

iSBC-215G = PBA 144263-014 iSBX-218A = PBA 145591-002 iSBX-217B = PBA 144287-008 iSBX-217C = PBA 146050-003

iSBC® 215 GENERIC WINCHESTER DISK CONTROLLER HARDWARE REFERENCE MANUAL

iSBC® 215 GENERIC WINCHESTER DISK CONTROLLER HARDWARE REFERENCE MANUAL

Order Number: 144780-002

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9(a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

BITBUS	iLBX	iPDS	OpenNET
COMMputer	im	iRMX	Plug-A-Bubble
CREDIT	iMDDX	iSBC	PROMPT
Data Pipeline	iMMX	iSBX	Promware
Genius	Insite	iSDM	QueX
Δ	Intel	iSXM	QUEST
. 1	intel	Library Manager	Ripplemode
1/105	intelBOS	MCS	RMX/80
	Intelevision	Megachassis	RUPI
IC F.	inteligent Identifier	MICROMAINFRAME	Seamless
1C 3 :DDD	inteligent Programming	MULTIBUS	SLD
DIC	Intellec	MULTICHANNEL	SYSTEM 2000
1015	Intellink	MULTIMODULE	UPI

MDS is an ordering code only and is not used as a product name or trademark. MDS[®] is a registered trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright 1984, Intel Corporation

REV.	REVISION HISTORY	DATE
-001	Original Issue	7/82
-002	Manual updated to include new information for iSBX 217B/C board and iSBX 218A board support. Interconnect tables in chapter 2 are corrected and expanded. Additional programming information is provided in Chapter 3. New schematics diagram in Chapter 5.	12/84

L

This manual includes several kinds of information. For introductory material on the iSBC 215 Generic Winchester Disk Controller Board, refer to Chapter 1. To configure the board and install it in your system, refer to Chapter 2. For programming information, refer to Chapter 3. For the functional description, refer to Chapter 4. For service assistance information or the schematic diagram, refer to Chapter 5. This manual is not intended as a tutorial document. The manual assumes that you are familiar with the standards of Intel single-board computers and the associated peripheral control boards and are familiar with programming in general and Intel device programming in particular.

In addition to this manual, you will need the manuals for the system of which the iSBC 215G board is a part. The following listed manuals provide information pertaining to the iSBC 215G board, its use, and its component parts. Intel documents are available from the Intel Literature Department (refer to page ii for the address).

Microsystem Components Handbook, Volumes I and II, Order No. 23Ø843

Intel MULTIBUS® Handbook, Order No. 21Ø8833 (This handbook includes information on the Intel iSBX™ Bus.)

8Ø89 Assembler User's Guide, Order No. 98ØØ938

8Ø86 Family User's Manual, Order No. 98ØØ722

Also, if you intend to use the iSBC 215G board with flexible-diskette and/or cartridge-tape drives, you will need one, two, or all of the following manuals.

iSBX™ 218A Flexible Diskette Controller Hardware Reference Manual, Order No. 145911

iSBX™ 217B Magnetic Cartridge Tape Interface MULTIMODULE™ Board Hardware Reference Manual, Order No. 145497

iSBX™ 217C Magnetic Cartridge Tape Interface MULTIMODULE™ Board Hardware Reference Manual, Order No. 1467Ø4

Tape interface support is limited to Archive Corporation and other QIC- \emptyset 2 tape drives. Programming information in this manual is current with and applicable to the following iSBC 215G, iSBX 218A, and iSBX 217B/C boards:

iSBC® 215G -- PBA Number: 144263-Ø14 iSBX™ 218A -- PBA Number: 145591-ØØ2 iSBX™ 217B -- PBA Number: 144287-ØØ8 iSBX™ 217C -- PBA Number: 146Ø5Ø-ØØ3

Differences between this version of the board firmware and earlier versions are noted as appropriate. Significant differences between operation of the iSBC 215G board and the iSBC 215A/B board are also noted as appropriate.

CONTENTS

CHAPTER 1 GENERAL INFORMATION 1.1 Introduction.....

1.1	Introduction	1–1
1.2	Description	1–1
1.3	Specifications.	1-4

CHAPTER 2

PREPARATION FOR USE	
2.1 Introduction	2-1
2.2 Unpacking and Inspection	2-1
2.3 Installation Considerations	2–1
2.3.1 Power Requirements	2–1
2.3.2 Cooling Requirements	2-2
2.3.3 Physical Characteristics	2–2
2.4 Jumper Configurations and Jumper Installation	2-2
2.4.1 Wake-Up Address Selection	2–3
2.4.2 Wake-Up I/O Port Address Selection	2-4
2.4.3 System Data Bus Width Selection	2-4
2.4.4 Interrupt Priority Number	2-4
2.4.5 Bus Priority Arbitration	25
2.4.5.1 Common Bus Request (CBRQ*)/Any Request (ANYRQST) Signal	
Selection	2–5
2.4.5.2 Bus Priority Out (BPRO*) Signal Selection	2-6
2.4.6 MULTIBUS® Lock (LOCK*) Signal	2-6
2.4.7 iSBX TM Bus Selection	2-6
2.4.8 Hard-Disk Drive Interface	2–7
2.4.9 -5 V Selection	2-8
2.4.1Ø I/O Communication Blocks Page Selection	2-9
2.4.11 RAM Jumper	2–9
2.5 Interface Connections	2-9
2.5.1 MULTIBUS® Interface	2-9
2.5.2 iSBX TH MULTIMODULE TH Interface	2-14
2.5.3 Cabling Requirements	2-16
2.6 Board Installation	2–35
2.6.1 Drive Installation	2-35
2.6.1.1 14/8-Inch Drives With Integral Data Separator	2-36
2.6.1.2 5 1/4-Inch Drives	2-37
2.6.1.3 Other Drives Without Data Separator	2-37
2.6.2 iSBX ^M 218A Board Installation	2–38
2.6.3 iSBX ^{III} 217B/C Board Installation	2-39

CHAPTER 3

PRO	GRAMMING	
3.1	Introduction	3-1
3.2	Programming Options	3-1
3.3	Mass Storage Principles	3-2
3.3.1	l Hard-Disk Organization	3-2
3.3.2	2 Flexible-Disk Organization	3-3

CONTENTS (continued)

CHAPTER 3	
PROGRAMMING (continued)	
3 3 3 Cartridge Tane Organization	2_3
3.4 Host /Board Communications	3-3
$2 \land 1$ Wate Up I/O Bort	3 4
$2 \land 2 $ $1/0$ Communications Placks	2 5
2 A 2 1 Hoko Up Plack	3-5
2.4.2.2 Channel Control Block	2-1
2.4.2.2 Controllon Investion Block	2 0
2.4.2.4 I/O Dependen Dieck	2 11
3.4.2.4 1/0 Parameter Block	2 12
3.4.3 Gold-Start Board Initialization	2 14
$3.5 \text{Function Gommands} \dots \dots$	3-14
3.5.1 Initialize (ØØH)	3-13
3.5.1.1 Number of Gylinders	3-17
3.5.1.2 Number of Heads	3-1/
3.5.1.3 Sectors Per Track	3-1/
3.5.1.4 Bytes Per Sector	3-17
3.5.1.5 Number of Alternate Cylinders	3-1/
3.5.1.6 Drive Variables	3-18
3.5.1.7 Tape Parameters	3-19
3.5.2 Transfer Status Buffer (Ø1H)	3-19
3.5.3 Format (Ø2H)	3-19
3.5.4 Read Sector ID (Ø3H)	3-21
3.5.5 Read Data (Ø4H)	3-22
3.5.5.1 Disk Read Details	3–23
3.5.5.2 Tape Read Details	3–23
3.5.6 Read to Buffer and Verify (Ø5H)	3-24
3.5.7 Write Data (Ø6H)	3–25
3.5.7.1 Disk Write Details	3-25
3.5.7.2 Tape Write Details	3-26
3.5.8 Write Buffer Data (Ø7H)	3–26
3.5.9 Initiate Track Seek (Ø8H)	3-27
3.5.1Ø Spin Down (ØBH)	3–28
3.5.11 iSBX™ Execute (ØCH)	3–28
3.5.12 iSBX™ Transfer (ØDH)	3–28
3.5.13 Buffer I/O (ØEH)	33Ø
3.5.14 Diagnostic (ØFH)	3-31
3.5.15 Tape Initialization (1ØH)	3-31
3.5.16 Rewind (11H)	332
3.5.17 Space Forward One File Mark (12H)	3-32
3.5.18 Write File Mark (14H)	3-33
3.5.19 Erase Tape (17H)	3-33
3.5.2Ø Load Tape (18H)	3-34
3.5.21 Tape Reset (1CH)	3-34
3.5.22 Retension Tape (1DH)	3-34
3.5.23 Read Tape Status (1EH)	3-35

3.5.24 Read/Write Terminate (1FH).....

3.6 Function Modifiers.....

3.7 Extended Status.....

PAGE

3-35

3-36

3-37

CONTENTS (continued)

CHAPTER 3	
PROGRAMMING (continued)	
3.8 Status Operations 3-3	8
3.8.1 Status Buffer Format 3-3	9
3.8.2 Detailed Error Status	ø
3.8.2.1 Status Byte Ø 3-4	1
3.8.2.2 Status Byte 1	2
3.8.2.3 Status Byte 2 3-4	4
3.9 Interrupts	6
3.1ø iSBX TM Bus Expansion 3-4	6
3.1Ø.1 Firmware Drivers	7
3.1Ø.2 User-Provided Drivers	7
3.10.2.1 Random-Access Memory Map 3-4	9
3.10.2.2 Execution From On-Board RAM 3-5	ø
3.10.2.3 Execution From System Memory 3-5	ø
3.10.2.4 Program Execution 3-5	ø
3.10.2.5 Example I/O Program	1

CHAPTER 4

FUNCTIO	NAL	DESCR	riptio	N
---------	-----	-------	--------	---

4.1 Introduction	4-1
4.2 Schematic Interpretation	4-1
4.3 General Description	4-2
4.3.1 Communications With Host	43
4.3.2 Communications With Hard Disk	4-4
4.3.3 Communications Via iSBX [™] Bus	45
4.4 Detailed Description	4-5
4.4.1 Board/Host Communications	45
4.4.1.1 MULTIBUS® Interface Signals	4-5
4.4.1.2 I/O Processor	4-5
4.4.1.3 Bus Controller	4-7
4.4.2 Board/Drive Communications	4-13
4.4.2.1 Board/Hard-Disk Drive Interface	4-14
4.4.2.2 Board/Flexible-Disk and Cartridge-Tape Drive Interface	4-15
4.4.2.3 Interface Timing	4-15
4.4.2.4 Serializer/De-serializer	4-22
4.4.2.5 Sync Byte Comparator	4-23
4.4.2.6 Sector Identity Comparator	4-23
4.4.2.7 Error Checking Code Generator	4-23
4.4.2.8 Status Register	4-24
4.4.2.9 Line Drivers and Receivers	4-25
4.4.3 Local Memory Organization	4-25
4.4.3.1 Read-Only Memory	4-26
4.4.3.2 Random-Access Memory	4-26
4.4.3.3 I/O Port Decoding	4-26

CONTENTS (continued)

PAGE

CHAPTER 5 SERVICE INFORMATION

JUR		
5.1	Introduction	5-1
5.2	Service Diagrams	5-1
5–3	Service and Repair Assistance	5-1

APPENDIX A

ANSI INTERFACE PROGRAMMING	A-1

APPENDIX B EXAMPLE I/O PROGRAM

CULTURE STATEMENT		
B-1.	Introduction	B-1
B-2.	Single User Sequence	B-1
B-3.	Single User Sequence with Overlapping Seeks	B-1
B-4.	Multi-User Sequence	B-1
B-5.	Example Host Processor Disk Control Program	B-2

TABLES

1-1.	Board Specifications	1–5
1-2.	Allowable Sectors Per Track for Non-ANSI Hard-Disk Drives	1-6
1-3.	Allowable Sectors Per Track for ANSI Hard-Disk Drives	1-7
1-4.	Formatted Capacity Per Hard-Disk Drive (in Mbytes)	1-7
2-1.	Wake-Up Address Jumpers	2-3
2-2.	Interrupt Priority Number Selection	2-4
2-3.	Bus Arbitration Options	2–5
2-4.	iSBX™ Bus Control Jumpers	2-6
25.	Jumper Configuration for Various Hard-Disk Drives	28
2-6.	-5 V Selection Jumper Configuration	2-9
2-7.	Connector P1 Pin Assignments	2–1Ø
2-8.	Connector P2 Pin Assignments	2-11
2-9.	Connector P1 Input/Output Signals	2-12
2-1Ø.	Connector P2 Input/Output Signals	2-14
2-11.	iSBX™ Bus Mnemonics/iSBC⊕ 215G Board Mnemonics	2–15
2-12.	Drive Interface Pin-Out Data	2-17
2-13.	Control Cable Functions (J1 Complete/J5 Partial)	2-19
2-14.	Read/Write Cable Functions (J2 Complete/J5 Partial)	2-22
3-1.	I/O Control Commands	3–5
3-2.	Wake-Up Block Byte Contents	3-8
3-3.	Channel Control Block Byte Contents	3-9
3-4.	Controller Invocation Block Byte Contents	3-1Ø
3-5.	I/O Parameter Block Byte Contents	3-12
3-6.	Function Command Summary	3-15
3-7.	iSBX™ Bus I/O Port Addresses (Hexadecimal)	3-29
3-8.	Error Status Buffer	3-39

TABLES (continued)

3-9.	IOP Handshake and Control Lines on iSBX ^M Bus	3–48
3-1Ø.	Control and Status Lines on iSBX ^M Interface	3-48
3-11.	Jumper Connections Allowing Option Lines to be Driven	3-49
3-12.	On-Board Program and Parameter Storage RAM Space	3-49
4-1.	IOP Status Line Decodes	4-8
4-2.	Data Transfer Signal Relationships	4-1Ø
4-3.	Host Wake-Up Commands	4-11
4-4.	Status Register Bits	4-25
4-5.	Local I/O Ports	4-27

FIGURES

 1-2. Example of Multiple Drive System Using ANSI Interface 1-3. Example of Multiple Drive System Using iSBXTM 218A Flexible Diskette Controller	1-2 1-3 1-4 2-23 2-24 2-25 2-26 2-27 2-28
 1-3. Example of Multiple Drive System Using iSBXTM 218A Flexible Diskette Controller	1-3 1-4 2-23 2-24 2-25 2-26 2-27 2-28
Flexible Diskette Controller 1-4. Automatic Error Checking and Correction 2-1. 8-Inch Shugart/Quantum Drive Interconnection Listing 2-2. Fujitsu 23ØØ/Memorex/14-Inch Shugart Drive Interconnection Listing 2-3. Priam Drive Interconnection Listing 2-4. 5 1/4-Inch Drive Interconnection Listing 2-5. CDC Drive Interconnection Listing 2-6. ANSI Drive Interconnection Listing 2-7. %-Inch Shugart/Quantum Drive Interconnection Listing	1-3 1-4 2-23 2-24 2-25 2-26 2-27 2-28
 1-4. Automatic Error Checking and Correction	1-4 2-23 2-24 2-25 2-26 2-27 2-28
 2-1. 8-Inch Shugart/Quantum Drive Interconnection Listing 2-2. Fujitsu 23ØØ/Memorex/14-Inch Shugart Drive Interconnection Listing 2-3. Priam Drive Interconnection Listing 2-4. 5 1/4-Inch Drive Interconnection Listing 2-5. CDC Drive Interconnection Listing 2-6. ANSI Drive Interconnection Listing 2-7. Salach Shugart (Quantum Drive Interconnection Content of Content of	2-23 2-24 2-25 2-26 2-27 2-28
 2-2. Fujitsu 23ØØ/Memorex/14-Inch Shugart Drive Interconnection Listing 2-3. Priam Drive Interconnection Listing 2-4. 5 1/4-Inch Drive Interconnection Listing 2-5. CDC Drive Interconnection Listing 2-6. ANSI Drive Interconnection Listing 2-7. Swingert (Quantum Drive Interconnection Content of Conten	2–24 2–25 2–26 2–27 2–28
Interconnection Listing2-3.Priam Drive Interconnection Listing2-4.5 1/4-Inch Drive Interconnection Listing2-5.CDC Drive Interconnection Listing2-6.ANSI Drive Interconnection Listing2-7.Swigart (Quantum Drive Interconnection Content on C	2-24 2-25 2-26 2-27 2-28
 2-3. Priam Drive Interconnection Listing 2-4. 5 1/4-Inch Drive Interconnection Listing 2-5. CDC Drive Interconnection Listing 2-6. ANSI Drive Interconnection Listing 2-7. 8. Inch Shugart (Quantum Drive Interconnecting Cable) 	2-25 2-26 2-27 2-28
 2-4. 5 1/4-Inch Drive Interconnection Listing 2-5. CDC Drive Interconnection Listing 2-6. ANSI Drive Interconnection Listing 2-7. 8. Inch Shugart (Quantum Drive Interconnecting Cable) 	2–26 2–27 2–28
 2-5. CDC Drive Interconnection Listing 2-6. ANSI Drive Interconnection Listing 2-7. 8. Inch Shugart (Quantum Drive Interconnecting Cable) 	227 228
2-6. ANSI Drive Interconnection Listing	2-28
2-7 8-Trach Shugart (Quantum Drive Interneonnecting Cable	
z=1. 0-INCH SHURAFCIQUATION DETAG INCECCONNECCTUR CADIG	2–29
2-8. Fujitsu 2300/Memorex/14-Inch Shugart Drive	
Interconnecting Cable	2-3Ø
2-9. Priam Drive Interconnecting Cable	2-31
2-10. 5 1/4-Inch Drive Interconnecting Cable	2-32
2-11. CDC Drive Interconnecting Cable	2-33
2-12. ANSI Drive Interconnecting Cable	2-34
2-13. ANSI Drive Interface	2-35
2-14. Pin Numbering Conventions	2-36
2-15. Interface for Drive with Integral Data Separator	2-36
2-16. Interface for Drives and iSBC® 215G Kit	2-37
2-17. Interface for Drives without Data Separator	2–38
2-18. iSBX TM 218A Board Installation	2-4Ø
2-19. iSBX ^{III} 217B/C Board Installation	2-41
3-1. Disk Drive Organization and Terminology	3–1
3-2. Sector Fields	3–3
3-3. Host CPU/Board Interaction	36
3-4. Wake-Up Block	3–7
3-5. Channel Control Block	38
3-6. Controller Invocation Block	3–1Ø
3-7. I/O Parameter Block	3-11
3-8. Initialize Function Data Buffer Format	316
3-9. Drive Variables Byte Format	3-18

FIGURES (continued)

3-1Ø.	Sector Data Format	3–2Ø
3-11.	Format Function Data Buffer Format	3–2Ø
3-12.	Read-Sector-ID Function Data Buffer and Flag Byte	3-22
3-13.	Transfer Parameter Byte Format (iSBX™ MULTIMODULE™ Board)	33Ø
3-14.	Modifier Word Format	3-36
3-15.	Operation Status Byte Format	3-38
3-16.	Status Buffer Byte 8 Format for Disk	3-4Ø
3-17.	Status Buffer Byte Ø Format	3-41
3-18.	Status Buffer Byte 1 Format	3-43
3-19.	Status Buffer Byte 2 Format	3-45
3-2Ø.	Execution of iSBX [™] Bus I/O Program from RAM	3–51
4-1.	Logic Conventions	4-2
4-2.	Board Simplified Block Diagram	4–3
4-3.	Bus Arbiter and Controller Logic	4-7
4-4.	Data Transfer from MULTIBUS↓ to iSBC↓ 215G Board	4-9
4-5.	Wake-Up Address Logic	4-11
4-6.	Initialization Sequence Address Fetches	4–13
4-7.	Ready Signal Timing Diagram	4-16
4-8.	Disk Formatting Sequence Timing Diagram	4-18
4-9.	Write Data Transfer Timing Diagram	4–2ø
4–1Ø.	Read Data Transfer Timing Diagram	4-22
4-11.	Local Memory Map	4-26
5-1.	Parts Location Diagram	5–3
5-2.	Jumper Location Diagram	57
5-3.	Schematic Diagram	5-9
A-1.	Recommended Sector Format	A-1

PAGE

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION

The Intel iSBC 215 Generic Winchester Disk Controller Board (referred to as the iSBC 215G board in this manual) allows as many as four hard-disk drives (typically, Winchester technology), as many as four flexible-diskette drives, and as many as four magnetic cartridge-tape drives to be interfaced to any Intel MULTIBUS interface compatible computer system. It supports disk drives that use open-loop head positioning, closed-loop head positioning, or ANSI X3T9/1226 interfaces. Figures 1-1 and 1-2 show examples of multiple hard-disk drive applications in non-ANSI and ANSI configurations, respectively.

The iSBC 215G board design is based on the Intel 8089 8/16-Bit HMOS I/O Processor, which features direct-memory-access (DMA) transfers, multiple-sector transfers, transparent error detection and correction (with automatic recovery and retry), and data management. The board operates in a multiprocessor environment and is fully compatible with all Intel 8- and 16-bit computers. The number of tracks per surface is software selectable for each drive unit. Seek operations on more than one drive can be overlapped with read/write operations on other drives. The iSBC 215G board is fully compatible with Intel 8086 16-Bit HMOS Microprocessor 20-bit addressing, and can be used in Intel MULTIBUS 24-bit address systems.

The board includes two Intel iSBX bus connectors, J3 and J4, that allow other storage devices such as flexible-diskette drives or magnetic cartridge-tape drives to be operated with MULTIBUS interface compatible systems. For example, the Intel iSBX 218A Flexible Diskette Controller Board attaches to iSBX bus connector J4, allowing the iSBC 215G board to control as many as four flexible-diskette drives. Figure 1-3 shows an example multiple-drive system using four 5 1/4- or 8-inch flexible-diskette drives, the iSBC 215G board, and the iSBX 218A Flexible Diskette Controller. As another example, the Intel iSBX 217B/C Magnetic Cartridge Tape Interface Board attaches to iSBX bus connector J3, allowing the iSBC 215G board to control as many as four tape drives.

1.2 DESCRIPTION

The iSBC 215G board is a single, multi-layer printed-circuit board assembly. It may be installed in any Intel backplane or custom-designed configuration that is physically and electrically compatible with the Intel MULTIBUS interface.

The host central processing unit (CPU) communicates with the iSBC 215G board via four blocks of information in host memory. Once the iSBC 215G board is initialized, a CPU I/O write to the board wake-up address initiates activities. The board accesses the four blocks in the host memory to determine the specific operation being performed, fetches the required parameters, and completes the specified operation without CPU intervention.

Figure 1-1. Example of Multiple Drive System Using Non-ANSI Interface

Figure 1-2. Example of Multiple Drive System Using ANSI Interface

The iSBC 215G board generates all drive, control, and data signals and receives the drive, status, and data signals required to perform the entire disk drive interfacing task. During a disk read operation, the board accepts serial data from the disk, interprets synchronizing bit patterns, verifies validity of the data, performs a serial-to-parallel data conversion, and passes parallel data or error condition indications to the CPU memory. During a disk write operation, the board performs parallel-to-serial data conversion and transmits serial write data and the write clock to the drive. As part of the disk format and write functions, the board appends an error checking code (ECC) at the end of each sector ID and data field. This ECC is used for checking and correcting data errors. It corrects all errors in bursts of as many as 11 bits, and detects all errors in bursts of as many as 32 bits (see Figure 1-4).

The Intel 8089 I/O Processor provides optimum performance with minimum CPU overhead. An Intel 8288 Bus Controller and 8289 Bus Arbiter control access to the MULTIBUS interface. Intel 2764 EPROM's provide on-board storage of the board I/O control program and a resident diagnostic exerciser, and Intel 2114 Static RAM's provide local memory data buffering and temporary storage for read/write parameters.

Figure 1-4. Automatic Error Checking and Correction

1.3 SPECIFICATIONS

Table 1-1 lists the specifications of the iSBC 215G board; Tables 1-2, 1-3, and 1-4 list typical characteristics of compatible disk drives. Note that the drives listed in Tables 1-2, 1-3, and 1-4 are representative only and are not qualified or endorsed by Intel, and that Intel assumes no responsibility to update or keep the list current.

Table	1-1.	Board	Specifications

Item	Specification
Processor	Any Intel mainframe or any MULTIBUS interface compatible CPU. (The iSBC 215G board can operate with 16-, 2Ø-, or 24-bit addresses and with 8- or 16-bit data bus widths.)
Drive Type	Disk Drives Either hard-disk (Winchester) or flexible-disk (through optional on-board iSBX Flexible Diskette Controller Board).
	Tape Drives Magnetic-cartridge, 1/4-inch, 9ø- or 3ø-ips QIC-ø2 type drives (through optional on-board iSBX Magnetic Cartridge Tape Interface Board).
Drives per Controller	Hard-Disk Drives As many as two 5 1/4-inch or four 8-inch non-ANSI drives. As many as four ANSI X3T9/1226 drives.
	Flexible-Disk Drives As many as four 5 1/4- or 8-inch drives through iSBX 218A Flexible Disk Controller connected to iSBC 215G board iSBX bus connector J4.
i	Tape Drives As many as four 1/4-inch magnetic cartridge-tape drives through iSBX 217B or C Magnetic Cartridge Tape Interface Board connected to iSBC 215G board iSBX bus connector J3.
Error Detection and Correction	Error detection to 32 bits in length; error correction to 11 consecutive bits in length.
Power Requirements	+5 V <u>+</u> 5 % @ 4.52 A maximum -5 V <u>+</u> 5 % @ Ø.Ø15 A maximum
	Note: Jumper selection and on-board voltage regulator allow use of -1Ø V or -12 V from MULTIBUS connector as alternate to direct -5 V source.
Mounting	Occupies one card slot in MULTIBUS compatible card cage or backplane connector. Occupies two slots in most card cages when optional iSBX MULTIMODULE is installed.

Item	Specificatio	on
Physical Width Length Thickness Weight	17.2 cm (6.8 inches 3Ø.5 cm (12.Ø inche 1.3 cm (Ø.5 inch) Ø.54 kg (19 ounces	s) es))
Environment Temperature	Operating ذC to +55°C (+32°F to +131°F)	Non-Operating -4ذC to +7ذC (-4ذF to +158°F)
Humidity	5 to 90 %, non-condensing	5 to 95 %, non-condensing

Table 1-1. Board Specifications (continued)

Table 1-2. Allowable Sectors Per Track for Non-ANSI Hard-Disk Drives

Disk Drive	Data Bytes per Sector			
	128	256	512	1ø24
Priam 8-in	72	42	23	12
Priam 14-in	1ø7	63	35	18
Ampex, RMS, CMI, Shugart, Quantum	54	31	17	9
Fujitsu, Memorex	64	38	21	11
Shugart 14-in	96	57	31	16
CDC	64	41	23	12

Disk Drive	Data Bytes per Sector			
	128	256	512	1ø24
3M	82	51	29	16
Kennedy, BASF	74	43	23	12
Micropolis	71	44	25	13
Pertec	85	52	29	15

Table 1-3. Allowable Sectors Per Track for ANSI Hard-Disk Drives

Table 1-4. Formatted Capacity Per Hard-Disk Drive (in Mbytes)

h

Disk Drive		Data Bytes	per Sector	•
	128	256	512	1ø24
Shugart SA 1004	7 018	8 1 2	8 91	9 43
Ouantum 02010	7.08	8.12	8.91	9.43
Shugart SA4ØØ8	19.86	23.58	25.65	26.48
Priam 345Ø, 941Ø-32	23.96	27.94	3Ø.62	31.95
Fujitsu 23ØØ, Memorex 1Ø1	7.99	9.49	1Ø.49	1ø.98
RMS 512, CMI	8.4Ø	9.65	1Ø.58	11.21
CDC	19.5Ø	24.98	28.Ø3	29.25
3M 8432	11.76	14.62	16.63	18.35
Kennedy, BASF 6172	17.45	2Ø.28	21.69	22.63
Micropolis 12Ø3	26.65	32.67	37.12	38.6Ø
Pertec D8Ø35 (ANSI)	21.85	26.73	29.81	3Ø.84

CHAPTER 2 PREPARATION FOR USE

2.1 INTRODUCTION

This chapter provides information for use in preparing and installing the iSBC 215G board. Included are instructions for unpacking and inspection, installation, installing jumpers, connecting the board to the MULTIBUS interface, and preparing and connecting cabling to the disk drives.

2.2 UNPACKING AND INSPECTION

Inspect the shipping carton immediately upon receipt for evidence of mishandling during transit. If the shipping carton is severely damaged or water-stained, request that the carrier's agent be present when the carton is opened. If the carrier's agent is not present when the carton is opened and the contents are damaged, keep the carton and packing materials for subsequent agent inspection.

For repair of a product damaged during shipment, contact the Intel Product Service Center to obtain a Return Authorization Number and further instructions. (Chapter 5 lists the telephone numbers for the various centers.) A purchase order is required to complete the repair. Submit a copy of the purchase order to the carrier with your claim.

2.3 INSTALLATION CONSIDERATIONS

The iSBC 215G board can be installed in any Intel cardcage/backplane or any user-designed backplane that meets the MULTIBUS interface specification. The board occupies one backplane slot. An additional slot may be required if an iSBX MULTIMODULE is installed.

Because the iSBC 215G board operates as a system master, the slot into which it is installed must include bus priority arbitration capability. Priority resolution can be done in either serial or parallel fashion.

2.3.1 POWER REQUIREMENTS

The board requires a source of $+5 \ V \pm 5 \ \%$ power, at a maximum current of 4.52 A. This is supplied through the MULTIBUS connector. When interfacing with 8-inch Shugart and Quantum drives, an additional source of $-5 \ V \pm 5 \ \%$ power, at a maximum current of 15 mA, is required. This supply can be obtained directly from the MULTIBUS connector or from an on-board regulator that uses the MULTIBUS $-10 \ V$ or $-12 \ V$ source.

When interfacing with an iSBX bus through J3 or J4, additional voltage sources of +12 V, -12 V, or both, may be required. These can also be supplied through the MULTIBUS connector (see the individual iSBX Board

specifications for tolerances and current requirements). Before installing the iSBC 215G board in a system chassis, make certain that the associated power supplies can supply the required additional current.

NOTE

If power is applied to or removed from the iSBC 215G board while a drive is ready, a spurious disk write operation could occur. To prevent this, always make certain that the drives are not turning when the iSBC 215G board power is switched on or off.

2.3.2 COOLING REQUIREMENTS

The iSBC 215G board (with no iSBX boards installed) dissipates 338.2 gram calories of heat (1.34 Btu's) per minute. Sufficient cooling air circulation (approximately $2\emptyset\emptyset$ linear feet per minute under ordinary conditions) must be provided to keep the board within the required operating temperature range (\emptyset to 55° C).

2.3.3 PHYSICAL CHARACTERISTICS

The dimensions, outline, and connector and jumper locations of the iSBC 215G board are shown in Figure 5-2.

2.4 JUMPER CONFIGURATIONS AND JUMPER INSTALLATION

Various configurations of the iSBC 215G board can be accommodated through the jumper stake pins provided on the board. A variable number of jumpers may be installed by the user on pairs of these stake pins to conveniently set up the board for the system environment in which it is to operate (8- or 16-bit system data bus; 16-, $2\emptyset$ -, or 24-bit addressing, etc.) and for the type of device to which it is to be interfaced (Shugart, Quantum, Memorex, etc. drive, or iSBX board). The default configuration includes approximately $4\emptyset$ jumpers, 2 of which are soldered and 1 wire-wrapped in place.

Each jumper is identified by its "W" number and the numbers of the two stake pins used (for example: W21-1 -- 2, or W3Ø-1 -- 2Ø). For jumper stake pin physical locations and details on jumper layouts, refer to Figure 5-2. In Figure 5-2, a § symbol following a jumper number denotes the default configuration. The board should be configured, as described in the following paragraphs, before its installation in a system.

NOTE

An asterisk or slash following a signal mnemonic denotes that the signal is active when in the low state.

2.4.1 WAKE-UP ADDRESS SELECTION

The iSBC 215G board communicates with the host CPU through four I/O communication blocks located in the host memory. The board receives instructions by reading the contents of the beginning address of the first I/O communication block. These contents are called the wake-up address, and may be at any address for a $2\emptyset$ - or 16-bit host system. Omitting jumper W36-1 -- 2 allows a 24-bit address host system to place the I/O communication blocks in the first 1-Mbyte page (that is, address $\emptyset XXXXKH$); installing jumper W36-1 -- 2 allows placement in the last page (that is, address FXXXXXH). If the host CPU does not provide 24-bit address lines, this jumper must not be installed.

Sixteen stake pin pairs are provided on the iSBC 215G board to allow the user to set the wake-up address. Eight of the pairs are identified as jumper W29. The other eight are identified as jumper W3Ø, which also includes two more pairs. (Of the additional W3Ø pairs, one specifies an 8-bit or 16-bit wake-up I/O port address and one specifies the system data bus width - see Sections 2.4.2 and 2.4.3.) The function, number, and location of each jumper are shown in Table 2-1 and Figure 5-2. An installed jumper represents a logical 1.

Jumper		Wake-Up Address Bi	
From	То	• • • • •	
W29-1	W29-16	F	
W29-2	W29-15	Е	
W29-3	W29-14	D	
W29-4	W29-13	С	
W29-5	W29-12	В	
W29-6	W29-11	Α	
W29-7	W29-1Ø	9	
W29-8	W29-9	8	
W3Ø-3	W3Ø-18	7	
W3Ø-4	W3Ø-17	6	
W3Ø-5	W3Ø-16	5	
W3Ø-6	W3Ø-15	4	
W3Ø-7	W3Ø-14	3	
W3Ø-8	W3Ø-13	2	
W3Ø-9	W3Ø-12	1	
W3Ø-1Ø	W3Ø-11	Ø	

Table 2-1. Wake-Up Address Jumpers

The board 8089 I/O processor (IOP) treats the wake-up address as the segment portion of the standard segment and offset 20-bit addressing. For the wake-up address, the IOP uses an offset of \emptyset . This multiplies the settings of the wake-up address jumpers by 2⁴ (that is, it shifts the number four places to the left) to create a 20-bit wake-up address from 16-bits.

2.4.2 WAKE-UP I/O PORT ADDRESS SELECTION

The host CPU communicates with the iSBC 215G board through an I/O port, the number of which is also set by the wake-up address jumpers. For a host CPU with 8-bit I/O port addressing, bits Ø through 7 of the wake-up address determine the wake-up I/O port number; for a host CPU with 16-bit I/O port addressing, bits Ø through F determine the port number. Jumper W3Ø-2 - 19 (see Figure 5-2) determines the type of I/O port addressing used by the host CPU. It is installed for use with a 16-bit host CPU such as the Intel 8Ø86; not installed for use with an 8-bit host CPU such as the Intel 8Ø85.

2.4.3 SYSTEM DATA BUS WIDTH SELECTION

System data bus width selection jumper $W3\emptyset-1 - 2\emptyset$ (see Figure 5-2) sets the board for the type of system data bus with which the iSBC 215G board is to interface. It is installed for a 16-bit data path, not installed for an 8-bit data path. Installing the jumper allows use of 16-bit data transfer mode to access the system bus (if the system memory supports 16-bit accesses), even though the host CPU supports only 8-bit accesses.

2.4.4 INTERRUPT PRIORITY NUMBER

The iSBC 215G board internal interrupt request signal can be assigned to any of eight MULTIBUS interrupt priority numbers (\emptyset * through INT7*). The number is selected by wire wrapping two jumper stake pins (see Figure 5-2) together as indicated in Table 2-2.

Interrupt Number	Install Wire-Wrap Jumper			
-	From Stake Pin:	To Stake Pin:		
Ø	W19-C	W19-Ø		
1	W19-C	W19-1		
2	W19-C	W19-2		
3	W19-C	W19-3		
4	W19-C	W19-4		
5	W19-C	W19-5		
6	W19-C	W19-6		
7	W19-C	W19-7		

Table 2-2. Interrupt Priority Number Selection

2.4.5 BUS PRIORITY ARBITRATION

Bus priority arbitration controls the sequence in which access is allowed to the MULTIBUS interface. Access priority is determined by three signals in combination: ANYRQST, CBRQ*, and BPRO*. These are described in the following paragraphs.

2.4.5.1 Common Bus Request (CBRQ*)/Any Request (ANYRQST) Signal Selection

The CBRQ* and ANYRQST signals provide the required mode select inputs to the 8289 Bus Arbiter. The arbitration options are shown in Table 2-3.

CBRQ* is a bi-directional interface signal that improves bus access time by allowing a bus master to retain control of the MULTIBUS interface without contending for it on each transfer cycle, as long as no other master is requesting control of the bus. The signal is either supplied from the bus via connector P1 or connected to ground, dependent upon the position of jumper W23. This signal operates the same in parallel and serial priority resolution schemes.

ANYRQST is a bus arbiter input signal that controls whether the iSBC 215G board will allow a lower-priority device to gain access to the MULTIBUS interface by the CBRQ* signal. The signal is either high (connected to +5 V through a resistor), or low (connected to ground), dependent upon the position of jumper W18. When ANYRQST is high, a lower-priority device may gain control of the bus by activating the CBRQ* signal. When ANYRQST is low, a lower-priority device cannot gain control of the bus until it gains priority through the BPRN* signal.

Signal	Jumper	Connect To	Description
CBRQ* ANYRQST	W23-1 2 and W18-1 3	Bus Ground	Arbitrate to gain access to MULTIBUS interface. If continued access is required, iSBC 215G board retains control until higher-priority device requests bus, at which time board arbitrates again and surrenders bus control to only that device.
CBRQ* Anyrqst	W23-1 2 and W18-1 2	Bus +5 V	Arbitrate to gain access to MULTIBUS interface. If continued access is required, iSBC 215G board retains control until another device requests bus, at which time board arbitrates again and surrenders bus control to requesting device (either higher or lower priority).
CBRQ* Anyrqst	W23-1 3 and W18-1 2	Ground +5 V	Arbitrate for every bus access.

Table 2-3. Bus Arbitration Options

2.4.5.2 Bus Priority Out (BPRO*) Signal Selection

The BPRO* signal is used in serial MULTIBUS priority schemes. BPRO* must be connected to the BPRN* input of the bus master with the next lower priority. The BPRO* signal is enabled for serial resolution by installing jumper W28-1 -- 2 (see Figure 5-2), or disabled for parallel resolution by omitting the jumper.

2.4.6 MULTIBUS® LOCK (LOCK*) SIGNAL

The LOCK* signal is used by the current bus master to exclude a dual-port RAM from use through the alternate port (for instance, the iSBC 86/35 single board computer, the iSBC Ø12CX memory board, etc.) when a multi-transfer operation (for instance, a read-modify-write) is required. The LOCK* signal is enabled by installing jumper W32-1 -- 2 (see Figure 5-2), or disabled by omitting the jumper.

2.4.7 iSBX™ BUS SELECTION

The iSBX bus control jumpers, W3, W4, W11, W12, and W24 (see Figure 5-2) select the external-terminate and DMA-request lines on the iSBX bus as shown in Table 2-4. Instructions are included in Chapter 3 for writing iSBC 215G board-to-drive interface software for I/O modules designed to iSBX Bus Specifications.

Jumper	Installed?	Function
W3-1 2	Yes	EXT TRM External terminate (J3); terminated on iSBC 215G board.
	No	EXT TRM External terminate (J3); driven by iSBX I/O controller.
W4-1 2	Yes	EXT TRM External terminate (J4); terminated on iSBC 215G board.
	No	EXT TRM External terminate (J4); driven by iSBX I/O controller.
W11-1 2	Yes	OPØØ Option Ø (J3) driving.
	No	OPØØ Option Ø (J3) receiving.
W11-1 3	Yes	OPØ1 Option Ø (J4) driving.
	No	OPØ1 Option Ø (J4) receiving.

Table 2-4. iSBX™ Bus Control Jumpers

Jumper	Installed?	Function
W12-1 2	Yes	OP1Ø Option 1 (J3) driving.
	No ·	OP1Ø Option 1 (J3) receiving.
W12-1 3	Yes	OP11 Option 1 (J4) driving.
	No	OP11 Option 1 (J4) receiving.
W24-1 2	Yes	DREQØ iSBX controller on J4 uses DMA request; iSBX controller on J3 does not use DMA request or is not installed.
W24-1 3	Yes	DREQ1 iSBX controller on J3 uses DMA request; iSBX controller on J4 does not use DMA request or is not installed.
W24-1 2 and W24-1 3	No	DREQØ/DREQ1 Both iSBX controllers use DMA requests, or neither uses DMA requests, or neither is installed.

Table 2-4. iSBX^{IM} Bus Control Jumpers (continued)

2.4.8 HARD-DISK DRIVE INTERFACE

The iSBC 215G board is designed to communicate with either ANSI compatible (X3T9/1226) or proprietary non-ANSI hard-disk (Winchester technology) drive interfaces. It can control as many as four disk drives, except for certain units (for instance, Memorex, Shugart 14-inch, Priam, or CDC Finch Series). Two drives are supported for the excepted types. In all instances, drives from only one manufacturer at a time may be used, unless the drives are 100-percent compatible.

The jumpers listed in Table 2-5 allow the user to configure the iSBC 215G board for the listed drive types (see Figure 5-2). Other drive types may be used; however, Intel assumes no obligation to determine the appropriate jumper configuration. Interface cables must also be constructed and installed (according to the type of drive being used) as described later in this chapter.

Table 2-5. Jumper Configuration for Various Hard-Disk Drives

					DRI	VE INTER	RFACE						
WIRE NO.	FUNCTION	SHUGART SA 1000 RMS 5 1/4 CMI 5 1/4	SHUGART SA 4000 MEMOREX FIJITSU	PRIAM	PRIAM ANSI	PERTEC SOFT- SECTOR ANS I	3M ANS I	MICROPOLIS ANSI	BASF ANS I	SL I ANS I	CDC	ANST PROGRAM HARD SECTORED	ANST PROGRAM SOFT SECTORED
<u>W1</u>	CMD BUS ENB*	1-3	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
W2	vendor ø		1-2	1-2	1-2		1-2	1-2	1-2	1-2	1-2	1-2	
W5	RDØ	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
W6	RDØ+	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
W7	RDCLØ	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
W 8	RDCLØ+	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
W9	TRIPOLAR * (SA 1.61616)	1-2									1-2		
w10	RADIAL SELECT	1-2		1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
W13	RD GATE	1-2	1-3	1-3	1-3	1-2	1-3	1-3	1-3	1-3	1-3	1-3	1-2
W14	AM CONTROL (SA 1.61616)	1-2	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3
W15	SHUGART (GAP CONTROL)		1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
W16	HARD/SOFT SECTOR ING	1+2	1-3	1-3	1-3	1-2	1-3	1-3	1-3	1-3	1-3	1-3	1-2
¥17	INDEX SELECT	1-2	1-2		1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
W22	RÐCL	1-2	1-2	1-2	1-3	1-3	1-3	1-3	1-3	1-3	1-2	1-3	1-3
W26	VENDOR 1		1-2	1-2			1-2		1-2		1-2	1-2	1-2
W27	VENDOR 2	1-2		1-2		1-2				1-2		1-2	1-2
W37	VENDOR 3	1-2	1-2	1-2				1-2	1-2	1-2	1-2		
W38	VENDOR 4	1-2	1-2	1-2							1-2	1-2	1-2
W33	SECTOR	1-2	1-2	1-2	1-3	1-2	1-3	1-3	1-3	1-3	1-2	1-3	1-2
W34	SKCOM *				1-2	1-2	1-2	1-2	1-2	1-2		1-2	1-2
W35	RDY *				1-2	1-2	1-2	1-2	1-2	1-2		1-2	1-2
W20	-10/-12V	1-2											
W21	-5V	1-3											

VENDOR CONFIGURATION TABLE

2.4.9 -5 Volt SELECTION

For interfacing with drives that require -5 V power (8-inch Shugart or Quantum or CDC drives), the power source and regulator voltage source must be selected. Install the two jumpers (see Figure 5-2) as indicated in Table 2-6 to select: 1) -5 V from either the MULTIBUS connector or the on-board regulator, and 2) the voltage source for the regulator.

Table	2-6.	-5 `	V	Selection	Jumper	Configuration
-------	------	------	---	-----------	--------	---------------

Install Jumper:	For:
W21-1 2	-5 V from MULTIBUS interface
W21-1 3	-5 V from regulator
W2Ø-1 2	-12 V to regulator
W2Ø-1 3	-10 V to regulator

2.4.10 I/O COMMUNICATION BLOCKS PAGE SELECTION

In the default configuration, all I/O communication blocks are located in the lowest 1-Mbyte page of the 16-Mbyte MULTIBUS address space. The user can select the highest page by installing jumper W36-1 -- 2 (see Figure 5-2).

2.4.11 RAM JUMPER

Jumper W31 is factory default connected as W31-1 to W31-2. It is not re-configurable.

2.5 INTERFACE CONNECTIONS

The iSBC 215G board communicates with the CPU and other boards via the MULTIBUS interface (connectors P1 and P2), and with the various storage drives via special cables (connector J1, J2, or J5, as appropriate).

2.5.1 MULTIBUS® INTERFACE

All interconnections between the iSBC 215G board and the MULTIBUS interface are accomplished through the two MULTIBUS edge connectors, Pl and P2. Tables 2-7 and 2-8 list the pins and signals for connectors Pl and P2, respectively. Tables 2-9 and 2-10 describe the signals listed for the connector pins. With reference to Tables 2-7 through 2-10, see the considerations below.

- All odd-numbered pins (1,3,5, etc.) are on the component side of the board; even-numbered pins are opposite. Pin 1 is the left-most pin when viewed from the component side with the extractors at the top.
- 2. Cable and board connector numbering convention may not agree.
- 3. An asterisk or slash following a signal mnemonic denotes that the signal is active when in the low state.

(Component Side)					(Circuit Side)			
	Din	Pin Mnemonic Description			Mnemonic	Description		
	F TU	FILLEMOLLIC	Description		memonie	Deseription		
		CND	Signal Cround	2	CND	Signal Ground		
			Signal Ground			+5 V Supply		
Davie	5	+5 V	+5 V Supply		+5 V	+5 V Supply		
Power	2	+5 V	+5 V Supply		+5 V	+5 V Supply		
Supplies		+12 V	+12 V Supply			F V Guerly		
	9	V C-	-5 V Supply		-5 V	-5 V Supply		
		GND	Signal Ground		GND	Signal Ground		
	13	BCLK*	Bus Clock	14	INIT*	Initialize		
	15	BPRN*	Bus Priority In	16	BPRO*	Bus Priority Out		
Bus	17	BUSY*	Bus Busy	18	BREQ*	Bus Request		
Controls	19	MRDC*	Mem Read Cmd	2Ø	MWTC*	Mem Write Cmd		
	21	IORC*	I/O Read Cmd	22	IOWC*	I/O Write Cmd		
	23	XACK*	XFER Acknowledge	24	INH1*	Inh 1 Dis RAM		
	25	LOCK*	Bus Lock	26	INH2*	Inh 2 Dis ROM		
Bus	27	BHEN*	Byte High Enable	28	AD1Ø*			
Controls	29	CBREO*	Common Bus Request	30	AD11*	Address		
and	31	CCLKX	Constant Clock	32	AD12*	Bus		
Address	33		Interrunt Ack	34	AD13*			
Address		Turr	Incollaps non					
	35	INT6*	Parallel	36	INT7*	Parallel		
	37	INT4*	Interrupt	38	INT5*	Interrupt		
Interrupts	39	INT2*	Requests	4Ø	INT3*	Requests		
-	41	INTØ*	-	42	INT1*			
	43	ADPEX		A A	ADRE*			
	43	ADREA		44	ADPD*			
	45				ADPR*			
Addresse	47	ADRA^	Addmoore	50	ADROX	Addross		
Address	47	ADRO*	Rutress	52		Rudress		
	51	ADR0^	Bus	54		Bus		
	53	ADR4^		54	ADR3~			
	55	ADRZ^		50				
	5/	ADKØ^		80	ADR1^			
	59	DATE*		6Ø	DATF*			
	61	DATC*		62	DATD*			
	63	DATA*		64	DATB*			
Data	65	DAT8*	Data	66	DAT9*	Data		
	67	DAT6*	Bus	68	DAT7*	Bus		
	69	DAT4*		7ø	, DAT5*			
	71	DAT2*		72	DAT3*			
	73	DATØ/		74	DAT1/			
	75	GND	Signal Ground	76	GND	Signal Ground		
	77	-10 V	-10 V Supply	78	-1ø v	-10 V Supply		
Power	79	-12 V	-12 V Supply	80	-12 V	-12 V Supply		
Supplies	81	+5 V	+5 V Supply	82	+5V	+5 V Supply		
arbbites	83	+5 V	+5 V Supply	84	+5V	+5 V Supply		
	85	GND	Signal Ground	86	GND	Signal Ground		
		GND	arburar around					

Table 2-7. Connector P1 Pin Assignments

(Component Side)					(Circuit Side)			
	Pin	Mnemonic	Description	Pin	Mnemonic	Description		
	1		Not Connected	2		Not Connected		
-	3	•	Not Connected	4		Not Connected		
Power	5		Not Connected	6		Not Connected		
Supplies			Not Connected	8		Not Connected		
	9		Not Connected	1Ø		Not Connected		
	11		Not Connected	12		Not Connected		
	13		Not Connected	14		Not Connected		
	15		Not Connected	16		Not Connected		
	17		Not Connected	18		Not Connected		
	19		Not Connected	2Ø		Not Connected		
	21		Not Connected	22		Not Connected		
	23		Not Connected	24		Not Connected		
	25		Not Connected	26		Not Connected		
	27		Not Connected	28		Not Connected		
	29		Not Connected	3Ø		Not Connected		
	27		Not Corrected	20		Not Corrected		
	22		Not Connected	34		Not Connected		
	22		Not Connected	34		Not Connected		
	35		Not Connected	30		Not Connected		
	37		Not Connected	38		Not Connected		
	39		Not Connected	40		Not connected		
	41		Not Connected	42		Not Connected		
	43		Not Connected	44		Not Connected		
	45		Not Connected	46		Not Connected		
	47		Not Connected	48		Not Connected		
	49		Not Connected	5ø		Not Connected		
	E J		Not Composided	50		Not Connected		
	57		Not Connected	54		Not Connected		
Addresse	22		Addrogg Bug	54	ADD1 7+	Not Connected		
AUGTESS	55	ADD144	Address Bus	50	ADD15	Address Bus		
	5/	AUK14×	Auuress Bus	58	ADKT2×	Not Corrected		
	27		NUT CONNECTED	ا لا م		NOT CONNECTED		

Table 2-8. Connector P2 Pin Assignments

Table	2-9.	Connector	P1	Input/Output	Signals
-------	------	-----------	----	--------------	---------

Description
Address Bits: Specify part of memory address or I/O port address to be accessed. ADRØ* through ADR13* are used for normal 16-bit address selection and are shifted 4 places to derive 2Ø-bit addresses. Address bits ADR14* through ADR17* (which are listed in Table 2-9), are also used for address selection.
When bits specify memory address, ADRØ*, in conjunction with BHEN*, enables even-byte bank on MULTIBUS interface.
When bits specify I/O port, only address bits ADRØ* through ADRF* are used.
Byte High Enable: Determines, in conjunction with ADRØ*, byte bank data to be transferred.
<u>Bus Clock</u> : Synchronizes bus contention logic on all bus masters.
<u>Constant Clock</u> : Provides for synchronization of all devices using MULTIBUS interface. Master clock signal.
Bus Priority In: Indicates to particular bus master that no higher priority master is requesting use of bus. BPRN* is synchronized with BCLK*.
Bus Priority Out: In serial priority resolution scheme, indicates to lower priority bus master that neither it (master issuing BPRO* signal) nor higher master is requesting use of bus.
<u>Bus Request</u> : In parallel priority resolution scheme, indicates that issuing bus master requires control of bus for one or more data transfers. BREQ* is synchronized with BCLK*.
Busy: Indicates that bus is in use and prevents other bus masters from gaining control. BUSY* is synchronized with BCLK*.
<u>Common Bus Request</u> : Indicates that bus master requires control of bus but does not have such control. As soon as control is attained, controlling master raises CBRQ* signal.

	Table 2-9.	Connector H	P1	Input/Output	Signals	(continued)
--	------------	-------------	----	--------------	---------	-------------

Signal Mnemonic	Description
Lock*	MULTIBUS Bus Lock: Prevents off-board requests for on-board dual-port RAM use.
DATØ* –– DATF*	Data Lines: Provide for transmitting or receiving 16 parallel bits of data to or from selected memory address or I/O port. For byte data operations, bits DATØ* through DAT7* constitute even byte and bits DAT8* through DATF* constitute odd byte.
INH1*	Inhibit RAM: Inhibits local RAM cycles.
INH2*	Inhibit ROM: Inhibits local ROM cycles.
INIT*	<u>Initialize</u> : Resets system to known state.
INTØ* INT7*	<u>Interrupt Request</u> : Provide for transmitting 8 interrupt requests to assigned interrupt handlers.
INTA*	Interrupt Acknowledge: Not used.
IORC*	<u>I/O Read Command</u> : Indicates that address of I/O port is on MULTIBUS address lines and that port output is to be placed on MULTIBUS data lines.
IOWC*	<u>I/O Write Command</u> : Indicates that address of I/O port is on MULTIBUS address lines and that information on MULTIBUS data lines is to be accepted by addressed port.
MRDC*	<u>Memory Read Command</u> : Indicates that memory address is on MULTIBUS address lines and that contents of address are to be placed on MULTIBUS data lines.
HWTC*	<u>Memory Write Command</u> : Indicates that memory address is on MULTIBUS address lines and that information on MULTIBUS data lines are to be written into address.
XACK*	<u>Transfer Acknowledge</u> : Indicates that specified read or write operation has been completed at memory address or I/O port (that is, data have been placed on or accepted from MULTIBUS data lines).

Table 2-10. Connector P2 Input/Output Signals

Signal Mnemonic	Description
ADR14* ADR17*	Address Bits: Specify high-order four bits of memory address to be accessed. (See Table 2-8 for bits ADRØ* ADR13*.) ADR14* through ADR17* are used in conjunction with shifted address bits ADRØ* through ADR13* to derive 24-bit addresses (for 16-Mbyte MULTIBUS memory), and are transferred in separate CPU operation.

2.5.2 iSBX[™] MULTIMODULE[™] INTERFACE

Connectors J3 and J4 on the iSBC 215G board are designed to interface with Intel iSBX I/O controllers or other I/O modules designed to meet the Intel iSBX Bus Specifications. A detailed description of the iSBX bus is given in the MULTIBUS Handbook.

Note that the iSBC 215G board does not comply fully with the iSBX Specification in regard to signals DREQ (DMA Request, pin 34), MWAIT (Expansion Module Wait, pin 16), and EXTR (External Terminate, pin 26). According to the specification, these signals must be uniquely identifiable by the base board for each channel. The iSBC 215G board logically OR's these signals, which thus may be active for only one channel at any time.

The Intel iSBX 218A Flexible Diskette Controller Board connects to the J4 connector and provides an interface between the iSBC 215G board and as many as four 5 1/4- or 8-inch double-density flexible disk drives. The iSBX 218A board interfaces directly with the iSBC 215G board software as described in Chapter 3.

The Intel iSBX 217B/C Magnetic Cartridge Tape Interface Board connects to the J3 connector and provides an interface between the iSBC 215G board and as many as four industry-standard QIC-Ø2 type 1/4-inch magnetic cartridge-tape drives. The iSBX 217B/C board interfaces directly with the iSBC 215G board software as described in Chapter 3.

I/O modules that interface the iSBC 215G board with other storage devices such as bubble memories can also be designed and connected to J3 and/or J4. The device select function of the iSBC 215G board software allows the board to be interfaced with as many as 256 different devices through both iSBX connectors J3 and J4.

The schematic diagram mnemonics for the signal and control lines (from the iSBC 215G board) that are connected to iSBX connectors J3 and J4 often differ from the respective line mnemonic from the iSBX bus specifications. Table 2-11 lists both iSBX bus and iSBC 215G board mnemonics for each signal in the iSBX bus that the board supports. Note that DMA acknowledge pin 32 is not connected on the iSBC 215G board.

Table 2-11	. iSBX™	Bus	Mnemonics/iSBC®	215G	Boarđ	Mnemonics
------------	---------	-----	-----------------	------	-------	-----------

Die	CDV0 Dug	ispon 2150 Peand Mnomenia	
Pin	ISBA BUS		
Number	mnemon1C	1 33	54
1	+12 V	+12 V	+12 V
2	-12 V	-12 V	12V
3	GND	GND	GND
4	+5 V	+5 V	+5 V
5	RESET	PWR RST	RST
6	MCLK	CCLK	CCLK
7	MA2	IADR-2	IADR-2
8	MPST*	MØPST*	M1PST*
9	MA1	IADR-1	IADR-1
1Ø	Reserved	Reserved	Reserved
11	maø	IADRØ	IADR-Ø
12	MINTR1	INTR1Ø	INTR11
13	IOWRT*	I-AIOWC*	I-AIOWC*
14	MINTRØ	INTRØØ	INTRØ1
15	IORD*	I-IORC*	I-IORC*
16	MWAIT*	MWAITØ*	MWAIT1*
17	GND	GND	GND
18	+5 V	+5 V	+5 V
19	MD 7	IDAT-7	1DAT7
20	MCS1*	CSMMI01*	CSMM103*
21	MD6	IDAT-6	IDAT6
22	MCSØ*	CSMMT0Ø*	CSMM102*
23	MD5	TDAT-5	IDAT-5
24	Reserved	Reserved	Reserved
25	MD4	IDAT-4	ID AT -4
26	TDMA	EXTRØ	EXTR1
27	MD3	IDAT-3	IDAT-3
28	OPT1	OP1Ø	OP11
29	MD2	IDAT-2	IDAT-2
30	OPTØ	OPØØ	0P Ø1
31	MD1	IDAT-1	IDAT-1
32	MDACK*	N/C	N/C
33	MDØ	IDAT-Ø	IDAT-Ø
34	MDROT	DREOØ	DREQ1
35	GND	GND	GND
36	+5 V	+5 V	+5 V
37	MDE	IDAT-E	IDAT-E
38	MDF	IDAT-F	IDAT-F
39	MDC	IDAT-C	IDAT-C
40	MDD	IDAT-D	IDAT-D
41	MDA	IDAT-A	IDAT-A
۵2	MDB	IDAT-B	IDAT-B
43	MD8	IDAT-8	IDAT-8
66	MD9	TDAT-9	IDAT-9
		/	

2.5.3 CABLING REQUIREMENTS

Interface cables between the iSBC 215G board and the disk drives must be fabricated according to the type of drive being used and the number of drives. Tables 2-12, 2-13, and 2-14 and Figures 2-1 through 2-6 show the signal mnemonics and connector pin assignments for the board and for each type of drive. A 50-pin mass-terminated socket connector (3M 3425/6050 or equivalent) is recommended for mating with J1 or J5 of the iSBC 215G board. A 40-pin connector (3M 3417-6040 or equivalent) is recommended for mating with J2.

The mass-terminated sockets are easily attached to flat ribbon cable using the jig supplied by the connector manufacturer. The control cables that connect to J1 and J5 require a 50-conductor ribbon cable; the read/write cable that connects to J2 requires one or two 20-conductor ribbon cables, depending on the drive configuration. Total length for either the control cable or the read/write cable must not exceed 10 feet. See the respective service manual for the type of connectors required for the cable end that connects to the drives.

Interconnecting cables are shown in Figures 2-7 through 2-12. Most of these require a number of wire cross-overs (scrambling) between the iSBC 215G board connectors and the drives. It is suggested that the scrambling be done at the drive interface connector. Scrambling is not required for the ANSI configuration (Figure 2-14).

NOTE

The cabling and drive interconnecting information given in this paragraph, and in Figures 2-3 through 2-14, reflect the specifications at the time this manual was printed. Before proceeding with cable construction, check the drive hardware reference manual for current pin assignments and interface requirements.

Table 2-12. Drive Interface Pin-Out Data

Pin Number			Mnemonic
.15	J1	.12	
J5-1	J1-1	-	No connection
J52	J1-2	-	BUS-Ø* (HSØ*)
J5-3	J1-3	-	BUS-1* (HS1*)
J5-4	J14	-	BUS-2* (HS2*)
J5–5	J1-5	-	BUS-3* (HS3*)
J56	J1-6	-	BUS-4*
J57	J1-7	-	BUS-5*
J58	J18	-	BUS-6*
J5-9	J1-9	-	BUS-7*
J5–1ø	J1-1Ø	J2-1	GND
J5–11	J1-11	-	No connection
J5–12	J1–12	J2-7	GND
J5–13	J1–35	-	SELECTOUT*
J5-14	J1–14		GND
J5–15	J1-13	-	CMND*
J5-16	J1-16	-	GND
J5–17	J1-36	-	PARA*
J518	J1–18	_	GND
J5-19	J1-39	-	STEP-DIR*
J5-2Ø	J1-2Ø	J2-13	GND
J5-21	J1-43	-	USØ*
J5-22	J1–22	J2-15	GND
J5-23	J134	-	ADMKEN*
J5-24	J1-24	J2-17	GND
J5-25	J1–23	-	RD GATE*
J5-26	J1-26	J2-19	GND
J5-27	J1-25	-	WR GATE*
J5-28	J1-28	J2-25	GND
J5-29	J1-42	-	BUS ACK*
J5-3Ø	J1-3Ø	J2-31	GND
J5-31	J1-29	-	INDEX*
J5-32	J1-32	J2-32	GND
J5-33	J1-31	-	SECTOR*
J5-34	-	-	GND
J5-35	J1-15	-	ATTN*
J5-36	_	-	GND
J5-37	J1-33	-	BUSY*
J5-38	J1-38	J2-33	GND
J5-39	_	J2-2	RDØ +
J5-4Ø		J2-3	RDØ –
J5-41	J1-46	J2-35	GND
J5-42	-	J2-6	RDCLØ +
J5-43		J2-5	RDCLØ -
J5-44	J1-44	J2-37	GND
J5-45	-	J2-12	WRCLØ -
J546	-	J2-11	WRCLØ +
.15_47	.11-48	~~	GND
J5-48	-	J2-9	WRØ +
00 40			
Pin Number			Mnemonic
------------	-------	-------	---------------
J5	Jl	J2	
.15-49	_	.12-8	WRØ -
15-50	J1-5Ø	_	No connection
		J2-20	RD1 +
_	-	J2-21	RD1 -
_	_	J2-23	RDCL1 +
_	_	J2-24	RDCL1 -
_	_	J2-27	WR1 -
		J2-26	WR1 +
_	-	J2-3Ø	WRCL1 -
_	_	J2-29	WRCL1 +
_	J1-17	-	FAULT*
	J1-21	-	RDY*
_	J1-37	_	SKCOM*
_		J2-18	SKCOMØ*
	-	J2-36	SKCOM1*
_		J2-16	SECTØ*
_	_	J2-34	SECT1*
-	J1-4Ø	J2-14	BA1*
_	J1-41	-	BAØ*
_	J1-27	_	BACK*
_	J1-19	_	SAFE*
_	J1-49	-	US3*
_	J1-45	-	US1*
_	J1-47	_	US2*
-	_	J2-4	No connection
-	_	J2-1Ø	No connection
_	_	J2-22	No connection
_	_	J2-26	No connection
_	-	J2-27	No connection
-	-	J2-28	No connection
-	_	J2-29	No connection
-		J2-3Ø	No connection
_	_	J2-38	No connection
_	_	J2-39	No connection
_	_	J2-40	No connection

Table 2-12. Drive Interface Pin-Out Data (continued)

Table 2-13.	Control	Cable	Functions	(J1	Complete/J5	Partial)
-------------	---------	-------	-----------	-----	-------------	----------

Signal Mnemonic	Function	Description
	E	Device Select
USØ*US3*	Unit Select	Four lines; each selects one of four disk drives.
	······································	Head Select
HSØ*HS3* (Same as BUS Ø* through BUS 3* below)	Head Select	Four lines; in iSBC 215A/B board, select one of sixteen heads in selected drive. In iSBC 215G board, can be put to various uses; for example: HSØ Not used HS1 SAFE* HS2 SELECTOUT* HS3 PARA*
	eneral Purpose	Data Bus (Priam and ANSI)
BUSØ*BUS7*	Data Bus	Eight-bit, bi-directional data bus; transmits command and status information between iSBC 215G board and drives (includes head and cylinder data).
	······	Command Data
WRGATE*	Write Select	Enables write circuitry in drive, permitting write data sent to drive through read/write cable to be written on selected disk surface. Used with ADMKEN* line to write address mark on soft-sectored disk.
RDGATE*	Read Select	Enables read circuitry in drive, permitting data to be read from selected sector of disk. Used with ADMKEN* line to read address mark from soft-sectored disk.
DIR*	Direction	Level controls direction of head movement (low for "in", high for "out") when stepping head positioner.
STEP*	Step Head	Initiates head movement in selected direction.
C MN D*	Command Data	Indicates that command data are present. Used in bus cycle handshaking.

Table 2-13.	Control	Cable	Functions	(J1	Complete/J5	Partial)
(continued)						

Signal Mnemonic	Function	Description
PARA*	Parameter Data	Indicates that parameter data are present. Used in bus cycle handshaking.
DRIVE REQ* (ATTN* for ANSI only)	Status Data	Indicates that status data are present. Used in bus cycle handshaking.
BUS ACK	Bus Acknowledge	Acknowledges bus cycle. Used in bus cycle handshaking with commands, parameters, and status.
BACK*	Bus Acknowledge	Not used.
ADMKEN*	Address Mark Enable	Enables writing or detecting address marks (beginning of sectors) when used in conjunction with WRGATE* and RDGATE*, respectively. (See SECTOR*.)
SELECTOUT*	Select Unit	Selects and strobes selected drive.
BAØ*/BA1*	Bus Address	Two binary coded lines; specify source or destination register in selected drive for bus data.
SAFE*	Power Safe	Indicates that board power is at safe level.
		Status Data
INDEX*	Index	Indicates start of each disk revolution on selected disk drive.
SECTOR*	Start of Sector	Indicates start of sector (address mark for soft-sectored disks, sector pulse for hard-sectored disks).
FAULT*	Fault Condition	Indicates that unsafe condition has been detected in selected drive, making read/write operation reliability questionable. Ordinarily, drive logic disables read, write, and positioning circuitry until rezero operation, fault clear operation, or operator intervention.

Signal Minemonic	Function	Description
skcom*	Seek Complete	Indicates that selected drive has successfully completed initial head load, seek operation, or rezero operation within specified time limit.
RDY*	Drive Ready	Indicates that drive is powered up and ready to receive or transmit data.
BUSY*	Track Zero/ Busy	Indicates that heads of selected drive have been positioned to cylinder (track) zero or that command is in progress.
BUS ACK*	Bus Acknowledge	Indicates that drive acknowledges parameter request or command.
CHNL ATTN*	Channel Attention	Indicates to IOP that select line should be checked to determine either board master/slave status (following reset), or channel selection.

Table 2-13. Control Cable Functions (J1 Complete/J5 Partial) (continued)

Table 2-14. Read/Write Cable Functions (J2 Complete/J5 Partial)

Signal Mnemonic	Function	Description
WRØ/WR1 (+ and -)	Write Data	Line pairs; transmitted serial NRZ data (converted from TTL levels to different- tial signals) for recording on disk surface. Write clock synchronizes data transfer.
WRCLØ/WRCL1 (+ and -)	Write Clock	Line pairs; transmitted clock signal for synchronizing write data trans- mission. Write clock is derived from read clock received from selected drive. Being obtained from rotating disk, read clock signal reflects speed variations and thus ensures proper bit transmission rate when writing as well as reading.
RDØ/RD1 (+ and -)	Read Data	Line pairs; transmitted serial NRZ data from disk drive to iSBC 215G board (to be converted from differential signals to TTL levels) for transmission to host memory. Read clock synchronizes read data transfers.
RDCLØ/RDCL1 (+ and -)	Read Clock	Line pairs; transmitted clock signal used to synchronize read data trans- mission and as timing signal for board/disk interface circuitry. Read clock is derived from rotating disk.
SECTØ*/ SECT1*	Start of Sector	See SECTOR* in Table 2-12. Binary- coded signal outputs; one from each unit.
SKCOMØ*/ SKCOM1*	Seek Complete	See SKCOM* in Table 2-12. Binary-coded signal outputs; one from each unit Ø and 1.
RDWCUR*	Reduced Write Current	Controls write electronics for inner tracks with higher bit densities.

8" Shug	iSBC*	
Meeting	Mating (
50-Pin	1	

iSBC*	215G Bo	bard
Mating C	Connecto	or J1
	50-Pin	(2)

Shugart Data Separator iSBC*			215G	Board Connecte	ors*
Mating Connector J5			J1 Ma	ating Connector	sJ2
20-Pin	4	50-Pin	2	40-Pin	3

	•		
2	Ground (CND)		
3			10
4	– Head Select ² (– HS2/)	►	4
5			
6			
0			
7	- SEEK COMPLETE (SKCOM/)		
8	Ground (GND)		37
9			38
10			
11			
12			
10	Ground (GND)	-	10
13	- HEAD SELECT 2º(H - HSØ/)		12
14		\rightarrow	2
15			
16			
17	Ground (GND)		14
18	– HEAD SELECT 2' (– HS1/)		з
10	Ground (GND)		28
19	– INDEX (INDEX/)		20
20	Ground (GND)		29
21	- READY (RDY)		20
22		>	21
23			
24			
25			
26	- DRIVE SELECT 1 (USØ/)		43
20		-	-0
21	- DRIVE SELECT 2 (US1/)		
28	Ground (GRD)		45
29	- DBIVE SELECT 3 (US2)		44
30			47
31			46
32	- DRIVE SELECT 4 (US3/)		49
33	Ground (GND)	> .	48
34	- DIRECTION IN (DIR/)		41
25		-	
35	– STEP (STEP/)		•••
36		>	39
37			
38			
39			
40	- WRITE GATE (WRGATE/)		25
41	Ground (GND)		26
40	- TRACK 000 (BUSY/)		20
42	Ground (GND)		33
43	- WRITE FAULT (FAULT/)		32
44	Ground (GND)		17
45		~~	18
	46 through 50 — no connections		

	- READ GATE (RDGATE)	- 22	
1	Ground (GND)	23	
2	- AMF (SECTOR/)*		
3	Ground (GND)	24	
4	- WRAM (ADMKEN/)	> 24	
0 6	Ground (GND)	30	
7	- RWC (RDWRCUR/)		- 14
, 8	Ground (GRD)		- 15
q	+ NRZ WRITE DATA (WR	(+)	- 26
100	- NRZ WRITE DATA (WR	8-)	> 27
11	Ground (GRD)		► 10
12	+ WRITE CLOCK (WRCL	.+)	▶ 29
13	- WRITE CLOCK (WRCL	. –)	► 30
14	Ground (GND)		► 13
15	+ READ CLOCK (RDCLO)+)	► 6
16	- READ CLOCK (RDCLO)_)	► 5
17	Ground (GND)		► 7
18	+ NRZ READ DATA (RD0	+)	▶ 2
19	- NRZ READ DATA (RDØ	-)	► 3
20	Ground (GRD)		► 4
Sh Ma	ugard Data Separator ting Connector	8″ Shugart/Quantum Drive Mating Connect	e Ø tor
20-	Pin (4)	20-Pin	4

- DRIVE SELECTED/ 1 1 Ground (GND) 2 2 SPARE з 3 Ground (GND) 4 4 SPARE 5 5 Ground (GND) 6 6 SPARE 7 7 Ground (GND) 9 + TIMING CLK 8 8 9 - TIMING CLK 11 Ground (GND) 10 12 Ground (GND) 11 12 12 + MFM Write Data 13 - MFM Write Data 14 14 Ground (GND) 15 Ground (GND) 16 15 17 + MFM READ DATA 16 > 17 - MFM READ DATA 18 18 -Ground (GND) 19 19 * Ground (GND) 20 ▶ 20

iSBC 215G Board (signal name) in parentheses

x-753A

Figure 2-1. 8-Inch Shugart/Quantum Drive Interconnection Listing

Fujitsu/Memorex/14" Shugart Drive i Mating Connector	iSBC [®] 215G Bo Connecto	oard Ir J1	F	ujitsu/Memore fating Connect	x/14" Shugart Drive	iSBC* 215G Boar Connector
50-Pin (1)	50-Pin	2	C	prive 0 20-Pin	4	4 0 -Pin (
		1	1			
- Head Select 0 (- HS0/)		2	2			
Ground (GND)		10	3			
- Head Select 1 (- HS1/)	>	3	4			
Ground (GND)		12	5			
– Head Select 2 (– HS2/)		4	6			
Ground (GND)		14	7	Seek Complete	e (SKCOMØ/)	>
			8 -	Ground (GND)		
			9 -	+Write Data (WRO +)	
– Index (INDEX)		29	10 -	– Write Data (WRO-)	
Ground (GND)		30	11 -	Ground (GND)		
- Drive Ready (RDY)		21	12 -	+ Write Clock	(WRCLO +)	
Ground (GND)		22	13 -	- Write Clock	(WRCLO –)	
- Sector/Byte Clock (SECTOR/)	>	31	14 -	Ground (GND)		
Ground (GND)	>	32	15 -	+ PLO Clock (RDCLO +)	>
- Drive Select 1 (USØ/)	>	43	16 -	- PLO Clock (RDCLO –)	`
Ground (GND)		44	17	Ground (GND)		·····
- Drive Select 2 (US1/)		45	18 -	+ Read Data (I	RD0+)	
Ground (GND)		46	19 .	– Read Data (I	RD0-)	
- Drive Select 3 (US2/)		47	20	Ground (GND)		
Ground (GND)		48				-
- Drive Select 4 (US3/)		40				
			M	emorex/14"Shi ating Connecti	ugart Drive	Connector J
– Direction (DIR/)	_	41	141			Connector a
Ground (GND)		41	20)-Pin (4)		40 -Pin (
- Step (STEP/)		38				
		39	1			
– Fauit Clear (FLT CLR/)		95	2			
	>	35	3			
- Write Gate (WRGATE/)			4			
Ground (GND)		25	5			
- Track 0 (BUSY/)		26	ь -	- Seek Comple	ete (SKCOM1)	
Ground (GND)		33	2	Ground (GND)		
- Write Fault (FAULT/)		16	8 -	+ Write Data (\	WR1+)	
Ground (GND)	>	17	9 -	- Write Data (N	WR1 -)	
- Read Gate (RDGATE/)	>	20	10 -	Ground (GND)	·····	
Ground (GND)	>	23	11 -	+ Write Clock (WRCL1+)	
Ground (GND)	>	24	12 -	- Write Clock (WRCL1-)	>
	>	18	13 -	Ground (GND)	· · · · · · · · · · · · · · · · · · ·	>
			14 -	+ PLO Clock (F	RDCL1+)	
			15 -	- PLO Clock (F	ADCL1 -)	>
tiSBC1 215G Board (cignal name) in r	arentheses		16 7	Ground (GND)		>
**When interface with a 14" Shugart d	rive pins 15 and	d	17 -	+ Bead Data (F	3D1+)	
16 on both radial connectors should be	swapped: pin		18 -	Data (r		>

16 on both radial connectors should be swapped: pin (RDCLO +).

x-752A

-

-

Figure 2-2. Fujitsu 2300/Memorex/14-Inch Shugart Drive Interconnection Listing

- Read Data (RD1 -)

Ground (GND)

Priam Drive Mating Connector iSBC* 215G Board Connecto					
50-Pin (1) J1 50-Pin		50-Pin	(2)	J2 40-Pin	3
	\mathbf{i}		\odot		\odot
1	+ DBUS Ø (BUS Ø/)		1		
2 -	+ DBUS 1 (BUS 1/)		2		
3 -	+ DBUS 2 (BUS 2/)	>	- 3		
4 -	+ DBUS 3 (BUS 3/)	>	4		
5 -	+ DBUS 4 (BUS 4/)		5		
6 -	+ DBUS 5 (BUS 5/)		6		
(-	+ DBUS 6 (BUS 6/)		. 7		
8 -	+ DBUS 7 (BUS 7/)		8		
G	iround (GND)		. 9		
- 91	- READ GATE (RDGATE/)	>	10		
1 6	iround (GND)		23		
12 A	leset		12		
13 G	iround (GND)		33		
14 -	- WRITE GATE (WR GATE/)		14		
15 G	iround (GND)		25		
16	- RD (Comnd/)		16		
17 -	- WR (Step/)		13		
18 -	- AD1 (BA1/)		39		
19 -	- ADØ (BAØ/)		40		
20 G	iround (GND)	>	41		
21 -	- DRIVE SELECT 1 (USØ/)		20		
22 -	DRIVE SELECT 2 (US1/)		43		
23 -	DRIVE SELECT 3 (US2/)		45		
24 -	DRIVE SELECT 4 (US3/)		47		
²⁵ G	iround (GND)	>	49		
²⁶ G	iround (GND)		26		
27 —		>	28		
28 -	HEAD SELECT 3 PARA()				
29 -	HEAD SELECT 2 (Select Out/)		36		
30 -	HEAD SELECT 1 (Safe/)		35		
³¹ G	round (GND)		19		
32 -	INDEX (Index/)		32		
³³ G	round (GND)	>	29		
34 _	READY (RDY/)		37		
³⁵ G	round (GND)		21		
36 -	SECTOR MARK		38		
³⁷ G	round (GND)	>	31		
38	WRITE DATA (WR0 +)		44		
39 —	WRITE DATA (WR0 -)				▶ 9
40 <u>_</u>	round (GND)				8
41 -+	WRITE CLOCK (WRCLO+)			>	► 4
42 _	WRITE CLOCK (WRCLO -)				▶ 11
$\frac{43}{G}$	round (GND)				▶ 12
44 -+	READ/REFERENCE CLOCK (WRCLO +)				► 7
45 _	READ/REFERENCE CLOCK (WRCLO -)				► 6
46 G	round (GND)				► 5
47 -	READ DATA (RDØ +)				► 10
48 _	READ DATA (RDØ –)			*	► 2
49 6	round (GND) *iSBC+ 215G Br	pard (siz	Inal nan	ne) in narentheses	► 3
50 <u> </u>			,		► 13

x-754A

Figure 2-3. Priam Drive Interconnection Listing

	51/4 "Drive Ø iSBC* 215G Board Mating Connector Mating Connector J1			Data Se Mating (perator Connector		Ma	D ating Conn	rive Ø iector		
	34-Pin	1	50-Pin	2		20-Pin	4			20-Pin	4
1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20	- Head Ground Write G Ground - SEEH Ground Track Ø Ground Write F Ground - HEAD Ground - HEAD Ground - HEAD	I Select 2 ² (– HS2/) (GND) (GND) (GND) (COMPLETE (SKCOM/) (GND) 00 (Busy/) (GND) ault (FAULT/) (GND) 0 SELECT 2 ⁰ (– HS0/) (GND) 0 SELECT 2 ¹ (– HS1/) (GND) 2 SELECT 2 ¹ (– HS1/)		50.Pin (2)		- DRIV Ground SPARE Ground SPARE Ground FTIMIN Ground Ground Ground FMFM Ground Groun	E SELECTED. (GND) (GND) (GND) (GND) (GND) (GND) (GND) (GND) Write Cock (GND) (GND) (GND) READ DATA READ DATA (GND) (GND) (GND)				1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23	Ground - READ Ground	(GND) DY (RDY) (GND)	·····	 28 21 20 		Data Sep Mating C 20-Pin	earator connector J5	iSBC*	215G Boar J1 Mating	d Connect Connecto	ors* rsJ2
24 25 26 27 28 29 30 31	- DRIVI Ground - DRIVI Ground - DRIVI Ground - DRIVI	E SELECT 1 (USØ/) (GND) E SELECT 2 (US1/) (GND) E SELECT 3 (US2/) (GND) E SELECT 4 (US3/)		 39 43 44 45 46 47 48 	1 2 3 4 5 6 7	- READ Ground - AMF Ground - WRAI Ground - RWC	GATE (RDG/ (GND) (SECTOR/) (GND) M (ADMKEN/) (GND) (RDWRCUR/)	ATE/)	 23 22 31 24 34 30 		▶ 14
32 33 34	– DIREC	CTION IN (DIR/)		▶ 49▶ 41	8 9 10	Ground + NRZ \ - NRZ \ Ground	(GND) WRITE DATA WRITE DATA (GND)	(WR0+) (WR0-)			 15 9 8
NC	DTE: This only harc kits, iSB(sepa	i interconnection listing is 7. Interface to an ST412 co 1-disk drive requires one of which provides, in additio C* 215G board, the iSBC* arator board and all require	for information mpatible 5¼ ″ the iSBC* 215G n to the 213 data ed cables.		11 12 13 14 15 16 17 18 19 20	+ WRIT - WRIT Ground + READ - READ Ground + NRZ F Ground	(GND) E CLOCK (WF (GND) CLOCK (RDC CLOCK (RDC (GND) READ DATA (F READ DATA (F (GND)	RCL0 +) RCL0 -) CL0 +) CL0 -) RD0 +) RD0 -)			 10 11 12 13 6 5 7 2 3 4

iSBC 215G Board (signal name) in parentheses.

x-755A

Figure 2-4. 5 1/4-Inch Drive Interconnection Listing

*Refer to drive manual for application details.

x-756

Figure 2-5. CDC Drive Interconnection Listing

ANSI Drive Ø Mating Connector 50-Pin (1) iSBC® 215G Board Connector

J5 50-Pin (2)

1		1
2	BUS-0 ★ (HS 0 ★)	- 2
3	BUS-1 * (MS 1 *)	- 3
4	BUS-2 ★ (HS 2 ★)	- 4
5	BUS-3 * (HS 3 *)	. 5
6	BUS-4 *	- -
7	BUS-5 *	. 7
,	BUS-6 *	. ,
0	BUS-7 *	
y	GND	. g
10		• 10
11	GND	11
12	SELECTOUT *	· 12
13	GND	• 13
14		• 14
15	GND	• 15
16		• 16
17		• 17
18		18
19	STEP-DIR *	19
20	GND	20
21		21
22	GND	22
23	ADMKEN *	23
24	GND	24
25	RD GATE *	25
26	GND	26
20	WR GATE 🛪	20
20	GND	29
20	BUS ACK *	20
29	GND	29
30	INDEX *	ີຟ
31	GND	31
32	SECTOR *	32
33	GND	33
34	ATTN *	34
35	GND	35
36	BUSY *	36
37	GND	37
38	BD0 +	38
39	RDØ –	39
40	GND	40
41		41
42		42
43		43
44		44
45		45
46		46
47	GNU	47
48	WH0 +	48
49	WR0 -	49
50		50

x-757A

Figure 2-6. ANSI Drive Interconnection Listing

1026

Figure 2-8. Fujitsu 2300/Memorex/14-Inch Shugart Drive Interconnecting Cable

x-758

Figure 2-11. CDC Drive Interconnecting Cable

2.6 BOARD INSTALLATION

The iSBC 215G board can be installed in any MULTIBUS compatible cardcage or chassis. Installation is accomplished as outlined in the following procedure:

- 1. Remove power from cardcage or chassis.
- 2. Connect all jumpers for desired configuration (refer to paragraph 2.4).
- 3. Install iSBX MULTIMODULE board or boards as outlined in appropriate procedure (paragraph 2.6.2 for iSBX 218A board; paragraph 2.6.3 for iSBX 217B/C board).
- 4. Slide board into desired slot and press firmly to make certain that both connectors are properly seated.
- 5. Apply power to cardcage or chassis.

2.6.1 DRIVE INSTALLATION

The requirements for connecting the iSBC 215G board to the disk drive vary among drive types. Drives that conform to the ANSI X3T9/1226 interface can simply be plugged into iSBC 215G board center connector J5 (see Figure 2-13). Drives that do not conform to the ANSI interface require different interconnection schemes. Connectors J1 (left-hand connector) and J2 (right-hand connector) are used for non-ANSI interfacing. The iSBC 215G board is pin-compatible with earlier board versions. Connectors J1 and J2 <u>pin functions</u> are consistent with those versions, but <u>pin numbering</u> has been altered (see Figure 2-14). (Earlier versions of the board do not support connector J5.) The following paragraphs describe several non-ANSI interconnection schemes.

Figure 2-13. ANSI Drive Interface

Figure 2-14. Pin Numbering Conventions

2.6.1.1 14/8-Inch Drives With Integral Data Separator

Connecting the iSBC 215G board to drives with integral data separators requires only constructing and attaching the interconnecting cables. Refer to Figure 2-15. It may be helpful also to refer to Figures 2-1 through 2-12.

2.6.1.2 5 1/4-Inch Drives

All 5 1/4-inch drives used with the iSBC 215G board must be ST5Ø6/412 interface compatible (the iSBC 215G board does not provide step-pulse buffering). These drives require the use of the iSBC 215G Kit, which consists of an iSBC 215G board, an iSBC 213 data separator, and a cable set. Refer to Figure 2-16.

2.6.1.3 Other Drives Without Data Separator

Drives without data separators, other than ST506/412 compatible types, require the use of a Shugart, RMS, or equivalent data separator, and require constructing and attaching the interconnecting cables. Refer to Figure 2-17. It may be helpful also to refer to Figures 2-1 through 2-12.

Figure 2-17. Interface for Drives Without Data Separator

2.6.2 iSBXTM 218A BOARD INSTALLATION

The iSBX 218A board connects to J4 on the iSBC 215G board. Before installing the iSBX 218A board, install iSBC 215G board jumper W4-1 -- 2. Also, install jumper W24 as appropriate for DMA conditions (see Table 2-4). A single cable that transmits both control and read/write information is required to connect the iSBX 218A board to the flexible-disk drives as shown in Figure 1-1. Refer to the iSBX 218A Flexible Diskette Controller Board Hardware Reference Manual for further installation details and operating information.

Install the board as follows:

- Install supplied threaded spacers on solder side of iSBX 218A board (at holes near connectors J1 and J2 and at J2 end of board), securing spacers by inserting and hand-tightening supplied 1/4-inch screws from component side of iSBX 218A board (see Figure 2-18.)
- 2. Locate pin 1 on iSBC 215G board iSBX connector J4. Similarly, locate pin 1 on iSBX 218A board connector (see Figure 2-18.)

- 3. Carefully match connectors at pin 1, insert iSBX 218A board connector into iSBC 215G board iSBX connector, and press gently to seat fully. (iSBX board connector should be oriented in same direction as iSBC 215G board I/O connectors.)
- 4. Insert remaining 1/4-inch screws from solder side of iSBC 215G board into spacers, and tighten all screws.

2.6.3 iSBX¹ 217B/C BOARD INSTALLATION

The iSBX 217B/C board connects to J3 on the iSBC 215G board. Before installing the iSBX 217B/C board, install iSBC 215G board jumper W3-1 -- 2. Also, install jumper W24 as appropriate for DMA conditions (see Table 2-4). A single cable that transmits both control and read/write information is required to connect the iSBX 217B/C board to the magnetic cartridge-tape drive or drives. Refer to the iSBX 217B/C Magnetic Cartridge Tape Interface Board Hardware Reference Manual for further installation details and operating instructions.

Install the board as follows:

- Install supplied threaded spacer on solder side of iSBX 217B/C board (at hole near connector J1), securing spacer by inserting and hand-tightening one of supplied 1/4-inch screws from component side of iSBX 217B/C board (see Figure 2-19.)
- 2. Locate pin 1 on iSBC 215G board iSBX connector J3. Similarly, locate pin 1 on iSBX 217B/C board connector (see Figure 2-19.)
- 3. Carefully match connectors at pin 1, insert iSBX 217B/C board connector into iSBC 215G board iSBX connector, and press gently to seat fully. (iSBX board connector should be oriented in same direction as iSBC 215G board I/O connectors.)
- 4. Insert remaining 1/4-inch screw from solder side of iSBC 215G board into spacer, and tighten both screws.

Figure 2-19. iSBX^{IM} 217B/C Board Installation

CHAPTER 3 PROGRAMMING

3.1 INTRODUCTION

This chapter describes the programming conventions that must be followed to initiate and monitor the transfer of data between the system memory and a disk (hard or flexible) or tape drive. The firmware installed on the iSBC 215G board includes direct support for hard-disk (Winchester technology) interface, flexible-disk interface via the iSBX 218A Flexible Diskette Controller Board, and the QIC-Ø2 cartridge-tape interface via the iSBX 217B/C Magnetic Cartridge Tape Interface Board.

NOTE

If power is applied to or removed from the iSBC 215G board while a drive is ready, a spurious disk-write operation could occur. To prevent this, make certain that the disks are stopped whenever iSBC 215G board power is switched on or off.

Included in this section are: 1) descriptions of disk organization, track sectoring format, disk controller communications protocol, interrupt handling, the use of disk control functions; and 2) special procedures for programming I/O transfers to flexible-disk and cartridge-tape drives through the iSBX interface.

3.2 PROGRAMMING OPTIONS

The iSBC 215G board is designed to interface with hard-disk (Winchester technology) drives as specified in Chapters 1 and 2. The board also has two iSBX connectors for communication with other I/O devices through an iSBX I/O controller such as the iSBX 218A Flexible Diskette Controller Board or the iSBX 217B/C Magnetic Cartridge Tape Interface Board.

The iSBC 215G board contains a ROM-resident I/O transfer program designed to control data transfers between the board and hard-disk drives as well as between the board and flexible-disk and cartridge-tape drives connected to the iSBX 218A and iSBX 217B/C controllers. In addition, the iSBC 215G board can also execute programs that the user has written in 8089 I/O Processor (IOP) assembler code to control other I/O devices through the iSBX bus on the board.

3.3 MASS STORAGE PRINCIPLES

Mass storage, for purposes of this manual, is defined as the capacity of a peripheral device or combination of devices for storage of large amounts of data in applications requiring low-cost, high-capacity, random-access storage, but not the very low access times of such integrated-circuit devices as RAM's. The iSBC 215G board can accommodate storage devices of three types: hard-disk (Winchester technology), flexible-disk, and cartridge-tape. While hard-disk devices offer greater capacity per device and somewhat faster access, flexible-disk and cartridge-tape devices offer virtually unlimited capacity through interchangeable storage media. Thus, with the iSBC 215G board, the user can augment the system memory in the most efficient fashion, using any required combination of storage media.

3.3.1 HARD-DISK ORGANIZATION

In this description, a head is assumed to be associated with a single disk surface. Each surface can have as many as 4096 tracks (circular data paths numbered 0 through 4095). The set of tracks on multiple recording surfaces (one track per surface) at a given head position or location is referred to as a "cylinder" (see Figure 3-1). A drive that has 4096 tracks per surface thus has 4096 cylinders.

Figure 3-1. Disk Drive Organization and Terminology

Each track is divided into equal-sized sectors. Each of these sectors includes a sector identification block with error checking information. The iSBC 215G board allows the user to select the size of the data block, which then determines the maximum number of sectors permitted per track (as shown in Table 1-1). The iSBC 215G board generates the format of the

sector identification block, the data block, and the error checking fields of each sector of the disk; one track at a time. Figure 3-2 shows how the board organizes this information for 8-inch hard-disk drives. Refer to paragraph 3.5.3 for further information on track formatting.

Figure 3-2. Sector Fields

3.3.2 FLEXIBLE-DISK ORGANIZATION

The organization of data on the flexible disk is much the same as that of the hard-disk. The primary difference is that flexible-disk drives use only one disk at a time, which provides one or two recording surfaces. Hard-disk drives, however, can contain multiple disks, thus providing multiple recording surfaces. Refer to the iSBX 218A Flexible Diskette Controller Board hardware reference manual for information on flexible-disk track formatting.

3.3.3 CARTRIDGE-TAPE ORGANIZATION

Data stored on tape differs from that on disk in that files are not limited in length as on disk. A file is simply a string of data that ends with an end-of-file character. Refer to the iSBX 217B/C Magnetic Cartridge Tape Interface Board hardware reference manual for information on cartridge-tape file formatting.

3.4 HOST/BOARD COMMUNICATIONS

The iSBC 215G board is a full DMA device that is capable of operating as a bus master for transferring information to and from system memory. However, it cannot operate as the system master (host), and depends upon

the system master to provide operation programming. The board responds to any host CPU that provides the necessary operation programming. Thus, the iSBC 215G board can be used in multiprocessor systems if the necessary software interlocks are used to assure that multiple, concurrent mass storage accesses are not attempted. All mass storage operations are initiated by the output from the host CPU of a command byte to the wake-up port assigned to the iSBC 215G board. Once the operation is initiated by the host CPU, all subsequent communication between the host CPU and the board, until the operation is complete, take place using the I/O communications blocks established in memory by the host CPU prior to initiating the mass-storage operation.

The I/O communication blocks structure for the board, exclusive of any data buffer, consists of 68 bytes of memory that are arranged into 4 blocks. The format of each of the 4 blocks is specifically defined. However, the blocks can be arranged in any order or in any location within a 1-Mbyte page of memory (dedicated memory locations excluded). Each of the blocks has a defined format and the memory bytes that make up each must be contiguous. Each of the blocks also has a defined function related to the overall operation of the iSBC 215G board.

The most important advantage of such a communications block structure is flexibility. Though some of the blocks should be limited in use to only one such block in memory, the system may contain multiple copies of blocks used directly to specify operations. Thus, by merely changing a few pointers, software can specify a different storage operation without structuring an all-new I/O block.

3.4.1 WAKE-UP I/O PORT

The wake-up I/O port is the I/O address to which the iSBC 215G board responds. This single I/O address is user selectable through jumpers on the board and may be either 8 or 16 bits, as applicable to the host CPU and the application. The command signal that controls the number of bits in the address to which the board will respond is also jumper selectable.

NOTE

The jumpers that select the I/O port address (shifted to the left four places) also select the first address in the wake-up block. Thus wake-up I/O port address 100H also specifies wake-up block address 1000H.

To invoke iSBC 215G board activity, the host CPU transmits a wake-up command byte to the board through the wake-up I/O port. Three wake-up commands are allowed, as shown in Table 3-1. Note that only the two least significant bits of the command are used to determine which of the three hardware functions to implement. Note that only MULTIBUS I/O write operations are recognized.

Refer to paragraph 2.4.2 for detailed information on the 8- and 16-bit I/O port addresses. Also, refer to paragraph 2.4.1 for detailed information on wake-up addresses.

Commanđ	Function
ØØH	Clear Interrupt iSBC 215G board to host CPU interrupt is reset; board reset is cleared.
Ø1H	Start Operation Instructs board to start operation defined by I/O parameter block elements.
ø2H	Reset Board Performs hardware reset of board. Clear interrupt (ØØH) must be initiated following this command. (Each time board is reset, communications link between board and host CPU must be re-established through initializing.)
Ø3H through FFH	Reserved.

Table 3-1. I/O Control Commands

3.4.2 I/O COMMUNICATIONS BLOCKS

The host CPU and the iSBC 215G board use the four blocks of system memory and one MULTIBUS I/O port to exchange instructions and status. The I/O communications blocks are entitled: wake-up block, channel control block, controller invocation block, and I/O parameter block. The iSBC 215G board uses these blocks to perform three basic functions: initialize the board, check and transmit status, and obtain user-selected drive access functions and parameters. In addition to these I/O blocks, certain board functions (such as track formatting) also require data/parameter buffers in system memory. Dedicated locations, however, are not required.

NOTE

Following the iSBC 215G board initialization, the wake-up block, channel control block, and controller invocation block must remain at the assigned locations. The location of the I/O parameter block can be changed only if the I/O parameter block pointer in the controller invocation block is changed to indicate the new location. One I/O port in the host CPU addressable (MULTIBUS) I/O space is also required. The host CPU uses this port, called the wake-up I/O port, to initiate iSBC 215G board activity. The sequence (see Figure 3-3) in which the board accesses these blocks varies with the type of operation being performed, but, for general data transfers (reads or writes), the blocks are accessed as follows:

- 1. The host loads the control and data blocks, as required, in system memory with the command and parameters for the function the iSBC 215G board is to perform (for example, read-data).
- 2. The host then transmits a wake-up command (\emptyset 1H) to the wake-up I/O port, signalling the board to read the I/O communications blocks for instructions.
- 3. The board reads the wake-up block and links its way to the channel control block, through the controller invocation block, to the I/O parameter block. (The wake-up block is used once during board initialization and by host iSBC 215G board IOP firmware. All subsequent wake-up commands cause the iSBC board to read the channel control block.)
- 4. At the I/O parameter block, the iSBC 215G board reads the command and parameter data into local RAM and begins the data transfer function.
- 5. The board reads data from the selected drive into local RAM, then DMA-transfers the data from RAM into system memory.
- 6. When the data transfer is complete, the board posts the status in the controller invocation block, sends an interrupt to the host CPU, and awaits further instructions.

Figure 3-3. Host CPU/Board Interaction

These I/O communications blocks are accessed in a similar manner when performing a write function.

The host CPU initiates board activity through the wake-up I/O port, which it addresses through the MULTIBUS interface. The 8089 I/O Processor (IOP) handles all communications between the host CPU, host memory, and disk drives, once the host has initiated board activity. Board operations software is contained in on-board PROM. Local RAM on the board facilitates intermediate data storage between the host CPU and the disk drive. The iSBX bus provides a second I/O transfer path between the board and an I/O controller such as the iSBX 218A Flexible Diskette Controller Board.

Note that, in the following command block descriptions, all bytes shown as reserved in the illustrations should be set to \emptyset unless specified otherwise. Also note that some of the unused bytes are intended for future expansion or are required for compatibility with other devices that use a similar command structure.

3.4.2.1 Wake-Up Block

The wake-up block (see Figure 3-4 and Table 3-2) is used to establish a link between the board and the I/O communications blocks in host system memory. It is the first of the I/O communications blocks and requires 6 bytes of memory. It is used once at board initialization by the host CPU and by iSBC 215G board IOP firmware.

Note that the first address in the wake-up block in system memory is the wake-up address and that it is selected by the same set of jumpers that select the I/O port address. The hexadecimal value contained in the configuration of these jumpers is multiplied by 2^4 (that is, shifted four places to the left) to derive the $2\emptyset$ -bit MULTIBUS address. (Thus, the jumper selected wake-up address is used as the segment value, with an offset value of \emptyset , to derive the actual wake-up address.) Upon recognition of the first I/O start command to the wake-up I/O port, the board starts reading the wake-up block at this address. It fetches the wake-up block and internally saves the channel control block address (the next link in the communications blocks chain). This operation is necessary only after a board reset.

Table 3-2. Wake-Up Block Byte Contents

Byte	Function
ø	SYSTEM OPERATION COMMAND Must be set to Ø1H.
1	Reserved.
2 through 5	CHANNEL CONTROL BLOCK ADDRESS Address (segment X 2 + offset) of first byte in channel control block.

3.4.2.2 Channel Control Block

The channel control block (see Figure 3-5 and Table 3-3) indicates the IOP status IOP and invokes program operations. It requires 16 bytes of memory (see Figure 3-5). Except for the busy-1 flag (byte 1) and the controller invocation block address (bytes 2 through 5), the information contained in this block is used to invoke board operations that are transparent to the host CPU. The busy-1 flag is posted (by the iSBC 215G board, except during cold-start initialization) when the board is busy processing a command, and cleared (also by the iSBC 215G board) after the processing is completed (when the IOP halts). It is used in handshaking and status commands between the iSBC 215G board and the host CPU.

The channel control and controller invocation block addresses are stored in the iSBC 215G board logic while processing the first start I/O command to the wake-up I/O port after a reset operation. These addresses <u>may not</u> be changed without also commanding a board reset and initialization.

Figure 3-5. Channel Control Block

Table 3-3. Channel Control Block Byte Contents

Byte	Function
ø	CHANNEL CONTROL WORD 1 Indicates location of IOP control store program. Ø1H On-board ROM. Ø3H Host system memory (used only when executing user-written I/O program from host memory).
1	BUSY 1 FLAG Indicates board state (busy or idle). ØØH Idle FFH Busy
2 through 5	INVOCATION BLOCK ADDRESS Address of fifth byte of controller invocation block.
6 and 7	Reserved.
8	CHANNEL CONTROL WORD 2 Must contain Ø1H.
9	BUSY 2 WORD Not used by host CPU.
1ø through 13	CONTROL POINTER ADDRESS Must point to control pointer address in bytes 14 and 15.
14 and 15	CONTROL POINTER Must be set to ØØØ4H.

3.4.2.3 Controller Invocation Block

The controller invocation block (see Figure 3-6 and Table 3-4) posts status to the host CPU and locates the starting address for the on-board drive interface program. The status semaphore byte (byte 3) has a special purpose. The host CPU uses this byte to indicate to the board whether it has read the current contents of the status byte and is ready for a status update. The controller invocation block requires 16 bytes of memory.

Figure 3-6. Controller Invocation Block

Byte	Function
ø	Reserved.
1	BOARD OPERATION STATUS Indicates board status (see paragraph 3.7.
2	COMMAND SEMAPHORE Board does not use byte. (Byte functions as multiprocessor interlock when required.)
3	STATUS SEMAPHORE Indicates state of status posting. Board posts status only when byte contains ØØH. When new status has been posted, board sets byte to FFH. When host CPU has read status, it sets byte to ØØH.
4 through 7	CONTROL STORE PROGRAM ADDRESS Starting address of on-board mass storage interface program. Set to ØØØØH.
8 through 11	I/O PARAMETER BLOCK ADDRESS Address of first byte of parameter block.
12 through 15	Reserved.

Table 3-4. Controller Invocation Block Byte Contents

3.4.2.4 I/O PARAMETER BLOCK

The I/O parameter block (see Figure 3-7 and Table 3-5) functions as the primary communications channel between the host CPU and the iSBC 215G board. It contains the board operating commands, which define the function the board is to perform (read, write, etc.), and the parameters of the function (memory address, disk head, cylinder, etc). The I/O parameter block requires 30 bytes of memory; however, the first four bytes are reserved for expansion and must always be set to all 0's.

Table 3-5. I/O Parameter Block Byte Contents

Byte	Function				
Ø through 3	Reserved.				
4 through 7	ACTUAL TRANSFER COUNT Four-byte binary number, least significant bits in first byte. Indicates count of bytes actually transferred between host CPU and iSBC 215G board.				
8 and 9	DEVICE CODE Code for type of device being accessed. ØØØØH hard-disk. ØØØ1H 8-in flexible-disk drive. ØØØ3H 5 1/4-in flexible-disk drive. ØØØ4H QIC-Ø2 cartridge-tape drive.				
1ø	UNIT Indicates binary number for drive being accessed (bits Ø and 1 provide four numbers, bits 2 through 7 are reserved).				
11	FUNCTION Indicates code for operation to be performed (see paragraph 3.5)				
12 and 13	MODIFIER Two-byte binary word. Indicates code to modify function codes (see paragraph 3.6).				
14 and 15	CYLINDER Two-byte binary number, bit Ø is least significant. Indicates logical cylinder code.				
16	HEAD One-byte binary number, bit Ø is least significant. Indicates logical head code.				
17	SECTOR One-byte binary number, bit Ø is least significant. Indicates logical sector code.				
18 through 21	DATA BUFFER ADDRESS Indicates address of first byte in host memory data (parameter) buffer. (For 24-bit addressing information, refer to paragraph 3.6.)				
22 through 25	REQUESTED TRANSFER COUNT Four-byte binary number, least significant bits in first byte. Indicates count of bytes requested to be transferred between host CPU and iSBC 215G board.				
26 through 29	GENERAL ADDRESS POINTER Indicates general-purpose address pointer. When iSBC 215G board is configured for ANSI X3T9/1226 interface, bytes have following values, where n is calculated as in Appendix A: $26 - n_{\emptyset}$ $27 - n_1$ $28 - n_2$ $29 - n_3$				
As shown in Table 3-5, the board writes the actual count of bytes transferred into bytes 4 through 7 of the I/O parameter block. This is done following either termination or completion of an operation. If the count does not match the requested transfer, this indicates that the operation was terminated prematurely and that a status check is in order. When the board is to perform the track formatting operation, the host CPU writes a count of 6 into the actual-transfer-count word. When the board is to perform a status transfer, a count of 12 is written. When initializing hard-disk drive \emptyset , this word is used to display the board firmware and revision numbers. Bits 7 and 6 contain the version number minus 1; bits 5, 4, 3, and 2 contain the revision number.

3.4.3 COLD-START BOARD INITIALIZATION

The iSBC 215G board cold-start initialization must be performed to establish the link between the IOP and the I/O communications blocks in host system memory at any time that power has been removed from and restored to the board (before any data transfer activities between the host system memory and the drives can be initiated). After the board is initialized, any of the data transfer functions can be performed in any sequence. (Refer to paragraph 4.4.1.3.2 for a detailed explanation of board initialization.)

The following procedure outlines the sequence in which the board initializing activities are performed. Prior to initializing the board, make certain that the system data bus jumpers, the host system I/O address jumpers, the wake-up address jumpers, and the interrupt level jumper have been set as described in the jumper configuration procedures in Chapter 2.

To initialize the board, the host CPU performs the following steps:

1. Establishes addresses for the four I/O communications blocks in host memory:

Wake-Up Block	6 Bytes
Channel Control Block	6 Bytes
Invocation Block	6 Bytes
I/O Parameter Block	3Ø Bytes

NOTE

The address of the wake-up block first byte in host memory must be equal to the wake-up address set in the board wake-up address jumpers times 2_4 . For example, if the jumpers are set to $\emptyset 673H$, the address of byte \emptyset of the wake-up block is $\emptyset 673\emptyset H$ for $2\emptyset$ -bit addressing and $673\emptyset H$ for 16-bit addressing

- 2. Sets up the bytes in the wake-up block (see Figure 3-4 and Table 3-2).
- 3. Sets the BUSY 1 FLAG (optional, byte 1 of the channel control block) to other than \emptyset (FFH). Because the iSBC 215G board resets the BUSY 1 FLAG to \emptyset at the completion of the cold-start operation (\emptyset IH), the host CPU can monitor the flag to determine when the initialization procedure is completed.
- 4. Writes Ø2H to the wake-up I/O port to reset the iSBC 215G board.
- 5. Writes ØØH to the wake-up I/O port to clear the reset.
- 6. Writes ØlH to the wake-up I/O port to establish the host-CPU-toiSBC-215G-board communications link. The board reads the wake-up block in host memory and records the address of the channel control block in local RAM, then proceeds to the channel control block and clears the BUSY 1 FLAG. On all subsequent ØlH commands to the wake-up I/O port, the board reads the channel control block.

3.5 FUNCTION COMMANDS

The function commands included in the iSBC 215G board firmware take full advantage of the capabilities of the board and its attached peripheral devices. These commands provide for a full set of operations for the hard-disk drives attached directly to the board, and also include a set that is used specifically for flexible-disk and cartridge-tape drives attached via iSBX 218A and iSBX 217B/C boards. Modified definitions for some of the hard-disk commands, combined with the additional commands for the iSBX boards, allow direct use of these boards while using the same general programming used with the iSBC 215G board. Each of the function commands is invoked by setting up the command blocks as required for the command and then issuing a start operation (\emptyset IH) command to the wake-up port address of the iSBC 215G board.

Table 3-6 lists all of the function commands and includes device applicability information. Each of the commands is described in detail in the following paragraphs. With the exception of the spin-down command (\emptyset BH), all of the disk commands are similar to the commands for the iSBC 215A/B board and earlier versions. Some of the functions were enhanced at various times; however, all such enhancements default to compatibility with earlier board versions.

The functions available on the iSBC 215G board are divided into two general types: short-term functions and long-term functions. Short-term functions are those that are performed with the specified device directly on line with the iSBC 215G board. These functions terminate with the board sending a single interrupt to the host CPU (if the interrupt was not suppressed). The long-term functions are those that are initiated by the iSBC 215G board and completed off-line by the selected device. The on-line portion of the long-term function terminates with the board sending an interrupt to the host CPU (if the interrupt was not suppressed). When the selected device completes the off-line portion of the function, the iSBC 215G board sends a second interrupt to the host CPU. (The second interrupt cannot be suppressed.)

The following description of each of the commands includes a diagram of the I/O parameter block with the mandatory fields (other than reserved fields) shown for each function. In these descriptions, all of the long-term functions are so noted (short-term functions are not noted).

Command	Hexadecimal	Harđ	Flexible	Cartridge
	Value	Disk	Disk	Tape
Command Initialize Transfer Status Buffer Format Read Sector ID Read Data Read Data to Buffer and Verify Write Data Write Buffer Data Initiate Track Seek Spin Down iSBX Execute iSBX Transfer Buffer I/O Diagnostic Tape Initialize Rewind	Value ØØ Ø1 Ø2 Ø3 Ø4 Ø5 Ø6 Ø7 Ø8 Ø8 Ø8 ØB ØC ØD ØE ØF 1Ø 11	Disk Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No No	Disk Yes Yes Yes Yes Yes Yes Yes No No No No Yes No No No	Tape Yes Yes No Yes No Yes No No No No No No Yes Yes Yes
Space Forward One File Mark	12	No	No	Yes
Write File Mark	14	No	No	Yes
Erase Tape	17	No	No	Yes
Load Tape	18	No	No	Yes
Tape Reset	1C	No	No	Yes
Retension Tape	1D	No	No	Yes
Read Tape Status	1E	No	No	Yes
Read/Write Terminate	1F	No	No	Yes

Table 3-6. Function Command Summary

3.5.1 INITIALIZE (00H)

The initialize function transfers device-related parameters to the iSBC 215G board for subsequent use during execution of other functions. To perform this function, the host CPU establishes the following fields in the I/O parameter block:

s 8 and 9
1ø
11
s 12 and 13
s 18 through 21

The device parameters are specified in the data buffer area and fetched automatically by the iSBC 215G board (via the data buffer pointer) during function execution. Figure 3-8 illustrates the data buffer formats. The device parameters for tape are transferred in a single byte and require a single-byte data buffer for this purpose.

	HA	RD DISK				TAPE	
7		0 7	0	7		07	0
	NUMBERO	FCYLINDERS	0	1	NOT USED	DEVICE AVAIL	
	NOT USED	NUMBER OF HEADS	2	3	NOT USED	NOT USED	
	BPS (LOW)	SECTORS/TRACK	4	5	NOT USED	NOT USED	
	NO. ALT. CYLS.	BPS (HIGH)	6	7	NOT USED	NOT USED	

Execution of the initialize function sets the iSBC 215G board logic for a mass storage device based on the device code and unit number specified in the I/O parameter block. Thus, to fully initialize the iSBC 215G board, the initialize function must be performed for each device attached directly to the board, to the board via the iSBX 218A board, and to the board via the iSBX 217B/C board. The iSBC 215G board firmware requires that the initialization procedures for all possible storage devices be performed, even when a particular device is not physically present; however, the iSBX 218A and 217B/C MULTIMODULE board initialization procedures need not be done if the boards are not installed.

The full initialization procedure must be performed following any interruption of power, system hardware reset, or invocation of the reset-board wake-up command. When the device specified is a disk drive (either hard or flexible), the heads are set to track \emptyset . When the device specified is hard-disk drive \emptyset , an on-board memory test is performed (unless inhibited by use of the function modifier) prior to execution of the disk drive initialization. When the on-board memory test is performed, the stored parameters for all of the storage devices are destroyed and the new parameters for hard-disk drive \emptyset are stored.

The following paragraphs describe the device parameters supplied to the iSBC 215G board during the initialization operation. Note that paragraphs 3.5.1.1 through 3.5.1.5 apply to hard-disk and flexible-disk drives, paragraph 3.5.1.6 applies to flexible-disk drives only, and paragraph 3.5.1.7 applies to cartridge-tape drives only.

3.5.1.1 Number of Cylinders

The number of cylinders is a two-byte hexadecimal value that specifies the total number of cylinders available on the disk drive. (Refer to the reference manual for the particular drive to determine the correct number for this parameter.) Setting the number of cylinders parameter to \emptyset removes the specified drive from use. A drive thus removed from service can be restored to service by performing the initialize function.

3.5.1.2 Number of Heads

The number of heads parameter is two one-byte hexadecimal values that specify the number of available recording surfaces. It is contained in byte 2 for hard-disk drives and in byte 3 for flexible disk drives. Byte 2 specifies the number of surfaces on the specified drive connected to the iSBC 215G board; byte 3 specifies the number of surfaces available on the specified drive connected to the board through the iSBX 218A board. In either instance, the unused byte should be set to all Ø's.

3.5.1.3 Sectors Per Track

The sectors per track parameter is a one-byte hexadecimal value that specifies the number of sectors available on each track on the specified drive and is contained in byte 4. For hard-sectored hard-disk drives and all flexible disk drives, this value can be obtained from the reference manual for the particular drive. For soft-sectored hard-disk drives, the number of sectors per track must be calculated from information provided in the disk drive manual. Some typical values are given in Tables 1-2 and 1-3. For ANSI hard-disk drives other than those listed in Table 1-3, refer to Appendix A to calculate the values.

3.5.1.4 Bytes Per Sector

The bytes per sector parameter is a two-byte hexadecimal value that specifies the number of bytes in a disk sector and is contained in bytes 5 and 6, with byte 6 as the most significant. The parameter value must match the formatted sector size for the specified drive. If the drive is not formatted, the sector size specified during formatting must match this value.

3.5.1.5 Number of Alternate Cylinders

The number of alternate cylinders parameter is a one-byte hexadecimal value that specifies the number of cylinders that are reserved as alternates on the drive. The parameter value must match the number of cylinders formatted as alternates for the specified drive. If the drive is not formatted, the number formatted as alternates during formatting must match this value.

3.5.1.6 Drive Variables

The drive variables parameter in byte 7 is a combination of values that specifies the recording format, head step rate, and head load delay time for flexible-disk drives only. For 5 1/4-inch disk drives, the default values are 22 ms for the head step rate and 36 ms for the head load delay time. For 8-inch drives, the default values are 11 ms for the head step rate and 60 ms for the head load delay time. In either instance, the default values are selected when bits 1 through 7 of this parameter are set to all 0's. (These default values are the same as those for the iSBC 215A/B boards.) Figure 3-9 illustrates the format of the drive-variables parameter. Note that, If the default values are not selected using the values listed in Figure 3-9.

Figure 3-9. Drive Variables Byte Format

3.5.1.7 Tape Parameters

The tape available parameter is a one-byte value that specifies whether the tape device is available for use. The least significant bit indicates the device availability (Ø for device not available, 1 for device available). All other bits are reserved and should be set to Ø.

3.5.2 TRANSFER STATUS BUFFER (01H)

The transfer status buffer function transfers the contents of the iSBC 215G board 12-byte status buffer into system memory starting at the location specified by the data buffer pointer. To perform this function, the host CPU establishes the following fields in the I/O parameter block:

Unit Number	Byte 1Ø		
Function Code	Byte 11		
Modifier	Bytes 12 and 13		
Data Buffer Pointer	Bytes 18 through 21		

The host CPU can request the contents of either the short-term command status buffer or the long-term command status buffer (which is used only with some tape functions). When bit 6 of the modifier word is set to \emptyset , the short-term status buffer contents are transferred; when bit 6 is set to 1, the long-term status buffer contents are transferred. When the short-term buffer is specified, its contents are not affected by the transfer status buffer function. However, when the long-term buffer is specified, its contents are written into the short-term buffer over the existing contents. (The status buffer format and definitions of the status conditions are included separately later in this chapter.)

3.5.3 FORMAT (02H)

The format function partitions the addressed track for subsequent data recording (see Figure $3-1\emptyset$). The partitioning is accomplished by writing sector headers and reserving recording space based on the initialization information for the specified disk drive. The sector headers contain information used in subsequent write or read operations to locate the correct sector data area. Each execution of the format function formats one track. To perform this function, the host CPU establishes the following fields in the 1/0 parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11
Modifier	Bytes 12 and 13
Cylinder Number	Bytes 14 and 15
Head Number	Byte 16
Sector One Offset	Byte 17
Data Buffer Pointer	Bytes 18 through 21

Additional format parameters are specified in the data buffer area and fetched automatically by the iSBC 215G board during function execution. Figure 3-11 illustrates the data buffer content for the function.

There are three options for formatting a track. Byte \emptyset in the data buffer specifies the type of format function required. Most tracks are formatted as standard data types. When a track is determined to have a medium defect, it is formatted as a defective track and provides a pointer to the alternate track used in its place. At format time, a few tracks on the disk are reserved as alternate data tracks. When an alternate track is used, it is formatted as an assigned alternate track. Note that all iSBX 218A board format functions also must specify the format type. With 5 1/4-inch disk drives using a 512-byte sector size, either 8 or 9 sectors per track may be specified with iSBC 215G boards identified as PBA number 144263- \emptyset 14 or PBA number 146484- \emptyset \emptyset 1.

When formatting data tracks and assigned alternate tracks, bytes 1 through 4 provide a 4-byte user-specified pattern. This pattern is repeatedly recorded into each sector data area during track formatting, and can be any 4-byte pattern. Typically, some form of worst-case pattern is used as a test of the medium integrity. When formatting a defective track, bytes 1 and 2 specify the cylinder number and byte 3 specifies the head number for the alternate track to which it is pointed. As with the data and alternate tracks, the content of bytes 1 through 4 are repeatedly recorded into each sector data area during track formatting as a pointer to the assigned alternate track.

Byte 5 in the data buffer specifies the interleave factor for the track. The interleave factor controls the order of the sectors on the track, and is the minimum number of sector intervals between the start of one sector and the start of the next sequential sector. For example, when an interleave factor of one is specified, the sector numbers are sequential. Greater interleave factors allow increased disk rotation time between sequential numbers. This allows the host CPU to prepare for the next data transfer before the next sequential sector arrives at the read/write head. Host CPU processing time is an important consideration in determining the ideal interleave factor for the iSBC 215G board. Performance tests with typical applications programs are suggested to determine the ideal factor.

3.5.4 READ SECTOR ID (03H)

The read-sector ID function searches for the first error-free sector header on the presently selected cylinder and head and, when the header is located, transfers the contents of the sector ID field into system memory, starting at the location specified by the data buffer pointer.

To perform this function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11
Modifier	Bytes 12 and 13
Data Buffer Pointer	Bytes 18 through 21

Because the read-sector-ID function is typically used to verify disk position, an implicit seek is not performed. The information from the sector ID field is stored in the data buffer automatically by the iSBC 215G board during function execution. Figure 3-12 illustrates the data buffer and flag byte format.

Figure 3-12. Read-Sector-ID Function Data Buffer and Flag Byte

3.5.5 READ DATA (04H)

The read data function transfers a block of data from the specified device into system memory, starting at the location specified by the data buffer pointer. To perform the read data function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11
Modifier	Bytes 12 and 13
Cylinder Number	Bytes 14 and 15
Head Number	Byte 16
Starting Sector Number	Byte 17
Data Buffer Pointer	Bytes 18 through 21
Requested Transfer Count	Bytes 22 through 25

3.5.5.1 Disk Read Details

When a disk-read function is initiated, the iSBC 215G board compares the presently selected cylinder number with the requested number. If the two are not the same, the board initiates a seek function to the requested cylinder (implicit seek). When the requested cylinder is reached and the requested head selected, the board starts scanning sector headers for the requested sector. When the requested sector is located, the contents of the sector data field are written into the board sector buffer and error checking and correction (if required) are performed. The contents of the sector buffer are then transferred into system memory, starting at the data buffer pointer location.

If the first sector transferred satisfies the requested transfer count, the read-data function is terminated and the status is posted. If the requested transfer count is not satisfied, the next logical sector is transferred in the same manner as the first. This process continues until the requested transfer count is satisfied or end-of-medium is detected. (End-of-medium is defined as the highest cylinder, head, and sector numbers possible for a given volume, as specified in the initialization parameters.)

Additional implicit seeks are performed until the requested transfer count is satisfied. If the requested transfer count does not match an even sector boundary, only the amount of data required to satisfy the requested transfer count is transferred from the last sector accessed.

3.5.5.2 Tape Read Details

The tape read-data function uses the same function code as the disk read operation; however, the cylinder, head, and sector parameters and error correction are not used.

The tape read function is also always a complete operation. A complete tape read operation can consist of one or more tape read functions and must be both opened and terminated. The first tape read function in a sequence opens the tape read operation. Once the operation is opened, disk functions (either hard or flexible) can be interleaved with subsequent tape read functions. (Note that the only tape function permitted until the tape read operation is terminated is a tape read function.) The individual tape read functions within a tape read operation are closed when the requested transfer count is satisfied. The requested transfer count can be any value from 1 byte to 16 Mbytes.

The tape read-data operation remains open until one of the following conditions is satisfied:

FILE MARK TERMINATION -- The tape read operation termination results when a file mark is encountered. In such a case, the operation status byte indicates a summary error and operation-completed status (89H). To determine if the summary error resulted from a normal file-mark termination or an error condition, it is necessary to transfer and examine the 12-byte short-term status buffer. For a file-mark-induced termination, the status buffer contents indicate a

length error (if the requested transfer count was not satisfied) and file mark detected.

COMMAND TERMINATION -- The host CPU can terminate a read-data operation by initiating the read/write-termination function. In terminating a normal read-data operation, the read/write-termination function initiates tape rewind to the beginning-of-tape marker. The operation status byte indicates a summary error and operation-completed status (89H), and the short-term status buffer indicates a buffer under-run/over-run error and beginning-of-tape marker detected.

BLANK TAPE TERMINATION -- If the read-data function is attempted on blank tape, the function is automatically terminated after a few inches of blank tape have passed the read head. The operation status byte indicates a hard error and a summary error. The short-term status buffer indicates a length error, soft data check, tape data check, and no data detected. The tape is not automatically rewound.

If the iSBC 215G board fails to maintain the data transfer rate required by the tape drive (typically 200 K bytes per second), an over-run occurs, the iSBC 215G board closes the read-data function, and the tape drive automatically stops and repositions the tape. The next read-data function resumes without loss of data. The status for the tape read-data function closed by the over-run indicates that repositioning was required with a buffer under-run/over-run error posted in the short-term status buffer.

3.5.6 READ TO BUFFER AND VERIFY (05H)

The read to buffer and verify function transfers a block of data from the specified disk drive, one sector at a time, into the iSBC 215G board RAM buffer and checks each sector read for an error correcting code (ECC). To perform the read to buffer and verify function, the host CPU establishes the following fields in the I/O parameter block.

Device code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11
Modifier	Bytes 12 and 13
Cylinder Number	Bytes 14 and 15
Head Number	Byte 16
Starting Sector Number	Byte 17
Requested Transfer Count	Bytes 22 through 25

The data transferred from the disk into the buffer memory can also be sent to a device attached to one of the iSBX connectors. To perform this operation, the read to buffer and verify function is followed by either the iSBX execute function or the write buffer data function.

By specifying one disk device for the read buffer data and verify function and a different disk device for the write buffer data function, device-to-device transfers can be accomplished without transferring the data into system memory. However, this must be done at the sector level

of granularity. Also, the iSBX 217B/C board and an attached tape drive cannot be specified as one of the devices.

3.5.7 WRITE DATA (06H)

The write data function transfers a block of data from system memory, starting at the location specified by the data buffer pointer to the specified device. To perform the write-data function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11
Modifier	Bytes 12 and 13
Cylinder Number	Bytes 14 and 15
Head Number	Byte 16
Starting Sector Number	Byte 17
Data Buffer Pointer	Bytes 18 through 21
Requested Transfer Count	Bytes 22 through 25

3.5.7.1 Disk Write Details

The disk write function is very similar to the disk-read function except for the direction of data movement. When a disk-write function is initiated, the iSBC 215G board compares the present cylinder number and the requested cylinder number. If the two are not the same, the board initiates a seek function to the requested cylinder (implicit seek). The board then fills the on-board sector buffer with data from system memory starting at the data buffer pointer location.

When the sector buffer contains enough data to fill one disk sector, the board prepares to write the data to the disk. It starts scanning sector headers in search of the requested sector. When the sector is located, the contents of the sector buffer are written into the sector data field. While the data are being written, a polynomial check number is calculated. It is written immediately following the last data byte.

If the first sector of data transferred satisfies the requested transfer count, the write-data function is terminated and status is posted. If the requested transfer count is not satisfied, the next logical sector is written in the same manner as the first. This process continues until the requested transfer count is satisfied or end-of-medium is detected. Additional implicit seeks are performed until the requested transfer count is satisfied. If the requested transfer count does not match an even sector boundary, only the amount of data required to satisfy the requested transfer count is transferred into the last sector accessed, and the remainder of the sector is filled with \emptyset 's.

3.5.7.2 Tape Write Details

The tape write data function uses the same function code as the disk write operation; however, the cylinder, head, and sector parameters and error correction are not used.

The tape write function is also always a complete operation. A complete tape write operation can consist of one or more tape write functions and must be both opened and terminated. The first tape write function in a sequence opens the tape write operation. Once the operation is opened, disk functions (either hard or flexible) can be interleaved with subsequent tape write functions. (Note that the only tape function permitted until the tape write operation is terminated is a tape write function.) The individual tape write functions within a tape write operation are closed when the requested transfer count is satisfied. The requested transfer count can be any value from 1 byte to 16 Mbytes. However, the total transfer count must be divisible by 512.

The tape write-data operation remains open until the read/write-terminate function is executed to write the file mark and rewind the tape to the beginning-of-tape marker.

If the iSBC 215G board fails to maintain the data transfer rate required by the tape drive (typically 200 K bytes per second), an over-run occurs, the iSBC 215G board closes the tape write function, and the tape drive automatically stops and repositions the tape. The next write-data function resumes without loss of data. The status for the tape write-data function closed by the over-run indicates that tape repositioning was required with a buffer under-run/over-run error posted in the short-term status buffer

3.5.8 WRITE BUFFER DATA (07H)

The write buffer data function writes the data present in the sector buffer to the specified disk drive. When the requested transfer count exceeds the sector size, the write buffer data function writes the same sector buffer contents into the data field of the next logical sector. To perform the write data buffer function, the host CPU establishes the following fields in the I/O parameter block:

Bytes 8 and 9
Byte 1Ø
Byte 11
Bytes 12 and 13
Bytes 14 and 15.
Byte 16
Byte 17
Bytes 22 through 25

The data transferred from the disk into the buffer memory can also be supplied to a device attached to one of the iSBX connectors. To perform this operation, the read buffer and verify function is followed by either the iSBX execute function or the write buffer data function. By specifying one disk device for the read to buffer and verify function and

a different disk device for the write buffer data function, device-to-device transfers can be made without transferring the data into system memory. However, this must be done at the sector level of granularity. Also, the iSBX 217B/C board and an attached tape drive cannot be specified as one of the devices.

3.5.9 INITIATE TRACK SEEK (08H)

The initiate track seek function positions the read/write heads of the specified drive without initiating a data transfer. To perform the initiate track seek function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11
Modifier	Bytes 12 and 13
Cylinder Number	Bytes 14 and 15
Head Number	Byte 16

Each data transfer function causes an implicit seek if the read/write heads are not located at the desired cylinder. However, if the implicit seek capability is used, any other device connected the iSBC 215G board is un-available to the host CPU until the selected operation is completed.

The iSBC 215G board accomplishes the initiate track seek function by directing the specified disk drive to perform an off-line seek. Once the off-line seek has been started, the board terminates the initiate track seek function, posts the operation-complete status, and sends an interrupt to the host CPU (if interrupts are not suppressed). When the disk drive completes the off-line seek, the iSBC 215G board posts the seek-complete status and sends a second interrupt to the host CPU. (The second interrupt cannot be suppressed.)

Note that, if it is necessary that the host CPU examine the 12-byte status buffer relative to the off-line seek operation, it must request the contents of the long-term status buffer. If the iSBC 215G board is busy with another device when an off-line seek operation is completed, the board completes the other function, posts the appropriate short-term status, and sends an interrupt to the host CPU (if interrupts are not suppressed). After the host CPU services the interrupt and resets the status semaphore, the iSBC 215G board posts the seek-complete status and again sends an interrupt to the host CPU, this time to indicate completion of the off-line seek operation.

It is possible for two or more disk drives to perform concurrent off-line seek operations; however, the iSBC 215G board is limited to one active short-term function while an off-line seek operation (or operations) is (are) in progress. If another function is attempted with a disk drive that is performing an off-line seek, the result is a seek-in-progress error. An initiate track seek function that specifies a destination cylinder with a number greater than the total number of cylinders available results in an automatic seek to track \emptyset , and an invalid-address error is posted in the short-term status buffer.

3.5.10 SPIN DOWN (OBH)

The spin down function directs the disk drive to prepare for an interruption of power. Typically, a disk drive that recognizes the spin down function moves the heads to a safe parking area on the disk surface. If the disk drive does not support the spin down function, the iSBC 215G board posts the invalid-command status in the short-term status buffer and terminates the function. To perform the spin down function, the host CPU establishes the following fields in the I/O parameter blocks:

Unit Number	Byte	1ø
Function Code	Byte	11

3.5.11 iSBX[™] EXECUTE (0CH)

The iSBX execute function transfers iSBC 215G firmware control to a program stored in the on-board RAM. To perform the iSBX execute function, the host CPU establishes the following fields in the I/O parameter block:

Function Code	Byte	11		
General Address Poi	.nter Byte:	5 26	through	29

The iSBX execute function allows execution of programs associated with iSBX MULTIMODULE boards other than the iSBX 218A and 217B/C boards (for which the iSBC 215G board provides programs in on-board firmware). The execution program for another iSBX MULTIMODULE board must be entered in 8089 assembler code and must be down-loaded to the board RAM using the buffer-I/O function prior to initiation of the iSBX execute function.

Execution of the down-loaded program begins at the memory address specified by the general address pointer. At completion of program execution, the program must exit to iSBC 215G board ROM address $\emptyset\emptyset$ C5H. The remainder of the bytes in the I/O parameter block are not required by the iSBC 215G board for this function and can be used to pass parameters to the down-loaded program. The iSBX execute function is classed as a short-term operation, and includes a single interrupt at the completion of the function.

3.5.12 iSBXTH TRANSFER (ODH)

The iSBX transfer function transfers a block of data between the specified iSBX device and system memory. To perform the iSBX transfer function, the host CPU establishes the following fields in the I/O parameter block:

Function Code	Byte 11
Modifier	Bytes 12 and 13
iSBX bus I/O Port Address	Bytes 14 and 15 (cylinder number)
Transfer Parameters	Byte 16 (head number)
Data Buffer Pointer	Bytes 18 through 21
Requested Transfer Count	Bytes 22 through 25

The iSBX transfer function allows use of the less complex iSBX MULTIMODULE boards on the iSBC 215G board without additional programming in 8009 assembler code. This function re-defines the I/O parameter block slightly to accommodate passing the iSBX MULTIMODULE board parameters to the iSBC 215G board. The iSBX port address is specified in I/O parameter block bytes 14 and 15 and a set of transfer parameters are specified in byte 16. Table 3-7 lists the iSBX port addresses for the iSBC 215G board and Figure 3-13 illustrates the format of the transfer parameter byte. In common with the other data transfer functions, the data buffer pointer specifies the first address of the data buffer in system memory and the requested transfer function is classed as a short-term operation, and includes a single interrupt at the completion of the function.

Port	J3 Channel Ø	J3 Channel l	J4 Channel Ø	J4 Channel 1
ø	CØ7Ø	CØBØ	CØDØ	CØEØ
1	CØ72	CØB2	CØD2	CØE2
2	CØ74	CØB4	CØD4	CØE4
3	CØ76	СØВ6	CØD6	CØE6
4	CØ78	CØB8	CØD8	CØE8
5	CØ7A	СØВА	CØDA	CØEA
6	CØ7C	СØВС	CØDC	CØEC
7	CØ7E	CØBE	CØDE	CØEE
L.				

Table 3-7. iSBX^m Bus I/O Port Addresses (Hexadecimal)

Figure 3-13. Transfer Parameter Byte Format (iSBX^{III} MULTIMODULE^{III} Board)

3.5.13 BUFFER I/O (OEH)

The buffer I/O function transfers a block of data from the system memory into the iSBC 215G board RAM buffer. To perform the buffer I/O function, the host CPU establishes the following fields in the I/O parameter block:

Unit Number	Byte 1Ø
Function Code	Byte 11
Modifier	Bytes 12 and 13
Board Memory Pointer	Bytes 14 and 15 (cylinder number)
I/O Specifier (Input = ØØH,	
Output = FFH)	Byte 16 (head number)
Data Buffer Pointer	Bytes 18 through 21
Requested Transfer Count	Bytes 22 through 25

The buffer I/O function allows the host CPU to transfer data between the iSBC 215G board RAM and a system memory buffer. This function is used for diagnostic purposes, to fill the iSBC 215G board sector buffer for a subsequent write buffer data function, and to down-load an iSBX program for later execution. The function redefines the I/O parameter block slightly to accommodate passing the starting on-board RAM address and the transfer direction to the board. (The board memory address pointer is specified in I/O parameter block bytes 14 and 15 and must be in the range of $4\emptyset\emptyset\emptyset$ H to 45FFH; the transfer direction is specified in byte 16.) In common with other data transfer functions, the data buffer pointer specifies the first address of the data buffer in system memory and the requested transfer count specifies the number of bytes to be transferred. The buffer I/O function is classed as a short-term operation, and includes a single interrupt at the completion of the function.

3.5.14 DIAGNOSTIC (0FH)

The diagnostic function initiates a go/no-go self test, contained in the iSBC 215G firmware, that verifies the internal data and status logic in the disk drives. To perform the diagnostic function, the host CPU establishes the following fields in the I/O parameter block:

Device Cođe	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11
Modifier	Bytes 12 and 13

The diagnostic function reserves the use of the highest cylinder (track) number on head \emptyset for execution of the program. This track cannot be used for data storage. When the function is initiated, the cylinder and head are selected automatically; the unit number is specified in the I/O parameter block. The following three additional modifiers (specified in modifier byte 13) specifically apply to the diagnostic function.

 \emptyset ØH -- Re-calibrates, then initiates a seek to the highest cylinder number of head Ø. At seek completion, the iSBC 215G board performs a read-sector-ID function to verify track location before performing a write and read test on sector Ø using a 55AAH data pattern.

 \emptyset 1H -- Initiates a ROM check-sum test to verify the contents of the iSBC 215G board ROM.

 \emptyset 2H -- Initiates a seek to cylinder \emptyset . At seek completion, the iSBC 215G board performs a read-sector-ID function to verify that the heads are located at cylinder \emptyset .

3.5.15 TAPE INITIALIZATION (10H)

The tape initialization function is the second function in a four-step initialization process for the specified QIC- \emptyset 2 tape drive. The initialization process is started in the initialize function ($\emptyset\emptyset$ H) and is completed following the tape initialization function by performing the tape reset function and then the load tape function. To perform the tape initialization function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9	
Unit Number	Byte 1Ø	
Function Code	Byte 11	

Initializing the tape drives attached to the iSBC 215G board via the iSBX 217B/C board is a four-step process. In the first step, the host CPU performs the initialize function ($\emptyset\emptyset$ H) to initialize the iSBC 215G board. In this, the second step, the iSBC 215G board initializes the iSBX 217B/C board. In the third step, tape reset, the tape drive is initialized. Finally, in the fourth step, the load tape function is performed to position the tape for subsequent operations. The tape initialization function is classed as a short-term operation, and includes a single interrupt at the completion of the function.

3.5.16 REWIND (11H)

The rewind function returns the tape on the specified drive to the beginning of tape marker. To perform the rewind function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11

Typically, the tape on a drive is rewound for one of two reasons: to return the tape to its starting point prior to removing the cartridge from the drive, or to position the tape to a known point before attempting a data transfer. The rewind operation is classed as a long-term function.

The iSBC 215G board accomplishes the rewind function by directing the iSBX 217B/C board to perform an off-line rewind on the specified tape drive. Once the operation is started, the iSBC 215G board terminates the rewind function, posts the operation complete status, and sends an interrupt to the host CPU (if interrupts are not suppressed). When the tape drive completes the off-line rewind, the iSBC 215G board sends a second interrupt to the host CPU.

Note that, if it is necessary that the host CPU examine the 12-byte status buffer relative to the off-line rewind operation, it must request the contents of the long-term status buffer. If the iSBC 215G board is busy with another device when an off-line rewind operation is completed, the board completes the other function, posts the appropriate status, and sends an interrupt to the host CPU (if interrupts are not suppressed). After the host CPU services the interrupt and resets the status semaphore, the iSBC 215G board posts the rewind complete status and again sends an interrupt to the host CPU, this time to indicate completion of the off-line rewind operation.

3.5.17 SPACE FORWARD ONE FILE MARK (12H)

The space forward one file function moves the tape forward until a file mark or end of medium is reached. To perform the function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and	19
Unit Number	Byte 1Ø	
Function Code	Byte 11	

The iSBC 215G board accomplishes the space forward one file function by directing the iSBX 217B/C board to perform an off-line tape movement on the specified tape drive. Once the operation is started, the iSBC 215G board terminates the space forward one file function, posts the operation complete status, and sends an interrupt to the host CPU (if interrupts are not suppressed). When the tape drive reaches a file mark or detects end of medium and completes the function, the iSBC 215G board sends a second interrupt to the host CPU.

Note that, if it is necessary that the host CPU examine the 12-byte status buffer relative to the off-line space forward one file operation, it must request the contents of the long-term status buffer. If the iSBC 215G board is busy with another device when an off-line operation is completed, the board completes the other function, posts the appropriate status, and sends an interrupt to the host CPU (if interrupts are not suppressed). After the host CPU services the interrupt and resets the semaphore, the iSBC 215G board posts the operation complete status and again sends an interrupt to the host CPU, this time to indicate completion of the off-line space forward one file operation. This operation is classed as a long-term function.

3.5.18 WRITE FILE MARK (14H)

The write file mark function allows writing additional file marks at the end of a file written to the tape. (During write operations, the read/write terminate function automatically writes one file mark at the end of a file.) To perform the write file mark function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11

The write file mark function writes a file mark on the tape at the position of the write head at the time of the command. This allows writing several file marks on the tape to denote special meaning to the separation between two files or to indicate end of tape. This function is classed as a short-term function.

3.5.19 ERASE TAPE (17H)

The erase tape function prepares the tape for subsequent recording by removing all existing recorded data. To perform the erase tape function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11

Whenever a write data operation is performed, the tape is automatically erased just before the data is written onto the tape. However, there is some risk that this erase operation may leave some background noise in the area written onto. Also, any data from a previous recording in the area beyond the subject area are not erased. The erase tape function allows for the removal of all previous data by first rewinding the tape to the beginning of tape marker, erasing forward to the end of tape marker, and again rewinding to the beginning of tape marker.

The iSBC 215G board accomplishes the erase tape function by directing the iSBX 217B/C board to perform an off-line erase operation on the specified tape drive. Once the operation is started, the iSBC 215G board

terminates the erase tape function, posts the operation complete status, and sends an interrupt to the host CPU (if interrupts are not suppressed). When the tape drive completes the function, the iSBC 215G board sends a second interrupt to the host CPU.

Note that, if it is necessary that the host CPU examine the 12-byte status buffer relative to the off-line erase tape operation, it must request the contents of the long-term status buffer. If the iSBC 215G board is busy with another device when an off-line operation is completed, the board completes the other function, posts the appropriate status, and sends an interrupt to the host CPU (if interrupts are not suppressed). After the host CPU services the interrupt and resets the status flag, the iSBC 215G board posts the operation complete status and again sends an interrupt to the host CPU, this time to indicate completion of the off-line erase-tape operation. This operation is classed as a long-term function.

3.5.20 LOAD TAPE (18H)

The load tape function is the fourth function in the tape initialization sequence and positions the tape to the beginning of tape marker. The load tape function also initiates the on-going iSBC 215G board check for tape medium change. To perform the load tape function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11

3.5.21 TAPE RESET (1CH)

The tape reset function is the third function in the tape initialization sequence and is used to initialize the tape drive. To perform the tape reset function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11

3.5.22 RETENSION TAPE (1DH)

The retension tape function prepares the tape for subsequent operations by moving the tape forward to the end of tape marker and then rewinding to the beginning of tape marker. This re-stacks the tape in the cartridge and assures free and easy tape movement. To perform the retension tape function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11

The iSBC 215G board accomplishes the retension tape function by directing the iSBX 217B/C board to perform off-line retensioning on the specified tape drive. Once the operation is started, the iSBC 215G board terminates the function, posts the operation complete status, and sends an interrupt to the host CPU (if interrupts are not suppressed). When the tape drive completes the operation, the iSBC 215G board sends a second interrupt to the host CPU.

Note that, if it is necessary that the host CPU examine the 12-byte status buffer relative to the off-line retension tape operation, it must request the contents of the long-term status buffer. If the iSBC 215G board is busy with another device when an off-line operation is completed, the board completes the other function, posts the appropriate status, and sends an interrupt to the host CPU (if interrupts are not suppressed). After the host CPU services the interrupt and resets the status flag, the iSBC 215G board posts the operation complete status and again sends an interrupt to the host CPU, this time to indicate completion of the off-line retension tape operation. This operation is classed as a long-term function.

3.5.23 READ TAPE STATUS (1EH)

The read tape status function transfers the existing tape drive status from the iSBX 217B/C board to the iSBC 215G board short-term status buffer. The tape status is automatically transferred from the iSBX 217B/C board to the iSBC 215G board at the end of each tape operation. Typically, this function is not used unless there exists a relatively long period between tape operations. If it is required that the host CPU examine the tape drive status, it must transfer the contents of the short-term buffer to system memory using the transfer status buffer function. To perform the read tape status function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11

3.5.24 READ/WRITE TERMINATE (1FH)

The read/write terminate function marks the end of a read or write operation. When the read/write terminate function is used to terminate a write tape operation, a file mark is automatically written and the tape is not rewound. The read/write terminate function is used to terminate a read operation only when the operation is being aborted (a read operation ordinarily terminates when a file mark is encountered). When a read operation is aborted using the read/write terminate function, the tape is rewound to the beginning of tape marker. This operation is classed as a short-term function. To perform the read/write terminate function, the host CPU establishes the following fields in the I/O parameter block:

Device Code	Bytes 8 and 9
Unit Number	Byte 1Ø
Function Code	Byte 11

3.6 FUNCTION MODIFIERS

The function modifiers allow the user to change easily the default functions and tailor the iSBC 215G board to a particular application. These modifiers are specified in bytes 12 and 13 of the I/O parameter block. Each of the modifier actions is assigned to a single bit in the modifier word and each action is enabled by the presence of a 1 in that bit position. Figure 3-14 illustrates the format of the modifier word; the following paragraphs describe each of the relevant parts of that word.

SUPPRESS INTERRUPT -- The suppress interrupt modifier bit, when set to 1, directs the iSBC 215G board to suppress assertion of the interrupt at the end of a short-term function. When a long-term function is executed, the suppress interrupt modifier suppresses the first interrupt when the iSBC 215G board posts the operation complete status. The second interrupt (sent when the board signals that the off-line portion of the function has been completed) is not suppressed.

Figure 3-14. Modifier Word Format

INHIBIT RETRIES -- (Hard Disk Only) The inhibit retries modifier bit, when set to 1, directs the iSBC 215G board to attempt only once to complete a data transfer function.

READ/WRITE DELETED DATA -- The read/write deleted data modifier bit, when set to 1, allows access to the corresponding iSBX 218A board flexible disk controller command.

24-BIT ADDRESSING -- The 24-bit addressing modifier bit, when set to 1, converts the data buffer pointer format from the standard segment and offset addressing to 24-bit linear addressing. This allows placement of the data buffer anywhere in the 16-Mbyte space addressable on the MULTIBUS interface. When 24-bit addressing is used, byte 18 provides address bits ØH through 7H, byte 19 provides address bits 8H through FH, and byte 2Ø provides address bits 1ØH through 17H. Byte 21 is set to all Ø's.

BYPASS BOARD TEST -- The bypass board test modifier bit, when set to 1 during initialization of hard-disk drive \emptyset , causes the iSBC 215G board to skip the RAM test ordinarily executed when disk drive \emptyset is initialized. When the RAM test is executed, all sets of parameters in the on-board RAM are destroyed. Thus, if drive \emptyset is detached and then later re-attached with this modifier bit set to \emptyset , it is necessary to re-initialize all of the other drives to again pass the device parameters to the iSBC 215G board.

TRANSFER LONG-TERM STATUS BUFFER -- The transfer long-term status buffer modifier bit, when set to 1, converts the transfer status buffer function from a transfer of the short-term status buffer to transfer of the long-term status buffer. Because transfer of the long-term status buffer destroys the contents of the short-term status buffer, the short-term buffer contents should be transferred first.

DISK MOTOR CONTROL -- The disk motor control bit, when set to 1, invokes the motor on control for those 8-inch flexible-disk drives that require such control. Do not set this bit for 5 1/4-inch drives; motor control is assumed for those units.

ROM CHECKSUM TEST -- The ROM checksum modifier bit, when set to 1, converts the diagnostic function from the full diagnostic test to a checksum test of the iSBC 215G board ROM.

RESTORE TO CYLINDER \emptyset -- The restore to cylinder \emptyset modifier bit, when set to 1, limits the diagnostic function to restoring the read/write heads to cylinder \emptyset .

3.7 EXTENDED STATUS

At the end of each iSBC 215G board operation, including operations with any iSBX MULTIMODULE boards mounted on the iSBC 215G board, information pertaining to the operation is stored in one of the two status buffers provided in the on-board RAM. If the completed operation was a short-term function, only the short-term status is posted; if the completed operation was a long-term function, both the short-term and long-term status are posted. The short-term status is posted at the time the first interrupt is asserted, and the long-term status is posted when the specified device completes the off-line portion of the function. Prior to asserting the interrupt, the iSBC 215G board summarizes the status buffer into the operation status byte. Figure 3-15 illustrates the format of the operation status byte.

Bits Ø through 3 contain the code for a device specific status summary. Bits 4 and 5 are used to specify the device unit number. Bit 6 indicates (when set to 1) that a hard error occurred on the specified device and that a function could not be executed. Bit 7 indicates (when set to 1) that some kind of error occurred. If bit 7 is set to 1 and bit 6 is set to Ø, this indicates that a soft (recoverable) error occurred.

3.8 STATUS OPERATIONS

Whenever the operation status byte indicates that an error occurred, the appropriate status block, short-term or long-term, can be requested by the host CPU to obtain additional information pertaining to the error condition. This information is stored in the status buffer, the contents of which are described in the following paragraphs.

3.8.1 STATUS BUFFER FORMAT

Although disk and tape operations use the same status buffers, the definitions of the bytes contained in the status buffer are different for those. Table 3-8 lists the format of the status buffer for both disk and tape operations.

Byte	Disk Function	Tape Function	
ø	Detailed Status Byte	Detailed Status Byte	
1	Detailed Status Byte	Detailed Status Byte	
2	Detailed Status Byte	Detailed Status Byte	
3	Desired Cylinder (Low Byte)	Beginning of Tape Marker Detected	
4	Desired Cylinder (High Byte)	Logical Load Point Detected	
5	Desired Head and Volume	File Mark Detected	
6	Desired Sector	Logical End of Tape Detected	
7	Actual Cylinder (Low Byte)	Not Used	
8	Flags, Actual Cylinder	No Data Detected (Blank Tape)	
	(High Byte)		
9	Actual Head and Volume	Not Useđ	
1ø	Actual Sector	Not Used	
11	Number of Retries	Not Used	

Table	3-8.	Error	Status	Buffer

The contents for each of the status bytes are as follows:

Bytes \emptyset through 2 of the status buffer (for both disk and tape functions) contain the detailed error status for the last function completed.

Bytes 3 through 6 (for disk functions) list the cylinder, head, and sector address requested in the I/O parameter block for the function completed.

Byte 3 (for a tape function), when set to ØFFH, indicates that the beginning of tape marker was detected and that the tape is positioned at the start of the recording area on the tape.

Byte 4 (for a tape function), when set to ØFFH, indicates that the logical load point on the tape was detected. The logical load point is typically the fully rewound position on the tape; the beginning of tape marker is usually located a short distance before the fully rewound position.

Byte 5 (for a tape function), when set to ØFFH, indicates that the tape drive encountered a file mark during function execution.

Byte 6 (for a tape function), when set to \emptyset FFH, indicates that the tape drive encountered the logical end of tape marker during the execution of the last function.

Bytes 7 through 10 (for disk functions) list the cylinder, head, and sector address actually accessed by the disk drive during the execution of the function. The status byte assigned to return the high byte of the actual cylinder number also returns additional information about the track and sector (flags). Figure 3-16 illustrates byte 8 of the status buffer for disk operations.

Bytes 7, 9, and 10 are not used for tape functions and are returned as all 0's.

Byte 8 (for a tape function), when set to ØFFH, indicates that the tape drive was unable to detect any valid data after attempting to read several inches of blank tape.

Byte 11 (for disk functions) lists the number of retries attempted by the iSBC 215G board or the specified drive.

3.8.2 DETAILED ERROR STATUS

The first three bytes of the status buffer provide detailed status pertaining to the last completed function. This is ordinarily called the error status. If any bit in the first three status bytes is set to 1, bit 7 in the operation status byte is set to report that an error occurred. If any bit in the first two status bytes is set to 1, bit 6 in the operation status byte reports the type: set to 1 for hard error; set to \emptyset for soft error. The definitions of the status bits for disk functions and tape functions are similar, but not identical. In the following descriptions of the status bits, both disk and tape definitions are included where required.

3.8.2.1 Status Byte 0

Figure 3-17 illustrates the format of status byte \emptyset ; the paragraphs that follow the figure describe the bits of this status byte.

Figure 3-17. Status Buffer Byte Ø Format

Bit \emptyset -- INVALID iSBC 215G FUNCTION -- Bit \emptyset set to 1 indicates that the function code in byte 11 of the I/O parameter block was not one of the defined function codes. (The present version of the iSBC 215G board checks each function code to determine if it is defined. The iSBC 215A/B board and earlier versions of the iSBC 215G board did not make this verification check.)

Bit 1 -- INVALID iSBX 217B/C FUNCTION -- (Tape Function) Bit 1 set to 1 indicates that the function code (for the iSBX 217B/C board) in byte 11 of the I/O parameter block could not be executed by the iSBX 217B/C board. (Bit 1 is always set to \emptyset when disk functions are executed.)

Bit 2 -- INVALID TAPE DRIVE FUNCTION -- (Tape Function) Bit 2 set to 1 indicates that the function code (for the tape drive) in byte 11 of the I/O parameter block could not be executed by the tape drive. (Bit 2 is always set to \emptyset when disk functions are executed.)

Bit 3 -- iSBC 215G BOARD RAM ERROR -- (Disk Function) Bit 3 set to 1 indicates that the iSBC 215G board failed the RAM test portion of the internal diagnostic program. (Though not strictly a disk function, the RAM test function is classed as one; bit 3 is always set to \emptyset when tape functions are executed.)

Bit 4 -- iSBC 215G BOARD ROM ERROR -- (Disk Function) Bit 4 set to 1 indicates that the iSBC 215G board failed the ROM checksum portion of the internal diagnostic program.

Bit 4 -- iSBC 217B/C BOARD ROM ERROR -- (Tape Function) Bit 4 set to 1 indicates that the iSBX 217B/C board failed the ROM checksum test performed during the tape initialization function.

Bit 5 -- SEEK IN PROGRESS -- (Disk Function) Bit 5 set to 1 indicates that there was an off-line seek in progress in the disk drive when initiation of another function was attempted with the same drive.

Bit 5 -- LONG-TERM FUNCTION IN PROGRESS -- (Tape Function) Bit 5 set to 1 indicates that there was an off-line function in progress in the tape drive when initiation of another function was attempted with the same drive.

Bit 6 -- ILLEGAL FORMAT TYPE -- (Disk Function) Bit 6 set to 1 indicates that one of two illegal operations was attempted or that an illegal I/O parameter block format was detected. (The illegal operations are: 1) an attempt to assign an alternate to the assigned alternate track (that is, attempting to assign a second alternate track directly after finding that the assigned alternate track is defective); or 2) an attempt to access directly an iSBC 215G board unassigned alternate track as a primary data track. Also, bit 6 is set to 1 when a check of the device code, function code, or unit number in the I/O parameter block reveals that a illegal value was used.

Bit 6 -- ILLEGAL CONFIGURATION -- (Tape Function) -- Bit 6 set to 1 indicates that an attempt was made to access a tape drive that is not classed as present. As with disk functions, detection of an illegal device code, function code, or unit number in the I/O parameter block results in bit 6 being set to 1.

Bit 7 -- END OF MEDIUM -- Bit 7 set to 1 indicates that the end of medium marker was detected before the requested transfer count in the I/O parameter block was satisfied. For disk operations, the condition reported in bit 7 is classed as an error.

3.8.2.2 Status Byte 1

Figure 3-18 illustrates the format of status byte 1; the paragraphs that follow the figure describe the bits of this status byte.

Figure 3-18. Status Buffer Byte 1 Format

Bit \emptyset -- ILLEGAL SECTOR SIZE -- (Disk Function) -- Bit \emptyset set to 1 indicates that the sector size information read from the sector header on the disk drive conflicts with the sector size specified when the initialization function was executed.

Bit \emptyset -- LENGTH ERROR -- (Tape Function) -- Bit \emptyset set to 1 indicates one of the following conditions:

The data transfer function specified a requested transfer count of \emptyset .

A file mark was detected with the requested transfer count un-satisfied.

The data transfer function was terminated by the iSBX 217B/C board.

Bit 1 -- DIAGNOSTIC FAULT -- (Disk Function) -- Bit 1 set to 1 indicates that the iSBC 215G board and the disk drive failed execution of the internal diagnostic program. (Though not strictly a disk function, the diagnostic fault function is classed as one; bit 1 is always set to Ø when tape functions are executed.)

Bit 2 -- NO INDEX -- (Disk Function) -- Bit 2 set to 1 indicates that the iSBC 215G board did not receive an index pulse from the disk drive. This error indicates typically that the specified disk drive is not attached to the iSBC 215G board or that power is not applied to the disk drive.

Bit 2 -- NO RESPONSE TIME OUT -- (Tape Function) Bit 2 set to 1 indicates that the iSBX 217B/C board failed to respond to an attempted access within the prescribed time.

Bit 3 -- INVALID FUNCTION CODE -- Bit 3 set to 1 (a summary error) indicates that one of the three function code error bits in status byte \emptyset was set to 1.

Bit 4 -- SECTOR NOT FOUND -- (Disk Function) -- Bit 4 set to 1 indicates that the iSBC 215G board failed to locate the sector number, specified in the I/O parameter block, in any of the sector ID fields in the track.

Bit 4 -- TAPE CARTRIDGE MISSING -- (Tape Function) -- Bit 4 set to 1 indicates that there is no tape cartridge installed in the specified tape drive.

Bit 5 -- INVALID ADDRESS -- (Disk Function) -- Bit 5 set to 1 indicates that an invalid cylinder, head, or sector was specified.

Bit 6 -- SELECTED UNIT NOT READY -- Bit 6 set to 1 indicates that the device specified in the I/O parameter block did not respond to an attempted access. This error typically indicates that the specified device is not attached to the iSBC 215G board, that power is not applied to the device, or that the device was manually switched off-line.

Bit 7 -- DISK/TAPE WRITE PROTECTED -- Bit 7 set to 1 indicates that an attempt was made to write to a medium, installed in the selected device, that was mechanically write-protected.

3.8.2.3 Status Byte 2

Figure 3-19 illustrates the format of status byte 2; the following paragraphs describe the bits of this status byte.

Bit \emptyset --- Not used. Always set to \emptyset .

Bit 1 -- TAPE SOFT ERROR -- (Tape Function) Bit 1 set to 1 indicates that the data transfer function with the tape drive connected to the iSBX 217B/C board was completed successfully, but that one or more retries was (were) necessary to complete the transfer. (The cause of the retry or retries can be actual data errors that were successfully written or read during retry.) Bit 1 is always set to \emptyset when disk functions are executed.

Bit 2 -- PARITY ERROR -- (Tape Function) Bit 2 set to 1 indicates that a data byte parity error was detected by the iSBX 217C board during a data transfer. Bit 2 is not used for disk functions or tape functions with the iSBX 217B board and is always set to \emptyset for such operations.

Figure 3-19. Status Buffer Byte 2 Format

Bit 3 -- DATA FIELD ECC ERROR -- (Disk Function) -- Bit 3 set to 1 indicates that the iSBC 215G board detected an error in the data field during an error correcting code (ECC) check in one of the sectors transferred. If bit 6 of the operation status byte is set to \emptyset , this indicates that the error was soft and is recoverable; if bit 6 is set to 1, this indicates that the error was hard and is not recoverable. Bit 3 is always set to \emptyset when tape functions are executed.

Bit 3 -- TAPE DATA ERROR -- (Tape Function) -- Bit 3 set to 1 indicates that the iSBC 215G board detected a data error in the file that was transferred and that the error was hard and is not recoverable. Bit 3 is always set to \emptyset when disk functions are executed.

Bit 4 -- ID FIELD ECC ERROR -- (Disk Function) Bit 4 set to 1 indicates that the iSBC 215G board detected an error in the ID field during an error correcting code (ECC) check in one of the sectors transferred. If bit 6 of the operation status byte is set to \emptyset , this indicates that the error was soft and is recoverable; if bit 6 is set to 1, this indicates that the error was hard and is not recoverable. Bit 4 is always set to \emptyset when tape functions are executed.

Bit 5 -- DRIVE FAULT -- Bit 5 set to 1 indicates that there is a hardware problem in the selected device.

Bit 6 -- CYLINDER ADDRESS MISCOMPARE -- (Disk Function) Bit 6 set to 1 indicates that the heads were positioned to the incorrect cylinder. The recovery process for this error is to perform a seek to track \emptyset and then re-attempt the seek to the desired track. Bit 6 -- BUFFER OVER-RUN/UNDER-RUN -- (Tape Function) -- Bit 6 set to 1 indicates that the data transfers from the iSBC 215G board did not keep up with the tape drive. This is not an error condition.

Bit 7 --- SEEK ERROR -- (Disk Function) -- Bit 7 set to 1 indicates that the read/write heads were not positioned to the correct track during the seek (implicit or explicit) function. When this error is detected, the internal firmware automatically commands a re-calibrate procedure and will initiate a re-seek unless retries are inhibited. Bit 7 is always set to \emptyset when tape functions are executed.

3.9 INTERRUPTS

The iSBC 215G board generates interrupts to alert the host CPU of significant changes in mass storage system status by asserting any of the eight MULTIBUS interrupt lines (INTØ* through INT7*). The iSBC 215G board ordinarily posts interrupts to the host CPU for three conditions:

- 1. Operation complete.
- 2. Seek complete.
- 3. Medium change.

The interrupt on operation-complete can be disabled by entering a 1 in bit \emptyset of the modifier word in I/O parameter block bytes 12 and 13. The seek-complete and medium-change interrupts cannot be disabled. Once an interrupt is asserted, it can be cancelled by a clear-I/O command from the host CPU to the board ($\emptyset\emptyset$ H to the wake-up port), a power-on reset, or assertion of the MULTIBUS INIT* signal.

Interrupt priority level selection in the range of \emptyset through 7 is done through jumper stake pin connections on the board. Two pins must be connected by wire wrapping to select the priority. (Refer to the description of interrupt priority level selection in Chapter 2.)

3.10 **ISBXTH BUS EXPANSION**

Connectors J3 and J4 on the iSBC 215G board allow access to the iSBX bus (refer to the Intel MULTIBUS Handbook for detailed information). The iSBX bus includes 16 data lines and 3 address lines, providing a total of eight 16-bit I/O ports per connector. Using both J3 and J4, the iSBC 215G board can communicate through the iSBX bus with as many as 16 separate peripheral ports.

The iSBX 218A Flexible Diskette Controller Board connects to iSBX connector J4 and allows communication with as many as four flexible-disk drives; the iSBX 217B/C Magnetic Cartridge Tape Interface Board connects to iSBX connector J3 and allows communication with as many as four QIC-Ø2 1/4-inch tape drives. In addition, users can design I/O controller devices that interface with the iSBX bus and use the 8Ø89 I/O processor (IOP) to control data transfer. Two methods are available to control the transfer of data between the iSBC 215G board and a device connected to the iSBX interface:

- 1. Commands from the iSBC 215G board ROM-based I/O program.
- 2. User written I/O programs.

Both the iSBX 218A Flexible Diskette Controller Board and the iSBX 217B/C Magnetic Cartridge Tape Interface Board use the ROM-based I/O program to control data transfers to and from the flexible-disk drives and QIC- \emptyset 2 cartridge-tape drives, respectively. The following paragraphs describe data transfer between the iSBC 215G board and a user-designed I/O controller connected to the iSBX bus, using either the ROM-based I/O program or a user-written I/O driver program.

3.10.1 FIRMWARE DRIVERS

As described at the beginning of this chapter, the iSBC 215G board includes a ROM-based I/O transfer program that is designed to control hard-disk drives through the on-board drive interface, or flexible-disk and/or QIC-Ø2 cartridge-tape drives through an iSBX 218A board and/or iSBX 217B/C board attached to iSBX connector J4 and/or J3. The I/O-transfer-through-iSBX command in this program can also be used for general data transfer between the host system memory and a user-designed I/O controller connected to the iSBX bus.

The I/O-transfer-through-iSBX command allows transfer of data between the host memory and the iSBX bus in the same manner as with the write-data or read-data commands. With this command, however, the user must provide the necessary interface hardware between the iSBX connector(s) and the I/O device with which the iSBC 215G board is to communicate. This interface can be very simple, involving data buffers and limited handshaking capability, or as sophisticated as the disk-drive interface circuitry used in the iSBX 218A and iSBC 215G boards. The complexity of the interface will depend on the type of I/O device and the desired data transfer rate.

3.10.2 USER-PROVIDED DRIVERS

A second method of initiating and controlling data transfer between the host CPU and the iSBX interface is through a user-designed driver program written in 8089 IOP assembler code. This method is more difficult to implement, but also more flexible. Such programs can be executed either from host memory or from the iSBC 215G board RAM. In writing a program in 8089 IOP assembler code, reference to the 8089 Assembler User's Guide and the 8086 Family User's Manual is essential. The IOP offers a number of techniques for implementing handshaking with the iSBX bus, the use of wait states, and DMA transfers of whole blocks of data. These and other interfacing techniques are described in the user's guide.

There are two groups of interface control lines between the IOP and iSBX bus. The first group includes handshake and control lines; the second

group includes program lines. Table 3-9 lists the first group of lines. The IOP uses these lines directly to control data transfer through the iSBX bus. The second group of lines is used for control and status. The IOP accesses these lines through a read to memory-mapped I/O address 8ØØØH for connector J3 and 8ØØ8H for connector J4. Table 3-1Ø lists these lines, pin assignments, and bit assignments.

Description	iSBX™ Bus Mnemonic	
Request DMA Transfer	MDRQT	
Acknowledge DMA Transfer	MDACK*	
Initiate Wait State	MWAIT*	
MULTIBUS Clock	MCLK	
I/O Read	IORD*	
I/O Write	IOWRT*	
Terminate DMA Activity	TDMA	
	Description Request DMA Transfer Acknowledge DMA Transfer Initiate Wait State MULTIBUS Clock I/O Read I/O Write Terminate DMA Activity	

Table 3-9. IOP Handshake and Control Lines on iSBX™ Bus

Table 3-10. Control and Status Lines on iSBX^{III} Interface

Connector	Address	Connector	Address	Pin	Description	iSBX™ Bus
J3	8ØØØH	J4	8ØØ8H	No.		Mnemonic
OPØØ OP1Ø INTRØØ INTR1Ø MØPST*	Bit B Bit C Bit 9 Bit A Bit 8	OPØ1 OP11 INTRØ1 INTR11 M1PST*	Bit 3 Bit 4 Bit 1 Bit 2 Bit Ø	3Ø 28 14 12 8	Option Ø Option 1 Interrupt Ø Interrupt 1 iSBX Board Present	OPTØ OPT1 MINTRØ MINTR1 MPST*

Jumpers can be connected on the iSBC 215G board to allow the IOP to also write onto the option lines (as shown in Table 3-11). The option lines on only one of the interface connectors may be driven at a time. To drive the lines, the IOP writes to memory mapped I/O port 8018H. Bit 1 drives OP00 and OP01, but not both at one time; bit 2 drives OP10 and OP11, but not both at one time. All other bit positions in the data word must be set to 0 when driving the option lines.
PROGRAMMING INFORMATION

Line	iSBX™ Connector	Mnemonic	Jumper Connection
0PØØ	J3	OPØ	W11-1 2
0P11	J4	OPØ	W11-1 3
0P1Ø	J3	OP1	W12-1 2
0P11	J4	OP1	W12-1 3

Table 3-11. Jumper Connections Allowing Option Lines to be Driven

NOTE

If an iSBX controller is not installed on the iSBC 215G board, or if an iSBX controller that has been installed on a particular iSBX connector does not drive its respective terminate-DMAactivity line (J3-26, J4-26), the corresponding connector jumper (W3-1 --2 or W4-1 --2) must be installed.

3.10.2.1 Random-Access Memory Map

The iSBC 215G board RAM is used for a variety of purposes. Thus, only a portion of it is available for storage of an iSBX bus I/O program and its parameters. The available RAM space is shown in Table 3-12. Note that enough space has been reserved in the data buffer to store an entire $1\emptyset24$ byte disk sector of data. If the sectors are to be smaller or if, for some other reason, less data buffer space is required, some of this space can be used for program storage. If the devices connected to the iSBX bus do not require data from other devices, all of data buffer space can be used.

Table 3-12. On-Board Program and Parameter Storage RAM Space

Description	Address Range (Hexadecimal)	
Data Buffer (Note)	4ØØØ through 44ØF	
Program Storage	441Ø through 45FF	
	46CØ through 46FF	
Scratch Pad (Note)	46ØØ through 46BF	
Pointers, Error Status, and Save Area	47ØØ through 47FF	
Note: These areas may be modified by iSB data in the data buffer need not be as a scratch-pad area between trans	C 215G board command use. If e saved, the space may be used sfers.	

3.10.2.2 Execution From On-Board RAM

Executing the program from on-board RAM presents space limitations, but allows data transfers to be performed at the IOP highest program execution speed. To overcome some of the RAM space problems, the program can be divided into shorter routines that are stored in the host memory and read into RAM as needed. Separate routines might thus be written for disk formatting, checking status, writing, and reading. The iSBX-execute command allows an I/O transfer routine or program that is stored in iSBC 215G board RAM to be started from a host program.

3.10.2.3 Execution From System Memory

Executing the program from host memory is inherently slower than executing the program from on-board RAM, because it requires constant access to the MULTIBUS interface. This method, however, allows the size of the program to be virtually unlimited. The procedure for executing a program from host memory is much the same as for executing a program stored in local memory. To execute a program, the user must:

- 1. Establish I/O communications blocks in host system memory.
- 2. Set the wake-up address jumpers on the iSBC 215G board for the address of the first byte of the wake-up block.
- 3. Program the host CPU to initiate program execution by writing ØlH to the wake-up I/O port.

There are two important differences in the set up of the I/O communications blocks when executing I/O programs from host system memory. These are:

- 1. Byte \emptyset of the channel control block must be set to \emptyset 3H to indicate to the iSBC 215G board that the I/O program is located in host memory.
- 2. The controller invocation block becomes the I/O parameter block. Refer to the 80086 Family User's Manual for detailed information on setting up an I/O parameter block when the I/O program is to be executed from host system memory.

3.10.2.4 Program Execution

When loading and executing a user written I/O transfer program or routine, the following procedure is used:

- 1. Load the program or routine into RAM using the buffer-I/O command from the iSBC 215G board firmware.
- 2. Execute the execute-iSBX-I/O command to start the program. Note that the general address pointer in the I/O parameter block for this command must point to the address of the start of the

PROGRAMMING INFORMATION

program in on-board RAM (see Figure 3-20). Also, upon entering the program, the following IOP registers are defined as:

GA: 7EØØH Scratch Pad Stack IX: Ø to 3 Unit Number

Exit from the program must always be to ROM location $\emptyset\emptyset$ C5H, and the IOP BC register must be set to FFH.

Figure 3-2Ø. Execution of iSBX™ Bus I/O Program from RAM

3.10.2.5 EXAMPLE I/O PROGRAM

Appendix B provides an example of a host CPU program to initiate data transfers between the host system memory and disk drives through the iSBC 215G board.

CHAPTER 4 FUNCTIONAL DESCRIPTION

4.1 INTRODUCTION

This chapter provides a functional description of the iSBC 215G board circuit operation. The description assumes that the reader has a working knowledge of digital electronics and has access to the individual component description of each integrated circuit used on the board. As a prerequisite, the reader should be familiar with the programming conventions discussed in Chapter 3 of this manual, and the functional operation of the Intel 8089 8/16-Bit HMOS I/O Processor and the MULTIBUS interface. Familiarity with the disk drive operation and interface specifications will also prove beneficial in understanding the board operation.

4.2 SCHEMATIC INTERPRETATION

An installation component location diagram (Figure 5-2), a block diagram (Figure 5-3), and a schematic diagram (Figure 5-4) for the iSBC 215G board are included in Chapter 5 of this manual.

The schematic is drawn to standard drafting conventions with input signals entering from the left. Signal connections between individual sheets of the schematic include a location coordinate code immediately preceding (input signals) or following (output signals) the signal mnemonic. This code defines the location of the origin or destination of the signal within the schematic diagram. The first digit of the code is the schematic sheet number, and the last two characters specify the zone defined by the horizontal and vertical grid coordinates printed around the perimeter of each schematic sheet. For example, the code "7B8" indicates that the origin or destination of the associated signal appears on sheet 7 of the schematic set within the zone defined by grid coordinates "B" and "8". An "X" for one of the grid coordinates indicates an entire column or row on the schematic sheet. For example, the code "7BX" indicates the entire "B" zone on sheet 7.

The logic symbols used in this manual are drawn as specified in ANSI Standards 14.15 and Y32.14. Standard definitions are used for symbols and active line levels. A circle on the input of a logic element indicates that a relative low level is required to activate the element. The absence of a circle indicates that a relative high level is required to activate the element. Output levels are indicated in the same manner. Logic gating symbols are drawn according to circuit function rather than the manufacturer's definition. For example, the gate defined by the truth table in Figure 4-1 can be drawn in one of the two configurations shown, depending on its circuit application.

In addition to the inversion symbol convention, signal nomenclature also follows an active-state convention. When a signal (or level) is active in its low state, the signal mnemonic is followed by a star (for example, XACK*); when a signal is active in its high state, the star is omitted from the signal mnemonic, (for example, XACK). This convention corresponds to placing a bar over a signa<u>l mn</u>emonic to indicate that it is active in its low state (for example, XACK).

4.3 GENERAL DESCRIPTION

The function of the iSBC 215G board is to allow the host system to access any location on a specific disk or tape of a selected drive and either:

- 1. Transfer data to that location from system (host) memory (write operation), or
- 2. Transfer data from that location to system memory (read operation).

To accomplish this task, the board circuitry is divided into three sections (see Figure 4-2):

- 1. Logic that performs communications and data transfers between the host central processor unit (CPU) and the iSBC 215G board through the MULTIBUS interface.
- 2. Logic that performs data transfers between the iSBC 215G board and the disk drive(s) through the hard-disk interface, and between the board and the flexible-disk or cartridge-tape drive(s) through the iSBX bus interface.
- 3. Logic that controls both of the above functions.

As shown in Figure 4-2, the iSBC 215G board contains an Intel 8089 8/16-Bit HMOS I/O Processor (IOP), which controls the data transfer process, using a program stored in on-board ROM. It receives instructions from the host CPU through four I/O communications blocks in system memory. Once the host CPU instructs the board to begin a data

transfer, the IOP makes a DMA transfer (independent of the host CPU) to or from system memory.

1039

Figure 4-2. Board Simplified Block Diagram

On-board RAM space (2 K bytes) is included for intermediate storage of data and to allow on-board error checking. This RAM operates as a data buffer and allows DMA transfer between the board and host system memory, which minimizes MULTIBUS overhead and eliminates disk drive overruns.

In support of the following general description of the iSBC 215G board functional logic groups, a detailed block diagram and a schematic diagram are included in Chapter 5 (see Figures 5-3 and 5-4).

4.3.1 COMMUNICATIONS WITH HOST

As shown in the block diagram (Figure 5-3), the board includes the logic to operate within a multi-master system and contend with other masters for control of the MULTIBUS interface.

The bus controller generates control signals that gate data transfers between system memory and the on-board RAM. It also controls the transfer of data from RAM to the drive communication circuitry. The MULTIBUS interface address latches and PAL U64 transmit 24-bit addresses to system memory via the MULTIBUS interface. The MULTIBUS interface data transceiver transmits data to or from system memory via the MULTIBUS interface. The data transceivers use a byte-swap technique to allow data transfer with either an 8- or 16-bit system memory. Intercommunication among board logic groups is accomplished via the board internal data bus, which is 16 bits wide.

The wake-up address comparator assigns the iSBC 215G board a host system I/O port address and sets up a communications link between the IOP and the I/O communication blocks in system memory.

4.3.2 COMMUNICATIONS WITH HARD DISK

The IOP treats the ROM, RAM, iSBX I/O ports, and disk communications portions of the board circuitry as local memory. The internal address latches transmit 16-bit addresses to local memory. The internal data transceivers transmit data either to or from local memory. (Some of the addresses in local memory provide access to local I/O ports). The address decoder decodes these addresses and generates chip-select or enable signals that control the transfer of data to and from the disk. For example, address 80/28H enables the 16-bit write buffer to receive a data word from the local memory. The ROM and RAM are also assigned specific ranges of addresses in local memory.

The 16-bit serializer/de-serializer (SER/DES) performs serial-to-parallel and parallel-to-serial conversion operations required to transfer data between the disk and system memory. The 16-bit write buffer and the 16-bit read buffer provide intermediate storage for a single 16-bit word between the RAM and the SER/DES. In a write operation, a 16-bit word is transferred from RAM to the write buffer. The SER/DES then converts the word from parallel to serial and transmits it to the disk through the write data driver. In a read operation, a 16-bit serial word is transferred from the disk through the read data receiver to the SER/DES. The SER/DES then performs a serial-to-parallel conversion and stores the resulting word in the read buffer. The write data drivers and the read data receivers are designed to generate and read the differential NRZ drive signals.

The 32-bit ID comparator determines when the selected sector on the disk is located during the search-for-sector-ID operation that precedes a write or read function. When a write or read is initiated, the 32-bit sector identification (cylinder, head, and sector number) is loaded into the 32-bit ID comparator. Sector ID's from the disk are then read and compared with the selected sector ID. When the selected sector is located, data transfer is initiated.

The 32-bit ECC generator creates an error checking code (ECC) that is appended to the end of each sector ID field and to the end of each data field (see Figure 3-2). This ECC is used for error checking and correction of data errors. It corrects all errors in a burst of as many as 11 bits, and detects all errors in a burst of as many as 32 bits.

The gap control logic controls the spacing of data within a sector. Three programmable counters count disk clock pulses to provide timing for the gap control logic. Counter programmability allows disk formatting for a number of different record sizes and gap lengths.

The disk control logic transmits disk control information to the drives through control line drivers. The input control logic receives status information from the disk drive units and controls the sequencing of the board read and write operations.

4.3.3 COMMUNICATIONS VIA iSBXTM BUS

The iSBX bus interface provides the capability to connect Intel iSBX MULTIMODULE devices to the iSBC 215G board in order to control other peripheral devices such as flexible-disk or QIC-Ø2 cartridge-tape drives. For detailed information on the iSBX bus, refer to the Intel MULTIBUS Handbook.

4.4 DETAILED DESCRIPTION

The detailed functional description of the iSBC 215G board circuitry is divided into three sections: board-to-host communications, board-to-drive communications, and local memory organization.

4.4.1 BOARD/HOST COMMUNICATIONS

The following paragraphs provide a detailed functional description of the iSBC 215G board logic that communicates with the host CPU through the MULTIBUS interface.

4.4.1.1 MULTIBUS® Interface Signals

The IOP communicates with the host CPU and the system memory through the MULTIBUS interface. The MULTIBUS interface signal description and pin configurations are included in Chapter 2. For a detailed description of the MULTIBUS interface operation, refer to the Intel MULTIBUS Handbook.

4.4.1.2 I/O Processor

The 8089 I/O Processor (IOP), (U84, 4X4), is a microprocessor device that is designed specifically to perform high speed I/O transfers of data between system memory and mass storage devices such as disk drives. Its ability to perform DMA data transfers without host CPU action allows it to carry out most system memory-to-drive or drive-to-memory transfers of data simultaneously with other host CPU operations. For detailed information on the 8Ø89 8/16-Bit HMOS I/O Processor, refer to the Intel Microsystem Components Handbook, Volume II.

A number of IOP control lines are important to the board design. The RST* line (4D1), when driven low, resets the IOP to the beginning of its internal firmware control program, and resets the interrupt latch and the read/write logic. Channel attention line CA (4B4) allows the host CPU to gain the attention of the IOP. On the first channel attention following a reset, the IOP fetches the contents of address FFFF6H and begins an internal initialization procedure. On subsequent channel attentions, the IOP reads the I/O communications blocks in system memory for further instructions.

The bus interface unit (BIU) in the IOP controls the board internal data bus cycles, transferring instructions and data between the IOP and external memory or the disk. Every bus access is associated with a register bit that indicates to the BIU whether the host system memory or local memory is to be addressed. The BIU outputs the type of bus cycle on status lines $SØ^*$, $S1^*$, and $S2^*$. The 8288 Bus Controller decodes these lines and provides signals that selectively enable one bus or the other.

Although the IOP is a 16-bit processor, it is capable of making both single-byte fetches (8-bit system memory) or two-byte fetches (16-bit system memory). The address \emptyset line, IADR- \emptyset (5B7), controls the byte swapping facility of the bus controller when communicating with an 8-bit system memory.

The clock circuit consists of an 8284A Clock Generator/Driver (U55, 4C6), and a 15-MHz crystal. The clock generator/driver divides the crystal output by three to produce the 5-MHz clock signal necessary to drive the IOP, and also produces an IOP reset signal (RST), which is used at power-up, after an initialization, or after a board reset. In addition to the reset signal, the clock/driver also produces a synchronized ready input (RDY) to the IOP. A high on the RDY line from the addressed device (XACK* from external memory or the iSBX interface, or RDY from the on-board read/write port), indicates that the memory or read/write port has accepted data during a write operation or that data are ready to be read during a read operation.

The 8289 Bus Arbiter, (U9Ø, 3D6), controls the IOP access to the MULTIBUS interface (see Figure 4-3). The bus arbiter monitors the IOP status lines (SØ*, S1*, and S2*). When the lines indicate that the IOP does not presently control the bus, the bus arbiter activates a bus request (BREQ*). The low BREQ* is transmitted to the bus priority resolving circuitry in the host CPU, which returns a low on bus priority in line BPRN*, giving the IOP access to the MULTIBUS interface, and the bus arbiter activates its busy signal (BUSY*), indicating to the other system masters that the MULTIBUS interface is in use. The bus arbiter then activates the address enable signal (AEN*), which is transmitted to the 8288 Bus Controller (U91, 3C4), to enable its command outputs; to the clock generator/driver (U55, 4C6), to enable its bus ready logic; and to the system address latches (U81, U82, and U83, 4X2), to allow an address to be gated to the MULTIBUS interface. Jumper stake pins W18-1, 2, and 3 allow the user to select the any-request option. Jumper W18-1 -- 2 installation causes the board to relinquish control of the MULTIBUS

interface following a request from a higher priority device only. Jumper W18-1 -- 3 installation causes the board to relinquish control of the MULTIBUS interface following a request from any device of either higher or lower priority.

Figure 4-3. Bus Arbiter and Controller Logic

4.4.1.3 Bus Controller

The 8288 Bus Controller (U91, 3C4), decodes the status line outputs (SØ*, S1*, and S2*) from the IOP and generates the appropriate bus cycle signal. Table 4-1 lists the different signals generated for each configuration of the IOP status lines.

Status Input		ut		Bus Controller	
SØ×	S1×	S2×	CPU Cycle	Command	
ø	ø	ø	Instruction Fetch, Local	INTA*	
ø	ø	1	Read Memory, Local	IORC*	
ø	1	ø	Write Memory, Local	AIOWC*	
ø	1	1	Halt	None	
1	ø	ø	Instruction Fetch, System	MRDC*	
1	ø	1	Read Memory, System	MRDC*	
1	1	ø	Write Memory, System	MWTC*	
1	1	1	Passive	None	

Table 4-1. IOP Status Line Decodes

These bus cycle signals can be divided into two groups: those that allow the IOP to access system memory (MWTC* and MRDC*) and those that allow the IOP to access local (internal) memory (I-AIOWC* and IORC*). The IOP uses the I/O read (IORC*) and I/O write (I-AIOWC*) signals to read information from the local ROM (U87 and U88, 6X7), or to read from or write to the local RAM (U99 through U1 \emptyset 2, 6X4). The IOP also uses I-IORC* and I-AIOWC* to enable the read and write function decoders (U35 and U36, 5B2, and 5A2).

The bus controller also generates a group of signals that control address and data flow throughout the iSBC 215G board. The address latch enable line (ALE) is used to strobe addresses from the IOP into both the system address latches (U81 through U83, 4X2), and the local address latches (U85 through U86, 5X7).

Data transmit/receive (DT/R), data enable (DEN), and peripheral data enable (PDEN*) signals control the data flow through the iSBC 215G board. The DT/R signal controls the direction of data transmission through the MULTIBUS interface and local transceivers. If DT/R is high, data are transmitted either to the MULTIBUS interface through transceivers U96, U97, and U98 (4X7) or to the local bus through transceivers U52 and U53 (4X6). If DT/R is low, the data transfer is in the opposite direction, into the IOP through one of the two sets of transceivers. The DEN and PDEN* signals control the selection of the transceivers. If DEN is high, MULTIBUS interface transceivers U96, U97, and U98 are enabled; if PDEN* is low (indicating a peripheral cycle), local transceivers U52 and U53 are enabled.

4.4.1.3.1 MULTIBUS® DATA TRANSFER. The iSBC 215G board has three sets of MULTIBUS interface data transceivers: low-byte transceiver U97. which buffers DAT-Ø* through DAT-7*; high-byte transceiver U96, which buffers DAT-8* through DAT-F*; and swap-byte transceiver U98, which switches the data from DAT-Ø* through DAT-7* on the MULTIBUS interface to high-byte data bus lines AD8 through AD15 on the iSBC 215G board (see Figure 4-4). This byte-swap is performed only when the iSBC 215G board interfaces with a 16-bit system memory in byte mode. In such an instance, every odd address read from system memory is transmitted to the high-byte data lines of the board. The procedure is reversed when writing to an 8-bit system memory. Three signals control the transceiver: ENBL HI BYTE* (5C1), which controls the high-byte transceiver; ENBL LO BYTE* (5C1), which controls the low-byte transceiver and is derived from ADRO*; and ENBL SWAP BYTE* (5C1), which controls the swap byte transceiver. Table 4-2 shows when each of the control signals is active.

	8-Bit System Memory		16-Bit System Memory		
Signal	I/ADRØ LOW	I/ADRØ HIGH	I/ADRØ HIGH	I/ADRØ LOW	
ENBL LO BYTE*	L	н	NA	L	
ENBL SWAP BYTE*	н	L	NA	н	
ENBLE HI BYTE*	н	н	NA	L	
Note: NA denotes not applicable.					

Table 4-2. Data Transfer Signal Relationships

4.4.1.3.2 <u>INITIALIZATION</u>. Before data can be transferred between system memory and the iSBC 215G board, the board must be initialized. The initialization procedure, which is described in Chapter 3, involves:

- 1. Resetting the IOP.
- 2. Clearing the reset.
- 3. Establishing a communication link between the IOP and the I/O communications blocks in system memory.
- 4. Reading the drive parameters from system memory to the iSBC 215G on-board RAM.

The following paragraphs describe the hardware operations that take place during this initialization procedure. (See Figure 4-5.)

4.4.1.3.2.1 <u>Wake-Up Address Comparator</u>. For the purpose of resetting the iSBC 215G board, clearing the reset, or getting the attention of the IOP (driving the CA signal true), the host CPU addresses the board as an I/O port in its system I/O space. To perform one of these functions, it writes a one-byte command to the specified I/O port (the wake-up I/O port). Table 4-3 shows the three possible commands. The user determines the address of the I/O port through which board/CPU communications are to take place (the wake-up address) and installs the appropriate jumpers on the iSBC 215G board. When the host CPU issues a write command (IOWC*) to the wake-up address in system I/O space, the wake-up address comparator (U77 through U8Ø, 2X5) compares the address with the jumper configuration. If the address and configuration agree, the WAKEUP* signal is driven low, enabling the board to decode the command on the MULTIBUS interface data lines and determine the action to be taken.

Figure 4-5. Wake-Up Address Logic

Command	Description	
øøн ø1н	Clear interrupt and clear reset. Channel attention (start IOP operations).	
Ø2H	Reset IOP.	

Table 4-3. Host Wake-Up Commands

The host CPU may use 8- or 16-bit I/O port addressing. A user-installed jumper indicates to the board the type of addressing that is being used. When jumper $W3\emptyset-2$ -- 19 is not installed, (8-bit I/O address), pin 9 of U75 is held high, creating a "don't care" status for the outputs of high-byte wake-up address comparators U77 and U78.

As it is described in Chapter 3, the iSBC 215G board also uses the configuration of the wake-up address jumpers to calculate the address of the first byte of the wake-up block, which is the first I/O communications block in system memory.

4.4.1.3.2.2 Reset and Clear. The first operation that must be performed during the initialization of the iSBC 215G board is the IOP reset. To reset the IOP, the host CPU writes Ø2H to the wake-up address. The WAKE-UP* line becomes low and gates the Ø2H (DAT-Ø* high and DAT-1* low) to the wake-up decoder (U65, 3B7), producing a low on the controller reset (CNTLR RST*) line. A low CNTLR RST* signal resets the IOP (4X4), resets read/write control logic IC U42 (8B1 through 5), clears control register U3 (12B5), and also sets 24-bit addressing PAL U64 (9B3) to its initialized state. When jumper W36-1 -- 2 is not installed, all I/O communication blocks are in the first page of system memory; when jumper W36-1 -- 2 is installed, all I/O communication blocks are in the last page. Once the board has been reset, the host CPU writes ØØH (clear interrupt) to the wake-up address, which clears the reset. Wake-up decoder U65 decodes the highs on DAT-0* and DAT-1* to drive the CNTLR RST* line high.

4.4.1.3.2.3 <u>I/O Communications Blocks Links</u>. Following a power-up event or a software reset (\emptyset 2H written to the wake-up I/O port), the link between the iSBC 215G board and the I/O communications blocks in system memory must be established. To establish this link, a clear reset ($\emptyset\emptyset$ H) is written to the wake-up I/O port followed by a channel attention (\emptyset IH). The \emptyset IH is gated to wake-up decoder U65, producing a high on the channel attention (CHNL ATTN) line, which, in turn, drives the CA input to the IOP (4C4) high.

Since this is the first channel attention following reset, the IOP starts an internal initialization process. The first step of this process is to do an on-board fetch from address FFFF6H. The board actually gains control of the bus and this address is transmitted on the IOP address/data lines (ADØ-AD15) to latches U85 and U86 (5B7). Gates U66, U72, and U76 (5D4) decode the output of these latches. The output of U76 enables U89 (5D3), gating the status configured by system data bus width jumper $W3\emptyset - 1 - 2\emptyset$ through data bit \emptyset line (DAT- \emptyset^*) to the IOP. (Jumper W3Ø-1 -- 2Ø installed indicates that the host memory system supports 16-bit data transfers, jumper W3Ø-1 --2Ø not installed indicates 8-bit data transfers.) Inverter U89 also generates the transfer acknowledge signal (XACK*), which is sent to the IOP (through the clock generator/driver), indicating that the operation has been completed. After determining the width of the system bus (8- or 16-bits), the IOP also performs on-board fetches from the addresses shown in Figure 4-6 as part of the initialization sequence. The XACK signal is generated after each fetch. (Thus, although it appears to the IOP that it is reading from the MULTIBUS interface, the read operation is from the on-board bus.)

Figure 4-6. Initialization Sequence Address Fetches

Fetching addresses FFFF8/9H gates Ø's into the IOP. Fetching addresses FFFFA/BH causes the GATE SWS* line (5C1) to become low. The GATE SWS* signal gates the settings of the wake-up address jumpers through buffers U93, U94, and U95 (2X3) and into the IOP, which multiplies the configuration settings by 2^4 to determine the $2\emptyset$ -bit address of the wake-up block. The IOP then uses this address to fetch the channel control block address and establish a link with the other I/O communications blocks. On subsequent channel attention operations (when the host CPU writes Ø1H to the wake-up I/O port), the IOP skips the wake-up block and proceeds directly to the channel control block, which had been stored previously in an internal IOP non-programmable register. The IOP uses the channel control block to obtain the starting address of the board ROM-resident I/O transfer program (also called the channel control program). From this point on, this firmware program directs the board activities.

One of the first operations of the firmware is to again fetch the starting address of the wake-up block. It then links its way through the channel control block and the controller invocation block to the I/O parameter block, where it obtains instructions and parameters for a specific I/O operation.

4.4.1.3.3 INTERRUPT PRIORITY. Jumper stake pins W19-C and W19-Ø through W19-7 (3B2) allow the user to select the controller interrupt priority with respect to other system peripherals. To issue an interrupt to the host CPU, the IOP writes $\emptyset I \emptyset \emptyset H$ to local I/O port $8\emptyset I \emptyset H$. This generates a high on data line BDAT-8 and a low on write decoder line WDC1Ø*, causing the interrupt latch (U56, 3B5) output to be high and the selected interrupt line to the MULTIBUS interface to be low. A $\emptyset \emptyset H$ written to the system I/O port wake-up address by the host CPU clears the interrupt.

4.4.2 BOARD/DRIVE COMMUNICATIONS

The following paragraphs provide a detailed functional description of the sections of the iSBC 215G board that communicate with hard-disk drives through the Winchester drive interface and with flexible-disk and QIC- \emptyset 2 cartridge-tape drives through the iSBX bus interface (via connectors J3 and J4).

4.4.2.1 Board/Hard-Disk Drive Interface

All of the signals that are transmitted between the iSBC 215G board and the hard-disk (Winchester) drives are transmitted through the control cable (J1), the read/write cable (J2), or the ANSI cable (J5). (The physical configuration of these cables is described and illustrated in Chapter 2.) All signals transmitted between the board and the drives (except the read, write, and clock signals) are TTL level. The read, write, and clock signals are transmitted as differential signals.

The interface signals supported by the iSBC 215G board are described in the following paragraphs. Each of the drive interfaces uses the available lines in a unique manner. For the specific use of the lines, refer to Figures 2-1 through 2-5 and the specific drive user's manual.

4.4.2.1.1 <u>CONTROL SIGNALS</u>. Control and status information are exchanged between the iSBC 215G board and the drive through the control cable (J1 for non-ANSI interfaces; J5 for ANSI interfaces). Output signals are defined as those signals that the board transmits; input signals are defined as those that the board receives. The control cable is connected from J1 (or J5) on the iSBC 215G board to the first drive and as many as three subsequent drives in a daisy-chain fashion as shown in Figures 2-13 through 2-17. The functions of the 37 control cable lines can be divided into five classes:

- 1. Device Select (Output)
- 2. Head Select (Output)
- 3. General-Purpose Data Bus (Bidirectional)
- 4. Command Data (Output)
- 5. Status Data (Input)

Table 2-13 describes the function of the signals in each of these classes as transmitted through the control cable.

4.4.2.1.2 <u>READ/WRITE SIGNALS</u>. Read data, write data, clocks, and two status lines constitute the information exchanged via the read/write cable. Output signals are defined as those signals that the iSBC 215G board transmits to the disk drives; input signals are defined as those that the board receives. For multiple Shugart SA4ØØØ drives, the read/write cables are connected from the iSBC 215G board to the disk drives in radial fashion; that is, one cable from the board to each drive. Connector J2 provides read, write, and clock signals for two drives; for example, RDØ (+ and -), and RD1 (+ and -). One of these signals selects physical address Ø; the other selects physical address 1. For SA1ØØØ drives, only the signals associated with physical address Ø are used. These signals are then daisy-chained between drives, allowing the board to communicate with as many as four drives. Chapter 2 describes the cabling requirements and the physical configuration of the

cables for the various drive types supported by the iSBC 215G board. Table 2-14 describes the function of each of the signals transmitted through the read/write cable. Note that the read, write, and clock signals are differential signals, requiring two lines in the cable; the status lines are TTL-level signals.

4.4.2.2 Board/Flexible-Disk and QIC-02 Cartridge-Tape Drive Interface

All signal and control lines transmitted between the iSBC 215G board and the flexible disk and QIC- \emptyset 2 cartridge-tape drives via the iSBX bus are transmitted through connectors J3 and J4. These lines are described only in general terms in this manual and only as the lines pertain to the remainder of the description of the board interface with the storage drives. For more detailed information on these lines, refer to the Intel MULTIBUS Handbook.

It should be noted that the iSBC 215G board does not support any parallel-to-serial or serial-to-parallel conversion of data for transmission through the iSBX connectors. It interfaces with any device connected to these connectors through an 8- or 16-bit parallel bus and a number of control and handshake lines. The iSBX interface thus resembles the read/write port, made up of the write buffer and the read buffer, that is used in the iSBC 215G board interface to the hard-disk drives.

The schematic diagram mnemonics for the signal and control lines (from the iSBC 215G board) that are connected to iSBX connectors J3 and J4 often differ from the respective line mnemonic from the iSBX bus specifications. Table 2-11 lists both the iSBX bus mnemonic and the iSBC 215G board mnemonic for each signal, in the iSBX bus, that the board supports.

4.4.2.3 Interface Timing

The following paragraphs provide a detailed description of the inter-circuit timing of formatting a disk, writing to a disk, or reading from a disk. The timing logic is shown on sheet 8 of the schematic diagram; the disk drive interface receivers and drivers are shown on sheets 9 through 12.

4.4.2.3.1 <u>DIRECT MEMORY ACCESS TRANSFERS</u>. In general, when the iSBC 215G board performs a read or a write function, it locates the area of the disk where the read or write is to be performed, then enters the direct memory access (DMA) mode to perform the actual transfer. In the DMA mode, the IOP (see Figure 4-2) controls the transfer of data between the local RAM block and the write and read buffers (called the read/write port). The data transfer circuitry on the board controls the transfer of data between the read/write port and the disk.

The ready line (RDY, 8D1) is used for hand shaking between the IOP and the data transfer circuitry. When RDY is low, the IOP is quiescent; when RDY is high, the IOP performs a DMA transfer of data either from the local RAM to the write buffer (block-to-port), or from the read buffer to local RAM (port-to-block). Gates U4Ø, U41, and U12 (8D3) control the RDY line.

To perform a write or a read, the IOP executes firmware routines to set up data (write only) and condition the hardware for the selected operation. It then enters the DMA mode and attempts to transfer data. At this time, the TIME OUT line (8D8) is low; the MWAIT* line (13D1 and 8D8) is high; the R/W GATE line (8D1) is high (see Figure 4-7), U21-8 (8D3) is high (held so by the low on the ENBL XFER line, 8D1), and the R/WDC 28 line (the output of U11-11, 8D7) is low. The low on R/WDC 28 thus keeps RDY activated.

Figure 4-7. Ready Signal Timing Diagram

On its first attempt to transfer data in the DMA mode, the IOP activates either RDC 28* or WDC 28* (8D8), depending on whether a read or a write is being performed, respectively. When RDC 28* or WDC28* is activated, the R/WDC 28 line is activated, lowering RDY and switching the IOP to the quiescent (wait) state. When the board data transfer circuitry locates the area on the disk where the read or write is to begin, it activates ENBL XFER (8D1). On the next occurrence of a bit ring- \emptyset pulse (bit \emptyset of each word, BR- \emptyset , 8D1) following the activation of ENBL XFER, U21-8 (8D3) is activated, activating RDY. The IOP then immediately performs the data transfer (writes a word into the write buffer or reads a word from the read buffer) and lowers R/WDC 28. On the next clock into U21-11, U21-8 is driven high and, on the next IOP attempt to perform a data transfer, R/WDC 28 is also driven high, lowering RDY. The data transfer does not occur and the IOP switches to the wait state.

During this time, the SER/DES either transfers the word from the write buffer to the disk or reads another word from the disk into the read buffer. Then, on the next $BR-\emptyset$ pulse, RDY is again activated and the next DMA data transfer occurs. The IOP continues in this DMA mode until the R/W GATE line is lowered.

Note that two other lines have potential control over the RDY line. The TIME OUT line (8D8) allows the IOP to be activated if a sector cannot be located on a cylinder. While the drive is searching for a sector, the RDY line is held low. If, after two revolutions, the drive does not locate a sync byte, the TIME OUT line is raised. IC U41 (8D3) gates the TIME OUT signal to U12 (8D1) and activates RDY.

The MWAIT* line (8D8) is an iSBX interface control line and is derived from MWAITØ* and MWAIT1* (13D8). Signal MWAIT* exercises the same control over the RDY line as U4Ø (8D3) and can thus be used to set up a handshaking arrangement between an I/O controller connected to one of the iSBX interface connectors (J3 or J4) and the IOP. For more detailed information, refer to the Intel Microsystem Components Handbook.

4.4.2.3.2 <u>DISK FORMATTING</u>. Before the surfaces of a disk can be used for writing and reading data, the disk must be formatted. Formatting is the operation of writing all address fields, gaps, ID headers, etc. for the complete disk. The iSBC 215G board performs this operation under software control. The software routine that controls formatting allows for formatting a single track with each format command to the board until the entire disk is formatted.

Implementation of the format command is divided into two operations. During the first operation, address marks (soft-sectored disks only), gaps, and ID fields are written during a single disk revolution. During the second operation, user-supplied data are written into data fields. The second operation requires two disk revolutions, one to write the odd physical data fields (1, 3, 5, etc.), and one to write the even physical fields (\emptyset , 2, 4, etc.). Three disk revolutions are thus required to format a single track. The hardware execution operation described in the following paragraphs pertains to the formatting of a soft-sectored disk. The iSBC 215G board supports both soft- and hard-sectored disks.

NOTE

A soft-sectored disk (as used in Shugart/Quantum drives) requires that an address mark be written at the beginning of each sector during the formatting operation. Hard-sectored disks (as used in Memorex and Priam drives) provide a sector pulse at the beginning of each sector. Thus, address marks need not be written.

4-17

The formatting procedure, however is essentially the same. The differences are described at the end of this section, along with the slight differences in the sector format used with Shugart/Quantum drives. When the format command is issued to the iSBC 215G board, the IOP performs a seek to the desired track (cylinder) to begin the format operation.

When the heads are positioned over the selected track, the IOP writes a CØH (for drive Ø), a C8H (for drive 1), a DØH (for drive 2), and a D8H (for drive 3) to I/O port 8Ø18 (decoded as WDC 18*). The activation of WDC18* enables U3 (12A5) and activates the WRT GAT-F and FORMAT lines (12B1) and the WRT GATE line (12C1). (See Figure 4-8.) The WRT GAT-F and FORMAT signals enable the board format control circuitry. With WRT XFER inactive and all Ø's applied to the SER/DES, the board then then writes all Ø's to the drive while the IOP waits for the receipt of the first INDEX* pulse (11D8).

Figure 4-8. Disk Formatting Sequence Timing Diagram

The receipt of INDEX* sets latch U34 (11D6), which, in turn, sets bit F of the status register. This causes the IOP to poll (read) I/O port 8000H bit F (decoded as RDC 00*). Upon detecting the index, the IOP writes XXXXH to I/O port 8030H (decoded as WDC 30), which triggers U63 (8B7), activating the WRT AM* line (8B1) and causing the first address mark to be written on the disk through the ADMKEN* line (12D1).

The time allowed by the IOP between the detection of index and the activation of U63 (8B7) is approximately 11 byte times, which is the time that the iSBC 215G board requires to perform a number of firmware steps

in preparation for writing the first address mark and ID field (see Figure 3-2 for a pictorial representation of the track format). During this time, the IOP writes the sync byte ($\emptyset\emptyset$ 19H) to the write buffer (U46 and U49, 7C7 and 7D7), by writing to I/O port 8 \emptyset 28H (decoded as WDC 28*). It performs this operation in preparation for writing the ID field on the track.

The activation of WRT AM* also starts counter 1 (U69, 8A7). (The IOP preset the counters in U69 at the beginning of the format operation.) When counter 1 times out at the end of 11 byte times, it activates the WRT XFER* line through U63-7 (8C3), and starts counter 2. The activation of WRT XFER* initiates the IOP DMA mode, during which the sync byte and the sector ID are written onto the disk. Counter 2 times out at the end of the ID field, starting counter \emptyset and activating the ECC TIME line (8B1). During the ECC TIME, the ECC code from the ECC generator is written following the ID field. At the end of ECC TIME, the END TIME line is enabled, which lowers the WRT XFER* line and switches the IOP out of the DMA mode. After the last ID field is written, the FORMAT line is deactivated, which inhibits the writing of any additional address marks.

Counter \emptyset is set for a time equal to ECC+G3+DATA+G4, which the IOP sets according to the sector size selected for the drive. When counter \emptyset times out, it activates WRT AM* and counter 1, which begins the formatting of the second sector. This procedure is repeated until the IOP determines that the last ID field has been formatted. The IOP then begins searching for the index pulse. Upon receipt of index, the RST FRMT* line is activated, resetting WRT GAT-F and FORMAT, and inhibiting the writing of the next address mark. The IOP then continues through the format routine to the second operation, which is the writing of user-supplied data into the data fields.

For hard-sectored disks, jumper W16-1 -- 3 (8B8) is installed. The formatting of the first sector thus begins when the first SECTOR* pulse from the disk (following index) is received, rather than when WDC 30* is activated. When the SECTOR* line (11B8) is activated, it activates the INDEX-SECTOR* line (11C1), which starts counter 1 counting. Formatting then continues in the same manner as with soft-sectored disks, except that the beginning of the next sector occurs at the receipt of the next SECTOR* pulse rather than at the timing out of counter \emptyset .

The 8-inch Shugart/Quantum drive sector format differs in two ways from that of the other drive types. In these drives, an address mark is placed before both the ID field and the data field, with no gap between the address mark and the sync byte. In addition, D9H is used for the sync byte in the data field rather than 19H. When the iSBC 215G board sync byte detector circuit (U54, U68, and U73, 7B5), detects a sync byte (19 or D9) following an address mark, and the SR-6 (7B1) line is activated (D9 only detected), and the DATA SYNC and IDNCMPRL lines are activated through latch U37 (9A6). DATA SYNC and IDNCMPRL then set bits 3 and 6, respectively, of status register U1Ø (11C5), indicating to the board the presence of a data field instead of an ID field. In Memorex, 14-inch Shugart, Pertec, and Priam drives, a data field is assumed to follow an ID field without an intervening address mark.

A second difference between the 8-inch Shugart/Quantum drive and the others is that, with the Shugart/Quantum drives, a 4EH pattern is written

in the gaps rather than \emptyset 's. Inverters U58 and U17 (8D6) and gate U19 (8D5) create the 4EH pattern. Gates U4 \emptyset and U6 \emptyset (8A3) apply the pattern to the SER/DES when the SHUGART and WRT GAT-F lines are activated during a format.

4.4.2.3.3 WRITE DATA TRANSFERS. The write operation is divided into two steps: read sector ID and write data. When a write is initiated, the IOP writes ØØØ6H to I/O port 8ØØØH (decoded as WDCØØ). Latch U24 (12C5) then activates the AM SEARCH*, ADMKEN*, and RD GATE* lines, which enables the drive to search for the address mark and enables the board read circuitry (see Figure 4-9).

The IOP also writes to I/O ports $8\emptyset 3\emptyset$ H and $8\emptyset 38$ H (decoded as WDC3 \emptyset * and WDC3 \emptyset *), loading the ID of the sector to be written to into the 32-bit ID comparator logic (U2, U1, U23, and U22). Note that it has previously written to I/O port $8\emptyset 2\emptyset$ H (decoded as WDC2 \emptyset *) to load counters \emptyset , 1, and 2 of U69 (8A7). When the address mark (or sector pulse) is detected, SECTOR* is activated, which activates the AMFND-SECTOR* line (11B1). The low on AMFND-SECTOR* resets U34 (8C7) and de-activates the ID FIELD line, which de-activates the ADMKEN* line and activates the ALW SYNC SRCH,

initiating the search for the sync byte. Note that with the Shugart drives, the sync byte follows the address mark directly. Activating AM FND-SECTOR* thus activates ALW SYNC SRCH directly, through jumper W14-1 -- 2 (12C3).

In searching for the sync byte, serial data from the disk are read into the SER-DES. Sync byte comparator U73 and U54 (7B5) monitors the outputs of the SER-DES and drives the SYNC BYTE* line (7B1) low when 19H (the sync byte) is detected. The enabling of SYNC BYTE* enables the SYNC FND* lines (9C1), which, in turn, activates the ID comparator (U1, U2, U22, and U23, 9DX) and word clock U2Ø (8D7). The SYNC FND* signal also drives the ENBL XFER line (8C1) high, which enables the ECC generator logic (7AX) and ready latch U21 (8D4) and enables counter Ø of U69 (8A7).

The 32-bit comparator compares the ID read from the disk with the ID of the selected sector. At the end of the ID time, counter \emptyset times out, driving the ECC TIME* line (7A8) low and initiating the ECC compare. If the ID and the ECC are valid, bit 6 of the board status register (U1 \emptyset , 11C5) is reset. At the end of ECC time, U42-1 \emptyset (8B2) activates the END TIME line, which resets RD GATE. The IOP then checks bit 6 of control status register U1 \emptyset (11C5). If the bit is inactive, the IOP continues with the write operation. If the ID or ECC is not valid (bit 6 active), the AM ENABLE and RD GATE lines are then asserted and the board searches for the next address mark.

To begin the second step of the write operation, the IOP writes \emptyset lH to I/O port $8\emptyset\emptyset\emptyset$ H (decoded WDC $\emptyset\emptyset$ *) and enables the write gate (WRT GATE), through U24 (12B5), enabling the drive write circuitry. When counter \emptyset times out, counter 1 is started. Counter 1 is set for a time interval equivalent to the ECC time plus GAP 2. When counter 1 times out, counter 2 is started and the U63-7 (8C3) is set, activating WRT XFER*, which enables write buffers U46 and U49 (7C7) and the ECC comparator logic (7AX), and raises the RDY line, indicating to the IOP that the write buffer is ready to receive data.

The IOP then enters DMA mode to write data from local RAM to the disk. The board continues transferring data to the disk in this manner until counter 2 times out (indicating the end of the data field) and raises the ECC TIME line. With the ECC TIME line activated, the ECC generated during the data transfer is written to the disk. The END TIME signal then terminates the write operation.

4.4.2.3.4 <u>**READ DATA TRANSFERS</u>**. The read operation is divided into two steps: read sector ID and read data. Reading the sector ID is performed in the same manner as for the write operation (see Figure 4-10).</u>

When the desired sector is located, the RD GATE is raised to search for the sync byte of the data field. When SYNC FND* is activated, counter 2 is started through U61-8 (8C4) and U59 (8B6), the ECC generator is enabled, and the RDY line is activated, initiating the DMA read data transfer mode. Data are then transferred from the disk to local RAM for the duration of the count of counter 2. When counter 2 times out, ECC TIME is activated. Following ECC TIME, the END TIME line is driven high, terminating the read operation.

4.4.2.4 Serializer/De-Serializer

The serializer/de-serializer (SER/DES) logic performs two functions: it converts parallel data words into a serial bit string to be sent to the disk drive during a write operation, and it converts a serial bit string into 16-bit words during a read operation. It consists of the write buffer (U46 and U49, 7C7), the serializer/de-serializer (U47 and U5Ø, 7C5), the read buffer (U48 and U51, 7C4), and the selector (U7Ø, 7A7).

During a write operation (WRT XFER* low), the IOP writes to I/O port address 8028H. Write I/O port address decoder U35 (5A2) decodes this address and drives WDC28* low, clocking the data to be written to the disk (BDAT- \emptyset through BDAT-F) into write buffer U46 and U49 (7C7). A high on load-serial-register line LDSR (7C6), derived from word clock U20 (8C7) loads the contents of the write buffer (SR- \emptyset through SR-F) into the SER/DES (7C5). Read/write clock R/W CLK-B (7B8) then clocks the data bit-by-bit through the QH' output of U50 (7D5), and through selector U70 (7A7) to the WRT DATA line. The R/W CLK-A signal clocks the serial data string on WRT DATA through U18 (10C3) to the selected drive.

During a read operation, R/W CLK-B (10B1) gates the serial data string (RD DATA) from the disk drive through U18 (10B4) and selector U70 (7A7) and into the SI input of U47 (7C5), creating a 16-bit parallel word. The bit ring- \emptyset line (BR- \emptyset , 7B8), which is derived from word clock U20 (8C7), then clocks this word into read buffer U48 and U51 (7C4). With the read buffer loaded, the IOP initiates a read to I/O port address 8028H. Read I/O port address decoder U36 (5B2) decodes this address and drives RDC 28* low, which clocks the data word from the read buffer onto internal data bus lines IDAT- \emptyset through IDAT-F.

4.4.2.5 Sync Byte Comparator

The sync byte comparator detects the presence of a sync byte during a read operation and synchronizes word clock U2Ø (8C7) with the data. A sync byte is written before each sector ID and each data field to indicate to the board that data to be read are forthcoming (see Figure 3-2). The sync byte value is always 19H, except for the Shugart/Quantum drives, which use D9H for data fields.

During a read operation, sync byte decoder U54 and U73 (7B5) monitors the output of the SER/DES (U47 and U50, 7C5). When 19H is detected, the SYNC BYTE* signal is driven low, indicating the presence of the sync byte. The SYNC BYTE* signal and the next output of R/W CLK-B set the SYNC FND flip-flop (U57, 9C6), which activates word clock U20 (8C6), and activates the read/write logic (sheet 8).

4.4.2.6 Sector Identity Comparator

The 32-bit sector identity (ID) comparator logic compares the sector ID of the record being searched for with the sector ID being read from the disk drive. The sector ID is made up of flags, cylinder number, sector number, and head address.

To load the sector ID of the record being searched for into 32-bit ID comparator U1, U2, U22, and U23 (9DX), the IOP writes to I/O ports 8Ø3ØH and 8038H, enabling the WDC30* and WDC38* lines, respectively. These lines initiate loading the sector ID into the ID comparator. This loading occurs prior to performing either a read or write data operation. The ID compare operation begins after the sync byte of an ID field has been detected (SYNC FND). The R/W CLK-B signal clocks the ID information, which is stored in the ID comparator, out of U22 (pins 7 and 9) bit-by-bit. Comparator U26 (9D2) compares the serial string of bits with the sector ID from the disk drive (RD-DATA). If the two sector ID's differ, ID no-compare line ID NCMPR* is activated; if the sectors are the same, ID NCMPR* is driven high. Selector U7Ø (7A7) OR's the ID NCMPR* and the ECC NCMPR* lines. The resulting ID-ECC NCMPR* line is latched into U37 (9B6). The Q output of U37, ID NCMPR-L, is transmitted to bit 6 of status register UIØ (11C5). The IOP then reads the contents of the status register and checks the condition of bit 6. Bit 6 being high indicates that the record read from the disk was either not the record being searched for or that it had an ECC error; conversely, bit 6 being low indicates that the ID field compared and that there was no ECC error. The IOP then reads or writes the data portion of the record.

4.4.2.7 Error Checking Code Generator

The error checking code (ECC) logic: 1) generates (during a write operation) a four-byte ECC polynomial check sum that is appended to the ID field (format write) and the data field (normal write) of a record (see Figure 3-2), and 2) re-generates (during a read operation) the ECC polynomial check sum and compares it with the ECC field read from the disk record to ensure that correct data were read from the drive.

During the write operation, serial data (either an ID field or a data field) are transmitted from the SER/DES (7C5) through selector $U7\emptyset$ (7A7) and into the ECC generator through pins 1 and 2 of $U1\emptyset3$ (7A6), where the ECC polynomial check sum is generated. At the same time, a high on the WRT XFER DLYD line (7B8), transmitted through gate U68 (7B4), enables the serial data to be transmitted through U71 (7A2) and selector $U7\emptyset$ (7A7) to the WRT DATA line for transmission to the disk. At ECC time (end of data field), the WRT XFER DLYD signal becomes low, inhibiting write data from being transferred through gate U68 (7B4). The ECC TIME* line then becomes low, causing the ECC polynomial check sum to be written onto the disk through U71 (7A3), U7 \emptyset (7A7) and the WRT DATA line.

During a read operation, serial data (again either a sector ID or a data field) are read into the ECC generator through selector $U7\emptyset$ (7A7) and into the SER/DES through U71 (7A3) and U7 \emptyset . At ECC time, U71 compares the ECC polynomial from the ECC generator bit-by-bit with the ECC polynomial from the disk and transmits the difference through U7 \emptyset to the SER/DES for storage in RAM. If the difference is \emptyset , the ID-ECC NCMPR* line is driven high, indicating correct data or sector ID. If the result of the comparison is not \emptyset , the difference, called the "error syndrome", is used by the IOP to correct errors in a sector ID or data field (if correctable).

4.4.2.8 Status Register

The status register (U1Ø and U44, 11X5; and U9, 11B3) transmit status information from the selected disk drive, the iSBX interface, and various logic within the board drive interface circuitry to other logic of the board. When the IOP issues a read status command, or checks status as an internal operation, read decode enable lines RDC ØØ* and RDC Ø8* are activated, causing the contents of status registers U1Ø, U44, and U9, respectively, to be transferred onto the internal bus (IDAT-Ø through IDAT-F). The IOP then analyzes the status information for an internal operation or communicates the status of the data transfer operation to the host CPU through system memory (controller invocation block). Table 4-4 lists the status register bits. Refer to Chapter 3 for information on the status information transmitted to the host CPU.

Bit Number	8ØØØH (Upper Byte) U44 (11D5)	Function 8ØØØH (Lower Byte) UlØ (11C5)	8ØØ8H (Lower Byte) U9 (11B3)
F E D C B A 9 8 7 6 5 4 3 2 1 Ø	Index Drive Request Illegal Request Option Bit 1Ø Option Bit ØØ Interrupt 1Ø Interrupt ØØ iSBX Board on J3	Time Out ID No Compare Bus Acknowledge Fault Data Sync Seek Complete Ready	Write Protected Track Zero Vendor Option Bit 11 Option Bit Ø1 Interrupt 11 Interrupt Ø1 iSBX Board at J4
Note:	Bit numbers C, B, A, lines.	9, and 8 and 4, 3, 2,	l, and Ø are iSBX bus

Table 4-4. Status Register Bits

4.4.2.9 Line Drivers and Receivers

All serial data and high-speed clock signals transmitted between the iSBC 215G board and the drives use differential pair line drivers and receivers. The polarity on these lines is positive-true logic; that is, when the + side of the line is more positive than the - side of line, a positive logic 1 is being transmitted.

The board differential drivers (U16, 10X3) are referenced to 0 and +5 V. The board receivers that accept differential signals from other than Shugart SA1000 drives (U13, 10X6), are also referenced to 0 and +5 V. The receivers for 8-inch Shugart SA1000 drives (U15, 10X5) accept differential signals that are referenced to -5 and +5 V.

4.4.3 LOCAL MEMORY ORGANIZATION

As was described in the functional overview, the IOP addresses the read-only memory (ROM), random-access memory (RAM), iSBX I/O ports, and the hard-disk communications side of the board circuitry as local memory. Figure 4-11 is a map of this local memory. The following paragraphs describe the ROM, RAM, and I/O ports.

4.4.3.1 Read-Only Memory

The iSBC 215G board ROM, which contains the IOP disk control program, consists of two (8k x 8-bit) ROM devices (U87 and U88, 6X7). On any read from local memory in the range of $\emptyset\emptyset\emptyset\emptyset$ H to 3FFFH, chip-select decoder U65 (5B4) decodes address lines IADR-E and IADR-F and drives ROM chip-select line CSROM* low, enabling the ROM devices.

4.4.3.2 Random-Access Memory

The iSBC 215G board RAM consists of four (lk x 4-bit) RAM devices (U99 through U102, 6X4). On any read or write to local memory in the range of 4000H to 47FFH, chip-select decoder U65 (5B4) drives RAM chip-select line CSRAM* low, enabling the RAM devices.

4.4.3.3 I/O Port Decoding

The IOP views the control devices in the disk control circuitry (such as ID comparators, counters, write buffer, read buffer, etc.) and the iSBX bus ports as local I/O ports, each with an address in local memory space. To enable one of the drive control devices, the IOP executes a read or a write to the device address. On any read or write to local memory in the range 8000H through 8038H, chip-select decoder U65 (5B4) pin 10 output is driven low.

When this low on pin 10 of U65 is accompanied by a low on I/O read line I-IORC*, read I/O port address decoder U36 (5B2) is enabled. When the low on pin 10 of U65 is accompanied by a low on I/O write line I-AIOWC*,

write I/O port address decoder U35 (5A2) is enabled. Decoder U35 or U36 then decodes local memory address lines IADR-3 through IADR-5 to select the desired drive control device. Table 4-5 shows the address of each local I/O port and its function.

The two iSBX bus connectors on the iSBC 215G board, J3 and J4, provide access to the iSBX bus 16 data lines and 3 address lines. The two iSBX channels provide a total of sixteen 16-bit I/O ports per connector. Each of these I/O ports has an address in local memory space (see Table 4-6).

When the IOP executes a read or write to one of these ports, chip-select decoder U65-9 (5B4) activates the CSMMIO* line. Gate U3Ø (13C3) and inverter U31 (13C4) decode the CSMMIO* and IADR-4 lines to select either J3 or J4. Address lines IADR-1, IADR-2, and IADR-3 are transmitted to connectors J3 and J4, pins 11, 9, and 7, respectively (5C1), to select the I/O port on the selected connector.

Read (U33 Enabled)			Write (U	32 Enabled)
Address	Enable Line	Function	Enable Line	Function
8øøøн	RDCØØ*	Reađ status	WDCØØ*	Write control data to disk drive and enable AM SEARCH*, RDGATE, AND WRTGATE
8øø8h	RDCØ8	Read status	WDCØ88	Clear index and ID not-compare latches
8ø1øH	RDC1Ø	Read disk data bus	WDC1Ø*	Write to disk data bus
8Ø18H	RDC18*	Raise IOP Channel 2 Attention	WDC18*	Write to unit select and control register
8ø2øh	RDC2Ø*	Read contents of counter Ø	WDC2Ø*	Load counter Ø
8ø22H	RDC2Ø*	Read contents of counter 1	WDC2Ø*	Load counter 1
8ø24H	RDC2Ø*	Read contents of counter 2	WDC2Ø*	Load counter 2
8Ø26H		Not used	WDC2Ø*	Write mode word
8ø28H	RDC28*	Read contents of read buffer	WDC28*	Write data to write buffer

Table 4-5. Local I/O Ports

	Read (U3	3 Enabled)	Write (U	32 Enabled)
Address	Enable Line	Function	Enable Line	Function
8ØØ3ØH	RDC3Ø*	Read vendor bits 3 and 4	WDC3Ø*	Write sector ID to high comparator, start track format operation
8ø38H		Not useđ	WDC38*	Write sector ID to low comparator

Table 4-5. Local I/O Ports (continued)

Table 4-6. iSBX[™] Bus I/O Port Addresses

Port	J3 Channel Ø	J3 Channel l	J4 Channel Ø	J4 Channel 1
ø	CØ7Ø	CØBØ	CØDØ	CØEØ
1	CØ72	CØB2	CØD2	CØE2
2	CØ74	CØB4	CØD4	CØE4
3	CØ76	CØB6	CØD6	CØE6
4	CØ78	CØB8	CØD8	CØE8
5	CØ7A	CØBA	CØDA	CØEA
6	CØ7C	CØBC	CØDC	CØEC
7	CØ7E	CØBE	CØDE	CØEE

CHAPTER 5 SERVICE INFORMATION

5.1 INTRODUCTION

This chapter contains the various required diagrams and service and repair instructions for the iSBC 215G Winchester Disk Controller Board.

5.2 SERVICE DIAGRAMS

Figure 5-1 is the parts location diagram; Figure 5-2 shows jumper locations; Figure 5-3 is the schematic diagram. In Figure 5-3 a signal mnemonic that is followed by an asterisk or slash (for example, BHEN*) is active low; a signal mnemonic without a star is active high.

5.3 SERVICE AND REPAIR ASSISTANCE

Customers within the United States can obtain service and repair assistance by contacting the Intel Product Service Center in Phoenix, Arizona. Customers outside the United States should contact their sales source (Intel Sales Office or Authorized Distributor) for service information and repair assistance.

Before calling the Product Service Center, you should have the following information available:

- 1. Date that you received the product.
- 2. Complete part number of the product (including the dash number).
- 3. Serial number of the product (usually stamped on the component side of the board).
- 4. Shipping and billing address.
- 5. Purchase order number (for billing purposes if your Intel product warranty has expired).
- 6. Extended warranty agreement information (if applicable).

Regional Telephone Numbers:

Western Region:	6Ø2-869-4951	International:	6Ø2-869-4862
Midwest Region:	6Ø2-869-4392	TWX Number:	91Ø-951-133Ø
Eastern Region:	6Ø2-869-4Ø45		

SERVICE INFORMATION

Always contact the Product Service Center before returning a product to Intel for repair. You will be given a repair authorization number, shipping instructions, and other important information that will help Intel to provide fast, efficient service. If you are returning the product because of damage sustained during shipment, or if the product warranty has expired, you must obtain a purchase order before Intel can initiate the repair.

Use the original factory packing material (if possible) when preparing the product for shipment to the Repair Center. If the original material is not available, wrap the product in cushioning material such as Air Cap TH-24Ø (manufactured by the Sealed Air Corporation, Hawthorne, NJ), enclose it in a heavy-duty corrugated shipping carton, and label it FRAGILE to ensure careful handling. Ship only to the address specified by the Service Center personnel.

Figure 5-1. Board Parts Location Diagram

ა - კ

SERVICE INFORMATION

SERVICE INFORMATION

Table	5-1.	Jumper	Connections
-------	------	--------	-------------

Jumper Number	Schematic Sheet Number	Default Connection ¹	Signal Mnemonic	
W1	12	W1-1 2	CMD BUS ENB*	
W2	13'	W2-1 2	VENDOR Ø	
W3	11	W3-1 2	EXTRØ	
W4	11	W4-1 2	EXTR1	
W5	1ø	W5-1 2	RDØ	
W6	1ø	W6-1 2	RDØ+	
W7	1ø	W7-1 2	RDCLØ-	
W8	1ø	W8-1 2	RDCLØ+	
W9	13		TRIPOLAR*	
W1Ø	13	W1Ø-1 2	RADIAL SELECT	
W11	12	W11-1 3	OPØ1	
W12	12		OP1Ø/OP11	
W13	12	W13-1 3	RDGATE	
W14	12	W14-1 3	AM CNTRL	
W15	13	W15-1 2	SHUGART	
W16	8	W16-1 3	INDEX SECTOR*	
W17	11	W17-1 2	INDEX B*	
W18	3	W18-1 2	ANYRQST	
W19	3	W19-C 5	INT5	
W2Ø	1		-12 V	
W21	1	W21-1 3	-5 V	
W22	10	W22-1 - 3	RDCL	
W23	3	W23-1 2	CBRQ×	
W24			DREQØ	
WZD		W23-1 2	GND VENDOR 1	
W20	12		VENDOR 1	
WZ/	11	 1.120 1 2	PPPO*	
W20 W20	2	$W_{20-1} = 2$		
W29 W29	2	W29-3 = 12 W29-8 = 9	ADR8*	
W23 W30	2	$W_2 = 0 = 0$ $W_3 = 0 = 0$	16 BTT SYS BUS	
w312	6	$W31_1 - 2$	VCC	
W32	۵ ۵	W31-1 2	LOCK*	
W33	11	W33-1 3	INDEX*	
W34	11	W34-1 - 2	SKCOM*	
W35	11	W35-1 2	RDY*	
W36	9		RGØ/F	
W37	9		VENDOR 3	
W38	9		VENDOR 4	
Note: 1. Default connections pertain to the iSBC 215G board used in conjunction with an X3T9/1226 ANSI drive. 2. Default connection for iSBC 215G board.				
SERVICE INFORMATION

Ч

SERVICE INFORMATION

WAKE-UP ADDRESS 8/16 SYSTEM DATA BUS AND 8/16 I/O PORT BUS JUMPER TABLE

JUMPE	R	FUNCTION
Fro	m	То
W29-1	W29-16	WUA Bit F
W29-2 W29-3	W29-15 W29-14	WUA Bit D
W29-4	W29-13	WUA Bit C
W29-5	W29-12	WUA Bit B
W29-6	W29-11	WUA Bit A
W29-7	W29-10	WUA Bit 9
W29-8	W29-9	WUA Bit 8
W30-1	W30-20	8/16 System Data Bus
W30-2	W30-19	8/16 I/O Port Bus
W30-3	W30-18	WUA Bit 7
W30-4	W30-17	WUA Bit 6
W30-5	W30-16	WUA Bit 5
W30-6	W30-15	WUA Bit 4
W30-7	W30-14	WUA Bit 3
W30-8	W30-13	WUA Bit 2
W30-9	W30-12	WUA Bit 1
W30-10	W30-11	WUA Bit O

Figure 5-4. Board Schematic Diagram (Sheet 11 of 14)

							DRIVE	INTERFAC	E				
WIRE NO.	FUNCTION	SHUGART SA 1000 RMS 514 CMI 514	SHUGART SA 4000 MEMOREX FUJITSU	PRIAM	PRIAM	PERTEC SOFT- SECTOR ANSI	3M ANSI	MICROPOLIS ANSI	BASF Ansi	SLI ANSI	CDC	ANSI PROGRAM HARD SECTORED	ANSI PROGRAM SOFT SECTORED
W1	CMD BUS END.	1-3	1-3	1-2	1-2	i-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
W2	VENDOR Ø	-	1-2	1~2	1-2	-	1-2	1-2	1-2	1-2	1-2	1-2	-
W5	RDØ-	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
W6	RDØ+	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
W7	RDCLØ-	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
wø	RDCLØ+	1-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-3	1-2	1-2
wэ	TRIPOLAR *	1-2	-	-	- 1	-	-			-	1-2		_
W10	RADIAL SELECT	1-2	-	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
W13	RD GATE	1-2	1-3	1-3	1-3	1-2	1-3	1-3	1-3	1-3	1-3	1-3	1-2
W 14	AM CNTRL	1-2	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3
W 15	SHUGART	-	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
W 16	HARD/SOFT	1-2	1-3	1-3	1-3	1-2	1-3	1-3.	1-3	1-3	1-3	1-3	1-2
W17	INDEX SELECT	1-2	1-2	-	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2
WZZ	RD CL	1-2	1-2	1-2	1-3	1-3	1-3	1-3	1-3	1-3	1-2	1-3	1-3
W26	VENDOR 1	_	1-2	1-2	-		1-2	- 1	1-2	- 1	1-2	1-2	1-2
W27	VENDOR 2	1-2	-	1-2		1-2			-	1-2		1-2	1-2
W 37	VENDOR 3	1-2	1-2	1-2				1-2	1-2	1-2	1-2	- 1	-
W 38	VENDOR 4	1-2	1-2	1-2		-	- 1		_		1-2	1-2	1-2
W 33	SECTOR	1-2	1-2	1-2	1-3	1-2	1-3	1-3	1-3	1-3	1-2	1-3	1-2
W34	SKCOM *	_	-		1-2	1-2	1-2	1-2	1-2	1-2	- 1	1-2	i-2
W35	RDY *	-	-	-	1-2	1-2	1-2	1-2	1-2	1-2	-	1-2	1-2
W20	-10/-12V	1-2			1 -				-			-	
W21	-5 V	1-3				- 1			_	T			

VENDOR CONFIGURATION TABLE

D 147631 14 A

APPENDIX A ANSI INTERFACE PROGRAMMING

As shown in Table 3-5, bytes 26 through 29 of the I/O parameter block can be set to allow use of the ANSI X3T9/1126 interface. With this feature, present and future ANSI X3T9 drives not fully supported by the iSBC 215G board can still be used by transferring the formatting information to the board at initialization time. This information is contained in the four bytes in the general address pointer of the I/O parameter block and must be there only for initialization. To calculate the values of the four bytes, the user must have available the recommended data format from the disk drive product specification. As an example, assume a data format as shown in Figure A-1.

The four bytes to be calculated (n_0, n_1, n_2, n_3) are shown below:

n1 If the drive is hard-sectored (that is, the drive sends sector pulses), byte 1 will be Ø. If the drive is soft-sectored (that is, address marks are on the disk), byte 1 is calculated as follows:

$$n_1 = \frac{24 + P2 + PAD}{2}$$

Where P2 = preamble 2 and consists of bytes of \emptyset 's for the purpose of synchronizing the phase lock loop; and PAD = remaining bytes before sector end, which provides a guard zone between sectors to account for speed and clock tolerances.

ANSI INTERFACE PROGRAMMING

• n₂ For hard-sectored drives, n₂ is calculated as follows:

$$n_2 = \frac{P1 - 5}{2}$$

For soft-sectored drives, n_2 is calculated as follows:

$$n_2 = \frac{P1 - 2}{2}$$

• n₃ For hard- and soft-sectored drives:

$$n_3 = \frac{P2 - 14}{2}$$

nø The total overhead per sector nø is thus:

Soft Sectored DriveHard Sectored Drive $n_{g} = 2n_{2} + 2n_{3} + 2\emptyset$ $n_{g} = 2n_{2} + 2n_{3} + 23$

The user can easily calculate the number of sectors per track for a given number of bytes per sector data size.

<u>number of sectors</u> <u>number of bytes per track</u> track <u>number of bytes</u> + nø sector

Refer to Table 2-4 (the jumper configuration table) for the correct configuration depending on whether the drive is soft-sectored or hard-sectored.

APPENDIX B EXAMPLE I/O PROGRAM

B.1 INTRODUCTION

The information contained in this appendix is provided to illustrate various methods of implementing data transfers between one or more host CPU's and the iSBC 215G board. The flow charts illustrate the handshake procedures required between a host CPU and the board. User sequences are shown for both single and multi-user processing environments. A sequence for initiating overlapped seeks is also given.

The program listing provides an example program that a host CPU would run to direct data transfer between the host and the iSBC 215G board. The program is written in MCS-86 Macro Assembler language, and illustrates the data structure that the iSBC 215G board requires and shows a few simple disk operations drivers.

B.2 SINGLE USER SEQUENCE

The flow chart in Figure B-1 shows the handshake sequence between a single host CPU and the iSBC 215G board for basic data transfer operations (with no overlapping seeks). Note that communication between the host and the board is through the status semaphore and operation system bytes of the controller invocation block.

B.3 SINGLE USER SEQUENCE WITH OVERLAPPING SEEKS

The flow chart in Figure B-2 shows the handshake sequence between a single host CPU and the iSBC 215G board for data transfer operations that user overlapping seeks.

B.4 MULTI-USER SEQUENCE

The flow chart in Figure B-3 shows the handshake sequence between a host CPU and the iSBC 215G board when more than one CPU is transferring data between the disk drives through the same board (multi-processor environment). Note that in this case the command semaphore byte in the controller invocation block is also used. Overlapping seeks in a multi-processor environment are implemented the same as in single processor environments.

B.5 EXAMPLE HOST PROCESSOR DISK CONTROL PROGRAM

The following program example is for a single user environment. Some of the techniques illustrated in the flow charts in this appendix are implemented in this program, but not all.

1050

Set up command and parameters for desired data transfer operation.

Initiate data transfer operation.

Check to see if controller has completed operation (STATUS SEMAPHORE byte is non-zero).

 $Check \ OPERATION \ STATUS \ byte \ to \ see \ if \ operation \\ was \ completed \ without \ error.$

Check Error Status buffer and process results.

Figure B-1. Flow Chart for Single User Handshake Sequence Without Overlapping Seeks

Figure B-3. Flow Chart for Multi-User Handshake Sequence (continued)

MCS-86 MACRO ASSEMBLER ISBC 215 8" WINCHESTER DISK CONTROLLER PROGRAMMING EXAMPLE

ISIS-II MCS-86 MACRO ASSEMBLER V2.1 ASSEMBLY OF MODULE EXMPRG OBJECT MODULE PLACED IN :F1:EXMPRG.OBJ ASSEMBLER INVOKED BY: ASM86 :F1:EXMPRG.MMD DATE(10/27/80) XREF DEBUG

SOURCE

LINE

LOC OBJ

\$PAGELENGTH(85) PAGEWIDTH(115) TITLE(1SBC 215 8" WINCHESTER DISK CONTROLLER PROG 1 RAMMING EXAMPLE) XREF 2 ******* ; ## 4 ; ## ISBC 215 DISK CONTROLLER PROGRAMMING EXAMPLE ## 5 ; ## ## 6 7 8 9 THIS PROGRAM ILLUSTRATES THE DATA STRUCTURES REQUIRED BY THE ISBC 215 ; 10 ; DISK CONTROLLER. A FEW SIMPLE DISK OPERATION DRIVERS ARE ALSO SHOWN. 11 12 THE HARDWARE CONFIGURATION SUPPORTED IS: 13 1. iSBC 86/12A HOST CPU 14 2. 20 BIT SYSTEM MEMORY ADDRESS WIDTH 3. 16 BIT SYSTEM DATA BUS WIDTH 15 16 17 16 BIT SYSTEM I/O ADDRESS WIDTH 4. ; 1.8 5. iSBC 215 a. WAKE UP ADDRESS (WUA) AT I/O PORT 0635H b. INTERRUPT 5 c. -12 VOLTS INPUT d. RELINQUISH BUS CONTROL ON ANY REQUEST 19 20 21 22 23 ; FOR (2), PROGRAMMING OF DATA TRANSFERS MUST TAKE THIS INTO ACCOUNT, e.g. THERE 24 25 IS NO WRAPAROUND IN SEGMENTS IF MORE THAN 64K BYTES ARE TRANSFERRED. 26 27 isbc 215 SWITCH AND JUMPER SETTINGS: 28 FOR (3), SWITCH S2-1 IS CLOSED.
FOR (4), SWITCH S2-2 IS CLOSED.
FOR (5a), SWITCHES S1-6,S1-7,S2-5,S2-6,S2-8, AND S2-10 ARE CLOSED, THE REMAINING ADDRESS SELECT SWITCHES ARE OPEN.
FOR (5b), W19-C CONNECTS TO W19-5; INTERRUPT VECTORS MUST BE SET UP PROPERLY.
FOR (5c), W21-1 CONNECTS TO W21-3
FOR (5d), W2-1 CONNECTS TO W22-2. 29 30 31 32 33 34 35 36 37 +1 \$INCLUDE(:F1:COMBLK.MMD) 38 +1 \$EJECT TITLE(1SBC 215 COMMUNICATION BLOCKS) = 1

MCS-86 MACRO ASS	EMBLER	iSBC 215	, COMMUNI	CATION B	LOCKS		
LOC OBJ		LINE	SOURCE				
	= 1	39	;				
	= 1	40	;			1	
	= 1	41	; [COMMUNI	CATION BLOCKS	1	
	= 1	42	;			I	
	= 1	43					
	= 1	45	,				
	= 1	46	; I.	SCB			
	= 1	47	; =====				
	= l	48	;				
	= 1	49	;	THE SCB	TELLS THE 808	39 ON THE 15	BC 215 THE WIDTH OF THE 8089's LOCAL
	= 1	50	;	BUS AND	POINTS TO THE	CCB.	
	= 1	51	;				
	=1	52	;	* TUE	MENODY ADDRES	OF THE SCE	TE FOULT TO THE T/O HAVE-ILD ADDRESS *
	= 1	53		* 185	MENUKI ADDKESS (UUA) OF THE SUP	S IS EQUAL TO THE 1/0 WARE-OF ADDRESS **
	= 1	55	:	******	*********	*******	****
	= 1	56	;				
0635	= 1	57	,	WUA	EQU 0635H	I	; WAKE-UP ADDRESS I/O PORT NUMBER
	= 1	58	;				
	= 1	59	SCBSEG	SEGMENT	AT WUA		; PUTS SCB AT ADDRESS 06350H
	= 1	60	;				
0000	= 1	61	SCB	LABEL	FAR		
0000 01	± 1	62	SUC	DB	01H		, IELL OUGY II IS ON A ID BII LUCAL BUS
0001 00	= 1 P = 1	64	CCBBTR		CCB		, RESERVED • POINTER (SEGMENT + OFFSET) TO CCB
0002 0000	= 1	65	·	00	CCB		, TOTATER (SEGNERT + OTTSET) TO GOD
	= 1	66	, SCBSEG	ENDS			
	= 1	67	;				
	= 1	68	; =====	*******	=		
	= 1	69	; II.	ССВ			
	= 1	70	; =====		=		
	= 1	71	;	mute Br	OCK CONTAINS T		PATES BUCK TIACS AND DOINTEDS TO THE
	=1	72		THIS BL	C ADDRESSES OF	THE CUNTRUL	BYIES, BUSY FLAGS, AND POINTERS TO INE .
	= 1	74	2	STARTIN	G ADDRESSES OF	THE CHANNE	L FROGRAMS FOR THE 0009.
-	= 1	75	CCBSEG	SEGMENT			; CCB MUST BE CONTIGUOUS
	= 1	76	;				
0000	= 1	77	ĆC B	LABEL	FAR		
0000 01	= 1	78	CCW1	D B	01H		; START CH. 1 PROGRAM IN LOCAL MEMORY
0001 00	= 1	79	BSYFLGI	DB	00H		; CH. 1 BUSY FLAG
0002 0400	R = 1	80	CHIPTR	D D	CHIPC		; POINTER TO FIFTH BYTE OF CIB, WHICH
	= 1	81					, CONTAINS STARTING ADDRESS OF CR. I
0006 0000	=1	02 83		กษ	0000#		, FIRMWARE FRUGRAM
0008 01	= 1	84	CCW2	DB	01H		: START CH. 2 PROGRAM IN LOCAL MEMORY
0009 00	= 1	85	BSYFLG2	DB	00H		; CH. 2 BUSY FLAG
000A 0E00	R = 1	86	CH2PTR	D D	CH2PC		; POINTER TO LAST WORD OF CCB, WHICH
	= 1	87					; CONTAINS STARTING ADDRESS OF CH. 2
	= 1	88			.		; FIRMWARE PROGRAM
000E	= 1	89	CH2PC	LABEL	FAR		. CHARTING ADDRESS OF OUR A PROSECT
000E 0400	= 1	90		ШW	00041		; STAKIING ADDRESS OF CH. Z PROGRAM
	=1	91	; CCBSEC	FNDS			
	= 1	93	:	1100			
	= 1	94 +1	\$EJECT				

MCS-86 MACRO ASSEMBLER ISBC 215 COMMUNICATION BLOCKS

LOC	OBJ		LINE	SOURCE				
		= 1	95					
		= 1	96	,	СТВ			
		= 1	97					
		= 1	98	,				
		=1	99		THIS BI	OCK CONTAINS GENE		OSE COMMAND AND STATUS BYTES SEMA-
		= 1	100		PHORES	AND POINTERS TO		F USE OF THE ISEC 215 IN A MULTI-
		= 1	101		PROCESS	OR/MULTI-PROCESSI	ING SYSTE	M. SOB OF THE FOOD ETS THE HOUSEF
		=1	102					
		= 1	103	CIBSEG	SEGMENT	•		CIB MUST BE CONTIGUOUS
		= 1	104	:				·
0000		= 1	105	, CIB	LABEL	FAR		
0000	00	= 1	106	CIBCMD	DB	00H		CIB COMMAND BYTE NOT USED BY ISBC 215
0001	00	= 1	107	OPSTS	DB	001		· CIR STATUS BYTE IS USED BY (SBC 215
0002	00	= 1	108	CMDSEM	DB	001		COMMAND BYTE SEMAPHORE
0003	00	= 1	109	STSSEM	DB	00H		: STATUS BYTE SEMAPHORE
0004		= 1	110	CHIPC	LABEL	FAR		,
0004	00000000	= 1	iii	0		00001		: STARTING ADDRESS OF CH. 1 PROGRAM
0008	0000	= 1	112	IOPBOFF	DW	OFFSET LOPB		: POINTER TO LOPB
000A		R = 1	113	IOPBSG	DW	IOPBSEG		,
000C	00000000	= 1	114		מס	0000H		: RESERVED
		= 1	115	:				
		= 1	116	CIBSEG	ENDS			
		= 1	117	:				
		= 1	118			==		
		= 1	119	. IV.	IOPB			
		= 1	120					
		= 1	121					
		= 1	122	;	THIS BL	OCK CONTAINS THE	DEVICE D	EPENDENT CONTROL INFORMATION FOR THE
		= 1	123	;	iSBC 21	5 CONTROLLER.		
		= 1	124	;				
		= 1	125	IOPBSEG	SEGMENT			; IOPB MUST BE CONTIGUOUS
		= 1	126	;				
0000		= 1	127	IOPB	LABEL	FAR		
0000	00000000	= 1	128		D D	0000H		; RESERVED
0004	00000000	= 1	129	ACTCNT	D D	0000H		; ACTUAL TRANSFER COUNT (32 BIT INTEGER)
8000	0000	= 1	130	DEVCOD	DW	0000H		; DEVICE CODE (OH-WINCHESTER O1H-FLOPPY)
A000	00	=1	131	UNIT	DB	00H		; UNIT NUMBER (O <= UNIT <= 3)
000B	0 0	= 1	132	FUNC	DB	00H		; FUNCTION CODE (O <= FUNCTION <= OFH)
000C	0000	= 1	133	MODIFY	DW	0000H		; MODIFIER WORD
000E	0000	= 1	134	CYLNDR	DW	0000H		; CYLINDER NUMBER
0010	00	=1	135	HEAD	DB	00H		; HEAD NUMBER
0011	00	= 1	136	SECTOR	DB	00H		; SECTOR NUMBER
0012	0000	= 1	137	BUFOFF	DW	0000H		; POINTER TO DATA BUFFER
0014	0000	= l	138	BUFSEG	DW	000 0H		
0016	00000000	= 1	139	REQCNT	DD	0000H		; REQUESTED TRANSFER COUNT (INTEGER)
001A	00000000	= 1	140		DD	0000н		; RESERVED
		= 1	141	;				
		= 1	142	IOPBSEC	ENDS			
			143	;				
			144 + 1	\$INCLUDE	(:Fl:IN	ITBL.MMD)		
		= 1	145 +1	ŞEJECT 1	ITLE(DI	SK DRIVE INITIALI	ZATION T	ABLES)

•

MCC-94	MACRO	ACCEMPIED	DICV	DDTVE	THEFT ALL TRACE ON	TADIEC
ncs-00	MACKU	ASSEMBLER	DISK	DRIVE	INITIALIZATION	TABLES

LOC	OBJ		LINE	SOURCE
		= 1	146	;
		= 1	147	;
		= 1	148	; DISK DRIVE INITIALIZATION PARAMETER TABLES
		= 1	149	; 1
		= 1	150	
		= 1	151) - THIS SECNENT CONTAINS THE DRIVE CONSIGNATION DATA TABLES THAT ARE USED
		-1	152	; INTO SEGMENT CONTAINS THE DRIVE CONFIGURATION DATA TABLES TRATARE USED
		= 1	154	PARTICILAR DRIVES BEING USED WITH THE ISEC 215 DISK CONTROLLER.
		= 1	155	; · · · · · · · · · · · · · · · · · · ·
		= 1	156	; - IF A DRIVE IS NOT PRESENT, ITS INITIALIZATION TABLE MUST BE ALL ZEROES.
		= 1	157	
		= 1	158	;
		= 1	159	; 8 "WINCHESTER HARD DISK DRIVES
		= 1	160	;
		= 1	161	; BYTES PER SECTOR MAXIMUM SECTORS PER TRACK
		=1	162	; []
		= 1	163	; 1 128 1 54 1
		=1	164	
		=1	165	
		= 1	167	
		= 1	168	,
		=1	169	
		= 1	170	, NITBLEG SEGMENT
		= i	171	
		= 1	172	, DRIVE #0SHUGART MODEL SA1004 (10.6 MEGABYTES STORAGE)
		= 1	173	
0000	0001	= 1	174	DW 256 ; NUMBER OF CYLINDERS
0002	04	= 1	175	DB 4 ; NUMBER OF FIXED READ/WRITE SURFACES
0003	00	= 1	176	DB O ; NUMBER OF REMOVABLE R/W SURFACES
0004	1 F	= 1	177	DB 31 ; NUMBER OF SECTORS PER TRACK
0005	0001	= 1	178	DW 256 ; NUMBER OF BYTES PER SECTOR
0007	05	= 1	179	DB 5 ; NUMBER OF ALTERNATE CYLINDERS
		=1	180	
		=1	181	; DRIVE #1SHUGART MODEL SA1002 (5.3 MEGABYTES STORAGE)
0008	0001	= 1	182	
0008	02	-1	184	DW 250 ; NUMBER OF CILINDERS DR 2 - NUMBER OF CILINDERS
0008	00	=1	185	DB 0 • NUMBER OF REMOVALE R/W SURFACES
000C	11	=1	186	DB 17 : NUMBER OF SECTORS PER TRACK
000D	0002	= 1	187	DW 512 NUMBER OF BYTES PER SECTOR
000F	05	= 1	188	DB 5 ; NUMBER OF ALTERNATE CYLINDERS
		= 1	189	;
		= 1	190	; DRIVE #2 NONEXISTENT
		=1	191	;
0010	0000	=1	192	DW 0000H ; NUMBER OF CYLINDERS
0012	00	=1	193	DB OOH ; NUMBER OF FIXED READ/WRITE SURFACES
0013	00	=1	194	DB OOH ; NUMBER OF REMOVABLE R/W SURFACES
0014	00	= 1	195	DB OUN ; NUMBER OF SECTORS PER TRACK
0015	0000	= 1	190	DW DOUDH ; NUMBER OF BILES PER SECTOR
0017	00	=1	198	, NORDER OF ALTERNATE CILINDERS
		=1	199	, DRIVE #3 NONEXISTENT
		=1	200	
0018	0000	=1	201	DW 0000H : NUMBER OF CYLINDERS
001A	00	=1	202	DB OOH : NUMBER OF FIXED READ/WRITE SURFACES
001B	00	=1	203	DB 00H ; NUMBER OF REMOVABLE R/W SURFACES
001C	00	= 1	204	DB 00H ; NUMBER OF SECTORS PER TRACK
001D	0000	= 1	205	DW 0000H ; NUMBER OF BYTES PER SECTOR
001F	00	= 1	206	DB OOH ; NUMBER OF ALTERNATE CYLINDERS
		= 1	207	;
		=1	208 +1	ŞEJECT

MCS-86 MACRO ASSEMBLER DISK DRIVE INITIALIZATION TABLES

LOC OBJ	LINE	SOURCE
	= 1 2 0 9	;
	=1 210	
	= 1 211	; 8" FLEXIBLE DISK DRIVES [
	=1 212	
	=1 213	; BILES PER SECTOR MAXIMUM SECTORS PER IRACK
	-1 214	, 128 1 26 (FM)
	-1 215	, 120 1 20 (HT) 1
	=1 217	· 512 1 15 (MFM) 1
	=1 218	· · · · · · · · · · · · · · · · · · ·
	=1 219	
	= 1 2 2 0	
	= 1 2 2 1	
	=1 222	: DRIVE #0SHUGART MODEL 850 (1.0 MEGABYTES STORAGE)
	= 1 223	
0020 4D00	= 1 224	DW 77 ; NUMBER OF CYLINDERS
0022 00	= 1 225	DB 0 ; NUMBER OF FIXED READ/WRITE SURFACES
0023 02	= 1 226	DB 2 ; NUMBER OF REMOVABLE R/W SURFACES
0024 1A	= 1 227	DB 26 ; NUMBER OF SECTORS PER TRACK
0025 0001	= 1 228	DW 256 ; NUMBER OF BYTES PER SECTOR
0027 01	= 1 2 2 9	DB 01 ; MFM(1) OR FM(0) RECORDING MODE
	= 1 2 3 0	;
	=1 231	; DRIVE #1SHUGART MODEL 850 (1.0) MEGABYTES STORAGE)
	= 1 232	
0028 4D00	= 1 2 3 3	DW 77 ; NUMBER OF CYLINDERS
002A 00	=1 234	DB 0 ; NUMBER OF FIXED READ/WRITE SURFACES
0028 02	=1 235	DB 2 ; NUMBER OF REMOVABLE R/W SURFACES
002C IA	=1 236	DB 26 ; NUMBER OF SECIORS PER IRACK
0020 8000	=1 23/	DW 128 ; NUMBER OF BYTES PER SECTOR
002F 00	-1 230	BB 00 , MPR(1) OK PR(0) RECORDING MODE
	=1 239	, , DRIVE #2 NONEVISTENT
	=1 240	, DRIVE #2 MOREATOTENT
0030 0000	=1 242	, DN 0000H : NUMBER OF CYLINDERS
0032 00	=1 243	DB 00H : NUMBER OF FIXED READ/WRITE SURFACES
0033 00	=1 244	DB 00H NUMBER OF REMOVABLE B/W SURFACES
0034 00	=1 245	DB 00H : NUMBER OF SECTORS PER TRACK
0035 0000	= 1 246	DW 0000H : NUMBER OF BYTES PER SECTOR
0037 00	= 1 247	DB 00H ; MFM(1) OR FM(0) RECORDING MODE
	= 1 248	;
	= 1 249	; DRIVE #3 NONEXISTENT
	=1 250	;
0038 0000	= 1 2 5 1	DW 0000H ; NUMBER OF CYLINDERS
003A 00	= 1 2 5 2	DB 00H ; NUMBER OF FIXED READ/WRITE SURFACES
003B 00	= 1 2 5 3	DB 00H ; NUMBER OF REMOVABLE R/W SURFACES
003C 00	= 1 254	DB UDH ; NUMBER OF SECTORS PER TRACK
003D 0000	=1 255	DW 0000H ; NUMBER OF BYTES PER SECTOR
	= 1 256	; DB DOH ; MFM(I) OR FM(O) RECORDING MODE
	=1 257	
	=1 258	1/11/0L000 CNUO
	239	SINCLUDE('FI'DATSEC.MMD)
	=1 261 +	SEJECT TITLE(DATA SEGMENT)

•

MCS-86 MACRO ASSEMBLER DATA SEGMENT

LOC	0 B J		LINE	SOURCE				
		= 1	262	;				
		= 1	263	; 1		1		
		= 1	264	;	DATA SE	GMENT		
		= 1	265	;		1		
		= 1	266	;				
		= 1	267	;				
		= 1	268	DATASEG	SEGMENT			
		= 1	269	;				
		= 1	270	;	THIS SE	GMENT CONTAL	NS VARIOUS DA	TA THAT ARE USED BY THE ISBC 215 DRIVER
		= 1	271	;	SOFTWAR	СЕ •		
		= 1	272	;				CRUICE ROUTINE AND ARE CORIES OF THE
		= 1	2/3	; - THE	FLAGS A	KE SEI BY IN	E INTERRUPT S	ERVICE ROUTINE, AND ARE COPIES OF THE
		= 1	274	;	CIB SIA	NIUS POSTED B	Y THE 1SBU ZI	5. THE ROUTINES THAT USE THE FLAGS ARE
		= 1	275	;	RESPONS	SIBLE FOR CLE	AKING INEM AP	ILK USE.
		-1	270	,				
		-1	277	;	DURITO	ODCHD SKCHD	DVCUC EDDCTC	
		- 1	270		FUBLIC	OF CHE, SKUME	, rkund, skkara	•
		-1	280	?	0.0559.471	ION COMPLETE	FLACS	
		-1	280		UFERALI	LON CONFLETE	FLAGS	
0000		- 1	281	; OPCMP	LARFI	BVTC		
0000	0.0	= 1	283	OPCMPO	DR	0.04		· OPERATION COMPLETE ON UNIT O
0000	00	- 1	205	OPCMP1	פט	004		· OPERATION COMPLETE ON UNIT I
0001	00	- 1	285	OPCMP2	DB	000		· OPERATION COMPLETE ON UNIT 1
0002	00	-1	205	OPCMP2	DB	001		· OPERATION COMPLETE ON UNIT 2
0003	00	- 1	200	UPCMP5	UB	OOR		; OPERATION COMPLETE ON UNIT 5
		-1	289		SEEK CO	MDIETE DIACS		
		= 1	200		JULK CC	TELESIS FEROS		
0004		= 1	290	, SKCMP	LABEL	BVTF		
0004	0.0	= 1	291	SKCMPO	DB	001		· SEEK COMPLETE ON UNIT O
0005	00	= 1	292	SKCMPI	D B	008		SEEK COMPLETE ON UNIT 1
0006	00	= 1	293	SKCMP2	DB	00H		SEEK COMPLETE ON UNIT 2
0007	00	= 1	294	SKCMP3	DB	000		SEEK COMPLETE ON UNIT 3
0007		= 1	295	:	0.5	0.011		, shak compare on onri 5
		= 1	296	;	PACK CH	ANGE FLAGS		
		= 1	297		THOR OF			
0008		= 1	298	, РКСНС	LABEL	BYTE		
0008	00	= 1	299	PKCHGO	DB	00H		: PACK CHANGE ON UNIT O
0009	00	= 1	300	PKCHG1	DB	00H		PACK CHANGE ON UNIT 1
000A	00	= 1	301	PKCHG2	DB	00H		; PACK CHANGE ON UNIT 2
000B	00	= 1	302	PKCHG3	DB	00H		; PACK CHANGE ON UNIT 3
		= 1	303	:				
		= 1	304	;	ERROR S	TATUS BLOCK		
		= 1	305	;	(LOADED	FROM CONTROL	LLER BY ERROR	HANDLER)
		= 1	306	;				
000C	0000	= 1	307	ERRSTS	DW	0000H		; ERROR STATUS WORD
000E	00	= 1	308	SFERST	D B	00 H		; SOFT ERROR STATUS BYTE
000F	0000	= 1	309	DESCYL	D₩	0000H		; DESIRED CYLINDER
0011	00	= 1	310	DESHD	DB	00H		; DESIRED HEAD
0012	00	= 1	311	DESSEC	DB	00 H		; DESIRED SECTOR
0013	0000	= 1	312	ACTCYL	D₩	0000H		; ACTUAL CYLINDER + FLAG BITS
0015	00	= 1	313	ACTHD	D B	00H		; ACTUAL HEAD
0016	00	= 1	314	ACTSEC	DB	00H		; ACTUAL SECTOR
0017	00	= 1	315	NMRTRY	DВ	00H		; NUMBER OF RETRIES MADE
		≖ l	316	;				
		= 1	317	;	LAST OP	ERATION COMPI	LETE BYTE	
		= 1	318	;	(COPIED	FROM CIB BY	WAIT215)	
		= 1	319	;				
0018	00	= 1	320	LSTSTS	DB	00H		
		= 1	321	;				
0019	90	= 1	322		EVEN			
		= 1	323	;				
001A		= 1	324	ENDDAT	LABEL	FAR		; END OF DATA SEGMENT
		= 1	325	;				
		= 1	326	DATASEG	ENDS			
			327	;				
		= 1	328 +1 329 +1	SINCLUDE SEJECT (:(:F1:US FITLE(SY	EK.MMD) STEM DEPENDED	NT INITIALIZA	TION)

ruc	OBJ		LINE	SOURCE			
		= 1	330	;			
		= 1 = 1	331 332	;	SYSTEM	DEPENDENT INITIALIZATI	
		= 1	333	;]	010100		
		= 1	334	;			
		= 1 = 1	335	;	THIS RO	UTINE SETS UP THE INTE	BRUPT VECTOR FOR AN ISBC 86/12A CPU
		= 1	337	;	RUNNING	UNDER THE ISBC 957A II	NTERFACE/EXECUTION PACKAGE.
		= [338	;	0050 1		
		= 1	339	; - THE	BY THE	ISBC 9574 FIRMWARE.	OTHER INITIALZATIONS ARE PERFORMED
		= 1 = 1	341	;		1000 997A TERNWARD.	
		= 1	342	;			
		= 1	343	;	=======		
		=1	345	:		SHERE SERVICE STRATEGY	
		= 1	346	;			
00	05	= 1	347		INTRPT	EQU 5	; iSBC 220 INTERRUPT NUMBER
	_	= 1	348	;	SECHENT	AT 0000H	· INTERRIPT VECTORS ARE FROM ARSOLUTE
		= 1	350	3500000	SCORENT	R. 00001	; ADDRESSES 00000H TO OOFFOH
		= 1	351	;			
0094	•	= 1	352		ORG	80H + 4*INTRPT	; LOCATION OF INTERRUPT VECTOR WITH
0094	0000	i = = 1	354	INTRIP	DW	00008	; - INSTRUCTION POINTER
0096	0000	= 1	355	INTROS	DW	0000H	; - CODE SEGMENT
		= 1	356	;			
	•	±1 =1	357	SEGOOOO	ENDS		
		=1	359	;			
	•	= 1	360	;	STACK A	LLOCATION	
		= I	361	;		*========	
		= 1 = 1	362	; Stack	SEGMENT		: STACK SEGMENT
		= 1	364	;	0.000000		, strok obolski
0000	00)	= 1	365		DB	64 DUP(00H)	; ALLOW 64 BYTES FOR STACK
	,	= 1	366	;			
0040	1	= 1	367	ENDSTK	LABEL	FAR	
		=]	369	; STACK	ENDS		
		= 1	370	;			
		= 1	371	;	******		
		= 1	372	;	STACK A	ND INTERRUPT CONFIGURAT	CION ROUTINE
		= 1	374	;			
		= 1	375	ÚSERSEG	SEGMENT		
		= 1	376	;			
		≂] =]	377		ASSUME		
		= 1	379	;	Nobenti	55.5200000	
0000		= 1	380	CONFIG	PROC FA	R	
0000	E A	= 1	381	;	CLI		· DISABLE INTERDIDTE DUTLE CETTING UN
0000	B8	R = 1	383		MOV	AX, STACK	;;; SET UP STACK
0004	8ED0	= 1	384		MOV	SS,AX	;;;
0006	BC4000	= 1	385		MOV	SP, OFFSET ENDSTK	;;;
0009 0000	850000 8508	= 1 = 1	385 387		MOV	AX,UUUUH DS AX	;;; GET POINTER TO SEGMENT 0000H
000E	C70694003D02	= 1	388		MOV	INTRIP, OFFSET INT215	;;; SET UP INTERRUPT VECTOR
0014	C7069600	R = 1	389		MOV	INTRCS, SEG INT215	;;;
0014	E4C2	= 1	390		IN	AL,0C2H	;;; INPUT INTERRUPT MASK FROM 8259
OOIE	E6C2	- 1	392		OUT	OC2H.AL	::: WRITE NEW MASK OUT TO 8259
0020	FB	= 1	393		STI	· · ,	;;; ENABLE INTERRUPTS
0021	cc	= 1	394		INT	3	;;; GO TO MONITOR
		= 1	395	; CONFIG	ENDP		
		= 1	397	;	SHD1		•
		= 1	398	USERSEG	ENDS		
			399 400	;	TVED	SECMENT	
			401	3 D C Z I 3 D R	TACK	SCORENI	
			402	,	ASSUME (CS:SBC215DRIVER	
			403	;	(
			404 +1	SINCLUDE	:FI:RES	el.mmu)	

MCS-	86 MACRO ASSEI	MBLER	CONTROL	LER RESET	ROUTINE
LOC	OBJ		LINE	SOURCE	
		= 1	406	;	
		= 1	407	; ;	
		= 1	408		CONTROLIAR RESET ROUTINE
		= 1	410	;	
		= 1	411	;	
		= 1	412	;	RES215 SETS UP THE COMMUNICATION BLOCKS FOR THE ISBC 215, LINKS THEM
		= 1	413		THE CONTROLLER. THIS CAUSES THE 8089 ON THE CONTROLLER TO SET UP ITS
		= 1	415	;	INTERNAL POINTER TO THE CCB BY THREADING DOWN THE LINKS STARTING WITH
		= 1	416	;	THE SWITCHES ON THE CONTROLLER. SUBSEQUENT CA'S WILL CAUSE THE 8089 TO
		= 1	417	;	FETCH ITS POINTERS STARTING AT THE CCB.
		-1	419	; : - IF 1	THE CH. I BUSY FLAG IS NOT CLEARED WITHIN A "REASONABLE" AMOUNT OF TIME.
		= 1	420	;	THEN THE ISBC 215 IS PROBABLY NOT RESPONDING TO THE CHANNEL ATTENTION.
		= 1	421	;	ON THE CONTROLLER: CHECK SWITCH SETTINGS; VOLTAGES; RESET, CLEAR RESET,
		= 1	422	;	CHANNEL ATTENTION SIGNALS; READY INPUT TO 8089; 8089 STATUS LINES; R/W
		= 1	423		SIRUBES.
		= 1	425	; - THE	SYSTEM INTERRUPT LOGIC AND VECTORS FOR THE CONTROLLER ARE ASSUMED TO BE
		= 1	426	;	CONFIGURED BY AN EXTERNAL PROGRAM.
		= 1	427	;	DATA.
		= 1	429	; INFOI	NONE
		= 1	430	;	
		= 1	431	; OUTPUI	T DATA:
		= 1 _ 1	432	;	CARRY FLAG: = 0 IF RESET OKAY =) IF CH $=$ PHCY FLAC NOT DECET (NOT DECEDUNTING)
		= 1	433	;	- I IF CH. I BUSI FLAG NOI RESEI (NUI RESPONDING)
		= 1	435	;	
		= 1	436		PUBLIC RES215
0000		= 1	437	; RES215	PROC FAR
0000		= 1	439	;	
0000	50	= 1	440		PUSH AX ; SAVE REGISTERS
0001	53	= 1	441		PUSH BX
0002	52	= 1	442		PUSH DX
0004	1 E	= 1	444		PUSH DS
		= 1	445	;	
		= i	440	;	SET UP LINKS BETWEEN COMMUNICATION BLOCKS
		=1	448	SCB	
		= 1	449	;	
0005		= 1	450		ASSUME DS:SCBSEG
0005	863306 8608	= 1	451		MOV DS.AX
000A	C70600000100	= 1	453		MOV WORD PTR SOC,0001H ; SET SOC BYTE AND CLEAR RESERVED BYTE
0010	C70602000000	= 1	454		MOV WORD PTR CCBPTR, OFFSET CCB ; SET POINTER TO CCB
0016	C7060400	R = 1	455		MOV WORD PTR CCBPTR+2,SEG CCB
		=1	457	, : ССВ	
		= 1	458	;	
001C	C5060200	≈ 1	459		LDS AX,CCBPTR ; GET POINTER TO CCB
0020	C70600001EE	= 1	460		ASSUME DS:CCBSEG MOV HORD PTP CCMI OFFOIH · SET CCMI AND CH I BUSY FLAC
0026	C70602000400	= 1	462		MOV WORD PTR CHIPTR, OFFSET CHIPC; SET POINTER TO FIFTH BYTE OF CIB
002C	C7060400	R = 1	463		MOV WORD PTR CHIPTR+2, SEG CHIPC ; (HAS STARTING ADDRESS FOR CH. 1)
0032	C70608000100	= 1	464		MOV WORD PTR CCW2,0001H ; SET CCW2 AND CLEAR CH. 2 BUSY FLAG
0038 003E	C7060C00====	R = 1	400		MOV WORD FIR CH2FIR, OFFSEI CH2FC, SEI FOINIER IO CH. 2 SIARIING ADDRESS MOV WORD FTR CH2FTR+2.SEG CH2FC
0044	C7060E000400	=1	467		MOV WORD PTR CH2PC,0004H ; SET CH. 2 STARTING ADDRESS
		=1	468	;	
		≖] =1	469 470	; CIB	
		=1	471	,	ASSUME DS:CIBSEG
004A	B8	R = 1	472		MOV AX,CIBSEG ; GET POINTER TO CIB
004D	8ED8	=1	473		MOV DS, AX
004F	C706020000000	=1	4/4		MOV WORD FIR CIBCMD,0000H ; CLEAR CIB COMMAND AND CIB STATUS BYTES MOV WORD PTR CMDSEM.0000H ;AND SEMAPHORES
005B	C70604000000	= 1	476		MOV WORD PTR CHIPC,0000H ; SET CH. 1 STARTING ADDRESS
0061	C70608000000	= 1	477		MOV IOPBOFF, OFFSET IOPB ; SET IOPB POINTER
0067	C7060A00	R = 1	478		MOV IOPBSG,SEG IOPB
		= 1 = 1	480 +1	; \$EJECT	

B-15

MCS-86 MACRO ASSEMBLER			R	CONTROL	LER RESET	ROUTINE	ROUTINE				
LOC	OBJ			LINE	SOURCE						
			= 1	481	;	CLEAR C	OUT DATA SEGMENT				
			= 1	482	;						
			= 1	483		ASSUME	DS:DATASEG				
006D	B8	R	= 1	484		MOV	AX,DATASEG	; GET POINTER TO DATA SEGMENT			
0070	8ED8		= 1	485		MOV	DS,AX				
0072	B90D00		= 1	486		MOV	CX,(OFFSET ENDDAT)/2	; GET COUNT (# WORDS IN DATA SEGMENT)			
0075	BB0000		= l	487		MOV	вх,0000н	; CLEAR INDEX REGISTER			
0078	C7070000		= 1	488	CLRLP:	MOV WOR	D PTR [BX],0000H	; CLEAR NEXT WORD IN DATA SEGMENT			
007C	43		= 1	489		INC	вх	; POINT TO NEXT WORD			
007D	43		= 1	490		INC	ВX				
007E	EOF8		= 1	491		LOOPNE	CLRLP	; DONE?			
			= 1	492				; NOCLEAR ANOTHER WORD			
			= 1	493				; YESINITIALIZE COMMUNICATION LINKS			
			= 1	494	;						
			= 1	495	;	OUTPUT	RESET/CLEAR RESET/CHANN	EL ATTENTION TO CONTROLLER			
			= 1	496	;						
0080	BA 3506		= 1	497		MON	DX,WUA	; GET WAKE-UP I/O PORT ADDRESS			
0083	B002		= 1	498		моv	AL,02H	; GET RESET COMMAND BYTE			
0085	EE		= 1	499		OUT	DX,AL	; OUTPUT TO WAKE-UP I/O PORT			
0086	B000		= 1	500		MOV	AL,OOH	; GET CLEAR RESET COMMAND BYTE			
0088	EE		= 1	501		OUT	DX,AL	; OUTPUT TO WAKE-UP I/O PORT			
0089	8001		= 1	502		MOV	AL, OIR	; GET CHANNEL ATTENTION COMMAND BYTE			
008B	EE		= 1	503		OUT	DX,AL	; OUTPUT TO WAKE-UP 1/O PORT			
	_	_	= 1	504		ASSUME	DS:CCBSEG				
0080	B8	R	= 1	505		MOV	AX, CCBSEG	; GET POINTER TO CCB			
0085	8608		= 1	506		nov	DS,AX	· (OTUPD INDUENENTATIONS OF DEC215 COULD			
			= 1	507				, UTRER IMPLEMENTATIONS OF RES213 COULD			
			=1	508				; INITIALIZE UTHER DEVICES WHILE THE			
	200010		-1	509		MOU	CX 10001	, ISBC 215 DOES IIS RESEL SEQUENCE HERE)			
0091	890010		= 1	510		MOV	CX,1000H	; SEI TIME-OUT COUNTER			
0094	F0		= 1	512	DECI D.		REVELCI ODEEN	CUECK CARKI FLAG			
0095	1000010011		-1	512	KESLP:	IESI	BSIFLGI, OUFFR	$ \mathbf{F} = \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F}$			
0004	7403		-1	516		17	RESON	BUSY FLAC CLEARED?			
0094	7403		= 1	515		52	RESDA	YESRETURN CARRY CLEAR			
0090	FOF7		= 1	516		LOOPNE	RESLP	: NODECREMENT COUNTER			
0070	5017		= 1	517		1001111		: IF $CX = 0$. THEN BSYFLG1 NEVER GOT			
009F	FQ		= 1	518		STC		CLEARED, SO SET CARRY FLAG			
0096	IF		=]	519	RESON:	POP	DS	: RESTORE REGISTERS			
0040	5 A		= 1	520		POP	DX	,			
0.041	59		= 1	521		POP	CX				
00A2	5 B		= 1	522		POP	BX				
0043	58		= 1	523		POP	AX				
00 44	CB		= 1	524		RET		; RETURN			
			= 1	525	:			·			
			= 1	526	RES215	ENDP					
				527	;						
				528 +1	ŞINCLUDE	E(:F1:IN)	ITEX.MMD)				
			= 1	529 +1	SEJECT TITLE(INITIALIZATION ROUTINE)						

.

MCS-86 MACRO ASSEMBLER INITIALIZATION ROUTINE

LOC OBJ		LINE	SOURCE				
	= 1	530					
	= 1	531	,			1	
	= 1	532	; ;	INITI	ALIZATION ROUTIN	E i	
	= 1	533				- i	
	= 1	534					
	= 1	535	:				
	= 1	536		INIT 21	5 INITIALÍZES TH	E 15BC 215	CONTROLLER BY LOADING PERTINENT INFOR-
	= 1	537	2	MATION	ABOUT THE DISK	DRIVE(S) AT	TACHED.
	= 1	538	2		ingoti ing stok	58110(5) 11	
	= 1	539	• • - TF	A DRIVE	THAT IS SPECIFI	ED AS PRESE	ENT WILL NOT RESPOND. INIT215 RETURNS
	= 1	540		IMMEDIA	ATELY WITH THE C	ARRY FLAG	SET.
	= 1	541		1			
	= 1	542	, • TNPIIT	ΠΑΤΑ·			
	= 1	543	,		RIVE INTTIALIZAT	ION TABLES	IN SEGMENT "INITELSEG".
	= 1	544	:	DISK	tive intrinorshi	100 100000	, in boundar introbobo .
	= 1	545		T DATA:			
		546	,	CARRY	FLAG	= 0 IF CO	NTROLLER INITIALIZED SUCCESSFULLY
	= 1	547	?	0.11(1)	Bito	= 1 IF IN	NITIALIZATION ERROR
	= 1	548	,				
	= 1	549	,				
	= 1	550	,	PUBLIC	INTT215		
	= 1	551		ASSUME	DS+TOPBSEC		
	= 1	552		Abbonie	0011010000		
0045	= 1	553	, INTT215	PROC	FAR		
UURJ	= 1	554		1 100	TAR		
0045 50	= 1	555	,	PIISH	4 X		SAVE DECISTEDS
0046 15	= 1	556		PIISH	DS	,	SAVE REGISTERS
00A7 B8	R = 1	557		MOV	AX. LOPBSEG	:	GET POINTER TO LOPB
0044 8508	= 1	558		MOV	DS.AX	,	PUT IN DS REGISTER
00AC C70608000000	= 1	559		MOV	DEVCOD.OOH	;	WINCHESTER DRIVES INITIALIZED FIRST
00B2 C6060B0000	= 1	560		MOV	FUNC.OOH		SET IOPB FUNCTION BYTE = INITIALIZE
0087 C7060C000000	= 1	561		MOV	MODIFY,0000H		CLEAR MODIFIER (ENABLE RETRIES AND
	= 1	562			•		INTERRUPT ON COMPLETION)
00BD C7061400	R = 1	563		MOV	BUFSEG, INITBLS	EG ;	PUT INITIALIZATION TABLES' SEGMENT IN
	= 1	564			-		IOPB DATA BUFFER POINTER
00C3 C7061200F8FF	= 1	565		MOV	BUFOFF8	:	START INITIALIZE WITH UNIT O
00C9 B000	= 1	566		моу	AL.OOH		CLEAR UNIT COUNTER
00CB 8306120008	= 1	567	INITLP:	ADD	BUFOFF.8		POINT TO NEXT DRIVE'S INITIALIZE TABLE
00D0 A20A00	= 1	568		MOV	UNIT, AL	í	PUT UNIT INTO IOPB
00D3 E8EC00	= 1	569		CALL	60215	;	DO INITIALIZE
	= 1	570					(RETURNS CARRY FLAG SET OR CLEAR)
00D6 7214	= l	571		JC	INITON		UNIT INITIALIZED?
	= 1	572				;	NOTERMINATE WITH CARRY BIT SET
0008 40	= 1	573		INC	AX	;	YESINCREMENT UNIT COUNTER
00D9 3C04	= 1	574		СМР	AL,4	;	CHECK UNIT COUNTER (CLEARS CARRY)
00DB 75EE	= 1	575		JNZ	INITLP	;	LAST DRIVE INITIALIZED?
	= 1	576				;	NOINITIALIZE NEXT DRIVE
00DD A10800	= 1	577		MOV	AX,DEVCOD	;	YESFLOPPIES INITIALIZED YET?
00E0 3C00	= 1	578		CMP	AL,O		
00E2 7508	= 1	579		JNZ	INITDN	;	YESINITIALIZE FUNCTION FINISHED
00E4 C70608000100	= 1	580		MOV	DEVCOD,01	;	NOINITIALIZE FLOPPY DRIVES
OOEA EBDF	= 1	581		JMP	INITLP		
OOEC 1F	= l	582	INITDN:	POP	D S	;	RESTORE REGISTERS
00ED 58	= 1	583		POP	AX		
OOEE CB	= 1	584		RET		;	RETURN
	= 1	585	;				
	= 1	586	INIT215	ENDP			
		587	;				
		588 +1	SINCLUDE	:(:F1:F0	RMAT.MMD)		
	= 1	589 +1	\$EJECT 7	LITLE (FO	RMAT TRACK ROUTI	NE)	
MCS-86 MACRO ASSEMBLER FORMAT TRACK ROUTINE LOC OBJ LINE SOURCE 590 ≈1 = 1 591 ; 1 = 1 592 ; 1 FORMAT TRACK ROUTINE = 1 = 1 593 ; 1 594 = 1 595 EMTTRK SETS UP THE LOPB FOR A FORMAT TRACK FUNCTION, AND 596 = 1 ; = 1 597 598 INVOKES THE ISBC 215 CONTROLLER TO PERFORM THE OPERATION. ; = 1 =] 599 ; INPUT DATA: BP + 10 =>BP + 9 =>DEVICE CODE INTERLEAVE FACTOR = 1 600 = 1 601 ; 602 BP + 8 USER DATA BYTE 3 = 1 = > ; BP + 7 **≈** 1 603 = > USER DATA BYTE 2 ; BP + 6 = 1 => 604 USER DATA BYTE : = 1 605 $\begin{array}{c} BP + 5 = \\ BP + 4 = \end{array}$ USER DATA BYTE O : = 1 606 TYPE OF FORMAT 607 BP + 3 HEAD = 1 => = 1 608 BP + 1 = > CYLINDER : = 1 609 RΡ = > UNIT = 1 610 = 1 611 ; OUTPUT DATA: = 0 IF TRACK FORMATTED SUCCESSFULLY = 1 IF NON-RECOVERABLE ERROR OCCURRED = 1 CARRY FLAG 612 : = 1 613 = 1 614 ; - INTERLEAVE FACTOR OF 1 IMPLIES SEQUENTIAL SECTOR NUMBERING. = 1 615 ; - USER DATA BYTES 0 - 3 ARE REPLICATED THROUGHOUT THE DATA FIELD. = 1 616 ; - INTERLEAVE TYPES: = 1 617 INTERLEAVE TYPES:
 00 = NORMAL TRACK (ONLY FORMAT FOR FLOPPY)
 40 = ALTERNATE TRACK (POINTED TO BY EXACTLY ONE DEFECTIVE TRACK, CANNOT SUBSEQUENTLY BE FORMATTED DEFECTIVE)
 80 = DEFECTIVE TRACK (DATA FLELD POINTS TO ALTERNATE TRACK)
 TO SET UP A POINTER TO AN ALTERNATE TRACK, SET:
 USER DATA BYTE 0 = ALTERNATE CYLINDER LOW BYTE
 USER DATA BYTE 1 = ALTERNATE CYLINDER HIGH BYTE
 USER DATA BYTE 2 = ALTERNATE HEAD
 USER DATA BYTE 3 = 00H = 1 618 = 1 619 = 1 620 = 1 621 = 1 622 = 1 623 = 1 624 = 1 625 = 1 626 ; -----= 1 627 = 1 628 = 1 PUBLIC FMT215 ASSUME DS:IOPBSEG 629 = 1 630 = 1 631 OOEF = 1 632 FMT215 PROC FAR = 1 633 : 00EF 50 = 1 PUSH : SAVE REGISTERS 634 ΑX 00F0 1E = 1 635 PUSH DS 00F1 B8----R =1 636 MOV AX, LOPBSEG ; GET POINTER TO LOPB 00F4 8ED8 = 1 MOV 637 DS,AX AX,[BP+10] 00F6 88460A = 1 638 MOV ; GET DEVICE CODE INTO LOPS 00F9 A30800 00FC 8A4600 00FF A20A00 0102 8B4601 0105 A30E00 = 1 639 MOV DEVCOD,AX = 1 MOV AL,[BP] UNIT,AL ; GET UNIT NUMBER INTO LOPB 640 = 1 641 MOV 642 643 AX,[BP+1] CYLNDR,AX = 1 MOV ; GET CYLINDER NUMBER INTO LOPB = 1 MOV 0108 8A4603 = 1 644 моу AL, [BP+3] ; GET HEAD INTO LOPB 010B A21000 010E 892E1200 645 = 1 MOV HEAD.AL ; GET POINTER TO FORMAT ARGUMENT LIST = 1 646 MOV BUFOFF, BP 0112 8306120004 = 1 647 ADD BUFOFF,4 BUFSEG,SS INTO DATA BUFFER POINTER 0117 8C161400 = 1 648 MOV 011B C6060B0002 = 1 649 MOV FUNC,02H ; SET FUNCTION = FORMAT ; CLEAR MODIFIER (ALLOW ERROR RECOVERY AND INTERRUPT ON COMPLETION) MODIFY,0000H 0120 C7060C000000 = 1 650 MOV = 1 651 ; START ISBC 215 AND WAIT FOR DONE ; (RETURNS CARRY FLAG SET OR CLEAR) 0126 E89900 652 G0215 = 1 CALL = 1 653 0129 15 = 1 FMTDN: POP DS : RESTORE REGISTERS 654 655 012A 58 = 1 POP ΑX 656 657 : RETURN (AND POP INPUT DATA OFF STACK) 012B CA0A00 = 1 RET 10 =1 =1 658 FMT215 ENDP 659 \$INCLUDE(:F1:RDWRT.MMD) 660 +1

=1 661 +1 \$EJECT TITLE(READ DATA ROUTINE)

MCS-86 MACRO ASSEMBLER READ DATA ROUTINE

LOC OBJ		LINE	SOURCE	
	= 1	662	;	
	= l	663	;	
	= i - 1	664	; 1	READ DATA
	= 1	666	;	
	= 1	667	;	
	= 1	668	;	RD215 SETS UP THE IOPB FOR A READ OPERATION, AND
	= 1	669	;	INVOKES THE ISBC 215 TO PERFORM THE OPERATION.
	= 1	670	;	
	=1	6/1	; INPUT	F DATA:
	= 1	673		BP + 13 => DEVICE CODE RP + 11 => RYTE COUNT HICH WORD
	= 1	674		BP + 9 = S BYTE COUNT LOW WORD
	= 1	675	;	BP + 7 => DATA BUFFER SEGMENT
	= 1	676	;	BP + 5 => DATA BUFFER OFFSET
	= 1	677	;	BP + 4 => SECTOR
	= 1	678	;	BP + 3 => HEAD
	⊆ I - 1	690		BP + I => CYLINDER
	= 1	681	,	br -/ UNII
	= 1	682	, OUTPU	UT DATA:
	= 1	683	;	CARRY FLAG = 0 IF TRANSFER OCCURRED WITH NO OR RECOVERABLE ERROR
	= 1	684	;	= 1 IF UNRECOVERABLE ERROR OCCURRED
	= 1	685	;	DATA BUFFER FILLED WITH DATA FROM DISK IF NO UNRECOVERABLE ERROR
	=1	686 497	;	
	= 1	688	,	PUBLIC RD215
	= 1	689		ASSUME DS: IOPBSEG
	= 1	690	;	
012E	= 1	691	RD215	PROC FAR
	=1	692	;	
	= 1	693		PUSH AA ; SAVE REGISTERS
0130 88	R = 1	695		MOV AX TOPRSEC · GET POINTER TO TOPR
0133 8ED8	=1	696		MOV DS.AX
0135 8B460D	= 1	697		MOV AX, [BP+13] ; GET DEVICE CODE INTO IOPB
0138 A30800	= 1	698		MOV DEVCOD,AX
013B 8A4600	= 1	699		MOV AL,[BP] ; GET UNIT INTO IOPB
013E A2UAUU	= 1	700		MOV UNII,AL
0141 884601	= 1	702		MOV CYLNDR.AX
0147 884603	= 1	703		MOV AX, [BP+3] ; GET HEAD AND SECTOR INTO IOPB
014A A31000	= 1	704		MOV WORD PTR HEAD,AX
014D 8B4605	= 1	705		MOV AX,[BP+5] ; GET DATA BUFFER POINTER INTO IOPB
0150 A31200	= 1	706		MOV BUFOFF, AX
0153 884607	= 1	708		NOV AA, LDFT/J HOV BURSEG, AX
0159 884609	= 1	709		MOV AX.[BP+9] ; GET BYTE COUNT INTO IOPB
015C A31600	= 1	710		MOV WORD PTR REQUNT, AX
015F 8B460B	= 1	711		MOV AX,[BP+11]
0162 A31800	= 1	712		MOV WORD PTR REQCNT+2,AX
0165 C7060C000000	=1	713		NOV MUDIFY, UUOUH ; CLEAR MUDIFIER (ENABLE INTERRUPT ON
0168 0606080004	=1	715		MOV FUNC 04H - SET FUNCTION = READ DATA
0170 E84F00	= 1	716		CALL G0215 ; START FUNCTION AND WAIT FOR COMPLETION
0110 104100	= 1	717		; (RETURNS CARRY FLAG SET OR CLEAR)
0173 1F	= 1	718		POP DS ; RESTORE REGISTERS
0174 58	= 1	719		POP AX
0175 CA0D00	= 1	720		RET 13 ; POP PARAMETERS OFF STACK AND RETURN
	= 1 = 1	721	; RD215	FNDP
	=]	723	:	
	= 1	724 +1	\$EJECT '	TITLE(WRITE DATA ROUTINE)

MCS-86 MACRO ASSEM	BLER	WRITE D	TA ROUTINE
LOC OBJ		LINE	SOURCE
	= 1	725	;
	= 1	726	; 1 1
	= 1	727	; WRITE DATA
	= 1	728	; I I
	= 1	729	;
	= 1	730)
	= 1	732	· INVOKES THE 150 TO PERFORM THE OPERATION.
	= 1	733	; INTERES THE ISSUES TO ISATORIC THE OTERRITORY
	= 1	734	; INPUT DATA:
	= 1	735	; BP + 13 => DEVICE CODE
	1 =	736	; BP + 11 => BYTE COUNT HIGH WORD
	= 1	737	; BP + 9 => BYTE COUNT LOW WORD
	= 1	/ 38	; BP + / => DALA BUFFER SEGMENI • BP + S => DALA BUFFER OFFER
	- 1	740	P + A = S F C T D R
	= 1	741	BP + 3 = HEAD
	= 1	742	BP + 1 = CYLINDER
	= 1	743	; BP => UNIT
	= 1	744	;
	= 1	745	; DATA BUFFER CONTAINS INFORMATION TO BE WRITTEN TO DISK
	= 1	746	; - OUTBUT DATA.
	= 1	747	; COTPUT DATA: - CADDY FLAC = 0 TE TDANSFED OCCUBBED WITH NO OD BECOVEDARIE EDDOR
	= 1	749	: = 1 IF UNRECOVERABLE ERROR OCCURRED
	= 1	750	
	= 1	751	;
	= 1	752	PUBLIC WRT215
	= 1	753	ASSUME DS:IOPBSEG
0178	= 1	/ 54	; μρτ215 ρρας γΑρ
01/8	= 1	756	· ·
0178 50	= 1	757	PUSH AX ; SAVE REGISTERS
0179 lE	= 1	758	PUSH DS
017A B8	R = 1	759	MOV AX, IOPBSEG ; GET POINTER TO IOPB
017D 8ED8	= 1	760	MOV DS, AX
017F 8B460D	= 1	761	MOV AX, [BP+13] ; PUT DEVICE CODE IN TOPB
0185 844600	= 1	763	MOV AL. [BP] : GET UNIT INTO LOPB
0188 A20A00	= 1	764	MOV UNITAL
0188 884601	= 1	765	MOV AX,[BP+1] ; GET CYLINDER INTO IOPB
018E A30E00	= 1	766	MOV CYLNDR, AX
0191 884603	- 1	767	MOV AX,[BP+3] ; GET HEAD AND SECTOR INTO IOPB
0194 A31000	= 1	768	MOV WORD PTR HEAD, AX
0197 884505	= i - 1	709	NOV RUEDEE AV ; GEL DATA BUFFER PUINTER INTO TOPB
019D 884607	- 1	771	MOV AX.IRP+7]
01A0 A31400	=1	772	MOV BUFSEC.AX
01A3 8B4609	= 1	773	MOV AX,[BP+9] ; GET BYTE COUNT INTO LOPB
01A6 A31600	= 1	774	MOV WORD PTR REQCNT, AX
01A9 8B460B	= 1	775	MOV AX,[BP+11]
01AC A31800	= 1	//6	MOV WORD PTR REQCNT+2,AX
01AF C7060C000000	= 1 _ 1	///	MOV MODIFI, OUGH ; CLEAK MODIFIEK (ENABLE INTERKUPT ON - COMPLETION AND DEPTES)
0185 6606080006	= 1	779	MOV FUNC.06H : SET FUNCTION = WRITE DATA
01BA E80500	= 1	780	CALL GO215 ; START 1SBC 215 AND WAIT FOR DONE
	= 1	781	; (RETURNS WITH CARRY SET OR CLEAR)
OlbD lF	= 1	782	POP DS ; RESTORE REGISTERS
01BE 58	= 1	783	
UIBE CAUDOO	= 1	/84 795	REL 13 ; PUP PARAMETERS UFF STACK AND RETURN
	= 1 ⇒ 1	786	WRT215 ENDP
	- 1	787	
	=]	788 +1 789 +1	\$INCLUDE(:F1:CORE.MMD) \$EJECT TITLE(START FUNCTION AND WAIT FOR COMPLETION)

•

MCS-	86 MACRO	ASSEMBLER	START F	UNCTION	AND WAI	T FOR COMP	LETION		
LOC	OBJ		LINE	SOURCE					
		= 1	7 9 0	;					
		= 1	791	; 1					I
		= 1	792	; 1	START	FUNCTION	AND WAIT FOR COM	PLETION	1
		= 1	793	;					1
		= 1	794	;					
		= 1	795	;					
		= 1	796	;	THIS	ROUTINE GI	VES A CHANNEL AT	TENTION (WAR	(E-UP) TO THE ISBC 215 AND
		= 1	797	;	WAITS	FOR THE F	UNCTION SPECIFIE	D (BY THE CA	LLING PROCEDURE) TO FINISH.
		= 1	798	;	IF AN	ERROR OCC	URRED, THE ERROR	HANDLER IS	INVOKED.
		= 1	799	;					
		≠ l	800	; INPU	rs:				
		= 1	801	;	NONE				
		= 1	802	;					
		= 1	803	; ОИТРИ	JTS:				
		= 1	804	;	CARRY	FLAG:	= 0 IF NO ERROR	OR A RECOVE	RABLE ERROR OCCURRED
		= 1	805	;			= 1 IF UNRECOVE	RABLE ERROR	OCCURRED.
		= 1	806	;					
		= 1	807	;					
01C2		= 1	808	G0215	PROC	NEAR			
		= 1	80 9	;					
01C2	50	= 1	810		PUSH	AX		; SAVE REGI	STERS
01C3	52	= 1	811		PUSH	DX			
01C4	BA3506	= l	812		MON	DX,WUA		; GET ADDRE	SS OF WAKE-UP I/O PORT
01C7	B001	= 1	813		MOV	AL,01H		; GET WAKE-	UP COMMAND BYTE
01C9	EE	= 1	814		ΟUΤ	DX,AL		; GIVE WAKE	-UP TO ISBC 215
01CA	E80800	= 1	815		CALL	WALT215		; WAIT FOR	FUNCTION COMPLETE
01CD	7303	= 1	816		JNC	DONE		; ERROR?	
		= 1	817					; NORETUR	N
0 I C F	E82 9 00	= 1	818		CALL	ERROR		; YESCALL	ERROR HANDLER (RETURNS WITH
		= 1	819					; CARRY	FLAG SET OR CLEAR)
01D2	5 A	= 1	820	DONE:	POP	DX		; RESTORE R	EGISTERS
0103	58	= 1	821		POP	AX			
01D4	C 3	≠ l	822		RET			; RETURN	
		= 1	823	;					
		= 1	824	GO215	ENDP				
		= l	825	;					
		= 1	826 +1	ŞEJECT	TITLE(AIT FOR FU	INCTION COMPLETE	ROUTINE)	

MCS-86 MACRO ASSEMBLER WAIT FOR FUNCTION COMPLETE ROUTINE

LOC	OBJ		LINE	SOURCE			
		- 1	017				
		= 1	828	;			
		= 1	829	, ,	WALT FO	R FUNCTION COMPLETE	
		= 1	830	;]			
		= 1	831	:			
		= 1	832	;			
		= 1	833	;	NORMALL	Y, THIS WAIT ROUTINE W	OULD TRAP TO THE SYSTEM DISPATCHER/
		= 1	834	;	SCHEDUL	ER TO ALLOW ANOTHER TA:	SK TO EXECUTE WHILE THE 1SBC 215 COMPLETED
		= 1	835	;	ITS FUN	CTION. HOWEVER, FOR T	HIS EXAMPLE, THE ROUTINE SIMPLY WAITS FOR
		= 1	836	;	THE INT	ERRUPT SERVICE ROUTINE	TO LOAD THE OPERATION COMPLETE STATUS
		= 1	837	;	FROM TH	E CIB OPERATION STATUS	INTO THE DATA SEGMENT. IF AN ERROR
		= 1	838	;	OCCURRE	D, THE STATUS IS AVAIL.	ABLE THERE FOR SUBSEQUENT PROCESSING BY
		= 1	839	;	AN ERRO	R HANDLER.	
		= i	840	;	D		
		= 1	941	; INPUI	DAIA:	ON COMPLETE STATUS EDO	THE CIR CORIED INTO THE DATA SECMENT
		= 1	843		OFERALL	BY THE INTERDIOT POUT	THE CID, COFIED INTO THE DATA SEGMENT
		=]	844	:		BI THE INTERROLL ROOT	INE
		= 1	845	; OUTPU	T DATA:		
		= 1	846	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	OPERATI	ON COMPLETE BYTE	CLEARED
		= 1	847	÷	CARRY F	LAG	= 0 IF NO ERROR
		= 1	848	:			= 1 IF ERROR OCCURRED
		= 1	849	;	COPY OF	CIB OPERATION STATUS	IN "LSTSTS" IF ERROR OCCURRED
		= 1	850	;			
		= 1	851	;	(OPERA	TION COMPLETE BYTE AND	"LSTSTS" ARE IN SEGMENT "DATASEG")
		= 1	852	;			
		= 1	853	;			
		= 1	854		ASSUME	DS:DATASEG	
0155		1=	855	;	DRAG	NEAD	
0103		= 1	0.20	WAII215	PROC	NEAR	
0105	50	= 1	858	,	PIICH	A Y	· SAVE DECISTEDS
0106	53	= 1	859		PUSH	BX	, SAVE REGISTERS
0107	15	= 1	860		PUSH	DS	
0108	BB	R = 1	861		MOV	BX . DATASEG	; GET POINTER TO DATA SEGMENT
01 D B	8 E D B	= 1	862		MOV	DS, BX	,
01DD	BBFFFF	= 1	863		MOV	BX, -1	; INITIALIZE INDEX REGISTER
01E0	FB	= 1	864		STI	-	; MAKE SURE INTERRUPT CAN GET THROUGH
01E1	F 4	= 1	865		HLT		; ***** WAIT FOR INTERRUPT *****
01E2	43	= 1	866	WAITLP:	INC	ВХ	; GET INDEX FOR NEXT UNIT
01E3	81E30300	= 1	867		AND	вх,0003н	; MASK UPPER BITS
01E7	F607FF	= 1	868		TEST	BYTE PTR [BX],OFFH	; OPERATION COMPLETE STATUS = OOH?
		= 1	869				; $(SIGN FLAG = BIT / OF OP. STATUS,$
0154	7456	= 1	871		17	WATTIR	STATUS (NOR (OPERATION COMPLETE))
OTEA	7410	= 1	872		52	WAIILF	, STATUS (> OUR (OPERATION COMPLETE)?
0150	7906	= 1	873		INS	UATTON .	• YESERROR OCCURRED DURING RUNCTION?
1110	////	= 1	874		0.05	(ATTON	, TES ERROR OCCORRED DORING FUNCTION.
0155	8407	= 1	875		MOV	AT [RX]	· YESSAVE CIR OF STATUS IN "LETETS"
01F0	A21800	= 1	876		MOV	LSTSTS.AL	, IDS SAVE OID OIL SIRIOS IN ESISIS
01F3	F 9	= 1	877		STC	•	; SET CARRY FLAG TO INDICATE ERROR
01F4	C60700	= 1	878	WAITDN:	MOV BYT	E PTR [BX],00H	; CLEAR OPERATION COMPLETE BYTE
01F7	1 F	= 1	87 9		POP	DS	; RESTORE REGISTERS
01F8	5 B	=]	880		PUP	ВХ	
01F9	58	= 1	881		POP	AX	
01FA	C 3	= 1	882		RET		; RETURN
		= 1	883	;			
		= 1	884 555	WAIT215	ENDP		
			550 996 - 1	; ; - : : : : : : : :		COR MMO	•
		_ ,	000 T. 227 - 1	- 3130200 - 551567 - 1	2)] F 1 E K 7 T E / E B	NUR HIMUJ 202 HANDI 22)	
		= ;		1	LIILDULKI	NUK NANULEKJ	

MCS-86 MACRO ASSEM	BLER	ERROR	• HANDLER			
LOC OBJ		LINE	SOURCE			
	= 1	888	;			
	= 1	889	; [
	= 1	890	;	ERROR	AANDLER	
	=1	892	;			
	= 1	893	;			
	= 1	894	;	THIS RO	DUTINE IS SYSTEM DEPENDE	NT. IN THIS EXAMPLE, THE ERROR INFOR-
	= 1	895	;	MATION	FROM THE CONTROLLER IS	READ INTO SOFTWARE REGISTERS IN DATASEG,
	= 1	896	;	WHERE I	IT CAN BE EXAMINED. MOR	E SOPHISTICATED SYSTEMS MIGHT LOG THE
	= 1	898		ERRORS	TO DETERMINE WHEN A TRA	CK IS GOING BAD, FOR EXAMPLE.
	=1	899	, - THE	TRANSFE	ER STATUS FUNCTION WILL	NOT RETURN AN ERROR.
	= 1	900	; - THE	UNIT NU	JMBER IN THE LOPB IS NOT	CHANGED, SO THAT THE OPERATION COMPLETE
	= 1	901	;	STATUS	FOR THE TRANSFER STATUS	FUNCTION WILL BE POSTED AGAINST THE SAME
	= 1	902		UNIT AS	G CAUSED THE ERROR.	
	- 1 = 1	903	; : INPUT	DATA:		
	= 1	905	;	CIB OPE	RATION STATUS IN "LS	TSTS" IN DATA SEGMENT
	= 1	906	;			
	= 1	907	; Ουτρυ	T DATA:		
	= 1	908	i	ERROR S	TATUS FROM CONTROLLER	IN DATA SEGMENT IN "LETETS" IN DATA SECMENT
	= 1	910	;	CARRY	LAG	= 0 IF SOFT (RECOVERABLE) ERROR
	= 1	911	;			= 1 IF HARD (UNRECOVERABLE) ERROR
	= 1	912	;			
	= 1	913	;			
	=1	914		ASSUME	DS: TOPBSEG	
0168	=1	916	, ERROR	PROC	NEAR	
	= 1	917	;			
01FB 50	≠ l	918		PUSH	AX	; SAVE REGISTERS
Olfc le	= 1	919		PUSH	DS	
01FD B8	R = 1	920		MOV	AX, TOPBSEG	; GET POINTER TO TOPB
0202 A11200	= 1	922		MOV	AX.BUFOFF	: SAVE IOPB DATA BUFFER POINTER
0205 50	= 1	923		PUSH	AX	,
0206 A11400	= 1	924		MOV	AX, BUFSEG	
0209 50	= 1	925		PUSH	AX	
0210 67061400	= 1 = 1	920		MOV	BUFOFF, OFFSEL ERRSIS	; GET PUINTER TO DATA SEGMENT ERROR • STATUS DECISTEDS
0216 C6060B0001	=1	928		MOV	FUNC.01H	: SET FUNCTION = TRANSFER STATUS
021B C7060C000000	= 1	929		MOV	MODIFY,0000H	; CLEAR MODIFIER (ENABLE INTERRUPT ON
	= 1	930				; COMPLETION AND RETRIES)
0221 E89EFF 0224 58	= 1	931		CALL	G0215	; START FUNCTION AND WAIT FOR COMPLETE
0225 A31400	= 1	933		MOV	BUFSEG.AX	, RESTORE TOTE DATA BOFFER FOINTER
0228 58	= 1	934		POP	AX	
0229 A31200	= 1	935		MOV	BUFOFF,AX	
022C B8	R = 1	936		MOV	AX, DATASEG	; GET POINTER TO DATA SEGMENT
0221 6608	= 1	937		MOV	DS,AX	CLEAR CARRY FLAC
0232 A01800	= 1	939		MOV	AL.DS:LSTSTS	: GET OLD (ERROR) CIB OPERATION STATUS
0235 2440	= 1	940		AND	AL,40H	; CHECK HARD ERROR BIT
0237 7401	= 1	941		JZ	SFTERR	; HARD ERROR BIT SET?
0120 50	= 1	942		6m <i>c</i>		; NOLEAVE CARRY FLAG CLEAR
0237 F7 0238 1F	= 1 = 1	943	SETERP	POP	DS	; ILSH-SET CARRY FLAG • RESTORE RECISTERS
023B 58	= 1	945	JI I LIKK :	POP	AX	, RESIGNE REGISTERS
023C C3	= 1	946		RET		
	= 1	947	;			
	= 1	948	ERROR	ENDP		
		950 +1	; SINCLUDE	(:F):IN	TRPT.MMD)	
	= 1	951 +1	SEJECT 1	ITLE(IN	TERRUPT SERVICE ROUTINE)	

MCS-86 MACRO ASSEMBLER		INTERRUPT SERVICE ROUTINE					
LOC OBJ		LINE	SOURCE				
	= 1	952	;				
	= 1	953	;			I	
	= 1	954	; I	NTERRU	PT SERVICE ROUT:	INE	
	= 1	900	;				
	-1	957					
	= 1	958	; т	HIS RO	UTINE SERVICES 1	THE INTERR	UPT GENERATED BY THE 1SBC 215 UPON
	= 1	959	; 0	PERATI	ON COMPLETE, SEE	EK COMPLET	E, OR DISK PACK CHANGE. IT COPIES THE
	= 1	960	; c	IB OPE	RATION STATUS IN	NTO ONE OF	FOUR BYTES ASSOCIATED WITH EACH OF
	= 1	961	; T	HESE E	VENTS. IT IS AS	SSUMED THAT	T SYSTEM PROGRAMS MAKE USE OF THE
	= 1	962	; 1	NFURMA	F DIRECTORY INFO	LASKS, HANI	FOR THIS PROCRAMMING FYAMPLE ONLY
	= 1	964	, 1 : Т	HE OPE	RATION COMPLETE	BYTES ARE	USED.
	= 1	965	;				
	= 1	966	; - THE S	YSTEM	INTERRUPTS ARE (CONFIGURED	BY EXTERNAL PROGRAMS.
	= 1	967	;				
	= 1	968	;		TN 77 2 1 6		
	1 = 1	909	· r	UBLIC	INIZIO		
023D	= 1	971	, INT215 P	ROC	FAR		
	= 1	972	;				
023D FB	≃ 1	973	S	TI		:	;;; ENABLE HIGHER PRIORITY INTERRUPTS
023E 50	= 1	974	P	USH	AX	1	;;; SAVE REGISTERS
0238 53	= 1	9/5	P	USH	BX		
0240 52 0241 1F	= 1	976	P	105H 115H			
	= 1	978	Ā	SSUME	DS:CIBSEG		
0242 88	R = 1	979	м	IOV	AX,CIBSEG	1	GET POINTER TO CIB
0245 8ED8	= 1	980	H	10 V	DS,AX		
0247 A00100	=1	981	M	lov	AL, OPSTS	;	GET CIB OPERATION STATUS
0248 6800	= 1	982	m M	01	STSSEM OOH		, SAVE LI - CIFAR CIR STATUS SEMAPHORE
0251 8AD8	= 1	984	M	ov	BL.AL	,	MOVE IT TO INDEX REGISTER
0253 81E33000	= 1	985	А	ND	вх,0030н		MASK ALL BITS EXCEPT UNIT NUMBER
0257 D1EB	= 1	986	S	HR	BX,1	;	SHIFT UNIT NUMBER TO BITS O AND 1
0259 D1EB	= 1	987	S	HR	BX,1		
025B DIEB	= 1	988	S	HR	BX,I		
025F 250600	= 1	990	A	ND	AX.0006H	:	MASK ALL BITS EXCEPT SEEK COMPLETE
	= 1	991				;	AND PACK CHANGE
0262 D1E0	= 1	992	S	HL	AX,1	;	SHIFT LEFT TO GET OFFSET INTO PROPER
00// 00-0	= 1	993				;	BYTE IN DATA SEGMENT
0264 0308	= 1 - 1	994	A	DD	BX,AX	;	COMBINE WITH UNIT IN INDEX REGISTER
0266 88	R = 1	996	A M	0V	AX. DATASEG		GET POINTER TO DATA SEGMENT
0269 8ED8	= 1	997	M	ov	DS,AX	,	
026B 8817	= 1	998	M	0 V ([BX],DL	;	MOVE OPERATION STATUS TO DATA SEGMENT
026D BA5063	= 1	999	M	0 V	DX,WUA	;	GET POINTER TO I/O WAKE-UP ADDRESS
0270 BUUZ	=1	1001	M	UV 11 1 1	AL,UUH	;	GET CLEAR INTERRUPT COMMAND BYTE
0272 66	= 1	1001	. 0	U I	DA,AL	;	001201 10 1580 215
0273 1F	= 1	1003	, P	0 P	DS	;	RESTORE REGISTERS
0274 5A	= 1	1004	P	0 P	DX		
0275 5B	= 1	1005	P	0 P	ВX		
02/6 FA	= 1	1006	С	LI		;	DISABLE INTERRUPTS FOR RESTORE
	= 1	1007				,	IS SYSTEM DEPENDENT. THIS EXAMPLE USES
	= 1	1009				,	THE iSBC 86/12A CPU.)
0277 B020	= 1	1010	M	ov	AL,20H	;	;; GET END-OF-INTERRUPT COMMAND
0279 E6C0	= 1	1011	0	UT	OCOH,AL	;	;; OUTPUT EOI COMMAND TO 8259
02/B 58	= 1	1012	P	OP	AX	;	··· ···
0276 CF	= 1 = 1	1013	•	RE I		;	;; INTERRUPT RETURN ENABLES INTERRUPTS
	= 1	1015	, INT215 EI	NDP			
	-	1016	;	-			
		1017	SBC215DRI	VER	ENDS	;	END OF ISBC 215 DRIVER CODE
		1018	;	ND01 -	DIE IND ODOOC -		
		1019 +1	STITLE(SY	MBUL TA	ADLE AND CROSS R	EFERENCE)	
		1021	, El	ND		:	END OF PROGRAMMING EXAMPLE
						,	

MCS-86 MACRO ASSEMBLER SYMBOL TABLE AND CROSS REFERENCE

XREF SYMBOL TABLE LISTING

NAME	TYPE V	VALUE	ATTRIBUTES, XREFS
??SEG	SEGMENT		STZE=0000H PARA PUBLIC
ACTCNT	V DWORD (0004H	IOPBSEG 129#
ACTCYL	V WORD (0013H	DATASEG 312#
ACTHD	V BYTE (0015H	DATASEG 313#
ACTSEC	V BYTE (V BYTE (00158	
BSYFIC2	V BYTE (00098	CCBSEG 85#
BUFOFF	V WORD (00128	IOPBSEG 137# 565 567 646 647 706 770 922 926 935
BUFSEG	V WORD (0014H	IOPBSEG 138# 563 648 708 772 924 927 933
ссв	L FAR (0000н	CCBSEG 64 77# 454 455
CCBPTR	V DWORD (0002H	SCRSEG 64# 454 455 459
CCBSEG	SEGMENI V BVTE (00004	SIAE=0010H PARA 75% 52 400 504 505
CCW2	V BYTE (00088	CCBSEG 84# 464
CH1PC	L FAR (0004H	CIBSEG 80 110# 462 463 476
CHIPTR	V DWORD (0002H	CCBSEG 80# 462 463
CH2PC	L FAR (000EH	CCBSEG 86 89# 465 466 467
CH2PTR	V DWORD (00004H	
	LFAR U V BYTE (00008	
CIBCHD	SEGMENT	000011	SIZE=0010H PARA 103# 116 471 472 978 979
CLRLP	L NEAR (00 78 H	SBC215DRIVER 488# 491
CMDSEM	V BYTE (0002H	CIBSEG 108# 475
CONFIG	LFAR (0000H	USERSEG PUBLIC 377 380# 396
CYLNDR	V WORD (000EH	10PBSEG 134# 043 /02 /00 0740-00144 048 226 /03 /04 056 061 027 036 005 006
DATASEG	SEGMENI V VORD (00054	5125=001AB FARA 2668 520 465 464 654 661 527 550 555 550 DATASEC 3698
DESHD	V BYTE (00118	DATASEG 310#
DESSEC	V BYTE	0012H	DATASEG 311#
DEVCOD	V WORD (000 8 H	IOPBSEG 130# 559 577 580 639 698 762
DONE	L NEAR	01D2H	SBC215DRIVER 816 820#
ENDDAT	L FAR (001AH	DATASEG 324# 486
ENDSIK	L FAR U	00408	SIAUK 50/# 505 CUC15DETUED 818 016# 048
ERRSTS	V WORD (000Сн	DATASEG PUBLIC 278 307# 926
FMT215	L FAR	OOEFH	SBC215DRIVER PUBLIC 629 632# 658
FMTDN	L NEAR (012 9 H	SBC215DRIVER 654#
FUNC	V BYTE	ОООВН	IOPBSEG 132# 560 649 715 779 928
G0215	L NEAR (0102H	SBC215DRIVER 569 652 716 780 808# 824 931
HEAD	V BYTE (00108	1078586 1357 645 704 768 SRC215051060 DURITO 550 553# 586
INITELSEG	SEGMENT	00451	SIZE=003FH PARA 170# 258 563
INITDN	L NEAR (OOECH	SBC215DRIVER 571 579 582#
INITLP	L NEAR (00CBH	SBC215DRIVER 567# 575 581
INT215	LFAR (023DH	SBC215DRIVER PUBLIC 388 389 969 971# 1015
INTRCS	V WORD (00968	SEG0000 355# 389
INIKIP••••	V WORD (0034R 0005H	347# 352
IOPB	LFAR (0000H	IOPBSEG 112 127# 477 478
IOPBOFF	V WORD (0008н	CIBSEG 112# 477
IOPBSEG	SEGMENT		SIZE=001EH PARA 113 125# 142 551 557 630 636 689 695 753 759 914 920
IOPBSG	V WORD (000AH	CIBSEC 113# 478
LSTSTS	י איזד ע ע אראד ע	00188	URIRSEG - 320# 070 939 TOPRSEC - 133# 561 650 713 777 929
NMRTRY	VBYTE (0017H	DATASEG 315#
OPCMP	V BYTE (0000H	DATASEG PUBLIC 278 282#
OPCMP0	V ΒΥΤΕ (0000H	DATASEG 283#
OPCMP1	V BYTE (0001H	DATASEG 284#
OPCMP2	V BYTE (0002H	DATASEG 285#
OPENES	V BILE (00038	
PKCHG	V BYTE (00088	DATASEG PUBLIC 278 298#
PKCHGO	V BYTE	00088	DATASEG 299#
PKCHG1	V BYTE (000 9H	DATASEG 300#
PKCHG2	V BYTE (000AH	DATASEG 301#
PKCHG3	V BYTE (00088	DATASEG 302# SPC215DDIVED DUBLIC 688 601# 722
KU213	5 FAK (V DWOPD (0126H 00164	SDULIJURIVER PUBLIC 000 0914 722 TOPRSEC 139# 710 712 774 776
RES215.	L FAR (00000	SBC215DRIVER PUBLIC 436 438# 526
RESDN	L NEAR (00 9 FH	SBC215DRIVER 514 519#
RESLP	L NEAR (00 95 H	SBC215DRIVER 512# 516
SBC215DRIVER.	SEGMENT	0.0.0.0.0	SIZE=027DH PARA 400# 402 1017
SCB	I, FAR (SECMENT	0000H	ЭСИЭНС - 014 ST7F=0006H РАРА АВS - 59# 66 450 451
SECTOR.	στοπτική V ΒΥΤΕ - Γ	0011H	IOPBSEG 136#
SEG0000	SEGNENT		SIZE=0098H PARA ABS 349# 357 378

MCS-86 MACRO	ASSEMBLER SYMI	BOL TABLE AND CROSS REFERENCE
NAME	TYPE VALUE	ATTRIBUTES, XREFS
SFEDGT	V BYTE OOORU	
CETEDD	T NEAD 023AU	
SFIERR	L NEAR 023AH	5862150RIVER 941 944#
SKCMP	V BYTE 0004H	DATASEG PUBLIC 278 290#
SKCMP0	. V BYTE 0004H	DATASEG 291#
SKCMP1	. V BYTE 0005H	DATASEG 292#
SKCMP2	. V BYTE 0006H	DATASEG 293#
SKCMP3	. V BYTE 0007H	DATASEG 294#
SOC	. V BYTE 0000H	SCBSEG 62# 453
STACK	. SEGMENT	SIZE=0040H PARA
STSSEM	. V BYTE 0003H	CIBSEG 109# 983
UNIT	. V BYTE 000AH	IOPBSEG 131# 568 641 700 764
USERSEG	. SEGMENT	SIZE=0022H PARA 375# 398
WAIT215	, L NEAR 01D5H	SBC215DRIVER 815 856# 884
WAITDN	L NEAR 01F4H	SBC215DRIVER 873 878#
WAITLP	L NEAR 01E2H	SBC215DRIVER 866# 871
WRT215	. L FAR 0178H	SBC215DRIVER PUBLIC 752 755# 786
WIIA	NUMBER 0635H	57 # 59 497 812 999

ASSEMBLY COMPLETE, NO ERRORS FOUND

-5V selection 2-8 14/8-inch drives (with integral data separator) installation 2-36 5 1/4 drives installation 2-37 address 3-28, 3-29, 3-37, 3-49 I/O addresses 3-4 wake up address 3-7 alternate track 3-42 ANSI A-1 Any Bus request signal 2-5 block diagram 5-9 board initilization/resetting 4-10 I/O communications blocks links 4-12 reset and clear 4-12 wake-up address comparator 4-1ø board installation 2-35 bus arbiter 4-6 bus priority arbitration 2-5 Any Request signal 2-5 bus priority out signal 2-6 common bus request signal 2-5 I/O comunication blocks page selection 2-9 iSBX bus selection 2-6 MULTIBUS LOCK signal 2-6 bus priority out signal 2-6 cabling requirements 2-16 drive interface pin out data 2-17 control cable functions 2-19 read/write cable functions 2-22 interconnecting cable 2-29 5 1/4-inch drive 2-32 8-inch Shugart/Quantum drives 2-29 ANSI drive 2-34 CDC drive 2-33 Fujitsu 2300/Memorex/14-inch drives 2-30 Priam drive 2-31 capacity 1-7 clock circuitry 4-6 commands 3-11, 3-15 buffer I/O 3-3Ø diagnostic 3-31 erase tape 3-33 execute 3-28 initiate track seek 3-27 load tape 3-34 read sector 3-21

INDEX

```
read data 3-22
    read to buffer and verify 3-24
    read tape status 3-35
    read/write terminate 3-35
    retension tape 3-34
   rewind 3-32
   space forward one file mark 3-32
   spin down 3-28
   tape initialization 3-31
   tape reset 3-34
   tape write 3-26
   transfer 3-28
   write data 3-25
   write buffer data 3-26
   write file mark 3-33
common bus request signal 2-5
communications
   board/disk-drive interface 4-14
        control signals 4-14
        read/write signals 4-14
   board/flexible-disk and cartridge tape drive interface 4-15
        data transmission 4-15
   bus arbiter 4-6
   bus controller 4-7
        address/data control 4-8
        data and peripheral data signals 4-8
        MULTIBUS data transfer 4-9
        system/local memory access 4-8
   disk interface timing 4-15
             direct memory access transfers 4-15
             data transfers 4-16
             performing write or read 4-16
             RDY line 4-15
        disk formatting 4-17
             8-inch Shugart/Quantum drive sector format differences 4-19
             procedure 4-18
        read data transfers 4-21
        write data transfers 4-20
             ID read 4-21
             sync byte search 4-21
   error checking code generator 4-23
   interrupt priority 4-13
   I/O processor 4-5
        bus interface unit 4-6
        internal initialization 4-12
   line drivers and receivers 4-25
   MULTIBUS interface 4-5
   sector identity comparator 4-23
   serializer/deserializer 4-22
        function 4-22
        write operation 4-22
        read operation 4-22
   status register 4-24
   sync byte comparator 4-23
   with host 4-3, 4-5
   with hard disk 4-4
   via iSBX bus 4-5
                                Index-2
```

INDEX

```
communications blocks 3-4
    wakeup 3-4, 3-7, 3-13
    channel control block 3-5, 3-7, 3-8, 3-9, 3-13
    controller invocation block 3-5, 3-9, 3-13
    I/O parameter block 3-5, 3-11, 3-12, 3-13, 3-29, 3-31, 3-41
cooling requirements 2-2
direct memory access transfers 4-15
    data transfers 4-16
    performing write or read 4-16
    RDY line 4-15
default jumpers 5-5
disk control format 3-1
disk controller communications protocol 3-1
disk formatting 4-17
    8-inch Shugart/Quantum drive sector format differences 4-19
    procedure 4-18
disk interface timing 4-15
disk organization 3-1, 3-3
    cylinders 3-2, 3-12, 3-17, 3-37
    sectors 3-2, 3-12, 3-17
    tracks 3-2, 3-17
drive installation 2-35
    5 1/4-inch drives 2-37
    other drives without data separator 2-37
drive interconnection listings 2-23
    8-inch Shugart/Quantum drives 2-23
    Fujitsu 2300/Memorex/14-inch Shugart drives 2-24
    Priam drive 2-25
    5 1/4-inch drive 2-26
    CDC drive 2-27
    ANSI drive 2-28
drives 1-5
ECC 3-45
error checking code generator 4-23
error detection 1-5
example program B-2
firmware drivers 3-47
flexible diskette controller 3-1
format command 3-19
general description 1-1
handshake B-1
hard disk drive interface 2-7
```

```
I/O communications block 3-5, 3-7
I/O control commands 3-5
I/O processor 3-1, 3-7
I/O processor 4-5
    bus interface unit 4-6
    internal initialization 4-12
ID field 3-45
initialization 3-7, 3-13, 3-31, 3-34
initialize 3-15, 3-16, 3-31, 3-34
installation 2-1
interface connections 2-9
interrupt 3-1, 3-46
interrupt priority 4-13
interrupt priority number 2-4
iSBX 217B/C board installation 2-39
iSBX 218A board installation 2-38
iSBX MULTIMODULE interface 2-14
    iSBX bus/iSBX 215G board mnemonics 2-15
iSBX bus selection 2-6
jumper configuration and installation 2-2
    -5V selection 2-8
    Any Request signal 2-5
    bus priority out signal 2-6
    common bus request 2-5
    configuration 2-2
    installation 2-2
    interrupt priority number 2-4
    I/O communication blocks page 2-9
    iSBX bus selection 2-6
    MULTIBUS LOCK signal
                          2-6
    system data bus width selection 2-4
    wake-up address 2-3
    wake-up port selection 2-4
jumper connections 5-5
jumper diagram 5-7
line drivers and receivers 4-25
local memory organization 4-25
    I/O port decoding 4-26
    random-access memory 4-26
    read-only memory 4-26
magnetic tape interface 3-1
mounting 1-5
MULTIBUS LOCK signal 2-6
MULTIBUS interface 2-9
    connector P1 pin assignments 2-10
    connector P1 input/output signals 2-12
    connector P2 pin assignments 2-11
    connector P2 input/output signals 2-14
```

INDEX

```
physical characteristics 2-2
power 1-5
power requirements 2-1
read 3-11, 3-24
recalibrate 3-31
repair 5-1
                      ٠
schematics 5-11
sector 3-2, 3-12, 3-17, 3-25, 3-43, 3-44
sectors 1-6
seek 3-27, 3-42, 3-46
serializer/deserializer 4-22
    function 4-22
    read operation 4-22
   write operation 4-22
service 5-1
specifications 1-4
status 3-9, 3-10, 3-19, 3-27, 3-35, 3-37, 3-38, 3-39, 3-40, 3-42 to 45
status register 4-24
storage devices 3-2
   hard disk 3-2, 3-16, 3-39, 3-40, 3-41, 3-42, 3-43, 3-44
    flexible disk 3-2, 3-16, 3-39, 3-4Ø, 3-41, 3-42, 3-43, 3-44
    cartridge tape 3-2, 3-16, 3-39, 3-40, 3-41, 3-42, 3-43, 3-44
system data bus width selection 2-4
tape 3-26, 3-31, 3-33, 3-34, 3-35, 3-39 to 45
track sectoring format 3-1
user provided drivers 3-47
wake-up I/O port selection 2-4
wake-up address selection 2-3
write 3-11, 3-25, 3-33
write data transfers 4-2Ø
   ID read 4-21
    read data transfers 4-21
   sync byte search 4-21
```


REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Interproduct users. This form lets you participate directly in the publication process. Your comments will he us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness this publication. If you have any comments on the product that this publication describes, please conta your Intel representative. If you' wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of	1 to 5 (5 being the best rating).	
NAME		DATE
TITLE		
COMPANY NAME/DEPARTMENT		
ADDRESS		
CITY	_ STATE (COUNTRY)	ZIP CODE
Please check here if you require a written reply.		

/E'D LIKE YOUR COMMENTS . . .

his document is one of a series describing Intel products. Your comments on the back of this form ill help us produce better manuals. Each reply will be carefully reviewed by the responsible erson. All comments and suggestions become the property of Intel Corporation.

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation 5200 N.E. Elam Young Pkwy. Hillsboro, Oregon 97123

OMO Technical Publications

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

SINGLE BOARD COMPUTER