Intd” Software Development Tools

PL/M-51 User’s Guide
For DOS Systems

Software Development Tools

INtal

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara. CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your local
sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material. including, but not limited to.
the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no
responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to
update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an
Intel product. No other circuit patent licenses arc implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’ s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only bc used to identify Intel
products:

Above IMDDX ISBC Plug-A-Bubble
BITBUS IMMX ISBX PROMPT
COMMputer Insite ISDM Promware
CREDIT Intel ISXM QueX
DataPipeline | IntelBOS KEPROM QUEST
Genius Intelevision Library Manager Ripplemode
I2ICE Inteligent Identifier MCS RMX /80
ICE Inteligent Programming | Megachassis RUP
ICEL Intellec MICROMAINFRAME | Seamless
ICS Intellink MULTIBUS SLD
IDBP IOSP MULTICHANNEL UPI
IDIS IPDS MULTIMODULE VLSICEL
ILBX IPSC ONCE

IRMX OpenNET

PC-BUBBLE

Preface

This manual describes the PL/M-51 language as implemented by the PL/M-51 compiler. It provides you
with al the information necessary for programming in the PL/M-51 language, and explains how to operate
the compiler.

Thismanual is not intended to be atutorial for high-level language programming. nor isit an introductory
manual for the MCS-5I family of microcomputers. Previous experience with high-level languages, as well
as with the architecture of the MCS-51. is desirable but not mandatory. The sections explaining the “ suffix”
will provide you with the necessary background to start programming without knowing all the details of the
8051.

Thismanual isintended to be read from front to back by a new programmer of PL/M-51. Some sectionsin
the beginning and middle of this manual use terms and concepts that are fully defined and explained near
the end. It is best to first read the manual cover-to-cover, then' re-read it, paying more attention to the areas
that you feel you do not fully understand.

Readers who are familiar with PL/M-80 may find it helpful to start by reading Appendix E, which
describes the main differences between PL/M-80 and PL/M-51.

Related Publications

The following list provides the manual title and order number for all Intel software development tools that
run on DOS systems. Note some manuals have two format. and two order numbers. One version of the
manual is provided in abinder. Thisversion is not sold separately; it can only’ be purchased when
purchasing the product. The second version, which has a soft cover, is sold separately .Use the soft cover
number when ordering a manual separately.

Manual Title Binder Soft cover
MCS®-51 Family of Single-Chip Microcomputers User’s Guide 9800935
MCS®-51 Utilities User’s Guide for DOS Systems 122747 122748
MCS®-51 Macro Assembler User’'s Guide for DOS Systems 122752 122753

Notational Conventions

UPPERCASE Characters shown in uppercase must be entered in the order shown. Y ou may enter the
characters
in uppercase or lowercase.

italic Italic indicates a meta symbol that may be replaced with an item that fulfills the rules for
that
symbol. The actual symbol may be any of the following:

directory-name Isthat portion of a pathname that acts as afile locator by identifying the device and/or
directory
containing the filename.

filename
pathname

pathnamel,
pathname2
system-id

VX.y

(]
{}

...

[...]

punctuation

input lines

<cr>

Isavalid name for the part of a pathname that names a filed
Isavalid designation for afile; in its entirety, it consists of a directory and afilename.

Are generic labels placed on sample listings where one or more user-specified pathnames
would actualy be printed.

Isageneric label placed on sample listings where an operating system-dependent name
would actualy be printed.

Isageneric label placed on sample listings where the version number of the product that
produced
the listing would actually be printed.

Brackets indicate optiona arguments or parameters.

One and only one of the enclosed entries must be selected unlessthe field is also
surrounded by

brackets, in which case it is optional.

At least one of the enclosed items must be selected unless the field is also surrounded by
brackets, in which caseit is optional. The items may be used in any order unless
otherwise noted.

The vertical bar separates options within brackets|[] or braces{ }

Ellipses indicate that the preceding argument or parameter may be repeated.

The preceding item may be repeated, but each repetition must be separated by a comma.

Punctuation other than ellipses, braces, and brackets must be entered as shown. For
example, the punctuation shown in the following command, must be entered:

SUBM T PLMB6(PROGA, SRC,’ 9 SEPT 81')

In interactive examples, user input lines are printed in white on black to differentiate
them from

system output.

indicates a carriage return

Contents

Chapter 1
Overview
Product Definition
The PL/M-51 Language
Using aHigh-Level Language
Why PL/M-51 ?
Two Categories of PL/M-51 Statements
Block Structure
Block Nesting and Scope of Variables: An Introduction
Executable Statements
Assignment Statement
IF Statement
DO and END Statements
Built-In Procedures
Expressions
The Program Devel opment Process

Chapter 2
Basics of a PL/M-51 Program
PL/M-51 Character Set
Identifiers and Reserved Words
Tokens, Separators, and the Use of Blanks
Constants
Whole Number Constants
Character Strings
Comments

Chapter 3
Declarations
Variable Declaration Statements
Types
Examples
Results
Address-Spaces and the Suffix
The CONSTANT Suffix
The Implicit Dimension Specifier
The REGISTER Suffix
The IDATA Suffix
The MAIN Suffix
The AUXILIARY Suffix
Compilation Constants (Text Substitution): The Use of LITERALLY

Declarations of Names for Labels
Results

Combining DECLARE Statements

Declarations for Procedures

Chapter 4
Data Types and Based Variables
BYTE and WORD Arithmetic
The Dot (.) Operator
Storing Strings and Constants via L ocation Reference
Based Variables
Location References and Based Variables
Cautions on Using Based Variables
Contiguity of Storage
The AT Attribute4

Chapter 5
Expressions and Assignments
Operands
Variable References
Constants
Function and L ocation References
Subexpressions
Compound Operands
Operand and Expression Types
Arithmetic Operators
The+, -, *, and / Operators
The MOD Operator
Relational Operators
Logica Operators
Expression Evaluation
Precedence of Operators: Analyzing an Expression
Notes on Relational Operators
Order of Evaluation of Operands
Assignment Statements
Implicit Type Conversions
Multiple Assignment
Special Case: Constant Expression
Negative Numbers

Chapter 6
Structures and Arrays
Arrays and Subscripted Variables Structures
Arrays of Structures
Arrays within Structures
Arrays of Structures with Arrays inside the Structures
References to Arrays and Structures
Fully Qualified Variable References
Unqualified and Partially Qualified Variable References

Chapter 7
Flow Control Statements
DO and END Statements :DO blocks
Simple DO Blocks
DO CASE Block
DO WHILE Blocks
Iterative DO Blocks
The IF Statement
Nested |F Statements
Sequentid |F Statements
GOTO Statements
The CALL and RETURN Statements
The Null Statement

Chapter 8
Sample Program 1
Insertion Sort Algorithm

Chapter 9

Block Structure, Scope, and Lifetime Rules

Scope

Names Recognized within Blocks

Restrictions on Multiple Declarations

Lifetime Rules

Extended Scope: The PUBLIC and EXTERNAL Attributes
Scope of Labels and Restrictions on GOTOs

Chapter 10

Procedures and Interrupts

Procedure Declarations
Parameters

Typed versus Untyped Procedures

Activating a Procedure: Function References and CALL Statements
Indirect Procedure Activation

Exit from a Procedure: The RETURN Statement

The Procedure Body

The Attributes: PUBLIC and EXTERNAL, INTERRUPT, USING,
INDIRECTLYCALLABLE
Interrupts and the INTERRUPT Attribute: ENABLE and DISABLE
The USING Attribute
The INDIRECTLY _CALLABLE Attribute

Chapter 11
Built-In Procedures
Obtaining Information about Variables
The LENGTH Function
The LAST Function
The SIZE Function
Explicit Type and Vaue Conversions
SHIFT and ROTATE Functions
Logical-Shift Functions: SHL and SHR
Rotation Functions: ROL and ROR
INPUT and OUTPUT
Miscellaneous Built-1ns
The TESTCLEAR Procedure
The TIME Procedure

Chapter 12

Features Involving 8051 Hardware Flags
Optimization and the 8051 Hardware Flags
The PLUS and MINUS Operators
Carry-Rotation Built-In Functions

The DEC Function

Chapter 13
Support Library: PLM5 1 .LIB

Chapter 14

Compiler Invocation and Controls

Invoking the PL/M-51 Compiler
Examples of Control Lines
Examples of Controls

The Object File Controls

INTVECTOR/NOINTVECTOR
OPTIMIZE
OPTIMIZE(0)
OPTIMIZE(1)
OPTIMIZE(2)
OPTIMIZE(3)
OBJECT/NOOBJECT
DEBUG/NODEBUG
ROM
REGISTERBANK
Listing Selection and Content Controls
PRINT/NOPRINT
LIST/NOLIST
CODE/NOCODE
XREF/NOXREF
SYMBOLS/NOSYMBOLS
Listing Format Controls
PAGING/NOPAGING
PAGELENGTH
PAGEWIDTH
TITLE
EJECT
Program Listing
Symbol and Cross-Reference Listing
Warnings and Compilation Summary
Source Inclusion Controls
INCLUDE
SAVE/RESTORE
-Conditional Compilation Controls
|F/EL SEIF/ELSE/ENDIF
SET/RESET

Chapter 15

Object Module Sections
Modules

Segments

Linkage Information

Debug Information

Chapter 16
Error Messages
Source PL/M-51 Errors

Fatal Command-Tail and Control Errors
Fatal Input/Output Errors

Fatal Insufficient-Memory Errors

Fatal Compiler Failure Errors

Error Messages

Appendix A
Grammar of the PL/M-51 Language

Appendix B
Program Constraints

Appendix C
PL/M-51 Reserved Words

Appendix D
Predeclared Identifiers

Appendix E
Differences between PL/M-80 and PL/M-51

Appendix F
ASCII Codes

Appendix G
Interfacing PL/M-51 to ASM51

Appendix H
Run-Time Interrupt Processing

Appendix |
The Processor Descriptor Files

Appendix J
Sample Program 2

Appendix K
How to Generate Better Code

Appendix L
Valid PL/M-51 Statements

Appendix M
Assembler Utility Library: UTIL51.LIB

Figures

8051 Memory Organization

Internal Data Addressing Modes

Insertion Sort Algorithm

Inclusive Extent of Blocks

Outer Level of Block SORT

ASM51 Code for Interrupt Vector and CPU Status Stacking

Tables

PL/M-51 Specia Characters
Operators Precedence
Compiler Controls

Controls by Categories
Address Space Codes
Typed Procedure Values

Overview 1

This chapter introduces the PL/M-51 language and explains the process of developing software for
your system using PL/M-51.

1.1 Product Definition

PL/M is ahigh-level language for programming various families of microprocessors and microcontrollers.
It was designed by Intel Corporation to meet the software requirements of computersin awide variety of
systems and applications work.

The PL/M-51 compiler is a software tool that trandates your PL/M-51 source programs into rel ocatable
object modules that you can link to other modules coded in PL/M, assembly, or other high-level languages.
The compiler provides alisting output, error messages, and a number of compiler controlsto aid in
program development and debugging.

To perform the steps following compilation, use software development utilities RL51 and LIB51. Debug
your programs using the ICE-51 In-Circuit Emulator. For firmware systems, use the Universal Prom
Programmer (UPP) with its Universal Prom Mapper (UPM) software to transfer your programs to PROM.

1.2 The PL/M-51 Language
Using a High-Level Language

High-level languages more closely model the human thought process than lower-level languages such as
assembly language. High-level languages require one less trand ation step from concept-to-code than do
lower-level languages; consequently, high-level languages are relatively easy to write and can be written
faster than low-level languages. High-level language programs also are more likely to be correct because
less chance exists to introduce error.

Programsin high-level languages are easier to read and understand than those in lower-level languages, and
thus are easier to modify. Asaresult, you can develop high-level language programs in a much shorter
period of time. Also, they are easier to maintain throughout the life of the product. Thus, high-level
languages result in lower costs for both development and maintenance of programs.

In addition, programs in high-level languages are easily transferred from one processor to another and are
thus considered portable.

If PL/M-51 isyour first high-level language, you should know how programming in high-level languages
differs from assembly-language programming. When you use a high-level language:

- You do not need to know the instruction set of the processor you are using. However, you do need to
understand its memory structure.

- 'Y ou need not be concerned with the details of the target processor, such as register allocation or assigning
the proper number of bytes for each data item—the compiler takes care of these things automatically.

- Y ou use keywords and phrases that resemble English.

- Y ou can combine many operations (including arithmetic and Boolean operations) into expressions: thus,
you can perform awhole sequence of operations with just one statement.

-You can use data types and data structures that are closer to your actua problem. For instance, in PL/M-
51 you can program in Boolean variables, characters. arrays. and other data structures instead of bits, bytes
or words.

Coding programs in high-level languages rather than in assembly languages require a different thought
process. Coding in high-level languages is actually closer to the level of thinking you use when you are
planning your overall system design.

Why PL/M?

Many high-level programming languages are available today. Some have been around far longer than
PL/M. So, once you have decided to use a high-level language. you might ask: How does PL/M differ from
other high-level languages? What advantages does it have? When isit the right language to use?

Following are some of the characteristics of PL/M:

. It has ablock structure and control constructs that aid- in fact, encourage and
enforce structured programming
It includes facilities for such data structures as structured arrays and pointer-based dynamic
variables.
It isatyped language, that is, the compiler does data type compatibility checking to help you
detect logic errorsin your programs at compile time.
Its data structuring facilities and control statements are designed logically. Thus. PL/M is agood
language for expressing algorithms for systems programming.
Its control constructs make program correctness relatively easy to verify.

It is astandard language used on Intel microcomputers; consequently, PL/M programs are portable
across Intel processors.

PL/M was designed for programmers (generally systems programmers) who need access to microprocessor
features (such asindirect addressing (BASED) and direct 1/O) for optimum use of all system resources.

PL/M differs from older, more established languages like FORTRAN. BASIC, and COBOL in many ways.
PL/M has many more features than BASIC and is a more genera-purpose language than either FORTRAN
(best suited for scientific applications) or COBOL (tailored for business data processing). Additionally,
PL/M differs from these other languagesin its typing and block structure.

1.3 Two Categories of PL/M-51 Statements

PL/M-51 has two types of statements. declarations and executable statements. A simple example of a
declare statement is:

DECLARE W DTH BYTE ;

This declare statement introduces the identifier WIDTH and associates it with the contents of one byte (8
bits) of memory. Y ou need not know the location of the byte, i.e., its actual addressin memory. Simply
refer to the contents of this byte by using the name WIDTH.

An example of an executable statement is:
CLEARANCE = WDTH * 2;

This executable statement has two identifiers. CLEARANCE and WIDTH. Both must be declared prior to
this executable statement, which produces machine code to retrieve the WIDTH value from memory, adds
2 to it, and stores the sum in the memory location for CLEARANCE.

For most purposes, you, the PL/M-51 programmer, need not think in terms of memory locations.
CLEARANCE and WIDTH are variables, and the assignment statement assigns the value of the expression
WIDTH + 2 to the variable CLEARANCE. The compiler automatically generates al the machine code
necessary to retrieve data from the right type of memory, evaluates the expression, and stores the result in
the proper location.

A group of statements intended to perform afunction, i.e., a subprogram or subroutine, can be given a
name by declaring them to be a procedure:

ADDER_UPPER: PROCEDURE (BETA);

The statements that define the procedure then follow. This block of PL/M-51 statementsis invoked from
other points in the program, which may involve passing parametersto it and returning avalue. When a
procedure has finished executing, control is returned immediately to the position following the point at
which the procedure was called. This capability is the major feature permitting modular program
construction.

1.4 Block Structure

PL/M-51 is ablock-structured language. That is, every statement in a PL/M-51 program is part of at least
one block. (A block isagroup of statements that begins with a DO statement or a procedure declaration
and ends with an END statement.) -The compilation unit in PL/M-51 isamodule, which isalabeled simple
DO-block: therefore, a module must begin with alabeled DO statement and end with an END statement.
Between those end points (within that DO-block) other statements provide the definitions of data and
processes that make up the program. These other statements are part of the block, contained within the
block, or nested within the block. A module can contain other blocks but is never itself contained within
another block.

(The DO-block is described as simple because it is just one of four DO-blocks: the other three are
explained later in this manual.)

Every PL/M-51 program consists of one or more modules, separately compiled, each consisting of one or
more blocks. PL/M-51 has two kinds of blocks: DO-blocks and procedure definition blocks.

A procedure definition block is a set of statements beginning with a procedure declaration (as shown in
section 1.3) and ending with an END statement. Other declarations and executable statements, which can
go between these endpoints, are used later when the procedure is actually invoked or called into execution.

A definition block is really afurther declaration of everything the procedure will use and do. Sinceit is
only executed later, a procedure definition block is considered just another form of declaration; it is not
regarded as immediately executable.

Block Nesting and Scope of Variables: An Introduction

Some blocks contain entire other blocks, as shown in the following examples.

Example 1
Start: DG,
DECLARE (A, B,C/ D E F,GH L) BYTE
A= 17;
C=B* D
m ddl e : DG,
DECLARE (J, K) Byte;
E=F+ G
H=J+ K+ A
END ni ddl e;
Last: L = H+ C
END start ;
Example 2
Start: DG,
DECLARE (A, B,C D E F, GL) BYTE
A= 17;
C=B* D
M ddl e : DGO,
DECLARE (H, J, K, L) Byte;
E=F+ G
H=J+ K+ A
END ni ddl e;
Last: L = H+ C /* This is an error since His
undecl ared at outer |evel */
END start ;

(As shown in examples 1 and 2, multiple names of the same type can be declared in one statement;
consequently, all the names within the parentheses are of the same type.)

The block called MIDDLE is completely contained inside the block labeled START; MIDDLE is said to be
nested within the START block.

The START block is called an outer block. The phrase outer level is used to refer to statementsthat arein
START but not in MIDDLE. For example, the statements beginningwithA =, C=,and B =aredl in at
the outer level in the blocks shown in examples 1 and 2.

PL/M-51 permits each block to be independent of other blocks in that any names declared at an outer level
can be redeclared, with new meanings and values, inside a nested block. If names declared at an Outer level
are not redeclared, they keep their original locations and present contents.

Thus, A will till be 17 inside MIDDLE unless you add a new declaration to make it have a new, local
meaning there. Variables declared inside a nested block have only that local meaning while statementsin
that block are being executed. The variables lose their local meaning as soon as execution passes to
statements outside that block.

Therefore, if H isonly declared inside MIDDLE, asit isin Example 2, its value will be unknown in the
statement labeled “last:” the statement will be invalid and the compiler will say so. If H isaso declared in
START, the value used in last will be the outer level meaning, unrelated to the one created in MIDDLE
because that H is unique. They will only be the same if their sole declaration isin START and not in
MIDDLE, asin Example 1.

The effect of these rulesis that, when writing a block and declaring objects solely for use inside that block,
you need not worry about whether the same identifier has already been used in another block. Even if the
same name is used elsewhere, it refersto a different object. This subject is dealt with in detail in Chapter 9.

The notion of nested blocks, inner and outer levels, is central to successful PL/M-51 programming. For
example, the modules of a program must conform to the rule that only one module may have executable
statements at the outer-most level. That module is called the main module (or sometimes, the main
program). The Outer-most level of all other modules must only contain procedure definition blocks and
other declarations, as discussed in the sections that follow.

Most of the rules discussed in this book, including those just covered, relate to creating and preserving

unambiguous meanings, addresses, and values for each name you use. This uniqueness must be truein
every block and in communicating val ues between blocks.

1.5 Executable Statements

Thefollowingisalist of all PL/M-51 executable statements and the chapters in which they are discussed:

Assignment Statement Chapter 5
GOTO Statement Chapter 7
IF Statement Chapter 7
Simple DO Statement Chapter 7
Iterative DO Statement Chapter7
DO WHILE Statement Chapter 7
DO CASE Statement Chapter 7
END Statement Chapter 7
Null Statement Chapter 7
CALL Statement Chapter 10
RETURN Statement Chapter 10
ENABLE and DISABLE Chapter 10

The following sections, which give simple descriptions of some of the executable statements, should help
make you more familiar with PL/M-51 and should aid you when you encounter the full descriptions found
in later chapters.

Assignment Statement
The assignment statement has already been introduced. It is fundamental to PL/M-51 programming.

Although itsformis quite simple, the expression in an assignment statement may be quite complex and
result in a considerable amount of computation, as will be seen in Chapter 5

The simplest form of the assignment statement is:
Identifier = expression;
Where

Identifier isthe name of avariable.

The expression is evaluated, and the resulting val ue becomes the value of the variable. Variations of this
form are given in Chapter 5.

IF Statement
The following is an example of an |IF statement:
| F VEEI GHT < M NWI' THEN

COUNT = COUNT + 1;

ELSE
COUNT = 0;

This has been broken into four indented lines to make it more readable. Aswill be explained in Chapter 2,
blanks (spaces, tabs, carriage returns, comments and line feeds) may be freely inserted between the
elements of a statement without changing the meaning.

WEIGHT, MINWT, and COUNT are assumed to be previously declared variables. The IF statement
example has three parts:

An IF part, consisting of the reserved word IF and a condition. WEIGHT < MINWT
A THEN part, consisting of the reserved word THEN and a statement. COUNT = COUNT + 1
An ELSE part, consisting of the reserved word EL SE and another statement, COUNT =0

If the condition in the IF part of an IF statement is “true,” then the statement in the THEN part” will be
executed. Otherwise, the statement in the EL SE part will be executed.

In the example given, if the value of WEIGHT is less than the value of MINWT, then the value of COUNT
will beincremented by 1. Otherwise, the value 0 will be assigned to COUNT.

The ELSE part of an |F statement is optional. Chapter 7 contains a full description of IF statements.

DO and END Statements

DO and END statements are used to construct DO blocks. A DO block begins with a DO statement and
ends with a matching END statement.

PL/M-51 has four kinds of DO statements, which are used to construct four kinds of DO blocks.

A simple DO block begins with asimple DO statement and (like all DO blocks) may be used wherever a
single statement can be used. The following is an example of asimple DO block used in place of asingle
statement in the THEN part of an IF - -statement:

IF TMP > = 4 THEN DO
INCR = INCR + 2;
COUNT = COUNT + | NCR;
END;

ELSE
COUNT = 0;

This example alows two or more executable statements to be executed if the condition is true.

An iterative DO statement introduces an iterative DO block and causes the executable statements within the
block to be executed repeatedly. The following is an example of an iterative DO statement

DOJ =0 TO 9,

VECTOR(J) = O0;
END;
where
J isapreviously declared BY TE or WORD variable (which are discussed in detail
in Chapters 3, 4.and 5).
VECTOR Must be a previously declared array having at least 10 elements.

The assignment statement is executed 10 times, with values of J starting at 0 and increasing by 1 each time
around until all of the integers 0-9 have been used. Since Jis used as a subscript for specifying which
element of VECTOR isreferenced in the assignment statement, thisiterative DO block assignsthe value 0
to al elements of VECTOR from element O through element 9.

The DO WHILE statement contains a condition (like the condition in the IF part of an |F statement), and
causes the executable statements in the block to be executed repeatedly as long as the condition is true.

In the following example. a DO WHILE block is used to step through the elements of an array (TABLE)
until an element is found that is greater than the value of a scalar variable called LEVEL.

I = 0;

DO VWHI LE TABLE(l) < = LEVEL;
I =1 + 1;

END;

TABLE isapreviously declared array, and LEVEL and | are previoudy declared variables. | isfirst
assigned avalue of 0, then is used as a subscript for TABLE. Because | isincremented in each execution of
the DO WHILE block, a different element of TABLE is compared with LEVEL each time the DO WHILE
statement is executed. When an element is found that is greater than LEVEL, the condition in the DO
WHILE statement is no longer true, the block is not repeated again, and control passes to the next statement
after the END statement. At this point, the value of | isthe subscript of the first element of TABLE that was
not greater than LEVEL.

The DO CASE block, which isintroduced by a DO CASE statement, uses the value of the given
expression. to select a statement to be executed. In the following example, assume that the expression TST
-l in the DO CASE statement can have any value from O to 3.

DO CASE TST-1,

RED = 0;

BLUE = O;
GREEN = 0;
GREY = 0;

END;
If the value of the expression is 0, only the first assignment statement will be executed, and the value 0 will
be assigned to RED. If the value of the expression is 1, only the second assignment statement will be

executed, and the value O will be assigned to BLUE. Expression values of 2 or 3 will cause GREEN or
GREY, respectively, to be assigned the value 0.

1.6 Built-In Procedures

PL/M-51 has many built-in procedures. These procedures provide such functions as shifts and rotations,
data type conversions, and test-and-set. The built-in procedures are described in Chapter 11.

1.7 Expressions

As already noted, a PL/M-51 expression is made up of operands and operators, and resembles a
conventional algebraic expression.

Operands include numeric constants (such as 378 or 105) and variables (as well as other operands,
discussed in Chapters 4 and 5). The operatorsinclude + and - for addition and subtraction, * and / for
multiplication and division, and MOD for modulo arithmetic.

Asin an algebraic expression, elements of a PL/M-51 expression may be grouped with parentheses.

1.8 The Program Development Process

The PL/M-51 compiler and run-time libraries are part of an integrated set of tools that make up the total
MCS-51 development solution for your microcomputer system.

The stepsin the software devel opment processes are as follows:

1. Define the problem completely.

2. Outline the proposed solution in terms of hardware plus software. Once this step is done, you may
begin designing your hardware.

3. Design the software for your system. This important step consists of several sub steps, including

breaking down the task into modules, choosing the programming language, and selecting the
algorithms to be used.

Code your programs and prepare them for trandation using atext editor.
Trandate your PL/M program code using the PL/M-51 compiler.
Using the text editor, correct any compile-time errors; then, recompile.

Link the resulting rel ocatable object modules with PLM51.L1B and locate your.object code using
RLS! for both purposes.

Test the resulting program using ICE-S 1 or other tools, and repeat steps 6 through 8 until the
program performs correctly.

Basics of a PL/M-51 Program 2

PL/M-51 programs are written free-form, which meansit isinsignificant where a statement is placed on an
input line, and blanks can be fregly inserted between the elements of the program.

2.1 PL/M-51 Character Set
The character set used in PL/M-51 is a subset of the ASCI| character set, as follows:
ABCDEFGHI JKLMNOPQRSTUWKYZ

abcdef ghi j kI mopgr st uvwxyz
0123456789

along with the special characters
=./ () +-"*, ;8% <>

and the blank or space, plus the tab, carriage-return, and line-feed characters.

The rulesin this section apply to everything in a PL/M-51 program except character string constants, which
are discussed in section 2.4, and comments, which are discussed in section 2.5.

If aPL/M-51 program contains any character not in the set above, the compiler treatsit as an error.
Uppercase and lowercase |etters are not distinguished from each other except in string constants. For
example, xyz and XY Z are interchangeable. In this manual, al PL/M-51 code is in uppercase |etters to help
distinguish it from explanatory text.

Blanks are not distinguished from each other except in string constants. The compiler treats any unbroken
sequence of blanks as a single blank.

Special characters and combinations of them have particular meaningsin a PL/M-51 program, as described
in the remainder of this manual.

Table 2-1 presents a glossary of specia characters and combinations.

2.2 ldentifiers and Reserved Words

Identifiers are used to name variables, procedures, symbolic constants, and statement labels. Identifiers may
be up to 31 charactersin length. The first character must be alphabetic, and the remainder may be either
aphabetic, numeric, or the underscore (L) or dollar sign ($).

Embedded dollar signs are totally ignored by the compiler, and may be used freely to improve the
readability of an identifier or constant (although the $ may not be the first character). An identifier or
constant containing adollar sign is exactly equivalent to the same identifier with the dollar sign deleted.

Table 2-1. PL/M-51 Special Characters

Symbol Name Use
= equal sign Two distinct uses:
(1) assignment operator
(2) relational test operator
dot Two distinct uses:
(1) structure member qualification
(2) address operator
/ slash division operator
/* beginning-of-comment delimiter
*l end-of-comment delimiter
(left paren left delimiter of lists, subscripts and some expressions
) right paren right delimiter of lists, subscripts, and some expressions
+ plus addition operator or unary plus operator
- minus subtraction or unary minus operator
) apostrophe string delimiter
* Asterisk multiplication operator, implicit dimension specifier
< less than relational test operator
> greater than relational test operator
< = less or equal relational test operator
> = greater or equal | relational test operator
<> not equal relational test operator
: Colon label delimiter
; Semicolon statement delimiter
) comma list-element delimiter
_ Underscore significant character in identifier
$ Dollar non-significant character in identifier

Examples of valid identifiers are:

| NPUT_COUNT

X

GAWM

LONG DENTI FI ERNUVBER3

LONG$$$! DENTI FI ER$$SNUVBERSS$$3
| NPUT$COUNT

| NPUTCOUNT

The two long identifiers are identical (as viewed by the compiler). The last two examples are
interchangesble, but different from the first.

Certain reserved words must not be used as identifiers because they are actually part of the PL/M-51
language. These are listed in Appendix C.

PL/M-51 also has a set of predeclared identifiers naming built-in procedures. Y ou are permitted to declare
these names for your own purposes, but, when you do so, the built-in procedure with the same name
becomes inaccessible. Appendix D lists these identifiers.

2.3 Tokens, Separators, and the Use of Blanks

Just as an English sentence is made up of words, so a PL/M-51 statement is made up of tokens. Every token
belongs to one of the following classes:

Identifiers
Reserved words
Simple delimiters (all of the special characters, except the underscore and dollar sign, are simple

delimiters)
Compound delimiters—the following combinations of two specia characters.
<> < = > = | * */

Numeric constants (discussed in section 2.4)
Character string constants (discussed in section 2.4)

For the most part, it is obvious where one token ends and the next one begins. For example, in the
assignment statement

EXACT = APPROX * (OFFSET-3) / SCALE;

EXACT, APPROX, OFFSET, and SCALE areidentifiers, 3 is anumeric constant, and all the other
characters are smple delimiters.

Sometimes a simple or compound delimiter does not occur between two identifiers, reserved words, or
numeric constants, e.g., DECLAREABY TE. In these cases, a blank must be placed between them as a
separator, i.e.,, DECLARE A BYTE. (Instead of asingle blank, any unbroken sequence of blank characters
may be used.)

Also, acomment (see section 2.5) may be used as a separator.

Blanks may also be inserted freely around any token, without changing the meaning of the PL/M-51
statement. Thus, the assignment statement

EXACT = APPROX * (OFFSET - 3) / SCALE;
is equivalent to

EXACT = APPROX * (OFFSET-3) / SCALE;
2.4 Constants

A congtant is a value that does not change during your program’s execution. An explanation of constants
follows.

Whole Number Constants

Whole-number constants can be binary, octal, decimal, or hexadecimal. The compiler recognizes these by a
suffix of B, O (or Q), D, or H, respectively. Numbers without a suffix are considered decimal. If a constant
contains charactersinvalid in the designated number base, it will be flagged as an error.

For example, the maximum whole-number word constant is:

1111$1111$1111$1111B = 177777Q = 65535D = OFFFFH

Thefirst character of a hexadecimal number must be a numeric digit to avoid looking like an identifier. For
exampl e, the hexadecimal representation for 163 must be written 0A3H rather than A3H, which would be
mistaken for an identifier.

Following are examples of valid whole-number constants:
12AH 2 330 1010B 55D OBF3H 65535 777D 3EACH
Following are examples of invalid whole-number constants:

12A hexadecimal digits used without an H suffix, henceinvalid in the default decimal
interpretation.

I12AD thefina D could be a suffix; however, the A isnot adecimal digit. If hexadecimal is
intended, afina H is needed.

102B 2 isnot avalid binary digit.

2ADGH—G is not avalid hexadecimal digit.

A whole-number constant can be aBIT, BY TE or WORD value, depending on its size and context.
Character Strings

Character strings are denoted by printable ASCI| characters enclosed within apostrophes. To include an
apostrophe in a string, write it as two apostrophes; e.g., the string "’ Q" consists of 2 characters, an
apostrophe followed by a Q. Spaces are alowed. The compiler represents character stringsin memory as
ASCII codes, one 7-bit character code to each 8-hit byte, with a high-order zero bit. Strings of length 1
trandate to single-byte values; strings of length 2 trandate to double-byte values. Following are examples of
character strings.

‘A isequivdentto 41 H

“ AG isequivaent to 4147H

(See ASCII code table in Appendix F.)

Therefore, character strings can only be used as BY TE or WORD values because strings longer than 2
characters would exceed the 16-bit capacity of aWORD value. As constants, however, longer character
strings are stored as a sequence of bytes and can be used in a PL/M-51 program (see sections 3.1, 3.2 and
3.3).

The maximum length of a string constant is 254 characters. A string constant may be used for initialization,
or as part of alocation reference pointing to where that string constant is stored.

2.5 Comments

Explanatory comments may be interleaved with PL/M-51 program text to improve readability and provide
program documentation. A PL/M-51 comment is a sequence of characters delimited on the left by the
character pair /* and on the right by the character pair */ . These delimiters instruct the compiler to ignore
any text between them, and to consider such text not part of the program proper.

A comment may contain any printable ASCII character and may also include space, carriage-return, line-
feed, and tab characters.

A comment may not be embedded inside a character string constant because it will become part of the string
and the compiler won't recognize it. Apart from this, it may appear anywhere that a blank character may

appear—that is, anywhere except embedded within atoken. Thus, comments may be freely distributed
throughout a PL/M-51 program.

The following is a sample PL/M-51 comment:
/* This procedure copies one structure to another. */

In this manual, comments are presented in mixed uppercase and lowercase to help distinguish them visually
from program code, which is always presented in uppercase.

Declarations 3

Five types of objects can be declared to have symbolic names: variables, constants, LITERALLY's, labels,
and procedures. Exactly one declaration must be available for each name used in ablock - no more, no less.
This declaration may appear at the beginning of the block, or in an outer block. Multiple declarations of the
same name in the same block are invalid.

Variables, constants, LITERALLY s and procedures must be declared before they can be used in executable
statements. Labels may be declared or implicitly declared by appearing before a colon. A procedureis
defined by the statements between the PROCEDURE statement and the final END of the procedure.

In addition to the item’s name, a declaration describes its type, attributes, and / or location. These terms
will be clarified in the course of this chapter.

3.1 Variable Declaration Statements

A DECLARE statement is a hon-executable statement that introduces some object or collection of objects,
associates names (and sometimes values) with them and all ocates storage, if necessary. The most important
use of DECLARE isfor declaring variables.

A variable may be scalar—that is, a single quantity—or an array, or a structure.

A scalar variable is a single object whose value is not necessarily known at compile time and may change
during the execution of the program. Y ou therefore refer to it by declaring a name to be used in the
program: an identifier.

The term variable has a more general meaning: a variable may be a scaar variable, or it may be alist of
scalars referred to by asingle identifier.

An array isalist of scalars al named by the same identifier, differentiated from each other by the use of
subscripts, e.g., A(0), A(1), A(123), etc.

A structureisalist of scalarsand / or arrays which al use the same main identifier and which can be
differentiated from each other by their own member-identifiers (field names). For example,

EMPLOY EES.NAME could refer to the NAME field within the structure EMPLOY EES. Variables of this
kind, known as arrays and structures, are discussed in greater detail in Chapter 6.

Examples of the use of scalars, scalar variables, and arrays follow the introduction to section 3.2.

3.2 Types

A scalar dways has atype: BY TE, WORD, or BIT.
A BYTE scalar is an 8-bit quantity occupying one byte of memory . The value of aBY TE scalar is
an unsigned whole number that ranges from 0 to 255.
A WORD scalar is a 16-bit quantity occupying two contiguous bytes of memory, with its most
significant 8 bits stored in the first byte (lower address). The value of a WORD scalar isan
unsigned whole number that ranges from 0 to 65535. For compatibility with other PL/M
compilers, the keyword ADDRESS can be used synonymously with WORD.

A BIT scaar isone hit having avalue of either O (false) or 1 (true). Bits must reside in the bit-
addressable locations of the on-chip RAM (MAIN addresses 32 through 47), or in amemory-
mapped hardware register that is bit-addressable (see Chapter 2 of the MCS-51 Family of Single
Chip Microcomputer User’s Manual). Thus, bits may only have a suffix of MAIN or REGISTER
(see the discussion of suffixes which follows later in this section).

BITs have several important restrictions:

Bits cannot be subscripted; i.e., BIT arrays do not exist.

Bits cannot be BASED (Chapter 4 explains BASED variables).

Bitsresiding in MAIN cannot be AT. Bits mapped to hardware registers must be AT the correct
register address.

Bits can be structure members. However, a structure that contains BIT members may not contain
non-bit members, may not be an array member, and may not be BASED (it may be AT, if itisa
special function register bit.) Note that bit structures can be overlaid by bytesto alow access of
memory locations by either BIT or BY TE statements. For example,

DECLARE S1 STRUCTURE ((BO, Bl, B2, B3, B4, B5, B6, B7) BIT);
DECLARE S| _OVER BYTE AT (.Sl);

A maximum of 64 bitsis allowed.
A PUBLIC BIT cannot be declared AT REGISTER; the following exampleisillegal:

DECLARE OLD BIT PUBLI C AT (99H) REG STER

The BITsrestrictions are not arbitrary; they stem from the MCS-51 architecture and therefore cannot be
circumvented using ASM51.

The concept of data types applies not only to variables but to every value processed by a PL/M-51 program.
This includes values returned by procedures and values calculated by processing expressions.

Arithmetic and other expressions using the different types are discussed in detail in Chapter 5.
Examples

The following statements declare scalars:

DECLARE APPROX WWORD;

DECLARE (OLD, NEW BIT;

DECLARE PO NT WORD, VAL12 BYTE;

The first example declares a single scalar variable of type WORD, with the identifier (name) APPROX.

The second example declares two scalars, OLD and NEW, both of type BIT. Thiskind of statement is
called a“factored declaration.” It is equivalent to the following sequence:

DECLARE OLD BIT;
DECLARE NEW BIT;

except the factored declaration guarantees that the bits will be contiguous.

The third example declares two scalars of different types: POINT is of type WORD, and VAL12 is of type
BYTE.

The following statements declare arrays:

DECLARE DOMAI N (12) BYTE AUXI LI ARY;
DECLARE GAMVA (19) WORD;

The first statement declares the off-chip RAM array DOMAIN (AUXILIARY isexplained in the
discussion of suffix later in this section),. with 12 scalar elements, each of type BY TE. These elements are
distinguishable by subscripting the name DOMAIN, using the range 0 to 11 for the subscripts. For

example, the third element of DOMAIN can be referred to as DOMAIN(2). Thefirst element of every array
has subscript 0.

The second statement declares the array GAMMA,, with 19 scalar elements of type WORD. The subscripts
for this array can range from O to 18.

The next statement declares a structure with two scalar members:
DECLARE RECORD STRUCTURE (KEY BYTE, | NFO WORD);

The two members are aBY TE scalar that can be referred to as RECORD.KEY and aWORD scalar that
can be referred to as RECORD.INFO. The word named by RECORD.INFO is the second and third bytes of
this structure.

Structures and arrays are discussed further in Chapter 6.
Results
The two results of avalid variable declaration are:

1. The name is given an address and an address space.
2. It is considered to have the attributes declared.

The two results mean all subseguent uses of the variable in this block will refer to the same address (except
for based variables, discussed in section 4.4).

The results also require al referencesto the variable to conform to the rules for the current attributes, i.e.,
those having priority in the current block. Requiring al references to the variable to conform to the rules
for the current attributes allows the compiler to flag alarge variety of errors of inconsistency, i.e.,
incompatibility of declarations with later usage (at this level of the block).

3.3 Address-Spaces and the Suffix

Figure 3-1 shows the 8051's memory. Note the 4 memory spaces. program memory (called CONSTANT in
PL/M-51), internal data RAM (called MAIN or IDATA), the special function registers (called
REGISTER), and external data memory (called

AUXILIARY).

Figure 3-2 shows the internal data memory in more detail.

If you understand figures 3-1 and 3-2, you know enough about the MCS-51 family to proceed. Everything
in this family is some flavor of memory; thisincludes | / O, which is done using the REGISTER address-
space (memory-mapped | / O). For example, on the 8051, the program fragment:

DECLARE SBUF BYTE AT(99H) REG STER
DECLARE X BYTE;
X SBUF

f 64K 64K

EXTERNAL
Overlapped Space

f 4096 L
INTERNAL 256 T 256 I

l 128 | | 128
- - [J
) External
Program Internal Special Data
Memory Data Ram Function
Register

— g
—~——

Internal Data Memory

Memory

Figure 3-1. 8051 Memory Organization

Special
Internal Data RAM Function

Register
/—%_)H

25 255 248| F8H

FOH

255 E8H
EOH —~=—
D8H —t—
DOH
C8H Addressable
COH ™71 phisinSFR's
B8H —=—/[128 bits

BOH —a—
ABH
AOH
98H
90H —=-—

88H -——
128 [135 128| 80H . /

128

127

127 120
7 0

R7
Bank 3
RO

BYTE IN RAM

ADDRESSABLE 48
(128 bits) ‘L

32

24

R7
Bank 2
RO

REGISTERS 16
R7

Bank 1
RO

R7
Bank 0
RO

0
| S S —
Internal DATA RAM Special Function Register

Figure 3-2. Internal Data Addressing Modes

will read (into the variable X) a character from the seria port because SBUF (see figures 3-2 and 3-3 of the
MCS-SI Family of Single Chip Microcomputer User’s Manual) is the device-register containing serial-port
data. Similarly,

DECLARE BI T2_OF_PORT_2 BI T AT(0A2H)
BIT 2 OF PORT_2 = NOT BIT_2 OF PORT 2;

will flip bit 2 of |1 / O port 2. (To see why the program fragment flips bit 2 of | / O port 2, refer to figure -3-
4 of the MCS-SI Family of Single Chip Microcomputers User’'s Manual.)

A variable in most programming languages has a name and atype (i.e., COMPLEX, INTEGER, RECORD,
...). A PL/M-51 variable has a name, atype, and an address-space. Asjust seen in the last few paragraphs,
getting the address-space wrong will cause you to write an incorrect program.

Since the 8051 has more than one memory-space, an address by itself is not enough to specify in PL/IM-5 1
where avariable resides; you must declare the memory in which it resides. Declaring the memory in which
avariable resides is done using the suffix part of the declaration. The suffix can be any of the following:

MAI N - refers to the directly-addressable on-chip RAM.
AUXI LI ARY - refersto the off-chip RAM.

REA STER - refers to (memory-mapped) hardware registers.
| DATA - refers to indirectly-addressable on-chip RAM.
CONSTANT -i.e, ROM.

If you do not specify a suffix, MAIN isassumed. If the suffix isIDATA, the variable resides within the
indirectly-addressable on-chip memory (bytes 0-127 for the 8051; bytes 0-191 for the 8044). If REGISTER
is specified, it must be preceded by an AT attribute; the addressin the AT attribute must be between 128
and 255 (inclusive) and the variable must be of type BIT or BY TE.

The CONSTANT Suffix

The CONSTANT suffix declares variablesin the CONSTANT memory-space, which must be ROM. The
content of a constant variable, as opposed to other variables, is not atered and remains constant throughout
the entire program execution.

CONSTANT datainitializations can be used in declarations at any block level in the program. The name of
constant variables should never appear on the left-hand side of an assignment statement.

The PL/M-51 user is allowed to add an initialization to the CONSTANT keyword. Y ou will almost always
do it for non-BASED variables. Initiaization is forbidden for BASED or EXTERNAL variables.
Initialization may follow the use of the AT attribute discussed in section 4.7; but, if doing so causes
multiple initializations, the result cannot be predicted.

The general form of an initidization is:
CONSTANT (value-list)
Where

value-list is a sequence of values separated by commas.
Values, taken one at atime from the value list, are used to initialize the individual scalars being declared.
Theinitiaization is performed in the same manner as an assignment. Initial values for members of an array
or structure must be specified explicitly.
Each value may be a 1-byte or 2-byte string (e.g., ‘A’, ‘NO’) or arestricted expression, as explained in the
next paragraph. (BY TE arrays can accommodate longer strings because each element can represent one
character.)
A restricted expression is one of the following three possibilities:

A location reference formed with the dot operator (.), which must refer to avariable that has
already been declared. (Location references are discussed in Chapter 4).

A constant expression containing no operators except + or - . A constant expression only has
whole number constants as operands, e.g., 2048- 256 + 5, as explained in Chapter 5. A constant
expression above 2551sillegal for initializing aBY TE.

A location reference plus or minus a constant expression.
The following declaration
DECLARE THRESHOLD BYTE CONSTANT(48);

declaresthe BY TE scalar THRESHOLD in ROM, (i.e. its value may not be altered) and initiadlizesit to a
value of 48.

The following declaration
DECLARE (COUNTER, LIMT, INCR) WORD CONSTANT(1024,0, -2);

declares the WORD scalars COUNTER, LIMIT, and INCR, indicates they arein ROM, and initializes
COUNTER to avalue of 1024, LIMIT to avalue of 0, and INCR to avalue of —2 (i.e., 65534).

The following declaration

DECLARE EVEN (5) BYTE CONSTANT(2, 4, 6, 8, 10) ;

declaresthe BY TE ROM array EVEN, and initializes its five scalar elementsto 2, 4, 6, 8, and 10,
The following declaration

DECLARE COORD STRUCTURE (HI GH$BOUND WORD,

VALUE (3) BYTE,
LOASBOUND BYTE) CONSTANT(302, 3,6, 12,0);

declares the structure COORD, causesit to residein ROM, and initializes it as follows:

COORD. HI GH$BOUND t o 302
COORD. VALUE(0) to 3
COORD. VALUE(1) to 6
COORD. VALUE(2) to 12
COORD. LOWSBOUND t o 0.

If astring appearsin the value list, it is taken apart from left to right and the pieces are stored in the scalars
being initialized. One character is stored in each BY TE scalar and two in each WORD scaar. For example,

DECLARE GREETI NG (S) BYTE AT (1600) CONSTANT(' HELLO)

causes GREETING(O) to beinitialized with the ASCII code for H, GREETING(1) with the ASCII code for
E, and so forth.

The examples shown thus far have value lists that match up one-for-one with the scalars being declared. It
is permissible for the value list to have fewer elements than are being declared. Thus,

DECLARE DATUM (100) BYTE CONSTANT(3, 5, 7, 8);
is permissible. Thefirst four elements of the array DATUM are initialized with the four elementsin the

valueligt, and the remainder of the array isleft un-initialized. The value list, however, may not have more
elements than are being declared.

The use of location reference is demonstrated in the following example:

DECLARE GOSNCSGOSMSG(5) BYTE CONSTANT (* NOGO , 0),
GOSNOSGOSMSGSPTR(2) WORD CONSTANT (. GOSNOSGOBMEG, . GOBNCBGOSMEG + 2)

The first CONSTANT contains a message; the second CONSTANT consists of two constant pointers—the
first of which points to the entire message (NOGO), and the second to its suffix only (GO).

The Implicit Dimension Specifier

When initiaizing an array, you want the array to have the same number of elements asthe value list. This
can be done conveniently by substituting the implicit dimension specifier for an ordinary dimension
specifier (a parenthesized constant). The implicit

-dimension specifier has the form:

(*)
For example, the following statement:
DECLARE MG *) BYTE CONSTANT(' WELCOVE! ') ;

declaresaBYTE array in ROM, M SG, with enough elements to contain the string ‘WELCOME!" (namely,
8). and initializes the array elements with the characters of the string.

The implicit dimension specifier may only be used for arrays having a CONSTANT suffix and an
initialization.

The implicit dimension specifier may be used with any value list—it is not restricted to strings.
The REGISTER Suffix

All interaction between the 8051 CPU and the outside world is done via the hardware-register address
space, which contains pseudo-variables like SBUF (the serial-port buffer), P1(1/ 0 port 1) and SP (the stack
pointer). If the 8051, for instance, writes a byte into SBUF, the byte will be output on the serial-channel
interface.

Thisrule holds also in PL/M-51. To access a hardware register, declare it as a REGISTER (with the correct
addressin the AT part). Then, for example, you can write P2P3 if you want to copy port 3 to port 2. Look
up the user manual for the relevant chip if you want to work out each REGISTER variable' s actions. On the
8051, for example, PO (I / O port 0) islocated at 80H. A declaration for this register will look like the
following:

DECLARE PO BYTE AT (80H) REG STER

To help you avoid incorrect register declarations, Intel provides file REG51.DCL, with ready-made
declarations for all registers on the 8051 chip.

NOTE
The compiler uses the ACC, B, PSW, DPL and DPH registers to accomplish various computations and to

hold temporary results. Use of these registersin the user program, although permitted, may cause
unpredictable results (e.g., PSW = OFFH is dangerous).

The IDATA Suffix

The MCS-5I architecture permits up to 256 bytes of on-chip RAM. Bytes 0— 127 are directly-addressable
and indirectly-addressable. Bytes 128—255 (unimplemented in the 8051) are indirectly-addressable only;
direct-address accesses to these addresses gets you into REGISTER space.

To use bytes 128—255, you have to use the IDATA suffix in your declarations. Variables with this suffix
are guaranteed to be accessed by indirect addressing only, and may therefore reside anywhere in on-chip
RAM. Such indirect access is, however, usually less efficient than direct addressing.

The MAIN Suffix

If you do not specify a suffix, a suffix of MAIN is assumed, i.e., directly-addressable on-chip RAM.
Variables with this suffix will reside in addresses 0 -127 of on-chip RAM. This s the fastest memory
available, but should be used sparingly.

Omitting an explicit suffix can lead to trouble. Examples of this can be found in Chapter 4, section 4.5, in
“Cautions on Using Based Variables.”

The AUXILIARY Suffix

It is possible to add up to 65536 bytes of external memory to the 8051. Added memory is a separate address
space. The suffix needed to declare a variable in this memory-space is AUXILIARY. For example,

DECLARE X WORD PUBLI C AT (2000H) AUXI LI ARY;

declares X as a WORD variable at location 2000H in added memory. References to variables with the
AUXILIARY suffix are slower than MAIN or IDATA variables.

3.4 Compilation Constants (Text Substitution):
The Use of LITERALLY

If your program is large enough to have many declarations, you might want to declare a compilation
constant to save time at the keyboard:

DECLARE DCL LI TERALLY ‘ DECLARE' ;

Thereafter, during compilation, every time DCL appears alone (not as part of aword), the full string
DECLARE will be substituted by the compiler. Subsequent declarations can thus be written:

DCL SWTCH BI T,
DCL AREA BYTE;
DCL Sl ZE WORD,

A declaration using the reserved word LITERALLY defines a parameterless macro for expansion at
compile-time. You declare an identifier to represent a character string that will then be substituted for each
occurrence of the identifier in subsequent text. This expansion will not take place in strings or constants.
The form of the declaration is:

DECLARE identifier LITERALLY ‘string ;

where

identifier isany valid PL/M-5| identifier.
Sring is a sequence of arbitrary characters from the PL/M-51 set that do not exceed
254 in length.

The following example illustrates another use of LITERALLY:
DECLARE TRUE LI TERALLY “1', FALSE LI TERALLY ‘0’;

DECLARE ROUGH BI T,
DECLARE (X, Y, DELTA, FINAL) VORD;

ROUGH = TRUE;
DO WHI LE ROUGH;
X = SMOOTH (X, Y, DELTA);
/* SMOOTH is a procedure decl ared el sewhere.’ *
I F (X-FINAL) < DELTA THEN ROUGH = FALSE;
END;

ThisLITERALLY declaration example defines the Boolean values TRUE and FALSE in a manner
consistent with the way PL/M-5I handles relational operators (see section 5.4). Thiskind of literal
substitution for fixed values often makes a program more readable.

Another LITERALLY declaration use: the declaration of quantities that are fixed for one compilation but
may change from one compilation to the next. Consider the following example:

DECLARE BUFFER$SI ZE LI TERALLY ‘32" ;
DECLARE PRI NT$BUFFER(BUFFER$SI ZE) WORD;

PRI NT$BUFFER(BUFFERSSI ZE - 10) = ' G ;

A future change to BUFFER$SIZE can be made in one place, at the first declaration, and the compiler will
propagate it throughout the program during compilation. Thus, the programmer is saved the tedious and
.error-prone process of searching the program for the occurrences of “32” that are buffer size references
and not some other reference.

3.5 Declarations of Names for Labels

A label marks the location of an instruction as opposed to a dataitem. Labels are permitted only on an
executable statement, not on declarations.

A name may be declared alabel either explicitly or implicitly. The explicit label declaration is used mainly
to allow module-to-module references, which are discussed in detail in Chapter 9. The three possible forms
for explicit 1abel declarations look like this;

DECLARE PART3 LABEL,

DECLARE START1 LABEL PUBLIC, /* for inter nodul e reference */
DECLARE PHASE2 LABEL EXTERNAL; /* for inter nodul e reference */

Therulesfor the PUBLIC and EXTERNAL label declarations are discussed in Chapter 9.

The more common implicit label declaration is simpler than the explicit label declaration: the nameis
placed at the very beginning of the executable statement to which it is supposed to point:

START2: ALPHA * 127,
L1: L2: L3: L4: ; /* four labels on an enpty statenent */

Thislabel declaration statement defines the label START?2 as pointing to the location of the PL/M-51
instruction shown. If this block has no explicit declaration of STARTZ2, i.e., no statement like:

DECLARE START2 LABEL;

then the compiler considers the definition in the label declaration an implicit declaration and a definition -
asif the declaration had occurred at the start of the inner most simple DO or procedure block in which the
label is contained. (If an explicit declaration is present, the actual placement of the label remains ssimply a
definition.)

Labels are used to indicate significant instructions or the starting point of instruction sequences. They can
be useful reference points for understanding the parts of a program; they are also useful as targets for the
transfer of control during execution (as discussed under GOTO in Chapter 7).

Results

Theresults of avalid label declaration are:

1. The declared name can be used to point to an executable instruction.

2. The use of adeclared name as avariable in the block in which it is declared is disallowed.

3. If the label defined in this block appears on an executable statement, the address of that statement is
assigned as the value of the label.

3.6 Combining DECLARE Statements

A separate DECLARE statement is not required for each and every declaration. Instead of writing the two
DECLARE statements:

DECLARE CHR BYTE CONSTANT (' A');
DECLARE COUNT WORD,

you may write both declarations in a single DECLARE statement, as follows:
DECLARE CHR BYTE CONSTANT (‘A'), COUNT WORD;

This DECLARE statement contains two declaration elements, separated by the comma. Every DECLARE
statement contains at least one declaration element. If it contains more than one, they are separated by
commeas.

Most of the examples shown up to this point have only one declaration element in each DECLARE
statement. A declaration element is the text for declaring one identifier (or one factored list of identifiers).
In the example just cited, the text CHR BY TE CONSTANT('A’) is one declaration element, and the text
COUNT WORD is another.

Another way of combining declaration elements is called a factored declaration. For example,
DECLARE A BYTE, B BYTE;

DECLARE C WORD, D WORD;

DECLARE E BYTE, F BYTE;

can be combined as:

DECLARE (A, B) BYTE, (C,D WORD, (E, F) BYTE;

In each Factored declaration, the allocated locations will be contiguous.

The declaration elements appearing in a single DECL ARE statement are completely independent of each
other, asif they were declared in separate DECLARE statements.

3.7 Declarations for Procedures
As aready shown, the declaration of a procedure begins by giving its name, with a statement of the form:
name: PROCEDURE

followed optionally by parameters, type, and / or attributes. The definition of the procedure then follows,
i.e., the set of statements declaring items used in the procedure (including any parameters) and the
executable statements of the procedure itself. The definition ends with an END statement, optionally
including the procedure name from the declaration.

The complete declaration of a procedure includes all of the statements from the PROCEDURE statements
through the END statement. This whole definition / declaration must appear before the procedure name is
used in an executable statement, just as variable and constant names must be declared before their use.

The only exceptions occur when the full definition appearsin another module where it is declared PUBLIC.
If a separate module intends to make use of that public definition, the using moduleis required to:

1 Declare the procedure as having the attribute EXTERNAL (so RL51 will search for it).

2. Declare each formal parameter the procedure uses, thereby allowing the compiler to verify correct
usage when the current module calls the procedure.

3. End the local declaration with an END statement, as follows:
SUMVER: PROCEDURE (A, B) EXTERNAL;

DECLARE A WORD, B BYTE;
END SUMMVER,

The full details of intermodule referencing are in Chapter 9. The discussion of procedure definition and
usage isin Chapter 10.

Data Types and Based Variables 4

4.1 BYTE and WORD Arithmetic

Thevaue of aBYTE variableis an 8-bit binary number ranging from 0 to 255 and occupying one byte of
memory. The value of aWORD variable is a 16-bit binary number ranging from 0 to 65535 and occupying
two contiguous bytes of memory. Vaues of WORD and BY TE variables are treated as unsigned binary
integers.

Unsigned integer arithmetic is used in performing any arithmetic operation upon WORD and BY TE
variables. All of the PL/M-51 operators may be used with them (see Chapter 5). Arithmetic and logical
operations on such variables yield aresult of type BY TE or WORD, depending on the operation and the
operands. Relational operations always yield a true or false result of type BIT.

With unsigned arithmetic, if alarge value is subtracted from a smaller one, the result isthe two’s
complement of the absolute difference between the two values. For example, if aBY TE value of 1
(00000001 hinary) is subtracted from a BY TE value of 0 (00000000 binary), the result isaBY TE value of
255 (11111111 binary).

Also, the result of adivision operation is always truncated (rounded down) to a whole number. For
example, if aWORD value of 7 (0000000000000111 binary) is divided by a BY TE vaue of 2 (00000010
binary), the result is aword value of 3 (0000000000000011 binary).

4.2 The Dot (.) Operator

A location reference is formed by using the . operator. A location reference has a value of type WORD—
that is, alocation address.
The basic form of alocation referenceis:

Jvariable-ref

where
variable-ref is the name of some non-BIT variable.

The value of thislocation reference is the actual location at run time of the variable.

variable-ref may aso refer to an unquaified array or structure name (e.g. ARRAY 1 instead of ARRAY 1(0)
), in which case the pointer value is the location of the first element or member of the array or structure.

For example, suppose you have the following declarations:

DECLARE RESULT WORD;

DECLARE XNUM 10) BYTE;

DECLARE RECORD STRUCTURE (KEY BYTE, |NFQ(2) BYTE, HEAD WORD);
DECLARE LI ST (4) STRUCTURE (KEY BYTE, | NFO (2) BYTE, HEAD WORD) ;

.RESULT isthelocation of the WORD scalar RESULT, while XNUM(5) is the location of the 6th element
of thearray XNUM. .XNUM isthe location of the beginning of the array. i.e., the location of the first
element (XNUM(0)).

The RECORD structure declares a byte called KEY followed by 2 bytes called INFO(0) and INFO(1).
After these comes the WORD variable named HEAD. Since KEY INFO(0), INFO(I). and HEAD are ll
declared part of the RECORD structure, their contents must be referred to- as RECORD.KEY,
RECORD.INFO(0),RECORD.INFO(2) and RECORD. HEAD.

The addresses KEY INFO(0). INFO(1). and HEAD can be referred to using the dot operator.
.RECORD.HEAD isthe location of the WORD scalar RECORD.HEAD. While RECORD is the location of
the structure, which is the same as that of the BY TE scalar RECORD.KEY . .RECORD.INFO isthe
location of the first element of the 2-BY TE array RECORD.INFO. whereas .RECORD.INFO(I) isthe
location of the 2nd element of the same array.

LIST isan array of structures. The location reference .LIST(2).KEY isthe location of the scalar
LIST(2).KEY. Notethat .LIST.KEY isillegal because it does not identify a unique location. i.e., the KEY
of which LIST.

The location reference .LIST(0).INFO(2) is the location of the scalar LIST(0).INFO(I). Also,
.LIST(0).INFO isthe location of the first element of the same array, i.e., the location of the array itsalf.

A special case exists when the identifier used as variable-ref isthe name of a procedure. Thisuse of a

procedure name will not activate the procedure, and hence no actual parameters may be specified. The
value of the location reference in this case is the location of the entry point of the procedure.

4.3 Storing Strings and Constants via Location Reference
Another form of location referenceis:

.(constant list)

where

constant list is asequence of one or more byte constants or strings separated by commas, and
enclosed in parentheses.

When this type of location reference is made, space is alocated for the contents, the constants are stored in
CONSTANT memory-space (contiguoudly, in the order given by the list), and the value of the location
reference is the location of the first constant.

Strings may be included in the list. For example, if the operand

. (" NEXT VALUE')

appearsin an expression, it causes the string ‘NEXT VALUE' to be stored in memory (one character per
byte, thus occupying 10 contiguous bytes of storage). The value of the operand is the location of the first of
these bytes—in other words, a pointer to the string.

The following is an example of a string stored via a location reference.

CALL MESSAGE_TO CRT (.("VWOW'));

4.4 Based Variables

Sometimes the address of avariable is not known until the program is actually run. For instance, if you
write a procedure to swap two bytes, and want to call it from various places in your code, the addresses of
the two bytes are only known after the call.

To permit this type of manipulation, PL/M-51 uses based variables. A based variable is one that is pointed
to by another variable, called its base. This means that the base contains the address of the desired (based)
variable.

A based variable is not allocated storage by the compiler. At different times during the program run it may
actually refer to different placesin memory because its base may be changed by the program.

A based variable is declared by first declaring its base, which must be of type WORD or BY TE, and then
declaring the based variable itself, which must not be of type BIT. Following is an example of how to
declare abased variable.

DECLARE | TEMBPTR WORD;
DECLARE | TEM BASED | TEMBPTR BYTE MAI N;

Given these declarations, areferenceto ITEM is, in effect, areference to whatever BY TE value is pointed
to by the current value of ITEM$PTR. This means that the sequence

| TEMBPTR = 34H
| TEM = 77H;

will load the BY TE vaue 77 (hex) into the MAIN memory location 34 (hex).

A variable is made BASED by inserting in its declaration the word BASED and the identifier of the base
(which must already have been declared).

The following restrictions apply to bases:

The base must be of type BY TE or WORD. BYTE isvaid only if the based variableis MAIN or
IDATA.

The base may not be subscripted—that is, it may not be an array element.

The base may not itself be a based variable.

The word BASED must immediately follow the name of the based variable in its declaration, asin the
following examples:

DECLARE (AGE$PTR, | NCOME$SPTR, RATI NGBPTR, CATEGORY$PTR) WORD;
DECLARE ACGE BASED AGE$PTR BYTE MAIN;

DECLARE (| NCOVE BASED | NCOVE$PTR, RATI NG BASED RATI NGSPTR) WORD MAI M
DECLARE (CATEGORY BASED CATEGORY$PTR) (100) WORD CONSTANT;

In the first DECLARE statement, the WORD variables AGE$PTR, INCOMES$PTR, RATING$PTR, and
CATEGORY $PTR are declared. They are used as bases in the last three DECLARE statements.

In the second DECLARE statement, aBY TE variable called AGE is declared. The declaration implies that
whenever AGE is referenced by the running program, its value will be found at the on-chip RAM location
given by the value of the WORD variable AGE$PTR.

The third DECLARE statement declares two based variables, both of type WORD, and both in MAIN (on-
chip RAM) memory.

The fourth DECLARE statement defines a 100-element WORD ROM array called CATEGORY,, based at
CATEGORY $PTR. This means that when any element of CATEGORY is referenced at run time, the value
of CATEGORY $PTR at that same

timeisthe location of the array CATEGORY in ROM, i.e,, itsfirst element.

The other elements follow contiguously. The parentheses around the tokens CATEGORY BASED
CATEGORY $PTR are optional. They help make the statement more readable, but may be omitted.

45 Location References and Based Variables

An important use of location references isto supply values for bases. Thus, the dot operator, together with
the based variable concept, gives PL/M-51 avery powerful facility for manipulating pointers.

For example, suppose three different WORD variables are in off-chip RAM: NORTH$ERROR,
EAST$ERROR, and HEIGHT$ERROR. Y ou want to be able to refer to them at different times by means
of the single identifier ERROR. This can be done as follows:

DECLARE (NORTHSERROR, EAST$ERROR, HEI GHT$ERROR) WORD AUXI LI ARY;
DECLARE ERROR$PTR WORD;
DECLARE ERROR BASED ERROR$PTR WORD AUXI LI ARY;

ERRORSPTR = NORTHSERROR

At this point, the value of ERROR$PTR is the location of NORTH$ERROR. A reference to ERROR will
be, in effect, areference to NORTH$ERROR. Later in the program, we can write:

ERRORSPTR = . HEl GHT$ERROR,

Now, areference to ERROR will be, in effect, areference to HEIGHT$ERROR. In the same way, we can
cause the value of the pointer to be the location of EAST$ERROR, and a reference to ERROR will be a
reference to EAST$SERROR.

This technique is useful for manipulating complicated data structures and for passing locations to
procedures as parameters. Examples of manipulating complicated data structures are given in Chapter 10.
Some care must be used though: see the cautions that follow.

Cautions on Using Based Variables
Here'saquick way to get no end of bugsinto your program:

DECLARE X BYTE AUXI LI ARY, Y(*) BYTE CONSTANT(’ FOO');
DECLARE PO NTER WORD;

DECLARE Z BASED PO NTER BYTE;

PO NTER = . X

/* you might think Z is now another name tot A, but no: Zis a MAIN
vari abl e, whose address in on-chip RAMis the sanme as X s address
in off-chip RAM This is about as much use as getting soneone’s
mail who lives in the sanme address as yours, but in a different

town */
PO NTER = .Y,
/* again, Z has no reason to equal ‘F;’ it is an on-chip RAM

variable, located at the sane address in RAMthat V has in ROM */

Y ou might think that thisis enough of aroundabout construction to be quite rare: however, because thisis
the way PL/M-51 procedures get many of their parameters, it can happen fairly often. To help prevent such
errors, the PL/M-51 compiler tells you, in the compilation summary, how many BASED variables lack an
explicit suffix (and thus reside in on-chip RAM whether or not thisis what you wanted). If you want, you
can get this count down to zero by specifying MAIN in each BASED declaration in which you want
MAIN: the message (e.g., 77 DEFAULTED BASED VARIABLES") will then disappear.

Hereis another example of the same type of error:

MOVE: PROCEDURE(COUNT, ADDRESS OF SQOURCE , ADDRESS OF DESTI NATI ON) PUBLI C;
DECLARE(COUNT, ADDRESS OF SOURCE, ADDRESS OF DESTI NATI ON) WORD;
DECLARE SOURCE BASED ADDRESS OF SOQURCE BYTE; /* Defaults to RAM */
DECLARE DESTI NATI ON BASED ADDRESS OF DESTI NATI ON BYTE;

/* Defaults to RAM */

DECLARE | WORD;
DOl = 1 TO COUNT:
DESTI NATI ON = SOURCE
ADDRESS_OF SOURCE = ADDRESS_OF SOURCE + 1;
ADDRESS_OF_DESTI NATI ON = ADDRESS OF DESTI NATION + 1;
END;
END MOVE;

DECLARE Y(*) BYTE CONSTANT(’' FOO);
DECLARE Z(10) BYTE;
CALL MOVE(SI ZE(Y), .Y, .Z);

CALL MOVE will copy whatever three bytes arein RAM at the Y addressto Z: CALL MOVE will not
copy the string ‘FOQO' to Z. CALL MOVE does this because MOVE dialed the correct number but used the
MAIN area-code rather than the correct area-code of CONSTANT.

4.6 Contiguity of Storage

PL/M-51 only guarantees that variables will be stored in contiguous memory locationsin certain situations:
The elements of an array are stored contiguously, with the Oth element in the lowest location and
the last element in the highest location. (No storage is alocated for a based array, but the elements
are considered to be contiguous in memory.)
The members of a structure are stored contiguously, in the order in which they are specified. (No

storage is allocated for a based structure, but the members are considered to be contiguous in
memory.)

Non-based variables declared in afactored declaration: that is, variables within a parenthesized list are
stored contiguously, in the order specified. (If a based variable occursin a parenthesized list, it isignored in
allocating storage. The sameis true for formal procedure parameters.)

4.7 The AT Attribute

The AT attribute has the form:

AT (location)
Where
location must be arestricted expression, that is, either alocation reference formed with the dot

operator, or asingle constant expression in the range 0 to 65535, or alocation reference
plus or minus a constant expression.

If it includes alocation reference, it must refer to a non-based variable that has aready been declared. The
current variable and the referred one must reside in the same address space. The only exception isthat an
address of structures of bits may be used to locate the MAIN variable (thisis the way to make equivalence
between bytes and bits). If a subscript expression is present, it must be a constant expression containing no
operators except + and - .

If the location is awhole-number constant, it represents an absolute storage location. The value of the
whole-number must not exceed the last address valid in the address space in which the variable is to reside.

The following are examples of valid AT attributes:

AT (4096)

AT (A- 7 +5 - 13)
AT (.BUFFER)

AT (.BUFFER + 28)
AT (. NAMES(17))

The effect of an AT attribute is to cause the address of a variable to be the location specified within the
parenthesis. The first scalar in the declaration will refer to the location. Other scalarsin the same
declaration will, in sequence, refer to successive locations thereafter.

For example, the declarations

DECLARE BUFFER (3) BYTE;
DECLARE (CHAR$SA, CHAR$B, CHAR$C) BYTE AT (.BUFFER):

cause the BY TE variable CHARSA to be at the location of the array BUFFER. The variables CHAR$B and
CHARSC are located in the next two bytes after CHARS$A. The declarations

DECLARE DATASBUFFER(30) BYTE;
DECLARE T (5) STRUCTURE (X(2) BYTE,
Y(2) BYTE,
Z(2) BYTE) AT (.DATA$BUFFER);

set up structure references to 30 bytes. They are oriented such that each of the five members of T refersto 6
bytes, the first two using the name X. the second two Y. the last two Z.

The declaration just given, using the AT attribute causes the beginning of the structure T-namely the scalar
T(0).X(0) to be located at the same location as a previously declared variable array called
DATA$BUFFER. The other scalars making up the structure will follow thislocation in logical order:
T(0).X(1). T(0).Y(0). and so on up to T(5).Z(1). the last scalar, which islocated in the 29th byte after the
location of DATA$BUFFER.

Notice that since no memory locations are alocated for avariable that is declared AT another variable, care
must be taken when declaring such avariable. If. for example, DATA$BUFFER in the example just given
is 10 byteslong, and T remains asis, then the 20 last bytes of T overlap some other data variables. Since
the value of those bytesis usually unpredictable, changing those bytes maybe dangerous.

The following rules apply to the AT attribute:

The AT attribute cannot be used with based variables.

It can be used with the PUBLIC attribute, in which case it must immediately follow the word
PUBLIC. However, the location in this case may not be alocation reference to avariable that is
EXTERNAL.

It cannot be used with the EXTERNAL attribute.
Itisinvaid for non-REGISTER BITs.
AT must appear before any declaration suffix.

The AT attribute can he used to make Variables equivalent providing more than one way of referring to the
same information. For example.

DECLARE DATUM WORD,
DECLARE | TEM BYTE AT (. DATUM

causes ITEM to be declared aBY TE variable at the same location in which DATUM resides (i.e.. where
the high-order byte of DATUM is found). The following is another example:

DECLARE VECTOR (6) BYTE;

DECLARE SHORTSVECTOR STRUCTURE (FI RST (3) BYTE,
SECOND (3) BYTE)
AT (.VECTOR);

Here. you first declare asix-element BY TE array. VECTOR. Then you declare a structure of two three-
BYTE arrays. SHORTSVECTOR.FIRST and SHORTSVECTOR.SECOND. The first scalar of this
structure

SHORT$VECTOR.FIRST(0) is located at the same location as the first element of the array VECTOR.

Thus, we have two different ways of referring to the same six bytes. For example, the fifth byte in the
group can be referenced as either VECTOR(4) or SHORTSVECTOR.SECOND(1).

Equivalent variables can a so be successive. For example.

DECLARE (A, B) WORD PUBLI G
DECLARE (C, D, E, F) BYTE PUBLIC AT (.A);

Here, C and D are the high and low order bytes of A. E and F are the high and low order bytes of B.

Expressions and Assignments 5

A PL/M-51 expression consists of operands (values) combined by the various arithmetic, logical, and
relational operators. Following are examples of combined operands:

A+ B

A+ CC

A*B+C/ D

AB+C - (D-FE I F

A XOR B

where

+ ,-, *and/ are arithmetic operators for addition, subtraction, multiplication. and division.
A,B,C,D,EandF represent operands.

0 group operands and operators, as in ordinary algebra.

This chapter presents a complete discussion of the rules governing PL/M-51 expressions. Although these
rules may appear complex, most of the expressions used in actual programs are simple and easy to
understand. In particular, when the operands of arithmetic and relational operators are al of the sametype.
the resulting expression is easy to understand.

5.1 Operands

Operands are the building blocks of expressions. An operand is something with avalue at run time which
can he operated upon by an operator. Thus, in the examples just given, A. B. C. etc.. might be the
identifiers of scalar variables that have values at run time.

Numeric constants and variables may appear as operands in expressions. The following sections describe
all of the types of operands permitted.

Variable References

A variable operand must refer to asingle scalar value. For example. in the declaration:

DECLARE A(S) BYTE, B WORD;

B isavadid operand, and so is any scalar element of A. such as A(2). However. A isNOT avalid operand,
asit isnot ascalar. When the expression is evaluated, the reference to the scalar variable is replaced by the
value of that scalar.

Constants

Any numeric constant may be used as an operand in an expression. Its type must be appropriate, as
discussed in the following paragraphs.

A whole-number constant istreated asaBY TE vaueif it is equal to or less than 255: asa WORD vaue if
it isgreater than 255 and equal to or less than 65,535.

A string constant containing two characters or less may also be used as an operand. If a string constant has
only one character, it istreated as a BY TE constant whose value is the eight-bit ASCII code for the
character. If astring constant is a two-character string, it is treated as a WORD constant whose value is
formed by stringing together the ASCII codes for the two characters, with the code for the first character
forming the most significant eight bits of the sixteen-bit number.

Strings of more than two characters (called string constants) areillegal as operandsin expressions.
Function and Location References

A function reference is the name of atyped procedure that has previously been declared, along with any
actual parameters required by the procedure declaration. The value of afunction reference is the value
returned by the procedure.

For example, consider the built-in function PROPAGATE, which converts bit values to bytes:

| = J + PROPAGATE(MAG C BIT);

MAGIC_BIT will be converted to a byte (0 or OFFH) and then added to the value of J before being stored
inl. If MAGIC_BIT isl, theresult is the same as if you had written:

| = J + OFFH

For a complete discussion of procedures and function references, see Chapter 10.

L ocation references, which act as WORD operands, have already been described in Chapter 4.
Subexpressions

A subexpression is Simply an expression enclosed in parentheses. A subexpression may be used as an
operand in an expression. That is, parentheses may be used to group portions of an expression together, just
asin ordinary algebraic notation.

Compound Operands

All the operand types described above are primary operands. An operand may also be a vaue calculated by
evaluating some portion of the total expression. For example, in the expression:

A+B*C

(where A, B, and C are BY TE variable references), the operands of the * operator are B and C. The
operands of the + operator are A and the compound operand B * C—or more precisely, the value obtained
by evaluating B * C. Notice that this expression is evaluated asif it had been written:

A+ (B* QO

Section 5.6 discusses analyzing an expression to determine which operands belong to which operators, and
which groups of operators and operands form compound operands.

5.2 Operand and Expression Types

Every operand must be of one of these types BIT. BY TE or WORD. In genera BY TEs and WORDs
contain numerical values, and BITs contain Boolean values. i.e.. TRUE and FALSE. However. in PL/M-
51. Boolean values are not represented by the words TRUE and FALSE, but by the BIT values 1 and 0.
PL/M-51 provides automatic conversion between BY TEs and WORDS, but NO automatic conversion
between Boolean and numerical values. For example.

BIT_A = BYTEB + BYTE_C

has no obvious interpretation. Therefore, the compiler regards this as an error. The goal isto cause
compile-time errors that take minutes to resolve, rather than run-time errors that can be very dangerous. If
you want to mix Boolean values and numeric values in an expression. you must explicitly ask for
conversion.

Numeric values can be converted to BIT values by using the built-in function BOOLEAN, which returns
the low order bit of the number asits BIT value. BIT values can be made numeric by using EXPAND and
PROPAGATE. Both convert 0 (FALSE) to the number 0. EXPAND converts 1 (TRUE) to the number 1,
and PROPAGATE converts 1 to the number OFFH (255).

As aready mentioned, every operand including compound operands and subexpressions has atype. Even
the complete expression has a type that must fit ;ts usage. In the example following the first paragraph of
this section. anumeric expression is being assigned to a BIT variable which isillegal. The type of the
expression depends on the type of its operands and the operators used. The details follow, but it is usually
sufficient to inspect the expression.

For example, assumethat A. B. Cand D are BYTES, and BIT1isaBIT. The expression A > B clearly
returns a Boolean value either TRUE or FALSE. Therefore, the statement:

BIT_ 1 = A>B OR CD,

makes sense, and isalega PL/M-51 statement (BIT1 becomes TRUE if either A>B or C>D, or else BIT1
becomes FAL SE). However, the statement:

A = A>SB OR CD;

makes no sense, and isillegal. Following are a few examples of legal constructs:

IF A>B THEN .

IF BIT 1 THEN .

| F BOOLEAN(A) THEN . . . /* tests the loworder bit of A */

Following are examples of illegal constructs:

IF ATHEN... /* illegal, as Ais nuneric, not Boolean */
IF A>BIT_1 THEN... /* illegal: conpares a BIT to a BYTE */

Automatic Boolean / numeric conversion occurs in only one specia case: with constant expressions, i.e.,
expressions whose operands are all numeric constants. For example.

X = 1;

if X isaBYTE, it isassigned the number 1. If itisaBIT, it getsthe BIT value 1 (i.e., TRUE). Thus, the
constant 1 can be either a BIT or numeric depending on the context. This also applies to other constants
(eg., BIT1=3islegd), and to constant expressions (e.g.. 3 + 5—7). See section 5.8 for further details.

5.3 Arithmetic Operators
PL/M-5I has five principal arithmetic operators:
+ - */ MOD
(two other arithmetic operators—PLUS and MINUS are described in Chapter 12). Asin ordinary algebra,
these operators are used to combine two operands. Each operand may have aBY TE or WORD type.
The + ,-, * , and / Operators

The+ ,-,* , and / operators perform addition, subtraction, multiplication, and division on operands of any
type except BIT. The following rules govern these operations:

1. If both operands are of the same type, the result is of the same type as the operands, with only one
exception: if both operands are of type BY TE, the * and / operations produce results of type
WORD.

2. Only one combination of mixed operand typesis allowed. A BY TE operand can be combined with

aWORD operand. The BY TE operand is extended by 8 high-order zero bits to produce a WORD
value. The operation is then performed on two operands of type WORD.

3. If one operand is a whole-number constant and the other isa WORD or BY TE operand, the
whole-number constant istreated asaBY TE vaueif it isequal to or less than 255: asa WORD
value if it is greater than 255. The operation is then performed under rule | or rule 2. If the whole-
number constant exceeds 65535, the operation isinvalid.

4, If both operands are whole-number constants, the operation depends on the context in which it
occurs: see section 5.8 for details.

The result of division by 0 is undefined.

A unary -operator, also defined in PL/M-51, takes a single operand to which it is prefixed. That is, aminus
sign that has no operand to the left of it is regarded as a unary minus.

Asin ordinary algebra. a unary + operator has no effect, and + A is exactly equivalent to A.

The MOD Operator

MOD performs exactly the same as/ , except that the result is not the quotient, but the remainder left after
integer division.

For example, if A and B were WORD variables with values of 35 and 16, respectively, A MOD B would
yield aWORD result of 3.

Unlike the / operator, the MOD operator must be separated from surrounding letters and digits by blanks or
other separators.

5.4 Relational Operators

Relational operators are used to compare any two operands of the same type, or to compare BY TE and
WORD vaues. Therelationa operators are:

< less than

> greater than

<= less than or equal to
>= greater than or equa to
<> not equal to

= equal

Relational operators, always binary operators, take two operandsto yield aBIT result. If both operands are
of the same type, unsigned arithmetic is used to compare two BY TE values, two WORD values, or two BIT
values. If the specified relation between the operandsis true, theresult isaBIT vaue of |. Otherwise, the
resultisaBIT value of 0.

(6>5) resultisl (“true”)
(6=4) resultisO (“fase”)

Values of true and false that result from relational operations are useful in conjunction with DO WHILE
statements and | F statements, as will be seen in Chapter 7.

5.5 Logical Operators
PL/M-5| hasfour logical (Boolean) operators:
NOT AND OR XOR

The four logical operators are used with BIT, BY TE or WORD operands to perform logical operationson I,
8. or 16 hitsin paralldl.

NOT, aunary operator takes only one operand. It produces a result of the same type as its operand: each bit
of the result is the one’ s complement of the corresponding bit of the original value.

The remaining operators, each of which take 2 operands, perform bitwise and, or, and exclusive or,
respectively. The bits of an AND result are 1 only where the corresponding bit in each operand is 1. The
bits of an OR result are 1 where the corresponding bit of either operand was a1, and 0 only where both
operands have a 0. The bits of an XOR result are 0 only where the corresponding bits of the operand are the
same, i.e., both 1 or both 0: the result has a 1 wherever one operand has a 1 and the corresponding bit of the
other operand is 0.

If both operands are of the same type, the result is the same type as the operand.

As with the arithmetic and relational operators, the only legal mixed combination of operand typesis
BYTE / WORD— in which case, the BY TE value is extended by 8 high order zero bits.

NOT BIT_X /* whose value is 1 */ result is O

NOT 10101010B result is 01010101B
10101010B AND 11001100B result is 10001000B
10101010B OR 11001100B result is 11101110B

10101010B XOR 11001100B result is 01100110B

Note: true and false values resulting from relational operations can be combined meaningfully by means of
logical operators, as shown in the following example.

NOT (6>5) result is 0 (“fal se”)
(6>5) AND (1 = 2) result is 0 (“false”)
(6>5) OR (1 = 2) result is 1 (“true”)
(LIM=Y) XOR (Z = 2) result is 0 (“false”) if both relations

(LIM=Y and Z = 2) are true, or if both are
fal se; otherwise, result =1 (“true”)

5.6 Expression Evaluation
Precedence of Operators: Analyzing an Expression

Operatorsin PL/M-5| have an implied order (stated in the following paragraphs) that determines how
operands and operators are grouped and analyzed during compilation.

The PL/M-5I operators are listed in table 5-1 from highest to lowest precedence (that is, those which take
effect first are listed first). Operators in the same line are of equal precedence and are evaluated as
encountered in aleft-to-right reading of an expression.

The order of evaluation in an expression is controlled first by parentheses, then by operator precedence, and
finally by left-to-right order.

The compiler first evaluates operands and operators enclosed in paired parentheses as subexpressions,
working from innermost to outermost pairs of parentheses. The value of the subexpression is then used as
an operand in the remainder of the expression as awhole.

(Parentheses are al so used around subscripts and the parameters of function or procedure references. The
subscripts and the parameters of function or procedure references are not subexpressions, but they too must
be evaluated before the remainder of the expressions or references can be evaluated to a higher level.)

Table5-1. Operators Precedemce

Operator class Operator Interpretation
Parenthesis () Controls order of evaluation: expressions within parentheses are

evaluated before the action of any outside operator on the
parenthesized items

Unary + - Single positive operator, address operator, single negative
operator
Arithmetic * /[,MOD Multiplication, division, modulo (remainder) division, addition,
+,-,PLUS MINUS | subtraction
Relational <<=,<>=,>=> |Lessthan, lessthan or equal to, nOt equal to, equals. greater
than or equal to, greater than
Logicd NOT Logical negation Logical conjunction Logical inclusion
AND digunction, logical exclusive digunction

OR, XOR

When more than one operator appearsin an expression, you can evaluate the results by beginning with the
one having the highest precedence. If the operators are of equal precedence, evaluate them from left-to-
right.

Example Reason
(A+B) * Cis not the same as A + B * C Parenthesesform subexpressions
A+ B* Cneans the sane as A+ (B * © Operator precedence

A/ B* Cneans the sane as (A/ B) * C Left-to-right, equal precedence

The precedence ranking application can aso be seen in the following examples:

A+B*C is equivalent to A+(B*C)

A+B-C*D is equivalent to (A+B)HC*D)

A+B+C+D is equivalent to ((A+B)+C)+D

A/B+C/D isequivaent to ((A/B)Y*C)+D

A>B AND NOT B>C -1 isequivalent to (A>B)AND (NOT(B>(C-1)))

Notes on Relational Operators

Due to operator precedence, some combinations can validly occur in the same instruction without being
directly combined. In the following logical expression:

F>G AND H< K
the subexpression F>G yields a bit value, as does the subexpression H<K. Thus, the bit values are ANDed
together. This expression islega despite an apparent mixing of types. G and H are not the operands of

AND because the relational operators are of higher precedence than the AND operator.

The algebraic meaning of A< = X < =B iswell-defined on paper. but in PL/M-51 the valid way to express
thisis:

A< =XAND X< = B

Order of Evaluation of Operands
The binding of operators and operands is not the same thing as the order in which operands are evaluated.

Therules of analysis completely and unambiguously specify which operands are bound to each operator. In
the expression:

A+B* C
B and C are the operands of the * operator, while A and the value of B * C are the operands of the +

operator. B and C must be evaluated before the * operation can be carried out. Also, the compound operand
B * C must be evaluated before the + is carried out.

It is not obvious, however, whether B will be evaluated before C, or vice versa. Indeed, A could be
evaluated before either B or C, and its value stored until the + operation is performed.

The rules of PL/M-51 do not specify the order in which subexpressions or operands, are evaluated in each
statement. This flexibility allows the compiler to optimize the object code it produces.

In most cases, the order of evaluation makes no difference. However,- special care must be exercised when
afunction which has side-effectsis used as an operand.

5.7 Assignment Statements
Results of computations can be stored as values of scalar variables. At any given moment, a scalar variable
has only one value—but this value may change with program execution. The PL/M-51 assignment
statement changes the value of avariable. The ssimplest form of a PL/M-51 assignment statement is:
Variable = expression;
where

expression isany PL/M-51 expression described in the preceding sections.
The expression just cited is evaluated, and the resulting value is assigned to (that is, stored in) avariable.
This variable may be any legal scalar variable, but may not be a function reference. The old value of the
variableislost.
For example, after execution of the statement:
RESULT = A + B;
the variable RESULT will have a new value, calculated by evaluating the expression A + B.
Implicit Type Conversions
In an assignment statement, if the type of the value of the right-hand expression is not the same as the type
of the variable on the left side of the equal sign, then either the assignment isillegal (and will be flagged as
an error), or an implicit type conversion occurs. Except for constant expressions, only byte or word values
are converted automatically. The built-in functions BOOLEAN, EXPAND and PROPAGATE can be used
to perform explicit conversions for use in expressions or assignments. Details on performing explicit
conversions for use in expressions or assignments are given in Chapter 11. The following paragraphs spell

out the rules for implicit conversions.

Expression with aBY TE value. WORD variable on the |eft: the BY TE value is extended by 8 high-order
zero bits to convert it to aWORD value. BIT variable on the left: illegal.

Expression with aWORD vaue. BY TE variable on the |eft: The 8 high-order bits of the WORD value are
dropped to convert it to aBY TE value. BIT variable on the | eft: illegal.

Expression with aBIT value. BY TE or WORD variable on the left: illegal.

Multiple Assignment

It is often convenient to assign the same value to several variables at the sametime. Thisis accomplished in
PL/M-51 by listing severa variables on the left of the equal sign, separated by commas. The variables
LEFT, CENTER and RIGHT can al be set to the value of the expression INIT + CORR with one multiple-
assignment statement, as follows:

LEFT, CENTER, RIGHT = INIT + CORR;

The variables on the |eft-hand side of a multiple assignment must be al of the same type, with one
exception: variables of types BY TE and WORD may be mixed. When they are mixed, the conversion rules
just given are applied separately to each assignment.

5.8 Special Case: Constant Expressions

Constant expressions (e.g., 88, or 51-44) can be of type BIT, BY TE or WORD, depending on their value
and context. As subexpressions, constant expressions act as BY TEs if they are less than 256: as WORDSs,
otherwise. If aBIT isrequired, constant expressions also act as BITs (unlike BY TE and WORD
expressions). When constant expressions act as BITs, their BIT value is the low--order bit of the constant.

If the constant expression is the entire expression, then it is one of the following:

: right-hand part of an assignment statement: gets the same type as the variable to which the
expression is assigned
subscript of an array variable; gets atype of WORD |
condition of an IF statement: gets atype of BIT
expression in aDO WHILE statement: gets atype of BIT
start or step expression in an iterative DO statement: gets the type of the index variable in that
iterative DO
limit expression in an iterative DO statement: typeis BY TE or WORD, depending on its value
expression in aDO CASE statement: gets atype of BY TE
an actual parameter in a CALL statement or function reference; gets the type of the formal
parameter in the procedure declaration
expression in a RETURN statement: gets the type of the (typed) procedure that contains the
RETURN statement

Constant expressions and subexpressions are eval uated modulo 65536.

Negative Numbers

PL/M-51 has no negative numbers. al numbers are either zero or positive. Whenever you expect a
computation to deliver a negative result. modulo-65536 or modul o-256 arithmetic gives you a positive (or
zero) result. Following are examples of how PL/M-51 deals with negative numbers:

DCL (W ,W2) WORD, (B1 ,B2) BYTE;

W =1/* wrks OK / ; WL =-W /* becones 65535 */ ;

Bl 3/* OK [/* Bl = -Bl1 */ becones 253 */ ;

W2
B2

-4 | * becones 65532 */ ;
-4 |* becones 252, due to truncation */ ;

For arithmetic using modulo 65536 (signed and unsigned), addition, subtraction and multiplication are
identical. Y ou can use WORD variables to represent signed integers if you never divide or compare them
(equality checking works correctly, though); if you regard 65535 as -1 (and so on), the three operations
permitted above will work correctly aslong as no result is above 32767. or below -32767.

Y ou can do the same with BY TE variables; note, however, that the following statements:

B2 =-41FB2=-4THEN..; /* i.e.; |IF 252 = 65532 */

would not give the expected results because of the code generated for modulo 65536 representation of -4(=
65532) and the modulo 256 representation of 4(= 252). Therefore, the workable solution for this example
is:

B2 * -4 |F B2 = LON-4) THEN...:
/* i.e.; IF 252 = LON65532) = 252 */

The LOW built-in is used to produce predictable results by converting the BY TE VARIABLE(B2) =
WORD_VARIABLE(-4) comparisonto aBYTE_VARIABLE = BY TE_VARIABLE comparison.

Structures and Arrays 6

As mentioned briefly in Chapter 3, it is often desirable to use asingle identifier to refer to awhole group of
scalars and to distinguish the individua scalars with a subscript, i.e., a value enclosed in parentheses. The
scalars are all the same type. A list of identifiers and subscriptsis called an array.

The list is declared by using a dimension specifier, which is an asterisk, or a non-zero whole-number
constant enclosed in parentheses. The value of the constant specifies the number of array elements
(individua scalar variables) making up the array. For example,

DECLARE | TEMS (100) BYTE AUXI LI ARY;

causes the identifier ITEMS to be associated with 100 array elements, each of type BY TE. One byte of
AUXILIARY storageis alocated for each of these scalars.

The declaration

DECLARE (W DTH, LENGTH, HEIGHT) (7) BYTE;
is equivaent to the following sequence:

DECLARE W DTH (7) BYTE;

DECLARE LENGTH (7) BYTE;

DECLARE HEI GHT (7) BYTE;

except that contiguous storage is guaranteed For variables declared in a single parenthesized list, while
variables declared in consecutive declarations are not necessarily stored contiguousdly.

The declaration causes the identifiers WIDTH. LENGTH, and HEIGHT each to be associated with 7 array
elements of type BY TE, so that 21 elements of type BY TE have been declared in all.

6.1 Arrays and Subscripted Variables
To refer to asingle element of a previously declared array, use the array name followed

by a subscript enclosed in parentheses. This construct is called a subscripted variable. For example, given
the DECLARE statement

DECLARE | TEMS (100) BYTE AUXI LI ARY;

you can refer to each byte as an individual item using ITEMS(0), ITEMS(1), ITEMS(2), and so on up to
ITEMS(99).

Notice that the first element of an array has subscript 0, not 1. Thus, the subscript 2 of the last element is 1
less than the dimension specifier.

If you want to add the third element of the array ITEMS to the fourth, and store the result in the fifth, you
can write the PL/M-51 assignment statement:

| TEMB(4) = | TEMB(2) + | TEMS(3)

Much of the power of a subscripted variable liesin the fact that the subscript need not be a whole-number
constant, but can be another variable, or any PL/M-51 expression that yieldsaBY TE or WORD vaue. This
enables the same program statement to access different memory locations at different timesin which this
statement is executed. Thus, the construction

VECTOR(| TEMS(3) + 2)

refers to some element of the array VECTOR. The element referred to depends on the expression
ITEMS(3) + 2. Thisvalue in turn depends on the value stored in ITEMS(3) (the fourth element of array
ITEMS) when the reference is processed by the running program.

If ITEMS(2) contains the vaue 5, then ITEMS(3) + 2 isequa to 7 and the referenceisto VECTOR(7), the
eighth element of the array VECTOR.

The following sequence of statements will sum the elements of the 10-element array NUMBERS by using
an index variable named I, which takes on valuesfrom 0 to 9.

DECLARE SUM BYTE;
DECLARE NUMBERS (10) BYTE;
DECLARE | BYTE;

SUM = 0;
DOl =0 TO9;

SUM = SUM + NUMBERS(I)
END, -

Subscripted array variables are permitted anywhere PL/M-51 permits an expression. They may also appear
on the left side of an assignment statement.

PL/M-51 only checksto seeif a subscript is required or permitted: PL/M-51 does not check whether the
value of a subscript is within the defined range.

Remember, however, that BIT arraysareillega in PL/M-51.
6.2 Structures

An array alows one identifier to refer to a collection of elements of the same type: a structure allows one
identifier to refer to a collection of structure members that may have different types. Each member of a
structure has a member identifier.

The following is an example of a structure declaration:

DECLARE Al RPLANE STRUCTURE (SPEED BYTE, ALTI TUDE WORD);

This example declares two scalars, both associated with the identifier AIRPLANE. Once this declaration
has been made, thefirst scalar can be referred to as AIRPLANE.SPEED; the second,
AIRPLANE.ALTITUDE. These names are also caled the members’ of this structure.

The members of a single structure must be al of BIT type, or al of non-BIT type. Individua structure
members may not be based and may not have any attributes, as discussed in Chapters .4 and 3, respectively.
Successive members of a structure reside in contiguous memory locations.

Arrays of Structures

As previously noted, PL/M-5| allows arrays of scalars. PL/M-51 also allows arrays
of structures. The following DECLARE statement creates any array of structures that can be used to store
SPEED and ALTITUDE for twenty AIRPLANEs instead of one.

DECLARE Al RPLANE (20) STRUCTURE (SPEED BYTE, ALTI TUDE WORD) ;

This example declares twenty structures associated with the array identifier AIRPLANE. Each structureis
distinguished by subscripts from 0 to 19. Each consists of two scalar members. Thus, storage is alocated
for 60 BY TEs.

To refer to the ALTITUDE of AIRPLANE number 17, you would write:

Al RPLANE(16) . ALTI TUDE.

Remember, however, that an array of structures may not have bit members.

Arrays within Structures

An array may be used as a member of a structure, asin the following DECLARE statement:

DECLARE PAYCHECK STRUCTURE (
LASTSNAVE (15) BYTE
FI RSTSNAVE (15) BYTE
ML BYTE,
AMOUNT \WORD) ;

This structure consists of the following members: two I5-element BY TE arrays,
PAYCHECK.LAST$NAME and PAY CHECK.FIRSTSNAME; the BY TE scalar PAYCHECK.M1; and
the WORD scalar PAY CHECK.AMOUNT.

To refer to the fourth element of the array PAY CHECK.LASTNAME, you would write;
PAYCHECK. LASTNAME(3) .

Arrays of Structures with Arrays Inside the Structures

Given that an array can be made up of structures, and a structure can have arrays as
members, you can combine the two constructions to write:

DECLARE FLOOR (30) STRUCTURE (OFFI CE (55) BYTE) AUXI LI ARY;

The identifier FLOOR refersto an array of 30 structures, each of which contains one array of 55 BY TE
scalars. This could be thought of as a 30 X 55-matrix of BY TE scalars. To reference a particular- scalar
value—for example, element 46 of structure 25—you would write FLOOR(24).OFFICE(45). Note that the
scalar elements of each OFFICE array are stored contiguously, and the OFFICE arrays themselves are
elements of the FLOOR array and are stored contiguously.

Y ou can ater the PAY CHECK structure declaration (just given) with the following declaration to make it
an array of structures.

DECLARE PAYROLL (100) STRUCTURE(LAST$NAVE(15) BYTE,
FI RST$NAME(15) BYTE,
M BYTE,
AMOUNT WORD) AUXI LI ARY;

Y ou now have an array of 100 structures, each of which can be used during program execution to store the
last name, first name, middle initial, and amount for one employee. LASTSNAME and FIRSTSNAME in
each structure are IS-BY TE arrays for storing the names as character strings. To refer to the Kth character
of the first name of the Nth employee, you would write:

PAYROLL(N-. 1) . FI RSTSNAME(K- 1)
where
N and K are previously declared variables to which we have assigned appropriate values.

This might be convenient in aroutine for printing out payroll information.

6.3 References to Arrays and Structures

The preceding sections contained numerous examples of variable references. A variable reference is simply
the use, in program text, of the identifier of avariable that has been declared.

A variable reference may be fully qualified, partially qualified, or unqualified.

Fully Qualified Variable References

A Fully qualified variable reference is one that uniquely specifies asingle scalar. For example, if you have
the declarations

DECLARE AVERAGE BYTE;

DECLARE | TEMS (100) BYTE AUXI LI ARY:;

DECLARE RECORD STRUCTURE (KEY BYTE, | NFO WORD):

DECLARE NODE (25) STRUCTURE (SUBLI ST (100) BYTE, RANK BYTE)
AUXI LI ARY;

then AVERAGE, ITEMS(S). RECORD.INFO, AND NODE(21).SUBLIST(32) are al fully qualified
variable references: each refers unambiguously to asingle scalar.

Quialification, however, may only be applied to variables that have been appropriately declared. A subscript
may only be applied to an identifier that has been declared with a dimension specifier. A member-identifier
may only be applied to an identifier declared as a structure identifier. The compiler flags violations of these
rules as errors.

Unqualified and Partially Qualified Variable References

Unqualified and partialy qualified variable references are allowed only in location references, as discussed
in Chapter 4, and in the built-in procedures LENGTH, LAST, and SIZE, as discussed in Chapter 11.

An unqualified variable reference is the identifier of a structure or array without any member-identifier or
subscript. For example, in the declarations cited as examples of fully quaified variable references, ITEMS
and RECORD are unqualified variable references. An unqualified variable reference is areference to the
entire array or structure. .ITEMSisthe location of the entire array ITEMS, that is, the location of its first
byte. Similarly, .RECORD is the location of the first byte of the structure

RECORD.

A partially qualified variable reference fails to refer uniquely to a single scalar even lusing a subscript and
/ or member-identifier with an identifier. For example, given the declarations cited as examples of fully
qualified variable references, NODE(15) and NODE(12).SUBLIST are partially qualified variable
references.

When used with the dot operator, such references are taken to mean the first byte that could fit the
description. Thus, .NODE(15) is the location of the first byte of the structure NODE(15), which itself isan
element of the array NODE. Similarly.

.NODE(12).SUBLIST isthe location of the first byte of the array NODE(12).SUBLIST. which itself isa
member of the structure NODE(12), which in turn is an element of the array NODE.

Note that .NODE.SUBLIST is not permitted because it is completely ambiguous: in alocation reference
referring to an array made up of structures, a subscript must be given before a member-identifier can be
added to the reference. Therule is different for partialy qualified variable references in connection with the
built-in procedures LENGTH. LAST, and SIZE, as explained in Chapter 11.

Flow Control Statements 7

This chapter describes statements that alter the sequence of execution of PL/M-5I statements and group
statements into blocks.

7.1 DO and END Statements: DO Blocks

Procedures and DO blocks are the basic units of modular programming in PL/M-51. (Procedures are
discussed in Chapter 10.)

This chapter discusses al four kinds of DO-blocks: the simple DO block, the DO CASE block, the DO
WHILE block, and the iterative DO BLOCK. Each DO-block begins with a DO statement and includes all

subsequent statements through the closing
END statement. Following are examples of the four kinds of DO-blocks.

- The simple DO block
DO /* all statenent, executed, each in order */
statement-0;
statement-1;
statement-2;
END;
- The DO CASE block

DO CASE sel ect _expression; /* exactly one statenent executed */

1]
o
*
-

case-O-statement; / * executed | f sel ect _expression
case-1-statement; / * executed if sel ect _expression
[* etc */

1]
l_\
*

END;
- The DO WHILE block
DO WHI LE expression true; / * repeated while expression is true */
statement-0; /* none if expression false. */
statement-1;
END;
- The iterative DO block
DO counter = start-expr TOlimit-expr BY step-expr;
statement-0;. / * al|l statenments executed a nunber */
statement-1; /* of ti mes dependi ng on conparison */

/* of counter with limt-expr */

END;

The DO WHILE block and the iterative DO block are also referred to as DO-loops because the executable
statements within them may be executed repeatedly (in sequence) depending on the expressionsin the DO
Statement.

Any DO statement may have multiple labels on it, and the last (only) of these may appear between the
word END and the next semicolon. For example:

A B C D EM DO

END EM; /* indicates end of block EM */
/* A B, C, Dalso end here. */

As previously stated, the placement of declarationsis restricted. Except in procedures, declarations are
permitted only at the top of asimple DO block before any executable statements of the block. (This DO
can, of course, be nested within other DOs or procedures. Chapter 9 discusses the scope of declared
names.)

Each DO block can contain any sequence of executable statements, including other DO blocks. Each block
is considered by the compiler as a unit, asif it were a single executable statement. Thisfact is particularly
useful in the DO CASE block and the

| F statement, both of which are discussed later in this chapter.

Only simple DO blocks may also contain DECL ARE statements, which declare local variables. Such
declarations must precede all executable statements in the block.

The discussions that follow describe the normal flow of control within each kind of DO block. The normal
exit from the block passes through the END statement to the statement immediately following it. None of
the statementsin the blocks in the following discussions are assumed to cause control to bypass that
process. A GOTO statement with the target outside the block would be one such bypass. (GOTOs are
discussed later in this chapter.)

Simple DO Blocks

A simple DO block merely groups, as a unit, a set of statements that will be executed sequentially (except
for the effect of GOTOs or CALLS). For example,

DO
statement-0;
Statement-1;
statement-n;
END;

Another example of asimple DO block is:

DG,
NEWBVALUE = OLD$VALUE + TEMP;
COUNT = COUNT + 1;

END;

The second simple DO block adds the value of TEMP to the value of OLD$VALUE and storesit in
NEWS$VALUE. It then increments the value of COUNT by one.

DO blocks may be nested within each other, as shown in the following example:

abl e: DGO
st at enent - 0;
statenent-1;
baker: DO
st at enent - a;
st at enent - b;
st at enent - c;
END baker;
st at enent -2;
st at enent - 3;
END abl e;

In the example just cited, the first DO statement and the second END statement bracket one simple DO
block. The second DO statement and the first END statement bracket a different DO block inside the first
one. Indentation (using tabs or spaces) is used to make the sequence readable; thus, it is easy to see that one
DO block is nested inside another. Nesting, permitted up to 16 levels, is highly recommended for writing
PL/M-5I programs.

A simple DO block can delimit the scope of variables, as discussed in Chapter 9.
DO CASE Blocks
A DO CASE hlock begins with a DO CASE statement, and selectively executes one of the statementsin

the block. The statement is selected by the value of an expression. The maximum number of casesis 84.
The form of the DO CASE block is:

DO CASE
statement-0;
Statement-1;
statement-n;

END;

statement-0 through statement-n can also be DO blocks.

In the DO CASE statement, expression must yield aBY TE or WORD value. If it is a constant expression,
it isevaluated asif it were being assigned to aBY TE variable. The value of expression must lie between 0
and n (call the value K). K is used to select one of the statementsin the DO CASE block. which isthen
executed. Thefirst case (statement-0) correspondsto K = 0, the second (statement-1) correspondsto K =1,
and so forth. Only one statement from the block is selected. This statement is then executed only once.
Control then passes to the statement following the END statement of the DO CASE bock.

- CAUTION -

If the run time value-of the expression in the DO CASE statement is greater than n (wheren + 1isthe
number of casesin the DO CASE block), then the effect of the DO CASE statement is undefined. This may
disastroudly effect program execution. Therefore, if any chance exists for this out-of-range condition to
occur, the DO CASE block should be contained within an IF statement, which will test the expression to
make sure that it has a value that will produce meaningful results.

Following is an example of a DO CASE block:

DO CASE SCORE:

; /* case 0 /
CONVERSI ONS = CONVERSI ONS + 1; /* case 1 */
SAFETI ES = SAFETIES + 1; /* case 2 */
FI ELDGOALS = FI ELDGOALS + 1; /* case 3 */
; /* case 4 */
; /* case 5 */
DG,

/* the whole DO END bl ock is statenment-n */

TOUCHDOWNS = TOQUCHDOWNS + 1;

SCORE = 0;
END; /* case 6 */

END;

When execution of this CASE statement begins, the variable SCORE must be in the range 0-6. If SCORE
is0, 4, or 5, anull statement (consisting of only a semicolon, and having no effect) is executed; otherwise,
the appropriate statement is executed, causing the corresponding variable to be incremented.

DO WHILE Blocks

DO WHILE and IF statements examine the BIT va ue resulting from the evaluation of an expression. If the
valueisl, it will be considered true; if 0, it will be considered false.

A DO WHILE block begins with a DO WHILE statement and has the form:
DO WHI LE expression; / * expression nmust yield a BI'T value */

statement-0;
Statement-1;

statement-n;
END;

The effect of this statement is as follows:

1 First, the expression following the reserved word WHILE is evaluated asiif it were being assigned
to avariable of type BIT. If the result is 1, the sequence of statements up to the END is executed.

2. When the END is reached, expression is evaluated again, and again the sequence of statementsis
executed only if the value of the expressionis 1.

3. The block is executed over and over until expression has a value of 0. Execution then skips the

statements in the block and passes to the statement following the END statement.
Consider the following DO WHILE statement:

AMOUNT = 1,

DO VWHI LE AMOUNT < = 3;
AMOUNT = AMOUNT + 1;

END;

The statement AMOUNT = AMOUNT + 1 is executed exactly 3 times. The value of AMOUNT when
program control passes out of the block is 4.

Iterative DO Blocks

An iterative DO block begins with an iteration statement and executes each statement in the block in order,
repeating the entire sequence as described in the following paragraphs. The form of the iterative DO block
is:

DO counter = sart-expr TO limit-expr BY step-expr;
statement -0
statement-1;

END;
The BY step-expr phraseis optional: if it is omitted, a step value of 1 is the default.

The counter must be asimple (i.e., non-BASED, non-subscripted) variable of type BY TE or WORD. The
start-expr, limit-expr, and step-expr may be any vaid PL/M-51 expressions, also of BY TE or WORD
types.

Theiterative DO is equivalent to:

Counter= start-expr;

DO VI LE counter <- limit-expr;
statement -0;
statement-1;

counter = counter + step-expr;
/* if this causes counter to overflow, exit the WH LE | oop */
END;

Following is an example of an iterative DO block.

DOl =1 TO 10;
CALL BELL;

END;

where

BELL isthe name of a procedure that causes a bell to be rung.
The bell is rung ten times.
The following iterative DO block example shows how the index-variable can be used within the block.
AMOUNT = 0;
DOl =1 TO 10;

AMOUNT = AMOUNT + | ;
END;

The assignment statement is executed 10 times, each time with anew value for |. The result isto sum the
numbers from 1 to 10 (inclusive) and to leave the sum (namely, 55) as the value of AMOUNT.

The next iterative DO block example usesthe “BY step_expr” construct.

/* Conpute the product of the first N odd integers */
PRCD = 1;
DOI =1 TO (2 * N1) BY 2;
PROD = PROD + |;
END;

The following distinctions can be important.
In every case, Start-expr is evaluated only once and limit-expr is evaluated before any execution.
A negative step does not exist. For example, if step-expr is -5, and the counter isaBYTE, 251 is
used. Furthermore, stepping down to alimit-expr that is less than start-expr is not possible because
the loop will be exited immediately.

-CAUTION-

If you have aBY TE counter, but limit-expr or step-expr are WORDS, the semantics of the iterative DO
may be different from what you would expect.

7.2 The IF Statement
The IF statement provides conditional execution of statements. It takes the form:

| F expression THEN statement_a;
ELSE statement_b: / * optional */

The reserved word THEN and the statement following it are required; they are called the THEN part.” The
reserved word EL SE and the statement following it are optional; they are called the “ EL SE part.”

The IF statement has the following effect: the expression is evaluated asiif it were being assigned to a
variable of type BIT

If theresult istrue (i.e., 1) statement_a is executed. If the result isfalse (i.e., 0), statement b is executed.
Following execution of the chosen aternative, control passes to the next statement following the IF
statement. Thus, one and only one of the two statements (statement_a and statement_b) is executed.

Consider the following program fragment:

I|F NEW> OLD THEN RESULT = NEW
ELSE RESULT = QLD

RESULT is assigned the value of NEW or the value of OLD, whichever is greater. This code causes
exactly one of the two assignment statements to be executed. RESUL T always gets assigned some value,
but only one assignment to RESULT is executed.

If statement_b is not needed, the EL SE part may be omitted entirely. An |F statement with the EL SE part
omitted takes the form:

| F expression THEN statement_a

Satement_a is executed if the value of expressionis 1 (true). Otherwise, nothing happens and control
immediately passes to the next statement following the I F statement.

For example. the following sequence of PL/M-51 statements will assign INDEX the number 5 or the value
of THRESHOLD, whichever islarger. The value of INIT will change during execution of the |F statement
only if THRESHOLD is greater than 5. In any case, the final value of INIT is copied to INDEX.

INNT = 5;

|F THRESHOLD > INIT THEN I NI T = THRESHOLD;

INDEX = INIT;

The power of the IF statement is enhanced by using DO blocksin the THEN and EL SE parts. SinceaDO

block is allowed wherever a single statement is allowed. each of the two statementsin an IF statement may
be a DO block. For example:

IF A = B THEN

DO,
EQUALSEVENTS = EQUALSEVENTS + 1;
PAl RSVALUE = A;
BOTTOM = B:;

END;

ELSE

DO,
UNEQUALSEVENTS = UNEQUALSEVENTS + 1;
TOP = A
BOTTOM = B;

END;

DO blocks nested within an IF statement can contain Further nested DO blocks, IF statements, variable and
procedure declarations, and so on.

Nested IF Statements

Any IF statement (including the EL SE part, if any) may be considered a single PL/M-5| statement
(although it is not a block). Thus, the statement to be executed in a THEN or an EL SE clause may in fact be

another |F statement.

An |F statement inside a THEN clauseis called a nested | F. Nesting may be carried to several levels
without enclosing any of the nested |F statements in DO blocks, as in the following construction:

| F expression-1 THEN

| F expression-2 THEN
| F expression-3 THEN statement-a;

The example just given has three levels of nesting. Note that statement-a will be executed only if the values
of al three expressions are true. Thus, the construction just cited is equivalent to:

| F (expression-1) AND (expression-2) AND (expression-3) THEN statement-a;

Note: the example of nesting just given has no EL SE part. If you have nested I Fs, with as many ELSE
clauses as IFs, you have only one vaid way to match |Fs and EL SEs. For instance (matching clauses are
indented equally-deep):

| F BOOLEAN(f 00) THEN | F gor p>4 THEN
ELSE
ELSE

If no EL SE clauses are present, matching up will be no problem. But, if the IF clauses outnumber the EL SE
clauses, only one way will exist to match EL SE clausesto IFs. If the example just given had only one
EL SE, it could be interpreted as:

| F BOOLEAN(f 00) THEN | F gor p>4 THEN
ELSE

or as.

| F BOOLEAN(f 00) THEN | F gor p>4 THEN
ELSE

The ambiguity is resolved by matching an EL SE clause to the nearest (as yet unmatched) |F clause that
comes before it; thus, the first of the two interpretations just cited is correct.

Sequential IF Statements

Consider the following case: an ASCII-coded character is stored in aBY TE variable named CHAR. If the
character isan A. you want to execute statement-a. If the character is a B, you want to execute statement-b.
If the character isa C, you want to execute statement-c. |f the character isnot A, B, or C, you want to
execute statement-x. The code for executing statement -x could be written as follows using | F statements
completely independent of one another.

IF CHAR = “ A THEN st at enent - a;
IF CHAR = ‘B’ THEN st at enent - b;
IF CHAR = * C THEN st at enent -c;
IF CHAR <> ‘A" AND CHAR > ‘B’ and CHAR <> ‘C THEN st at enent - x;

The sequence just given isinefficient because al four IF statements (six testsin all) will be carried out in
every case, which is wasteful when one of the earlier tests succeeds.

You need to test for ‘A’ in al cases. But, you need to test for ‘B’ only if the test for ‘A’ fails; you need to
test for ‘C’ only if both previous testsfail. Finaly, if thetestsfor A, B, C all fail, no further tests are
needed—you must execute statement-x. To improve the code, rewrite it as follows.

IF CHAR = “ A THEN st at enent - a;

ELSE | F CHAR ‘B’ THEN st at emrent - b;
ELSE | F CHAR ‘C THEN statenent-c;
ELSE st at enment - x;

Note: this sequenceis not a case of nested | F statements as described in the preceding section. IF
statements are said to be nested only when an |F statement isinside the

THEN part of another IF statement. In the example just given, you have |F statements inside the EL SE
parts of other |F statements. This construction is called sequential IF statements. It is equivalent to the
following construction:

IF CHAR = * A THEN st at enent - a;

ELSE DG,
IF CHAR = ‘B’ THEN st at enent - b;
ELSE DG,
IF CHAR = * C THEN st atenent-c;
ELSE st at enment - x;
END;
END;

Sequential |F statements are useful whenever a set of testsis to be made, but you should skip the remaining
tests whenever one of the tests succeeds. This construction works because all the remaining tests arein the
EL SE part of the current test. See the DO CASE for a possible adternative.

7.3 GOTO Statements

A GOTO statement aters the sequential order of program execution by transferring control directly to a
labeled statement. Sequential execution then resumes, beginning with the target statement. The GOTO
statement has the following form:

GOTO labedl;

The following is an example of a GOTO statement:

GOTO ABORT,

The appearance of label in a GOTO statement is not alabel definition it is alabel reference.
The reserved word GOTO can aso be written GO TO. with an embedded blank.

For reasons discussed in Chapter 9, GOTO statements are restricted. The only possible GOTO transfers are
the following:

From a GOTO statement in the outer level of some block to alabeled statement in the outer level
of the same block.

From a GOTO statement in an inner block to alabeled statement in the outer level of an enclosing
block (not necessarily the smallest enclosing block). However. if the inner block is a procedure
block, the transfer may only be to a statement in the outer level of the main program module.

From any point in one program module to a labeled statement in the outer level of the main
program module. To jump to such alabel, you must declare the label to have extended scope, i.e.,
declareit PUBLIC in the main module and EXTERNAL in the module containing the GOTO. The
main program and the procedure containing the GOTO must use the same register-bank (see
USING in Chapter 10).

GOTOs are necessary in some situations. However, when control transfers are desired, an iterative DO, DO
WHILE, DO CASE, IF, or a procedure activation (see Chapter 10) is preferable. Indiscriminate use of
GOTOswill result in a program that will be difficult to understand, correct, and maintain.

7.4 The CALL and RETURN Statements

The CALL and RETURN statements are discussed in detail in Chapter 10. They are mentioned here only
because they control program-flow.

The CALL statement is used to activate an untyped procedure (one that does not return avalue).

The RETURN statement is used within a procedure body to cause areturn of control from the procedure to
the point from which it was activated.

7.5 The Null Statement
A null statement contains nothing (except spaces and comments) before its terminating semicolon. Itisan

executable statement that has no effect whatsoever on aprogram. It may or may not be labeled. Also, anull
statement is useful as part of a DO CASE construct.

Sample Program 1 8

At this point, al of the constructions available in PL/M-51, except procedures, have been examined. A
complete PL/M-51 program can now be considered.

8.1 Insertion Sort Algorithm

The sample program in this chapter implements a straight insertion sort algorithm based on Knuth's

Algorithmsin The Art of Computer Programming, Vol. 3, page 81.

Readers who refer to Knuth’s agorithm should note the following differences between his algorithm and

the one implemented in the sample program:

. The agorithm has been adapted to PL/M-51 usage by using an array of structures to represent the
records to be sorted. The sort key for each record is a member of the structure for that record.
The algorithm has been modified by using a DO WHILE block to achieve the same logical effect
asthe GOTOsimplied in steps S3 and 54 of Knuth's algorithm.
Theindex | isused in adightly different manner (it isinitialized to Jinstead of J-1).

The effect of the algorithm is to arrange 50 records in order according to the values of their keys, with the
smallest key at the beginning (lowest [ocation) and the largest key at the end (highest location).

The sorting method is as follows. Assume that the records are al in memory, stored as an array of
structures. The key for each record is a member of the structure.

Now, go through the array from the second record (record number |) upwards. When you reach any given
record (the current record), you will aready have sorted the preceding records. (The first time through,
when you look at record number 1, record number 0 is the only preceding record.)

Take the current record, store it temporarily in, abuffer, and look backwards through the preceding records
until you find one whose key is not greater than that of the current record. Then, put the current record just
after thisrecord.

Following is a sample program (shown in figure 8-1) and a detailed explanation. Study the program and the
explanation until you understand how the program works (especialy the DO WHILE block, which is
controlled by a more complex condition

expression than you have seen up to this point).

Now, consider the text of this program. First, declare the following variables:

RECORD—an AUXILIARY array of 50 structuresto hold the 50 records. Each structure has a
BY TE member that is the sort key, and a WORD member that could contain anything (in a
working program, this would be the data content of the record).

CURRENT—a structure used as a buffer to hold the current record while you look back through
the records already sorted. Its members are like those of one structure element of RECORD.

J- which will be used as an index variable in an iterative DO statement. Jis always the subscript
of the current record. When J becomes greater than 49, the sort is compl eted.

M DG
DECLARE RECORD(50) STRUCTURE (KEY BYTE , |NFO WORD) AUXI LI ARY;
DECLARE CURRENT STRUCTURE (KEY BYTE, | NFO WORD)
DECLARE (J,1) BYTE;

/* data is read in ,to initialize records */

SORT : DOJ =1 to 49;
CURRENT. KEY = RECORID(J) . KEY;
CURRENT. | NFO = RECORD(J) . | NFO
I = J;

FIND: DO WHILE | >0 AND RECORD(I-1).KEY > CURRENT. KEY;
RECORD(|). KEY = RECORD(| - 1) . KEY;
RECORD(1) . | NFO = RECORD(| - 1) . | NFQ,
| =1-1

END FI ND;

RECORD(|) . KEY = CURRENT. KEY;
RECORD(1) .1 NFO = CURRENT. | NFQ
END SORT

/* Data is witten out fromthe records */

END M /* end of nodule */

Figure 8-1. insertion Sort Algorithm

|—which will be used like an index variable in controlling a DO WHILE block. I-1 is aways the
subscript of a previously sorted record.

A working program would include code to read data into the array RECORD. At the end of the program,
enough code would be generated to write out the data from RECORD. In this example, you omit this code
because it would make the example

-too lengthy and because the method used for | / O would depend on the particular system used to execute
the program. Comments have been inserted in place of this code.

The executable part of the program is organized as two DO blocks, one nested within the other. The outer
block (labeled SORT) is an iterative DO block that goes through the records one at atime. The record
selected by the index variable J each time through this block is the current record. (Notice that Jis never O.
Because of the way the agorithm is defined, you must have a preceding element to look back at; so, you
start with the second element of the array and ook back at the first.)

The first two assignment statements in the block transfer the current record into CURRENT. The next
statement sets the initial value for |, which will be used to control the inner block.

Theinner block (Iabeled FIND) is the one that looks back through previously sorted recordsto find the
right place to put the current record. The way this block is controlled is worth examining. The variable | is
used like an index variablein an iterative DO, but it is changed explicitly inside the block, instead of
automatically asin an iterative DO statement. The DO WHILE construction is used instead of an iterative
DO because it allows two or more tests to be combined—in this case, by means of an AND operator.

| is set to J before the first time through the DO WHILE block and decremented each time through. Aslong
as| remains greater than 0, the first half of the DO WHILE condition is satisfied.

The value I-1 is the subscript of the record being looked back at. The second half of the DO WHILE
condition isthat the key of this record must be greater than, the key of the current record.

Y ou are looking for a previously sorted record whose key is not greater than the key of the current record.
Thus, the condition in the DO WHILE statement will cause the DO WHILE block to be executed
repeatedly until such arecord isfound, or until | reaches O (meaning that all previously sorted records have
been examined).

Each time the DO WHILE block is executed, it moves the (I-1)th record up into the Ith position, and then
decrements|.

When the condition in the DO WHILE statement is not met, one of the following is true:

| = 0 because you have looked through al the previously sorted records without finding one
whose key is not greater than that of the current record. All of the previoudly sorted records have
been moved up by one.

I-1 is the subscript of arecord whose key is not greater than the key of the current record. All of
the previously sorted records whose keys are greater than that of the current record have been
moved up by one.

In either case, the failure of the DO WHILE condition means that the current record (being held in
CURRENT) belongsin the Ith position. It is transferred into this position by the two assignment statements
that form the remainder of the outer DO block.

To consider the next unsorted record, the outer DO block is repeated with an incremented value of J.

Notice that the entire program is contained within asimple DO block labeled M. This makesit amodule.

Block Structure, Scope, 9
and Lifetimes Rules

This chapter isintended to clarify the meaning of outer level and the concept of scope, including the use of
the linkage attributes, PUBLIC and EXTERNAL. Lifetime rules will aso be explained.

9.1 Scope

The outer level of ablock means statements (or 1abels) contained in the block but not contained in any
nested blocks. The term exclusive extent also has this meaning. The inner level, or inclusive extent, includes
this outer level and all nested blocks as well.

A block at the same level as another block means both are contained by exactly the same outer blocks.

The scope of an object means those parts of a program where its name, type, and attributes are recognized,
i.e., handled according to a given declaration. An object means a variable, label, procedure, or symbolic
(named) constant (i.e., a compilation constant or execution constant as discussed in Chapter 3).

A program is the complete set of modules that are ultimately linked together and located as a unit.

These definitions are explained further by the text and examples that follow.

9.2 Names Recognized within Blocks
PL/M-5, like Pascal, is a block-structured language.

Y ou create blocks of code containing declarations, followed by executable statements. Y ou order and nest
the blocks in such away as to simplify and clarify the flow of data and control. (The maximum nest is 16
blocks deep.) A collection of these blocks that performs a single function, or a small set of related
functions, is usually compiled as one module.

Beyond the advantages of modularity, simplicity, and clarity, the nesting of blocks serves another very
basic purpose; hames declared at an outer level are known to al statements of all nested blocks as well.

Y ou can aways declare a new meaning for any such name within a nested simple-DO or procedure block,
thereby cutting off its earlier meaning for this block. But, if you don’t choose this option, its meaning is
established by a single declaration at an outer level. (The only objects that don’'t require declarations prior
to use are labels.)

In figure 9-1, everything inside the solid line congtitutes the inclusive extent of block MMM (in this case,
module MMM). KK is known throughout this block, including within all nested blocks.

Everything inside the dashed line congtitutes the inclusive extent of block SORT. JJand Il is known
throughout this block, but not outside it, that is, not before the label SORT or after the END SORT
Statement.

MW DG /* Beginning of nodule */
DECLARE RECORD (50) STRUCTURE
(KEY BYTE, | NFO WORD) AUXI LI ARY;

DECLARE CURRENT STRUCTURE
(KEY BYTE, | NFO WORD) ;

DECLARE KK BYTE:
KK = 49;

/* Instructions here would read in data */
SORT: DG,

DECLARE (JJ, 1) | NTEGER;

DO JJ =1 TO 49;

CURRENT. KEY = RECORD(JJ) . KEY;
CURRENT. | NFO = RECORD(JJ) . | NFO

FIND. DOWILE Il > 0 AND
RECORD(| | - 1) . KEY > CURRENT. KEY:
RECORD(| 1) . KEY = RECORD(| |- 1).KEY;
RECORD(1 1). | NFO = RECORD(| | - 1) . | NFO,
I o=11-1

END FI ND;

RECORD(| 1) . KEY = CURRENT. KEY;
RECORD(11) .1 NFO = CURRENT. | NFOQ

END;
END SORT;
/* Instructions here would wite out data fromthe records *

END MW /* End of nodule */

Figure 9-1. Inclusive Extent of Blocks

Everything inside the dotted line congtitutes the inclusive extent of block FIND. Since thisis not asimple-
DO or procedure block, declarations are not allowed. All prior declarations shown are available for use
within FIND.

See aso figure 9-2.

The shaded areais the exclusive extent (the outer level) of block SORT. The unshaded area within SORT is
the exclusive (and inclusive) extent of block FIND. To the instructions within the FIND block, SORT’s
exclusive extent is an outer level. The outermost level (or module level) is the area outside the solid lines
enclosing the SORT block.’

MW DG /* Beginning of nodule */
DECLARE RECORD (50) STRUCTURE
(KEY BYTE, | NFO WORD) AUXI LI ARY;

DECLARE CURRENT STRUCTURE
(KEY BYTE, | NFO WORD) ;

DECLARE KK BYTE:
KK = 49;

/* Instructions here would read in data */
SORT: DG,

DECLARE (JJ, 1) | NTECER;

DO JJ = 1 TO 49;
CURRENT. KEY = RECORD(JJ) . KEY;
CURRENT. | NFO = RECORD(JJ) . | NFG,

FIND: DOWMLE Il > 0 AND
RECORD(| | - 1) . KEY > CURRENT. KEY:
RECORD(| 1) . KEY = RECORD(II-1).KEY;
RECORD(1 1). | NFO = RECORD(| | - 1) . | NFO,
I o=11-1

END FI ND;

RECORD(| 1) . KEY = CURRENT. KEY;
RECORD(1) .1 NFO = CURRENT. | NFQ,
END;

END SORT;
/* Instructions here would wite out data fromthe records *
END MMM /* End of nodule */
Figure 9-2. Outer Level of Block SORT
9.3 Restrictions on Multiple Declarations

In any given block, a known name cannot be redeclared at the same level asits origina declaration. A new
declaration is permitted inside a nested simple-DO or procedure block, where it automatically identifies a
new object despite the existence of the same name at a higher level. The new object will be the only one
known by this name within its block, and it will be unknown outside its block, where the prior name
maintains its meaning. These observations also apply when a name is redeclared in another block at the
same level asthe block containing the origina declaration.

When aname is declared only in a separate block at the same level, it can only be accessed in that block
where it was declared. The definition is not at an outer level to the block in which you are not
programming. Any local declaration you supply will establish a new separate object whose values bear no
relation to those of the other.

The reason for these rules, as for many in programming, is that each name in the program must
unambiguously define address / location. The declaration rules given in the first paragraph of this section
give you freedom to choose whatever names seem appropriate within a given block without interfering with
exterior uses of them. But, when you redeclare a name, its outer-level meaning is inaccessible until
execution exits the block containing the new declaration. For example:

A DG,
DECLARE X, Y, Z BYTE;
L1: X = 2;
Y = X
Z =X
B: DG,
DECLARE X, Y BYTE;
X =3;
Y = X
L2: Z =X
END B;
L3: /[* At this point, X =2, Y =2, Z =3, because the value of the
redeclared X was used to fill Z */

/* If statement L2 were outside the DO block | abeled B, Z woul d
be 2 because the outer X value would be used. */

9.4 Lifetime Rules
Given the following block:

MY_BLOCK: DO
DECLARE (X, Y,2) ... ;

END MY_BLOCK;

X, Y and Z become inaccessible as soon asthe END MY _BLOCK statement is executed. Since X, Y and Z
are no longer accessible, the memory locations they occupy become available for other uses, exactly the
way they would be in Pascal. The next time your program enters this block, do not be surprised if the
vauesof X, Y and Z are entirely different from what they were when END MY _BLOCK was executed.
Note that, if you enter a block nested within MY _BLOCK, the space occupied by X, Y and Z will not be
available for reuse, even if (due to redeclarations) they become inaccessible.

If ablock contains CALLSs (or function references), that block’ s variables may aso become inaccessible
while the procedure it callsis executing. But, since execution of the block will resume as soon as the
procedure returns, the variables do not let go of the space they use. Thus. X = X + FUNC(Y) will work as
expected: the call to FUNC is guaranteed not to wipe out X. The same goesfor IF X =7 THEN CALL
PROC. Thisrule, like the one in the previous paragraph, also applies to Pascal.

9.5 Extended Scope: The PUBLIC and EXTERNAL Attributes

The PUBLIC and EXTERNAL attributes permit you to extend the scope of names for al objects except
modules; a module name may not be declared with either attribute.

To extend the scope means to make the names available for use in modules other than the one where they
are defined (the names are already available to nested blocksin this module.) To be specific, thisincludes
names of variables, labels, procedures, and execution CONSTANTS.

For example. the statement:
DECLARE FLAG BI T PUBLI C;

causes aBIT to be alocated, named FLAG, and its address made known to any other module where the
following declaration occurs:

DECLARE FLAG BI T EXTERNAL;
Similarly, if one module has a procedure declaration block that begins:

SUMMVER : PROCEDURE (A, B) BI'T PUBLIC
DECLARE (A, B) BYTE;
/* other declarations can go here */
/* executable statenents go here */
END sunmmer

Then any other module may invoke SUMMER if it first declares:

SUMMVER : PROCEDURE (A, B) BI T EXTERNAL;
/* A, B can be any nanes */
DECLARE (A, B) BYTE;
/* but these names nust natch them and each type nust
match its public definition */
END SUMMER,

Since ambiguity of location or definition is not permissible, the use of PUBLIC and EXTERNAL must
follow a strict set of rules, asfollows:

1. These attributes may only be used in a declaration at the outermost level of amodule, i.e., never in
anested block.
2. Only one may appear on any declaration, and only once. Thus,

DECLARE ZETA BYTE PUBLI C EXTERNAL; /* error */
DECLARE RHO WORD PUBLIC PUBLIC ; /* error */
and similar constructs are al invalid.

3. Names may be declared PUBLIC at most once. The PUBLIC declaration is the defining
declaration: the address it createsis used in each procedure or module where the same nameis
declared EXTERNAL. Y ou must not create more than one PUBLIC address for any name.

4. Names may only be declared EXTERNAL if they are also declared PUBLIC in adifferent module
of the program. The EXTERNAL éttribute is essentially a request to use a PUBLIC address. An
EXTERNAL without aPUBLIC isadead letter. Lack of adefinition elsewhere will result in a
link-time error.

5. The location where the name is declared EXTERNAL must be given the same type and address
space as the location where it is declared PUBLIC. Any contradiction of type, although not
detected by the compiler, would violate the intention to use the location(s) and content(s) defined
elsewhere and will probably cause run-time errors.

0.

Similarly, a name declared EXTERNAL must not be given alocation, i.e., with the AT phrase, or
aninitialization, i.e., using CONSTANT(...). Such usage would again contradict being defined in
another module. However, in that other module, where this name is declared PUBLIC, the use of

AT or CONSTANT(...) isallowed with it.

Neither PUBLIC nor EXTERNAL may be applied to a name that is based. For example.

DECLARE PTR1 WORD,
DECLARE V1 BASED PTR1 PUBLI G,

isinvalid. The reason: by definition, V1 has no home of its own; its location is always determined
by PTRL1. Thusto declare V1 PUBLIC or EXTERNAL does not permit the correct assignment of
addresses. PTR1, on the other hand, always contains the current address of V1. Declaring the base,
PTR1 in this case, to be PUBLIC or EXTERNAL isaways permissible.

A register cannot be declared PUBLIC or EXTERNAL.

(Three additional restrictions on the use of EXTERNAL procedures appear in Chapter 10.)

Following the rules just given will permit consistent and reliable execution of programs using names with
extended scope. A PUBLIC definition occurring in one module will then be used by all related references
to that name in separate modules, that is, references which declare the name EXTERNAL. An example of a
PUBLIC definition occurring in one module follows,

MOD1: DO

DECLARE V1 BYTE PUBLI C,

END MOD;

MOD2: DG,

DECLARE V1 BYTE EXTERNAL,;
Q4 PROCEDURE PUBLI G

END QU4

END MOD2;

Both references to V1 will use the same definition (location) for V1, namely, that in module MOD1.
Similarly, if any module needed to call procedure QQ4, it would first need a declaration like the one that
follows—

QA

PROCEDURE EXTERNAL,;

END Q4

so that a subsequent CALL QQ4 would correctly pass control to that procedure in module MOD2.

9.6 Scope of Labels and Restrictions on GOTOs

Labels are subject to exactly the same rules of scope discussed in the previous section.

One consequence is that alabel is unknown outside the block where it is declared. As discussed earlier, a
label is either declared explicitly at the beginning of a simple-DO or procedure block, or the compiler
considersit declared there as soon asiit is defined (by appearing in front of a colon) anywhere in the block.
Therefore, the discussion of what names are known in which blocks applies directly to labels aswell asto
other names.

Thelabel on ablock is not part of the block it names. For example, the name on the DO enclosing the
module itself is not part of that block; it merely namesit. For nested blocks, alabel is again not part of the
block it names, but belongs instead to the outer level, as part of that first enclosing block.

If aname used as alabel on ablock is defined inside that block, it will name something new, whether itisa
label, variable, or constant. This fact leads to important restrictions on use of the GOTO statement:

1. It isimpossible for a GOTO to transfer control from an outer block to alabeled statement inside a nested
block.

2. Moreover, a GOTO can transfer control from one block to another in the same module only if the target
block encloses the one containing the GOTO (and only if the name of that target |abel is not declared in the
nested block.)

Furthermore, alabel with the PUBLIC attribute is permitted only in the main module. (This forces al other
transfers of control, that is, those not involving areturn to the main module, to use procedure calls. Forcing
all other transfers of control to use procedure calls favors the development of orderly, modularized,
traceable programs.)

Following are some examples of valid and invalid GOTOs.

DG,
DG,
DG,

AOTO X; /* valid - Xis in an outer block */
END;
END;
END;

GO0 Y; /* invalid - Yis in an |Inner block */
DO,

Y:
END;

DECLARE L LABEL EXTERNAL; /* L nust be in nodul e-1evel code */
DG,

QOTOo L; /* valid */
END;

Procedures and Interrupts 10

A procedureis .a section of PL/M-51 code that is declared and then activated from other parts of the
program. A function reference or CALL statement activates the procedure. causing the procedure code to
he executed: program control is transferred from the point or activation to the beginning or. the procedure
code, the code is executed, and upon return from the procedure code, program control is passed back to the
statement immediately after the point of activation.

The use of procedures forms the basis of modular programming. It facilitates making and using program
libraries, eases programming and documentation, and reduces the amount of object code generated by a
program. The following sections review how to declare procedures, and describe how to activate
procedures.

10.1 Procedure Declarations

Y ou must declare procedures, just as you must declare variables. Thereafter, any reference to a procedure
must occur within the scope defined by the procedure declaration. Also, a procedure may not be used
(called, or invoked in an expression) until after the END statement of the procedure declaration.

A procedure declaration consists of three parts: a PROCEDURE statement, a sequence of statements
forming the procedure body, and an END statement. The following is a simple example of a procedure
declaration:

DOOR$CHECK : PROCEDURE;
| F FRONT$DOORSLOCKED AND S| DE$DOOR$LOCKED THEN
CALL PONERS$ON,
ELSE CALL DOOR$SALARM
END DOOR$CHECK;

where

POWERS$ON and DOOR$ALARM are procedures declared elsewhere in the same program.
FRONT$DOOR$LOCKED and SIDE$DOOR$LOCKED are BIT variables declared elsewhere.

NOTE
The name in a PROCEDURE statement has the same appearance as alabel definition; but, it is not
considered alabel definition, and a procedure name is not alabel. PROCEDURE statements may not be
labeled.

The nameisaPL/M-51 identifier, which is associated with this procedure. The scope of aprocedure is
governed by the placement of its declaration in the program text, just as the scope of avariable is governed
by the placement of its DECLARE statement (see Chapter 9 for a detailed description of the DECLARE
statement). Within this scope, the procedure can be activated by the name used in the PROCEDURE
Statement.

A procedure declaration, like a DO block, controls the scope of variables (as described in Chapter 9). Also,
like asimple DO block, a procedure declaration may contain DECLARE statements. these DECLARE
statements must precede the first executable statement in the procedure body.

AsinaDO block, the identifier in the END statement has no effect on the program, but aids legibility and
debugging. If used, it must be the same as the procedure name.

Parameters

Formal parameters are non-based scalar variables declared within a procedure declaration whose identifiers
appear in the parameter list in the PROCEDURE statement. The identifiersin the list are separated by
commas and the list is enclosed in parentheses. No subscripts or member-identifiers are allowed in the
parameter list.

If the procedure has no formal parameters, the parameter list (including the parentheses) is omitted from the
PROCEDURE statement.

Each formal parameter in the procedure statement must be declared as a non-based scalar variablein a
DECLARE statement preceding the first executable statement in the procedure body. Formal parameters
may not be declared with a suffix (other than MAIN). However, procedure parameters are not stored
according to the same rules as other declared variables. In particular, do not assume that a parameter is
stored contiguously with other variables declared in the same factored variable declaration.

When a procedure that has formal parametersis activated, the CALL statement or function reference
contains alist of actual parameters. Each actual parameter is an expression whose value is assigned to the
corresponding formal parameter in the procedure before the procedure begins to execute, i.e., PL/M-51
uses call by value for parameter passing.

For example, the following procedure takes four parameters, called PTR, N, LOWER, and UPPER. It
examines N contiguously stored BY TE variablesin MAIN memory. The parameter PTR is the location of
the first of these variables. If any of these variablesis less than the parameter LOWER or greater than the
parameter UPPER, the ERRORSET procedure (declared elsewhere in the program) is activated.

RANGE$CHECK: PROCEDURE(PTR, N, LOVER, UPPER)
DECLARE PTR WORD;
DECLARE (N, LONER, UPPER, I') BYTE;
DECLARE | TEM BASED PTR (1) BYTE;

DOl =0 TO N 1;
IF (ITEMI) <LOWER) OR (I TEM|) > UPPER) THEN
CALL ERRORSET;

/* ERRORSET |s a procedure declared el sewhere */

END;
END RANGE$CHECK;

Note that the scalar byte | and the array ITEM are not parameters of RANGE$SCHECK, but local variables
declared within the procedure. A procedureis considered to start a block that is terminated by the final
END statement of the procedure definition.

Note also that the array ITEM is declared to have only one element. Sinceit is a based array, areferenceto
any element of ITEM isreally areference to some location relative to the location represented by PTR. In
writing the procedure RANGE$CHECK , a dimension specifier above zero must be supplied for ITEM so
that referencesto ITEM can be subscripted. The dimension specifier is unimportant in the example just
given, | isused arbitrarily.

Having made this declaration, suppose that you have 25 variables stored contiguously in a MAIN array
caled QUANTS. Check that all of these variables have values within the range defined by the values of
two other BY TE variables, LOW and HIGH.

Write:
CALL RANGE$CHECK (. QUANTS, 25, LON H GH);
When this call statement is processed, the following sequence occurs:

The four actual parametersin the CALL statement— QUANTS, 25, LOW, and HIGH—are
assigned to the formal parameters PTR, N, LOWER, and UPPER, al of which were declared
within the procedure RANGE$CHECK. Since ITEM isbased on PTR and the value of PTR is
.QUANTS, every reference to an element of ITEM becomes a reference to the corresponding
dement of QUANTS.

The executable statements of the procedure RANGE$CHECK are executed, and if any of the
values are less than the value of LOW or greater than the value of HIGH. the procedure
ERRORSET is activated.

Finally, control returns to the statement following the CALL statement.

Note how the use of a based variable, with the base passed as a parameter, alows the procedure to have its
own unchanging name (ITEM) for aset of variables that may be a different set each time the procedure is
activated.

-CAUTION-
When a procedure has more than one parameter, PL/M-51 does not guarantee the order in which actual
parameters will be evaluated when the procedure is activated. If one actual parameter changes another
actual parameter, the results are undefined. This can occur if an expression used as an actual parameter
contains a function reference that changes another actual parameter for the same procedure. See also the
next caution, located near the end of the next topic ‘ Typed Versus Untyped Procedures.”

Typed versus Untyped Procedures

The procedure shown in section 10.1 is an untyped procedure. No typeis given in the PROCEDURE
statement, and it does not return avalue. An untyped procedure is activated by using its namein a CALL
statement, as shown in section 10.1 and as

explained in section 10.2.

A typed procedure, also called afunction, has atype in its PROCEDURE statement: BIT, BYTE or
WORD. Such a procedure returns a value of this type to be used in an expression or stored as the value of a
variable. The procedureis activated by using

its name as an operand in an expression as a special kind of variable reference called a function reference.

When the expression is processed at run time, the function reference causes the procedure to be executed.
The function reference itself is then replaced by the value returned by the procedure. The expression
containing the function reference is then evaluated, and program execution continues in normal sequence.

Like an untyped procedure, atyped procedure may have parameters. They are handled as described in the
preceding paragraphs.

The body of atyped procedure must always contain a RETURN statement with an expression, as explained
later in this chapter.

-CAUTION-
The body of atyped procedure may contain code (such as an assignment statement) that changes the value
of some variable declared outside the procedure. This change is called a side effect.
Remember, PL/M-51 does not guarantee the order in which operandsin an expression are evaluated.
Therefore, if afunction used in an expression bas the side effect of changing the value of another variable
in the same expression, the value of the expression depends on whether the function reference or the
variables are evaluated first.
If the analysis of the expression does not force one of these operands to be evaluated before the other, then

the value of the expression is undefined. This situation can be avoided by using such a procedure in an
assignment statement first, thereby creating an unambiguous sequence.

10.2 Activating a Procedure: Function References and CALL Statements

Procedure activation, which depends on whether a procedure is typed or untyped, involves CALL
statements and function references. An untyped procedure is activated by a CALL statement with the form:

CALL name

or:

CALL name (parameter list)

Following is an example of a CALL statement activating an untyped procedure.
CALL REORDER (. RANK$TABLE, 3)

(An aternate form of the CALL statement is discussed later.)

A typed procedure is activated by a function reference, which is an operand in an expression; it has the
form:

name
or

name (parameter list)

A function reference occurs as an operand in an expression, as in the following example:
TOTAL = SUBTOTAL + SUMBARRAY (.| TEMS, COUNT);
Where

SUMS$ARRAY isaprevioudy declared typed procedure.

The value added to SUBTOTAL will be the value returned by SUM$ARRAY using the actual parameters
(ITEMS, COUNT). Seethefirst caution on procedures with more than one parameter in section 10.1.

In both forms of procedure activation, the elements of the parameter list are called actual parametersto
distinguish them from the formal parameters of the procedure declaration. At activation-time, each actual
parameter is evaluated and the result assigned to the corresponding formal parameter in the procedure
declaration. Then the procedure body is executed. Any’ PL/M-51 expression may be an actual parameter if
its typeisthe same as that of the corresponding formal parameter.

The actua parameter list in a procedure activation must also match the formal parameter list in the
procedure declaration-— that is, it must contain the same number of parameters of the same type in the
same order. If the procedure is declared without aformal parameter list, no actual parameter list can be
used in the activation.

Asin expression evauation and assignment statements (see Chapter 5), afew type conversions are
performed automatically, when necessary, in activating and returning from a procedure. The built-in
explicit type conversion procedures of Chapter 11 can aso be used to force the value of an expression to a
desired type.

Indirect Procedure Activation

The CALL statement, in the form shown in section 10.2. activates an untyped procedure by its name. It is
also possible to activate an untyped procedure by itslocation. Thisis done by a CALL statement with the
form:

CALL identifier;

Theidentifier may not be subscripted, though it may be a structure member reference. It must be afully
qualified WORD type variable reference, and its value is assumed to be the location of the entry point of
the procedure being activated.

In an indirect procedure activation, parameters are not permitted.
Following is an example of indirect procedure activation.
DECLARE ADDR WORD CONSTANT(. PRCC 77);
DECLARE ADDR BACKUP WORD AUXI LI ARY;

ADDR. BACKUP = . PRCC 77;

CALL ADDR;

CALL ADDR_BACKUPR;

(both calls reach PROC 77)

10.3 Exit from a Procedure: The RETURN Statement
The execution of a procedure is terminated in one of three ways:

By execution of a RETURN statement within the procedure body. A typed procedure must contain
aRETURN statement with an expression.

By reaching the END statement that terminates the procedure declaration.

By executing a GOTO to a statement outside the procedure body. The target of the GOTO must be
at the outer level of the main program (see Chapter 9).

The RETURN statement has one of two forms:

RETURN,;

or

RETURN expression;

Thefirst form isused in an untyped procedure. The second form is used in atyped procedure. The value of

expression becomes the value returned by the procedure. It is evaluated as if it were being assigned to a
variable of the same type as used on the PROCEDURE statement.

10.4 The Procedure Body

The statements within the procedure body may be any valid PL/M-51 statements, including CALL
statements and nested procedure declarations.

Example |

Thefollowing is atyped procedure declaration:

AVG PROCEDURE (X, Y) WORD;
DECLARE (X, Y) WORD;

RETURN (X +Y) / 2;
END AVG

The typed procedure declaration could be used as follows:
LOW = 300;
H GH = 400;
MEAN = AVG (LOWN H GH);
The effect would assign the value 350 to MEAN.
Example 2
Thefollowing is an untyped procedure:
AQUT: PRCCEDURE (I TEM;
DECLARE | TEM WORD;
IF I TEM > 07FH THEN COUNTER = COUNTER + 1;

RETURN;
END AQUT,;

COUNTER is some variable declared outside the procedure, i.e., it isagloba variable. The untyped
procedure could be activated as follows:

CALL AOQUT (UNKNOW) ;

If the value of the variable UNKNOWN is greater than or equal to 07FH, the value of COUNTER will be
incremented.

Example 3
The following example demonstrates an important use of based variables.

SUMBARRAY: PROCEDURE (PTR N) BYTE;
DECLARE PTR WORD,
ARRAY BASED PTR(1) BYTE MAIN,
(N, SUM BYTE;
SUM = 0;
DOl =0 TON
SUM 0 SUM + ARRAY(I);
END;
RETURN SUM
END SUMBARRAY;

The procedure just given returns the sum of the first N + 1 elements (from the Oth to the Nth) of aMAIN
(on-chip RAM) BYTE array pointed to by PTR. Notice that ARRAY is declared to have 1 element. Since it
is abased variable, no spaceis allocated for it. It must be declared as an array (with a non-zero dimension)
so that it can be subscripted in the iterative DO block. The choice of 1 asthe constant in the dimension
specifier is arbitrary, and does not restrict the value of N that may be supplied when the procedure is
activated.

This procedure could be used as follows to sum the elements of a 20-element MAIN BY TE array named
PRICE, and to assign the sum to the variable TOTAL.

TOTAL = SUMBARRAY(. PRI CE, 19);

10.5 The Attributes: PUBLIC and EXTERNAL, INTERRUPT, USING,
INDIRECTLYCALLABLE

The PUBLIC and EXTERNAL attributes can be included in PROCEDURE statements to give procedures
extended scope. Extended scopeis discussed in Chapter 9.

A procedure declaration with the PUBLIC attribute is called a defining declaration.

A procedure declaration with the EXTERNAL attribute is called a usage declaration. Most of the rules for
PUBLIC and EXTERNAL appear in Chapter 9. The following additional rules apply to the use of the
EXTERNAL attribute in a procedure declaration.

1 A use (EXTERNAL) declaration of a procedure should have the same number of parameters as
the defining (PUBLIC) declaration. Variable types should match the same sequence in both
declarations. The names of the parameters need not be the same. Note that a discrepancy between
the parameter lists in the defining declaration and a usage declaration will not be automatically
detected, but execution will fail.

2. The procedure body of a usage declaration may not contain anything except the declarations of the
formal parameters. The formal parameters must be declared with the same types asin the defining
declaration.

3. No labels may appear in a usage declaration.

For example, the procedure AV G from Example 1 above can be altered by giving it the PUBLIC attribute:

AVG PROCEDURE (X, Y) WORD PUBLI C
DECLARE (X, Y) WORD;
RETURN (X +Y) / 2;

END AVG

In another module, you can have a usage declaration:

AVG PROCEDURE (X, Y) WORD EXTERNAL;
DECLARE (X, Y) WORD;
END AVG

At this point, in the module with the usage declaration, you can reference AVG in an executable statement
M DDLE = AVG (FI RST, LATEST);

thereby activating the procedure AV G as declared in the first module.

Interrupts and the INTERRUPT Attribute: ENABLE and DISABLE

The INTERRUPT attribute allows you to define a procedure to handle some condition signaled by an 8051
interrupt, e.g., from a peripheral device. A procedure with this attribute is activated when the corresponding
interrupt signal is received in the 8051-based system.

The INTERRUPT attribute can only be used at the outermost level of a program module to declare an
untyped procedure with no parameters. The farm of an INTERRUPT attributeis:

I NTERRUPT n

with an optional USING attribute, where n is a number. Each number can only be used once in a program.
Each such procedure is then referred to as an interrupt procedure.

Each MCS-51 interrupt can he individually enabled or disabled (the 8051 has five: Ext 0 (0). Timer 0 (1),
Ext 1 (2). Timer 1 (3). and Serid Int (4): other members of the family may have more or less). The PL/M-
51 programmer is responsible for enabling or disabling each MCS-51 interrupt by using the relevant bits of
the |E hardware register. Each interrupt has a priority (high or low) that is set using bitsin the | P register.
Each interrupt also has aglobal flag in |E that disables all interrupts: it is controlled indirectly by the
ENABLE and DISABLE statements, or directly by a REGISTER variable. At power-up time, the 8051
CPU always starts with all interrupts disabled.

The PL/M-5] DISABLE statement disables all interrupts. The PL/M-51 ENABLE statement will enable
any interrupt that is not specifically disabled viaits corresponding bit in the | E register.

When aninterrupt is pending, it isignored if the interrupt mechanism is disabled. If interrupts are enabled,
the interrupt is processed as follows:

The CPU completes any instruction currently in action.

All interrupts of equal or lower priority are disabled.

The current CPU state is stacked (see Appendix H).

Control passesto the correct interrupt procedure.

When the procedure is complete (has executed a RETURN or reached the END of the procedure),
the interrupt system state is restored so other devices may be serviced; the CPU state (stacked at
step 3) is unstacked; and control is returned to the point where the interrupt occurred.

agrODdNE

It is possible (as with other untyped procedures) for the procedure to terminate by executing a GOTO with
atarget outside the procedure in the outer level of the main program module. In this case, control will never
be returned to the point where the program was interrupted, and interrupts will not be automatically
enabled.

The following is an example of an interrupt procedure servicing interrupt number 0. The interrupt
procedure turns on an annunciator light, updates a status word, and returns control to the program.

H TEMP: PROCEDURE | NTERRUPT 0; /* EXTERNAL O | NTERRUPT ON 8051 */
CALL ANNUNCI ATOR(1);
/* This will result in an output fromthe 8051 to turn on
annunci ator |ight nunber 1 , the H GH tenperature
war ni ng */
ALERT = ALERT OR 00000010B;
/* This puts a 1 in one of the bit positions of ALERT which
contains a bit pattern representing current alerts */
END HI TEMP;

Since PL/M-51 is a generic compiler, supporting all members of the MCS-51 family. it cannot check that
the interrupt number is valid for the chip you intend to use. But. the compilation summary will revea the
highest-numbered interrupt used. (Note:

interrupt numbers start at zero.)

The USING Attribute

The 8051 has 4 register-banks, each of which contains 8 registers: RO-R7. PL/M-51 makes a critical
assumption about interrupts: an interrupt procedure must never use the same register-bank as the procedure
it interrupts.

The register bank required is selected with the USING attribute of a procedure. If

you declare

X PROCEDURE USING O

X will use register-bank 0; the same goes for 1,2 and 3. Omit the USING attribute and you get the register-
bank currently in effect, which is 0, unless you change the default by the SREGISTERBANK control
(which is effectively a globa USING).

It is unnecessary to calculate who is going to interrupt whom, and when; but, on the 8051, no two interrupts
of the same priority can be active simultaneously. Therefore, if you use one USING value for al non-
interrupt code, a different value for al low-priority interrupts, and a different value again for all high-
priority interrupts, you will stay out of trouble.

The INDIRECTLY_CALLABLE Attribute

It may be necessary to locally suppress certain compiler optimizations when procedures are called in
certain roundabout ways. Suppressing compiler optimizations locally may be done by specifying the
INDIRECTLY_CALLABLE attribute in the procedure declaration. Refer to the SOPTIMIZE control in
Chapter 14 for a complete explanation and examples.

Built-In Procedures 1 1

Built-in procedures act asif they were declared in an all-encompassing global block invisible to the
programme.

Built-in procedure identifiers are subject to the rules of scope, which means the name of a built-in
procedure can be declared to have alocal meaning within the program. Within the scope of such a
declaration, the built-in procedure is unavailable. This distinguishes these identifiers from reserved words,
listed in Appendix C. which cannot be used as identifiersin declarations.

No built-in procedure may be used within alocation reference.

11.1 Obtaining Information about Variables

PL/M-51 has three built-in procedures that take variable names as actual parameters and return information
based on the declarations of the variables: LENGTH, LAST and SIZE.

The LENGTH Function

LENGTH isaWORD function that returns the declared number of elementsin an array. It is activated by a
function reference with the form:

LENGTH (variable-ref)
Where

variable-ref must be a non-subscripted reference to an array.
The array may be a member of a structure.

The WORD value returned is the number of elementsin the array - that is, it is equal to the dimension
specifier in the array declaration.

If the array is not a structure member, then the reference must be an unqualified variable reference. If the
array is a structure member, then the reference is a partially qualified variable reference (see section 6.3).
For example. given the declaration

DECLARE RECORD STRUCTURE (KEY BYTE, | NFQ(3) WORD) ;

LENGTH(RECORD. | NFO) isavalid function reference and returns a WORD value of 3.

If the array is amember of a structure, and the structure is an element of an array, a special case arises.
Given the declaration

DECLARE LI ST (4) STRUCTURE (KEY BYTE, | NFO (3) WORD);

All of the following function references are correct and return the value 3

LENGTH(LI ST(0) . | NFO)
LENGTH(LI ST(1) . | NFO)
LENGTH(LI ST(2) . | NFO)
LENGTH(LI ST(3) . | NFO)

In other words, the subscript for the array LIST isirrelevant when a member-identifier is supplied because
the arrays within the structure are al the same length.

PL/M-51 allows a shorthand form of partially qualified variable reference in the LENGTH, LAST, and
SIZE function references. For example,

LENGTH(LI ST. I NFO)

isavalid reference and returns the value 3.

The LAST Function

LAST isaWORD function that returns the subscript of the last element declared in an array. It is activated
by a function reference with the form:

LAST (variable-ref)
Where

variable-ref must be a non-subscripted reference to an array.
The array may be a member of a structure.

The WORD value returned is the subscript of the last clement of the array. Note that for a given array.
LAST will always be one less than LENGTH.

Asinthe LENGTH function, a shorthand form of partially qualified variable reference is allowed when the
array isamember of a structure and the structure is an array element.

The SIZE Function

SIZE isaWORD function that returns the declared size, in bytes, of its operand. It is activated by a
function reference with the form:

SIZE (variable-ref)
Where

variable-ref isafully quaified, partialy quaified, or unqualified reference to any scalar
(except aBIT), array or structure.

The WORD value returned is the number of bytes required by the object referenced.

If the reference is partially qualified, it refers either to a structure member that is an array, or to an array
element that is a structure. The vaue is the number of bytes required for the array or structure.

Asinthe LENGTH function, a shorthand form of partially qualified variable reference is allowed when that
array or scalar isamember of a structure and the structure is an array element.

11.2 Explicit Type and Value Conversions

The functionsin this section provide explicit conversion from one type to another.
Explicit type-conversion functions are invoked by:

function-name (expression)

LOW and HIGH are BY TE functions that convert WORD valuesto BY TE values. They are activated by
function references with the form:

LOW (expressi on)
H GH (expression)

Where

expression hasaWORD or BY TE value.
If expression has a WORD value, LOW returns the value of the low-order (least significant) byte of the
expression value, whereas HIGH returns the value of the high-order (most significant) byte of the

expression value.

If expression hasaBY TE value, then LOW will return this value unchanged. HIGH, however, will return
0.

DOUBLE isaWORD function that convertsaBY TE valueto aWORD value. It is activated by afunction
reference with the form:

DOUBLE (expression)
Where
expression hasaBYTE or WORD value.

If expression has a BY TE value, the function appends 8 high-order O-bits to convert it to a WORD value
and returns this WORD value. |F expression has a WORD value, it is unchanged.

BOOLEAN convertsanon-BIT to aBIT. All odd humbers are converted to | (true), all even numbersto 0
(false).

EXPAND convertsaBIT to aBYTE. EXPAND(0) is a byte whose valueis 0; EXPAND(1) a byte whose
valueis 1.

PROPAGATE convertsaBIT to aBY TE. PROPAGATE(O) is a byte whose value is 0; PROPAGATE(1)
a byte whose value is OFFH.

BOOLEAN, EXPAND and PROPAGATE are the only way to convert to / from the BIT type in PL/M-51.

11.3 SHIFT and ROTATE Functions

In shift and rotate operations, avalue is handled as a pattern of 8 bits (for aBY TE value) or 16 bits (for a
WORD value). The pattern is moved to the right or left by a specified number of bits called the bit count.

In a shift, bits moved off one end of the pattern are lost, and 0-bits move into the pattern from the other end.
In arotate, bits moved off one end move onto the other end.

Logical-Shift Functions: SHL and SHR

SHL and SHR are functions whose type depends on the type of the expression given as an actual parameter.
They are activated by function references with the form:

SHL (pattern, count)
SHR (pattern, count)

Where
pattern and count are expressions with BY TE or WORD values.

If count has a WORD value, al but the 8 low-order bits will be dropped to produce aBY TE value. If the
value of count is 0. no rotation occurs.

The value of pattern may be either aBY TE or WORD value and will not be converted. If itisaBYTE
value, the function will return aBY TE value. If patternis a WORD value, the function will return a
WORD value.

The value of pattern is shifted left (by SHL) or right (by SHR), with the bit count given by count

A shift operation can force a l-bit out of the pattern. For example,

SHL(1000$0001B, 1) becones 0000%$0010

losing the former high-order bit, and

SHR(1000$0001B, 1) becones 0100$0000

losing the former low-order bit.

If the specified pattern and count do not cause such aloss of information, then a shift of one bit position
has the effect of multiplication by 2 for aleft shift, or division by 2 for aright shift. For example, suppose
that VAR isaBYTE variable with avalue of 8. Thisis represented as 0000$1000. SHL (VAR.1) will return
0001$0000, which represents 16. while SHR(VAR.1) will return 0000301 00. which represents 4.
Rotation Functions: ROL and ROR

ROL and ROR are functions whose type depends on the type of the expression given as an actual
parameter. They are activated by function references with the form:

ROL (pattern, count)
ROR (pattern, count)

where
pattern and count are expressions with BY TE or WORD values.

If count has a WORD value, al but the 8 low-order bits will be dropped to produce aBY TE value. If the
value of count is 0, no rotation occurs.

The value of pattern may be either aBY TE or WORD value and will not be converted. If itisaBYTE
value, the function will return aBY TE value. If patternis a WORD value, the function will return a
WORD value.

The value of pattern is rotated left (by ROL) or right (by ROR), with the bit count given by count

Following are examples of the ROL and ROR functions.

ROR(10011101B, 1) returns a value of 11001110B.
ROL(10011101B, 2) returns a val ue of 01110110B.
ROL(11111111000000008B, 8) returns 0000000011111111B.

11.4 INPUT and OUTPUT
PL/M-51 hasno INPUT / OUTPUT built-ins because | / O is accomplished by accessing the right hardware

REGISTER (which has been pre-declared, like any other PL / NI-5| variable) at the proper hardware
location. See Appendix | for the assigned hardware REGISTER addresses.

11.5 Miscellaneous Built-Ins

The TESTCLEAR Procedure

TESTCLEAR isaBIT procedure that returns the value of aBIT variable. The BIT variableis tested and
cleared in oneindivisible operation (i.e.. it cannot be interrupted). It can be used to provide semaphore or
test-and-set control of aresource.

The TIME Procedure

The untyped procedure TIME causes atime delay specified by its actual parameter. It is activated by a
CALL statement with the form:

CALL TIME (expression);
Where
expression is converted, if necessary, to aBY TE quantity.

The length of time measured by the procedure is a multiple of 100 microseconds. If the actual parameter
evaluates to n, then the delay caused by the procedure is 100 * n microseconds. For example, the statement

CALL TIME (45);

causes adelay of 4.5 milliseconds. Since the maximum delay offered by the procedure is about 25.5
milliseconds, longer delays must be obtained by repeated activations. The following block takes about one
second to execute.

DOl = 1 TO 50;
CALL TIME (200);
END;

The TIME procedure is based on 8051 CPU cycle times, and assumes that the system is running with a 12
MHz crystal, without interruption.

Features Involving 8051 Hardware Flags 12

The PL/M-51 features described in this chapter make use, directly or indirectly, of the 8051 hardware flags
or toggles—the carry and auxiliary carry BITs. As explained in the following section, these features cannot
be guaranteed to produce correct results; the programmer should only use them with caution.

Instead of using these features, it may be more convenient to link the PL/M-51 program to modules
containing code to perform the same functions, but written in ASM-51.

12.1 Optimization and the 8051 Hardware Flags

To produce an efficient machine-code program from a PL/M-51 source, the PL/M-51 compiler performs
extensive optimization of the machine code. This means that the exact sequence of machine code produced
to implement a given sequence of

PL/M-51 source statements cannot be predicted.

Consequently, the state of the 8051 hardware flags cannot be predicted for any given point in the program.
For example, suppose a source program contains the following fragment:

SUM = SUM + 250:
where
SUM isaBYTE variable.

If the value of SUM before this assignment statement was greater than 5, the addition will cause an
overflow and the hardware CARRY flag will be set.

If the machine code were not optimized, you could follow this assignment statement with one of the PL/M-
51 features described in the following sections and be sure that the feature would operate in a certain
fashion depending on whether or not the addition caused the CARRY flag to be set. However, because of
optimization, some machine code instructions may occur immediately after the addition and change the
CARRY flag. You cannot safely predict if this will happen.

Accordingly, any PL/M-51 Feature that is dependent on the CARRY flag (or any of the other hardware
flags) may cause the program to run incorrectly. These features must therefore be used with caution, and
any program that uses them must be checked carefully (using the $CODE control) to make sure that it
operates correctly.

12.2 The PLUS and MINUS Operators

In addition to the arithmetic operators described in section 5.3, PL/M-51 has two more arithmetic operators:
PLUS and MINUS.

PLUS and MINUS perform similarly to + and —, and have the same precedence. However, they take
account of the current setting of the 8051 CPU hardware CARRY flag performing the operation. In PLUS,
the carry flag is added in (e.g., the result is equal to that of ~ + “ if the carry is off, one moreif itison). In
MINUS, the carry is subtracted.

12.3 Carry-Rotation Built-In Functions

SCL and SCR are built-in rotation functions whose type depends on the type of the value of an expression
given as an actual parameter. They are activated by function references with the forms:

SCL (pattern, count)
SCR (pattern, count)

where
pattern and count are both expressions.
The value of count will be converted, if necessary, to aBY TE quantity. If count is 0, no rotation occurs.

The value of pattern may be either aBY TE value or a WORD value and will not be converted. If itisa
BYTE value, the function will return aBY TE value. If it isaWORD value, the function will return a
WORD value.

The value of pattern is rotated left (by SCL) or right (by SCR), with the bit count given by count, just as
with the ROL and ROR functions described in Chapter 11. With SCL and SCR, however, the rotation
includes the CARRY flag: the bit rotated off one end of pattern is rotated into CARRY, and the old value of
CARRY isrotated into the other end of pattern. In effect, SCL and SCR perform 9-bit rotations on 8-bit
values, and 17-bit rotations on 16-bit values.

12.4 The DEC Function

DEC isabuilt-in BY TE function that uses the value of the hardware auxiliary carry flag internaly. It is
activated by afunction reference with the form:

DEC (expression)

where the value of expression will be converted, if necessary, to aBY TE value. The procedure uses the DA
A machine instruction to perform a decimal adjust operation on the actual parameter value and returns the
result of this operation. (See the MCS 51 Macro-Assembler Users Guide for a description of the DA
instruction).

Support Library: PLM51.LIB 13

To run any PL/M-51 program, RL51 must link the object-code file with the PLM51.LIB library, locate the
code (i.e., decide where in memory everything isto reside), and create a file—an absol ute object file—that
can be loaded into |CE, PROM, EPROM or EEPROM. If you want to combine two or more modules of
PL/M-51 or ASM51 code into one program, you must, of course, link them together using RL51. But, the
PLM51.LIB run-time library is always necessary.

Thus, if you have compiled your program MY PROG.P51 successfully, type:
RL51 MYPROG OBJ, PLMb1.LIB [options]

to obtain an executable file. If you have 3 modules, MYMOD1.0BJ, MYMOD2.0BJ, and MYMOD3.0BJ,
at least one of which was writtenin PL/M, type:

RL51 MyMOD1. OBJ, MYMOD2. OBJ, MYMOD3. OBJ, PLMb1.LIB [options]
The RL51 controls that can be specified as [options] are described in the MCS-51 Utilities User’s Guide.
The PUBLICsand EXTERNALSs used to link PLM51.LIB begin with a questionmark followed by the

character P (?P). Be careful when using such PUBLIC and EXTERNAL names of your own in any ASM51
code you may want to link to PL/M-51 code.

Compiler Invocation and Controls 14

This chapter describes how to start a PL/M-5I compilation from the DOS operating) system. It also
describes the compiler controlsin detail.

14.1 Invoking the PL/M-51 Compiler
Following is the genera syntax for PL/M-5 | invocation:
[directory | device] PLM51 pathname [controls]

where

directory | deviceisthe directory or device where PLMS | resides.

pathname is the name of your source file.

controls is an optional sequence of compilation controls. The controls are described in
detail later in this chapter.

PL/M-51 normally produces two output files. One contains a formatted listing of your source code. Unless
you specify a particular filename with the PRINT control, the formatted listing resides in the same directory
and has the same name as the source file, but with the extension .LST. Similarly, unless you specify a
particular filename with the OBJECT contral, the object file produced by the compiler residesin the same
directory and has the same name as the source file, but with the extension .OBJ. Note that the compiler uses
the workfile device set by the operating system.

To illustrate the construction and function of the invocation line, consider the following example:
>PLMb1 A: PROG SRC

Here a source file, PROG.SRC on device A:, isto be compiled by PL/M-5I. Since no controls have been
specified, the listing file has the name PROG.L ST and the object file has the name PROG.OBJ, the default
conditions. Both the listing and the object file reside on device A:. Default conditions are also in effect for
all the other control options.

Y ou can continue the invocation line on one or more additional lines by entering the ampersand (&) before
you enter the carriage return / line feed. The next line then automatically appears with the continuation
prompt. Comments can also be entered on the invocation line by placing the comments after the ampersand
because the compiler ignores al characters that appear after the ampersand but before the carriage return /
line feed that terminates the line, asin the following example:

>PLMb1l PROG SRC & The conpiler is being run
>>TI TLE(' PRQAJECT REVIEW) &

>>for the Project Review file.

>>0PTI M ZE(3)

Refer to your DOS user’s guide for information on submitting batch file commands.

If errors are detected in the invocation line they are fatal, and the compiler aborts without processing the
source program.

The exact operation of the compiler is affected by a number of controls that specify options such as the type
of listing to be produced and the destination of the object file. Controls may be specified as part of the
command invoking the compiler, or as control lines appearing within the source input file.

A contral lineis a source line containing adollar sign ($) in the left margin (i.e., in column one). Control
lines are introduced into the source to alow selective control over sections of the program. For example,
you may want to suppress the listing of certain sections of the program, or cause page gjects at certain
places.

On acontrol line, the dollar sign is followed by zero or more blanks and then by a sequence of controls.
The controls must be separated from each other by one or more blanks.

Examples of Control Lines

$NOCODE XREV
$EJECT CODE

PL/M-51 has three types of compiler controls. primary, general, and conditional. Primary controls must
occur either in the invocation command or in acontrol line that precedes the first non-control line of the
source file and remain in effect throughout the compilation. Primary controls may not be changed within a
module. The INCLUDE control terminates processing of primary controls. General controls may occur
either in the invocation command or on a control line located anywhere in the source input, and may be
changed freely within amodule. Conditional compilation controls cannot appear in the invocation
command; however, they may appear on control lines located anywhere in the source file. Conditional
compilation controls cannot be followed by primary controls.

A large number of controls are available, but you may only need to specify afew of
them for most compilations because a set of defaultsis built into the compiler. The controls are
summarized in aphabetic order in table 14-1.

A control consists of a control-name which, depending on the particular control, may be followed by a
parenthesized-control parameter.

Examples of Controls

LI ST
NOXREF
OBJECT(PROZ2. CBJ)

All primary and general controls have two-letter abbreviations (see table 14-1). Table 14-2 showsthe
compiler controls by category.

14.2 The Object File Controls

The object file controls determine what type of object file is to be produced and on which deviceitisto
appear. The controls are discussed in the following order:

I NTVECTOR / NO NTVECTOR
OPTI M ZE

OBJECT / NOOBJECT

DEBUG / NODEBUG

ROM

REG STERBANK

Table 14-1. Compiler Controls

Compiler control Abbreviations Default
DEBUG/ NODEBUG DB NODEBUG
INTVECTOR/ NOINTVECTOR Y INTVECTOR
OBJECT / NOOBJECT 0oJ OBJECT(source-file .OBJ)
OPTIMIZE(n) oT OPTIMIZE(2)
PAGING / NOPAGING P1 PAGING
PAGELENGTH(n) PL PAGELENGTH(60)
PAGEWIDTH(n) PW PAGEWIDTH(120)
PRINT / NOPRINT PR PRINT(source-file .LST)
REGISTERBANK (n) RB REGISTERBANK (O)
ROM RO ROM(MEDIUM)
SYMBOLS/NOSYMBOLS SB NOSYMBOLS
XREF / NOXREF XR NOXREF
CODE / NOCODE co NOCODE
EJECT EJ -

INCLUDE IC —
LIST/NOLIST LI LIST
SAVE / RESTORE SA/RT -
TITLE TT TITLE (module name)
IF/ ELSEIF / ELSE / ENDIF - -
SET / RESET - -
Table 14-2. Controls by Categories

Category Compiler Control

Object File * INTVECTOR / NOINTVECTOR

Listing Content

Listing Format

Source Inclusion and Control Status

Conditional Compilation

* OPTIMIZE

* ROM

LIST/NOLIST

REGISTERBANK

* OBJECT / NOOBJECT
* DEBUG/ NODEBUG

* PRINT / NOPRINT

CODE/NOCODE

* XREF / NOXREF
* SYMBOLS/NOSYMBOLS

* PAGING / NOPAGING
* PAGELENGTH
* PAGEWIDTH

TITLE

EJECT

INCLUDE
SAVE / RESTORE

IF/ELSEIF/ELSE/ENDIF
SET / RESET

* Denotes primary control.

INTVECTOR / NOINTVECTOR

INTVECTOR / NOINTVECTOR are primary controls with the form:

I NTVECTCOR
NO NTVECTOR
Default: INTVECTOR

Under the INTVECTOR control, the compiler creates an interrupt vector consisting of an 8-byte entry for
each interrupt procedure in the module. For interrupt n, the interrupt vector entry islocated at absolute
location 8 * n + 3. See Chapter 10 and Appendix H for further discussion of interrupt processing and
INTVECTOR / NOINT VECTOR.

Alternatively, you may want to create the interrupt vector independently, using ASM5I. In this case, the
NOINTVECTOR control is used and the compiler does not generate any interrupt vector. The implications
of this are discussed in Appendix H.

OPTIMIZE

OPTIMIZE isa primary control with the form:

OPTI M ZE (n)
Default: OPTI M ZE (2)
where
n may be0,1,2, or 3.

This control governs the kinds of optimization to be performed in generating object code. Each leve of
optimization includes all optimizations performed at lower levels.

OPTIMIZE(O)

OPTIMIZE(O) only specifies folding of constant expressions.

Folding means recognizing (at compilation time) operations that are superfluous and removing or
combining them in order to save memory space and / or execution time. Examples include addition with a
zero operand, multiplication by one, and logical expressions with “true” or “false” constants. Also, in the
Statement

A=6*3+A;

the compiler will add 6 and 3, producing codeto add 9to A.

OPTIMIZE(1)

Under OPTIMIZE(1), the contents of various MCS-5 1 registers (e.g, RO-R7) arc remembered between
statements. It is therefore possible to avoid loading avalue into R3 or R6, for example, if the correct value
has been |eft there by previous statements.

OPTIMIZE(2)

Under OPTIMIZE(2), the following optimizations are done;

Overlaying of on-chip local data variables.
Elimination of dead (unreachable) code.

The following paragraphs explain data overlaying, paying particular attention to why it is needed and how
it can be used without causing any trouble.

On-chip RAM is ascarce resource on the MCS-51. The PL/M-5I compiler therefore tries to stretch it as far
asit will go.

Since the variables of a DO block become undefined when the block is exited, variables of digoint DO
blocks are always subject to overlaying no matter what the OPTIMIZE level.

The variables of a procedure aso become undefined when the procedure RETURNSs or ENDs (but not
when it CALLs another). Therefore, the compiler will try to make any pair of procedures which can never
be active simultaneously, share RAM. Following is an example of this forced sharing.

THREE_BEARS PROCEDURE;
DECLARE LI TTLE_BEAR S BED BI T;
| F LI TTLE_BEAR S_BED THEN
CALL MSG(‘ SOVEONE' ' S BEEN IN MY BED! ', 0);
LI TTLE_BEAR S BED = 0;
END THREE_BEARS;

GCOLDI LOCKS: PROCEDURE;
DECLARE SPARE _BED BI T,
SPARE_BED = 1,

END GOLDI LOCKS;

CALL THREE_BEARS,;

CALL GOLDI LOCKS;
CALL THREE_BEARS,;

In this example, the compiler reserves the right to use the little bear’ s bed as a spare bed because the two
are never active simultaneously. Therefore, the value of LITTLE_BEARS BED is undefined the second
time you enter the THREE_BEARS procedure. It may or may not be set to 1 by GOLDILOCKS.

This optimization is done only under OPTIMIZE(2) and OPTIMIZE(3) because debugging can get harder:
you can never trust a variable to remain unchanged when no one refersto it; the compiler assumes that all
CALLsin your source can get executed, and that any computed (indirect) call can call any procedure
whose address gets computed. However, PL/M-51 looks only at the module being compiled; it ignoresthe
possibility of various sneaky calls that use other modules to set up an intramodule call. Thus, the compiler
can get into trouble. The two instances of compiler trouble are described in Case 1 and Case 2, which
follow.

CASE 1: aCALL is made to another module, which (directly, or after some more CALLS) causesa CALL
to a procedure in the module being compiled.

Example 1

MAI N DO
READER: PROCEDURE EXTERNAL; END;

| O ERROR PROCEDURE(...) PUBLIC
END | _O ERROR;
PROC_X:
CALL READER,
END PROC_X:

END MAI N,

while, in another module, you have:

| O ERROR PROCEDURE(...) EXTERNAL; END;
READER: PROCEDURE PUBLI C;

| F ERR_OODE<>0 THEN CALL | O ERROR(...):
END READER
Example 2
MAI N. DG,
READER PROCEDURE(ERR _ PROC. ADDR) EXTERNAL; END;
| O ERROR PROCEDURE;

END | _0_ERROR,
PROC_X:

CALL READER(.1....O ERROR);

END PROC X;
END MAI N;

while, in another module, you have:
READER: PROCEDURE(ERR_PROC_ADDR) PUBLI C;
| F ERR_CODE<>0 THEN CALL ERR PROC_ADDR,
END READER
CASE 2: aniindirect (computed) CALL is made, and a procedure whose address is not computed within the

module being compiled is called but calculated in another module, and re-imported to the module being
compiled.

Example 3

OLD SMUGGLER PROCEDURE WORD EXTERNAL; END OLD SMUGGLER:
SNEAKY: PROCEDURE PUBLI C.

END SNEAKY:

/* SNEAKY never gets conmputed in this nodule! */

X = OLD_SMUGGLER;
CALL X

while, in another module, you have

SNEAKY: PROCEDURE EXTERNAL; END SNEAKY;
OLD. SMJGGELER: PROCEDURE WORD PUBLI C,

RETURN . SNEAKY,;
END;

Since the compiler cannot figure out what other modules are doing, and since too many optimizations
would have to be foregone if the compiler were pessimistic about such CALLS, it assumes they do not
occur. If the CALLs do occur, errors may be introduced. To avoid these errors, the routine should have the
INDIRECTLY_CALLABLE attribute (e.g., in the three examples just given, |_O_ERROR and SNEAKY
should have that attribute).

OPTIMIZE(3)

Under OPTIMIZE(3), the compiler assumes that BASED variables do not overlay non-BASED variables,
and that therefore an assignment to a BASED variable does not alter the value of any non-BASED variable.
This assumption enables the contents N, of the registers (e.g., R4) to be remembered between statements
when they would not be remembered otherwise.

Variables that always share the same address (e.g., such that oneis AT the address of the other) are handled
correctly.

OBJECT / NOOBJECT

OBJECT / NOOBJECT are primary controls with the form:

OBJECT

OBJECT (pat hnane)

NOOBJECT

Default: OBJECT (source-file.OBJ)

The OBJECT control specifies that an object module is to be created during the compilation. The pathname
is astandard operating system pathname that specifies the file to receive the object module. If the control is
absent, or if an OBJECT control appears without a pathname, the object module is directed to the same
device and file name as that used for source input, but with the extension OBJ. Following is an example of
the OBJECT contral.

OBJECT(OTHER. OBJ)

This would cause the object code to be written to file OTHER.OBJ.

The NOOBJECT control specifies that no object module is to be produced. It implies NOCODE.

DEBUG / NODEBUG

DEBUG / NODEBUG are primary controls with the form:

DEBUG

NODEBUG

Default: NODEBUG

The DEBUG control specifiesthat the object module isto contain the statement number and relative
address of each source program statement, and information about each symbol (except EXTERNAL
variables, BASED variables and LITERALLY). Thisinformation may be used later for symbolic
debugging by ICE-51.

The NODEBUG control specifies that thisinformation is not to be placed in the object module.

ROM

ROM isaprimary control. It can have one of three forms:

ROM SMALL)
ROM MEDI UM)

ROM LARGE)
Default: ROV MEDI UV)

Under ROM(SMALL), the compiler assumes that your entire application fits within asingle 2047-byte
chunk that starts on the 2K byte boundary (known in RL5I and ASM51 as a block). The 8051 has specia
2K-byte jumps and CALLS that can only jump within BLOCK to improve code density; no 3-byte CALLs
and jumps are ever generated.

Under ROM (M EDIUM)—the default—the module being compiled is assumed to fit INBLOCK; but, other
modules (including those from PLM51.LIB) can fit anywhere. This forces some CALLsto be long (3
bytes); most of the jumps, however, and some of the CALLS, remain short.

Under ROM(LARGE), no assumptions are made. The code generated will be longer.

REGISTERBANK

REGISTERBANK isaprimary control with the form:

REG STERBANK(bank)

Default: REG STERBANK(0)

where
bank is0,12or 3.

The REGISTERBANK control specifies which of the four 8051 register-banksis to be used in code-
generation. The control can be overridden for a procedure by the USING attribute.

PL/M-51 assumes that an interrupt procedure will always use a different register-bank from the one used in
the procedure it interrupts. Therefore, if you compile the code for each interrupt in a separate module, you
should compile al non-interrupt code under one REGISTERBANK setting, al low-level interrupts under
another, and al high-level interrupts under yet another. This way, you can stay out of trouble without using
the USING attribute.

14.3 Listing Selection and Content Controls
PRINT / NOPRINT
PRINT / NOPRINT are primary controls with the form:

PRI NT

PRI NT(pat hnamne)

NOPRI NT

Default: PRI NT (source-file. LST)

The PRINT control specifies that printed output is to be produced. pathname is a standard operating system
pathname that specifies the file to receive the printed output. Any output-type device, including adisk file,
may aso be given. If the control is absent, or if a PRINT control appears without a pathname, printed
output is sent to afile that has the same name (filename extension .LST) as the sourcefile.

The NOPRINT control specifies that no printed output is to be produced, even if implied by other listing
controls such as LIST and CODE.

LIST/ NOLIST

LIST / NOLIST are genera controls with the form:
LI ST

NOLI ST

Default: LI ST

The LIST control specifies that listing of the source program is to resume with the next source line read.

The NOLIST control specifies that listing of the source program isto be suppressed until the next
occurrence, if any, of aLIST contral.

When LIST isin effect, al input lines (from the source file or from an INCLUDE file), including control
lines, are listed. When NOLIST isin effect, only source lines associated with error messages are listed; the
compilation summary is aso produced.

Note: the LIST control cannot override a NOPRINT control. If NOPRINT isin effect, no listing
whatsoever is produced.

CODE / NOCODE
CODE / NOCODE are genera controls with the form:

CCDE
NOCODE

Default: NOCCDE

The CODE control specifiesthat listing of the generated object code in standard assembly language format
isto begin. Thislisting is placed at the end of the program listing on the listing file.

The NOCODE control specifies that listing of the generated code is to be suppressed until the next
occurrence, if any, of a CODE control.

Note: the CODE control cannot override aNOPRINT control. Also, NOOBJECT implies NOCODE.
XREF / NOXREF

XREF / NOXREF are primary controls with the form:

XREF

NOXREF

Default: NOXREF

The XREF control specifies that a cross-reference listing of source program identifiers and their attributes
are to be produced on the listing file.

The NOXREF control suppresses the cross-reference listing.
The XREF control always implies SYMBOLS.

Note : the XREF control cannot override aNOPRINT control

SYMBOLS/NOSYMBOLS
SYMBOLS/ NOSYMBOLS are primary controls with the form:

SYMBOLS
NOSYMBCLS
Default: NOSYMBOLS

The SYMBOLS control specifies that alisting of all identifiers and their attributesin the PL/M-5 | source
program is to be produced on the listing file.

The NOSYMBOLS control suppresses such alisting.

Note: the SYMBOLS control cannot override a NOPRINT control.

14.4 Listing Format Controls

Format controls determine the format of the listing output of the compiler. The listing
format controls are discussed in the following order:

PAG NG / NOPAG NG
PACELENGTH
PACE W DTH
TI TLE
EJECT
PAGING / NOPAGING
PAGING/NOPAGING are primary controls with the form:
PAG NG
NOPAG NG
Default: PAG NG

The PAGING control specifies that the listed output is to be formatted onto pages.
Each page carries a heading identifying the compiler and a page number, and possibly a user specified title,

The NOPAGING control specifies that page € ecting, page heading, and page numbering are not to be
performed. Thus, the listing appears on one long page suitable for a slow serial output device. If
NOPAGING is specified, apage gect is not generated if an EJECT control is encountered.
PAGELENGTH

PAGELENGTH isaprimary control with the form:

PACGELENGTH (| engt h)

Default: PAGELENGTH(60)

where

length isaninteger specifying the maximum number of lines .to be printed per page of listing
output. The number includes the page headings appearing on the page.

PAGE WIDTH
PAGE WIDTH isaprimary control with the form:
PAGEW DTH(wi dt h)
Default: PAGEW DTH(120)
where
width isaninteger specifying the maximum line width, in characters, to be used for listing
output width must be between 78 and 132.
TITLE
TITLE isagenera control with the form:

TITLE (text)

where
text is a header-text that is to appear at the head of each page.

The default title is the module name. Titles must be 60 characterslong or less. Each time a STITLE control
appears, anew pageis begun.

EJECT

EJECT isageneral control with the form:

EJECT

EJECT terminates printing of the current page and starts a new page. The control line containing EJECT
control isthe first printed line (following the page heading) on the new page.

14.5 Program Listing

During the compilation process, alisting of the source input is produced. Each page of the listing carries a
numbered page-header that identifies the compiler and optionally gives atitle and / or a date.

The listing begins with the compiler identification. The command line used to invoke the compiler is then
reproduced.

The listing contains a copy of the source input plus additional information. Two columns of humbers
appear to the left of the source image. The first column provides a sequential numbering of PL/M-5 |
statements. Error messages, if any, refer to these statement numbers. The second column gives the block
nesting depth of the current statement.

Lines included with the INCLUDE control are marked with an equals sign () just to the left of the source
image. If the included file contains another INCLUDE control,

linesincluded by this nested INCLUDE are marked with = I. For yet another level of nesting, = 2 isused to
mark each line, and so forth up to the compiler’ s limit of five levels of nesting. The markings make it easy
to see where included text begins and ends.

If asource lineistoo long for the page, it will be continued on the following line. Continuation lines such
asthis are marked with a hyphen (-) just to the left of the source image.

The CODE control may be used to obtain the 8051 assembly code produced in the trandlation of each
PL/M-5 | statement. This code listing appears after the source text in six columns of information in a
pseudo-assembly language format:

1. L ocation counter (hexadecimal notation)

Resultant binary code (hexadecimal notation)

Label field

OPCODE mnemonic

Symbolic arguments

Comment field

ok wN

Not all six of these columns will appear on any one line of the code listing. Compiler generated labels (e.g.,
those which mark the beginning and end of a DO WHILE loop) contain a question-mark (?). Labels from
PLM51.LIB (used, for example, to divide words) also contain a question mark.

14.6 Symbol and cross-reference Listing

If specified by the XREF or SYMBOLS control, a summary of all identifier usage
appears after the program listing.

Six or seven types of information are provided in the symbol or cross-reference listing. The number
depends upon whether the SYMBOLS or XREF control was used to request the identifier usage summary.
Among the types of information are:

Statement number where identifier was defined

Size of object identified (in bytes)

The identifier

Attributes of the identifier

Statement numbers where identifier was referenced (XREF control only)

grwONE

Note: asingle identifier may be declared more than once in a source module (i.e., an identifier defined
twice in different blocks). Every unique object, even though named by the same identifier, appearsas a
separate entry in the listing.

Identifiersin the SYMBOLS or XREF listing are given in aphabetical order.

14.7 Warnings and Compilation Summary

The following line gives the number (if any) of indirect (computed) callsin the module.

The following line gives the number (if any) of BASED variables declared without an explicit suffix.
n DEFAULTED BASED VARl ABLES

The following line gives the number (if any) of the highest-numbered INTERRUPT procedure in the
nmoldgl e;I'HE Hl GHEST USED | NTERRUPT

The following is a compilation summary.

‘ SCODE' OVERRI DDEN - ‘ SNOOBJECT' | N EFFECT
“$XREF' | GNORED - NOT ENOUGH MEMORY

CODE SIZE gives the size in bytes of the executable-code section of the output module.

CONSTANT SIZE givesthe sizein bytes of the constants section of the output module.

DIRECT VARIABLE SIZE givesthe size in bytes of the direct-access on-chip RAM (MAIN) section (i.e.,
RL5I DATA segments) of the output module. It appearsas X + Y, where X is the non-overlayable part, and
Y isthe overlayable part.

INDIRECT VARIABLE SIZE givesthe sizein bytes of the indirect-access on-chip RAM section (IDATA
segments) of the output module. Format is the same as for direct variable size.

BIT SIZE givesthe sizein hits of the BIT section of the output module. Format is the same as for direct
variable size.

BIT-ADDRESSABLE SIZE givesthe sizein bytes of the BITADDRESSABLEDATA section (see
BITADDRESSABLE” inthe MCS-SI Utilities User’s Guide) of the output module. Format is the same as
for direct variable size.

AUXILIARY VARIABLE SIZE givesthe sizein bytes of the off-chip RAM section of the output module.

MAXIMUM STACK SIZE gives an upper bound on the size in bytes of the stack section required for the
output module.

Each of these sizes appears on a separate line. If any of these values has not been computed in a
compilation (due to errors, or—for code size—due to a NOOBJECT control) such values will appear as
question-marks.

REGISTER-BANK(S) USED: — gives the register banks used by the module.

Theitems up to this point will be suppressed if any syntax errors are present.

LINES READ gives the number of source lines processed during compilation.

PROGRAM ERRORS gives the number of error messages issued during compilation.

The sign-off message appears at the end of the compilation listing.

14.8 Source Inclusion Controls

Source inclusion controls alow the input source to be changed to a different file. The source inclusion
controls are;

| NCLUDE

SAVE / RESTORE

INCLUDE

INCLUDE isagenera control with the form:
| NCLUDE (pat hnane)

where
pathname is astandard operating system pathname specifying afile.

An INCLUDE control must be the rightmost control in a control line.

The INCLUDE control may not appear in the invocation line. It terminates processing of primary controls
in the source.

The INCLUDE control causes subsequent source lines to be input from the specified file. Input will
continue from thisfile until an end-of-file is detected. At that time, input will be resumed from thefile
which was being processed when the INCLUDE control was encountered.

An included file may itself contain INCLUDE controls. Note: such nesting of included files may not
exceed a depth of five.

SAVE / RESTORE

SAVE / RESTORE are general controls with the form:

SAVE
RESTORE

These controls alow the settings of certain general controls to be saved on a stack before an INCLUDE
control switches the input source to another file, and then to be restored after the end of the included file.
However, SAVE and RESTORE can be used for other purposes as well. The controls whose settings are
saved and restored are:

LI ST/ NOLI ST
CODE/ NOCODE

The SAVE control saves all of these settings on a stack. This stack has a maximum capacity of five sets of
control settings, which corresponds to the maximum nesting depth of five for the INCLUDE control.

The RESTORE control restores the most recently saved set of control settings from the stack.

14.8 Conditional Compilation Controls

Conditional compilation controls allow different portions of the source code to be compiled depending on
conditions known at compile time. SET and RESET are

genera controls used to set the least significant bit of various “switches.” These can then be combined in a
limited way to form conditions that can be tested by the IF and EL SEIF controls. The results of the test then
determine which portions of code are compiled.

Conditional compilation controls have a variety of uses. For example, consider a program that will be
ported to different architectures, or one that contains severa features that may or may not be required
depending on the implementation. Rather than writing a separate program for each particular case, asingle
program can be written that uses conditional compilation to select the portions of code to be compiled
according to the requirements.

IF / ELSEIF / ELSE / ENDIF

These controls provide the actual conditional capability. Like genera controls, they may appear anywhere
in the source program. However, they are meaningless (and erroneous) when used in the invocation of the
compiler. In addition, each conditional control must be the only compiler control in its control line.

The simplest form of a conditional compilation statement is:

$I F condition
t ext
$ENDI F

Here, condition is evaluated and if the least significant bit is | then text is compiled.
Otherwise, text is skipped and compilation resumes after the ENDIF.

The next form of conditional compilationiis:

$IF condition
textl

$ ELSE
text2

$ END F

Here, condition is evaluated and if the least significant bit is 1 then text 1 is compiled and compilation
resumes after the ENDIF. If the least significant bit is 0, however, text2 is compiled instead of texti.

The most general form of conditional compilationis:

$I F conditionl
textl

$ ELSE | F condition2
text2

$ ELSE | F condition3
text3

$ ELSEIF condition n
text n

$ ELSE
text n + 1

$ END F

Here, each condition is evaluated until the first one is found with least significant bit 1. The corresponding
text isthen compiled and compilation resumes after the ENDIF. If, however, al conditions had least
significant bits equal to O, then the text following the EL SE (if any) is compiled and compilation resumes
after the ENDIF.

Conditional compilation selections are made using limited expressions containing switches. A switchisa
name formed according to the PL/M-51 rules for identifiers, that is, it cannot be a keyword. In particular, a
switch. may be another identifier in the program. In a conditional compilation statement, each condition isa
limited form of PL/M statement. The only operators allowed are OR, AND, and NOT. The only operands

allowed are switches. Parenthesized subexpressions are not permitted. In addition, a carriage return must
follow each condition.

Thetext in conditional compilation statements may be a mixture of PL/M-5 | source code and compiler
controls. However, if any text is skipped, any controls within it are not processed.

SET / RESET

These are general controls. They have the following form:

$ SET (switch[,...])
$ RESET (switch[,...])

Here, each switch is an identifier as described above.

SET assigns 1 to the least significant bit of each switch , RESET assigns 0

Object Module Sections 15

Although the most important output of the PL/M-51 compiler is the output object file, the program
development process does not require that the user be concerned with the content and structure of that file.
However, knowledge of this file may help the user to have a better understanding of RLSI output and thus
overcome RLSI problems, if they develop. This chapter describes the various entities of the object file,
paying particular attention to PL/M-5I generated symbols. The terminology used in this chapter follows
ASM51 and RL51: prior experience with those products will help in understanding this chapter.

If al you want to do iswrite pure PL/M-5| code, or if you have not yet read the RL51 documentation, this
chapter will be of very limited use to you.

The object file generated by PL/M-51 consists of one module, which contains segments (memory areas

definition), linkage information (i.e., PUBLICs and EXTERNALS), debug information, and the image of
the executable code.

15.1 Modules

The name of the module generated by PL/M-51 is the same as the user given module name. RL51 will
mention this module as one of the input modules when the object file participates in a linkage process.

15.2 Segments
Segments are generated by PL/M-51 as needed by the user declarations. Segment names are of the form
? module? XX
or
? module? XX?Z
where
module isthe module name (as given by the user).
XX isatwo character code indicating address space, as shown in table |S-I.
Z isadigit (0-3) that reflects the register bank, which must be used when this segment is
accessed (this register bank is determined by the active USING attribute or by the
REGISTERBANK primary control). This digit suffix is used for on-chip RAM segments

only; such segments contain data that islocal within DO blocks or procedures.

As stated before, segments are generated only if needed. For example, the module XY Z only contains the
segment ?XY Z?XD if at least one non-absolute AUXILIARY variable exists.

The two-letter coeds are explained in table 15-1

Table 15-1. Address Space Codes

Code Segment Type (RLSI) Source Suffix (PL/M-51)
(address space)
PR CODE - executable code -
CO CODE CONSTANT
XD XDATA AUXILIARY
DA DATA MAIN
ID IDATA IDATA
Bl BIT BIT
BA DATA BITADDRESSABLE - structure with BIT members -

Each declaration of an absolute symbol (i.e., of a symbol declared AT an absolute address) will result in an
absolute segment definition. Absolute segments have no names.

Most of the generated segments have a rel ocation attribute of UNIT. This means that they may be located at
any available place in the appropriate address space. However, the two exceptions to this are:

1 The PRogram segment will usually have the INBLOCK relocation type. which means that it must
be located within aBLOCK (a 2047-byte chunk that begins on a 2K boundary). This restriction on
the relocation type enables the compiler to generate s/ ion branches within the module which
occupy 2 bytes each instead of 3 (ACALL or AIMP instead of LCALL or LIMP). The PRogram
segment will only have the UNIT attribute if the module is compiled under the RONI(LARGE)
control.

2. Another (less frequent) exception isthe DATA BITADDRESSABLE segments (BA), which are
generated for structures with BIT members, and have the BITADDRESSABLE relocation type.

Segments appear in the RL51 link map, along with their names (for relocatable segments only), their
attributes, and their final location within the machine memory.

15.3 Linkage Information

The compiler inserts two groups of PUBLIC ‘and EXTERNAL symbol definitions into the object file. The
first group consists of al the user defined symbols. the second group consists of compiler generated

symbols. While the first group is self explanatory, the second deserves elaboration.

There are three kinds of compiler-generated symbols:

1. The parameter-list area
2. PLM51.LIB run-time routines
3. Reset and interrupt vectors

The name of the parameter list areais of the form ?procname?BIT or ?procname?BY TE. These names are
used for passing parametersto an EXTERNAL procedure. Since PL/M-51 passes parameters directly
through memory (rather than through registers or the stack), the parameter area must be known to the
calling module (in which the called procedure is declared as EXTERNAL) and to the PUBLIC procedure
aswell. PL/M does this by making those areas PUBLIC. If PROCI is a public procedure that accepts BY TE
and BIT parameters, the byte parameters are passed starting at ?PROCI ?BY TE, and the bit parameters are
passed starting at ?PROCI?BIT (see Appendix G).

External symbols of the form 2POOxx, where xx is atwo digit number, are the names of run-time routines,
the names are used to pull these routines out of PLM51.LIB. The compiler uses run-time routines when
implementation of an operation using in-line code may be too wasteful.

External symbols of the form 2PIVnn or 2PIPnn, and public symbols of the form ?PIHNN and ?PSWnn are
used for implementing the reset, vector and the interrupt vectors. If nnisthe string “OR,” then the symbols
are used to implement the reset vector; otherwise, they must constitute a two-digit decimal number and are
used for handling that interrupt number. For instance, ?PIVOl isan EXTERNAL generated to pull the
prolog of theinterrupt | handler from PLM51.LIB. Appearance of such externals indicates that the module
has a service routine for interrupt 1. The ?PIHOI and ?PSWOI public symbols must appear if ?PIV0l was
used; ?PIHOI is the address of the user-written interrupt handler procedure (i.e.. equals the address of the
procedure with the INTERRUPT | attribute). 2PSWOI is the required setting of the PSW for that handler,
as determined by the USING attribute of the user procedure. See Appendix H for a further explanation.

All symbols (user symbols and generated symbols), will appear in the IXREF listing of RL51. In addition,
if the module is compiled under the DEBUG option, user symbols will appear in the RL5I symbol table,
and will be known to the symbolic debugger (ICE-51).

15.4 Debug Information

As mentioned in Chapter 14. amodule that is compiled under the DEBUG option contains debug
information. This information, updated by RL51 and the source for the RL51 symbol table, is passed to the
final loadable object module, and is available to the symbolic debugger. Debug information comprises the
address and type of al local and public symbols that were declared by the user, line numbers and their
addresses, and scope information (start and end of modules and procedures).

Error Messages 1 6

The compiler issues five varieties of error messages:

Source PL/M-5 1 errors

Fatal command tail and control errors
Fatal input / output errors

Fatal insufficient memory errors

Fatal compiler failure errors

Source errors are reported in the listing only; fatal errorsin the listing and on the console.

16.1 Source PL/M-51 Errors

Nearly all of the source PL/M-5 | errors are interspersed in the listing at the point of error and resemble the
following general format:

***ERROR #mmm STATEMENT #nnn, LINE LLL, IN FILE fff, NEAR ‘aaa,’ message

where
mmm is the error number from thelist in section 16.6.
nnn is the source statement number where the error occurs,
LLL is aline number.
fff isan INCLUDE file name.
aaa is the source text close to where the error is detected.
message isthe error explanation from the list in section 16.6.

Any of the above information that is not applicable is deleted from the message.

16.2 Fatal Command-Tail and Control Errors

All errorsin the command tail, or in the primary-control lines of the sourcefile, are fatal. The error-
message appears on the console only. The error-message consists of the invocation-line up to the point
where the offending control occurred, followed by a pound-sign(#), and aline describing the error (e.g.,
unrecognized control).

16.3 Fatal Input / Output Errors

If an operating system | / O error occurs during compilation, the compilation aborts, with an error-message
on the console. Itsformat is:

PL/ M 51: |/ O ERROR

FI LE: capacity in which file appears (e.g., OBJECT)
NANE: nane of file involved in error

ERROR: nunmber & identification of error

COWPI LATI ON TERM NATED

16.4 Fatal Insufficient-Memory Errors

If the compiler runs out of memory during compilation, afatal error results. The error messages produced
by insufficient memory errors have the same format as source PL/M-51 errors.

16.5 Fatal Compiler Failure Errors

Compiler-failure errors indicate that something is wrong with your compiler. They should never occur. The
error message has no information in it that you can use.

16.6 Error Messages
Following isthe list of error messages.

20 SYNTAX ERROR

21 IDENTIFIER TOOLONG

22 UNPRINTABLE CHARACTER
23 EOF IN STRING

24 STRING TOO LONG

25 INVALID DIGIT

26 NUMBER TOO LARGE~

27 NUMBER TOO LONG

28 INVALID NUMBER TY PE
29 EOF IN COMMENT
30 ILLEGAL PL/M-S1 CHARACTER

31 MISPLACED UNDERSCORE
32 ERROR IN CONTROL LINE

34 ‘SAVE'SNESTED TOO DEEP

35 ‘RESTORE’ WITHOUT MATCHING ‘SAVE’
37 ‘LITERALLY’SNESTED TOO DEEP

38 ‘INCLUDE’'SNESTED TOO DEEP

39 LINE TOO LONG

40 SYNTAX ERROR

41 EXPRESSION TOO COMPLICATED
42 EOF BEFORE ‘END’ OF MODULE
43 TEXT AFTER ‘END’ OF MODULE

44 INVALID MODULE HEADER

45 INVALID INTERRUPT NUMBER

46 DUPLICATE INTERRUPT ATTRIBUTE
47 INVALID REGISTER-BANK NUMBER

48 DUPLICATE REGISTER-BANK ATTRIBUTE

50 TOO MANY MEMBERS IN FACTORED DECLARATION
51 TOO MANY MEMBERS IN FACTORED DECLARATION
52 ILLEGAL STAR DIMENSION

53 STRUCTURE WITHIN STRUCTURE

54 TWO MEMBERSWITH SAME NAME

55 NOT AT MODULE LEVEL

56 CONFLICTING ATTRIBUTES

57 ILLEGAL REDECLARATION

58 ILLEGAL ATTRIBUTE FOR LABEL

59 ILLEGAL ATTRIBUTE FOR REGISTER
60 INVALID REGISTER ADDRESS

61 ILLEGAL ATTRIBUTE FOR PARAMETER

62 ILLEGAL ATTRIBUTE OF THE AT VARIABLE

63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
96
97
98
100
101
110
111
112
113
114
115
116
117
118
119
120
121
122
123

ROM OR AUXILIARY VARIABLESMAY BE BASED ONLY ON WORDS
ILLEGAL ATTRIBUTE FOR BIT

ILLEGAL ADDRESS-SPACE FOR BIT

ILLEGAL ATTRIBUTE FOR ‘LITERALLY’

FACTORED ‘LITERALLY’

BITSAND NON-BITS IN ONE STRUCTURE

ILLEGAL ‘AT’

UNDECLARED IDENTIFIER

IDENTIFIER ISOUT OF SCOPE

NOT A SIMPLE VARIABLE

ILLEGAL STRUCTURE REFERENCE

NON-EXISTENT MEMBER

NOT A VARIABLE

ILLEGAL USE OF LABEL

INVALID SUBSCRIPT

MULTIPLE SUBSCRIPTS

WRONG NUMBER OF PARAMETERS

TWO PARAMETERS EXPECTED

ONE PARAMETER EXPECTED

‘LENGTH’ AND ‘LAST" REQUIRE AN ARRAY, NOT AN ARRAY MEMBER
‘LENGTH" AND ‘LAST' REQUIRE AN ARRAY AS PARAMETER
ILLEGAL USE OF ‘SIZE’

MISSING INDEX

MISSING MEMBER

CALL TO A TYPED PROCEDURE

‘CALL’ MUST BE FOLLOWED BY A PROCEDURE NAME OR A WORD VARIABLE
NO PARAMETERS ALLOWED IN A COMPUTED CALL

EXPRESSION TOO COMPLICATED

EXPRESSION TOO COMPLICATED

SYNTAX ERROR

SYNTAX ERROR

STRING LENGTH HERE MUST BE1 OR 2

‘IFF NESTED TOO DEEP

SYNTAX ERROR

INVALID PROCEDURE REFERENCE

DECLARE STATEMENT IN THE EXECUTABLE PART OF A BLOCK
PROCEDURE DECLARATION IN THE EXECUTABLE PART OF A BLOCK
BLOCKS NESTED TOO DEEP

SYNTAX ERROR

SYNTAX ERROR

THIS PROCEDURE CONTAINS AN UNDECLARED PARAMETER

THIS EXTERNAL PROCEDURE CONTAINS EXECUTABLE STATEMENTS
NO RETURN IN TYPED PROCEDURE

TYPED RETURN IN UNTYPED PROCEDURE

UNTYPED RETURN IN TYPED PROCEDURE

UNDEFINED LABEL

GOTO TO NON-LABEL

LABEL ISBEING REDEFINED--IT MUST BE EXPLICITLY REDECLARED
MISMATCHED IDENTIFIER AFTER ‘END’

MISMATCHED IDENTIFIER AFTER ‘END’

EXTERNAL LABEL REDEFINED LOCALLY

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
166
167
169
170
171
172
173
174
175
176
177
178
179
180

ILLEGAL DECLARATION INSIDE AN EXTERNAL PROCEDURE
INVALID OPERAND FOR ‘. OPERATOR

EITHER THISMUST BE A SIMPLE VARIABLE OR AN INDEX IS MISSING
TOO MANY PROCEDURES

ILLEGAL ARRAY DIMENSION

ILLEGAL INITIALIZATION

STAR DIMENSION WITHOUT INITIALIZATION
VALUEMUST FITIN ABYTE

ASSIGNMENT TO ROM

NON-BIT REQUIRED

BIT REQUIRED

ILLEGAL BIT OPERATION

MIXED BIT AND NON-BIT OPERANDS

MIXED BIT AND NON-BIT TARGETS

NON-BIT ASSIGNED TO BIT

BIT ASSIGNED TO NON-BIT

MEMBER NAME NOT PRECEDED BY ITS STRUCTURE NAME
MAXIMUM 84 CASESIN A CASE STATEMENT

A DIRECT ADDRESS IN RAM ISAT MOST 127

AN ADDRESS IN RAM ISAT MOST 255

INTERRUPT NUMBER REUSED

INTERRUPT PROCEDURES MAY NOT BE CALLED

THE CALLED PROCEDURE USES A DIFFERENT REGISTER-BANK
INTERRUPT PROCEDURES MAY NOT HAVE PARAMETERS
THE ‘AT’ VARIABLE ISIN A DIFFERENT ADDRESS-SPACE
A PUBLIC VARIABLE AT AN EXTERNAL ONE

MISPLACED DOLLAR

PARAMETERS EXPECTED

BITSOR BASED VARIABLESNOT ALLOWED HERE
THISIDENTIFIER MUST BE A VARIABLE OR REGISTER
INITIAL VALUE FOR AN EXTERNAL VARIABLE
INTERRUPT PROCEDURES MAY NOT BE TYPED
INITIALIZATION FOR MORE VARIABLES THAN DECLARED
RECURSION ISNOT ALLOWED

THE BIT-ADDRESSABLE ADDRESSES ARE 32 TO 48

THE ‘AT’ VARIABLE MUST BE A BIT STRUCTURE
INVALID COMMAND LINE; TOKEN TOO LONG

INVALID COMMAND LINE SYNTAX

INVALID FILE NAME

NOT A DISK FILE

INVALID CONSTANT

INVALID KEY WORD

FILE USED IN CONFLICTING CONTEXT

PRIMARY CONTROL RESPECIFIED

TOO MANY SAVES

RESTORE WITHOUT MATCHING SAVE

INVOCATION LINE TOO LONG

PREMATURE EOF

| / O ERROR

CONTROL LINE TOO LONG

INVALID OPERAND OR OPERATOR IN IF CONTROL
MISPLACED ELSE CONTROL

MISPLACED ENDIF CONTROL

INVALID SET OR RESET PARAMETER

TOO MANY ERRORS

181
182
183
190
200
201
202
203
204
205
210
211
212
213
214
255

DYNAMIC MEMORY OVERFLOW

INTERNAL ERROR

INCOMPATIBLE OVERLAY VERSION
STATEMENT TOO COMPLICATED

DATA SPACE OVERFLOW

IDATA SPACE OVERFLOW

BIT SPACE OVERFLOW

STACK SPACE OVERFLOW

ROM SPACE OVERFLOW

OFF-CHIP RAM SPACE OVERFLOW

TOO MANY EXTERNAL SYMBOLS

PROGRAM CODE GREATER THAN 2047 BY TESUSE ROM (LARGE)
PROGRAM CODE OVERFLOW

ROM SPACE OVERFLOW

CONSTANT ‘AT’ OUT-OF-BOUNDS ADDRESS
INTERNAL ERROR--UNKNOWN ERROR CODE

Grammar of the PL/M-51 Language A

This appendix lists the entire syntax of the PL/M-51 language in BNF-like form Since BNF syntax has
been designed for convenience in constructing concise and rigorous definitions, it is often quite unreadable.
To make it shorter and easier to understand, atextual definition is sometimes given (as a PLM-style
comment). Also, since the semantic rules are not included in the syntax rules, the BNF permits certain
constructions that are not actually allowed. Again. PLM-style comments are sometimes used to explain
semantic dependencies.

A sequence of three periods (...) is used to indicate that the preceding syntactic element may be repeated
any number of times. Curly brackets are used to indicate that exactly one of the items stacked vertically
between them is to be used. Square brackets indicate that whatever is between them may be omitted.
Square brackets containing a comma and ellipses[,...] indicate that the preceding syntactic element may be
repeated, but each repetition must be separated by a comma.

madule = name: DO tipek
biock = |gect-part | |execule-part | END |bfock-name) :

deciare-sum
decF-pan‘-i['] I.

procenure-biock
procedure-biack = proz-hesoer Hlock

PUBLIC
B1T CITERMAL
proc-header = ngme. PROCEDURE lparams“[B'll'!]ll IRDIRECTLY_CALLABLE). ..
WIRD THTERRUPT number
USTHG number

params = Cnama .|}
varables
doctarg-stmt = DECLARE { /abels Il

iiteral

ingrel = name LITERALLY string

mamea PLBLIC
Jabefs=| } LABEL | I]|
{name|...|] EXTERNAL
BEIT
. one-var T lnumuer} 5 BYTE
varigbies = . * WORD .
fong-var|.. |}t STRUGCTURE membars
MALRN
PUBLIC . iDaTH
| 1187 trestrictec-expr) | |4 REGISTER]
EXTERNAL AUXILLARY

CONSTART [imit]

ong-var = name |BASED smpie-var |

members = (one-mem-or-lew|.,..|)

name BIT
one-mem-or-few - {tnumber)| { BYTE
(namel....|) WORD
string
mit -~ ... 1)

restricted-expr

execute-part - |exec-stmt |...

sunple-stmt
exec-stmt = label-name: |.. § #-stmt
do-stmt
assignment A

G0T0 ‘abel-name
Cd TO0 apelname
CALL proc-name | (param-value {1
CALL simple-var
RETURN expr
ENABLE
\ DISABLE J

simple-stmit - P

param-vaiue expr
assignment - var-ref|.. = expr
hstmt, 1F expr THEN exec-stml [ELSE exec-simt

DO : biock
do-stmt - J DB CASE expr: exec-stmtexec-block

' B0 WHILE expr: exec-block

DO simple-var « expr TO expr|BY expr| ; exec-biock

exec-block |execute-part| END {biock-name | :
AND

expr = |NOT| boolean-element {0 R INDT| boolean-element |...
I0R

boolean-element operand|) <3 { operand |

b
[
{ 3
L]
operand ~ primary | J i ;primary |...
MoD
PLUS

var-ref

* number
primary - | | £ address-ref
- short-string

Cexpr)

var-name | { subscript} |)
var-raf Structure-name | Usubscript)] . member-name | (subscrpt) |

proc-name { { param-vaive |, | }}

subscript - expr

Lvar-ref
addrass-ref
. Leonstant |, |}
number
constant =
string

short-string = stng 'of tlength 1 or 277

ladd-or-sub | constant |add-or-sub constant |
réstrcted-expr - restnicted-rel |agdo-or-sub constant |

add-or-sub

var | (im-exp}}
restricted-raf
structure-name | (im-exp)| . | (member-name |{im-exp)||

am-exp constant |add-or-sub constant |

var-narme
simple-var - {'may not be BASED~/
struciure-name . member-name

var-name = name [*of a varsabie alrcads declared (see deci-stit)%/
Structure-name = name [*ol a structure alreads declured (e decl-stmt 1’/
member-name = name /"ol u structure member already declared twee deck-stmt yf

proc-name = name {*ula procedure wlready deckared (see procedure-block v f
label-name = name f'of . labe! (~cc exec-stmt and labels '/
block-name = name {*ul a block : proc-name (v procedure blocks. the fabel

preceding the DO for ald other block*f
name = letter {letter-or-digit-or-special |...
letter-or-dhgit-or-special = {*one uf these: letter, decimak-digit. 3. _°f
string = *|i prmrabfe-exc.;epr-quore | il |

prirdabie-except-quote = [uny printable character and alw tab,
carriage-return, and line-feed, but nol i guote*f

number =

binary-digit
octai-digit

binary-digit | [binary-digit] (%)
octal-digit 1 [octal-digit) [
octat-digit [[octaldigit} %1}
decimal-digit I [decimal-digit] [1
decimal-cigit U [hexa-digitl L%

=, 0or
=foncolthese: 0, t, 2, 3,

decimal-digit = [* onc of these: octal-digit, B, 9

haxa-digit

= [* one ol Lhese: decimal-digit, A ,

4,

B,

]
]
i
1
i

5,

L,

D,

.
B

..

v

Program Constraints B

Certain fixed size tables within the compiler constrain various features of a user program to certain
maximums. These limits are summarized below:

Nesting of LITERALLY invocations 5
Nesting of INCLUDE controls 5
Nesting of blocks 16
Number of elementsin afactored list 32
Number of charactersin an input line 122
Length of a string constant 254
Number of casesin aDO CASE block 84
Number of EXTERNAL items 255
Number of non-EXTERNAL proceduresin amodule 254

Number of (10-character) namesin amodule appr. 700

ADDRESS
AND

AT
AUXILIARY
BASED

BIT

BY

BYTE
CALL
CASE
CONSTANT
DECLARE
DISABLE
DO

ELSE
ENABLE
END
EXTERNAL
GO

GOTO
IDATA

IF

PL/M-51 Reserved Words C

These are the reserved words of PL/M-51. They may not be used as identifiers.

INDIRECTLY_CALLABLE
INTERRUPT
LABEL
LITERALLY
MAIN
MINUS
MOD

NOT

OR

PLUS
PROCEDURE
PUBLIC
REGISTER
RETURN
STRUCTURE
THEN

TO

USING
WHILE
WORD

XOR

Predeclared Identifiers D

These are the identifiers for the built-in procedures. If one of these identifiersis declared in a DECLARE
statement, the corresponding built-in procedure becomes unavailable within the scope of the declaration.

BOOLEAN ROL

DEC ROR
DOUBLE SCL
EXPAND SCR

HIGH SHL

LAST SHR
LENGTH SIZE

LOW TESTCLEAR

PROPAGATE TIME

Differences between PL/M-80 E
and PL/M-51

Most PL/M-80 programs cannot be used as PL/M-5I programs unless they are modified. Approximately
ninety-five percent of the statementsin a PL/M-80 program need no modifications whatsoever. The main
changes to keep in mind are memory, 1/O, interrupts, bits, overlaying variables, and words al of which are
discussed in the following paragraphs.

E.1 Memory

The biggest difference between the 8080/8085 and the 8051 (and hence between their PL/Ms) is the way
memory is organized. The 8080 has a single memory, from byte 0 to byte 65535. Therefore, a PL/M-80
variable has atype and an address nothing more.

The 8051 has more than one memory: it has on-chip RAM. off-chip RAM, and ROM, and if you specify a
BYTE at address 17. it can till bein one of 3 places (it is like specifying --140 main street’ without
naming the town: or phone number 555-1212 without an area code). Therefore, a PL/M-51 variable has a
type, an address, and a suffix specifying the memory space it occupies. If you do not specify a suffix.
NIAIN is assumed. If you want to use the PL/M-X0 DATA initialization (renamed to CONSTANT).
CONSTANT isassumed. Thus, in an application without off- chip RAM (alias AUXILIARY). most non-
BASED declarations get you the memory you want. But. BASED declarations are dangerous. For example.
if you get the message ~3 defaulted based variables make sure these 3 declarations do what you want.

E.21/0

The 8051 has no 1/0 operations:. al 1/0 is done using special-function registers, which are variables at on-
chip RAM (or BIT) addresses 128-255. To read port 0 and copy it to port 1, write the following in ASMSI:

MOV P1,PO

PL/M-51 has no /O operations either. It lets you declare the hardware registers you want to use (e.g..
DECLARE PCON AT(87H) REGISTER). or the easier option $INCLUDE afile of such declarations:
when available, this kind of file will be supplied for every member of the MCS-51 family.

Once the REGISTER variables are declared and if your PL/M-51 program wants to copy port O to port 1
you can write P1 = PO.

E.3 Interrupts

8051 has 4 register-banks. PL/M-5I assumes that you will never let an interrupt procedure use the same
bank as the procedure it interrupts; total chaos can result if you do. The USING attribute of a procedure, or
the $SREGISTERBANK control, can be used to ensure that you never let an interrupt procedure use the
same bank as the procedure it interrupts. To avoid any problems, use one register-bank for non-interrupt
code, one for low-priority interrupts, and one for high-priority interrupts.

E.4 Bits

In order to use the 8051’ s Boolean processor, PL/M-51 has aBIT datatype. BITs are 1 bit long, and can be
1 (true) or O (false). The results of comparisonsin PL/M-51 are of BIT type, rather than BYTE, asin PL/M-
80. Automatic conversions to/from BITs do not occur; you must explicitly use the applicable built-hi
functions.

E.5 Overlaying Variables

Since MAIN and BIT memory is extremely scarce, the default setting of the $OPTIMIZE control lets the
compiler overlay the variables of any two different procedures or DO blocksif it is sure they both cannot
be active simultaneously (see SOPTIMIZE(2) in Chapter 14). Thus, you have to start thinking like an
ALGOL or Pascal programmer unless you have RAM to spare: the variables of a procedure or DO block
become undefined upon procedure exit.

E.6 Words

A minor point isthe order of bytes within aword. In PL/M-5I, unlike PL/M-80, the first byte of aword
contains its high-order byte. Thus, if a WORD variable has value 1234H, itsfirst byte will be 12H and its
second will be 34H. If you avoid overlaying BY TEs on top of WORDS, this should not affect your
program.

ASCII Codes F

ASCII HEX PL/M-51 ASCII character HEX PL/M-51
character Character ? character ?
NUL 00 no @ 40 YES
SOH 01 no A 41 YES
STX 02 no B 42 YES
ETX 03 no C 43 YES
EDT 04 no D 44 YES
END 05 no E 45 YES
ACK 06 no F 46 YES
BEL 07 no G a7 YES
BS 08 no H 48 YES
HT 09 no | 49 YES
LF 0A no J 4A YES
VT oB no K 4B YES
FF ocC no L 4C YES
CR ob no M 4D YES
SO OE no N 4E YES
Sl OF no (e} 4F YES
DLE 10 no P 50 YES
DCI 11 no Q 51 YES
DC2 12 no R 52 YES
DC3 13 no S 53 YES
DC4 14 no T 54 YES
NAK 15 no U 55 YES
SYN 16 no \% 56 YES
ETB 17 no W 57 YES
CAN 18 no X 58 YES
EM 19 no Y 59 YES
SUB 1A no z 5A YES
ESC 1B no [5B No
FS 1C no \ 5C No
GS 1D no] 5D No
RS 1E no n 5E No
Us 1F no _ 5F YES
Space 20 YES) 60 No
! 21 no a 61 YES
“ 22 no b 62 YES
23 no c 63 YES
$ 24 YES d 64 YES
% 25 no e 65 YES
& 26 no f 66 YES
, 27 YES g 67 YES
(28 YES h 68 YES
) 29 YES | 69 YES
* 2A YES j 6A YES
+ 2B YES k 6B YES
, 2C YES | 6C YES
- 2D YES m 6D YES
. 2E YES n 6E YES
/ 2F YES (o} 6F YES
0 30 YES p 70 YES
1 31 YES q 71 YES
2 32 YES r 72 YES
3 33 YES S 73 YES
4 34 YES t 74 YES
5 35 YES u 75 YES
6 36 YES \Y 76 YES
7 37 YES w 77 YES
8 38 YES X 78 YES
9 39 YES y 79 YES
: 3A YES z 7A YES
; 3B YES { 7B No
< 3C YES | 7C No
= 3D YES } 7D No
> 3E YES ~ 7E No
? 3F no DEL 7F No

Interfacing PL/M-51 to ASM51 G

The segments and PUBLICs generated by the PL/M-51 compiler must have names. A user who writes only
PL/M-51 code may ignore all of these names. A user who interfaces PL/M-51 with ASM51 must know the
naming conventions for PUBLICs.

The naming conventions for PUBLICs are described in the following paragraphs.

G.1 Calling Sequence

If aprocedureis caled FOO, the entry-point for callsto it is called FOO - To pass parameters, two
PUBLICs are supplied: the starting addresses of two regions, onein DATA space and onein BIT space,
where parameters have to be placed. These two addresses are named 2FOO?BY TE and 2FOO?BIT,
respectively.

During the procedure call, parameters are placed in on-chip RAM starting at these addresses. BIT
parameters start at 2FOO?BIT, and BY TE parameters at FOO?BY TE. A WORD parameter isregarded as
two BY TE parameters, with its high-order byte coming first.

For example, consider a PL/M-51 procedure:
Q PROCEDURE(BI T1, BYTEL, Bl T2, WORD1) PUBLI C;

Itsfirst BIT parameter will be put in 2Q?BIT. and its second in 2Q?BIT+1. in the BIT address space. Its
first BY TE parameter will be put in 2Q?BY TE. and its WORD parameter in 2Q?BY TE+1 (high-order byte)
and 2Q?BY TE+2 (low-order byte). in MAIN memory. The procedure’ s entry-point will be called Q.

To call this procedure from ASM51 code, we have to move its parameters to their proper destination. Thus,
to simulate

CALL Q1,72,0,747)
in ASM51, write

EXTRN CODE(Q)

EXTRN Bl T(?0?BI T)

EXTRN DATA(?Q?BYTE)

SETB ?Q?BI T

MOV ?QPBYTE, #72

CLR ' ?Q?BI T+ 1

MOV 2QPBYTE+1, #H GH(747)
MOV ?QPBYTE+2, #LON 747)
CALL Q

To write an assembly-language procedure to do Q's job. you have to write

PUBLI C Q

PUBLI C 2Q°BI T
PUBLI C 2Q?BYTE
BI TS SEGVENT BIT
BYTES SEGVENT DATA
PROC SEGVENT CODE

RSEG BI TS

2Q°BI T

BITl: DBIT 1

BIT2: DBIT 1
RSEG BYTES

2Q?BYTE:

BYTEL: DS 1

WORDL: DS 2
RSEG PROC

Q
Thelabelsfor BIT1, BIT2. BY TEL and WORDL are not strictly necessary, but they let us avoid some

arithmetic. For example, it is easier to -write WORD1 than 2Q7BY TE+1.

G.2 Procedure Epilogue

To return from the procedure. the compiler inserts a RET instruction at any point a RETURN isto be
executed (including the final END statement, which isan implied RETURN).

G.3 Value Returned from Typed Procedure
Theresult of atyped procedureis returned as shown in table G-I.

Table C-1. Typed Procedure Values

Procedure Type Result returned in
Byte A Register
WORD R6 and R7
BIT C regigter (the carry bit)

RunTime Interrupt Processing H

H.1 General Information
An interrupt is initiated when the CPU receives a signa from some device (on-chip or off-chip).

Note that the CPU does not respond to this signal unless interrupts are enabled, and unless the specific
interrupt in question is also enabled. In PL/M-51, the user is responsible for enabling and disabling
interrupts, which is done by using the |E register and the ENABLE and DISABLE statements.

If the interrupt is enabled, the following actions take place:

The CPU completes any instruction currently in execution.

The PC register is placed on the stack (occupying two bytes of stack storage).

Interrupts whose priority is the same or lower than the one being serviced are disabled.

The low-level interrupt handler (supplied by PLM51.LIB) savesthe A,B, DPTR and PSW
registers

on the stack, switches to the interrupt procedure’s register-bank, and then activates the interrupt
procedure corresponding to the interrupt number.

5. When that procedure terminates, the stack is automatically restored to its state when the interrupt
was received. A, B, DPTR and PSW are restored, and control returns to the point where it was
interrupted.

PODNPE

The mechanism for this activation and restoration, the interrupt vector, is described below.

H.2 The Interrupt Vector

If the NOINTVECTOR control is not used, an interrupt vector entry is automatically generated by the
compiler for each interrupt procedure. Collectively, the interrupt vector entries form the interrupt vector. If
NOINTVECTOR is used, the programmer must supply the interrupt vector as explained in section H3.

The interrupt vector is an absolute chunk of code beginning at location 3. The n-th entry’ is at location
8*n+3. and contains ajump to another (relocatable) chunk of code (referred to here asthe low-level
interrupt handler) that first saves A. B. DPTR and PSW, sets PSW to select the correct register-bank. and
then calls the procedure declared with the INTERRUPT n attribute. These two pieces of code come from
PLM51.LIB during RL51-time.

Figure H-1 is an example of the code used to implement the interrupt vector entry and the low-level
interrupt handler for interrupt 2. ?2PIV02 isthe start address of the interrupt vector entry, 2PIPO2 is the start
address of the low-level interrupt handler. ?PIH02 is the start address of the user written interrupt
procedure. 2PSWO02 is the appropriate setting of the PSW for the interrupt procedure asimplied by the
USING attribute used for that procedure.

MODULE ?PI V02
the interrupt vector entry

NAVE 2P V02
PUBLI C 2P V02
EXTRN CODE(?P1P02)

CSEG AT 02 *8 +3

?PI VO2:
LIMP ?PI PO2
END

----- MODULE ?PI P02

I ow | evel interrupt handler

NAVE 2Pl P02

PUBLI C 2Pl P02

EXTRN CODE (?PI H02)
NUVBER(?PSV02)

?PI PO2S SEGVENT code
RSEG ?PI P02S
?PI PO2:
PUSH ACC
PUSH B
PUSH DPH
PUSH DPL
PUSH PSW
MOV PSW #?PSWD2
LCALL ?PI HO2
POP PSW
POP DPL
POP DPH
POP B
POP ACC
RETI
END

Figure H-1. ASM51 Codefor Interrupt Vector and CPU Status Stacking

H.3 Writing Low-Level Interrupt Handlers Separately

To achieve faster response by pushing less (if you are sure that B and DPTR do not have to be saved), you
may want to write the interrupt vector entry and the low-level interrupt handler yourself.

If you want to handle interrupts yourself, compile your PL/M-51 interrupt-service routine without giving it
the INTERRUPT attribute. Then, make it PUBLIC, cdl it, for example MY _HANDLER and make sure it
has the right register-bank (i.e., USING attribute, or $SREGISTERBANK setting).

Now, assemble an ASM51 program to call your handler. Your ASMSI program must look like the one that
follows.

EXTRN CODE (MY_HANDLER)

MY_HANDLER S BANK EQU 3 ; for instance
MY_HANDLER_S | NTERRUPT_NO EQU S ; for instance

CSEG AT(8 * MY_HANDLER S | NTERRUPT_NO + 3) ; the correct vector
; address

LJMP MY_LOW LEVEL_| NTERRUPT HANDLER
HANDLER SEGVENT CODE

RSEG HANDLER
MY_LOW LEVEL_| NTERRUPT HANDLER:

PUSH ACC
. PUSH B, DPL and DPH were eli m nat ed

PUSH PSW

MOV PSW #8* M\Y_HANDLER S BANK

LCALL My_HANDLER

POP PSW

; POP DPH, DPL and B were elimn nated

POP ACC
RETI
END

H.4 Writing Interrupt Vectors Separately

The only code at the interrupt-vector addressis an LIMP to the low-level interrupt handler supplied by
PLM51.LIB. If you want to write your own vector and use the existing low-level handler, you have to
know that handler’s PUBLIC name. For interrupt number O. this name is ?PIPOO: for interrupt number 1.
?PIPO1: and so on.

Thus, to produce your own vector-entry for interrupt no.4. write

EXTRN CCODE(?PI POY)
CSEG AT(4*8+3)
LIMP ?PI PO4

END

and assemble under ASM51.

The PL/M-51 interrupt handler must have the INTERRUPT éttribute so the low-level interrupt handler will
have access to its entry-point. The interrupt handler must be compiled under SNOINTVECTOR.

H.5 PL/M-51 Errors Detected at RL51-Time

Itisillegal to have two different procedures with the same INTERRUPT attribute. If you break thisrulein
one module, the compiler will detect it; but, if the two procedures are in different modules, RL51 will have
to detect the error. RL51 detects the error by complaining about a doubly-defined symbol with a name like
PPIHOS. Similar RL51 error messages will appear if module-level code (‘main program” in Fortran
parlance) appears in more than one module.

The Processor Descriptor Files I

The REGnn.DCL files, listed below, are supplied with the PL/M-51 compiler. Each file contains all the
REGISTER declarations needed for the appropriate machine (e.g., REG51.DCL contains the declarations
for the 8051 microcomputer). All registers below have the same name in the appropriate 8051 series
manual. $INCLUDEing it in your source file will ensure that you never have to declare aregister.

If, in some module, you have no use for aregister, you can delete its definition from thisfile.
NOTE

The compiler uses the ACC, B. PSW, DPL and DPH registers to accomplish various computations and to
hold temporary results. Use of these registersin the user program, although permitted, may cause
unpredictable results (e.g., PSW = OFFH is dangerous).

[* REG STER DECLARATI ONS FOR 8051 */
DECLARE REG LITERALLY ' REG STER ;
/********* BYTE REG STERS ********/

DECLARE
PO BYTE AT(80H) REG
PL BYTE AT(90H) REG
P2 BYTE AT(0AOH) REG
P3 BYTE AT(OBOH) REG
PSW BYTE AT(ODOH) REG
ACC BYTE AT(OEOH) REG
B BYTE AT(OFOH) REG
SP BYTE AT(81H) REG
DPL BYTE AT(82H) REG
DPH BYTE AT(83H REG
PCON BYTE AT(87H) REG
TCON BYTE AT(88H) REG,
TMOD BYTE AT(89H) REG,
TLO BYTE AT(8AH REG
TL1 BYTE AT(8BH REG
THO BYTE AT(8CH REG
THL BYTE AT(8DH REG
|E BYTE AT(0A8H) REG
IP BYTE AT(0B8H) REG
SCON BYTE AT(98H) REG,
SBUF BYTE AT(99H) REG

/********* BIT REG STERS ********/

/********* PSW BI TS ********/
DECLARE
CY BIT AT(OD7H) REG
AC BIT AT(0D6H) REG
FO BIT AT(ODSH) REG
RS1 BIT AT(OD4H) REG,
RSO BIT AT(OD3H) REG

ov
[s)

BIT
BIT

AT(OD2H) REG,
AT(ODOH) REG,

/********* Tw\l BI TS ********/

TF1
TR1
TFO
TRO
| E1
I T1
| EO
| TO

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

/*********

EA BIT
ES BIT
ET1 BIT
EX1 BIT
ETO BIT
EX0O BIT

/*********

PS BIT
PT1 BIT
PX1 BIT
PTO BIT
PX0 BIT

/*********

RD BIT
W BIT
T1 BIT
T0 BIT
INT1L BIT
INTO BIT
TXD BIT
RXD BIT

/*********

P37
P36
P35
P34
P33
P32
P31
P30

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

/ kkhkkkkkkk*k Sw\l
SM BIT
SML BIT
S BIT
REN BIT
B8 BIT
RB8 BIT
TI BIT
Rl BIT

AT(8FH) REG,
AT(8EH) REG,
AT(8DH) REG,
AT(8CH) REG
AT(8BH) REG,
AT(8AH) REG,
AT(89H) REG,
AT(88H) REG,

IE BI TS ********/

AT(OAFH) REG,
AT(0ACH) REG,
AT(0ABH) REG,
AT(0AAH) REG,
AT(0A9H) REG,
AT(0A8H) REG,

IP BI TS ********/

AT(OBCH) REG,
AT(OBBH) REG,
AT(OBAH) REG,
AT(0B9H) REG,
AT(0B8H) REG,

P3 BI TS ********/

AT(OB7H) REG,
AT(0B6H) REG,
AT(0B5H) REG,
AT(0B4H) REG,
AT(0B3H) REG,
AT(0B2H) REG,
AT(OB1H) REG,
AT(0BOH) REG,

P3 BI TS ********/

AT(0B7H)
AT(0B6H)
AT(0B5H)
AT(0B4H)
AT(0B3H)
AT(0B2H)
AT(OBLH)
AT(0BOH)

REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,

BI TS ********/
AT(9FH) REG,
AT(9EH) REG,
AT(9DH) REG,
AT(9CH) REG,
AT(9BH) REG,
AT(9AH) REG,
AT(99H) REG,
AT(98H) REG

/* REG STER DECLARATI ONS FOR 8044 */
DECLARE REG LITERALLY ' REG STER ;

/********* BYTE REG STERS ********/
DECLARE
PO BYTE AT(80H REG
PL BYTE AT(90H REG
P2 BYTE AT(0AOH) REG
P3 BYTE AT(OBOH) REG
PSW BYTE AT(ODOH) REG
ACC BYTE AT(0EOH) REG
B BYTE AT(OFOH) REG
SP BYTE AT(81H) REG
DPL BYTE AT(82H) REG
DPH BYTE AT(83H REG
TCON BYTE AT(88H) REG,
TMOD BYTE AT(89H) REG,
TLO BYTE AT(8AH REG
TL1 BYTE AT(8BH REG
THO BYTE AT(8CH REG
THL BYTE AT(8DH REG
|E BYTE AT(0A8H) REG
IP BYTE AT(0B8H) REG

EINT BYTE AT(09EH) REG
EBUF BYTE AT(09FH) REG

STS BYTE AT(0C8H) REG
SWD BYTE AT(0C9H) REG
RCB BYTE AT(0CAH) REG
RBL BYTE AT(OCBH) REG
RBS BYTE AT(0CCH) REG
RFL BYTE AT(OCDH) REG
STAD BYTE AT(OCEH) REG
DMACNT BYTE AT(OCFH) REG
NSNR BYTE AT(ODSH) REG
SIUST BYTE AT(OD9H) REG
TCB BYTE AT(ODAH) REG,
TBL BYTE AT(ODBH) REG,
TBS BYTE AT(ODCH) REG,
FIFOL BYTE AT(ODDH) REG
FIFO2 BYTE AT(ODEH) REG
FIFO3 BYTE AT(ODFH) REG

/********* BIT REG STERS ********/

/********* PSW BI TS ********/
DECLARE
CY BIT AT(OD7H) REG,
AC BIT AT(0D6H) REG
FO BIT AT(ODSH) REG
RS1 BIT AT(OD4H) REG,
RSO BIT AT(OD3H) REG
OV BIT AT(OD2H) REG,
P BIT AT(ODOH) REG

/********* Tw\l BI TS ********/

TF1
TR1
TFO
TRO
| E1
I T1
| EO
| TO

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

/*********

EA BIT
ES BIT
ET1 BIT
EX1 BIT
ETO BIT
EX0O BIT

/*********

PS BIT
PT1 BIT
PX1 BIT
PTO BIT
PX0 BIT

/*********

RD BIT
W BIT
T1 BIT
T0 BIT
INT1L BIT
INTO BIT
TXD BIT
RXD BIT

AT(8FH) REG,
AT(8EH) REG,
AT(8DH) REG,
AT(8CH) REG,
AT(8BH) REG,
AT(8AH) REG,
AT(89H) REG,
AT(88H) REG,

IE BI TS ********/

AT(OAFH) REG,
AT(OACH) REG,
AT(0ABH) REG,
AT(0AAH) REG,
AT(0A9H) REG,
AT(0A8H) REG,

IP BI TS ********/

AT(OBCH) REG,
AT(OBBH) REG,
AT(OBAH) REG,
AT(0B9H) REG,
AT(0B8H) REG,

P3 BI TS ********/

AT(OB7H) REG,
AT(0B6H) REG,
AT(0B5H) REG,
AT(0B4H) REG,
AT(0B3H) REG,
AT(0B2H) REG,
AT(OB1H) REG,
AT(0BOH) REG,

/********* STS BI TS ********/

TBF BIT
RBE BIT
RTS BIT
S| BIT
BOv BIT
oPB BIT
AM BIT

RBP BIT

AT(OCFH REG,
AT(OCEH REG,

AT(OCDH) REG,
AT(0CCH REG,
AT(OCBH) REG,
AT(0CAH REG,

AT(0CO9H) REG,
AT(0C8H) REG,

/********* NSNR BI TS ********/

NS2
NS1
NSO
SES
NR2
NR1
NRO
SER

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

AT(ODFH) REG,
AT(ODEH) REG,

AT(ODDH) REG,
AT(ODCH) REG,
AT(ODBH) REG,
AT(ODAH) REG,

AT(0D9H) REG,
AT(OD8H) REG

/* REG STER DECLARATI ONS FOR 8052 */
DECLARE REG LITERALLY ' REG STER' ;

/********* BYTE REG STERS ********/
DECLARE
PO BYTE AT(80H REG
PL BYTE AT(90H) REG
P2 BYTE AT(0AOH) REG
P3 BYTE AT(OBOH) REG
PSW BYTE AT(ODOH) REG
ACC BYTE AT(OEOH) REG
B BYTE AT(OFOH) REG
SP BYTE AT(81H) REG
DPL BYTE AT(82H) REG
DPH BYTE AT(83H REG
PCON BYTE AT(87H) REG
TCON BYTE AT(88H) REG,
TMOD BYTE AT(89H) REG,
TLO BYTE AT(8AH REG
TL1 BYTE AT(8BH REG
THO BYTE AT(8CH REG
THL BYTE AT(8DH REG
|E BYTE AT(0A8H) REG
IP BYTE AT(0B8H) REG
SCON BYTE AT(98H) REG,
SBUF BYTE AT(99H) REG,

T2CON BYTE AT(0C8H) REG,
RCAP2L BYTE AT(0CAH) REG
RCAP2H BYTE AT(0CBH) REG
TL2 BYTE AT(0OCCH) REG,
TH2 BYTE AT(OCDH) REG

/********* BIT REG STERS ********/

/********* PSW BI TS ********/
DECLARE
CY BIT AT(OD7H) REG,
AC BIT AT(0D6H) REG
FO BIT AT(ODSH) REG
RS1 BIT AT(OD4H) REG,
RSO BIT AT(OD3H) REG
OV BIT AT(OD2H) REG,
P BIT AT(ODOH) REG

/********* Tw\l BI TS ********/
TF1 BIT AT(8FH REG
TRL BIT AT(8EH REG
TFO BIT AT(8DH REG
TRO BIT AT(8CH REG
IEL BIT AT(8BH) REG
ITL BIT AT(8AH REG
IE0 BIT AT(89H) REG
ITO BIT AT(88H REG

/********* IE BI TS ********/

EA BIT AT(0OAFH) REG
ET2 BIT AT(OADH) REG,
ES BIT AT(0ACH REG
ET1 BIT AT(0ABH) REG,
EXI BIT AT(0AAH) REG
ETO BIT AT(0A9H) REG
EX0O BIT AT(0ASH) REG

/********* IP BI TS ********/

PT2 BIT AT(OBDH) REG
PS BIT AT(OBCH REG
PT1 BIT AT(OBBH) REG
PX1 BIT AT(OBAH) REG
PTO BIT AT(OB9H) REG
PX0O BIT AT(OB8H) REG

/********* Pl BI TS ********/
T2EX BIT AT(091H) REG
T2 BIT AT(090H REG,

/********* P3 BI TS ********/
RD BIT AT(OB7H) REG
WR BIT AT(0B6H) REG
Tl BIT AT(0BSH) REG
TO BIT AT(0B4H) REG
INTL BIT AT(OB3H REG
INTO BIT AT(OB2H) REG
TXD BIT AT(OBLH) REG
RXD BIT AT(OBOH) REG

/********* Sw\l BI TS ********/
SW BIT AT(9FH) REG
SML BIT AT(9EH) REG,
S\ BIT AT(9DH) REG,
REN BIT AT(9CH REG
TBS BIT AT(9BH REG
RBS BIT AT(9AH) REG,
TI BIT AT(99H REG,
R BIT AT(98H REG

/********* Tzw\l BI TS ********/
TF2 BIT AT(OCFH) REG
EXF2 BIT AT(OCEH REG
RCLK BIT AT(OCDH) REG
TCLK BIT AT(0OCCH REG
EXEN2 BIT AT(OCBH REG
TR2 BIT AT(0OCAH REG
CT2 BIT AT(0OC9H) REG
CP_RL2 BIT AT(0C8H) REG

Sample Program 2 J

This appendix lists an entire PL/M-51 application. The sample program was compiled, linked and run, and
gave correct results.

The program is divided into 3 separate modules:
1. CALC, which contains the main program.

2. NUMIO, which handles 1/0 of numbers, and is mainly concerned with converting numbers
to/from ASCII and binary representation.

3. CHARIO, which is concerned with the hardware-dependent 1/0 details (it performs I/O through
the seria port SBUF).

Coding this example in ASM51 takes many hundreds of statements (partly because this example does 16-
bit arithmetic, yet 8051 only supplies 8-bit arithmetic). It is recommended that you compare the sample
program given here to the somewhat similar one given in Appendix G of the MCS-51 Macro Assembler
User’'s Guide.

PL/ M 51 COWPI LER cal culator for unsigned 16 bit arithnetic
systemid PL/M51 V1.2

COMPI LER | NVOKED BY: PLMB1 CALC. P51 pw(90) pl (88)

$title (‘calculator for unsigned 16 bit arithnmetic’)

1 1 calc: DO
2 2 print: PROCEDURE(str$p) EXTERNAL,;
3 2 DECLARE str$p ADDRESS; END;
/* prints a null term nated string
residing in ROM and painted at by STR$P */
5 2 get $num PROCEDURE WORD EXTERNAL; END;
/* gets a nunber from SBUF */
7 2 get $oper: PROCEDURE BYTE EXTERNAL; END;
/* gets operation from SBUF */
8 2 out $num PROCEDURE(num) EXTERNAL;
/* prints a nunber to SBUF */
10 2 DECLARE num WORD; END;
12 1 DECLARE CRLF LI TERALLY ‘ ODH, OAH ;
/* carriage-return, line-feed */
13 1 DECLARE (i nl, in2) WORD, oper BYTE;
$I NCLUDE (reg5l . dcl)
/* REG STER DECLARATI ONS FOR 8051 */
$NOLI ST
17 1 TMOD = 20H, /* set timer node to auto reload */
18 1 THI =253; /* set tinmer for 110 BAUD */
19 1 SCON = OCAH;/* prepare the serial port */
20 1 TRL = 1; /* start clock */
21 1 CALL print(. (" CALCULATOR FOR UNSIGNED 16 BIT ARI THMETIC.', CRLF,
‘TYPE A DECI MAL NUMBER (UP TO S DIG TS FOLLOWED BY ‘ RETURN' CRLF,
‘ THEN AN OPERATION ,, -, ORI), THEN THE SECOND NUMBER.', CRLF,
0));
22 2 DO WH LE |I; /* do forever */
23 2 CALL print(.(CRLF, ‘FIRST NUMBER.', 0));
24 2 inl = get$num
25 2 oper = get $oper;

26 2 CALL print(.(’ SECOND NUMBER ‘', 0));
27 2 in2 = get $num
29 3 DO CASE(oper);
2B 3 [*0 @ + */ CALL out $nunm(inl + in2);
30 3 [*1 0 - */ CALL out $nun(inl - in2);
31 3 [*2 0 * */ CALL out $nunm(inl * in2);

/*3 1 */
32 3 IFin2 =0

THEN CALL print(. (' ATTEMPT TO DIVIDE BY 0', CRLF, 0);
34 3 ELSE CALL out $num(inl /in2);
35 3 END; /* of DO CASE */
36 2 END, /* of DO forever */
37 1 END cal c;
MODULE | NFORMATI ON: STATI C + OVERLAYABLE)

CODE Sl ZE 00B5H 181D
CONSTANT Sl ZE O0EOH 224D

05H + O00H 5D + 0D
00H + OOH 0D + 0D
00H + OOH 0D + 0D
00H + OOH 0D + 0D

DI RECT VARI ABLE S| ZE
| NDI RECT VARI ABLE SI ZE
BIT SIZE
Bl T- ADDRESSABLE S| ZE
AUXI LI ARY VARI ABLE SI ZE 0000H 0D
MAXI MUM STACK SI ZE 0004H 4D
REG STER- BANK(S) USED: 0
125 LI NES READ
0 PROGRAM ERROR(S)

END OF PL/M 51 COMPI LATI ON

| T 1 T I 1 R A | R

PL/M51 1/ O for nunbers and operati on NUM O. p51
systemid PL/MS1 V1.2
COMPI LER | NVOKED BY: PLM1 NUM O. p51 pw(90)

$title (‘1/0O for nunbers and operation’)

1 1 nunsi o: DO,
2 2 print: PROCEDURE(str$p) EXTERNAL,;
3 2 DECLARE strip ADDRESS; END; /* print a null term nated
string residing in ROM and pointed at by STRSP */
5 2 Get $char: PROCEDURE BYTE EXTERNAL; END; /* get char from SBUF and
send it */

17 2 Put $char PROCEDURE(char) EXTERNAL; /* print a char to SBUF */
8 2 DECLARE char BYTE; END;
10 1 DECLARE CR LI TERALLY *‘ ODH ;
1l 1 DECLARE CRLF LI TERALLY ‘ ODH, OAH ;
12 2 get $num PROCEDURE WORD PUBLI C; /* gets a nunber from SBUF */
13 2 DECLARE num WORD,

I, char) BYTE;
14 2 num i = 0;
15 2 Char = Get $char;

/* each loop iteration handl es one input character */

16 DO WHI LE char <>CR AND 1<5;

3
17 4 IF char < ‘0" ORchar > ‘9 THEN DO, /* error */
19 4 CALL print(.(CRLF, ‘NOT A DECIMAL DIG T. RETYPE NUMBER ', 0));

20 4 num|=0 /* re-initialize */

PL/ M 51 COWPI LER I/0 for nunbers and operation

21 4 END;
22 4 ELSE DO, /‘add digit to nunber/
23 4 num = num *10 + char -'0’;
24 4 i =i +1;
25 4 END;
26 3 char = Get $char;
27 3 END;
28 2 IF char <> CR/* possible only if input had over 5 digits */
THEN CALL print(.(' FIRST 5 DIG TS USED', 0));
30 2 CALL print(.(CRLF, 0));
31 2 RETURN(num
32 1 END get $num
33 2 Get $oper: PROCEDURE BYTE PUBLIC, /* gets operation from SBUF */
34 2 DECLARE (i, char) BYTE;
3S 2 DECLARE op_code(4) BYTE CONSTANT(' +-*/");
36 3 DO WHI LE 1; /*DO forever (until a legal operation is typed)*/
37 3 CALL print(. (' OPERATION:‘, 0));
39 3 char = Get $char;
39 3 CALL print(.(CRLF, 0));
40 4 DOl =0 to 3; /*check if input char is an operation */
41 4 | F char = op_code(i) THEN RETURN(i);
43 4 END;
44 3 CALL print(.(' ERROR PLEASE TYPE +, -, -, OR/’, CRLF, 0));
45 3 END; /of DO forever/
46 1 END get $oper ;
47 2 out $num procedure(num) PUBLIC, /*prints a number to SBUF*/
49 2 DECLARE num WORD;
49 2 DECLARE (I, j, digit) BYTE
50 2 DECLARE power _10 WORD,
powers_| 0(6) WORD CONSTANT(10000, 1000, 100, 10, 1, 0);
51 2 CALL print (.('RESULT 15:', 0));
52 2 I =0;
53 3 DO WHI LE num < powers_10(i); /* skip printing | eading zeroes */
54 3 i =i +1;
55 3 END;
56 3 DOJ =11to 3; /* loop prints all digits except |last */
57 3 pover _10 = powers_10(j);
59 3 Digit = num/ power_10;
59 3 CALL Put$char (' 0" + digit);
60 3 num = num —digit * power_10;
61 3 END;
62 2 CALL Put$char('0'+ num); /* print last digit */
63 2 CALL print(.(CRLF, 0));
64 1 END out Snum
65 | END nunsi o;
MODULE | NFORMATI ON: (STATIC + OVERLAYABLE)
CODE Sl ZE 0169H 361D
CONSTANT Sl ZE 0090H 144D
DI RECT VARI ABLE SI ZE O0H+07H 0D+7D
I NDI RECT VARI ABLE SI ZE 00H+00H 0D+0D
BIT SI ZE 00H+00H 0D+0D
Bl T- ADDRESSABLE S| ZE 00H+00H 0D+0D
AUXI LI ARY VARI ABLE SI ZE 0100H oD
MAXI MUM STACK SI ZE 0002H 2D
REG STER- BANK(S) USED: 0

70 LI NES READ
END OF PLM 51 COWPI LATI ON

PL/ M S1 COWPI LER character |/0O through SBUF

systemid PL/IMSI Vx.y
COMPI LER | NVOKED BY: PLMSI CHARI O. p51 pw(90) pl(66)

$title (‘character I/0O through SBUF)

1 1 char $i o: DO,
SI NCLUDE (reg5l . dcl)

/* REGQ STER DECLARATI ONS FOR 8051 */

$NOLI ST
5 2 Put $char: PROCEDURE(char) PUBLIC; /* print a char to SBUF */
6 2 DECLARE char BYTE;
7 3 DO WHI LE NOT Tl; /* wait till ready for output */
9 3 END;
9 2 T = 1;
10 2 sbuf = char;
11 1 END Put $char;
12 2 Get $char: PROCEDURE BYTE PUBLIC;, /* get char from SBUF and echo */
13 2 DECLARE char BYTE;
14 3 DO WHILE NOT RI; /* wait till there is input */
IS 3 END;
16 2 R = 0;
17 2 Char = sbhuf;
18 2 CALL Put $char (char);
19 2 RETURN(char) ;
20 1 END Get $char;
21 2 print: procedure(strip) PUBLIC,
22 2 DECLARE str$p ADDRESS; /* print a null term nated
string residing in RON and pointed at by STRSP */
23 2 DECLARE char BASED strip BYTE CONSTANT;
24 3 DO WHI LE char <>0; /* till null term nator */
25 3 CALL Put $char (char);
26 3 str$p = str$p +1;
27 3 END;
29 1 END print;
29 1 END char $i o;
MODULE | NFORVMATI ON: (STATI C+OVERLAYABLE)
CODE Sl ZE 0043H 67D
CONSTANT Sl ZE 0000H (0] D)
DI RECT VARI ABLE SI ZE O0H+03H 0D+3D
I NDI RECT VARI ABLE SI ZE O0H+00H 0D+0D
BIT SIZE 00H+0OH 0D+0D
Bl T- ADDRESSABLE S| ZE O0H+00H 0D+0D
AUXI LI ARY VARI ABLE SI ZE 0000H oD
MAXI MUM STACK SI ZE 0004H 4D
REG STER- BANK(S) USED: 0

119 LI NES READ
0 PROGRAM ERROR(S) END OF PL/ M 51 COWPI LATI ON

How to Generate Better Code K

If you write PL/M-51 the object-code produced will neither be as compact, nor as fast, as the best ASM51
code you can write for the job. But, you have a good chance of exceeding most ASM S| programmersin the
efficient use of on-chip RAM.

It is worth noting, though, that certain computations can require many instructions and execute very slowly
on the 8051, even in assembly-language. If X and Y are WORD variables, it takes only 3 keystrokesto
write X/Y in your program: but, the code to do this job can take 500 microseconds or so (at 12 MHz). The
following paragraphs describe actions to avoid if time or space are critical.

WORD operations are always more expensive than BY TE operations. Do not use WORD variables if
BY TEswill do the job: and do asllittle arithmetic with them as you can. Remember that DECLARE A ...
BASED B:” islegd evenif BisaBYTE. aslong as A hasa MAIN or IDATA suffix.

“DECLARE X <type> CONSTANT(17):" is much more expensive than “DECLARE X LITERALLY
‘17" ~'. Theformer construct causes X to be fetched from ROM each timeit is used (by one or two
MOV C ingtructions. with the attendant set-up overhead). The latter causes the value of X to appear in the
code as an immediate (e.g.. #17).

The code to handle AUXILIARY variables is expensive and slow. Try to put only rarely-accessed variables
in AUXILIARY.

Division of aBY TE variable by anything is fairly cheap. Division of aWORD variable, even by aBYTE,
can be very slow, depending on the divisor, keep in mind that SHR can be much cheaper than division.

On the other hand, procedure CALLSs (and function calls). with or without parameters, are fairly cheap:
they are much faster and more compact than in PL/M-80. Thus, the benefits of using procedures (programs
are easier to understand and maintain) are available without the overhead that is usually associated with
them.

K.1 RAM Space Efficiency

Since al members of the 8051 family have 4K bytes or more of ROM. efficiency in using ROM spaceis
not acritical issue. On-chip RAM is a different matter, however. All members of the 8051 family have only
128-256 bytes of on-chip RAM. From this 128-256 bytes, the register banks and stack must be deducted.
Keep in mind, too. that you lose an additional byte of the on-chip RAM that remains for each 8-bit variable
you use.

$OPTIMIZE(2) (the default) goes some way to help here. It makes one critical assumption: that, when your
code exits a PROCEDURE or DO block, you no longer care about the values of items declared inside it.
and that, if you ever re-enter it. you are ready to accept garbage in them (until you reinitialize them). If you
are ready to live by these rules (which are those of Pascal and ADA. and aso those referring to the
variables of REENTRANT proceduresin PL/M-80 and PL/M.86). the SOPTIMIZE(2) default will assume
it has permission to share the same piece of on-chip RAM between procedures that do not call each other,
and thus, to make 128

bytes do the work of 200 or 300. The compiler is careful not to play thistrick if two procedures call each
other: but, it assumes that al such possible calls appear in the module it compiles. See the SOPTIMIZE

control in Chapter 14.

Based upon the information given in the preceding paragraphs, it follows that global (module level)
variables are more expensive than local variables because the former cannot be overlaid.

Valid PL/M-51 Statements L

This appendix contains ‘various types of valid PL/M-51 statements that may help you remember where the
commas, semicolons, etc., must appear.

X Y,Z =8 XORY * MAX(’ ?? ,.2);

X= X+1;

CALL FOO(BAZ. GORP, THUD) ;

CALL STRUC . WORD MEMBER

CALL ZI LCH;

IF 1>2 THEN CALL FOR HELP(.('S. Q.S ‘', 0);
ELSE RETURN;

DECLARE (KING DAVID) BIT MAIN, STR() BYTE CONSTANT(’ JERUSALEM);
DECLARE El GHT. BI TS LI TERALLY * BYTE ;

DECLARE PCON BYTE AT(87H) REG STER

DECLARE 0 WORD CONSTANT PUBLIC, QQ LABEL EXTERNAL;

DECLARE S STRUCTURE(NAME(31) BYTE, AGE BYTE, SEX BYTE);

DECLARE T STRUCTURE
(BIT_1, BIT 2) BIT) AT(22H);

DECLARE X WORD AUXI LI ARY, XX BASED X BYTE CONSTANT,
DECLARE Y AT(.YY+l) BYTE | DATA;

DOl =1 TO7,
END;

DO END,

X: DG,
END X;

DO CASE |
; [* case 0 — null statenent */
; |* case 1 */
CALL | _IS 2;
; |* case 3 */

END;

DO | =1 TO 77 BY 13;

END;

GO TO END;

X PROCEDURE | NDI RECTLY CALLABLE;
X PROCEDURE | NTERRUPT 4 USI NG 1,

MAX: PROCEDURE(X, Y) BYTE, DECLARE (X Y) BYTE;
IF X>Y THEN RETURN X; ELSE RETURN Y;
END MAX;

ZI LCH PROCEDURE EXTERNAL; END ZI LCH;
RETURN Y;
RETURN,

Assembler Utility Library:UTIL51.LIB M

The assembler utility library, UTIL5I.LIB, contains a number of procedures useful for string manipulation.
These have been coded in ASM S| and have been optimized for speed. Each procedure has a name
determined by the memory types involved. The generic forms, however, are as follows:

MOVXyi (source, destination, count) - move string
RMVxxi (source, destination, count)

CWVPxyi (source 1, source2, count) - compare strings

FNDBxi (source, target, count) - search string for element
FNDWki (source, target, count)

SKPBXi (source, target, count) - search string for mismatch
SKPWKi (source, target, count)

SETBXi (destination, newvalue, count) - set string elements to value
SETWki (destination, newvalue, count)

M.1 Using UTIL51.LIB

Two things are required when using one or more of the procedures from UTIL51.LIB in a program module:

The modul€’' s abject-code file must be linked with UTIL51.LIB.
Any UTIL51.LIB procedure used in the module must be declared as an EXTERNAL procedure
beforeit is called.

To link the assembler utility library with the modul€' s object-code file, use RL51. For example, if the
object-codefileis called MYNIOD.OBJ, then the necessary linkage is performed by the following:

RL51 MYMOD. OBJ, UTIL51.LIB, PLMb1.LIB [options]

Here, the PLM51.LIB support library is necessary as described in Chapter 13. The options are RL51
controls described in the MCS-S| Utilities User’s Guide.

The EXTERNAL declarations needed for UTIL51.LIB are shown in M.3. These are contained in the
declaration file UTIL51.DCL. For example, the MOV procedure for moving strings from on-chip RAM
(DATA or IDATA) to external RAM (XDATA) has the following declaration:

MOVDX1 : PROCEDURE (from target, count) EXTERNAL USI NG 1;
DECLARE from BYTE, target WORD, count BYTE;
END;

The parameters of each UTIL51.LIB procedure have either BY TE or WORD (ADDRESS) values. To save
space, BY TEs are used wherever possible. For example, the from parameter of MOVDX1 is declared a

BY TE because any addressin on-chip RAM will be FFH or less. That is, aBY TE is sufficient to express
any address in the from address space. On the other hand, the target parameter of MOV DX1 requires a
WORD declaration because the size of the address space (XDATA) islarger than FFH.

Asnoted in 10.5, PL/M-51 makes the following assumptions about interrupts. an interrupt procedure must
never use the same register bank as the procedure it interrupts. It is recommended that one register bank be
used for the main program, one for the high level interrupt, and one for the low level interrupt.

Becauseitislikely that UTIL51.LIB procedures will be used by both interrupt handlers and the main
program, three copies of each procedure are included in the library. Each copy differs only in the suffix of
its procedure name. For example, UTIL51.LIB contains the following three procedures: MOV DXO0,
MOVDX1, and MOVDX2. Each of the three procedures isidentical, except that each should be declared
USING adifferent register bank. Although it is not necessary, it is recommended that the suffix of each
procedure matches the register bank used by the procedure. The simplest way to do thisis to edit a copy of
UTIL51.DCL and replace each occurrence with the desired register bank number.

M.2 The UTIL51. LIB Procedures
The generic forms of the UTIL51.LIB procedures contain the following mnemonics:

X, Y the address spaces of the source and target respectively, These can have the following

designations:
X xdata (AUXILARY)
C constant (ROM)
D data or idata (MAIN)

I the register bank used by the UTIL51.LIB procedure (O, 1, or 2).
The following are descriptions of the general forms of the UTIL51.LIB procedures.
MOVxyi

MOVxyi isan untyped procedure that copiesaBY TE string from an x address space to ay address space.
It is activated by

CALL MOVxyi (source, destination, count)

where
source and destination are expressions that evaluate to address values in address spaces x and
y respectively.
count is an expression with aBY TE or WORD value.

I denotes the register bank (0. 1, or 2) used by the procedure.

The string elements are copied in ascending order. Thiswill work in every situation except for those cases
where dl of the following are true:

X and y are the same address space.
the destination address is higher than the source address.
both strings overlap.

In this particular case, elementsin the overlap region get copied over before they have a chanceto be
copied. For this particular case, use RMV, which is the same as MOV, but copies elements in descending
order.

RMVxxi

RMVxxi is an untyped procedure that copies aBY TE string from an x address space to the same address
space. It is activated by

CALL RMvxxi (source, destination, count)
where
source and destination are expressions that resolve to address valuesin Xx.
count is an expression with BY TE or WORD value.
I isthe register bank (0, 1, or 2) used by the procedure.
RMYV isthe same as MOV except that elements are copied in descending order. Thisis needed for the

special case of overlapping source and destination strings in the same address space having destination
address higher than the source address.

CMPxyi

CMPxyi isaWORD function that compares two BY TE strings. It is activated by a function reference with
the following form:

CWVPxyi (source 1, source2, count)

where
sourcel and source2 are expressions that evaluate to address values in address
spaces x and y respectively.
count is an expression with BY TE or WORD value.

i isthe register bank (0, 1, or 2) used by the procedure.

CMP compares two BY TE strings of length count whose locations start at source 1 and source? in address
spaces x and y. CMP returns the index (position within the strings) of the first pair of el ements found to be
unequal. If both strings are equal, CMP returns the WORD value OFFFFH.

FNDBXI/FNDWxI

FNDBX, isaWORD function that searches a BY TE string to find an element that has a specified value. It
is activated by a function reference with the form:

FNDBxi (source, target, count)
where

source isan expression that evaluates to an address value in the address space x.

target isan expression with BY TE or WORD value (if it isa WORD, the 8 high-order bits will
be dropped to produce a BY TE value).

count isan expression with BY TE or WORD value.

I isthe register bank (0, 1, or 2) used by the procedure.

FNDB returns the index (position within the string) of the first occurrence of the BY TE value of target in
the source string. If no elements of the string match the BY TE value of target, the function returns
OFFFFH.

FNDW isthe same as FNDB except that it searches aWORD string instead of aBY TE string. If target has
aBYTE vaue, it isfirst extended by 8 high-order O-bits to produce a WORD value.

SKPBxi/ SKPWXxi

SKPB and SKPW are the converses of FNDB and FNDW (see above). Instead of searching for the first
element of the source string that matches the target, SKPB and SKPW search for the first element that does
not match the target. In every other respect, these functions operate the same as FNDB and FNDW.

SETBxi/ SETWXi

SETBXxi isan untyped procedure that sets each element of aBY TE string to a single specified value. It is
activated by

CALL SETBxi (destination, newvalue, count)
Where
destination is an expression that evaluates to an address value in the x address space.

newvalue is an expression with aBY TE or WORD value (if it hasa WORD value, the 8
high-order bits are dropped to produce aBY TE value).
count isan expression with BY TE or WORD value.

i isthe register bank (0, 1, or 2) used by the procedure.

SETB assignsthe BY TE value of newvalue to each element of the BY TE string of count length beginning
at destination.

SETW isthe same as SETB except that it assigns asingle WORD vaue to all the elements of aWORD
string. If newvalueisaBYTE, it isfirst extended by 8 high-order O-bits to produce a WORD value.

M.3 UTIL51.LIB Procedure Declarations

Thefollowingisalist of the declarations for the procedures and functions included in UTIL51.LIB. These
declarations are included in the file UTIL51.DCL. The file contains declarations for the utilities that use
register banks O, 1, or 2. The user should select those needed, or if he desires to use procedures that use
another register bank, edit UTIL51.DCL to include the desired register bank number.

MOVDDL1: PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* MOVE DATA BYTES TO DATA */
DECLARE from BYTE, target BYTE, count BYTE;

END;

MOVXDLl: PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* MOVE XDATA BYTES TO DATA */
DECLARE from WORD, target BYTE, count BYTE;

END;

MOVCDL:

END;

MOVDX1:

END;

MOVCX1:

END;

MOVXX1:

END;

RWDDL.:

END;

RWXXI :

END;

CVPDDI :

END;

CVPXDl :

END;

CVPCDI :

END;

CMPCX1:

END;

CMPCC1:

END;

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* MOVE RON BYTES TO DATA */
DECLARE from WORD, target BYTE, count BYTE;

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* MOVE DATA BYTES TO XDATA */
DECLARE from BYTE, target WORD, count BYTE;

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* MOVE ROM BYTES TO XDATA */
DECLARE from WORD, target WORD, count WORD;

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* MOVE XDATA BYTES TO XDATA */
DECLARE from WORD, target WORD, count WORD,

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* REVERSE MOVE DATA BYTES TO DATA */
DECLARE from BYTE, target BYTE, count BYTE;

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* REVERSE MOVE XDATA BYTES TO XDATA */
DECLARE from WORD, target WORD, count WORD,

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* COVPARE BYTES | N DATA TO BYTES | N DATA */

/* RETURN | NDEX OR OFFFFH */

DECLARE from BYTE, target BYTE, count BYTE;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* COWVPARE BYTES | N XDATA TO BYTES | N DATA */

/* RETURN | NDEX OR OFFFFH */

DECLARE from WORD, target BYTE, count BYTE;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* COVPARE BYTES | N ROM TO BYTES | N DATA */

/* RETURN | NDEX OR OFFFFH */

DECLARE from WORD, target BYTE, count BYTE;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* COVPARE BYTES I N ROM TO BYTES | N XDATA */

/* RETURN | NDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORD,

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* COVPARE BYTES I N ROM TO BYTES I N ROM */

/* RETURN | NDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORD,

CVPXX1:

END;

FNDBX1:

END;

FNDBCL.:

END;

FNDBDL.:

END;

FNDWK1:

END;

FNDWCL:

END;

FNDWDI :

END;

SKPBX1:

END;

SKPBC1:

END;

SKPBD1:

END;

SKPWK1:

END;

PROCEDURE (from, target, count) WORD EXTERNAL USI NG 1;
/* COVPARE BYTES | N XDATA TO BYTES | N XDATA */

/* RETURN | NDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORD;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* FIND target BYTE I N XDATA, RETURN | NDEX OR OFFFFH */
DECLARE from WORD, target BYTE, count WORD,

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* FIND target BYTE IN ROM RETURN | NDEX OR OFFFFH */
DECLARE from WORD, target BYTE, count WORD,

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* FIND target BYTE | N DATA, RETURN | NDEX OR OFFFFH */
DECLARE from BYTE, target BYTE, count BYTE;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* FIND target WORD I N XDATA, RETURN | NDEX OR OFFFFH */
DECLARE from WORD, target WORD, count WORD;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* FIND target WORD IN ROM RETURN | NDEX OR OFFFFH */
DECLARE from WORD, target WORD, count WORD,

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* FIND target WORD I N DATA, RETURN | NDEX OR OFFFFH */
DECLARE from BYTE, target WORD, count BYTE;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* SKIP target BYTE I N XDATA, RETURN | NDEX OR OFFFFH */
DECLARE from WORD, target BYTE, count WORD,

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* SKIP target BYTE IN ROM RETURN | NDEX OR OFFFFH */
DECLARE from WORD, target BYTE, count WORD,

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* SKIP target BYTE | N DATA, RETURN | NDEX OR OFFFFH */
DECLARE from BYTE, target BYTE, count BYTE;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* SKIP target WORD I N XDATA, RETURN | NDEX OR OFFFFH */
DECLARE from WORD, target WORD, count WORD,

SKPWC1:

END;

SKPWD1:

END;

SETBX1:

END;

SETBD1:

END;

SETWK1:

END;

SETWD1:

END;

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* SKIP target WORD IN ROM RETURN | NDEX OR OFFFFH */
DECLARE from WORD, target WORD, count WORD,

PROCEDURE (from target, count) WORD EXTERNAL USI NG 1;
/* SKIP target WORD I N DATA, RETURN | NDEX OR OFFFFH */
DECLARE from BYTE, target WORD, count BYTE;

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* SET BYTE I N XDATA TO target VALUE */
DECLARE from WORD, target BYTE, count WORD,

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* SET BYTE | N DATA TO target VALUE */
DECLARE from BYTE, target BYTE, count BYTE;

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* SET WORD I N XDATA TO target VALUE */
DECLARE from WORD, target WORD, count WORD;

PROCEDURE (from target, count) EXTERNAL USI NG 1;
/* SET WORD I N DATA TO target VALUE */
DECLARE from BYTE, target WORD, count BYTE;

	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Appendix K
	Appendix L
	Appendix M
	Figures
	Tables

	Overview 1
	1.1 Product Definition
	1.2 The PL/M-51 Language
	1.3 Two Categories of PL/M-51 Statements
	1.4 Block Structure
	1.5 Executable Statements
	1.6 Built-In Procedures
	1.7 Expressions
	1.8 The Program Development Process

	Basics of a PL/M-51 Program 2
	2.1 PL/M-51 Character Set
	2.2 Identifiers and Reserved Words
	2.3 Tokens, Separators, and the Use of Blanks
	2.4 Constants
	2.5 Comments

	Declarations 3
	3.1 Variable Declaration Statements
	3.2 Types
	3.3 Address-Spaces and the Suffix
	3.4 Compilation Constants (Text Substitution):
	3.5 Declarations of Names for Labels
	3.6 Combining DECLARE Statements
	3.7 Declarations for Procedures

	Data Types and Based Variables 4
	4.1 BYTE and WORD Arithmetic
	4.2 The Dot (.) Operator
	4.3 Storing Strings and Constants via Location Reference
	4.4 Based Variables
	4.5 Location References and Based Variables
	4.6 Contiguity of Storage
	4.7 The AT Attribute

	Expressions and Assignments 5
	5.1 Operands
	5.2 Operand and Expression Types
	5.3 Arithmetic Operators
	5.4 Relational Operators
	5.5 Logical Operators
	5.6 Expression Evaluation
	5.7 Assignment Statements
	5.8 Special Case: Constant Expressions

	Structures and Arrays 6
	6.1 Arrays and Subscripted Variables
	6.3 References to Arrays and Structures

	Flow Control Statements 7
	7.2 The IF Statement
	7.3 GOTO Statements
	7.4 The CALL and RETURN Statements
	7.5 The Null Statement

	Sample Program 1 8
	8.1 Insertion Sort Algorithm

	Block Structure, Scope, 9
	and Lifetimes Rules
	9.1 Scope
	9.2 Names Recognized within Blocks
	9.3 Restrictions on Multiple Declarations
	9.4 Lifetime Rules
	9.5 Extended Scope: The PUBLIC and EXTERNAL Attributes
	9.6 Scope of Labels and Restrictions on GOTOs

	Procedures and Interrupts 10
	10.1 Procedure Declarations
	10.2 Activating a Procedure: Function References and CALL Statements
	10.3 Exit from a Procedure: The RETURN Statement
	10.4 The Procedure Body
	10.5 The Attributes: PUBLIC and EXTERNAL, INTERRUPT, USING,
	 INDIRECTLYCALLABLE

	Built-In Procedures 11
	11.1 Obtaining Information about Variables
	11.2 Explicit Type and Value Conversions
	11.3 SHIFT and ROTATE Functions
	11.4 INPUT and OUTPUT
	11.5 Miscellaneous Built-Ins
	12.1 Optimization and the 8051 Hardware Flags
	12.2 The PLUS and MINUS Operators
	12.3 Carry-Rotation Built-In Functions
	12.4 The DEC Function

	Support Library: PLM51.LIB 13
	Compiler Invocation and Controls 14
	14.1 Invoking the PL/M-51 Compiler
	14.2 The Object File Controls
	14.3 Listing Selection and Content Controls
	14.4 Listing Format Controls
	14.5 Program Listing
	14.6 Symbol and cross-reference Listing
	14.7 Warnings and Compilation Summary
	14.8 Source Inclusion Controls
	14.8 Conditional Compilation Controls

	Object Module Sections 15
	15.1 Modules
	15.3 Linkage Information
	15.4 Debug Information

	Error Messages 16
	16.1 Source PL/M-51 Errors
	16.2 Fatal Command-Tail and Control Errors
	16.3 Fatal Input / Output Errors
	16.4 Fatal Insufficient-Memory Errors
	16.5 Fatal Compiler Failure Errors
	16.6 Error Messages

	Grammar of the PL/M-51 Language A
	 Program Constraints B
	PL/M-51 Reserved Words C
	Predeclared Identifiers D
	Differences between PL/M-80 and PL/M-51 E
	E.1 Memory
	E.2 I/O
	E.3 Interrupts
	E.4 Bits
	E.5 Overlaying Variables
	E.6 Words

	ASCII Codes F
	Interfacing PL/M-51 to ASM51 G
	G.1 Calling Sequence
	G.2 Procedure Epilogue
	G.3 Value Returned from Typed Procedure

	RunTime Interrupt Processing H
	H.1 General Information
	H.2 The Interrupt Vector
	H.3 Writing Low-Level Interrupt Handlers Separately
	H.4 Writing Interrupt Vectors Separately
	H.5 PL/M-51 Errors Detected at RL51-Time

	The Processor Descriptor Files I
	Sample Program 2 J
	How to Generate Better Code K
	K.1 RAM Space Efficiency

	Valid PL/M-51 Statements L
	Assembler Utility Library:UTIL51.LIB M
	M.1 Using UTIL51.LIB
	M.2 The UTIL51. LIB Procedures
	M.3 UTIL51.LIB Procedure Declarations

