3



Index

echo system call parameter, 8-11
editing

command lines, 3-21 thru 3-22,5-49
files, 6-1

electrical specifications
line printer interface, A-26
main chassis, A-29
serial interface, A-14

emulation, 1-6, 1-10, 2-5 thru 2-6
emulators, 1-6, 1-10, 2-5 thru 2-6
entry$point system call parameter, 8-11
entry$ptr system call parameter, 8-11
EPROM erasure, 10-2
E2pROM, 10-1
equates

for assembly language system calls, 8-7 thru 8-8
errnum system call parameter, 8-11
ERROR

CONPDS command, B-22
system call, 8-28

error messages
Confidence Test, B-27 thru B-29
CREDIT, 6-159
DEBUG, 7-5 thru 7-6
ISIS-PDS, B-1 thru B-14
Power on Diagnostics, B-15 thru B-17

errors
fatal, 8-8, B-3
non-fatal, 8-8, B-2

ESC key
CREDIT, 6-3, 6-5
DEBUG, 7-5
ISIS-PDS, 3-7,3-22,5-48

examining the contents of
memory, 7-22
registers, 7-38

examples
CREDIT, 4-40 thru 4-48
DEBUG, 4-54 thru 4-58, 7-10 thru 7-18
ISIS-PDS, 3-24 thru 3-44,4-1 thru 4-75, 9-9 thru 9-13

exceptions
See errors

executing programs, 3-17 thru 3-23,8-5
execution control, 2-4, 7-1, 7-27 thru 7-28, 7-32
EXIT

CONPDS command, B-19
system call, 8-30

exiting
CONPDS, B-19
CREDIT, 6-20
DEBUG, 7-24

extension
filename, 5-5

external
disk drive, 1-4, 3-10 thru 3-11
labels for assembly language system calls, 8-7 thru 8-8
procedure definitions for PL/M system calls, 8-7

EXTRN
assembly directive, 8-7 thru 8-8

Index-4

iPDS™ User's Guide

fatal errors, 8-8, B-3
file

attributes, 4-18 thru 4-19,4-67,5-14,8-16,
8-94 thru 8-95

backup, 3-12, 3-15, 3-25, 3-27,4-68
blocks, 8-88 thru 8-90
console, 8-80 thru 8-81
copying, 4-21, 5-16
creating, 5-16, 6-1
deleting, 4-14, 4-36, 5-22
disk, 4-14, 5-4,8-80
echo, 5-4, 8-81
editing, 6-1
extensions, 5-5
formats, 8-86
in IPPS

device, 10-8
formats, 10-9

I/O system calls, 8-4
line edited, 8-82 thru 8-84

file management
console commands, 4-12

names, 5-5
object, 8-86
renaming, 4-22, 4-40, 5-33
running, 3-17 thru 3-23
text, 8-82, 8-85
types, 8-85
wildcard names, 5-6

filename, 5-5
Fill Memory command

DEBUG, 7-26
Find Command

CREDIT, 6-72
firmware, 10-1
flexible disk

See disk
formatting disks

backup, 3-25, 3-39
IDISK command, 5-28
non-system disks, 3-15, 4-8,5-28,8-92,8-93
system disks, 3-15, 3-25, 3-27,5-28,8-92,8-93

FUNCT key, 3-6,4-1 thru 4-5,4-60,5-47, 7-29,
9-1 thru 9-5

function keys, 377,4-1,4-2,4-7,4-59,5-47, 7-29,
9-1 thru 9-5

function$code system call parameter, 8-11
functional grouping of commands

DEBUG, 7-7
ISIS-PDS, 4-1, 4-2, 4-7, 4-14, 4-40, 4-52, 4-59,5-9

fuses
system chassis, A-4 thru A-6

GCOMMAND
DEBUG, 7-23 thru 7-24

Go command
DEBUG, 7-23 thru 7-24



iPDS™ User's Guide

PROM
storage device, 10-7
type, 10-7

prompts
DEBUG,7-3
IPPS, 10-6
ISIS-PDS, 3-21

Qcommand
DEBUG, 7-29

Query mode
ATTRIB command, 5-14
COpy command, 5-16
DELETE command, 5-21
IDISK command, 5-28

RAM, 1-3
READ

system call, 8-46 thru 8-47
rear panel, 3-2 thru 3-3
RECOGNIZE

CONPDS command, B-20
registers

changing contents, 7-38
use of in system calls, 8-5 thru 8-8
keywords for in DEBUG, 7-34

RENAME
ISIS-PDS command, 4-22,4-34, 5-33
system call, 8-48 thru 8-49

repair assistance, ix
repeat last command

ISIS-PDS,5-49
replacement character

ISIS-PDS, 5-5
RESCAN

system call, 8-50 thru 8-51
reset the system, 3-5, 3:7, 3-16 thru 3-17, 9-7
RESET

key, 3-5, 3-7
resident program, 3-22
RETURN key, 3-5,3-8,3-22,5-51,6-4,6-5
reverse slash

CREDIT, 6-3
RI (Reader input)

system call, 8-52
ROM, 1-3
RS-232

connector, A-14
interface, A-lO

RUBOUT key, 3-8,3-22,5-52,6-3,6-5
running programs

Confidence Tests, B-17
DEBUG, 7-2
IPPS,1O-6
ISIS-PDS, 3-25,3-27,3-39

S command
DEBUG,7-36

screen mode
editing, 6-2 thru 6-4

SEEK
system call, 8-53 thru 8-56

self test diagnostic, B-13
SERIAL command

ISIS-PDS, 4-13, 5-33
serial

connector, A-13 thru A-14
interface, 8-76, A-lO thru A-II
configuration, 8-76, A-I0 thru A-15

service information, ix
shutting down the system, 3-4 thru 3-5
single drive system, 4-37, E-l
software components, 1-8
SPATH

system call, 8-57 thru 8-59
specifications

electrical, A-14, A-28, A-29, A-30
physical, A-29

status$ptr system call parameter, 8-11
Step command

DEBUG,7-32
SUBMIT

with IPPS, 10-6
SUMMARY command, B-20
symbolic debugging, 2-6, 7-1
syntax

notation, 5-1 thru 5-9
SYSPDS.LIB, 7-12, 8-7,8-67
system

devices, 5-2 thru 5-4
initialization, 3-15,3-24

system calls, 8-3 thru 8-63
system description

add-on mass storage, 1-6
basic unit, 1-2
dual processors, 1-5
multimodules, 1-6
plug-in modules, 1-6
software, 1-7

system disk, 3-15,3-25,3-27, 5-29, 8-92, 8-93

Tcommand
DEBUG, 7-37

teletype, 5-3, 8-59
temporary files

CREDIT, 6-5 thru 6-8
IPPS,10-8

terminating commands, 3-21,8-82 thru 8-85, 10-9
TEST command, B-25 thru B-31
tests

confidence tests, B-17
power on diagnostics, B-13

text commands
CREDIT, 6-57

text editor, 4-40, 6-1
TTY, 5-3, 8-65

Index

Index-7



Index

Unpacking the system, A-I
usage examples

commands, 4-1 thru4-75
CREDIT, 4-40 thru 4-51,
DEBUG, 4-54 thru 4-59, 7-10 thru 7-16
IPPS, 10-74 thru 10-90
ISIS-PDS, 3-24 thru 3-44, 4-1 thru 4-75, 9-9 thru 9-13
system calls, 8-72 thru 8-78

user defined devices, 5-4
user written I/O routines, 5-4, 8-34 thru 8-36,

8-64 thru 8-70

Video
display screen, 3-19 thru 3-10,6-1,6-4
input, 8-20
output, 8-23

Virtual address range
buffer, 10-7 thru 10-8
file, 10-8 thru 10-9

voltage
changing the voltage

main chassis, A-4 thru A-5

WARNING flag, 1-11
WHOCON

system call, 8-61 thru 8-62
wildcard characters

ISIS-PDS, 5-6
wraparound

CREDIT, 6-4
WRITE

system call, 8-62 thru 8-63
write protected files, 5-16,8-16

X command
DEBUG, 7-33 thru 7-34

display form, 7-33
modify form, 7-33

Index-8

iPDS™ User's Guide



REQUEST FOR READER'S COMMENTS

iPDS™ Personal
Development System

User's Guide
162606-003

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _

DATE _

ZIP CODE _STATE _

(COUNTRY)

NAME _

TITLE _

COMPANY NAME/DEPARTMENT _

ADDRESS ..,...-- _

CITY _

Please check here if you require a written reply. D



WE'DLIKEYOUR COMMENTS •••

Thisdocument Isoneof a seriesdescribing Intelproducts. Your comments on the back of this formwill
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments andsuggestions become thepropertyof IntelCorporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BEPAID BYADDRESSEE

Intel Corporation
5200 N.E. Elam Young Parkway.
Hillsboro, Oregon 97123

DSHO Technical Publications

.~.' .;-':: ....

111111 NO POSTAGE
NECESSARY
IFMAILED
IN U.S.A.



inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

DS001/3KJ0383/AP


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	08-59
	08-60
	08-61
	08-62
	08-63
	08-64
	08-65
	08-66
	08-67
	08-68
	08-69
	memory organization
	08-71
	08-72
	IO Address Space
	port addresses
	08-75
	08-76
	08-77
	08-78
	08-79
	08-80
	08-81
	08-82
	08-83
	08-84
	08-85
	08-86
	08-87
	08-88
	08-89
	08-90
	08-91
	08-92
	08-93
	08-94
	08-95
	08-96
	08-97
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Index-01
	Index-02
	Index-03
	Index-04
	Index-07
	Index-08
	replyA
	replyB
	xBack

