
intel Software Development Tools

MCS®-51 Utilities
User’s Guide for DOS Systems

M
CS®

-51 U
tilities U

ser’s G
uide for D

O
S System

s

MCS®-51 UTILITIES USER’S GUIDE
FOR DOS SYSTEMS

Order Number: 122747-001

Copyright © 1986 Intel Corporation. All rights reserved.
Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact
your local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embod­
ied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the
prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify
Intel products:

Above 'm iSBC Plug-A-Bubble
BITBUS iMDDX iSBX PROMPT
COMMputer iMMX iSDM Prom ware
CREDIT Insite iSXM QueX
Data Pipeline intel KEPROM QUEST
Genius inteIBOS Library Manager Ripplemode
i Intelevision MCS RMX/80

inteligent Identifier Megachassis RUP1
i2ice inteligent Programming MICROMAINFRAME Seamless
ICE Intellec MULTIBUS SLD
iCEL Intellink MULTICHANNEL UPI
iCS iOSP MULTIMODULE VLSiCEL
iDBP iPDS ONCE
iDIS iPSC OpenNET
iLBX iRMX PC-BUBBLE

REV. REVISION HISTORY DATE APPD.

-001 Original issue. 3/86 M.K.S.

Preface

This manual describes the RL51 linker and locator and the LIB51 librarian for
program modules produced by MCS-51 language translators such as ASM51 and
PL/M-51.

The RL51 and the LIB51 program operate on an Intel development system with an
8080 or 8085 processor. The configuration must include 64K of RAM, a console, and
at least one diskette or hard disk drive.

NOTE
In this manual, the term MCS-51 refers to all members of the MCS-51 family
of microcomputers and to the software development tools for the MCS-51
family.

Reader’s Guide
The manual is organized into six chapters and five appendixes:

Chapter 1 discusses the advantages of modular programming and summarizes the
process of modular programming with the MCS-51 development tools.

Chapter 2 reviews the mechanics of linkage and location for the RL51 program.

Chapter 3 gives the details on invoking the linker/locator.

Chapter 4 discusses the files and displays produced by the RL51 program, with
examples.

Chapter 5 contains three examples of programs, with the link and locate steps for
each program.

Chapter 6 describes the LIB51, the MCS-51 library manager and its usage.

Appendix A presents the syntax of the RL51 commands with brief definitions of the
controls.

Appendix B lists the error messages and warnings displayed by RL51, with suggestions
for corrective action.

Appendix C lists a summary of LIB51 commands.

Appendix D lists the error messages generated by LIB51, with suggestions for
corrective action.

Appendix E contains hexadecimal-decimal conversion tables as a convenient reference.

Related Publications

The following list provides the manual title and order number for all Intel software
development tools that run on DOS systems. Note that some manuals have two
formats and two order numbers. One version of the manual is provided in a binder.
This version is not sold separately; it can only be purchased when purchasing a
software product. The second version, which has a soft cover, is sold separately. Use
the soft cover number when ordering a manual separately.

vi MCS®-51

Manual Title Binder Soft Cover

MCS®-51 Macro Assembler User’s Guide for DOS
Systems

122753 122752

PL/M-51 User’s Guide for DOS Systems 122742 122743
MCS®-51 Family of Single-Chip Microcomputers
User's Manual for DOS Systems

121517

MCS®-51 Macro Assembly Language Pocket
Reference for DOS Systems

122755

MCS®-51 Utilities Pocket Reference for DOS
Systems

122750

Notational Conventions
UPPERCASE Characters shown in uppercase must be entered in the order

shown. Enter the command words as shown, or use a system-
defined abbreviation. You may enter the characters in upper­
case or lowercase.

italic Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

directory-name Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

filename Is a valid name for the part of a pathname that names a file.

system-id Is a generic label placed on sample listings where an oper­
ating system-dependent name would actually be printed.

Mx.y

[]

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

{ } One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

I 1...

1

At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other­
wise noted.

The vertical bar separates options within brackets [] or
braces { 3 .

Ellipses indicate that the preceding argument or parameter
may be repeated.

L ■] The preceding item may be repeated, but each repetition must
be separated by a comma.

Preface vii

punctuation Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(PROGA , SRC , ' 9 SEPT 81')

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

122749-001

Table of Contents

Chapter 1 Page
Introduction
The Advantages of Modular Programming .. 1-1

Efficient Program Development ... 1-1
Multiple Use of Subprograms .. 1-1
Ease of Debugging and Modifying ... 1-1

MCS®-51 Modular Program Development Process ... 1-1
Segments, Modules, Libraries, and Programs .. 1-2
Entering and Editing Source Modules .. 1-3
Assembly and Compilation ... 1-3
Relocation and Linkage .. 1-3
ROM and PROM Versions .. 1-3
ICE™-51 In-Circuit Emulator .. 1-3
Keeping Track of Files .. 1-3

Chapter 2
The Mechanics of Linkage and Location with RL51
Major Functions ... 2-1
Selecting Modules .. 2-1
Partial Segments ... 2-2
Combining Relocatable Segments .. x....................... 2-2
Allocating Memory for Segments .. 2-3
Overlaying Data Segments ... 2-4
Resolving External References ... 2-4
Binding Relocatable Addresses .. 2-5

Chapter 3
Using the RL51 Program
Introduction .. 3-1
RL51 Command Format Summary ... 3-1
Invocation ... 3-2
Input List .. 3-2
Output File ... 3-3
Controls .. 3-4
Listing Controls .. 3-4

PRINT/NOPRINT .. 3-4
PAGEWIDTH .. 3-5

Listing Switches ... 3-5
IXREF/NOIXREF .. 3-5

Linking Controls .. 3-7
NAME .. 3-7

X MCS®-51

Page
Linking Switches .. 3-7
Locating Controls ... 3-8

Allocation Sequence .. 3-8
Format Summary ... 3-9
Table of Locating Controls ... 3-9
Notes on Locating Controls .. 3-9

Configuration Controls ... 3-11
RAMSIZE ... 3-11

OVERLAY/NOOVERLAY Controls ... 3-11
OVERLAY ... 3-12
NOOVERLAY ... 3-12
OVERLAY (A > B) or (A] B) ... 3-12
OVERLAY (A > *,* > B) or (A]*, *]B) ... 3-12

Abbreviations for Command Words ... 3-14

Chapter 4
RL51 Outputs
Console Display .. 4-1
Listing File ... 4-1

Link Summary ... 4-1
Symbol Table ... 4-2
Inter-Module Cross-Reference Report (IXREF) .. 4-4
Error Messages ... 4-4

Absolute Object File ... 4-5

Chapter 5
Examples of Program Development
Using Multiple Modules ... 5-1
Using the Locating Controls ... 5-16
Using RL51 with PL/M-51 Modules ... 5-16

Chapter 6
LIB51 Librarian
Introduction .. 6-1
Invoking LIB51 .. 6-1

Noninteractive Mode .. 6-1
Interactive Mode .. 6-1
Character Set ... 6-1

LIB51 Commands ... 6-1
Command Entry .. 6-1
Command Descriptions ... 6-3

ADD ... 6-3

Table of Contents xi

Page
CREATE .. 6-4
DELETE .. 6-5
EXIT ... 6-6
EXTRACT ... 6-7
HELP .. 6-8
LIST ... 6-9
REPLACE .. 6-10

Appendix A
Summary of RL51 Controls

Appendix B
RL51 Error Messages

Appendix C
LIB51 Command Summary

Appendix D
LIB51 Error Messages

Appendix E
Hexadecimal-Decimal Conversion Table

Index

Figures
1-1 MCS®-51 Program Development Process .. 1-2
4-1 Link Summary ... 4-2
4-2 Symbol Table ... 4-3
4-3 IXREF Listing .. 4-5
5-1 SAMP1 Listing File .. 5-2
5-2 SAMP2 Listing File .. 5-6
5-3 SAMP3 Listing File .. 5-9
5-4 RL51 Output File .. 5-13
5-5 TEST01 Assembly Listing File .. 5-19
5-6 RL51 Listing File without PRECEDE .. 5-20
5-7 RL51 Listing File with PRECEDE ... 5-21
5-8 PL/M-51 Listing File of CHKEQ ... 5-22
5-9 ASM51 Listing File of HLTICE ... 5-24
5-10 RL51 Listing File of CHK EQ ... 5-26

xii MCS®-51

Page
Tables
2-1 Address Spaces and Segment Types .. 2-4
3-1 Definitions of Common Terms .. 3-2
3-2 Listing Switches ... 3-6
3-3 Linking Switches .. 3-8
3-4 Locating Controls ... 3-9
6-1 LIB51 Commands .. 6-2
A-l Definitions of Common Terms ... A-l
A-2 Listing Controls and Switches .. A-3
A-3 Linking Controls and Switches .. A-4
A-4 Locating Controls ... A-4
A-5 Configuration Control .. A-4
A-6 Overlay Controls .. A-5
A-7 Abbreviations for Command Words .. A-5
C-l LIB51 Commands .. C-l
E-l Hexadecimal-Decimal Conversion Table ... E-l

122749-001

Introduction

The Advantages of Modular Programming

Many programs are too long or complex to write as a single unit. Programming
becomes much simpler when the code is divided into small functional units. Modular
programs are usudllyeasier to code, debug, and change than monolithic programs.

The modular approach to programming is similar to the design of hardware that
contains numerous circuits. The device or program is logically divided into “black
boxes” with specific inputs and outputs. Once the interfaces between the units have
been defined, detailed design of each unit can proceed separately.

Efficient Program Development

Programs can be developed more quickly with the modular approach because small
subprograms are easier to understand, design, and test than large programs. With the
module inputs and outputs defined, the programmer can supply the needed input and
verify the correctness of the module by examining the output. The separate modules
are then linked and located into one program module. Finally, the completed program
is tested.

Multiple Use of Subprograms

Code written for one program is often useful in others. Modular programming allows
these sections to be saved for future use. Because the code is relocatable, saved modules
can be linked to any program that fulfills their input and output requirements. With
monolithic programming, such sections of code are buried inside the program and are
not so available for use by other programs.

If you put your frequently-used subprograms into a library, RL51 will take care to
load only those you need. Thus, you can save RAM and ROM without having to
keep track of what is needed and what is not.

Ease of Debugging and Modifying

Modular programs are generally easier to debug than monolithic programs. Because
the modular interfaces are well-defined, problems can be isolated to specific modules.
Once the faulty module has been identified, fixing the problem is considerably simpler.
When a program must be modified, modular programming simplifies the job. You
can link new or modified modules to the existing program with confidence that the
rest of the program will not be changed.

MCS®-51 Modular Program Development Process
This section is a brief review of the program development process using an MCS-51
language translator (e.g., the relocatable MCS-51 assembler or PL/M-51 compiler),
linker/locator, code converter programs, PROM programmer, and ICE™-51 in-circuit
emulator. The process is shown in figure 1-1.

1-2 MCS®-51

Figure 1-1. MCS®-51 Program Development Process

Segments, Modules, Libraries, and Programs

In the initial design stages, the tasks to be performed by the program are defined and
then partitioned into subprograms. Here are brief introductions to the kinds of
subprograms used with the MCS-51 assembler and linker/locator.

A segment is a unit of code or data memory. A segment may be relocatable or
absolute. A relocatable segment in a module can be a complete segment or can be a
“partial” segment to be combined with other partial segments from other modules.
A relocatable segment has a name, type, and other attributes that allow the linker to
combine it with other partial segments, if required, and to correctly locate the segment.
An absolute segment has no name and cannot be combined with other segments. See
Chapter 2 for more detail on partial segments.

A module contains one or more segments or partial segments. A module has a name
assigned by the user. The module definitions determine the scope of local symbols.
An object file contains one or more modules. You can add modules to a file by trans-
fering the new modules from their individual files to another file.

A library is a file that contains one or more modules. A library file is internally
marked as a library, so RL5l can easily identify it as such. RL51 selects, out of the
modules in the library, only those previously referenced. Libraries are created using
the LIB51 utility, which is described in detail in Chapter 6.

A program consists of a single absolute module, merging all absolute and relocatable
segments from all input modules. The name of the output module produced by RL51
can be defined by the user or allowed to default to the name of the first input module.

Introduction 1-3

Entering and Editing Source Modules

After the design is completed, use the text editor on your system to code the modules
into source files. The source modules are coded in assembly language or a high-level
language such as PL/M-51. The editor may also be used to make corrections in the
source code.

Assembly and Compilation

The assembler (ASM51) and compiler (PL/M-51) translate the source code into
relocatable object code, producing an object file. The ASM51 object file is relocata­
ble when at least one input segment is relocatable; otherwise the object file is an
absolute file. The PL/M-51 object file is always relocatable. The assembler and
compiler also produce a listing file showing the results of the translation. When the
ASM51 or PL/M-51 invocation contains the DEBUG control, the object file also
receives the symbol table and other debug information for use in symbolic debugging
of the program.

Relocation and Linkage

After translation of all modules of the program, the linker/locator, RL51, processes
the object module files. The RL51 program combines relocatable partial segments
with the same name, then assigns absolute memory locations to all the relocatable
segments. RL51 also resolves all references between modules, using the library files
when they are necessary for this resolution. RL51 outputs an absolute object module
file that contains the completed program, and a summary listing file showing the
results of the link/locate process, including a memory map, symbol table, and,
optionally, an inter-module cross-reference (IXREF) listing.

ROM and PROM Versions

The absolute object module produced by RL5I can be loaded into members of the
MCS-51 family of microcomputers. For ROM versions of the microcomputer, the
program is masked into ROM during the manufacturing process. For PROM versions
and versions with no on-chip CODE memory, a PROM programmer is used to load
the absolute module into program memory accessible to the microcomputer for
execution. Refer to the MCS-51 Family of Single Chip Microcomputers User's
Manual for details on the versions of microcomputers available.

ICE™-51 In-Circuit Emulator

The ICE-51 in-circuit emulator is used for software and hardware debugging and
integration into the final product. The absolute object modules produced by RL51
can be loaded into the emulator’s memory for execution. Refer to the ICE-51 manual
listed in the preface for details.

Keeping Track of Files

It is convenient to use the extensions of filenames to indicate the stage in the process
represented by the contents of each file. Thus, source code files can use extensions
like .SRC, .A5I, or .P51 (indicating that the code is for input to ASM51 or
PL/M-51). Object code files receive the extension .OBJ by default or the user can
specify another extension. Executable files generally have no extension. Listing files

1-4 MCS®-51

can use .LST, the default extension given by the translator. RL5l uses .M51 for the
default listing file extension (in order not to destroy the ASM51 listing file with the
.LST extension).

Library files customarily have the extension .LIB.

Use caution with the extension .TMP, as many utilities (including RL51 and LIB51)
create temporary files with this extension. These utilities will delete your file if it has
the same name and extension as the temporary files they create.

Linkage
and R

elocation

The Mechanics of Linkage and
Location with RL51

This chapter describes the operation of the RL51 program. Most of the process is
transparent to the user; however, an understanding of the operation at the level
presented here will help you to use the linking and locating controls in the RL51
invocation. More specific details on the allocating process appear in Chapter 3.

Major Functions
The RL51 program performs the following major functions:
I. Selects modules (including library processing)
2. Combines relocatable partial segments of the same name into a single segment
3. Allocates memory for the combined segments resulting from the previous step,

and for all other complete relocatable segments from the input modules
4. Overlays data segments
5. Resolves external symbol references between the input modules
6. Binds relocatable addresses to absolute addresses
7. Produces an absolute object file
8. Produces a listing file consisting of a link summary, a symbol table, and an IXREF

report
9. Detects and lists errors found in the input modules or in the RL51 command

invocation

Functions 1, 2, 3, 5, and 6 are described in the remainder of this chapter. Functions
7, 8, and 9 are discussed in Chapter 4; the RL5I command invocation and overlaying
of data segments are described in Chapter 3.

Selecting Modules
Input files are processed in the order they are specified in the invocation command.

The processing of an input file varies according to the content that is, whether it is
a library or non-library file. A non-library file may contain a concatenation of zero
or more object modules. A library file contains zero or more object modules together
with control information. A module in a non-library file is processed if it was explic­
itly listed in the module list, or if the module list was not specified at all (in other
words, as if all modules were listed implicitly).

The processing of a library file is more complicated. If a module list was specified
for the library file, then it is processed in the same manner as a non-library file. If a
module list was not specified, then the library file is processed only if the previously
processed modules contained at least one unresolved external. The library is scanned
for modules containing public symbols that match as yet unresolved externals. Each
such module is processed as if it were explicitly specified. The selection process
continues until the modules in the library cannot satisfy any unresolved externals
(including any externals encountered while processing modules from the library).

RL51 will report an error if the same module name is encountered more than once
during the link process.

2-2 MCS®-51

Take TRIGON.LIB as an (utterly fictitious) example. Assume it contains procedures
called SINE, COSINE, TANGENT, ARCSINE, ARCCOS, ARCTAN, HYPER-
BOLICJSINE, and HYPERBOLIC_COSINE.

When RL51 starts processing TRIGON.LIB, it has already made a first pass over
all files that appear before it in the invocation line. If one of these contains a refer­
ence to the external SINE, and there is no public by that name, RL51 will assume
that the procedure SINE from TRIGON.LIB is to be loaded. Otherwise, it will leave
SINE alone for the moment.

If, while loading from TRIGON.LIB, RL51 encounters new externals that a module
in the library can resolve, it will scan the library once more. Thus, there is no logical
order among modules in a library; they are all equal. If TANGENT calls SINE and
COSINE, and they are in the same library, in any order whatsoever, a reference to
TANGENT will cause all three to be loaded.

Partial Segments
A segment is a unit of code memory or data memory. The portion of a segment
defined in one module is called a partial segment. A partial segment has the following
attributes (defined in the source module):
• Name. A relocatable segment has a name by which it is linked with other portions

of the same segment from other modules. Absolute segments do not have names.
• Type. The type identifies the address space to which a segment belongs: CODE,

XDATA, DATA, IDATA, or BIT.
• Relocatability. For relocatable segments only, this attribute describes any special

constraints on relocation (PAGE, INPAGE, BLOCK, BITADDRESSABLE, or
UNIT).

• Size. The size of the segment in bytes or bits, depending on the type.
• Base Address. The lowest address in the partial segment. For absolute segments,

the base address is assigned at assembly time; for relocatable segments, it is
assigned at location time.

Absolute segments are complete segments; they are taken as is into the output module.
Relocatable segments are either defined by ASM51 users (using the SEGMENT
directive in the source module) or automatically generated by the PL/M-51 compiler.

Refer to the MCS-51 Macro Assembler User's Guide for details on the assembler
directives.

Combining Relocatable Segments

After processing the invocation command, RL51 performs a first pass over the input
modules identified in the command. Pass 1 generates a segment table, a publics table,
and an unresolved externals table. The segment table is discussed in this section; the
other two tables are discussed later in this chapter.

The segment table contains the name, length, type, and relocation attribute of all
combined segments from all modules. Combined segments are produced from the
partial segments in the input modules according to the following rules:
• RL51 combines all partial segments with the same name into one relocatable

segment. For example, if three input modules each have a partial relocatable
segment named STACK, the segment table will have one segment named STACK
that combines the length of the three partial segments.

Mechanics of Linkage and Location 2-3

• All the partial segments to be combined must be of the same type (CODE, DATA,
IDATA, XDATA, or BIT). If any partial segments have the same names but
different types, an error occurs.

• The length of the combined segment must not exceed the physical size of the
memory type. Details on maximum size appear later in this chapter.

• The relocation attributes of all the partial segments to be combined must either
be the same or UNIT-aligned combined with one other attribute. The combined
segment receives the relocation attribute shared by the input partial segments,
or, if the segments have attribute UNIT-aligned combined with one other attrib­
ute, the combined segment receives the more restrictive attribute.
For example, if the three partial segments named STACK have relocation attri­
butes UNIT, PAGE, and UNIT, the combined segment has attribute PAGE
(i.e., page-aligned). Note that the relocation attribute is applied to the combined
segment, not to each component segment. To continue the example, since the
relocation is PAGE, the combined segment will start on a page boundary, but
the component segments will be packed together without any gaps.

Allocating Memory for Segments
After the segment table is complete, RL51 can locate the segments within the memory
spaces. Table 2-1 shows the address spaces used by MCS-51 processors, and the
corresponding segment types.

The allocation process has a definite sequence; the exact order is presented in
Chapter 3. As an overview, the process follows a general pattern of rules as follows:
1. Each of the types of memory space is allocated independent of the other spaces.
2. Within each space, absolute segments are allocated first, then segments specified

within locating controls in the RL51 command, then other relocatable segments.
3. Because the on-chip data space represents three overlapping address spaces

(DATA, IDATA, and BIT), the general pattern in rule 2 is modified.
a. Absolute BIT, DATA, and IDATA segments, and register banks are allocated

first.
b. Segments specified in PRECEDE and BIT controls are allocated next, then

other relocatable BIT (and BIT-ADDRESSABLE) segments (following
rule 2).

c. DATA type segments are allocated next: segments in the DATA control first,
then other relocatable DATA segments.

d. IDATA type segments (except 7STACK) are allocated next; segments in the
IDATA control first, then other relocatable IDATA segments.

e. Segments specified in the STACK control are allocated, at as low an address
as possible, provided that it is above all BIT. DATA, and IDATA segments
allocated under (c) and (d).

f. Last, the segment 7STACK, if it exists and is IDATA, and is not mentioned
in an explicit location control, is now allocated, at as low an address as possi­
ble, provided that it is above all BIT, DATA, and IDATA segments allocated
under (c) and (d) and (e).

In most cases, you do not need to use any explicit controls to obtain a satisfactory
allocation of segments. RL51 tries to fit your segments into the designated memory
spaces as best it can following the rules. As you can see, most of the complexity
occurs in the on-chip data space.

2-4 MCS®-51

Table 2-1. Address Spaces and Segment Types

Memory Space Maximum Size Addresses Segment Type

Code 64K bytes 0000H - OFFFFH CODE

External data 64 K bytes 0000H - OFFFFH XDATA

On-chip data
(direct addressing)

128 bytes OOH - 7FH DATA

On-chip data
(indirect addressing)

256 bytes
(see 1)

OOH - OFFH IDATA

Bit space in
on-chip data
memory

128 bits
(see 2)

OOH - 7FH BIT

1. The amount of indirectly addressable on-chip data memory is machine-dependent within the
MCS-51 microcomputer family (see the discussion of RAMSIZE control in Chapter 3).

2. This bit space overlaps byte addresses 20H - 2FH in on-chip data memory.

Note: Addresses in the special function register memory (direct data addresses 80H - OFFH, bit
addresses 80H - OFFH) cannot be relocated; they are always absolute. Thus, these addresses
are not referenced in this table.

Rule (f) applies to PL/M-51. PL/M-51 produces for the stack an IDATA segment
called 7STACK, whose size is 1. Although, by applying rule (f), RL51 makes the
stack as big as possible, it is the user responsibility to ensure that the size of the stack
is large enough (the segment map shows where the stack is located).

No rules for the allocation process can guarantee an optimal solution. If you are short
of memory and RL51’s first try is not satisfactory, you can place the segments in
memory using the locating controls. Details on the locating controls are given in
Chapter 3.

Overlaying Data Segments

On-chip RAM is a scarce resource on the MCS-51. To economize, the PL/M-51
compiler overlays data segments in the compiled module. RL-51 completes the work
by overlaying the data segments across modules. This is accomplished by using the
OVERLAY control. If RL-51 informed you about ignored segments due to lack of
on-chip RAM, try this control. The use of OVERLAY is, in general, straightforward.
However, for complex applications (for example, those with mixed ASM-51 and
PL/M-51 modules), consult Chapter 3.

Resolving External References
An external reference points to a location in another module. The EXTERNAL
declaration for symbols tells RL51 that the reference is to a location defined in another
module. In the latter module, the symbol is declared PUBLIC so that external refer­
ences to that symbol in other modules can be satisfied.

As it processes the input modules, RL51 builds a table of public symbols and
unresolved external references. As each public symbol is added to the table, any
external references to that symbol are deleted. After all segments have been located,

Mechanics of Linkage and Location 2-5

the public symbols are bound to absolute addresses. RL51 issues a warning for any
unresolved externals that remain in the table.

External symbols and corresponding public symbols must be compatible. That is, both
must be defined to address the same address space, or at least one must be defined
as a typeless symbol (NUMBER); and if the symbol represents a PL/M-51 proce­
dure name, then both must share the same register bank (i.e., must be declared within
the PL/M-51 source modules with the same USING attribute).

Binding Relocatable Addresses
After allocating memory for the combined segments and binding the public symbols,
RL51 makes a second pass (pass 2) through the input modules to build the listing
file and fixup (i.e., bind to absolute addresses) any relocatable or external references.
At this point, RL51 also processes debug records if requested, and performs fixups to
any relocatable debug symbols that require processing to compute their absolute
addresses.

122749-001

Using the RL51 Program

Introduction
The RL51 program performs two functions for MCS-51 programs:
• The link function, combining a number of object modules specified in an input

list into a single object module in an output file
• The locate function, assigning absolute addresses to any relocatable addresses in

the input modules

This chapter explains how to enter commands, how to continue a long command onto
more than one input line, how to enter comments in the invocation, and how to use
abbreviations of the command words.

The chapter then presents a summary of the format of the RL51 invocation command,
followed by details on the elements of the command with examples.

RL51 Command Format Summary
Here is a summary of the syntax of the RL51 invocation command. Refer to the
Preface for an explanation of the command format notation.

The RL51 command has the overall format:

t directory I device J R L S 1 input-list 1 T 0 output-file 1 I control-list 1

where
directory I device is the directory or device where RL51 resides.
input-list is a list of filenames separated by commas. The files named

in input-list should contain the relocatable modules to be linked
and located in the final absolute output module. For each
file, you can additionally specify which modules are to be
included.

output-file is the name of the file that is to receive the output module. If
you omit this entry, the program will supply a default name
based on the first filename in the input list.

control-list selects options for listing, linking, and locating the output.
The listing controls specify what information is to be sent to
the listing file, and the page width to be used. The linking
controls specify the name of the output module, and deter­
mine what debug information is to be placed in the output
file. The locating controls allow you to assign absolute
addresses to relocatable segments, and to specify the order of
relocatable segments within a given type of memory. The
configuration control is used to describe the actual configu­
ration the object is aimed to. The overlay control overlays
data segments between modules.

The next several sections give details and examples of the elements of the RL51
command. Table 3-1 gives brief definitions of some of the terms used in the controls.
A list of abbreviations for command words appears at the end of the chapter.

3-2 MCS-51

Table 3-1. Definitions of Common Terms

Term Definition

name Names can be from 1 to 40 characters in length and must be
composed of letters A - Z. digits 0 - 9, or special characters (?,
_). The first character must be a letter or a special character.

module-name Same as name.

segment-name Same as name.

pathname A valid filename reference or device reference. See next two items
for examples.

filename A reference to a disk file.

device A reference to a non-disk device.
Examples: :LP:, :CO:, :TO:

value A 16-bit unsigned integer.

Examples: 1011B, 304Q, 4096D (or just 4096), 0C300H

address Same as value.

Invocation
The RL51 command is a standard operating system invocation. Terminate the
command with the RETURN key. Note that the termination carriage return is not
shown in the command format notation.

You can continue the invocation line on one or more additional lines by entering the
ampersand (&) before you enter the line terminator. The next line then automati­
cally appears with the continuation prompt. Comments can also be entered on the
invocation line by placing the comments after the ampersand or semicolon (;) because
the compiler ignores all characters that appear after the ampersand or semicolon but
before the carriage return/line feed that terminates the line.

Refer to your DOS user’s guide for information on submitting batch file commands.

Input List

The input list tells RL51 what files are to be processed. The files must be disk files
containing relocatable object modules as described in Chapter 2.

The entry for each file in the list can include the following information:
• The directory or device. If the directory or device is omitted, the default directory

or device is assumed.
• The filename. The filename is the name of the object file including an extension

if one exists.
• A list of modules enclosed in parentheses. If a module list is provided, only the

modules in the list are linked into the output file, and modules not in the list are
ignored. If no module list is provided, the default for a non-library file is to link
all modules in the file into the output module. The default for a library file is to
link only those modules that satisfy previously declared external symbols (see the
exact process in Chapter 2 under “Selecting Modules”).

If a module named in the module list is not present in the file, the system issues an
error message but does not halt the link process.

Module names (specified explicitly or implicitly) must be unique throughout the entire
application.

Using the RL51 Program 3-3

Examples

Following are examples of the RL5l input list—
1. > R L 5 1 A : p r o g . o b j TO A : pr og . abs

In this example, the input list has one file (prog.obj in directory A:); RL51 links
all the modules in this file into the output file (prog.abs). (For clarity, this and
other examples omit the directory in which RL51 resides; the examples assume
RL51 resides in the root directory.)

2. > R L 5 1 a : samp 1 . ob j , a: s a m p 2 . o b j , a : s am p3 . o b j 4
>> TO b: s amp . ab s

In this example, the input list has three files. RL51 links all the modules in each
of these files into the output file. (Note that the > > in the second line of the
example is generated by the system in response to the continuation character &
on the first line of the example.)

3. > R L 5 1 A:PR0G1.DBJ (M0 D 1 , M 0 D 3) , A: PR0G2.0BJ 4
>> C MO 02) TO A:PR0G3.ABS

Here, the input list has two input files (PROG1.OBJ and PROG2.OBJ). From
PROG1.OBJ, only the modules named MODI and MOD3 are to be linked into
the ouptut file; any other modules in file PROG 1.OBJ are ignored by RL51.
From PROG2.OBJ, only the module named MOD2 is to be linked.

4. > R L 5 1 a:plmprg.obj, a:util51.lib, a : i o S 1 . 1 1 b , 4
>> p1m 51 . 11b

The example introduces a typical linking using libraries. Here, plmprg.obj is linked
with two private libraries and with the mandatory library plm51.1ib (which must
be used if modules generated by plm51 participate in the linkage).

5. > R L 5 1 a : exampl . ob j , cotrig. lib, trig, lib, 4
>> cotrig. lib

Interaction between libraries (i.e., libraries that reference each other) may
sometimes require the same library to be mentioned twice in the input list.
In the preceding example, cotrig.lib contains the COTANGENT and COSINE
trigonometric functions, trig.lib contains the SIN and TANGENT functions, and
exampl.obj references the COTANGENT function.
Because COTANGENT equals 1 /TANGENT, trig.lib must be specified to
resolve the reference to the TANGENT function. Also, because TANGENT
equals SINE/COSINE, cotrig.lib must be respecified to resolve the reference to
the COSINE function.

Output File
The output filename is the name of the disk file that is to receive the absolute object
module.

If the output file name is omitted, RL51 creates a filename for the output file by
removing the extension from the first filename in the input list and using the drive
and root name only. If this input file contains no extension, a fatal error occurs. For
example, the command:

R L 51 P R OG 1

is illegal since the output filename defaults to PROG1.

If there is already a file on the target drive with the name of the output file, that file
is overwritten by the new output file.

3-4 MCS®-51

Examples

Following are examples of RL51 output file—
1. > R L 5 1 a : p r o g . o b j TO c : p r o g

This example specifies file prog in directory c: as the output file.
2. > R L 5 1 C:PR0G.0BJ

This example uses the default output file generated by RL51. The effect is the
same as the first example; the output file becomes c:prog.

3. > r 1 5 1 a : samp 1 e 1 . ob j , a:sample2.obj TO 4
>> c:\myfile\sampl.abs

In this example, the output file is in a different directory than the input files, and
the directory, filename SAMPL, and the extension .ABS are specified.

Controls
After the output filename, you can add a list of controls to select options for listing,
linking, and locating the output. Use blanks (not commas) to separate controls in the
list. The same control may not appear more than once in the list; if a duplicate control
is encountered, a fatal error results and the program aborts. The next several sections
explain the controls and give examples.

Listing Controls
The listing file output by RL51 can contain a link summary, a symbol table, an
IXREF report, and a list of error messages. The link summary can contain a memory
map of the linked segments.

The listing controls are the PRINT option, the PAGEWIDTH control, the MAP
option, the SYMBOLS option, the PUBLICS option, the LINES option, and the
IXREF option. These controls allow you to specify the file or device to receive the
output listing, to omit the listing file altogether, to omit the map from the link
summary, or to omit local symbols, public symbols, or line numbers from the symbol
table. You may also specify if you wish to have the IXREF report generated, and the
specific page width to be used.

NOTE
The information in the listing file is taken from the input object modules. If
these are generated without the DEBUG option, the SYMBOLS, PUBLICS,
and LINES information will not be available for listing.

PRINT/NOPRINT

The print options control the destination of the list file.

To direct the list file to a disk file, the print control format is

PRINT (I directory/device 1 filename t . ext 1)

Example

> R L 51 a : 5 a m p 1 e 1 . o b j 4
>> print Is : staple . 1 s t)

Using the RL51 Program 3-5

To direct the list file to a device other than a disk file, the print control format is

PRINT (: device:)

where
device is a device code. Common devices are CO (console), LP (line

printer), TO (terminal other than console), and VO (video
terminal screen).

If you omit the print control, or if you enter the command word PRINT without a
filename or device name, RL51 creates a disk file for the listing. The name of the
default listing file has the same root as the output filename and has an extension of
M51; the drive number is also the one used in the output filename.

Example

>RL51 A:PR0G.0BJ, A:PR0G1.0BJ TO B:PR0G2.ABS

The output listing filename may not be the same as the output filename or any of the
filenames in the input list. If the listing file duplicates an input or output filename, a
fatal error results. If the listing filename already exists on the target directory, the
old file with that name is overwritten by the new listing file.

The NOPRINT option specifies that no output listing file is to be produced.
NOPRINT overrides the MAP, SYMBOLS, PUBLICS, LINES and IXREF
controls.

PAGEWIDTH

The PAGEWIDTH control specifies the maximum number of columns per line in
the print output file. The control takes the form

PAGEWIDTHt width)

where
width is an unsigned number which specifies the maximum page

width to be used.

The allowable range for width is 72 to 132. The default PAGEWIDTH is 78.

Listing Switches
The MAP, SYMBOLS, PUBLICS, LINES and IXREF controls select what portions
of the listing files are to be generated. The default of any switch (with the exception
of IXREF) is the positive form (MAP, SYMBOLS,' PUBLICS, and LINES).
Table 3-2 summarizes the listing switches.

IXREF/NOIXREF

This control specifies whether or not to produce the inter-module cross reference
report. If IXREF is specified, the report is appended to the print file.

A selection list may be added to the positive form (only) of the IXREF control. A
selection list causes RL51 to output or suppress output of various selected entries to

3-6 MCS®-51

Table 3-2. Listing Switches

Switch Effect

MAP Output memory map to link summary

NOMAP Suppress memory map

SYMBOLS Output local symbols to symbol table

NOSYMBOLS Suppress local symbols

PUBLICS Output public symbols to symbol table

NOPUBLICS Suppress public symbols

LINES Output line numbers to symbol table (high-level language transla­
tors only)

NOLINES Suppress line numbers

IXREF Append intermodule cross-reference report to print file

NOIXREF Suppress the intermodule cross-reference report

the IXREF report. An entry consists of a symbol and a module where this symbol is
referenced (either as public or as external). The general form of the IXREF control
is

IXREF It selection-item I I) I

where
selection-item is either (NO)GENERATED or (NO)LIBRARIES. If

IXREF is specified and any of the selection items are omitted,
the missing selection item assumes its positive form. A selec­
tion item may appear at most once.

The selection-items are best explained by describing the effect of their negative form.

The NOGENERATED control causes RL51 to surpress output of entries whose
symbol name begins with a question mark (?); such symbols are usually PL/M-51
generated symbols. The GENERATED form of the control causes RL51 to output
such entries also.

The NOLIBRARIES control causes RL51 to surpress output of entries whose module
resides within a library. The LIBRARIES form of the control causes RL51 to include
all libraries in the IXREF report.

The selection list is used to control the number of entries collected for the IXREF
report. This is needed when an excessive number of IXREF entries make it impossi­
ble for RL51 to generate the IXREF report.

Examples

1. > R L S 1 a : p r o g . o b j nosymbols nopublics nolines

Because the default for any listing switch (except ixref) is the positive form, the
main use of the switches is to suppress unwanted information. The invocation
given in this example will suppress the entire symbol table.

2. > r 1 5 1 a:p r o g . o b j print (a:prog.s51) nomap nosb I
> > noli

In this example, only the public symbols will be printed (no map or other symbols
or lines). Note the use of abbreviations (nosb for nosymbols and noli for nolines)
to save keystrokes. A complete list of abbreviated forms appears at the end of

Using the RL51 Program 3—7

Chapter 3. Note that the blank separating print from its parameters is optional;
you could also use print(a:prog.m51).

3. > R L 51 a : p r o g . o b j , a:procs.obj, a:plmS1.lib 4
>> i xre f(no gn)

This example suppresses generated symbols from the ixref report. Using the nogn
(nogenerated) selection item prevents PL/M-51 run-time library procedures from
being written to the ixref report.

Linking Controls
The linking controls allow you to name the resultant output module and to specify
which debug information is to be copied to the output module.

NOTE
In order to obtain the debug information (SYMBOLS, PUBLICS, or
LINES), the DEBUG control must be included in the invocation line for the
translator used to produce the input modules.

NAME

The NAME control allows you to name the output module. The format is

NAME (module-name)

If the NAME control is not used, the output module-name defaults to the name of
the first input module processed.

Example

> R151 a:sampl1.obj, a:sampl2.obj TO a:sample.abs 4
>> nameCSAMPLE_P R OGR A M)

In this example, the name SAMPLE_PROGRAM is assigned to the output module.
Note that the blank between NAME and its parameter is optional and can be omitted.

Linking Switches

The DEBUGSYMBOLS, DEBUGPUBLICS, and DEBUGLINES controls select
what kinds of debug information are to be included in the output file. The default of
any switch is always the positive form (DEBUGSYMBOLS, DEBUGPUBLICS, and
DEBUGLINES). Table 3-3 summarizes the linking switches.

Examples

1. > R L 5 1 a : p r og 1 .obj nodebugsymbols nodebuglines

Because the linking switches default to the positive form, you will usually use the
negative forms to suppress unwanted debug information in the output file. In this
example, the output file contains only the information for the public symbols.

2. > R L 5 1 a : p r o g 1 . o b j nodp nodi

In this example, only the local symbols are output to the absolute file. Note the
use of abbreviations (nodp for nodebugpublics and nodi for nodebuglines).

3-8 MCS®-51

Table 3-3. Linking Switches

Switch Effect

DEBUGSYMBOLS

NODEBUGSYMBOLS

DEBUGPUBLICS

NODEBUGPUBLICS

DEBUGLINES

NODEBUGLINES

Copies local symbol information to output file

Suppresses local symbols

Copies public symbol information to output file

Suppresses public symbols

Copies line number information (high-level language translators
only) to output file

Suppresses line numbers

Locating Controls
The locating controls allow you to assign absolute addresses to relocatable segments,
to specify the ordering of relocatable segments of a given type in memory, and to
force allocation of segments into a specific range of addresses.

Allocation Sequence
The system allocates memory in accordance with segment attributes and locating
controls, using a fixed order of precedence. The precedence of the allocating opera­
tions (grouped by type of memory space) is as follows:

Internal Data Space:
• Absolute BIT, DATA, and IDATA segments, and register banks
• Segments specified in a PRECEDE control in the RL51 command
• Segments specified in a BIT control in the RL51 command
• DATA type segments with relocation equal to BIT-ADDRESSABLE
• Other relocatable bit segments
• Segments specified in a DATA control in the RL51 command
• DATA type segments with relocation equal to UNIT-aligned
• Segments specified in an IDATA control in the RL51 command
• Other relocatable IDATA segments, except 7STACK
• Segments specified in a STACK control in the RL51 command
• 7STACK, if it is IDATA and has not been specified in any other locate control

External Data Space:
• Absolute external data segments
• Segments specified in an XDATA control in the RL51 command
• Other relocatable external data segments

Code Space:
• Absolute code segments
• Segments specified in a CODE control in the RL51 command
• Other relocatable code segments

NOTE
In most cases, the allocation algorithm will produce a workable solution
without requiring the user to enter any locating controls in the RL51
command. These controls are intended for the experienced user, in cases where
running RL51 without them does not give a good enough result.

Using the RL51 Program 3-9

Format Summary

The locating controls have the format

control (segment

where
segment : ■ segment-name 1 (base-address) 1

The segments specified in the locating controls are allocated in the order they appear;
the first segment is assigned the lowest possible address, and succeeding segments
receive higher and higher addresses.

The user has the option of specifying the base address of any or all segments. Segments
with specified base addresses must appear in the list in ascending numerical order.
Segments named in a locating control with a specific base address are allocated at
that address irrespective of segment overlap or segment type contradiction, as long as
ascending order is maintained. Base addresses are byte addresses except for the BIT
locating control, where addresses are bit addresses in the bit spaed) to 127).

Table of Locating Controls

Table 3-4 lists the locating controls in order of precedence. The first column gives
the name of the control. The second column describes the address space affected by
the control. The third column gives the address range for segments within each control.
The last column shows what types of segments are allowed for each control; for each
valid type, the column also shows the allowable relocation attributes. (Refer to the
MCS-51 Macro Assembler User’s Guide and PL/M-M User's Guide for details on
segment types and relocation attributes.)

Notes On Locating Controls

The following notes refer to table 3-4.
1. Bit addresses for non-BIT segments in the BIT control must be on byte bounda­

ries; that is, they must be divisible by eight. (BIT-type segments can be aligned
on bit boundaries.)

Table 3-4. Locating Controls

Control Address Space
Address Range

(Hex)
Segment Types
(and Attributes)

PRECEDE Register banks and bit-
addressable space in
on-chip data RAM

00H-2FH DATA (UNIT-aligned);
IDATA

BIT Bit-addressable space
in on-chip data RAM

OOH - 7FH
(see note 1)

BIT; DATA; IDATA

DATA Directly-addressable
on-chip data RAM

OOH - 7FH DATA (UNIT-aligned);
IDATA

IDATA Indirectly-addressable
on-chip data RAM

OOH - OFFH
(see note 2)

IDATA

STACK Same as IDATA (see
note 3)

Same as IDATA Same as IDATA

XDATA External data RAM 0 -OFFFFH XDATA

CODE Code memory 0 -OFFFFH CODE

3-10 MCS®-51

2. The range of addresses for the IDATA control is dependent on the target machine.
See the RAMSIZE control later in this chapter.

3. The STACK control specifies which segments are to be allocated uppermost in
the IDATA space. The memory accessed starts after the highest on-chip RAM
address occupied by any previously allocated segment and continues to the top
of the IDATA space.

NOTE
This control has no other effect on any segments.
The IDATA ’STACK segment, if it exists, is placed higher than segments
that were mentioned in the STACK control.

The STACK control provides a convenient way to handle the stack (usually for
ASM51-based application, where 7STACK is not used).

First, assign the stack pointer (SP) to a relocatable segment; consider the following
ASM51 example:

SIACK_A REA SEGMENT IDATA ; SEGMENT directive in source.
DS 10 H ; Reserve 16 bytes for stack.

......... ; Other CODE instructions.

MOV SP, *STACK_A REA - 1 ; Initialize SP.

Then, at relocation time, specify the segment named STACK_AREA in a STACK
locating control:

R L 5 1 ... STACK (STACK_AREA)

where
ellipsis (...) represents the rest of the invocation line exclusive of the

STACK control.

NOTE
If the application contains modules produced by PL/M-51, the 7STACK
should be used as the stack segment.

Examples

1. >RL5 1 A:PR0G1.0BJ, A:PR0G2.0BJ TO A:PROG.ABS 4
>> PRECEDE (MESSAGE1) XDATA (ARRAY1 (256), 4
>> A RR A Y 2 (512))

In this example, the DATA (or IDATA) segment names MESSAGE! will be
allocated space in on-chip RAM in the lowest available location, overlapping the
BIT space if necessary. The XDATA control specifies that the two arrays are to
be located at specific addresses (e.g., for debugging).

2. >RL51 A:TEST.OBJ STACK (STACK_AREA)

Here, the STACK control allocates the uppermost portion of IDATA space for
the segment named STACK_AREA.

3. >RL51 APROG.OBJ, BPROG.OBJ, PLM51.LIB 4
>> CODE (MODI (4 0 0 0 H) , M0D2, M0D3)

Here, the CODE control allocates space in code memory for segments MODI,
MOD2, and MOD3. MODI is aligned at location 4000H. MOD2 and M0D3
are assigned contiguous addresses after MODI.

Using the RL51 Program 3-11

Configuration Controls

The configuration controls are used to describe the actual configurations that objects
are aimed to.

This group contains the RAMSIZE control.

RAMSIZE

The RAMSIZE control format

R A M S I Z E (value)

where
value is a number in the range 128 to 255.

RAMSIZE specifies the maximum amount of on-chip RAM that may be allocated
for the user program. The default value for RAMSIZE is 128 (as is the case for the
8051). If the object is aimed at more than one configuration of the MCS-51 family,
specify the MINIMUM of all on-chip RAM sizes among all machines you want to
link.

The sole use of this control is to enable RL51 to check on-chip memory size constraints
at RL-time and thus avoid confusion at ICE-time.

OVERLAY/NOOVERLAY Controls
The linker allows overlaying of on-chip RAM segments among modules, under the
specification of the OVERLAY control. Two segments can be overlaid if all the
following conditions exist:
• The segments have the same type (DATA, IDATA, BIT, or

BITADDRESSABLE).
• The segments use the same register bank (determined by the USING attribute

or the REGISTERBANK control).
• The segments are marked as overlayable. Currently, this is done only by the

PL/M-51 compiler. ASM51 (V2.1 and lower) lacks this feature. Therefore,
assembler segments are considered non-overlayable.

• The segments belong to disjoint modules. That is, no procedure in one module
can directly or indirectly call a procedure from the other.

The default is NOOVERLAY. No overlaying of on-chip RAM segments is done by
the linker.

The general form of the OVERLAY control is as follows:

OVERLAY t (overlay-unit I J)]

where
overlay-unit is ov-module-name calls ov-module-name.
ov-module-name is a legal RL51 module name or *, which stands for all the

module names.
calls is > or 1.

3-12 MCS®-51

OVERLAY

If the OVERLAY control appears in the invocation line without arguments, the linker
assumes that no intra-module calls exist except for those deducible from the PUBLIC­
EXTERNAL declarations, and that overlaying of all overlayable segments is safe.

NOOVERLAY

The linker does not overlay data segments.

OVERLAY (A > B) or (A J B)

If the OVERLAY control appears in the invocation line with arguments, it indicates
that there are invisible calls between modules. In the OVERLAY control syntax,
either the greater than sign (>), or the right square bracket (I) may be used in the
calls relationship. The greater than sign will be used in the text. The notation A > B
means that module A calls module B. In this case, the linker overlays all overlayable
segments, except that segments from A are not overlaid by segments from B. Note
that the added connection can prevent other segments from overlaying. For example,
if the segment A was overlaid with the segment D, and B calls D (visibly by PUBLIC­
EXTERNAL declarations), then the effect of A > B is that A and D will not be
overlaid, since A can call D through B.

OVERLAY (A > •, * > B) or (A] V 1 B)

A module can be declared as non-overlayable in two ways. The argument A > *
indicates that the module A calls all other modules. On the other hand, * > A means
every module calls A. In either case, no segments from A will be overlaid. The effect
of each form depends on the nature of A. For example, if the * > A form is used and
A visibly calls all other modules, then every module can call (through A) each other
module. In this case, the linker will not perform any overlays.

The overlaying of data segments in on-chip RAM has the following restrictions:
• The OVERLAY control cannot be invoked with the IXREF selection items

NOGENERATED or NOLIBRARIES. RL51 generates an error if either one
is specified.

• Combined segments and segments appearing in locating controls are not overlaid
by the linker.

Following is an example in which two disjoint modules share the same on-chip RAM
area:

modi: DO;

THREE_BEARS: PROCEDURE PUBLIC;
DECLARE LITTLE_BEARS_BED BYTE;
IF BOOLEAN (LITTLE_BEARS_BED) THEN

CALL MSG(.('SOME 0NE''S BEEN IN MY BED! '),0);
LITTLE_BEARS_BED • 0;

END THREE_BEARS;

END modi;

Using the RL51 Program 3-13

m o d 2: DO;

GOLDILOCKS: PROCEDURE PUBLIC;
DECLARE SPARE_BED BYTE;
SPAR E_B ED> 1 ;

END GOLDILOCKS;

END mod2 ;

mat n_5lory: DO;

THREE_BEARS: PROCEDURE EXTERNAL; END;
GOLDILOCKS: PROCEDURE EXTERNAL; END;

CALL THREE_BEARS;
CALL GOLDILOCKS;
CALL THREE_BEARS;

END m a in_st o r y ;

In this example, the linker reserves the right to use the LITTLE_BEARS_BED as a
SPARE_BED because the two procedures are never active simultaneously.

To perform overlaying, the linker must determine which procedures are active simul­
taneously. To do this, the linker assumes that all CALLs can be executed. For example,
if procedure A calls procedure B, and B calls procedures C and D, then the linker
can overlay RAM variables from C only with the RAM variables of D.

The linker, however, looks only at the PUBLIC-EXTERNAL declarations. It assumes
that any reference to an EXTERNAL procedure will be executed, but ignores the
possibility of hidden calls. The arguments to the OVERLAY control are therefore
needed to specify those interconnections between modules that cannot otherwise be
detected by the linker.

Such situations arise if the interconnection is done by a computed call to an external
procedure whose address is not determined by a simple PUBLIC-EXTERNAL
relationship. For example, module A imports from module B a public variable that
contains the address of a local or public procedure in B. Module A then performs a
computed call to the procedure in B. The rule can be stated as follows: The linker
assumes a connection from module A to module B if there exists an external refer­
ence in A to a public procedure in B. In all other cases, hidden connections must be
explicitly given as arguments to the OVERLAY control.

Following is an example of a computed call to an external procedure:

M0D1: DO ;

DECLARE I_0_CLEAR WORD EXTERNAL;

CALL I_O_CLEAR;

END MODI;

3-14 MCS®-51

In another module, you have:

M0D2 : DO ;

DECLARE I_O_CLEAR WORD PUBLIC;

READER : PROCEDURE ;

I_0_E R R D R : PROCEDURE ;

END I_O_ERROR;

I_O_SUCCESS: PROCEDURE;

END I_O_SUCCESS;

IF ERR_CODE <> 0
THEN I_O_CLEAR • ,I_O_ERROR;
ELSE I_O_CLEAR - .I_O_SUCCESS;

END READER ;

END MODS ;

In the above procedure, MODI invokes a procedure defined in MOD2. To prevent
the linker from overlaying on-chip RAM variables of MOD2 with on-chip RAM
variables of MODI, the following form of the OVERLAY control must be used:

OVERLAY (M0D1 > M0D2)

Overlaying can be a good way of economizing on-chip RAM space; however, overlay­
ing may, in some cases, give worse results. For example, if most procedures call one
another, the resulting segments will expand, making it more difficult for the linker to
allocate a few large segments than many small ones.

The outcome of the overlaying process can be checked by inspecting the link map.
All overlaid segments are indicated by **OVERLAP**. Warning (4), DATA SPACE
MEMORY OVERLAP, is not generated for those segments.

Abbreviations for Command Words
Most of the command words in the RL51 command have short forms to save you
keystrokes over the full spellings. Here is a list of the command words and their
abbreviations.

AbbreviationCommand Word

BIT BI
CODE CO
DATA DT
DEBUGLINES DL
DEBUGPUBLICS DP
DEBUGSYMBOLS DS
GENERATED GN
IDATA ID
IXREF IX
LIBRARIES LB

Using the RL51 Program 3—15

LINES LI
MAP MA
NAME NA
NODEBUGLINES NODL
NODEBUGPUBLICS NODP
NODEBUGSYMBOLS NODS
NOGENERATED NOGN
NOIXREF NOIX
NOLIBRARIES NOLB
NOLINES NOLI
NOMAP NOMA
NOOVERLAY NOOL
NOPRINT NOPR
NOPUBLICS NOPL
NOSYMBOLS NOSB
OVERLAY OL
PAGEWIDTH PW
PRECEDE PC
PRINT PR
PUBLICS PL
RAMSIZE RS

R
L51 O

utput4

122749-001

RL51 Outputs

The RL51 program produces three outputs: console displays, a listing file, and the
absolute object module file. This chapter describes these outputs and gives examples.
As discussed in Chapter 3, the listing controls in the RL51 command allow the user
to suppress some information in the listing file, and the linking controls can suppress
some information in the absolute object file.

Console Display
The console displays produced by RL51 consist of a sign-on message and any error
messages that occur. The sign-on is as follows:

system-id M C S - 5 1 RELOCATDR AND LINKER Vx.y

where
x.y is the version number.

Listing File
RL51 produces a listing file unless it is suppressed in the RL51 invocation. The RL51
listing file contains:
• A summary of the link and locate process
• A symbol table, as specified in the RL51 invocation
• An inter-module cross-reference listing (IXREF)
• Error messages detected by RL51

Link Summary

A sample of a link summary is shown in figure 4-1. The summary includes the follow­
ing kinds of information:
• A header echoing the RL51 invocation.
• Input modules included in the link process. Input modules are identified by module

name and file name.
• A link map (unless suppressed by the NOMAP control). The map lists all

allocated segments, giving the type, base address, and length of each segment.
The map also identifies segment overlaps and gaps in the memory space.

• A list of segments that were ignored in the link process. If any segments were
ignored, the reasons for doing so will be reported later as an error.

• A list of unresolved external symbols. An external symbol is unresolved when it
is not matched by a public symbol in one of the input modules. Each occurrence
of an unresolved external symbol in a module will be reported later as an error.

• A list of all symbols that were ignored in the locate process. A symbol is ignored
when the same name appears as a public symbol in different modules, or has
attributes that are incompatible with external references, or belongs to an ignored
segment. Each occurrence of an ignored symbol in a module will be reported
later as an error.

4-2 MCS®-51

RL51 F I L E 1 . E X T (M 0 D 1 , M 0 D 2) , FILE2.EXT TO OUTFIL.EXT 4
system-id M C S - S 1 RELOCATOR AND LINKER, Vx.y INVOKED BY:

NAME (EXAMPLE) MAP PRINT (: L P :)

INPUT MODULES INCLUDED
F I LE 1 . E XT(MOD 1)
FILE1 .E X T(MOD 2)
FILE2.EXT(M0D3)

LINK MAP FOR 0UTFIL.EXT(EX AMPLE)

TYPE BASE LENGTH RELOCATION SEGMENT NAME

REG 0 0 0 0 H
DATA 0 0 0 8 H

0 0 0 8 H " R E 6 B A N K 0 "
0010H UNIT DATA_SEG_1

DATA 0 0 1 4 H
••OVERLAP” REG 0 0 1 8 H

BIT 0 0 2 0 H

00O8H ABSOLUTE
0 0 0 8 H " R E G B A N K 3 "
0 0 0 1 H .6 UNIT A_BIT_SEG

0 0 2 1 H . 6
DATA 0 0 2 2 H

0 0 0 0 H . 2 •••GAP*”
0001H BITADDR DATA_SEG_2

DATA 0 0 2 3 H
I DAT A 0 0 2 E H

0 0 0 BH ABSOLUTE
0042H UNIT STACK_SEG

0 0 7 0 H

XDA T A 0 0 0 0 H

0 0 1 0 H •••GAP’”

C 0 0 0 H UNIT DYNAMIC_MEM

CODE 0 0 0 0 H 1 3 8 9 H UNIT PR0C1
1 3 8 9 H

CODE 1 8 0 0 H
0477H •• ‘GAP •• •
07A5H INBLOCK P RO C 2

IGNORED SEGMENTS
DYNAMIC POOL

UNRESOLVED EXTERNAL SYMBOLS
INVERT

IGNORED SYMBOLS
B I T256

Figure 4-1. Link Summary

NOTE
I. For bit addresses, the display format is byte-address.bit-address (example:

0020H.7 for bit 7 of byte 0020H). However, when bit 0 of a byte is
referenced, only the byte address is displayed (the .0 is not displayed).

2. References to an unresolved external symbol, an external symbol refer­
ring to an ignored public symbol, or a reference to an ignored segment
will produce additional error messages.

Symbol Table

The listing file contains a symbol table as specified by the SYMBOLS, PUBLICS,
and LINES controls in the RL51 invocation. A sample symbol table is shown in
figure 4-2.

RL51 Outputs 4-3

Figure 4-2. Symbol Table

SYMBOL TABLE FOR 0 U T F I L E . E X T C E X A M P L E)

VALUE TYPE NAME

___ _ _ _ _ MODULE MEMRY
D: 0 0 3 2 H PUBLIC LOW_MEM_PTR
B : 0 0 2 0 H PUBLIC 1NIT_F LAG
B:0 0 2 0 H . 1 PUBLIC FULL_FLAG
D : 0 0 3 4 H PUBLIC HIGH_MEM_PTR
X: 0 0 0 OH PUBLIC DYNAMIC-MEMORY
----------------- PROC ALLOCATE
D: 0 0 6 4 H SYMBOL NUM_BYTES
D: 0 0 6 6 H SYMBOL P00L_SELECT0R
D:0 0 6 8 H SYMBOL ALLOC_PTR
B : 0 0 2 0 H . 2 S Y MBOL FLAG
C : 0 0 0 0 H LINE* 1 9
C : 0 0 7 H LINE* 20
C : 0 0 1 0 H LINE* 2 1
C:0 0 1 3H LINE* 22
...... DO
D:006AH SYMBOL I
C:0 0 1 8H LINE* 23
C : 0 0 2 1 H LINE* 24
C:0 0 2 8 H LINE* 25
C: 0 0 2 F H LINE* 26
C : 0 0 3 2 H LINE* 27
----------- — ENDDO
C:0037H LINE* 28
C : 0 0 4 0 H LINE* 29
C : 0 0 4 F H LINE* 3 0
C : 0 0 5 7 H LINE* 3 1
C:0 0 5 F H LINE* 32
C:0068H LINE* 33
C:006FH LINE* 34
C : 0 0 7 6 H LINE* 35
C : 0 0 8 2 H LINE* 36
C : 0 0 8 FH LINE* 37
C : 0 0 9 4 H LINE* 38
------ -- _ — ENDPROC ALLOCATE

E NDMOD MEMRY

NOTE
The information in the listing file is taken from the input object modules. If
these are generated without the DEBUG option, the SYMBOLS, PUBLICS,
and LINES information will not be available for listing.

The symbol table contains scope definitions and information about the symbols and
line numbers. Scope definition identifies the module, DO block or procedure that
contains the symbol or line number. Note that when the table contains only public
symbols (i.e., NOSYMBOLS and NOLINES controls are in effect), scope definition
is by module only.

4-4 MCS®-51

Each entry in the table consists of three parts, as follows:
• VALUE. The value is the absolute address of the symbol. The address is prefixed

with a letter indicating the type of address space (C, code; D, internal data; I,
indirect internal data; B, bit space; X, external data; N, typeless number). A byte
address (or a bit address on a byte boundary) is shown as a four-digit hexadecimal
number (example: 00E0H). A bit address (unless it is on a byte boundary) is
shown as a byte address followed by a period and the bit offset (1 through 7)
into the byte.

• TYPE. The type field identifies the entry as a local symbol (SYMBOL), a public
symbol (PUBLIC), segment (SEGMENT), or a line number (LINE#).

• NAME. The name field gives the name of the symbol, or the number of the line.

For scope definition, a line is printed for the beginning and end of each block. The
TYPE field shows the type of block (MODULE, DO, or PROC for PROCEDURE),
and the end of each block (ENDMOD, ENDDO, ENDPROC). The NAME field
shows the name of the block, if any.

NOTE
Line number information and scope definitions other than MODULE are
applicable only to object files produced by high-level language translators
(e.g„ PL/M-51).

Inter-Module Cross-Reference Report (IXREF)

The listing file contains an IXREF report as specified by the IXREF control and its
associated selection list in the RL51 invocation. A sample IXREF report is shown in
figure 4-3.

The IXREF report consists of an alphabetically sorted list of symbols. Each such
symbol begins a new line and represents a symbol that was declared as PUBLIC or
EXTERNAL in at least one of the input modules. Each symbol is followed by its
corresponding address space, followed by a semicolon. To the right of the semicolon
starts a list of modules in which the symbol was declared PUBLIC or EXTERNAL.
The first module name in the list is the one in which the symbol was declared PUBLIC.
If a symbol is unresolved, or if a symbol is defined in a library and the NOLIBRAR­
IES selection item is in effect, then the string ** UNRESOLVED ** appears in front
of the modules list.

Error Messages

RL51 displays error messages on the console and copies them to the end of the listing
file unless the listing file is suppressed.

RL51 error messages describe warnings, errors, and fatal errors. A warning is a
detected condition that may or may not be what the user desired; a warning does not
terminate the link/locate operation. An error does not terminate operation, but
probably results in an output module that cannot be used. A fatal error terminates
operation of RL51.

Refer to Appendix B for a list of the error messages and probable causes.

RL51 Outputs 4—5

Figure 4-3. IXREF Listing

INTER-MODULE CROSS-REFERENCE LISTING

NAME... USAGE MODULE NAMES

?CHECK_EQ?BYTE. . . DATA ; CHKEQ TESBAS
?CHECK_EQ_BITS ?BIT. BIT; CHKEQ
? P 0 0 0 8 CODE ; ? P 0 0 0 8 TESBAS
? P 0 0 1 5....................................... CODE ; ?P00 15 TESBAS
? P 0 0 1 6....................................... CODE ; ? P 0 0 16 TESBAS
? P I H 0 R....................................... CODE ; TESBAS ?P IVOR
? P I V 0 R....................................... CODE ; ? P I V 0 R TESBAS
? P S W 0 R....................................... NUMB; TESBAS ’PIVOR
CHECK-EQ................................. CODE ; CHKEQ TESBAS
CHECK_EQ_BITS . . . CODE ; CHKEQ
C H E C K_EX IT.......................... CODE ; CHKEQ
C H E C K_1NIT.......................... CODE ; CHKEQ
P U B 0 0....................................... CODE; M 0 D U L E_0 M0 D U L E_1 M0DULE_2
P U B 0 1....................................... CODE ; MODULE—0 MODULE—1 M0DULE_2
PUB02 CODE ; MODULE—O MODULE—1 M0DULE_2
PUB03....................................... CODE ; •• UNRESOLVED • • M0DULE_1 M0DULE_2
PUB04 CODE ; MODULE—O M0DULE_1 M0DULE_2
PUB05 CODE ; MODULE—O MODULE_1 M0DULE_2
PUB06 CODE ; •• UNRESOLVED • • M0DULE_1 M0DULE_2
PUB07....................................... CODE ; MODULE—O M0DULE_1 M0DULE_2
PUB08 CODE ; MODULE—O MODULE_1 M0DULE_2
PUB09 CODE ; MODULE—O MODULE_1 M0DULE_2
P U B 1 0....................................... CODE ; MODULE—O
PUB1 1....................................... XDATA ; MODULE—O
P U B 1 2....................................... DATA ; MODULE—O
PUB13 IDATA; MODULE—O
P U B 1 4....................................... BIT; MODULE—O
PUB15 NUMB ; MODULE—O
PUB16 CODE; MODULE—O
PUB 1 7....................................... CODE; MODULE—O
PUB18 CODE ; MODULE—O
PUB19 CODE; MODULE—O
P U B X 0....................................... CODE ; M0DULE_1 MODULE—O
PUBX1 CODE ; M0DULE_1 MODULE—O
PUBYO CODE ; • • UNRESOLVED • • M0DULE_1 M0DULE_2
PUBZO CODE ; •• UNRESOLVED • • M0DULE_1

Absolute Object File
The linking and locating process combines one or more relocatable object files into
one absolute object file. The absolute object file contains one module; the absolute
module consists of
• A module header record that identifies the module.
• A set of intermixed content and debug records. The content records contain the

program code. The debug records contain the location and scope of local symbols,
public symbols, segment symbols, and line numbers, as specified by the DEBUG­
SYMBOLS, DEBUGPUBLICS, and DEBUGLINES controls in the RL5l
invocation.

• A module end record that verifies the module name.

122749-001

Examples of Program Development

This chapter shows three brief examples of program development using ASM51,
PL/M-51, and RL51. The first example is the sample program discussed in the
ASM51 User’s Guide; the example shows how to assemble each of the three modules,
then link and locate them into a single absolute object module with RL51. The second
example is a short program that illustrates the use of the locating controls. The third
example shows the use of RL51 with PL/M-51 modules, emphasizing the library
process.

Using Multiple Modules
The first example is a program of three modules, named SAMPLE, CONSOLE_IO,
and NUM_CONVERSION. The source for these modules is in three files,
SAMP1.A51, SAMP2.A51, and SAMP3.A51, respectively. To assemble these
modules, invoke the assembler as follows:

A S M 5 1 S A M P 1 . A 5 1 DEBUG

ASMS 1 SAMP2.AS 1 DEBUG

ASMS 1 SAMP3. AS 1 DEBUG

Note that this example assumes the three source files are on the same directory or
device as the assembler and linker/locator, and that the output file will be sent to the
same directory or device. The assembler invocations use the DEBUG control to have
the symbol tables output to the object files for the three modules.

After assembly is complete, the system has created object files SAMP1.OBJ,
SAMP2.OBJ, and SAMP3.OBJ, and listing files SAMP1.LST, SAMP2.LST and
SAMP3.LST. The three listing files are shown in figures 5-1, 5-2, and 5-3.

To link and locate the three modules, enter the command

RLS1 SAMP1.0BJ, SAMP2.0BJ, SAMP3.0BJ I
••TO SAMPLE I
••PRINT (SAMPLE.LST) SYMBOLS LINES PUBLICS

After the RL51 program has executed, the system has placed the absolute object
module in file SAMPLE, and an output file with information on the link and locate
process in file SAMPLE.LST. The output file also contains symbol table information
as requested by the SYMBOLS, LINES, and PUBLICS controls. The listing file is
shown in figures 5-1 through 5-3; figure 5-4 shows the output file.

Figure 5-1. SAMP1 Listing File

MCS- S 1 MACRO ASSEMBLER SAMPLE
system-id M C S - 5 1 MACRO ASSEMBLER Vx.y
OBJECT MODULE PLACED IN SAMP 1 .OBJ
ASSEMBLER INVOKED BY : A S M 5 1 SAMP 1.A51 DEBUG
LOC OBJ L INE SOURCE

1 NAME SAMPLE
2
3 EXTRN code (put_c r1f , p u t_st r i n g , p u t_ d at a_s t r)
4 EXTRN code (ge t_n urn, b i n a s c , asc bin)
5

--------- 6 CSEG
7 ; Thl 5 is the i n i t i a lizing section. E x e c u t i o n
8 ; a 1 w ay 5 starts at a ddre 5 s 0 on pow e r - u p .

0 0 0 0 9 ORG 0
0 0 0 0 758920 1 0 MOV TMOD,*001000008 ; Set timer t o auto -reload
0 0 0 3 758D03 11 MOV TH 1 ,»(- 2 5 3 > ; Set timer f or 110 BAUD
o o o e 7598DA 1 2 MOV S C 0 N , * 1 1 0 1 1 0 1 0 B ; Prepare the S e r i a 1 Port
0 0 0 9 D28E 1 3 SETB T R 1 ; Start clock

1 4
1 5 ; Thl s is the main p r o g r a m . I t * 5 an i n f i n 1 t e loop,
1 6 ; whe re each iterati on prompts the consol e for 2
1 7 ; i n p u t numbers and types out their sum .
1 8 START
1 9 i Typ e message e x p 1 a ining how to co r r e c t a typo

0 0 0 B 900000 F 2 0 MOV DPTR»*typo_m s g
OODE 120000 F 2 1 CALL p u t_s t r i n g
0 0 11 120000 F 2 2 CALL p u t_cr1f

23 ; Get first number f rom console
0 0 14 900000 F 2 4 MOV DPTR,*num1_m s g
0 0 17 120000 F 25 CALL put_string
0 0 1 A 120000 F 26 CALL p u t_c r1f
0 0 1 D 7 8 0 0 F 2 7 MOV R 0 * n u m 1
00 1F 120000 F 28 CALL g et_n u m
0 0 2 2 120000 F 29 CALL p u t_c r1f

30 ; Get second number from console
0 0 2 S 900000 F 3 1 MOV DPTR,*num2_m s g
0 0 2 8 120000 F 32 CALL put_5tring
0 0 2 B 120000 F 33 CALL p u t_c r1f
0 0 2 E 7 8 0 0 F 3 4 MOV R 0 , * n u m 2
0 0 3 0 120000 F 35 CALL g e t_nu m

5-2
M

C
S®

-51

0 0 3 3

0 0 3 6

120000

7 9 0 0

F

F

36
37
38

CALL
; Con
MOV

p u t_c r 1f
vert the
R 1 , * n u m 1

ASCII numbers to binary

0 0 3 8 120000 F 39 CALL a 5 c b i n
0 0 3 B 7 9 0 0 F 4 0 MOV R 1 , # n u m 2
0 0 3 D 120000 F 4 1 CALL a 5 c b i n

4 2 ; Add the 2 n u m b e r 5 , and st ore the results in SUM
0 0 4 0 E 5 0 0 F 43 MOV a,num 1
0 0 4 2 2 5 0 0 F 4 4 ADD a , n u m 2
0 0 4 4 F 5 0 0 F 4 5 MOV 5 u m , a

46 ; Con vert SUM from b i n a r y t o ASCII
0 0 4 6 7 9 0 0 F 4 7 MOV R 1 , * s u m
0 0 4 8 120000 F 48 CALL b i n a 5 c

4 9 ; Output sum t o cons ole
0 0 4 B 900000 F 5 0 MOV DPTR,*sum 5 g
0 0 4 E 120000 F 5 1 CALL pu t_5 t r i n 9
0 0 S 1 7 9 0 0 F 52 MOV R 1 , * 5 u m
0 0 5 3 7 A 0 4 53 MOV R 2 , * 4
0 0 5 5 120000 F 54 CALL p u t_d ata_ str
0 0 5 8 8 0 B 1 5 5 JMP start

56
— - _ 57 DSEG at 8
0 0 0 8 58 STACK : DS 8 ; A t power- up the stack pointer is

59 ; 1 n i t i a 1 i z ed to point here.
60
6 1 DATA_ AREA 5 egme n t DATA
62 CONSTANT,. AREA 5 egme n t CODE
63

— - - 64 RSEG data are a
0 0 0 0 65 NUM 1 : D S 4
0 0 0 4 66 NUM2 : DS 4
0 0 0 8 6 7 SUM : DS 4

68
— - - 69 RSEG constant area
0 0 0 0 54595045 70 T Y P O_ MSG: DB ' TYPE X TO RETYPE A NUMBER'OOH
0 0 0 4 205E5820
0 0 0 8 544F20S2
0 0 0 C 45545950
0 0 10 45204120
0 0 14 4E554D42
0 0 18 4 5 5 2
0 0 1 A 0 0

Exam
ples of Program D

evelopm
ent 5-3Figure 5-1. SAMP1 Listing File (Cont’d.)

0 0 1 B 54595045 7 1 N UM 1 _MSG : DB 'TYPE IN FIRST NUMBER : , 0 0 H
0 0 1 F 20494E20
0 0 2 3 46495253
0 0 2 7 5 4 2 0 4 E 5 5
0 0 2 B 4D424552
0 0 2 F 3 A 2 0
0 0 3 1 0 0
0 0 3 2 54595045 7 2 N UM 2 _MSG : DB 'TYPE IN SECOND NUMBER : ' , 0 0 H
0 0 3 6 20494E20
0 0 3 A 5 3 4 5 4 3 4 F
0 0 3 E 4 E 4 4 2 0 4 E
0 0 4 2 554D4245
0 0 4 6 523A20
0 0 4 9 0 0
0 0 4 A 54484520 73 SUM_ MSG : DB 'THE SUM IS ' , 0 0 H
0 0 4 E 53554D20
0 0 5 2 495320
0 0 5 5 0 0

7 4
75 END

SYMBOL TABLE LISTING

N A M E TYPE V A L U E A T T R I B U T E S

A S C B I N C ADDR --------- E X T
B I N A S C C ADDR ------ -- E X T
C0NSTANT_AREA C SEG 0 0 5 6 H R E L - U N I T
DATA _AREA , . D SEG 0 0 0 C H R E L - U N I T
G E T_ NUM . , . C ADDR — E X T
NUM 1 _MSG . . . C ADDR 0 0 1 BH R SEG-CONST ANT-ARE A
N UM 1 D ADDR 0 0 0 0 H R SEG-DATA AREA
NUM2 _M S G . . . C ADDR 0 0 3 2 H R SEG-CONSTANT AREA
NUM2 D ADDR 0 0 0 4 H R SEG-DATA AREA
P U T_ CRLF . . . C ADDR ------- E X T
P U T_DATA_STR. C ADDR E X T
PUT, STRING. . C ADDR --------- EXT
SAMPLE --------- — _ -
SCON D ADDR 0 0 9 8 H A
STACK D ADDR 0 0 0 BH A
START . . . , C ADDR 0 0 0 BH A

5-4 M
CS®

-51

Figure 5-1. SAMP1 Listing File (Cont’d.)

ASSEMBLY COMPLETE, NO ERRORS FOUND

SUM_MSG . . C ADDR 0 0 4 A H R SEG 1 C0NSTANT_ AREA
SUM D ADDR 0 0 0 8 H R SET=DATA„AREA
T H 1 D ADDR 0 0 8 DH A
TMOD D ADDR 0 0 8 9 H A
TR 1 B ADDR 0 0 8 8 H . 6 A
TYPQ_MSG . . C ADDR 0 0 0 0 H R SEG=CONSTANT_ AREA

REGISTER B A N K (S) USED: 0, TARGET M A C H I N E (S) : 80S1

Exam
ples of Program D

evelopm
ent 5-5Figure 5-1. SAMP1 Listing File (Cont’d.)

Figure 5-2. SAMP2 Listing File

system-id M C S - 5 1
OBJECT MODULE
ASSEMBLER I N V

MACRO
PLACED

OKED BY

ASSEMBLER V x.y
IN SAMP2 . OBJ

: ASMS 1

LINE

SAMP2.A51 DEBUG

SOURCELOC OBJ

1 NAME C 0 N S 0 L E_I0
2
3 IO_R OUTINES segment CODE

— 4 RSEG 10. ROUTINES
5 ; This is the console 10 routine cluster.
6 PUBLIC put_c r1f, put_5 t r i ng,pu t_da t a_5 t r , ge t_num
7 USING 0
8
9 ; This routine outputs a Carriage Return and

1 0 ; a Line Feed
1 1 PUT_CRLF:

0 0 0 D 1 2 CREQU ODH ; carriage return
0 0 0 A 1 3 LFEQU OAH ; line feed

1 4
0 0 0 0 7 4 0 D 1 5 MOV A , »cr
0 0 0 2 120000 F 1 6 CALL p u t_ch a r
0 0 0 S 7 4 0 A 1 7 MOV A , * 1 f
0 0 0 7 120000 F 1 8 CALL p u t_c h a r
0 0 0 A 22 1 9 RET

2 0
2 1 ; Routine outputs a null-terminated string located
22 ; in CODE memory, whose address is given in DPTR.
2 3 PUT_STRI NG:

0 0 0 B E 4 2 4 CLR A
0 0 0 C 9 3 25 MOVC A , jA*DPTR
0 0 OD 6 0 0 6 26 JZ exit
HOOF 120000 F 2 7 CALL pu t_c ha r
0 0 12 A3 2 8 INC DPTR
0 0 13 80F6 29 J M P put_string

3 0 EXIT:
0 0 15 22 3 1 RET

32
3 3 ; Routine outputs a string located in DATA memory,
34 ; whose address is in R1 and its length in R2.
3 5 P UT_DA TA.STR:

5-6
M

CS®
-51

0 0 16 E 7 36 MOV A , jR 1
0 0 17 120000 F 3 7 CALL p u t_ch a r
0 0 1 A 0 9 38 INC R 1
0 0 1 B DAF9 39 DJNZ R2,put_data_str
0 0 1 D 2 2 4 0 RET

4 1
42 ; Routine outputs a single character to console.
43 ; The character is given in A.
4 4 PUT_CHAR:

0 0 1 E 3099FD 4 5 JNB T I , »
0 0 2 1 C299 46 C L R T I
0 0 2 3 F 599 4 7 MOV SBUF , A
0 0 2 5 2 2 4 8 RET

4 9
5 0 ; Get a 4 character string from console
5 1 ; and stores it at the address given in R0.
5 2 ; If a X is received, routine starts over again.
53 GET. HUM :

0 0 2 6 7 A 0 4 54 MOV R 2 , * 4 ; set up string length as 4
0 0 2 8 A 9 0 0 5 5 MOV R 1 , A R 0 ; R0 value may be needed for restart

56 GET—LOOP:
0 0 2 A 120000 F 5 7 CALL g e t _c ha r

58 ; Next 4 instr's handle X- the routine starts
59 ; over if received

0 0 2 D C 2 E 7 6 0 CLR ACC.7 ; clear the parity bit
0 0 2 F B 4 1 8 0 5 6 1 CJNE A,*18H,G0_ON ; if not X- 90 on
0 0 3 2 120000 F 62 CALL put c r 1 f
0 0 3 5 8 0 E F 63 JMP g e t_num

64 GO-ON:
0 0 3 7 F 7 65 MOV « R 1 , A
0 0 3 8 0 9 66 INC R 1
0 0 3 9 DAEF 6 7 DJNZ R2,get_loop
0 0 3 B 2 2 68 RET

69 !
7 0 ; Get a single character from console.
7 1 ; The character is returned in A.
7 2 GET-CHAR:

Exam
ples of Program D

evelopm
ent 5-7

Figure 5-2. SAMP2 Listing File (Cont’d.)

O03C 3098FD 73 JNB R I , «
0 0 3 F C298 7 4 C L R R I
0041 E599 7 5 MOV A , SBUF
0043 22 76 RET

7 7
78 END

5-8 M
CS®

-51

SYMBOL TABLE LISTING

NAME T Y P E V A L U E A T T R I B U T E S

ACC.......................... D ADDR 0 0 E 0 H A
A R 0.......................... D ADDR 0 0 0 0 H A
CONSOL E_IO . — _ _ - —
C R.......................... NUMB 0 0 0 DH A
EXIT C ADDR 0 0 1 5 H R S E G = I 0 _ ROUTINES
GET CHAR . . C ADDR 0 0 3 C H R S E G- IO_ ROUTINES
GET LOOP . . C ADDR 0 0 2 A H R S E G = I 0 ROUTINES
GET_NUM. . . c ADDR 0 0 2 6 H R PUB S E G = I O_ ROUTINES
GO„ON. . . . c ADDR 0 0 3 7 H R S E G = I 0 ROUTINES
I 0_ROUTINES . c S E G 0 0 4 4 H R E L • U N I T
LF.......................... NUMB 0 0 0 A H A
PUT_CHAR . . c ADDR 0 0 1 E H R SEG-IO_ ROUTINES
PUT_CRLF . . c ADDR 0 0 0 OH R PUB S E G- IO_ ROUTINES
PUT_DATA_?TR c ADDR 0 0 1 6H R PUB S E G - I 0 ROUTINES
PUT_STRING . c ADDR 0 0 0 BH R PUB SEG-IO_ ROUTINES
RI.......................... B ADDR 0 0 9 8 H 0 A
SBUF D ADDR 0 0 9 9 H A
T I.......................... B ADDR 0 0 9 8 H 1 A

REGISTER BANKCS) USED: 0, TARGET MACHINECS): 8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 5-2. SAMP2 Listing File (Cont’d.)

MCS-5 1 MACRO ASSEMBLER NUM_C0NVER5 I 0N
system-id M C S - 5 1 MACRO ASSEMBLER Vx.y
OBJECT MODULE PLACED IN SAMP3.0BJ
ASSEMBLER INVOKED BY: ASM51 SAMP3.A51 DEBUG

LINE SOURCELOC OBJ

1
2
3

NAME NUM_C0NVER5I ON

NUM_ROUTINES segment CODE
--------- 4 RSEG NUM_ROUTINES

5 ; This module convert 5 from ASCII to binary
6 ; and back. The binar y numbers are signed one-byte
7 ; integers, i.e. rang e is -128 to *127. Their
8 ; ASCII representatio n is always 4 char's long-
9 ; i.e. a sign fo 1 1 owe ri by 3 digits.

1 0 PUBLIC a 5 c b i n , bin a s c
1 1 USING 0

0 0 3 0 1 2 ZERO EQU ' 0 '
0 02B 1 3 PLUS EQU ' ♦ '
0 0 2 D 1 4 MINUS EQU

1 5
1 6 ; This routine conver t 5 ASCII to binary.
1 7 ; INPUT- a 4 char st ring pointed at by R1. The
1 8 ; number range mu s t be -128 to *127, and the
1 9 ; string must have 3 digits preceded by a sign.
2 0 ; OUTPUT- a signed on e-byte integer, located where
2 1 ; the input string started (pointed at by R1).
2 2 A S C B I N :

0 0 0 0 AB 0 1 2 3 MOV R 0 , A R1 ; RI original value needed later
2 4 ; Compute first digit value, and store it in TEMP

REG 25 TEMP E Q U R 3
0002 08 26 INC R0
0003 E6 27 MOV A , ® R 0
0004 C3 28 C L R C
0005 9430 29 SUBB A, 'zero
0 0 0 7 7 5 F 0 6 4 3 0 MOV B,#1 0 0
0 0 0 A A 4 3 1 MU L AB
0 0 0 B FB 3 2 MOV TEMP , A

33 ; Compute the second digit value
3 4 INC R0

Figure 5-3. SAMP3 Listing File

Exam
ples of Program D

evelopm
ent 5-9

0 0 0 c 08
GOOD E 6 35 MOV A , $ R 0
0 0 0 E 9 4 3 0 36 SUBB A , * z e r o
0 0 10 7 5 F 0 0 A 3 7 MOV B , * 1 0
0 0 13 A 4 38 MUL A B

39 Add th e value of the second digit to num.
0 0 14 2B 4 0 ADD A,TEMP
0 0 15 F B 4 1 MOV TEMP , A

4 2 Get th ird digit and its value to total
0 0 16 0 8 43 1 N C R 0
0 0 17 E6 4 4 MOV A , jRO
0 0 18 C3 45 CLR c
0 0 19 9 4 3 0 46 SUBB A , * z e r o
0 G 1 B 2B 4 7 ADD A ,T E MP
0 0 1 C FB 48 MOV TEMP , A

4 9 Test the sign and complement the number if the
5 0 5 i g n i 5 a minus

0 0 1 D E7 5 1 MOV A , »R 1
0 0 1 E B42D04 52 C J N E A,#mi nu s,po 5 ; Skip the next 4 instr's

S3 ; if the number is positive
0 0 2 1 EB 54 MOV A,TEMP
0 0 2 2 F 4 55 C P L A
0 0 2 3 0 4 56 INC A
0 0 2 4 FB 57 MOV TEMP , A

58
59 Eptiog ue- store the result and exit
60 OS :

0 0 2 5 EB 6 1 MOV A,TEMP
0 0 2 6 F7 6 2 MOV e r 1, a
0 0 2 7 22 63 RET

64
65 This r outine converts binary to ASCII.
66 INPUT- a signed 1 - b y t e integer, pointed at by R1
67 OUTPUT - a 4 character string, located where the
68 i n p ut number was (pointed at by R1).
69 31 N A S C :

00E7 7 0 > I GN bit ACC . 7
7 1 Get th e number, find its sign and store its sign

-10 M
C

S®
-51

Figure 5-3. SAMP3 Listing File (Cont’d.)

0 0 2 8 E7 72 MOV A , JR 1
0 0 2 9 7 7 2 B 7 3 MOV g R 1 , * p 1 u s ; Store a plus sign (over-

7 4 ; written by minus if needed)
0 0 2 B 30E7D4 7 5 JNB s i g n , g o_o n2 ; Test the sign bit

7 6 ; Next 3 instructions handle negative numbers
0 0 2 E 7 7 2 D 77 MOV jR1,'minus ; Store a minus sign
0 0 3 0 1 4 78 DEC A
0 0 3 1 F 4 79 CPI A

8 0 ; Facto r out the first digit
8 1 G0_0N2:

0 0 3 2 09 82 1 N C R 1
0 0 3 3 75F064 83 MOV B , * 1 0 0
0 0 3 6 84 84 D I V AB
0 0 3 7 24 3 0 85 ADD A , # z e r o
0 0 3 9 F7 86 MOV § R1 ,A ; store the first digit

8 7 ; Facto r out the second digit
0 0 3 A 09 88 I NC R 1
0 0 3 B E5F0 89 MOV A , B
0 0 3 D 75F 0 0 A 9 0 MOV B , * 1 0
0 0 4 0 84 9 1 D I V A B
0 0 4 1 2 4 3 0 92 ADD A , * z e r o
0 0 4 3 F7 93 MOV gR1 , A ; store the second digit

94 ; Store the third digit
0 0 4 4 09 95 1 N C R 1
0 0 4 5 E5F0 96 MOV A , B
0 0 4 7 2 4 3 0 97 ADD A , * z e r o
0 0 4 9 F7 98 MOV $ R1 ,A ; store the third digit

99 ; note that we return without restoring R1
0 0 4 A 22 1 0 0 RET

1 0 1
102 END

Exam
ples of Program D

evelopm
ent 5-11Figure 5-3. SAMP3 Listing File (Cont’d.)

SYMBOL TABLE LISTING

NAME T Y P E VALUE ATTRIBUTE S

ACC................................ D ADDR 0 0 E 0 H A
A R 1................................ D ADDR 0 0 0 1 H A
A S CB I N , . . . C ADDR 0 0 0 0 H R PUB SEG-N UM_R0 UTI NE S
B....................................... D ADDR 0 0 F 0 H A
BI NA SC C ADDR 0 0 2 8 H R PUB SEG = N UM_R0 UTINES
G0_QN2 C ADDR 0 0 3 2 H R SEG-NUM_R0UTINES
MINUS.......................... NUMB 0 0 2 DH A
NUM_C 0NVERSI ON - - - - —
NUM .ROUTINES . c SEG 0 0 4 BH REL-UN I T
PLUS.......................... NUMB 0 0 2 BH A
POS................................. c ADDR 0 0 2 5 H R SEG-NUM_R0UTINES
SIGN.......................... B ADDR 0 0 E 0 H . 7 A
TEMP.......................... R E G R3
ZERO.......................... NUMB 0 0 3 0 H A

REGISTER BANK(S) USED: 0, TARGET MACHINE(S): 8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

-12
M

CS®
-51

Figure 5-3. SAMP3 Listing File (Cont’d.)

system-id R L S 1 mm/dd/yy PAGE 1

system-id MCS-51 RELOCATOR AND LINKER, Vx.y, INVOKED BY:
RL51 SAMP 1 . OB J, SAMP2 . OB J , SAMP3 . OB J 4
• *TO SAMPLE S
••PRINT (SAMPLE.LST) SYMBOLS LINES PUBLICS IXREF

INPUT MODULES I NCLUDED
SAMP1.OBJCSAMPLE)
S A M P 2.0 B J(C 0 N S 0 L E_I 0)
SAMP3.0BJCNUM_C ONVERSION)

LINK MAP FOR SAMPLE(SAMPLE)

TYPE BASE LENGTH RELOCATION SEGMENT NAME

R E G 0 0 0 0 H 0 0 0 BH "REG BANK 0"
DATA 0 0 0 8 H 0 0 0 8 H ABSOLUTE
DATA 0 0 1 0 H 0 0 0 C H UNIT DATA—AREA

CODE 0 0 0 0 H 0 0 5 A H ABSOLUTE
CODE 0 0 5 A H 0 0 5 6 H UNIT CONSTANT AREA
CODE 0 0 B 0 H 0 0 4 B H UNIT NUM ROUTINES
CODE 0 0 F BH 0 0 4 AH UNIT I0-R 0 U TIN E S

SYMBOL TABLE FOR SAMPLECSAMPLE)

VALUE TYPE NAME

— MODULE SAMPLE
C : 0 0 5 A H SEGMENT C0NSTANT_AREA
D : 0 0 1 0 H SEGMENT DATA AREA
C : 0 0 7 5 H SYMBOL NUM 1 MSG
D : 0 0 1 0 H SYMBOL N UM 1
C : 0 0 8 C H SYMBOL N UM 2_M S G
D : 0 0 1 4 H SYMBOL N U M 2
D : 0 0 9 8 H SYMBOL SCON

Figure 5-4. RL51 Output File

Exam
ples of Program D

evelopm
ent 5-13

Figure 5-4. RL51 Output File (Cont’d.)

D : 0 0 0 8 H SYMBOL STACK
C : 0 0 0 B H SYMBOL START
C : 0 0 A 4 H SYMBOL SUM_MSG
D : 0 0 1 8 H SYMBOL SUM
D : 0 0 8 D H SYMBOL TH 1
D : 0 0 8 9 H SYMBOL TMOD
B : 0 0 8 8 H . 6 SYMBOL T R 1
C : 0 0 5 A H SYMBOL TYPO_MSG
— E NDMOD SAMPLE
— MODULE CONSOL E_I 0
D : 0 0 E 0 H SYMBOL ACC
D : 0 0 0 0 H SYMBOL A R 0
N : 0 0 0 D H SYMBOL C R
C : 0 1 1 0 H SYMBOL EXIT
C : 0 1 3 7 H SYMBOL GET_CHAR
C : 0 1 2 S H SYMBOL GET-LOOP
C : 0 1 2 1 H PUBLIC GET_NUM
C : 0 1 3 2 H SYMBOL GO-ON
C: 0 0 F BH SEGMENT I0_ROUTINES
N : 0 0 0 A H SYMBOL LF
C : 0 1 1 9 H SYMBOL PUT_CHAR

system-id R L 5 1 mm/dd/yy PAGE 2

C : 0 0 F B H PUBLIC PUT—CRLF
C : 0 1 1 1 H PUBLIC PUT—DATA—STR
C : 0 1 0 6 H PUBLIC PUT-STR I NG
B : 0 0 9 8 H SYMBOL R I
D : 0 0 9 9 H SYMBOL SBUF
B : 0 0 9 8 H . 1 SYMBOL T I

E N DM 0D CONSOLE-IO

— MODULE N UM„C 0 NV E R S10 N
D: 0 OE 0 H SYMBOL ACC
D : 0 0 0 1 H SYMBOL A R 1
C : 0 0 B 0 H PUBLIC A S C B I N
D: 0 OF 0 H SYMBOL B
C : 0 0 D8 H PUBLIC B I N A S C

-14 M
C

S®
-51

C : 0 0 E 2 H SYMBOL G0_0N2
N : 0 0 2 D H SYMBOL MINUS
C : 0 0 B 0 H SEGMENT NUM„ROUTINES
N : 0 0 2 B H SYMBOL PLUS
C : 0 0 D 5 H SYMBOL P 0 S
B : 0 0 E 0 H . 7 SYMBOL SIGN
N : 0 0 3 0 H SYMBOL ZERO
------ -- -------- ENDMOD NUM_C0NVERSI ON

INTER-MDDULE CROSS-REFERENCE LISTING

NAME.......................... USAGE MODULE NAMES

A S C B I N CODE ; NUM C□NVERSI 0N SAMPLE
BI NASC CODE; NUM„C0NVERSI 0N SAMPLE
GET-NUM . . . CODE ; C 0 N S 0 L E_I 0 SAMPLE
PUT_CRLF. . . CODE ; C0NS0LE_I0 SAMPLE
PUT_DATA_STR . CODE ; CONSOLE—IO SAMPLE
PUT_STRING. . CODE; C 0 N S 0 L E_I 0 SAMPLE

Figure 5-4. RL51 Output File (Cont’d.)

Exam
ples of Program D

evelopm
ent 5

—
 15

5-16 MCS®-51

Using the Locating Controls
The second example shows how to use the PRECEDE control to specify an order for
data segments, in this case because the RL51 algorithm for locating segments results
in a segment being left out.

The program is named TEST01. After assembly, the listing of TEST01.OBJ is as
shown in figure 5-5. The program’s code sequence is irrelevant to the example. The
two DATA segments, SEG1 and SEG2, and the BIT segment, BIT3, are the points
of interest for this example.

SEG1 is 21H bytes long; SEG2, 50H bytes long; SEG3, one bit long. The assembler
listing also shows working register bank 0 (8 bytes long, absolutely located at addresses
OOH through 07H).

All these segments are to be located in the on-chip data RAM of an 8051. For the
8051, the directly-addressable on-chip data RAM is 80H bytes long (addresses OOH
through 7FH); addresses 20H through 2FH are bit-addressable. The working regis­
ters may occupy the first 20H bytes of the space. To see what RL51 does with this
program, enter the command

RLE 1 T E S T 01 . OBJ

The RL51 listing file is shown in figure 5-6. ERROR 107 informs us that the locate
attempt for SEG1 would overflow the data space; SEG1 was ignored (not located)
for this reason. The link map shows the following assignments for the remaining
segments:

Addresses Segment
OOH - 07H Register Bank 0
08H - 1FH GAP
20H SEG3 (one bit at bit location 0)
20H.1 - 20H.7 GAP
21H - 71H SEG2 (50H bytes)

After these segments have been located, there is not enough room for SEG1 (21H
bytes). However, there would be enough room if SEG1 were located before the BIT
segment. To obtain this result, the command is

RLS1 TEST01.0BJ PRECEDE<SEG1>

The RL51 listing file for this example is shown in figure 5-7. The PRECEDE control
caused the link mapping to be as follows:

Refer to Chapter 2 for details on RL5Ts allocating algorithm.

Addresses Segment
OOH - 07H Register Bank 0
08H - 28H SEG1 (21H bytes)
29H SEG3 (one bit at bit location 0)
29H.1 - 29H.7 GAP
2AH - 7AH SEG2 (50H bytes)

Using RL51 with PL/M-51 Modules
The third example shows how to use RL51 with object modules produced by
PL/M-51. The example shows the use of PLM51.LIB and demonstrates PL/M-51
generated segments and the PL/M-51 to ASM51 linkage.

Examples of Program Development 5-17

The entire application introduces a way to halt ICE-51 the 8051 In-Circuit Emulator
Program, at run time. The procedure CHECK EQUAL in the PL/M-51 module
CHK_EQ checks if an arithmetic expression is true. If yes, it calls the HALTJCE
assembler routine, which causes ICE51 to stop the program that is currently running.
The code of the program is irrelevant; the example merely intends to show the program
development process.

The PLM51 main module CHK_EQ is compiled by

P L M 51 CHKEQ.P51 DEBUG P W(9 0)

The output of the compilation is shown in figure 5-8.

The ASM51 module HLTICE is assembled by

ASMS 1 HLTICE. A51 DEBUG PW(90)

The output of the compilation is shown in figure 5-9.

RL51 is invoked by the following command:

RLS1 CHKEa.0BJ,HLT I CE . 0BJ , PLM5 1 .LIB IXREF PW(72)

RL51 links the two pre-translated input modules, along with the mandatory library
PLM51.LIB. PLM51.LIB must be linked whenever a PL/M-51 module participates
in the linkage. The listing files are shown in figures 5-8 and 5-9. The result of the
linkage is shown in figure 5-10.

The result of a linkage process that includes PL/M-51 modules deserves an expla­
nation. The following paragraphs describe the modules, segments, and symbols that
appear in the output listing of such a linkage. The explanation refers to the actual
example (figure 5-10).

In addition to the two input modules CHK EQ and HALT_ICE, RL51 pulled some
modules from PLM51.LIB. The two modules ?P0034 and 2P0038 contain common
PL/M-51 run-time routines and were pulled to resolve calls to those routines in the
CHK_EQ module. The module 2PIV0R contains the initialization routine (set the
stack pointer, set PSW), and is pulled whenever a linkage process encounters a main
module written in PL/M-51.

The segments BYTES, BITS, and PROG are the user segments as defined in the
ASM51 HALT_ICE module. The code segments 7P0034S, 2POO38S and 7PIV0RS
are the code segments of the previously explained run-time routines.

All segments whose names are of the form ?CHK_EQ?any are segments generated
by PL/M-51 as result of compiling module CHK_EQ. The prefix ?CHK_EQ?
indicates that the segment belongs to the CHK„EQ module. The suffix indicates the
segment type; e.g, PR stands for the PRogram CODE segment, CO for the Constant
CODE segment, DT for DATA segment, and BI for BIT segment.

On-chip segment names may be followed by a register bank number (0-3). This
number indicates the register bank that must be in effect while data in this segment
is accessed.

The 7STACK segment was discussed before. Note that this segment is not supplied
by the user, but is pulled automatically from PLM51.LIB because the main module
is written in PL/M-51. The absolute segment at 0000H-0002H contains the reset
vector, which consists of a JUMP to the initialization routine contained in the
7PIV0RS segment.

5-18 MCS®-51

Most of PL/M-51-generated relocatable segments have the UNIT relocation type. A
frequent exception is the program code segment (?CHK_EQ?PR), which is
INBLOCK whenever a module is compiled under ROM (MEDIUM), which is the
default used by the compiler. Another (less frequent) exception is the BITAD-
DRESSABLE DATA segment generated when bit structures are declared within the
PL/M-51 source program.

User symbols appear in the symbol table and the IXREF report. Symbols whose
names are equal to segments and modules defined previously represent entry points
in the appropriate mqdules/Segments pulled from PLM51.LIB (e.g., the symbol
7POO34 is a code address in the module 7POO34).

Symbols in the format 7 procedure?BYTE or ?procedure?BIT (e.g.,
?HALT_ICE?BYTE) are DATA and BIT addresses used for passing parameters to
the appropriate external procedures (as implied by the name). BYTE and WORD
parameters are placed at DATA address starting at, for example,
?HALT_ICE?BYTE. BIT parameters are placed at BIT address starting at
?HALT_ICE?BIT (see also the PL/M-51 User-s Guide about PL/M-51 linkage to
ASM51).

MCS - 5 1 MACRO ASSEMBLER TEST01
system-id M C S - 5 1 MACRO ASSEMBLER Vx.y
OBJECT MODULE PLACED
ASSEMBLER INVOKED BY
• ‘OBJECT (TESTO 1 .OBJ

IN TESTO
: ASMS 1
)

1 . OB J
TEST01.SRC PRINT (: CO :) t

L OC OBJ LINE SOURCE

0 0 0 0
0 0 0 4
0 0 0 8
0 0 0 C
0 0 10

0 0 0 0

0 0 0 0

0 0 0 0

4 3 4 F 4 4 4 5
20495320
49525245
4C 4 5 5 6 4 1
4 E 5 4

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8

1 9
2 0
2 1
2 2
2 3
2 4
2 S
26
2 7
28
29

; This test shows the use
; PRECEDE locating cent
; One bit causes fa i 1 u r
; RL51 allocation algor
; but the PRECEDE contr

NAME t e s t 0 1

prog SEGMENT CODE
seg 1 SEGMENT DATA
seg2 SEGMENT DATA
s e g 3 SEGMENT BIT

RSEG p ro g

; Code segment.

• DB 'CODE

RSEG s e g 1
DS 0 2 1 H

RSEG seg2
DS OSOH

RSEG seg3
DBIT 001H

END

of the
r o 1 .
e of the
i t h m ,
o 1 fixes it.

IS IRRELEVANT*

Exam
ples of Program D

evelopm
ent 5-19Figure 5-5. TEST01 Assembly Listing File

system-id R L S 1

system-id MCS-51 RELOCATOR AND LINKER, Vx.y, INVOKED BY:
RL5 1 TESTO 1 . OBJ

INPUT MODULES INCLUDED
TESTO1 .OBJtTESTO 1)

LINK MAP FOR TEST01(TEST01>

5-20 M
C

S®
-51

TYPE BASE LENGTH RELOCATION SEGMENT NAME

REG 0 0 0 0 H 0 0 0 8 H "REG BANK 0“
0 0 0 8 H 0 0 1 8H * * * GAP • * •

B I T 0 0 2 0 H 0 0 0 0 H . 1 UNIT SEG3
0 0 2 0 H . 1 0 0 0 0 H . 7 • • • GAP •••

DATA 0 0 2 1 H 0 0 S 0 H UNIT SEG2

CODE 0 0 0 0 H 0 0 1 2H UNIT PROG

IGNORED SEGMENTS
S E G 1

- ERROR 107: ADDRESS SPACE OVERFLOW
SPACE: DATA
SEGMENT : SEG 1

Figure 5-6. RL51 Listing File without PRECEDE

system-id R L 5 1

system-id M C S - 5 1 RELOCATOR AND LINKER, Vx.y, INVOKED BY:
RL51 TEST01 .OBJ P R E C E D E (S E G 1)

INPUT MODULES INCLUDED
TESTO 1 .OBJtTESTO 1)

LINK MAP FOR TESTO 1 (TESTO 1)

TYPE BASE LENGTH RELOCATION SEGMENT NAME

REG 0 0 0 0 H 0 0 0 8 H "REG BANK 0 "
DATA 0 0 0 8 H 0 0 2 1 H UNIT SEG1
B I T 0 0 2 9 H 0 0 0 0 H . 1 UNIT SEG3

0 0 2 9 H . 1 0 0 0 OH . 7 * * * GAP * * *
DATA 0 0 2 A H 0 0 S 0 H UNIT SEG2

CODE 0 0 0 0 H 0 0 1 2H UNIT PROG

Exam
ples of Program D

evelopm
ent 5-21Figure 5-7. RL51 Listing File with PRECEDE

1 2

PL/M-51 COMPILER ICE 51 - Check/Halt - - mm/dd/yy

system-id PL/M-51 V x.y
COMPILER INVOKED BY: p1m 51 chkeq.p51 debug p w (9 0)

1 1

2 1

3 2

♦title (' ■ ■
/•»•«•••«•««

/• Chee k_e q u
/ • Check
/ 1 e x p e c
/ • a s s e m
/«••••*«<•««

c h k_eq :
DO ;

h a 1 t_i c e:
PROCEDURE

DECLARE

ICE51 - Check/Halt - -

a 1 :
if comparison yields

ted result. If not, c
bier routine to retur

(va 1 1 , val2, eq_swi t
(vaH, va 1 2) WORD, e

')

• /
the • /

all • /
n to ICE. • /

ch) EXTERNAL;
q_5 witch BIT;

5 1

6 2

7 2

c h e c k_equa 1 :
PROCEDURE

DECLARE
(va 1 1

eq_5

IF ((va

(va11 , val2, eq_s w i t

, va 1 2) WORD ,
witch BIT;

11 <> va 1 2) < > eq_s w i

ch) PUBLIC;

t c h)

9 1

1 0 1

1 1 1

THEN CALL halt_lce (vail,
END c h e c k_e q u a 1 ;

/• dummy main program * /

DECLARE
pi WORD CONSTANT (3) ,
51 WORD;

CALL chec k_equa1(p1*51, 2 7 / s 1 ,

v a 12, eq_a w1

1 > ;

END ch k_e q;

PAGE 1

END ;

ch);

5-22
M

C
S®

-51

Figure 5-8. PL/M-51 Listing File of CHKEQ

MODULE INFORMATION: (S T A T I C + 0 V E R L A Y A B L E)
CODE SIZE • 0 0 S 7 H 87D
CONSTANT SIZE ■ 0 0 0 2 H 2D
DIRECT VARIABLE SIZE • 02H + 0 4 H 2D* 4D
INDIRECT VARIABLE SIZE • 0 0 H * 0 0 H OD* OD
BIT SIZE ■ 0 0 H ’ 0 1 H OD* 1D
BIT-ADDRESSABLE SIZE • 0 0 H * 0 0 H HD* OD
AUXILIARY VARIABLE SIZE ■ 0 0 0 0 H OD
MAXIMUM STACK SIZE • 0 0 0 6 H 6D
REGISTER-BANK(S) USED: 0
34 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-S1 COMPILATION

Figure 5-8. PL/M-51 Listing File of CHKEQ (Cont’d.)

Exam
ples of Program D

evelopm
ent 5-23

MCS-51 MACRO ASSEMBLER ICES1 - Halt ■ • ' mm/dd/yy PAGE

system-id MCS-S1 MACRO ASSEMBLER Vx.y
OBJECT MODULE PLACED IN HLTICE.OBJ
ASSEMBLER INVOKED BY : asmS1 hitice. a 5 1 debug pw(90)

L 0 C OBJ LINE SOURCE

5-24
M

CS®
-51

1 » t i t 1 e (' ’ - I C E 5 1 - Hal t = = ')
2 . ♦ ♦ ♦ » »«««*»«« « * * « « » ««**«**«««**«*«««***««

3 ; * Ha 1 t_I c e : »

4 > S t o re word param e t e r 5 in R 4 5 , R67, •
5 i B i t in C an d e x e c ute AS instruction *
6 t 0 return t o ICE «

7 . *»* * » « « • « *««»»«»« ♦ • • » * * **«*««*•«»««»*«*«««*««

8
9 NAME halt_i c e

1 0 P U B L IC halt_i c e , ?halt_ice?bit, ? ha 1 t_i c e ? by t e
1 1 bits SEGMENT BIT
1 2 bytes SEGMENT DATA
1 3 prog SEGMENT CODE
1 4

--------- 15 RSEG b 1 t 5
1 6 ? h a 1 t ice’ bit:
1 7 b i t_p a r :

0000 18 DB I T 1
1 9

--------- 2 0 RSEG b y t e 5
2 1 ’halt ice’ byte:
2 2 first par:

0000 23 DS 2
2 4 second _p a r

0002 25 DS 2
26

--------- 2 7 RSEG pro g
28 halt- i c e :

0 0 0 0 AC 0 0 F 29 MOV R 4 , f i r s t_p a r ; move 1st par to place
0 0 0 2 ADO 0 F 3 0 MOV R 5 , f i r 5 t_p a r ♦ 1
0 0 0 4 A E 0 0 F 3 1 MOV R 6 , s e c o n d_p a r ; move 2nd par to place

Figure 5-9. ASM51 Listing File of HLTICE

4 0 ; s t o p .
4 1 END

0 0 0 6 AF 0 0 F 32 MOV R 7, 5 e c o n d_p a r + 1
0 0 0 8 A200 F 33 MOV C,b it_p a r ; move b 1 t par t 0 p 1 a c e

34 ;
0 0 0 A A5 3 5 DB 0 A 5 H ; 1 1 1 e 9 » 1 0 p - c 0 d e .
0 0 0 B 0 0 36 NOP ; Will s t 0 p I CE - 5 1 i f you
0 0 0 C 0 0 3 7 NOP i type "GO T I L OPC I S A 5"
0 0 0 D 0 0 38 NOP
0 0 0 E 22 38 R E T ; you can c o n t i nue a f t e r

MCS-51 MACRO ASSEMBLER ICE51 - Halt

SYMBOL TABLE LISTING

NAME TYPE VALUE ATTRIBUTES

ASSEMBLY COMPLETE, NO ERRORS FOUND

’HALT_ICE ? BIT. B ADDR 0 0 0 0 H . 0 R PUB S EG■BITS
’HAL T_IC E’BY TE D ADDR 0 0 0 0 H R PUB SEG-BYTES
B I T_P AR. . . . B ADDR 0 0 0 0 H . 0 R S EG■BIT S
BITS.......................... B SEG 0 0 0 1 H R E L - U N I T
BYTES.......................... D SEG 0 0 0 4 H R E L - U N I T
FIRS T_PAR. . . D ADDR 0 0 0 0 H R SEG-BYTES
HALT_ICE . . . C ADDR 0 0 0 0 H R PUB SEG-PROG
PROG.......................... C SEG 0 0 0 F H R E L = UN I T
SEC0ND_PAR . . D ADDR 0 0 0 2 H R SEG-BYTES

REGISTER B A N K C S > USED: 0 , TARGET MACHINE(S): 8051

Figure 5-9. ASM51 Listing File of HLTICE (Cont'd.)

Exam
ples of Program D

evelopm
ent 5-25

system-id R L 5 1 mm/dd/yy PAGE 1

I SIS-I I MCS-5 1 RELOCATOR AND LINKER, Vx.y, INVOKED BY:
RLS1 CHKEQ . OBJ , HLTICE.OBJ,PLM51 .LIB IXREF P 14 (7 2)

INPUT MODULES INCLUDED
CHKEQ.OB J(C HK_EQ)
HLT I C E . OB J(H A L T_ IC E)
PLM51.LIB(?P0034)
PLMS1.LIB<?P0038)
P L M S 1 . L I B (? P I V 0 R)

LINK MAP FOR CHKEQ(CH K_E Q)

5-26 M
C

S®
-51

TYPE BASE LENGTH RELOCATI ON SEGMENT NAME

REG 0 0 0 0 H 0 0 0 8 H "REG BANK 0"
DATA 0 0 0 8 H 0 0 0 4 H UNIT BYTES
DATA 0 0 0 C H 0 0 0 4 H UNIT ’CHK E Q ? DT ? 0
DATA 0 0 1 0 H 0 0 0 2 H UNIT ’CHK E Q?DT

0 0 1 2 H 0 0 0 E H • •* GAP • • •
B I T 0 0 2 0 H 0 0 0 OH . 1 UNIT ? C H K E Q? B I ? 0
B I T 0 0 2 0 H . 1 0 0 0 0 H . 1 UNIT BITS

0 0 2 0 H . 2 0 0 0 0 H . 6 * • • GAP • • •
I DATA 0 0 2 1 H 0 0 0 1 H UNIT ? S T A C K

CODE 0 0 0 0 H OO03H ABSOLUTE
CODE 0 0 0 3 H 0 0 5 7 H INBLOCK ?CHK_EQ?PR
CODE 0 0 5 A H 0 0 1 6H UNIT ’P 0 0 3 8 S
CODE 0 0 7 0 H 0 0 0 F H UNIT PROG
CODE 0 0 7 F H 0 0 0 C H UNIT ’ P 0 0 3 4 S
CODE 0 08BH 0 0 0 9 H UNIT ? P I V 0 R S
CODE 0 0 8 4 H 0 0 0 2 H UNIT ?CHK_EQ?CO

Figure 5-10. RL51 Listing File of CHK EQ

SYMBOL TABLE FOR CHKEQ(CHK_EQ)

VALUE TYPE NAME

MODULE C H K_EQ
C : 0 0 0 3 H PUBLIC C H E C K_E DUAL
C : 0 0 3 3 H SYMBOL C HK_EQ
— PROC C H E C K_E Q U A L
D : 0 0 0 C H SYMBOL V A L 1
D : 0 0 0 E H SYMBOL VAL2
B : 0 0 2 0 H SYMBOL EQ„SWITCH
_______ E N D P R 0 C C H E C K„E DUAL
C : 0 0 9 4 H SYMBOL P I
D : 0 0 1 0 H SYMBOL S I
C : 0 0 3 3 H LINE* 1
C : 0 0 0 3 H LINE* 5
C : 0 0 0 3 H LINE* 7
C : 0 0 1 F H LINE* 8
C : 0 0 3 2 H LINE* 9

system-id R L 5 1 mm/dd/yy PAGE 2

C : 0 0 3 3 H LINE* 1 1
C : 0 0 5 A H LINE* 1 2
— E N DM 0 D C H K_EQ

— MODULE HA LT_IC E
B : 0 0 2 0 H . 1 PUBLIC ?H A LT_IC E’BIT
D : 0 0 0 8 H PUBLIC ?H A L T_IC E’B Y T E
B : 0 0 2 0 H . 1 SYMBOL B I T_PA R
B : 0 0 2 0 H . 1 SEGMENT BITS
D : 0 0 0 8 H SEGMENT BYTES
D : 0 0 0 8 H SYMBOL FIRST_PAR
C : 0 0 7 0 H PUBLIC H A L T_IC E
C : 0 0 7 0 H SEGMENT PROG
D : 0 0 0 A H SYMBOL S E C 0 N D. P A R

ENDMOD HALT_ICE

Exam
ples of Program D

evelopm
ent 5-27Figure 5-10. RL51 Listing File of CHK EQ (Cont’d.)

system-id R L 5 1 mm/dd/yy PAGE 3

I NTER-MODULE CROSS-REFERENCE LISTING

NAME..USAGE MODULE NAMES

5-28 M
C

S-51

?CHECK_EQUAL’BIT . BIT; CHK-EQ
?CHECK-EQUAL’BYTE. DATA ; CHK_EQ
? HA LT_IC E’BIT . . . BIT; HALT_ICE CHK_ E Q
? HA L T_IC E’BYTE . . DATA ; H A L T_ICE C HK_ E Q
? P 0 0 3 4 CODE ; ’ P 0 0 3 4 CHK-EQ
? P 0 0 3 8 CODE; ’P 0 0 3 8 CHK_EQ
? P I H 0 R................................ CODE ; CHK-EQ ? P I V 0 R
? P I V 0 R................................ CODE ; ’ P I V 0 R CHK_EQ
? P S W 0 R................................ NUMB ; CHK_EQ ’PI VO R
CHECK-EQUAL. . . . CODE ; CHK_EQ
HALT_1CE CODE ; HALT_ICE CHK_ E Q

Figure 5-10. RL51 Listing File of CHK EQ (Cont’d.)

LIB51 Librarian

Introduction
LIB51 allows you to create, modify, and examine library files. It may be executed in
interactive or noninteractive mode. In both cases, LIB51 can be invoked directly or
by a submit file.

Invoking LIB51

Noninteractive Mode

Following is the general syntax for invoking in non-interactive mode:

[directory I device 1 L I B 5 1 command

The librarian will then respond with the sign-on message. It then executes the given
command and returns immediately to the host operating system.

Interactive Mode

Following is the general syntax for invoking LIB51 in interactive mode:

[directory I device 1 L I B 5 1

LIB51 will then respond with its sign-on message. It will then present the prompt (*),
requesting that you enter LIB51 commands. After each command is executed, another
prompt will appear as the librarian awaits entry of the next command. This process
continues until the EXIT command is entered, thus terminating LIB51.

Character Set

The LIB51 character set consists of the letters A-Z, the digits 0 9 and the special
characters ?, @, and _.

LIB51 Commands
Table 6-1 summarizes the LIB51 commands.

Command Entry
It is often necessary to extend the LIB command to more than one line. Use an
ampersand (&) to indicate that you have not entered the complete command and are
extending it to another line. The ampersand continuation character may be placed
anywhere that a space would normally appear in the command line. That is, the
continuation character may be placed before or after commas or parentheses and
before or after control words. Any characters that appear on a line to the right of the
ampersand and to the left of the carriage return terminating the line are ignored.

6-2 MCS®-51

Table 6-1. L1B51 Commands

Command Abbreviation Description

ADD < file[(module[,...])] > [,...] TO library_file A Adds modules to a
library

CREATE library file C Creates a library
file

DELETE library_file(module[,...]) D Deletes modules
from a library

EXIT E Terminates
session with LIB51

EXTRACT < file[(module[,...])] > [,...] TO file X Extracts modules
from libraries

HELP H Displays syntax of
LIB51 commands

LIST { file[(module[,...])] } [TO file] [PUBLICS] L[P] Lists modules
contained in librar­
ies, and optionally
lists all publics

REPLACE < file[(module[,...])] } [,...] IN library—file R Replaces modules
in a library

Whenever you enter the continuation character, LIB51 responds by beginning a new
line with the continuation prompt—two asterisks (**). LIB51 then waits for you to
enter the additional line of input. If you cannot complete the command on the second
line, use more ampersands to continue the process until the command is completely
entered.

A semicolon may be placed on any command to start a comment. LIB51 will ignore
all characters that appear to the right of the semicolon and to the left of the carriage
return that terminates the line. If you enter an ampersand to the right of a semicolon,
the ampersand will be treated as part of a comment and not as the continuation
character.

LIB51 Librarian 6-3

Command Descriptions
Following are the descriptions of the LIB51 commands.

ADD

Syntax

ADD < f i 1 e t (module) 1 1 [,...1 TO library_file

Abbreviation

A

Description

The ADD command allows you to add the specified files to the library file specified
as the destination.

The input filenames may be the names of ordinary object files or object library files.
If the input file is an ordinary object file, all modules contained within that file will
be added to the designated library. The ordinary object file may have been produced
by a translator/assembler, RL51, or the EXTRACT command of LIB51.

If the input file is a library file, it may be specified with or without a list of module
names. If you do not specify a list of module names, all of the modules contained in
the input library will be added to the destination library. If you do specify the list of
module names, only those modules specified in the command are added to the desti­
nation library.

The destination library must already exist before the ADD command is entered.

Examples

This command adds the three files SIN, COS, and TAN to the destination library
USER.LIB.

This command adds the three modules MODI, MOD2, and MOD3 of the library
LIB.TMP to the destination library PROJ.TOM. Note the use of the ampersand
to continue the command.

6-4 MCS®-51

CREATE

Syntax

CREATE library file

Abbreviation

c

Description

The CREATE command causes an empty library file that has been named in the
command to be created. If the file already exists, an error message is issued and the
command terminates.

Examples

This command creates the empty library file SLEAZO.LIB.

LIB51 Librarian 6-5

DELETE

Syntax

DELETE library file (module name

Abbreviation

D

Description

The DELETE command removes the specified modules from the designated library
file. Modules can be deleted from only one library at a time. If any of the elements
specified for deletion cannot be located, a warning is issued.

Examples

This command deletes the modules TRUTH and VALUE from the library
SLEAZO.LIB.

6-6 MCS®-51

EXIT

Syntax

EXIT

Abbreviation

E

Description

In interactive mode, the EXIT command causes LIB51 to terminate—thereby causing
control to be returned to the operating system. In noninteractive mode, the EXIT
command is ignored.

Examples

LIB51 Librarian 6-7

EXTRACT

Syntax

EXTRACT ifilel <. module t ,...])] } [,...1 TO file

Abbreviation

X

Description

The EXTRACT command builds an ordinary object file from the specified files and
library members. The extracted files are not deleted; they remain unchanged (i.e.,
they are nondestructively copied to their destination).

Examples

The modules WORTH and FREE are nondestructively extracted from
SLEAZO.LIB and placed in PROLES.OBJ.

6-8 MCS®-51

HELP

Syntax

HELP

Abbreviation

H

Description

The HELP command causes a summary of the syntax of the LIB51 command to
appear on the console. Use the HELP command to obtain this information about
LIB51 if you require help when entering commands. The following information will
appear on the screen:

ADD < filet (module! ,...)))} TO library_file
CREATE library file
DELETE library_file (module
EXIT
EXTRACT {filet (module! ,...))) } [,...! TO file
HELP
LIST {filet (module! , . . . I) I 1 [,...! t TO file) [PUBLICS!
REPLACE < file [(module [,...))]> [,...! IN library_file

LIB51 Librarian 6—9

LIST

Syntax

LIST (filet (module I , . . . I) I I [,...] I TO filet CPUBLICST

Abbreviation

L IP)

Description

The LIST command prints the names of the modules, and, optionally, the names of
the public symbols (if you specify PUBLICS) to the specified destination output file.
If you do not enter the TO clause, the listing will be directed to the console output.
PUBLICS specifies that in addition to the module names, all public symbols contained
in those modules will be listed.

Examples

The names of all modules in the library USER.LIB are listed.

2. s

All public symbols in the module TEMP in the library USER.LIB are listed.

6-10 MCS®-51

REPLACE

Syntax

REPLACE < file t (module t I)] > [.... I IN library_file

Abbreviation

R

Description

The REPLACE command allows you to replace object modules in the designated
library file with a new version. If a module designated to be replaced does not already
exist in the library in an older version, the newer version is simply added to the library.

Examples

The newer version of WORTH is added to the library SLEAZO.LIB; the new
file FREE is also added.

A
ppendixes

122749-001

Summary of RL51 Controls

Table of Basic Definitions
Table A-l gives definitions of basic terms used in the command format summary.

Table A-l. Definitions of Common Terms

Term Definition

name Names can be from 1 to 40 characters long and must be composed
of letters A - Z, digits 0 - 9, or special characters (?, _). The
first character must be a letter or a special character.

module-name Same as name.
segment-name

pathname

Same as name.

A valid filename reference or device reference. See next two items
for examples.

filename A reference to a disk file.

device A reference to a non-disk device.
Examples: :LP:, :CO:, :TO:

value A 16-bit unsigned integer.

Examples: 1011B, 304Q, 4096D (or just 4096), 0C300H

address Same as value.

RL51 Command Format Summary
Here is a summary of the syntax of the RL51 invocation command. Refer to the
Preface for an explanation of the command format notation.

The RL51 command has the overall format

[directory \ device] R L 5 1 input-list [TO output-file] I control-list]

where
directory} device : = ; the directory or device where RL51 resides.
input-list : ■ input-file [module-list J [,...]
input-file : ■ filename ; see table A-l
module-list : ■ (module-name [,...])
module-name : ■ ; see table A-1
output-file : = filename ; see table A-1
control-list : ■ control . . .

A-2 MCS®-51

control :

listing-control
linking-control
locating-control
configuration-control
overlay-control

listing-control :

print
pagewidth
map
symbols
publics
lines
ixref

print : *
PRINT I
N 0 P R I N T

pathname : -

I pathname) IJ

see table A-1

pagewidth ; - PAGEWIDTH (value)
value see table A-1

map
MAP
NOMAP

symbols : = |

publics ; | ।

SYMBOLS
NOSYMBOLS

PUBL I CS
NOPUBLICS

lines LINES
NOLINES

ixref : IXREF I selection-list I
N 0 I X R E F

selection-list : • (selection-item I , .

selection-item (generated
libraries

generated : - GENERATED
NOGENERATED

libraries LIBRARIES
N 0 L I B R A R I E S

linking-control : ■

debugsymbols

NAME (module-name)
debugsymbols
debuglines
debugpublics

I DEBUGSYMBOLS
N 0 D E B U G S Y M B 0 L S

debuglines : ■ DEBUGLINES
NODEBUGL I NES

debugpublics DEBUGPUBL I CS
NDDEBUGPUBL I CS

locating-controls : - <

PRECEDE
DATA
B I T
I DA TA
STACK
X D A T A
CODE

(segment I ,

segment :■ segment-name It address)}

Summary of RL51 Controls A-3

segment-name :■ ; see table A-1
address : - ; see table A-1

configuration-control : • ramsize
ramsize : • R A M S I Z E (value)

value : • ; see table A-l
, . , (OVERLAY . , , ... , , ,overlay-control : = „nnuCDiav t(overlay-umtl

I NUUVtKLnT

overlay-unit : ■ ov-module-name calls ov-module-name

ov-module-name : = I
| module-name

module-name : - ; see table A-1
calls : - > or]

Tables of Listing, Linking, Locating, and
OverlayingControls
Tables A-2 through A-6 describe the RL51 controls. Table A-7 gives abbreviations
for the controls.

Notes On Locating Controls

The following notes refer to table A-4.
1. Bit addresses for non-BIT segments in the BIT control must be on byte bounda­

ries; that is, they must be divisible by eight. (BIT-type segments can be aligned
on bit boundaries.)

2. The range of addresses for the (DATA control is dependent on the target machine.
The 8051 has 128 bytes (addresses OOH — 7FH). See the RAMSIZE control in
this context.

3. The STACK control specifies which segments are to be allocated uppermost in
the I DATA space. The memory accessed starts after the highest on-chip RAM
address occupied by any previously allocated segment, and continues to the top
of the IDATA space.

NOTE
This control has no other effect on any segments.
The IDATA 7STACK segment, if it exists, is placed higher than segments
that were mentioned in the STACK control.

Table A-2. Listing Controls and Switches

Control Effect

PRINT [(pathname)] Sends the listing file to the file or device specified by
pathname.

NOPRINT Suppresses the listing file; overrides any of the following
listing controls.

PAGEWIDTH (value)

MAP

Specifies the maximum page width to be used.

Outputs memory map to link summary.

NOMAP Suppresses memory map.

SYMBOLS Outputs local symbols to symbol table.

NOSYMBOLS Suppresses local symbols.

A-4 MCS®-51

Table A-2. Listing Controls and Switches (Cont’d.)

Control Effect

PUBLICS

NOPUBLICS

LINES

NOLINES

IXREF [(selection-list)]

NOIXREF

Outputs public symbols to symbol table.

Suppresses public symbols.

Outputs line numbers to symbol table (high-level language
translators only).

Suppresses line numbers.

Appends intermodule cross-reference report to print file.

Suppresses the intermodule cross-reference report.

NOTE: The default for any control (except IXREF) Is the positive form (PRINT, MAP, SYMBOLS,
PUBLICS, and LINES).

Table A-3. Linking Controls and Switches

Control Effect

NAME (module-name) Specifies the name of the output module. If the NAME control is
omitted, the output module name defaults to the name of the first
input module processed.

DEBUGSYMBOLS Copies local symbol information to output file.

NODEBUGSYMBOLS Suppresses local symbols.

DEBUGPUBLICS Copies public symbol information to output file.

NODEBUGPUBLICS Suppresses public symbols.

DEBUGLINES Copies line number information (high-level language translators
only) to output file.

NODEBUGLINES Suppresses line numbers.

NOTE: For all linking controls except NAME, the default is the positive form (DEBUGSYMBOLS,
DEBUGPUBLICS, and DEBUGLINES).

Table A-4. Locating C ontrols

Control Address Space
Address Range

(Hex)
Segment Types
(and Attributes)

PRECEDE Register banks and bit-
addressable space in
on-chip data RAM

00H-2FH DATA (UNIT-aligned);
IDATA

BIT Bit-addressable space
in on-chip data RAM

OOH - 7FH
(see note 1)

BIT; DATA; IDATA

DATA Directly-addressable
on-chip data RAM

OOH - 7FH DATA (UNIT-aligned);
IDATA

I DATA Indirectly-addressable
on-chip data RAM

OOH - OFFH
(see note 2)

IDATA

STACK Same as IDATA (see
note 3)

Same as IDATA Same as IDATA

XDATA External data RAM 0 -OFFFFH XDATA

CODE Code memory 0 -OFFFFH CODE

Table A-5. Configuration Control

Control Effect

RAMSIZE (value) Specifies the amount of on-chip RAM the object is aimed to.

Summary of RL51 Controls A-5

Table A-6. Overlay Controls

Control Effect

OVERLAY (overlay-units) Overlays data segments, based on the information in the module
declarations and in the overlay units.

NOOVERLAY Suppresses the overlaying of data segments.

Table A-7. Abbreviations for Command Words

Command Word Abbreviation

BIT Bl
CODE CO
DATA DT
DEBUGLINES DL
DEBUGPUBLICS DP
DEBUGSYMBOLS DS
GENERATED GN
I DATA ID
IXREF IX
LIBRARIES LB
LINES LI
MAP MA
NAME NA
NODEBUGLINES NODL
NODEBUGPUBLICS NODP
NODEBUGSYMBOLS NODS
NOGENERATED NOGN
NOIXREF NOIX
NOLIBRARIES NOLB
NOLINES NOLI
NOMAP NOMA
NOOVERLAY NOOL
NOPRINT NOPR
NOPUBLICS NOPL
NOSYMBOLS NOSB
OVERLAY OL
PAGEWIDTH PW
PRECEDE PC
PRINT PR
PUBLICS PL
RAMSIZE RS
STACK ST
SYMBOLS SB
TO TO
XDATA XD

RL51 Error Messages B
RL51 error messages describe warnings, errors, and fatal errors. A warning is a
detected condition that may or may not be what the user desired; a warning does not
terminate the link/locate operation. An error does not terminate operation, but
probably results in an output module that cannot be used. A fatal error terminates
operation of RL51.

This appendix lists the warning, error, and fatal error messages in that order. The
text of each message is in UPPER CASE. A brief explanation of the probable cause
for the error condition accompanies each error message.

Warnings
WARNING 1 :
SYMBOL:

UNRESOLVED EXTERNAL SYMBOL
external-name

MODULE: file-name(module-name)

The specified external symbol, requested in the specified module, has no matching
public symbol in any of the input modules.

WARNING 2: REFERENCE MADE TO UNRESOLVED EXTERNAL
SYMBOL: external-name
MODULE: file-name(module-name)
REFERENCE: code-address

The specified unresolved external is referenced in the specified module at the specified
code address.

WARNING 3: ASSIGNED ADDRESS NOT COMPATIBLE WITH
AL IGNME NT

SEGMENT: segment-name

The address specified for the segment in a locating control is not compatible with the
segment’s alignment. The segment is placed at the specified address, violating its
alignment.

WARNING 4: DATA SPACE MEMORY OVERLAP
FROM: byte.bit address
TO: byte.bit address

The data space in the given range is occupied by two or more segments.

WARNING 5: CODE SPACE MEMORY OVERLAP
FROM: byte address
TO: byte address

The code space in a given range is occupied by two or more segments.

WARNING 6: XDATA SPACE MEMORY OVERLAP
FROM: byte address
TO: byte address

The xdata space in the given range is occupied by two or more segments.

B-2 MCS®-51

WARNING 7: MODULE NAME NOT UNIQUE
MODULE: file-name(module-name)

The specified name was used as the module name for more than one module. The
specified module is not processed.

WARNING 8: MODULE NAME EXPLICITLY REQUESTED FROM
ANOTHER FILE

MODULE: file-name(module-name)

The specified module was requested, explicitly, to be processed from another file that
has not yet been processed. The specified module is not processed.

WARNING 9: EMPTY ABSOLUTE SEGMENT
MODULE: file-name(module-name)

The specified module contains an empty absolute segment. This segment is not
allocated. The base address of this segment may be overlapped without any additional
message.

Errors
ERROR 101: SEGMENT COMBINATION ERROR
SEGMENT: segment-name
MODULE: file-name(module-name)

The attributes of the specified partial segment, in the specified module, contradict
those of previous (unspecified) occurrences of partial segments with the same name.
The segment is ignored.

ERROR 102: EXTERNALS ATTRIBUTE MISMATCH
SYMBOL: external-name
MODULE: file-name(module-name)

The attributes of the specified external symbol, in the specified module, contradict
those of previous (unspecified) occurrences of public symbol with the same name.
The specified symbol is ignored.

ERROR 103: EXTERNAL ATTRIBUTES DO NOT MATCH PUBLIC
SYMBOL: symbol-name
MODULE: file-name(module-name)

The attributes of the specified external (public) symbol, in the specified module,
contradict those of previous (unspecified) occurrences of public (external) symbol
with the same name. The specified symbol is ignored.

ERROR 104: MULTIPLE PUBLIC DEFINITIONS
SYMBOL: symbol-name
MODULE: file-name(module-name)

The specified public symbol, in the specified module, has already been defined in a
previously (unspecified) processed module. The specified symbol is ignored.

RL51 Error Messages B—3

ERROR 105: PUBLIC REFERS TO IGNORED SEGMENT
SYMBOL: public-name
SEGMENT: segment-name

The specified public symbol is defined referencing the specified ignored segment. The
specified public symbol is ignored.

ERROR 106: SEGMENT OVERFLOW
SEGMENT: segment-name

The specified segment, after combination, is larger than the maximum segment size
allowed for the segment according to its type or to the given locating control. The
specified segment is ignored.

ERROR 107: ADDRESS SPACE OVERFLOW
SPACE: space-name
SEGMENT: segment name

RL51 was unable to allocate the specified relocatable segment, according to the
segment relocation type, in the specified address space. The specified segment is
ignored.

ERROR 108: SEGMENT IN LOCATING CONTROL CANNOT BE
ALLOCATED

SEGMENT: segment name

RL51 was unable to allocate the specified relocatable segment that appears in the
locating control, according to the requirements imposed by the locating control and
according to the segment relocation type. The specified segment is ignored.

ERROR 109: EMPTY RELOCATABLE SEGMENT
SEGMENT: segment-name

The specified segment, after combination has zero size. The specified segment is
ignored.

ERROR 110: CANNOT FIND SEGMENT
SEGMENT: segment-name

The specified segment name occurred in the command tail but is not the name of any
segment defined within the input files. The specified segment is ignored.

ERROR 111: SPECIFIED BIT ADDRESS NOT ON BYTE BOUNDARY
SEGMENT: segment-name

The specified segment was requested in a BIT locating control. The segment is not a
BIT segment, and the requested address is not on byte boundary. The specified
segment is ignored.

ERROR 112: SEGMENT TYPE NOT LEGAL FOR COMMAND
SEGMENT: segment-name

The specified segment is not one of the types that are legal for the locating control
for which it is specified. The specified segment is ignored.

ERROR 113: RESERVED .

B-4 MCS®-51

ERROR 121: IMPROPER FIXUP
MODULE:
SEGMENT:
OFFSET:

file-name(module-name)
segment-name
pseg-offset

An error occurred in the evaluation of a fixup. An example of this error is when the
value of the fixup expression does not meet the requirements of the type of the
referenced location. A fixup is an address that cannot be determined at compile/
assembly-time. It is marked as relocatable, and at RL-51 time is assigned an address.
A fixup is the address assigned to that relocatable symbol.

FATAL ERROR 208: INVALID FILE NAME
partial command

The file-name specified in the command is not a valid file name. The command is
repeated up to and including the point or error.

FATAL ERROR 209: FILE USED IN CONFLICTING CONTEXTS
FILE: file-name

The specified file is used in more than one context, for example, using the same file
for both input and output. (This may be caused by specifying for the first input file
a file that has no extension, and not specifying an output file.)

FATAL ERROR 210: I/O ERROR, INPUT FILE;
UDI ERROR: EXCEPTION <num>:<ext>
FILE: file-name

An I/O error was detected in accessing an input file. The text of the message includes
a description of the specific I/O error that occurred. See the user’s guide for your
operating system for a list of possible I/O errors.

FATAL ERROR 211: I/O ERROR, OUTPUT FILE; ERROR*
FILE: file-name

An I/O error was detected in accessing the output file. The text of the message
includes a description of the specific I/O error that occurred. See the user’s guide for
your operating system for a list of possible I/O errors.

FATAL ERROR 212: I/O ERROR, LISTING FILE; ERROR*
FILE: file-name

An I/O error was detected in accessing the listing file. The text of the message includes
a description of the specific I/O error that occurred. See the user’s guide for your
operating system for a list of possible I/O errors.

FATAL ERROR 213: I/O ERROR, TEMPORARY FILE; ERROR*
FILE: file-name

An I/O error was detected in accessing a temporary file. The text of the message
includes a description of the specific I/O error that occurred. See the user’s guide for
your operating system for a list of possible I/O errors.

FATAL ERROR 214: INPUT PHASE ERROR
MODULE: file-name(module-name)

RL51 Error Messages B-5

This error occurs when RL51 encounters different data during pass two than it read
during pass one.

FATAL ERROR 215: CHECK SUM ERROR
MODULE: file-name(module-name)

A bad check sum was detected in the input module. This indicates a bad input module
or a read error.

FATAL ERROR 216: INSUFFICIENT MEMORY

The memory available for execution of RL51 has been used up. This is usually caused
by too many external /public symbols or segments in the input files or by too many
errors.

FATAL ERROR 217: NO MODULE TO BE PROCESSED

After scanning all the input files, no module was selected to be processed. This is
usually caused by an empty input file(s) or incorrect module names in the input list.

FATAL ERROR 218: NOT AN OBJECT FILE
FILE: file-name

The file named in the message, judging by its first byte of data, is not a valid object
file.

FATAL ERROR 219: NOT AN 8051 OBJECT FILE
FILE: file-name

The translator-ID field in the module header record indicates that the specified module
is not an 8051 object module.

FATAL ERROR 220: INVALID INPUT MODULE
MODULE: file-name(module-name)

The specified input module was found to be invalid. Possible causes are incorrect
record order, incorrect record type, illegal field, illegal relation between fields, or a
missing required record. This error could be the result of a translator record.

FATAL ERROR 221: MODULE SPECIFIED MORE THAN ONCE
partial command

The input list in the invocation line contains the same module name more than once.
The command is repeated up to and including the point of error.

FATAL ERROR 222: SEGMENT SPECIFIED MORE THAN ONCE
partial command

The locating controls in the invocation line contain the same segment name more
than once. The command is repeated up to and including the point of error.

FATAL ERROR 2 2 4: DUPLICATE KEYWORD
partial command

B-6 MCS®-51

The same keyword appears in the command more than once. The command is repeated
up to and including the point of error.

FATAL ERROR 225: SEGMENT ADDRESSES ARE NOT IN
ASCENDING ORDER

partial command

The addresses of the segments within one locating control are not in ascending order.
The command is repeated up to and including the point of error.

FATAL ERROR 226: SEGMENT ADDRESS INVALID FOR CONTROL
partial command

The address requested for a segment is not valid for the given locating control. The
command is repeated up to and including the point of error.

FATAL ERROR 227: PAGEWIDTH PARAMETER OUT OF RANGE
partial command

The PAGEWIDTH parameter given is out of the acceptable range.

FATAL ERROR 228: RAMSIZE PARAMETER OUT OF RANGE
partial command

The RAMSIZE parameter given is out of acceptable range.

FATAL ERROR 229: I/O ERROR, OVERLAY FILE; ERROR*
FILE: file-name

An I/O error was detected in accessing an overlay file. The text of the message
includes a description of the specific I/O error that occurred. See the user's guide for
your operating system for a list of possible I/O errors. (This error occurs only if
IXREF was requested. Its occurrence does not invalidate the output object file.)

FATAL ERROR 230: INCOMPATIBLE OVERLAY VERSION
FILE: file-name

The overlay file, although loaded successfully, has a version number that is not the
one expected by RL51. The possible cause is that the RL51 program and the loaded
overlay are not of the same version. (This error occurs only if IXREF or OVERLAY
was requested. If only IXREF was requested, the output object file is valid.)

FATAL ERROR 231: TOO MANY IXREF ENTRIES

The number of IXREF entries (entry is a pair consisting of modules and symbol
reference) is too large to be processed. The IXREF listing step is not performed. The
NOLIBRARIES and NOGENERATED controls may be used in order to decrease
this number and overcome the error. (This error occurs only if IXREF was requested.
Its occurrence does not invalidate the output object file.)

FATAL ERROR 232: OVERLAY CONTROL CONFLICTS XREF
SELECTOR ITEMS

The overlay control should not appear with the IXREF selector items NOLIBRAR­
IES or NOGENERATED.

FATAL ERROR 233: ILLEGAL USE OF • IN OVERLAY
CONTROL

RL51 Error Messages B—7

The use of * > * or *] * with the OVERLAY control is illegal.

FATAL ERROR 2 4 0: INTERNAL PROCESS ERROR

RL51 has detected that it has made a processing error. This error indicates a bug
within RL51.

LIB51 Command Summary

Table C-l. LIB51 Commands

Command Abbreviation Description

ADD < file[(module[,...])] } [,...] TO library_file A Adds modules to a
library

CREATE library file C Creates a library
file

DELETE library_file(module[,...]) D Deletes modules
from a library

EXIT E Terminates
session with
LIB51

EXTRACT < file[(module[,...])] } [,...] TO file X Extracts modules
from libraries

HELP H Displays syntax of
LIB96 commands

LIST < file[(module[,...])] } [,...] [TO file] [PUBLICS] L[PJ Lists modules
contained in librar­
ies, and optionally
lists all publics

REPLACE < file[(module[,...])] } [,...] IN library_file R Replaces modules
in a library

LIB51 Error Messages

INSUFFICIENT MEMORY

LIB51 cannot execute the command because it requires more memory than the amount
of memory available in the system.

INVALID SYNTAX

The command was not entered properly. Reenter it using the correct syntax.

UNRECOGNI ZED COMMAND

An illegal or misspelled command was entered. The only commands are ADD,
CREATE, DELETE, EXIT, EXTRACT, HELP, LIST, REPLACE, and their
respective abbreviations.

INVALID MODULE NAME

The specified module name contains an invalid character or starts with a digit.

MODULE NAME TOO LONG

The specified module name exceeds 40 characters.

RIGHT PARENTHESIS EXPECTED

A “)” is missing in the command.

pathname, CHECKSUM ERROR

The specified file has an error in one of its checksum fields. This is usually the result
of an I/O error.

pathname, ILLEGAL RECORD FORMAT

This error is usually caused by an I/O error or a translation error.

pathname, BAD RECORD SEQUENCE

This error is usually caused by an I/O error or a translation error.

pathname, DUPLICATE SYMBOL IN INPUT

You have attempted to ADD or REPLACE a module that contains a public symbol
that is already within the library.

pathname, ATTEMPT TO ADD DUPLICATE MODULE

The specified module name already appears within the library.

pathname, FILE ALREADY EXISTS

The specified file in the CREATE command already exists. Choose another name
for the library.

D-2 MCS®-51

pathname, NOT LIBRARY

The specified file is not a library.

The TO filename is omitted in the ADD command.

UNRECOGNIZED COMMAND

An illegal or misspelled command was entered. The only legal commands are ADD,
CREATE, DELETE, LIST, and EXIT.

File or Module Errors
The following errors indicate that there is some problem with the file or module
specified. There is no partial copy of the command given with these error messages.

FILE ALREADY EXISTS

The file specified in the CREATE command already exists. Choose a new name for
the library.

filename, DUPLICATE SYMBOL IN INPUT

You have attempted to add a file that contains a PUBLIC symbol already within the
library.

filename, NOT LIBRARY

The specified file is not a library.

filename (modname) : NOT FOUND

You have attempted to delete a module that does not exist. Check for misspelling of
the filename or module name.

modname—ATTEMPT TO ADD DUPLICATE MODULE

The specified module name already appears within the library.

symbol— A LREADY IN LIBRARY

You have attempted to add a module that contains a PUBLIC symbol that is already
in the library.

filename, CHECKSUM ERROR

filename, OBJECT RECORD TOO SHORT

filename, ILLEGAL RECORD FORMAT

LIB51 cannot process the specified file because it is not a legal object file. Possible
cause is a file damage or translator error.

Hexadecimal-Decimal Conversion Table

Table E-l is for hexadecimal to decimal and decimal to hexadecimal conversion. To
find the decimal equivalent of a hexadecimal number, locate the hexadecimal number
in the correct position and note the decimal equivalent. Add the decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower decimal
number in the table and note the hexadecimal number and its position. Subtract the
decimal number shown in the table from the starting number. Find the difference in
the table. Continue this process until there is no difference.

Table E-l. Hexadecimal-Decimal Conversion Table

Most Significant Byte Least Significant Byte

Digit 4 Digit 3 Digit 2 Digit 1

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4 096 1 256 1 16 1 1
2 8 192 2 512 2 32 2 2
3 12 288 3 768 3 48 3 3
4 16 384 4 1 024 4 64 4 4
5 20 480 5 1 280 5 80 5 5
6 24 576 6 1 536 6 96 6 6
7 28 672 7 1 792 7 112 7 7
8 32 768 8 2 048 8 128 8 8
9 36 864 9 2 304 9 144 9 9
A 40 960 A 2 560 A 160 A 10
B 45 056 B 2 816 B 176 B 11
C 49 152 C 3 072 C 192 C 12
D 53 248 D 3 328 D 208 D 13
E 57 344 E 3 548 E 224 E 14
F 61 440 F 3 840 F 240 F 15

Index

abbreviations, 3-14, A-5
absolute object file, 4-5
absolute object module, 1-2
absolute segments, 2-2
ADD, 6-2
address, 3-2
address spaces, 2-3, 2-4
allocation. 3-8
allocation process, 2-3
assembler (ASM51), 1-3, 5-1

BIT, 2-2, 2-3, 2-4, 3-9
BITADDRESSABLE, 2-2, 2-3
BLOCK, 2-2

CODE, 2-2, 2-3, 3-9
command entry, 3-1
command, invocation,

see invocation command
comments, 3-2
configuration controls, 3-11
console display, 4-1
continuation lines, 3-2
control-list, 3-1
controls, 3-4

see also linking controls, listing controls,
locating controls

CREATE, 6-4

DATA, 2-2, 2-3, 3-9
DEBUG control, 1-3, 3-4
debugging, 1-1
DEBUGLINES, 3-7
DEBUGPUBLICS, 3-7
DEBUGSYMBOLS, 3-7
DELETE, 6-5
development process, 1-1, 1-2
device, 3-2

editor, text, 1-3
error messages, 4-4. B-l, D-l
EXIT, 6-6
external references, 2-4

filename, 3-2

hexadecimal-decimal conversion, E-l

ICE-51 in-circuit emulator, 1-3
IDATA, 2-2, 2-3, 3-9
in-circuit emulator,

see ICE-51 in-circuit emulator
INPAGE, 2-2
input-list, 3-1, 3-2
invocation command, 3-2, 6-1

address, 3-2
control-list, 3-1
device, 3-2
filename. 3-2

input-list, 3-1, 3-2
module-name, 3-2
name, 3-2
output-file, 3-3
pathname, 3-2
segment-name, 3-2

IXREF, 4-4, 4-5

LIB51, 6-1
error messages, D-l, D-2

LINES, 3-5, 3-6, 3-15
linking controls, 3-8, A-3

NAME, 3-7
linking switches, 3-7

DEBUGLINES, 3-7, 3-8
DEBUGPUBLICS, 3-7, 3-8
DEBUGSYMBOLS, 3-7, 3-8
NODEBUGLINES, 3-8
NODEBUGPUBLICS, 3-8
NODEBUGSYMBOLS, 3-8

link summary, 4-1
LIST, 6-9
listing controls, 3-4, A-3

DEBUG control, 3-7
listing file, 3-4

listing file, 4-1
listing switches, 3-6

IXREF, 4-4, 4-5
LINES, 3-5, 3-6
MAP, 3-5, 3-6
NOLINES, 3-6
NOMAP, 3-6
NOPUBLICS, 3-6
NOSYMBOLS, 3-6
PUBLICS, 3-5, 3-6
SYMBOLS, 3-5, 3-6

locating controls, 3-8, 3-9, 5-16, A-4
BIT, 3-9
CODE, 3-9
DATA, 3-9
IDATA, 3-9
PRECEDE, 3-9, 5-16
STACK, 3-9
XDATA, 3-9

major functions, 2-1
MAP, 3-5, 3-6
memory map, 3-4
modifying, 1-1
module, 1-2, 2-1
modular programming, 1-1
module-name, 3-2

NAME, 3-7
name, 3-2
NODEBUGLINES, 3-8
NODEBUGPUBLICS, 3-8
NODEBUGSYMBOLS, 3-8
NOIXREF, 3-6

Index-2 mcs®-51

NOLINES, 3-6
NOMAP, 3-6
NOOVERLAY, 3-11, 3-12
NOPRINT, 3-5
NOPUBLICS, 3-6
NOSYMBOLS, 3-6
notation, A-l

output-file, 3-3
OVERLAY, 3-11, 3-12

PAGE, 2-2, 2-3
partial segments, 2-2
pathname, 3-2
PRECEDE, 3-9, 5-16
PRINT, 3-4
program, 1-2
program development, 1-1, 1-2
PROM programmer, 1-1
PUBLICS, 3-5, 3-6

RAMSIZE, 3-11
relocatable segments, 2-2, 2-3
relocation, 1-3, 2-2
RL51, 1-2, 2-1, 2-2, 3-1, 5-1

command format, A-l
controls, 3-4, A-3
error messages, B-l
pass, 2-2

segment, 1-2, 2-2
segment-name, 3-2
segment type, absolute, 2-2
segment type, relocatable, 2-2, 2-3
STACK, 2-2, 2-3
SYMBOLS, 3-5, 3-6
symbol table, 4-3

UNIT, 2-2, 2-3

XDATA, 2-2, 2-3, 3-9

iny
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

A1659/386/4K/SVP/KH
SOFTWARE
122747-001

	Software Development Tools

	MCS®-51 UTILITIES USER’S GUIDE FOR DOS SYSTEMS

	NOTE

	Reader’s Guide

	Related Publications

	Notational Conventions

	Tables

	The Advantages of Modular Programming

	Efficient Program Development

	Multiple Use of Subprograms

	Ease of Debugging and Modifying

	MCS®-51 Modular Program Development Process

	Segments, Modules, Libraries, and Programs

	Entering and Editing Source Modules

	Assembly and Compilation

	Relocation and Linkage

	ROM and PROM Versions

	ICE™-51 In-Circuit Emulator

	Keeping Track of Files

	The Mechanics of Linkage and Location with RL51

	Major Functions

	Selecting Modules

	Partial Segments

	Combining Relocatable Segments

	Allocating Memory for Segments

	Overlaying Data Segments

	Resolving External References

	Binding Relocatable Addresses

	Using the RL51 Program

	Introduction

	RL51 Command Format Summary

	Invocation

	Input List

	Examples

	Output File

	Examples

	Controls

	Listing Controls

	NOTE

	PRINT/NOPRINT

	Example

	Example

	PAGEWIDTH

	Listing Switches

	IXREF/NOIXREF

	Examples

	Linking Controls

	NOTE

	Example

	Linking Switches

	Examples

	Locating Controls

	Allocation Sequence

	NOTE

	Format Summary

	Table of Locating Controls

	Notes On Locating Controls

	NOTE

	NOTE

	Examples

	Configuration Controls

	RAMSIZE

	OVERLAY/NOOVERLAY Controls

	OVERLAY

	NOOVERLAY

	OVERLAY (A > B) or (A J B)

	OVERLAY (A > •, * > B) or (A] V 1 B)

	Abbreviations for Command Words

	Console Display

	Listing File

	Link Summary

	Symbol Table

	NOTE

	NOTE

	Inter-Module Cross-Reference Report (IXREF)

	Error Messages

	Absolute Object File

	Examples of Program Development

	Using Multiple Modules

	Using the Locating Controls

	Using RL51 with PL/M-51 Modules

	LIB51 Librarian

	Introduction

	Invoking LIB51

	Noninteractive Mode

	Interactive Mode

	Character Set

	LIB51 Commands

	Command Entry

	Command Descriptions

	ADD

	Abbreviation

	Description

	Examples

	CREATE

	Syntax

	Description

	Examples

	DELETE

	Syntax

	Abbreviation

	Description

	Examples

	EXIT

	Syntax

	Abbreviation

	Description

	EXTRACT

	Syntax

	Abbreviation

	Description

	HELP

	Syntax

	Abbreviation

	Description

	LIST

	Syntax

	Abbreviation

	Description

	REPLACE

	Syntax

	Abbreviation

	Description

	Summary of RL51 Controls

	Table of Basic Definitions

	RL51 Command Format Summary

	Tables of Listing, Linking, Locating, and OverlayingControls

	Notes On Locating Controls

	Table A-2. Listing Controls and Switches (Cont’d.)

	Table A-3. Linking Controls and Switches

	RL51 Error Messages

	Warnings

	Errors

	LIB51 Command Summary

	LIB51 Error Messages

	File or Module Errors

	Hexadecimal-Decimal Conversion Table

	iny

