
ASM86 ASSEMBLY LANGUAGE
REFERENCE MANUAL

Order Number: 122385-001

Additional copies of this manual or other intel literature may be obtained from:

Literature Department
intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

intel retains the right to make changes to these specifications at any time, without notice. Contact
your local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this materia!, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embod
ied in an Intel product. No other circuit patent licenses are implied.

ASPR7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the
prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify
Intel products:

BITBUS 'm .SBC Plug-A-Bubble
COMMputer iMMX iSBX PROMPT
CREDIT Insite iSDM Promware
Data Pipeline intel iSXM QueX
Genius intgl BOS KEPROM QUEST

Intelevision Library Manager Ripplemode
intgligent Identifier MCS RMX/80

PtCE inteligent Programming Megachassis RUPI
ICE]nteHec MICROMAINFRAME Seamiess
,CS] ntellink MULTIBUS SOLO
iDBP ;OSP MULTICHAblbEL SYSTEM 2000
<D1S iPDS MULTIMODULE UPI
iLBX iRMX

REV. REVtStON HtSTORY DATE APPD.

-001 Origina) issue. 6/85 C.W.

Preface

How to Use This Manuai
This manua) describes the assembiy ianguage for the 8086/8088 and the 8087. You
should aiready be famiiiar with the 8086/8087/8088 before attempting to use this
manual. If you are not familiar with the 8086/8087/8088 family of processors, you
may wish to read the following manuals first:
* <%/R<!?/7<%//<!?# Cser's TfanMaZ-Prograw/Mcr's /?e/<?reHce, order number

210911, which is the basic reference document for iAPX 86/88, and
iAPX 186/188 users. It includes a general description of the 8087 Numeric
Processor.

* zln to order number 121689, which is an introduction to
programming in assembly language for the 8086/8088.

The zl&MM AongMOge 7?e/erence is provided with the
Afacro which describes how to assemble your
8086/8087/8088 program modules. It also contains a list of manuals for related Intel
development tools, such as utilities and high-level language translators.

Before plunging into this manual you should read Chapter 1. It introduces some of
the concepts, terminology, and conventions that are used throughout the manual.
Sections labeled ""Overview" are introductions to material covered in a chapter. These
sections are intended to give you an overall perspective of the material. In Chapter 3,
there are two sections entitled "Introduction to...". These sections introduce two data
structures unique to the assembly language. You should read these sections early in
your use of the manual. The following is a brief description of the chapter contents:
* Chapter 1 discusses the important issues of the machine architecture (registers,

segmentation) and introduces the assembly language.
* Chapter 2 discusses the assembler directives that control segmentation (defining

program segments).
* Chapter 3 discusses the definition of variables and labels and the definition and

initialization of data storage. It also describes the many data structures supplied
by the assembly language.

* Chapter 4 describes the possible operand types that you can use with machine
instructions. It also describes the assembly-time expressions that you can use.

* Chapter 5 describes the directives that allow you to develop modular programs,
both in assembly language and assembly language programs that will link to
modules written in other 8086/8088 languages.

* Chapter 6 fully describes the instruction sets for the 8086/8088 and the 8087.
* Chapter 7 describes the macro language supplied by the assembler.

Notations! Conventions
typeface This typeface indicates computer output or user input.

The characters must be entered in the order shown.

V! ASM86

UPPERCASE Characters shown in uppercase must be entered in the
order shown. You may enter the characters in uppercase
or lowercase.

/tal/c Italic indicates a metasymbol that may be replaced with
an item that fulfills the rules for that symbol. The actual
symbol may be any of the following:

<%rectory-name Is that portion of a pathname that acts as a file locator
by identifying the directory containing the filename.

Rename Is a valid name for the part of a pathname that names a
file.

pathname Is a valid designation for a file; in its entirety, a pathname
consists of a d/rectory-name and a f/7ename.

pathname 7,
pathname^,...

Are generic labels placed on sample listings where one or
more user-specified pathnames would actually be printed.

vanab/e-name Is a valid name for a variable.

Vx.y Is a generic label placed on sample listings where the
version number of the product that produced the listing
would actually be printed.

[] Brackets indicate optional arguments and parameters.

1 } Braces indicate that one and only one of the enclosed
items must be entered unless the field is also surrounded
by brackets, in which case, the item is optional.

f }...

1

At least one of the enclosed items must be selected unless
the field is also surrounded by brackets, in which case,
the items are optional. The items may be used in any
order unless otherwise noted.

In syntax descriptions, the vertical bar separates options
within brackets [] or braces 1 } .

Ellipses indicate that the preceding argument or param
eter may be repeated.

The preceding item may be repeated, but each repetition
must be separated by a comma.

punctuation Punctuation other than ellipses, braces, and brackets must
be entered as shown.

<cr> Indicates a carriage return.

Table of Contents

Chapter 1 Rage
Overview of the ASM86 Assembly Language
The 8086/8087/8088 Development Environment ... 1-1
An Overview of the Assembly Language .. 1-1
Basic Assembly Language Constituents .. 1-3

Character Set .. 1-3
Tokens and Separators ... 1-4
Delimiters .. 1-4
Identifiers .. 1-4
Statements ... 1-5

^\n Overview of the Macro Language ... 1-5
CPU Hardware Overview .. 1-5

The General Register Set .. 1-6
The Segment Register Set ... 1-7

The 8086/8088 Memory Segmentation Model ... 1-8
Format for Directive Specifications .. 1-9

Chapter 2
Segmentation
Overview of Segmentation ... 2-1
The SEGMENT/ENDS Directive ... 2-1

Multiple Definitions for a Segment ... 2-3
"Nested" or "Embedded" Segments ... 2-4
The Default Segment - ??SEG .. 2-5

The ASSUME Directive ... 2-5
Forward Referenced Names in an ASSUME Directive ... 2-7
Multiple ASSUME Directives .. 2-8

The GROUP Directive ... 2-8
Use of the OFFSET Operator with Groups ... 2-9

Chapter 3
Defining and initializing Data
Overview of Variables and Labels ... 3-1
Constants ... 3-2
Defining and Initializing Variables (DB, DW, DD, DQ, DT Directives) 3-3
Introduction to Records .. 3-8
The RECORD Directive ... 3-8

Record Template Definition .. 3-8
"Partial" Records .. 3-9

viii ASM86

Page
Record Allocation and Initialization ... 3-9

Introduction to Structures ... 3-10
The STRUC Directive .. 3-11

Structure Template Definition .. 3-11
Structure Allocation and Initialization ... 3-12

Defining Labels ... 3-15
The PROC Directive .. 3-15
The LABEL Directive .. 3-17
The Location Counter ($) .. 3-18
The ORG Directive ... 3-18
The EVEN Directive .. 3-19
The PURGE Directive .. 3-19

Using the PURGE Directive to Control Debug Information 3-19

Chapter 4
Accessing Data—Operands and Expressions
8086/8087/8088 Instruction Statements .. 4-1
Operand Types .. 4-2

Registers .. 4-2
Floating Point Stack ... 4-2

Immediate Operands ... 4-2
Memory Operands ... 4-3

Direct Address ... 4-3
Register Indirect Address .. 4-3
Based Address ... 4-4
Indexed Address .. 4-4
Based Indexed Address .. 4-4
Segment Register Defaults .. 4-4

Overview of Expressions .. 4-6
Types of Expression Operands .. 4-6

Numbers .. 4-6
Address Expressions .. 4-7
Accessing Structure Fields .. 4-8
Relocatable Expressions ... 4-9

Arithmetic Operators .. 4-10
HIGH/LOW ... 4-10
Multiplication and Division ... 4-11
Shift Operators .. 4-11
Addition and Subtraction .. 4-12
Relational Operators ... 4-12
Logical Operators .. 4-13

Attribute Overriding Operators ... 4-14

Table of Contents ix

Page
Segment Override ... 4-14
PTR Operator .. 4-15
SHORT Operator .. 4-16

Attribute Value Operators ... 4-17
THIS Operator .. 4-17
SEG Operator ... 4-18
OFFSET Operator .. 4-18
TYPE Operator ... 4-19
LENGTH Operator .. 4-20
SIZE Operator .. 4-21

Record Specific Operators ... 4-21
Shift Count .. 4-22
MASK Operator .. 4-22
WIDTH Operator ... 4-23

Operator Precedence ... 4-23
Highest Precedence .. 4-23
Lowest Precedence .. 4-23

The EQU Directive ... 4-24

Chapter 5
Program Linkage Directives
Overview of Program Linkage ... 5-1
The PUBLIC Directive .. 5-1
The EXTRN Directive ... 5-1

The Placement of EXTRN's ... 5-2
The END Directive ... 5-3
The NAME Directive ... 5-5

Chapter 6
The 8086/8087/8088 instruction Set
The 8086/8088 Instruction Set ... 6-1
Instruction Statement Formats .. 6-1
Addressing Modes ... 6-1

Memory Operands ... 6-1
Segment Override Prefixes .. 6-2
Register Operands ... 6-3
Immediate Operands .. 6-4

String Instructions and Memory References ... 6-4
Mnemonic Synonyms .. 6-6
Organization of the Instruction Set ... 6-6

Data Transfer .. 6-7
General Purpose Transfers ... 6-7

X ASM86

Page
Accumulator-Specific Transfers .. 6-7
Address-Object Transfers ... 6-7
Flag Register Tranfers ... 6-8

Arithmetic ... 6-8
Flag Register Settings .. 6-8
Addition .. 6-8
Subtraction .. 6-9
Multiplication .. 6-9
Division .. 6-9

Logic .. 6-10
Two-Operand Operations ... 6-10

String Manipulation .. 6-10
Hardware Operation Control ... 6-10
Primitive String Operation ... 6-11
Software Operation Control ... 6-12

Control Transfer .. 6-12
Calls, Jumps, and Returns ... 6-12
Conditional Jumps .. 6-12
Iteration Control .. 6-13
Interrupts ... 6-13

Processor Control .. 6-14
Flag Operations ... 6-14
Processor Halt .. 6-14
Processor Wait ... 6-14
Processor Escape ... 6-14
Bus Lock .. 6-15
Single Step ... 6-15

Instruction Description Formats .. 6-15
Format Boxes ... 6-16
Instruction Detail Tables ... 6-16
Flags ... 6-16

The 8087 Instruction Set ... 6-108
8087 Architectural Summary .. 6-108

Floating-Point Stack ... 6-108
Environment .. 6-109

Status Word ... 6-109
Control Word ... 6-110
Tag Word ... 6-111

Exception Pointers ... 6-112
Data Types .. 6-112

8087 Operation .. 6-114
Coprocesssing .. 6-114

Table of Contents X)

Page
Numeric Processing .. 6-114

8087 Emulators ... 6-116
Organization of the 8087 Instruction Set .. 6-116

Data Transfer Instructions ... 6-116
Arithmetic Instructions .. 6-117
Comparison Instructions .. 6-119
Transcendental Instructions ... 6-119
Constant Instructions ... 6-120
Processor Control Instructions ... 6-120

Chapter 7
The MACRO Processing Language

Introduction ... 7-1
Macro Processor Overview .. 7-1

Creating and Calling Macros .. 7-2
Creating Parameterless Macros ... 7-2
Creating Macros with Parameters ... 7-6
LOCAL Symbols in Macros .. 7-7

The Macro Processor's Built-in Functions ... 7-8
Comment, Escape, Bracket and METACHAR Built-in Functions 7-8

Comment Function .. 7-8
Escape Function .. 7-9
Bracket Function ... 7-10
METACHAR Function ... 7-11

Numbers and Expressions in MPL .. 7-11
SET Macro .. 7-11
EVAL Function ... 7-12

Logical Expressions and String Comparisons in MPL .. 7-12
Control Flow and Conditional Assemblies ... 7-14

IF Function .. 7-14
WHILE Function .. 7-15
REPEAT Function .. 7-16
EXIT Function .. 7-16

String Manipulation Built-in Functions ... 7-17
LEN Function ... 7-17
SUBSTR Function .. 7-17
MATCH Function ... 7-18

Console I/O Built-in Functions ... 7-19
Advanced MPL Concepts .. 7-19

Macro Delimiters .. 7-20
Implied Blank Delimiters ... 7-20
Identifier Delimiters ... 7-20

X!) ASM86

Page
Literal Delimiters .. 7-21

Literal vs. Normal Mode ... 7-22
Algorithm for Evaluating Macro Calls .. 7-23

Appendix A
Codemacros

Appendix B
Fiag Operations

Appendix C
Reserved Words

Appendix D
MPL Buiit-in Functions

Appendix E
instructions in Hexadecimal Order

Appendix F
Exampie Macros

Appendix G
Exampie Programs

Appendix H
186 instruction Set Summary

Figures
1-1 the iAPX 86,88 Family Development Process .. 1-2
1-2 The General Register Set ... 1-6
1-3 The Segment Register Set .. 1-7
1-4 Generating a Physical Address ... 1-8
3-1 "Partial" Record Definition .. 3-9
3-2 Structure Definition and Allocation .. 3-14
6-1 The 8087 Stack Fields ...6-108
6-2 8087 Environment .. 6-109
6-3 Status Word Format ...6-110
6-4 Control Word Format ..6-111

Table of Contents xiii

Page
6-5 Tag Word Format ..6-112
6-6 Exception Pointers Format .. 6-112
6-7 Data Formats ... 6-113
6-8 FSAVE/FRSTOR Memory Layout ...6-179
6- 9 FSTENV and FLDENV Memory Layouts ..6-185
7- 1 Macro Processor versus Assembler—Two Different Views of a Source File 7-1

Tabtes
1-1 Implicit Use of General Registers .. 1-7
3-1 Constants .. 3-3
6-1 String Instruction Mnemonics .. 6-4
6-2 8086/8087 Conditional Transfer Operations .. 6-13
6-3 Symbols ... 6-17
6-4 Effective Address Calculation Time ... 6-19
6-5 8087 Data Types ...6-112
6-6 Rounding Modes ...6-115
6-7 Exception and Response Summary ...6-116
6-8 Data Transfer Instructions ... 6-117
6-9 Arithmetic Instructions .. 6-117
6-10 Basic Arithmetic Instructions and Operands ... 6-118
6-11 Comparison Instructions .. 6-119
6-12 Transcendental Instructions ...6-119
6-13 Constant Instructions ... 6-120
6-14 Processor Control Instructions ...6-121
6-15 FXAM Condition Code Settings ...6-194

Overview of the ASM86
Assembly Language

The 8086/8087/8088 Devetopment Environment
This chapter presents an overview of ASM86, a macro assembly language for the
8086 and 8088 microprocessors, optionally in combination with the 8087 Numeric
Data Processor. The ASM86 Macro Assembler generates object modules, which
contain machine instructions and data, from programs written in ASM86. Programs
may be written solely in assembly language or can be a modular combination of ASM86
and other high-level language modules. After the ASM86 modules have been assem
bled, they can be processed by the following iAPX 86,88 utilities:
* LINK86 combines object modules into load modules.
* LOC86 binds load modules to absolute memory addresses.
* LIB86 helps build and manage libraries of object modules.
* OH86 converts an 8086/8088 object module to Intel Hex Format.

Figure 1-1 describes the iAPX 86,88 development process.

This revision of the Aangt/rrgc /?c/erence Marrnc/ includes information on the
iAPX 186 instructions. These instructions can be used only if you use the iAPX 186
assembler. The 186-only instructions are indicated by having iAPX 186 in parenthe
ses after the mnemonic. Clocks of iAPX 186 are given in Appendix H of this manual.

An Overview of the Assembly Language
The assembly language for the 8086/8088 is used to write and structure programs to
be assembled, linked, located, and executed on an 8086 or 8088 microprocessor,
optionally in combination with an 8087 Numeric Data Processor. There are directives
to control program segmentation, the allocation of data, including structured data
types, and to structure multi-module programs through relocation and linkage direc
tives. The assembly language features a set of operators for assembly-time expres
sions, which allow the user to manipulate and control the data typing in a simple way
and supply a means to perform assembly time arithmetic.

A very important feature of the assembly language is its simplified instruction
mnemonics. Many assemblers require the programmer to remember a different
mnemonic for each machine opcode. For example, a "move immediate" would require
a different mnemonic than a "move memory". The 8086/8088 instruction set uses a
single mnemonic for each generic instruction type. Thus, all "moves" use the mnemonic
"MOV". The opcode generated is dependent on the operands supplied with the
instruction. A move from memory could be written—

MOV AX, COUNT

where COUNT is a variable. An immediate move would be written as:

MOV DX, DA 123H

In each case the mnemonic is the same. This simplification allows the programmer to
concentrate on the programming task and not on remembering a large set of mnemon
ics. In order to determine the correct instruction to generate, the assembler examines

121616-1

1-2
A

SM
86

Figure 1-1. The iAPX 86,88 Famiiy Deveiopment Process

Overview of ASM86 1 -3

the operands and determines their "type" (byte/word, variable/constant, etc.) and
then uses this information to select the appropriate code.

The 8086 and 8088 have instructions to manipulate both 8 and 16-bit data. ASM86
is a "strongly-typed" language in that it checks that operands in an instruction are of
the same "type". This prevents the programmer from inadvertantly moving a word
variable into an 8-bit destination, for exampie. This wouid be an error that might not
be detected unti! run-time. The assembler wiil catch this error at the time of assem
bly, saving the programmer the chore of debugging this error. However, one of the
features of programming in assembiy language is the ability to manipulate data in
every possible way, including the above "illegal" operation. ASM86 has many direc
tives and expression operators to override this typing mechanism so that these types
of operations can be performed (see Chapter 4).

The assembler allows you to forward reference variables and labels in your program.
A forward reference is a use of a variable or label prior to its definition. For example:

MOV AX, COUNT forward reference to COUNT

COUNT DU 15 ; definition of COUNT

When you make a forward reference such as that shown above, the assembler must
make a guess as to the nature of the thing-referenced. In this case it will assume that
it is a word variable because AX is a word register. However, it could be a constant
if it was defined as:

COUNT ^Fo*U^ 15 ; definition of COUNT as a constant

It is possible for the assembler to make a poor or incorrect guess that could lead to
an error message or inefficient code. It is recommended that you try to avoid forward
references as much as possible in your program. A good practice is to define all your
variables and data at the top of your program.

Basic Assembiy Language Constituents
This section discusses the elements that constitute a source file in the ASM86 assem
bly language.

Character Set

The character set used in ASM86 is a subset of both ASCI I and EBCDIC character
sets. The valid characters consist of the alphanumerics:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789

along with these special characters:

+

and the non-printing characters:

space tab carriage-return line-feed

1-4 ASM86

if an ASM86 program contains any character that is not in this set, the assembler
wit) treat the character as a biank. The combination of a iinefeed or carriage-return/
linefeed immediately followed by an ampersand represents a continuation line and is
treated as a blank (except within a character string or comment).

Upper- and lowercase letters are not distinguished from each other (except in charac
ter strings). For example, xyz and XYz are interchangeable.

Blanks are not distinguished from each other and any unbroken sequence of blanks is
considered to be the same as a single blank (except within a character string).

Special characters and combinations of special characters have particular meanings
in a program, as described in the remainder of this manual.

Tokens and Separators

A token is the smallest meaningful unit of a source program, much as words are the
smallest meaningful units of a book in English. Separators are used to separate two
adjacent tokens so that they are not mistakenly thought to be one longer token. The
most commonly used separator is the blank. Any unbroken sequence of blanks may
be used wherever a single blank is allowed. Horizontal tabs are also used as separators
and are interpreted by the assembler identically to blanks except that they may appear
as multiple blanks in the list file (see operator's manual). Any illegal character, or
character used in an illegal context, is also treated as a separator.

Detimiters

Delimiters are special characters that serve to mark the end of a token and also have
a special meaning unto themselves (as opposed to separators, which merely mark the
end of a token). Commas, plus-signs, square brackets, etc., all serve as delimiters.
When a delimiter is present, separators need not be used; however, using separators
often makes your programs easier to read and, therefore, easier to understand.

tdentifiers

An identifier is used to name a user-defined entity in a program. This could be a
segment, a group, a variable, a label, or a constant defined with an EQU (Equate)
directive. The format for an identifier is as follows:
1. The identifier must begin with a letter or one of three special characters:

a. A question mark (?), with hexadecimal value 3FH
b. A commercial at-sign (@), with hexadecimal value 40H
c. An underscore (_), with hexadecimal value 5FH

2. It may contain letters or digits and the three special characters.
3. The identifier name is considered unique only up to 31 characters, but it can be

of any length (up to 255 characters).
4. Every identifier has global scope within your program module.

Overview of ASM86 1-5

Statements

Just as tokens may be seen as the assembly language counterparts to the English
concept of words, so may statements be viewed as analogous to sentences. A state
ment is a specification to the assembler as to what action to perform. In fact, one way
of viewing a computer program is as a sequence of statements which, when taken as
an aggregate, is intended to perform a particular function. Statements may be divided
into two types: instructions and directives.

Instructions are translated by the assembler into machine instruction code which
"instruct" the 8086/8087/8088 to perform certain operations. Directives are not
translated into machine instruction code by the assembler but rather "direct" the
assembler itself to perform certain clerical functions.

Usually a statement will occupy one line in your source file. A line is a sequence of
characters ended by a terminator (line-feed or carriage-return/line-feed combina
tion). However, ASM86 provides for continuation lines which allow a statement to
occupy more than one physical line in your source file. Any statement may be contin
ued if the first character following the terminator is an "&". (Symbols, however, may
NOT be broken across continuation lines. Character strings may not be continued
across continuation lines; the string must be closed with an apostrophe on one line
and then reopened with an apostrophe on a subsequent continuation line, with an
intervening Comments are considered to be ended by a terminator; if a comment
is continued then the first non-blank character following the "&" must be a ";".)

An Overview of the Macro Language
The assembler contains as its front-end a macro processor. The macro processor scans
the source file for macro definitions and macro calls written in Macro Processor
Language (MPL). Macro calls are expanded according to macro definitions, and the
resulting source assembly language is assembled by the assembler. By using MPL,
you can create macros specific to your application that can generate sequences of
assembly language instructions or directives. The macro processor is a very powerful
string replacement facility that can help to simplify a programming task. Repeatedly
used code sequences can be replaced by a simple macro call. Also, frequently used
assembler directive statements can be replaced by macro calls. Details for the use of
MPL are in Chapter 7.

CPU Hardware Overview
The 8086 and 8088 execute exactly the same instructions. The instruction set includes
arithmetic and logical, program transfer, and data transfer operations. It also includes
the following new operations:
* Multiplication and division of signed and unsigned binary numbers as well as

unpacked decimal numbers
* Move, scan, and compare operations for strings up to 64K bytes in length
* Non-destructive bit testing
* Byte translation from one code to another
* Software-generated interrupts
* A group of instructions that can help coordinate the activities of multiprocessor

systems

1-6 ASM86

This section wii! give a broad overview of the machine architecture by presenting the
register set for the 8086/8088. The 8087 is discussed in Chapter 6.

The Genera! Register Set

The 8086/8088 has a set of eight]6-bit genera! registers which are shown in
Figure I-2. These genera! registers are subdivided into two sets of four registers. The
first set is cahed the data registers. Each !6-bit data register is further divided into
two 8-bit registers, avowing its upper (high) and tower hatves to be separately
addressed. This means that each data register can be used interchangeably as a
!6-bit register, or as two 8-bit registers. Each of these !6-bit and 8-bit registers can
participate in arithmetic and logica! operations. The data register set is given betow:

16-Bit Register 8-Bit Registers
High Low

AX AH AL
BX BH BL
CX CH CL
DX DH DL

The second set of genera! registers consists of the pointer and index registers. These
registers can participate in most of the same !6-bit arithmetic and iogica! operations
as the data registers. In most cases, however, these registers are used as pointer or
index registers for addressing data objects in memory. The addressing modes avaiia-
b!e on the 8086/8088 are discussed in Chapter 4. These registers are:

BP — base pointer^*
SP — stack pointer
SI — source index
DI — destination index

Figure 1-2. The Genera) Register Set

Overview of ASM86 1 -7

Some of the 8086/8088 instructions make imphcit use of genera! registers. Tabte 1-1
lists the general types of instructions which use these registers. You should refer to
the complete description of each instruction given in Chapter 6 for a discussion of
this implicit use.

Tabte 1-1. tmpticit Use of Generat Registers

Register Operations

AX Word Multiply, Word Divide, Word I/O
AL Byte Multiply, Byte Divide, Byte I/O, Translate, Decimal Arithmetic
AH Byte Multiply, Byte Divide
BX Translate
CX String Operations, Loops
CL Variable Shift and Rotate
DX Word Multiply, Word Divide, Indirect I/O
SP Stack Operations

SI String Operations
DI String Operations

The Segment Register Set

The 8086/8088 is capable of addressing a megabyte of memory. This megabyte can
be accessed through four segments by the CPU. Each segment is 64K bytes in size.
The four segment registers (CS, SS, DS, ES) indicate the base locations for these
segments. They are shown in Figure 1-3 below. The four segments are functionally
defined as containing code, data (two segments), and the hardware stack. The CS
register points to the current code segment, from which instructions are fetched. The
SS register points to the current stack segment. All hardware stack operations are
performed on locations in this segment. The DS register points to the current data
segment that generally contains program variables. The ES register points to the
current extra segment; it is typically used for data storage. These registers are acces
sible to programs and can be manipulated by several instructions.

9800722-8

Figure 1-3. The Segment Register Set

1-8 ASM86

The 8086/8088 Memory Segmentation Mode!
The 8086/8088 can address a megabyte of memory (!,048,576 bytes). This memory
space is viewed by the CPU at run-time as four functiona) portions caiied physical
segments. Each physical segment is dedicated for a particular use. One is dedicated
to contain code, one for data, one for the hardware stack, and an extra segment that
is usually used for data.

A segment register contains a 16-bit value, used to point to the start or base of a
physical segment. The contents of a segment register determine the upper 16 bits of
a 20-bit address. Thus, each physical segment must begin at an address whose low
four bits are zero. Such a location is called a "paragraph boundary." The value in a
segment register is called a "paragraph number." Thus the location 12340H is indicated
by paragraph number 1234H. For a segment register to point to this location (denot
ing the start of a physical segment at that location) it would be loaded with the value
1234H defining a 64K segment starting at absolute address 12340H.

It requires 20 bits to address a megabyte of memory. The 20 bits are composed from
two portions by the CPU. The first portion is the 16-bit paragraph number discussed
above. It specifies where the physical segment begins in memory. Another quantity
is required to specify the location of a particular object within that physical segment.
This quantity is called the offset portion of the address. It defines a location at a
specific offset from the start of the physical segment. Each offset is a 16-bit quantity,
allowing you to address up to 64K bytes in a physical segment.

How then does the hardware generate a 20-bit address from these two values? First,
the paragraph number in the appropriate segment register is multiplied by 16 (shifted
left 4 bits). The result is then added to the offset yielding the 20-bit address (see
Figure 1-4). The hardware automatically performs this operation. You, however must
ensure: 1) that the correct paragraph number is loaded into the correct segment regis
ter and 2) that the instruction uses the correct offset value. The first is usually handled
by some initialization code at the start of the program or by the loader. The second
is handled by the assembler, as long as the instruction is correctly coded.

The assembler, while assembling the source file, is producing code/data for only one
segment at a time. Within a segment, the assembler needs only to keep track of the
offset of an object, whether it be code or data. The offset is referred to as the "location
counter," which may be user programmable. This same situation is true during the
execution of a program; only one segment is active at a given time for either code or
data. Once a segment register is set with the base of a particular segment, objects
within that segment can be referred to using only their offsets within that segment.
Because of the segmentation model used, the programmer is usually only manipulat
ing the offset part when coding an instruction.

9800722-18

Figure 1-4. Generating a Physical Address

Overview of ASM86 1-9

An important concept to keep in mmd while programming the 8086/8088 is "address
ability." The object in memory which you are referencing must be addressable at run
time. This means that the appropriate segment register contains the base of the segment
in which the object is located. You must insure that the proper value is loaded into a
segment register before the object is referenced by an instruction. This is accom
plished by using the appropriate sequence of instructions to initialize the segment
register. There are assembler directives described in Chapter 2, which help to insure
that you are aware of the addressability of data and code while writing a program.
The following example shows the definitions of two segments, one for data and one
for code. In the code segment, there is an
to initialize a segment register.

Example:
D^T A SEGMENT

KBYTE DB 0

T A ENDS

ASSUME CS:CODE, DS:DATA

illustration of the type of code that is used

MOV AX, DATA
MOV DS, AX

; segments

; AX * base address of DATA
; segment. initialize DS,
data
; now addressable through DS

CODE ENDSJ

A source module is a separately assembled or compiled source file. An executable
program can be made up of one or more modules. A single module can define—
* A part of a physical segment
* A complete physical segment
* Parts of several physical segments
* Several complete physical segments

A physical segment is composed of one or more "logical segments." These are defini
tions of segments made in your program through the use of assembler directives
designed for this purpose. You can specify a set of logical segments and their contents
(code, data, etc.) and control how they are combined into physical segments. The
mechanism for accomplishing this task is discussed in Chapter 2.

Format for Directive Specifications
The chapters that follow will discuss the form and use of the assembler directives.
The following describes the format used to specify how each directive is written and
the meaning and use of the different fields that can be part of a directive.

1-10 ASM86

Syntax

The following notation is used to show the syntax of the directives.
1. Lower case strings represent fieids that can be repiaced either by user-suppiied

strings (such as names) or by assembter keywords. These items are referred to
as Fieid Vaiues. The actuai replacement vaiues are specified for each directive
in the sections emitted

2. Upper case strings represent assembier keywords (e.g., SEGMENT, DB, END,
or NAME).

3. Optiona) items are shown in brackets, i.e., [item]. These items are optionat in
the syntax. Use of these fietds is specified for each directive, tn some cases the
absence of this item ("none specified") denotes a defautt case, which is noted
where appropriate.

4. The item [, ...] represents the optionat repetition of a specific item. The syntax
thing [, ...]
woutd expand to

The actuat number of items that can appear in the list is typically limited
by constraints internal to the assembler.

Description

This section is a paragraph which describes the meaning and use of the directive.

Fieid Vaiues

This section describes the vaiues used in specific fields shown in the syntax of the
directive. Upper case strings denote assembler keywords.

Additional Notes

After the above sections, there may be sections dealing with important considerations,
concepts, or applications of the particular directive. These sections should be read
carefully.

Segmentation

Overview of Segmentation
The 8086/8088 directly addresses one megabyte of memory. This megabyte is viewed
by the CPU through four segments, each containing up to 64K bytes. These four
segments are calted physical segments. The start of each segment isTjefined by the
value placed in a segment register. This value is called a paragraph number. It
defines a paragraph boundary in memory, an address divisible by 16 (least signifi
cant hexadecimal digit is equal to OH).

The four segments are classified as code, data, stack, and extra. They are defined by
the four segment registers:

CS for code

DS "for data]

SS for stack

ES for extra

Executable instructions will be in a physical segment defined by the value in CS. Any
stack operations will occur within the segment defined by SS. Data is normally
found in the segment defined by DS, but it can also be placed in the segments
defined by the other segment registers. The contents of the physical segments in
memory during the execution of a program are defined through the assembly
language as logical segments. A physical segment can contain any number of logical
segments that were specified in the program source code (either one or more
modules). The SEGMENT directive is used to both define a logical segment and to
control how the segments will be combined to form a physical segment. The
GROUP directive is another way to combine logical segments with certain restric
tions. Because all code and data must lie within some physical segment during pro
gram execution, a way to specify this addressability is required during assembly time
to check for this condition. The ASSUME directive serves this purpose.

The SEGMENT/ENDS Directive
Syntax:

name SEGMENT [align-type] [combine-type] ['classname']

name ENDS

Description:
The SEGMENT/ENDS directive is used to define a logical segment. This segment
may be combined with other segments in the same module and/or with segments
defined in other modules. These segments will form the physical segments, located
in memory, that are pointed to by the segment registers. The programmer will place
within the SEGMENT/ENDS pair the code, data, or stack. Within a source module,
each occurrence of an equivalent SEGMENT/ENDS pair (with the same name) is
viewed as being one part of a single program segment.

2-2 ASM86

Field Values:
name

The name for the segment, a unique ASM86 identifier.

[aiign-type]

This field specifies on what type of boundary in memory the segment wit] be
located.

The values it may have are:
1. None specified —the default value of paragraph alignment. The segment

will begin on an address divisible by 16 (i.e., an address whose least signifi
cant hexadecimal digit is equal to OH).

2. PARA—paragraph alignment (same as default).
3. BYTE—byte alignment; segment may start at any address.
4. WORD—word alignment; segment will start at anTeverTaddress (i.e., least

significant bit equal to OB). (See EVEN directive, page 3-19.)
5. PAGE—page alignment; segment will start at an address whose two least

significant hexadecimal digits are equal to OOH.
6. INPAGE—inpage alignment; the entire segment must fit within 256 bytes

and, when located, must not overlap a page boundary (i.e., OOH, 100H,
200H, ... ,0FF00H).

[combine-type]

This field specifies how the segment will be combined with segments from other
modules to form a physical segment in memory. The actual combination will
occur during the L1NK86 and LOC86 phase of development. The values for this
field are:
1. None specified—the default value of non-combinable. The segment will not

be combined with any other segment. (Note, however, that separate pieces
of this segment in the same module will be combined.)

2. PUBLIC—all segments of the same name that are defined to be public will
be combined (concatenated to form one physical segment). The order of
combination is controlled during the use of L1NK86. The length of the
resulting physical segment will equal the sum of the lengths of the segments
combined.

3. COMMON—all segments of the same name that are defined to be common
will be overlapped to form one physical segment; all of the combined
segments begin at the same physical address. The length of the physical seg
ment will be equal to the length of the largest segment combined.

4. STACK—all segments of the same name that are defined to be stack will be
combined into a physical segment so that each combined segment will
at the same address (overlaid against high memory) and will grow
"downward." The length of the stack segment after combination will equal
the sum of the lengths of the segments combined.

5. MEMORY—all segments of the same name that are defined to be memory
will be combined so that the first memory segment encountered by L1NK86
will be treated as the physical "memory" segment. In the list of modules
linked together by LINK86, the first module that contains a "memory" seg
ment will be used to define the physical "memory" segment. It will be
located at an address above all other segments in the program. Any other
segments of the type memory that are encountered by L1NK86 will be com
bined as common with the first segment. The length of the memory segment
will be equal to the length of the first memory segment encountered.

Segmentation 2-3

6. AT expression—this is an absolutephysicaLsegmejit to be located at the
memory address defined by the expression. This expression wili represent a
paragraph number. For exampie, if the expression is 4444H. then_the seg
ment wiil be located at paragraph number_4444H or absolute memory
addresss44440tfr1Tie^xpression must evaluate to a constant (see Chap
ter 3). No forward references are allowed.

['classname']

The classname is used to indicate that segments are to be located (by LOC86)
near each other in memory. This is not a means of combining segments so that
they are addressable from the same segment register. The classname indicates
that certain uncombined segments are to be put in the same general area in
physical memory (for example, ROM).

Example:

The following two segments will be located adjacent to one another—

DATA1 SEGMENT BYTE 'ROM'

DATA1 ENDS

DATA2 SEGMENT BYTE 'ROM'

DATA2 ENDS

Muitipie Definitions for a Segment

You may "open" and "close" a segment (with SEGMENT and ENDS directives)
within the module as many times as you wish. All "parts" of the segment which you
define are treated together by the assembler as parts of one segment.

The following two occurrences of the segment DATA—

DATA SEGMENT PUBLIC

ABYTE DB 0^
AMORD DM 0/

DATA ENDS

DATA SEGMENT PUBLIC

ANOTHERBYTE DB 0
ANOTHERMORD DM 0

DATA ENDS

2-4 ASM86

are equivalent to—

DATA SEGMENT PUBLIC

ABYTE DB 0
AMORD DM 0
ANOTHERBYTE DB 0
ANOTHERMORD DM 0

DATA ENDS

When you re-open a segment, you do not need to re-specify its attributes. However,
you cannot change its attributes. The following is correct:

CODE SEGMENT BYTE PUBLIC

CODE ENDS

CODE SEGMENT

CODE ENDS

The foiiowing wiii be flagged as an error:

DATA SEGMENT MORD 'ROM'

DATA ENDS

DATA SEGMENT BYTE 'ROM'

DATA ENDS

"Nested" or "Embedded" Segments

Segments are never physically nested or embedded in memory. However, you may
nest segment definitions in your program. This is only a lexical nesting and does not
represent a physical nesting. For example, the following is a legal construct:

CODE SEGMENT ;begin CODE

DATA SEGMENT ;begin DATA, stop assembling CODE

Segmentation 2-5

DATA ENDS ;end DATA, begin assembling CODE
;agai n

CODE ENDS ;end CODE

The assembter wiH treat the CODE segment separate from the DATA segment. The
contents of the DATA segment are not contained within the CODE segment. The
following wih be fiagged as an error because SEGMENT/ENDS pairs must be
matched as shown above:

CODE SEGMENT ;beg i n CODE

DATA SEGMENT ;begin DATA

CODE ENDS ;an error!!! Cannot close CODE before
;c1 os i ng DATA

DATA ENDS

The Default Segment—??SEG

AH variabies and instructions must tie within some segment at run-time, ff you do
not specify a segment to contain your code or data, the assembter wilt create a seg
ment named ??SEG, in which this code or data wit! tie. This segment is non-
combinabte and paragraph aligned.

The ASSUME Directive
Syntax:

ASSUME segreg:segpart [, ...]

or

ASSUME NOTHING

Description:
At run-time, every memory reference (a variable or tabet) requires two parts in order
to be physicatiy addressed: a paragraph number (segment part) and an offset (within
the segment). The paragraph number witt be in one of the segment registers, defining
the physicat segment in which the variable or)abet lies. (This value will have been
placed in the segment register by the appropriate initialization code.) The offset
value will be contained in the instruction which makes the reference. These two
values are used to compute the absolute address of the object referenced. You use
the ASSUME directive to define what the contents of the segment registers witt be at
run-time. This is done to help the assembler ensure that the code or data referenced
will be addressable. The assembler will check each memory reference for address
ability based on the contents of the ASSUME directive. The ASSUME directive does

2-6 ASM86

not initialize the segment registers; it is used by the assembier to hetp you to be aware
of the addressabiiity of the code and data. Untess the code or data is addressabie (as
defined either by an ASSUME or a segment override) the assembler will report an
error. The ASSUME directive also helps the assembler decide when to automatically
generate a segment override instruction prefix. (See Chapter 4 on the Segment Over
ride Prefix.) The following example illustrates the use of ASSUME—

ASSUME DS:DATA, CS:C0DE

DATA SEGMENT PUBLIC

;t he DATA segment i s
;addressable t h rough ^DS and
; t h e CO DfCsTgm e nt through CS

ABYTE DB 0
AWORD DB 0

CODE ENDS

DATA ENDS

DATAX SEGMENT PUBLIC

WHERE DB 0

DATAX ENDS

CODE SEGMENT PUBLIC

MOV
MOV

AX, DATA
DS, AX

;AX = base address of DATA
initialize DS

MOV AL, ABYTE ;DS poi nts to base of DATA
;segment that contains ABYTE.
instruction wilt use offset of
;ABYTE to address va Lue

ALAB: MOV
J MP

AWORD, 15
ALAB

;CS points to base of CODE
;CS initialized when program
;loaded, instruction will use
;offset of ALAB to calculate
; j ump

MOV AH, WHERE ;AN ERROR I ! " ! DS has not been
initialized with the base
;address of the segment DATAX
;and no ASSUME has been made'
;The assembler does not know
;where WHERE is.

MOV
MOV

AX, DATAX
ES, AX initialize ES

ASSUME ES:DATAX ;DATAX now in ES

MOV AH, WHERE ;assembler wilt automatically
;assemble an ES instruction
;pref i x to address WHERE

Segmentation 2-7

Field Values:
segreg

One of the 8086/8088 segment register names: CS, DS, SS, or ES.

segpart

This fieid defines a paragraph number in one of the following ways:
1. A segment name, as in:

ASSUME CS:CODE, DS:DATA

2. A previously defined group name (see page 2-8), as in:

ASSUME CS:CODEGRP, DS:DATAGRP

3. An expressionfsee page 4-18) of the form:
SEG variable-name or SEG label-name or SEG external-name,
as in:

ASSUME CS:SEG START, DS:SEG COUNT

4. The keyword NOTHING, which states that nothing is defined to be in that
segment register at that time. If a segment register is assumed to contain
NOTHING, the assembler will not generate instructions that use this seg
ment register for memory addressing.

Example:

ASSUME ES:NOTHING

The form ASSUME NOTHING is equivalent to:

ASSUME CS:NOTHING, DS:NOTHING, SS:NOTHING, ES:NOTHING

This is the default, which remains in effect until the first ASSUME directive
is seen.

Forward Referenced Names in an ASSUME Directive

You may forward reference a name (i.e., refer to name not yet defined) in an
ASSU ME directive only if that name is the name of a segment. This is in the form:

ASSUME CS:CODE ;The name CODE is a forward reference

CODE SEGMENT ;CODE defined here

CODE ENDS

If the name is not the name of a segment, an error will be reported.

2-8 ASM86

Muttipte ASSUME Directives

An ASSUME directive win stay in effect unti) it is changed by another ASSUME.
That is, if you assume some contents in CS, that assumption wi)t hoid untii you
assume some new contents or NOTHING in CS.

The GROUP Directive

Syntax:
name GROUP segpart [,...]

Description:
The GROUP directive is used to combine several logicai segments together, so that
they win form one physicai segment (i.e., they win ah be addressabte from the same
base) after the program has been located. The size of the group is equal to the sum of
the sizes of ah the segments specified in the GROUP directive. The total size must be
less than or equal to 64K bytes. The assembler will make no checks to see if the size
of the group win be correct. This check is made by LOC86. The group name can be
used as if it were a segment name (except in another GROUP directive). The order of
the segments in the group directive will not necessarily be the order of the segments
in memory after the program is located.

The GROUP directive serves as a "shorthand" way of referring to a combination of
segments. Its utility is in specifying a collection of segments that are to be grouped at
link-time to form one physical segment. However, the assembler views the program
content in terms of segments. When you define a variable or label (see Chapter 3),
the assembler assigns that variable or label to the segment in which it was defined.
The offset associated with the variable or label is from the base of its segment and
not from the base of the group.

One use of the group name is in the ASSUME directive. If, for example, you have
defined many different data segments that you intend to form into one physicai seg
ment when the program is located in memory, you could combine these segments
with the GROUP directive. Since the contents of all these data segments will be
addressable through DS during the execution of the program, you may use the group
name in the ASSUME and to initialize DS. For example,

DATAGRP GROUP DATA1, DATA2

DATA1 SEGMENT

ABYTE DB 0

DATA1 ENDS

DATA? SEGMENT

AWORD DU 0

DATA2 ENDS

ASSUME DS:DATAGRP, DS:C0DE ;use group name in ASSUME

CODE SEGMENT

Segmentation 2-9

MOV AX, DATAGRP
MOV DS., AX_____

;AX = base address of group
jinitiaLize DS

MOV AX, AWORD ;addressable through DS

CODE ENDS

Field Values:
name

A unique ASM86 identifier that is used as the name for the group.

segpart

The fieid defines a paragraph number in one of the following ways:
I. A segment name, as in:

CODEGRP GROUP CODE1, C0DE2

2- An expression (see page 4-18) of the form:
SEC variable-name or SEC label-name or SEG external-name,
as in:

DATAGRP GROUP SEG START, SEG COUNT

Use of the OFFSET Operator With Groups

When using the OFFSET operator (see page 4-18) with a variable or label whose seg
ment is in a group, you must use the group name as a segment override (see page
4-14) in the expression, as in:

MOV BX, OFFSET DATAGRP:COUNT

Also, if you wish to store the paragraph number of a variable or label, you must use
this construct:

DU DATAGRP:COUNT
DD DATAGRP:COUNT

Defining and initializing Data

Overview of Variables and Labeis
The two most referenced objects (other than registers) in a program are variabies
and iabeis. You define these objects in your program. Variabies refer to data items,
areas of memory where vaiues are stored. Labeis refer to sections of code that may
be jumped to or CALLed. Each variabie and iabei has a unique name in your
program.

A variabie is defined through a data definition statement or the LABEL directive.
Each variabie has three attributes:

L Segment—The segment in which the variabie was defined, it is a vaiue that
represents the paragraph number of the segment.

2. Offset—The offset (current iocation counter) of the variable defined, it is a
i6-bit vaiue which represents the distance in bytes from the base (or start) of the
segment to the start of the variabie in memory.

3. Type—The size of the data item in bytes, in most cases this type is specified
through a keyword in the definition. The type of a variabie determines how it
may be used in an instruction and also, in some cases, how data wiii be stored
within that variabie. The possible types are:

1. BYTE—one byte—8086/8088 data types.
2. WORD—one word (two bytes)—8086/8088 data types.
3. DWORD—one double-word (four bytes)—8086/8088 or 8087 data types.
4. QWORD—one quad-word (eight bytes)—8087 data types.
5. TBYTE—one ten-byte (ten bytes)—8087 data types.
6. A structure—a muiti-byte, "structured" 8086/8088 data type.
7. A record—an 8 or i6 bit, "bit-encoded" 8086/8088 data type.

When you define a variabie, the assembier wiii store its definition, which inciudes
the above attributes. In Chapter 4, there is a discussion of expression operators that
aiiow you to obtain or to override these attributes.

Labeis define addresses for executabie instructions. They represent a "name" for a
iocation in the code. This "name" or iabei is a iocation that can be jumped to or
CALLed. The iabei is an operand of the CALL, JMP, and conditionai jump instruc
tions. A iabei can be defined three ways: i) a name foiiowed by a ":" associated
with an instruction statement, 2) a PROC directive, or 3) with a LABEL directive.
Like a variabie, a iabei has three attributes, two of which are the same as those for a
variabie:

1. Segment—same as variabie.
2. Offset—same as variabie.
3. Type—for a iabei, the type specifies the type of jump or CALL that must be

made to that iocation. There are two types:
L NEAR—this type represents a labet that wilt be accessed by a jump or

CALL that ties within the same physicai segment. This type of access is
referred to as an intra-segment jump or CALL. In this case, oniy the offset
part of the iabei is used in the jump or CALL instruction.

3-2 ASM86

2. FAR—this type represents a labei that will be accessed from another
segment. In this case, because control is transferred from one physicat seg
ment to another, the contents of the CS register must be changed by the
jump or CALL. A far iabei will be represented in the jump or CALL
instruction by its offset and its segment part (to be ioaded into CS).

A special form for defining a label is the PROC directive. This form specifies a
sequence of code that will be CALLed just as a subroutine in a high-level language.
The PROC directive defines a label with a type, either NEAR or FAR. It also defines
a context for the RET instruction so that the assembler can determine the type of
RET to code (either a near RET or a far RET). This construct can help to structure
your programs into clearly defined subroutines. But, unlike high-level language proce
dures, there is no scoping of names and you can "fall into" an imbedded "procedure."

Constants
A constant is a pure number without any attributes. In general, a constant can be
binary, octal, decimal, hexadecimal, ASCII, decimal real, or hexadecimal real. A
constant can evaluate to one of three types: 8-bit, 16-bit, or real. These types cannot
necessarily be used in the same context. You should verify the correct use of constants.
The assembler will report an error if a constant is used incorrectly. The proper contexts
for a particular type are noted throughout this manual. Table 3-1 gives the rules for
forming each type of constant. A constant that can be represented in 8 or 16 bits has
a special internal representation in the assembler. These constants are referred to as
'17-bit numbers.' The maximum range of values for these numbers is — OFFFFH to
OFFFFH. All assembly time expressions use two's complement arithmetic on 17-bit
numbers. Real constants (or floating point numbers) are restricted to DD, DQ, DT,
and EQU directives. (For further information on the use of reals and the 8087 see
The Family User '.s Menu#/ Numer/c Su/Y?/emem.)

There is a special set of constants that are used in programming for the 8087. In
general, these constants are referred to as "reals." The actual types are:
1. Short integer—four bytes.
2. Short real—four bytes.
3. Long integer—eight bytes.
4. Long real—eight bytes.
5. Packed decimal number—ten bytes.
6. Temp-real—ten bytes.

A short, long, or temp-real can be expressed in three ways:
1. Decimal real—without exponent.

1.234
3.14159
98.6
1234.4321
1.

2. Decimal real—with exponent.
6.8E27
1.23E-3
1E6

3. Hexadecimal real.
40490FDBR
OCOOOOOOOR

Defining and initialing Data 3*3

Integers (includes packed decimal) can be expressed in either binary, octa), decimai,
or hexadecimal notation. The type of data allocation (the directive) you choose wili
affect the range of values that can be used in the initialization. These ranges are
noted below under the appropriate directive.

Table 3-1. Constants

Constant Type Rutes tor Formation Examptes

Binary
(Base 2)

A sequence of 0's and 1 's followed by the
letter 'B'

11B
10001111B

Octal
(Base 8)

A sequence of digits 0 through 7 followed
by either the letter 'O' or the letter 'O'

77770
4567Q
77777Q

Decimal
(Base 10)

A sequence of digits 0 though 9, option
ally followed by the letter 'D'

3309
3309D

Hexadecimal
(Base 16)

A sequence of digits 0 through 9 and/or
letters A through F followed by the letter
'H'. (Sequence must begin with 0-9)

55H
2EH
0BEACH
0FEH

ASCII Any ASCII string enclosed in quotes
(More than 2 chars, valid for DB only.)

A', 'BC
UPDATE.EXT'

(Base 10)
A decimal fraction, optionally followed by
an exponent. The fraction is a sequence

required if no exponent is present and is
optional otherwise. The exponent starts
with an E, followed by an optional sign
and digits from 0-9.

3.1415927
.002E7
1E-32
1.

Hexadecimal
Real (Base 16)

A sequence of digits 0-9 and/or letters A
through F followed by the letter R. The
sequence must begin with 0-9. Total
number of digits must be (8, 16, 20) or (9,
17, 21). If odd numbered, the first digit
must be 0.

40490FDBR
0C0000000R

Defining and initializing Variabies
(DB, DW, DD, DQ, DT Directives)

Syntax:
1 byte initialization:
[name] DB init [,...]

2 byte initialization:
[name] DW init [, ...]

4 byte initialization:
[name] DD init [, ...]

3-4 ASM86

8 byte initialization:
[name] DQ init [,...]

10 byte initialization:
[name] DT init [,...]

Description:
The DB, DW, DD, DQ, and DT directives are used to define variables and/or
initialize memory. When the directive is used with a name, it specifies a named
variable whose segment part is the current segment and whose offset is the current
location counter. Its type depends on the type of data initialization statement used.
The variable can be initialized to a value, as in:

COUNT OB 10 ;a variable initialized to 10

or it can simply reserve space with no specific initial value:
FLAGS DM ? ;reserve a word

You may also use these directives to define the contents of memory when the pro
gram is loaded. To specify 10 bytes of 0, you might code

DB 0,0,0,0,0,0,0,0,0,0

or

DB 10 DUP (0) ;a DUP is a repeated initialization

There are many types of values that can be used to initialize data. The following is a
list of the possible types of initialization:
1. Constant expressions—a numeric value.

TEN DB 10

2. Indeterminate initialization.

RESERVE DM 7

3. An address expression—the offset or base part of a variable or label.

POINTER DM COUNT ;store offset of COUNT

SEGBASE DM DATA ;store base address of DATA
;segment

APTR DD COUNT ;store offset and segment part
;of COUNT

4. An ASCII string of more than two characters—DB only.

MESSAGE DB 'HELLO THERE'

MYHERO DB 'ALEISTER CROMLEY'

5. A list of initializations.

STUFF DB 10, 'A STRING', 0, 'Q'

NUMBS DM 1, 2, 3, 4, OFFFFH

Defining and initializing Data 3-5

6. A repeated initialization, where the quantity in the '()' is repeated 'number
DUP' times.

TENS DB 10 DUP (10)

PATTERN DM 100 DUP (0,1,65535)

When a number is stored in 16 bits, it is stored with its low-order byte preceding the
high-order byte in memory. For example, if you were to code

DM 1234H

it would be stored as

34 12
low high
------------> increasing memory addresses

in memory. If you specify a string in a DB directive it will be stored with one ASCII
character per byte in the same order as the characters appear in the string.

DB 'ABC'

is stored as

41 42 43

in memory.

Field Values:
[name]

A unique ASM86 identifier. It defines a variable whose offset will be the current
location counter. Its type will be the type of the data initialization unit. Its
length will be equal to the number of bytes initialized.

init

There are many possible values for init depending on the usage and context. Init
has five possible types, listed below. The form used will depend on what type of
initialization you wish to perform. The different forms and contexts are noted
below.
1. A constant expression.

a. 1 byte initialization—a constant or expression that evaluates to 8-bits
(i.e., -255 to +255 decimal).

b. 2 byte initialization—a constant or expression that evaluates to 16-bits
(i.e., -65535 to +65535 decimal).

c. 4 byte initialization—
1. A constant or expression that evaluates to 16-bits (a 17-bit

number). The upper 16 bits are sign-extended in assemblers that
support the 8087, else they are initialized to OH.

2. Short integer in the range -2^ +1 to +2^ -I, which is -4 294 967
295 to +4 294 967 295

3. Real in the range -2'^ to -2'^, 0, +2 '^to +2'^, or approximately
-3.4E38 to -1.2E -38, 0, 1.2E -38 to 3.4E38.

3-6 ASM86

d. 8-byte initialization—
!. Long integer in the range -2^ +! to +2^ -1, which is -18 446 744

073 709 55! 6!5to+!8446 744 073 709 55! 6!5.
2. Rea) in the range -2'^ to -2 o, +2'"^^ to +2'^, or

approximately -! .7E3O8 to -2.3E -308, 0, 2.3E -308 to ! .7E308.
3. A constant (!7-bit number), which wiit be sign-extended to fit in a

DQ field.
e. !0-byte initialization—

1. Long integer in the range -!0'8 + ! to + !0's -1, which is
-999999999999999999 to +999999999999999999. The number wit)
be stored as packed decimal (BCD) format.

2. Rea) in the range -2'^84 to -2-'^82, p +2'^^2 +2'^84^
approximateiy -!.)E4932 to -3.4E-4932, 0, 3.4E-4932 to
+ !.!E4932.

2. The character'?' for indeterminate initialization.
!n situations where you wish to reserve storage but do not need to initialize
that area to any particular value, you can use the special character "?".
This character specifies that the area will be reserved. The reserved area will
be initialized with an indeterminate value. !t can be used with any of the
data initialization directives.

ABYTE DB ? ;reserve a byte
AMORD DM ? ;reserve a word (2 bytes)
ADMORD DD 7 ;reserve a dword (4 bytes)
AQMORD DQ ? ;reserve a qword (8 bytes)
ATBYTE DT 7 ;reserve a tbyte (10 bytes)

When used in a special DUP construct, can be used to specify no
initialization (see below).

3. Initializing with an address-expression—DW and DD only.
You can initialize a DW or DD with a variable name, label name, segment
name, or group name. When you use a variable or label name in a DW, you
are initializing with the offset of that variable or label.

DM COUNT ;store the offset of COUNT
;f com its segment

DM DATAGRP:COUNT ;store the offset of COUNT
;from its group (DATAGRP)

Using a segment name or group name in a DW will store the paragraph
number of that item.

DM CODE ;store the paragraph number of CODE
;segment

!n a DD, the use of a variable or label name will store the offset of the
variable or label in the lower order word and the segment part (paragraph
number) in the higher order word. This forms a pointer to that item.

DD COUNT ;store a pointer to COUNT

which is equivalent to:

DM COUNT ;store the offset of COUNT
DM SEG COUNT ;store the paragraph number of

;COUNT's segment

Defining and initialing Data 3-7

Use of segment or group name in a DD will store the paragraph number in
the tow order word and initialize the higher order word with OOH.

4. Initializing with a string—DB only.
In a DB you can define a string up to 255 characters iong. Each character is
stored in a byte, where successive characters occupy successive bytes. The
string must be enciosed with single quotes. If you wish to include a single
quote in a string, code it as two consecutive quotes. Examples are given
below.

;i n string

ALPHABET DB 'ABCDEFGHIJKLMNOPQRSTUVMXYZ'

DIGITS DB '0123456789'

MITHQUOTE DB 'THIS AIN"T HARD ''' ;inserting quote

In a DW and DD you may code a string of either one or two characters. In
this case, the string is interpreted to be a number and it will be stored as a
number. For example,

NUMB DM 'AB'

is equivalent to

NUMB DU 4142H

where the low byte is stored first followed by the high byte. The same con
vention is true for a DD. In that case, the upper 16 bits will be initialized to
OOH.

5. Initializing with a repeated value.
There is a special construct that can initialize an area of memory with a
repeated value or list of values. The form for this construct is given below.
repeatval DUP (val [, ...])
"Repeatval" is a positive number from 1 to 65535. It specifies the number
of data initialization units to be initialized (bytes, words, dwords, qwords,
or tbytes). "Vai" may be any of the following:
1. An expression—either numeric (appropriate to the data initialization

unit) or an address-expression for a DW or DD.
2. A "?" for indeterminate initialization. If the special form

DB repeatval DUP (?) or
DW repeatval DUP (?) or
DD repeatval DUP (?) or
DQ repeatval DUP (?) or
DT repeatval DUP (?)

is used, then no data initialization record will be produced in the object
module, but the area will be reserved. Any other use of the "?" will
cause a data initialization record to be produced, but the value used for
initialization will be indeterminate.
As an example:

M0RD1 DB 2 DUP (?)
M0RD2 DM 1 DUP (?)

will both reference word variables without initializing data, whereas

3-8 ASM86

M0RD3 DM ?
MORD4 DB 1 DUP (?,?)
M0RD5 DB 1 DLIP (?), 1 DUP (?)
M0RD6 DB 2 DUP (1 DUP (?))

wii) ail initiaiize words to an indeterminate value.
3. A string where the data initialization unit is a DB.

STRING DB 10 DUP ('HELLO')

4. A list of the above items following the ruies given above for each item.

STRINGS DB 10 DUP ('HELLO','GOODBYE')
ADDEXPS DM 3 DUP (COUNT, START, NEXT)
NUMBS DD 100 DUP (1, OFFFFH, 15 101010106)
DIFFERENT DB 25 DUP (2, 'NSJRAJ', 3)

5. "Vai" may aiso be another DUP statement, foiiowing again aii the
above ruies. DUP's may be nested up to eight ieveis deep.

MORESTRINGS DB 15 DUP ('HELLO', 3 DUP ('GOODBYE'))
MORENUMBS DM 27 DUP (1, 3, 5, DUP (2, 5, 7))
NESTEDDUP DB 3 DUP (4 DUP (5 DUP (1, 6 DUP'(0))))

tntroduction to Records
ASM86 has a special data initiaiization statement that allows you to construct bit-
encoded data structures caiied records. A record may be either 8 or i6 bits in size.
Each record is defined to have a number of fieids containing a certain number of bits
per fieid. You can store information in these fieids and aiso access that information.
Records are usefui where you wish to access specific bits in a data structure. These
couid be ftag bits, fields in a data structure used to store a real number, etc. There
are speciai operators used to access the fields in a record. These are discussed in
Chapter 4. There are two steps in using a record. The first defines a "template" for
the record. This specifies the size of the record and its fields. The second step uses
the record name in a data initiaiization statement to actuaiiy ailocate the storage.
These steps are described beiow.

The RECORD Directive
Record Tempiate Definition

Syntax:
name RECORD field-name:exp[=initval] [,...]

Description:
A record is a bit pattern you define in order to format bytes or words for bit
packing. A record can be from i to 16 bits in size. Records are first defined through
the Record Template Definition. Data can then be ailocated and initialized through
the use of the record name in a data initialization statement (given below). Some
examples:
ERRORFLAGS RECORD I0ERR:3=0, SYSTEMERR:3=0, MEMERR:3=0

SIGNEDNUMB RECORD SIGN:1, NUMBER:15

Defining and initialing Data 3-9

Field Values:
name

This is a unique ASM86 identifier, which is the name for the record template
defined.

fieid-name

This is a unique ASM86 identifier, which defines a bit fieid within the record.

exp

This is a constant or expression that evaluates to be a number in the range 1 to
16. This value specifies the number of bits in the field. (If a symbol is used in an
expression, it must not be a forward reference.) The sum of the "exp's" in a
record definition must not exceed 16; if they do, an error will be reported.

[= initval]

This is a constant or expression that evaluates to a number that can be
represented by the number of bits defined for that field. This optional clause
defines a default value for the field. If no initval is specified, the default value is
zero. This default value can be overriden during allocation and initialization.

"Partial" Records
A "partial" record is a record that does not fully occupy a byte or word. The
assembler will right-justify the fields within the record in the least significant bit
positions of the byte or word defined by the record. The undefined (unallocated) bits
have a value of zero when the record is used to allocate storage. If you defined a
record as below

QUASI RECORD A:6, B:6

it will be formatted as follows:

Figure 3-1. "Partial" Record Definition

15 12 11 65 CI
QUASI (definition, not storage)

(undefined) (A) (B)

4 bits 6 bits 6 bits

Record Aiiocation and initialization

Syntax:
[name] record-name <[exp] [,---]>

or

[name] record-name repeat-val DUP (<[exp] [,...]>)

3-10 ASM86

Description:
Use of this form wiH aHocate data in the form specified by the record tempiate used.
You may override any defauit vaiues given in the record definition. For exampie,

FLAGS ERRORFLAGS <0,3,0>

FLAGS1 ERRORFLAGS <> ;no initialization overrides

PLUSONE SIGNEDNUMB <0,1>

MINUS15 SIGNEDNUMB <1, 15>

Field Values:
[name]

A unique ASM86 identifier that is a name for the byte or word ahocated.

record-name

This is the name of the previousiy defined record template that defines how the
bits within the byte or word are to be allocated.

[exp]

You may optionally override default values of record fields when you allocate
the storage. The "exp" must evaluate to a number that will fit in the number of
bits in the field you wish to override. You may override all, some, or none of the
fields in the record template. The following rules apply:

For a record with N fields, each field is represented in the allocation statement,
as shown below—

<fl,f2,f3,...,fn>

To override a particular field, place the value in the position of that field in the
allocation statement. To override "f3" you would code

<,,2>

To override "fn" you would code

<,,,...,2>

Each "empty" override (the ",") specifies one field; you can skip fields up to
the field you wish to override just by typing a for that field. You do not
need to type anything for fields after the one you wish to override if you are not
specifying any values for them. To allocate a record with no overrides you
simply code:

repeatval

A positive integer that indicates the number of records to be allocated.

tntroduction to Structures
You can define "structured" data blocks built from the basic types of data
initialization statements. These data blocks are called "structures." A structure is
composed of data initialization statements that define the fields within a block of

Defining and initializing Data 3-11

data. Each of the fields can be separated accessed. For example, if you wish to
define a data structure that contains a complex number that has two fieids, you
couid code the following:

COMPLEX STRUC

REALPART DQ 0
COMPLEXPART DQ 0

COMPLEX ENDS

This code defines a template that can then be used to allocate storage. To store the
complex number i .2 * 3.5i, you wouid code the foHowing:

VALLIE COMPLEX <1.2, 3.5>

To perform any calculations based on this value, you would refer to the fields of the
structure as

VALLIE . REALPART

and

VALLIE. COMPLEXPART

in the instruction (see Chapter 4).

The STRUC Directive

Structure Tempiate Definition

Syntax:
name STRUC

[fieldname] data-init

name ENDS

Description:
A structure is a "structured" data type. This is similar to a "record" data type in
Pascal, except that the type of elements you may define for a structure are restricted
to the data types allowed in ASM86, (i.e., byte, word, dword, qword, and tbyte). A
STRUC/ENDS pair defines a storage template with various subfields of possibly
different types. This template can then be used to allocate data based on the "struc
ture" of the template. You may define values for the fields that can then be over
riden (with some exceptions) when the structure is used to initialize storage. An
example of a structure is shown below.

EMPLOYEE STRUC

EMPNAME DB '
HOURRATE DD 5.60
NUMBHOURS DB ?

';20 chars allowed
;dollars per hour
;hours per week to be used

EMPLOYEE ENDS

3-12 ASM86

This structure template coutd then be used to create data structures for different
employees. You can override the initial values when the data is allocated and you
may programmatically change the values in allocated structures (see Chapter 4).

Field Values:
name

A unique ASM86 identifier that is the name for the structure template defined.

fieldname

A unique ASM86 identifier. This name will be used to access the fields within an
allocated structure. It represents an offset from the base of the allocated struc
ture. In the example above, the field HOURRATE would have an offset of 20
from the beginning of the structure. This value (expressed by the fieldname) is
used in instructions to access the field. (See Chapter 4.) A fieldname has the
following attributes:

segment—none
offset—number of bytes from start of structure
type—type of init

data-init

This may be any allowed data initialization statement (DB, DW, DD, DQ, or
DT). Refer to the section "Defining Variables" for the details on all the allowed
forms.

Structure Allocation and Initialization

Syntax:
[name] structure-name <[exp] [,...]>

or

[name] structure-name repeatval DUP (<[exp] [,...]>)

Description:
Use of this statement will allocate storage based on the structure template used. The
amount of storage allocated will be a function of the number of bytes defined in the
template. Initial values in the fields may be overriden with certain restrictions (see
below). An array of structures can be allocated by using the form with a "DUP".
For example,

ACOMPLEXNUMB COMPLEX <1.6, 7.8>

JONES EMPLOYEE <'JONES, SAM', 2.00, 60>

PEOPLE EMPLOYEE 20 DUP (<>)

Field Values:
[name]

A unique ASM86 identifier. This name will define a variable whose segment
part will be the current segment and whose offset will be the current location
counter. Its type will be an integer equal to the number of bytes allocated by the
template.

Defining and tnitiatizing Data 3-13

structure-name

A name of a previously defined structure template.

repeatval

A positive integer that indicates the number of structures to be allocated.

exp

This field is a value that will override the default value given in the template
definition. Its type must match the type of the field. It may be either a constant,
an expression, a string, or the indeterminate initialization character, "?". The
value can only be used to override fields that meet the following restrictions:
1. The field specified in the structure template definition cannot be a list of

values or a DUP clause.
2. A DB that is initialized with a single string of two or more characters can be

overriden only with another string, tf the overriding string is shorter than
the original string, the remaining characters of the default string are used, tf
the overriding string is longer, it is truncated.

3. The value must fit within the field you wish to override.
Example of overridable fields—

OVERRIDABLE STRUC

ASTRING DB 'ABCDEFG
DONTCARE DW ?
AREAL DD 3.14159

OVERRIDABLE ENDS

Example of non-overridable fields—
NONOVERRIDE STRUC

AL 1 ST DB 1,2,3
ADUP DN 10 DUP (*>

NONOVERRIDE ENDS

For a structure with N fields, each field is represented in the allocation state
ment as shown below—

<fl,f2,f3,...,fn>

To override a particular field, place the value in the position of that field in the
allocation statement. To override "f3" you would code

<,,2>

To override "fn" you would code

Each "empty" override specifies one field. You can skip fields up to the
field you wish to override just by typing a "," for that field. You do not need to
type anything for any fields after the one you wish to override if you are not
specifying any values for them. To allocate a structure with no overrides you
simply code:

3-14 ASM86

(?) DFFZ/Vf a STRUCTURE template by enclostng a

STRUC/ENDS. Initial rfe/au/r values will be
assigned to structure fields unless overridden dur
ing a/Zocanon. (Multiple fields, e.g., THIRD, can
not be overridden.)

(?) AEZ.OCATE storage for single or multiple copies
using the structure-name from Q as an
assembly-time operator. The list in angle-brackets
tells the assembler which default values to over-

(B1 BLUEPRINTS^)

BLUEPRINT STRUC
FIRST DW OFFFEH
SECOND DW BUFFER
THIRD DB 7,5
FOURTH DB A'
FIFTH DB
SIXTH DW 257

BLUEPRINT ENDS

0 F F E
OFFSET(BUFFER)

0" 5 0 7
-INDET) 4 ' f

0 10 1

B1.FIRST
B1.SECOND
61 THIRD
B1.FOURTH
B1 .SIXTH

"VIRTUAL"
STRUCTURE

B2.FIRST
B2.SECOND
B2.THIRD
B2.FOURTH
82 SIXTH

(B2BLUEPRINT<,0 ,,,255>)

0 F F E
0 0 0 0
0 5 ; 0 7
F F [4 1
0 1 0 1

15 0
0 F F E .FIRST

OFFSET(BUFFER) SECOND
0 5 ' 0 7 THIRD

-INDET 1 FOURTH
0 1 0____ 1 SIXTH

(B3 BLUEPRINT 5 PUP «..,.50>)

0 F F E
OFFSET (BUFFER)

0 5 ; 0 7
3 2 [4 1
0 1 0 1
0 F F E

*
LLBUFFER)

2 1
0 1 0 1
0 F F E

OFFSET(BUFFER)
0 5 < 0 7
3 2 I 4 1
0 1 0 1

)

B3.FIRST]0]
B3.SECONDIOj
B3.THIRD[0}
B3.FOURTH}0)
B3.SIXTH[0j
B3.FIRST[10)
B3.SECOND}10)

B3.SIXTH)30l
B3.FIRST)40l
B3.SECOND)40I
B3.THIRDI40I
B3.FOURTH)40I
B3.SIXTH)40[

(3) REFFRE/VCE structure fields as shown. Effective
address of structure field is offset of structure

MOV AL.B1.THIRD
ADD AL.B2.THIRD + 1 ;formultiplefielditem
ADD AL,B3.FIFTH)20] ;3rd copy in array,

or l(N-1)'TYPE B3]

Or. load B.X with offset B3. SI with multiple of IO [since
IO byles in structure), and ripple through:

MOV BX, OFFSET B3
MOV SI.30 ;in general, use (N-1)*TYPE B3
ADD AL.[BX))SI].FIFTH ;4th copy, 5th field

Assuming B3 is addressed through DS. Otherwise, use
segment override.

'INDETERMINATE

Figure 3-2. Structure Definition and Aiiocation

Defining and initialing Data 3-15

Defining Labeis
A label, a symbolic name for a particular iocation in an instruction sequence, may
be defined in one of three ways. The first way is the most common. The format is
shown beiow:

tabei: [instruction]

where "labei" is a unique ASM86 identifier and "instruction" is an
8086/8087/8088 instruction. This tabei wiii have the following attributes:
1. Segment—the current segment being assembied.
2. Offset—the current vatue of the iocation counter.
3. Type—wit! be NEAR.

An example of this form of iabei definition is:

ALAB: MOV AX, COUNT

The second means of defining a label is the PROC directive. This can be used to
define either a near or far iabei. The third means is the LABEL directive. (Do not
confuse the use of the term "label" with the name of this directive.) Either a near or
far label can be defined. See below for a discussion of the PROC and LABEL
directives.

The PROC Directive
Syntax:

name PROC [type]

name ENDP

Description:
A PROC directive is used to define a iabel and to delineate a sequence of instruc
tions that are usually interpreted to be a subroutine, that is, CALLed either from
within the same physical segment (near) or from another physical segment (far). The
primary use of the PROC directive is to give a type to the RET instruction enclosed
by the PROC/ENDP pair. A PROC is different from a high-level language
subroutine or procedure. There is no scoping of names in a PROC. All user-defined
variables and labels in a program must be unique. Also, there is no "block
structuring" of PROC's. If a PROC is defined within a PROC, execution can "fall
into" the PROC. For example

P1 PROC NEAR

MOV AX, 15 ;execution begun here wiLL
ADD DX, AX ;continue through to the MOV AX, 0

P2 PROC NEAR

MOV
CMP
J E

AX, 0
AX, COUNT
LAB

3-16 ASM86

P2 ENDP

SUB
LAB: MOV

RET

COUNT, 1
AX, 0

;exit P1 and P2 here!

CMP
JE
RET

DX, 10 ;never wiLL be executed!!!
LAB

P1 ENDP

The 8086/8088 has two types of RET instructions, either near or far, that must cor
respond to the type of CALL made. Given beiow is an exampie of both a near and a
far PROC, each with their appropriate CALL.

Exampie 1—A NEAR PROC.

LOCALCODE SEGMENT PUBLIC

ANEARPROC PROC NEAR

;some code

RET ;Mi L L be near RET
ANEARPROC ENDP

CALL ANEARPROC ;a near CALL

LOCALCODE ENDS

Exampie 2—A FAR PROC.

GLOBALCODE SEGMENT WORD

AFARPROC PROC FAR

;some code

RET ;Mi L L be a far RET
AFARPROC ENDP

GLOBALCODE ENDS

SPECSEG SEGMENT BYTE

CALL AFARPROC ;wi i L be a far cai L
;i nt e rsegment

SPECSEG ENDS

Defining and Initializing Data 3-17

Field Values:
name

This is a unique ASM86 identifier that defines a iabei whose segment attribute is
the current segment, and whose offset is the current iocation counter. Its type is
defined in the PROC directive.

type

This fieid specifies the type for the iabei defined. The possibie vaiues are:
1. None specified—defauitstoNEAR.
2. NEAR—to define a near iabei.
3. FAR—to define a far iabei.

This fieid wilt specify to the assembier what type of CALL instruction to generate
for the procedure and what type of RET instruction to code for any RET instruction
found between the PROC/ENDP pair.

The LABEL Directive
Syntax:

name LABEL type

Description:
The LABEL directive creates a name for the current iocation of assembiy, whether
data or code. You use the LABEL directive to define a variable or a iabei that win
have the following attributes:
1. Segment—the current segment being assembied.
2. Offset—the current offset within that segment.
3. Type—the operand to the LABEL directive.

The LABEL directive is usefui for defining a different name with possibiy a dif
ferent type for a iocation that is named through the usual means. For exampie, if
you desire to access two consecutive bytes as both a word and as two different bytes,
the foilowing usage of the LABEL directive win ahow both forms of access.

AWORD LABEL WORD
LOWBYTE DB 0
HIGHBYTE DB 0

it can also be used to define two iabeis of different types for the same iocation of
code. This is usefui if a section of code is to be caiied both near and far. (The pro
grammer must be carefui in this case to insure that the right RET is executed for the
type of CALL made.) The fohowing (potentiahy deadiy) exampie iiiustrates this use.

AFARLABEL LABEL FAR
NEARLAB: MOV AX, BX

Field Values:
name

A unique ASM86 identifier.

3-18 ASM86

type

This field identifies the type that is to be assigned to this name and iocation. !t
can specify a variabie or a labei depending on the type. This fieid can have the
foliowing vaiues:
1. BYTE—defines a variabie of type byte.
2. WORD—defines a variabie of type word.
3. DWORD—defines a variabie of type dword.
4. QWORD—defines a variabie of type qword.
5. TBYTE—defines a variabie of type tbyte.
6. A structure name—the type wiii be equai to the number of bytes ahocated

by the structure.
7. A record name—the type wiil either be a byte or word depending on the size

of the record.
8. NEAR—defines a iabei of type near.
9. FAR—defines a iabei of type far.

The Location Counter ($)
The iocation counter keeps track of the current offset within the current segment
that is being assembied. This vaiue is symboiized by the character which may
be used in certain contexts, (i.e., expressions or instructions) (see Chapter 4). This
symboi represents a near labei, whose attributes are:

segment—current segment
offset—current offset
type—near

The assembler witi maintain the correct offset within a segment even if the segment
is repeated))' "opened" and "ciosed" in the module with the appropriate
SEGMENT/ENDS pairs.

The ORG Directive
Syntax:

ORG exp

Description:
The ORG directive aiiows you to controi the iocation counter within the current seg
ment. You use the ORG directive to set the iocation counter to the desired vaiue. Be
carefui in the use of this directive not to overwrite any previousiy aiiocated data or
code by ORGing to a iocation previously aiiocated. The ORG directive is used to
locate code or data at a particular location (offset) within a segment. Used with an
absolute segment, you can specify the actual iocation in memory in which the code
or data wiii be located.

Fieid Vaiues:
exp

This is an expression that is evaiuated moduio 65536. The expression must not
inciude any forward references. You may use the vaiue of the current iocation
counter, in an expression, such as:

ORG OFFSET ($+1000)

Defining and initialing Data 3*19

Avoid expressions of the form

ORG OFFSET ($-1000)

since this wilt overwrite your iast 1000 bytes of assembly (or wilt re-ORG high in
the current segment if the expression evaluates to a negative number).

The EVEN Directive
Syntax:

EVEN

Description:
The EVEN directive ensures that the code or data following the use of the directive
will be aligned on a word boundary. For 8086 data, this may result in a faster fetch
time. The assembler will insert a NOP (90H) in front of the code or data, if it is
necessary, to force the word alignment. The EVEN directive cannot be used in a byte
aligned segment—an error message will be issued.

The PURGE Directive
Syntax:

PURGE name [,...]

Description:
The PURGE directive deletes the definition of a specified symbol, allowing the sym
bol to be redefined. Al! occurrances of the symbol following the PURGE directive
and the redefinition of the symbol will use the new definition. It will remain unde
fined after it is purged unless it is redefined. A reference to a symbol after a purge,
but before a redefinition is a forward reference to the redefinition. If no redefinition
occurs, the reference will cause an error. The following types of symbols cannot be
purged—
1. Register names
2. The symbol ??SEG.
3. Hands-off keywords (see list in Appendix C).
4. A symbol that appears in a PUBLIC statement.

Using the PURGE Directive to Contro! Debug information

The PURGE directive can be used to control the symbol information placed in the
object module by the assembler when the DEBUG control is specified. (See the
ASM86 macro assembler manual for a description of the DEBUG control. If you do
not wish to have information placed in the object module for certain symbols, you can
purge those symbols at the end of the program just before the END statement.

Accessing Data—Operands
and Expressions

8086/8087/8088 tnstruction Statements

Syntax:
[label:] [prefix] mnemonic [operand [.operand]]

Description:
The instruction statements form the core of an assembly language program. These
statements define the actual program that the CPU (and NDP) will execute. This
chapter describes the operands used in the assembly language. The 8086/8087/8088
instruction set is defined and discussed in Chapter 6. The operand field specifies the
object of the machine operation. For a two operand instruction, one of the operands
is considered a destination operand and the other is the source operand. This form is
given below.

INSTRUCTION DESTINATION, SOURCE

Some examples, shown below, illustrate some instruction statements:

MOV AX, 0 ; p L a c e 0 into AX

ADD CL, DL ; CL = CL + DL

ALAB: REP MOVSB ; w i t h prefix instruction and Label

Refer to Chapter 6 for the use of the Prefix instructions.

Field Values:
[label:]

A unique ASM86 identifier, followed by a colon, that is used to define a label.
(See Chapter 3.)

[prefix]

An 8086/8088 Prefix instruction, i.e., LOCK and REP instructions. (See
Chapter 6.)

mnemonic

An 8086/8088 or 8087 instruction. These are fully described in Chapter 6.

operand

There are many possible types of operands, including registers, constant values,
variables, and labels. The operand you specify will depend on the instruction
coded. All of the various operand types are discussed below.

4-2 ASM86

Operand Types

Registers
The 8086/8088 registers can be used as expiicit operands to many instructions, in
two-operand instructions they may be used for both source and destination. The
register set is shown below.

Segment Registers:
CS, DS,SS,ES

General Registers (16 Bits):
AX, BX, CX, DX, SP, BP, Si, Di

General Registers (8 Bit):
AL, AH, BL, BH, CL, CH, DL, DH

Pointer and Index Registers:
BX,BP,Si, Di

The different sets overtap. Each of the genera) registers (8 and i6 bit) can participate
in arithmetic and logical operations. The Pointer and index registers are aiso used in
certain address modes (see Register Expression section beiow). The segment registers
can be used in MOV's, PUSH'S, and POP's.

Floating Point Stack
The 8087 has it's own set of 'registers' ca))ed the floating-point stack. There are
eight stack eiements that can be referenced. The form is ST(i), where 'i' refers to the
etement 0 through 7. The top-of-stack is a)ways ST(0), which may be abbreviated as
ST.

Immediate Operands
An immediate operand is a constant value (number). This is a "17-bit" number (see
Chapter 3). immediate operands are used as source operands in an 8086/8088
instruction statement. For example,

MOV AL, 5 ;AL = 5

CMP AX, OFFFFH ;compare AX to OFFFFH

An immediate operand can also be an expression that evaluates to a number. This
chapter discusses all the types of expressions.

Examples of expressions as immediate operands:

CMP AL, 15 OR 5 ;an expression exampLe--compare
;A L with 15

ADD DX, (23 * 2) / 10 ;add 4 to DX

Accessing Data—Operands and Expressions 4-3

Memory Operands

A memory operand refers to a particular iocation in memory. The genera) term for a
memory operand is an "address expression." An address expression may be a sim-
pie variabie or labei name, or it may invoive registers, structure fields, and/or con
stants. Each address expression win reflect a particular addressing mode. The
8086/8088 has many different types of addressing modes. They are:

Direct Address
The operand is a simple variable or label name. The name expresses the offset of the
operand that is used to calculate the address.

MOV AX, COUNT ;move the word value at memory location
;COUNT into AX

JMP ALAB ;jump to memory location ALAB

Register Indirect Address
In this case the offset of the memory location is contained in one of the pointer or
index registers (BX, BP or SI, DI). To address the location you must first load the
offset into the register and then use the register name in brackets as the operand. For
example, to indirectly address a variable you would code the following:

MOV BX, OFFSET AVAR

MOV AX, IBX] ;AX = contents of AVAR

A JMP or CALL instruction can use any 16-bit general register for indirect
addressing.

MOV AX, OFFSET ALAB
JMP AX ;no [] are needed here^--simple

;i nd i rect j ump to ALAB

MOV TARG, OFFSET ALAB
MOV BX, OFFSET TARG
CALL [BX] ;[] used here (a register

;expression)'--two level indirect
;j ump to ALAB

The two levels of indirection in JMP/CALL [BX] are schematically depicted as
follows:

OFFSET TARGET

4-4 ASM86

Based Address
The base address mode is simitar to register indirect mode except that, in this case, a
disptacement is added to the contents of the register. With this mode the register can
point to the base of a data structure in memory and the disptacement can then be
used to access a fietd within the data structure.

MOV BX, OFFSET DATASTRUC ;BX = base of DATASTRUC
MOV AX, [BX + 5] ;AX = word Located at the

;fi fth byte of DATASTRUC

Based addressing is typically used with either BX or BP as the base register though
SI and DI may atso be used. The disptacement may be either 8 or 16 bits.

Indexed Address
Indexed addressing is simitar to based addressing except that the registers SI or DI
are used atong with a variabte name. These registers are used as an index from the
offset represented by the variable name. The contents of the register used as an index
specifies a byte disptacement from the offset of the variabte. You may also use a
disptacement vatue in the operand.

MOV SI, 0 ;set indices to 0
MOV DI , 0
MOV CX, LENGTH SOURCE

ALAB: MOV AX, SOURCEESU ;indexed add ress
MOV DESTIDI], AX
INC SI
INC SI ;index next word in SOURCE
INC DI
INC DI ;i ndex next word in DEST
LOOP ALAB

Based Indexed Address
This mode uses the contents of a base register (BX, BP), the contents of an index
register (SI, DI), and an optional displacement. With this mode you may point the
base register at the base of a data structure and then use the index register as an
index into that structure.

MOV BX , OFFSET ARRAYSTRUC ;Load base address

MOV SI , 0 ;index value

ALAB : MOV AX , [BX + SI] ;get element

ADD SI, 2
JMP ALAB

;i nc rement index

Segment Register Defaults
Variabte references such as:

[BX]
[BP]
HORD PTR [DI]
[BX].FIELDNAME
BYTE PTR [BP]

Accessing Data—Operands and Expressions 4-5

are termed "anonymous references" because no variable name is given from which
a segment can be determined. (The structure fieid in the fourth example has a type
and offset, but no segment associated with it.)

Segment registers for anonymous references are determined by hardware defaults,
unless you explicitly code a segment prefix operator. The hardware defaults are:
* [BX] normally defaults to segment register DS
* [BP] normally defaults to segment register SS
* When an index register is used without a base register (as in WORD PTR [DI] or

[SI + 5]), the default segment register is DS
* When an index register is used with a base register (as in [BP][S1] or BYTE PTR

[BX][D1]), the default segment register is that of the base register (SS or DS, in
these cases).

There are two variable-referencing exceptions for defaults:
1. Operations which implicitly reference the stack (PUSH, POP, CALL, RET,

INT, and IRET) always use SS, and cannot be overridden. (The construct [SP]
is not an addressing mode, and thus you cannot assemble e.g. MOV [SP], BX,
much less override it.)

2. String instructions always use ES as a segment register for operands pointed to
by DI.

Special care must be taken to ensure that the correct segment is addressed when an
anonymous offset is specified. Unless you code a segment prefix override, the hard
ware default segment will be addressed, and the anonymous offset applied to it.

Thus, if a programmer's declared variables all reside in segment SEGI:

SEG1 SEGMENT

FOO DM 500 DUP (0) ; 500 words of 0's

SEG1 ENDS

and if his ASSUME directive in segment CODEI is as follows:

ASSUME CS:CODE1, DS:SEG1

then all references to named variables in segment SEGI will assemble correctly. But
suppose our programmer elects to use BP as an index register to access elements of
FOO in SEGI, as follows:

run-time.

MOV BP , OFFSET FOO ; Load BP with offset of
; SEG 1 .

FOO i n

MOV A X , IBP! ; Put first word of FOO into AX .
; No assembly-time error, but wrong
; seg-reg (SS instead of DS) a t

4-6 ASM86

Because no variable name is present (for ASSUME to check), and because no seg
ment override prefix is specified, the [BP] reference, by default, specifies an offset
address that will be combined with the SS segment register, and not the DS, as
intended. The code should read:

MOV BP, OFFSET FOO

MOV AX, DS:[BP]

;Load BP with offset of FOO in
;SEG1.
;Use DS seg-reg for DATA1, put
;f i rst word of FOO into AX.

Overview of Expressions

An expression can define a value that initializes data or is used as an operand to an
instruction. An expression can specify a numeric value or define an address in
memory that will then serve as an instruction operand. There are many different
kinds of operators that you may use to create expressions:
* Arithmetic Operators

high and low (HIGH, LOW)
addition and subtraction (+, -)
multiplication and division (*, /, MOD)
shifting operators (SHR, SHL)

* Logical Operators (AND, OR, XOR, NOT)
* Relational Operators (EQ, LE, LT, GE, GT, NE)
* Attribute operators

attribute overriding operators (segment override, PTR, SHORT, THIS)
attribute value operators (SEG, OFFSET, TYPE, LENGTH, SIZE)

* Record-Specific Operators (shift count, MASK, WIDTH)

These operators can be used to define numbers or with the attribute operators you
may define variables or labels. Each type of operator is discussed below.

Types of Expression Operands

Numbers

A number or constant (17-bit number) can be used in most expressions. There are
some limitations in the use of relocatable numbers (these are numbers whose values
are unknown during assembly). These limitations and the definition for relocatable
numbers are discussed below. The attribute value operators (e.g., OFFSET) return
numbers that can be relocatable. Simple numbers or constants (such as "2") can be
used without any limitations for most operators and expression types. An absolute
number is a value known at assembly time.

Accessing Data —Operands and Expressions 4-7

Address Expressions

An address expression defines a location in memory. This iocation can be viewed as
either a variable or iabei, depending on the type of expression used. The simpiest
address expression is the name of a variable or label. In this case, the name implies
addressing using the offset of the variable or label.

ADD DX , COUNT ;C0UNT is simple address expression

ADD DX, COUNT + 2 ;In this case, the address
;expression has the same segment
;and type as COUNT but has an
;offset that is two greater

ADD DX, COUNT[2] ;is equivalent to COUNT + 2

A register expression is an address expression that uses a pointer and/or index
register. This form was shown above under the discussion of addressing modes. The
different types of register expressions are shown below:

1. [pointerreg] or [indexreg]

[BX] [SU
[BP] [DI]

2. [pointerreg + indexreg]

[BX + SI]
[8X + DI]
[BP + SI]
[BP + DI]

3. [pointerreg+ disp] or [indexreg+ disp]

[BX + d i sp]
[BP + d i s p]

[SI + d i s p]
[DI + d i s p]

4. [pointerreg + indexreg+ disp]

[BX +
[BX +
[BP +
[BP +

SI + d i sp]
DI + d1s p]
SI + d i s p]
DI + d i sp]

NOTE
Disp can be either an 8 or 16 bit displacement.

NOTE
You may also substitute a set of "[]" for the " + " in these types of
expressions. For example, the following are equivalent forms:

[BX + SI] is the same as [BXHSI]
[BP + DI + 2] is the same as [BX][DI][2]

A register expression can
more complex address,
variables. The form is:

be combined with a simple address expression to form a
This allows for indexed variables or doubly-indexed

name [reg exp]

4-8 ASM86

Examples:

COUNT[BX] ;simp(e i ndex

COUNTfBX + 2] ;index plus displacement

COUNTEBX + SU ;double index

A register expression implies that the address of the operand will be computed using
the run-time contents of the registers used. For the examples above, the offset of the
variable COUNT will be added to the contents of the register(s) in the register
expression.

You may use a register expression by itself as an operand. This case is called an
anonymous reference because the reference has no explicit type (either byte, word,
etc.). When using this form you must insure that a type is specified. For a two
operand instruction where one of the operands is a register, the assembler will deter
mine the type from the type of the register. For example:

MOV OX, [BX] ;move word pointed to by BX

In all other cases using an anonymous reference, you must specify the type using the
PTR operator (discussed below). For example:

MOV WORD PTR [DU, 5 ;assign two bytes

INC BYTE PTR [BX + 2] ;increment a byte

Accessing Structure Fieids

Another form of address expression uses a structure field name as a displacement
that is added to an offset. A field name represents an offset within the structure (see
Chapter 3). For example,

ASTRUC STRUCTURE

ABYTE DB 0 ;offset = 0
AWORD DW 0 ;offset = 1
BYTE2 DB 0 ;offset = 3

ASTRUC ENDS

The field names can then be combined with a variable name or register expression to
form an address expression. This address expression has the following attributes:

segment—same as variable or machine default for register expression

offset —offset of variable or register expression plus the offset of the field within
the structure.

type —type of structure field.

Accessing Data—Operands and Expressions 4-9

For example,
ANARRAY DB 1,2,3,4,

MOV AL, ANARRAY.BYTE2 ; AL wi 11 equal 4

MOV CX, ANARRAY.AMORD ; CX Mill equa 1 0302H

MOV BX, OFFSET ANARRAY ;BX holds offset

MOV AL, [BX].ABYTE ; AL Mill equal 1

Relocatable Expressions

Address expressions (those involving variables and labels) and numeric expressions
may have results which cannot be known until logical segments have been combined
and located. These expressions are termed "relocatable." The following rules define
when an expression is relocatable. There are some restrictions on the use of
relocatable expressions with some of the operators. These restrictions are noted
below for each operator.
1. Segments and Groups—the name of a segment or group can be used to represent

its paragraph number in an expression. This value is relocatable for all segments
and groups except for a segment defined with the "AT exp" form of the SEG
MENT directive. These values are assigned by the locator or loader. This type of
relocatability is called "Base relocatability."
Example:
DATAGRP GROUP DATA1, DATA2

DATA1 SEGMENT PUBLIC

DATA1 ENDS

DATA2 SEGMENT PUBLIC

SEGSTORE DM DATAGRP ;DATAGRP is base relocatable

SEGBASE DM DATA1 ;DATA1 is base relocatable

DATA2 ENDS

2. Variables and Labels—a variable or label is not considered to be relocatable if it
is defined in a "non-relocatable segment." This is a segment that has either a
PARA or PAGE alignment type and is not a PUBLIC or STACK segment, or it
was defined with the "AT exp" combine-type. Use of a variable name in an
expression implies the value of its offset within its segment. This value will be
relocatable for any variable or label that is defined in a "relocatable" segment
or in an EXTRN directive. A relocatable variable or label is "offset
relocatable." These values are assigned by the linker.
Example:
DATA SEGMENT PUBLIC

ABYTE DB 0

AMORD DM ABYTE ;ABYTE is offset relocatable

DATA ENDS

4-10 ASM86

3. Numbers—a constant is reiocatabie if it is defined in an EXTRN directive with
type ABS. in this case the term "reiocatabie" indicates that the vaiue of the
number, defined in another moduie, is unknown at assembiy time.
Exampie:

EXTRN ANUMBER:ABS

DATA SEGMENT
AWORD DU ANUMBER ;ANUMBER is relocatable

DATA ENDS

Arithmetic Operators

HtGH/LOW

Syntax:

HiGH operand
LOW operand

Description:
These operators are catted the "byte isotation" operators. HIGH and LOW accept
either a numeric expression or a variable or tabet as an operand. HtGH returns the
high-order byte; LOW the tow-order byte, if the operand is an absolute number then
the resuit witt be absolute, in ah other cases, the resuit witi be reiocatabie. An error
win resuit if these operators are used with an operand or expression involving a seg
ment or group name. For exampie,

MOV AH, HIGH (1234H) ;AH = 12H
TENHEX EQU LOW (0FF10H) ;TENHEX = 10H

These operators can be appiied to each other; if Q is a reiocatabie vaiue, the foliow
ing identities appiy:

LOW LOW
LOW HIGH
HiGH LOW
HIGH HiGH

Q = LOW Q
Q = HiGH Q
Q = 0
Q = 0

Field Values:
operand

A numeric expression or a variabie or [abet name.

Accessing Data—Operands and Expressions 4-11

Muitipiicationand Division

Syntax:
Multiplication: operand * operand

Division: operand / operand

Moduio: operand MOD operand

Description:
You may only use these operators with absolute numbers, and the result is always an
absolute number. Either operand may be a numeric expression, as long as the
expression evaluates to an absolute number. Some examples,

CMP AL, 2*4 ;compare AL to 8
MOV CX, 123H/16 ;CX = 12H

Fieid Values:
operand

An absolute number.

Shift Operators

Syntax:

Shift right: operand SHR count

Shift left: operand SHL count

Description:
The shift operators will perform a "bit-wise" shift of the operand. The operand will
be shifted "count" bits either to the right or the left. Bits shifted into the operand
will be set to 0. The operands must be numeric expressions that evaluate to absolute
numbers. For example,

MOD BX, OFACBH SHR 4 ;BX = BX + OFACH

Fieid Values:
operand

A numeric expression that evaluates to an absolute number.

count

An absolute number that represents the number of bits the operand is to be
shifted, either right or left.

4-12 ASM86

Addition and Subtraction

Syntax:
Addition: operand + operand

Subtraction: operand - operand

Description:
These operators can be used with either absolute or relocatable operands, but there
are certain restrictions in the use of relocatable operands. The following shows ah
the allowed uses of absolute and relocatable operands.

ABS = an absolute operand

RELOC = a relocatable operand

ABS + ABS ABS - ABS

ABS + RELOC RELOC - ABS

RELOC + ABS RELOC - RELOC

NOTE
"reloc—reloc" is only allowed for operands with the same type of
relocatability and the quantities are defined in the same segment (both are
either base or offset relocatable). The result of "reloc-reloc" is an absolute
number.

Field Values:
operand

An expression evaluating to an absolute number or a variable or label name.

Relational Operators

Syntax:
equal: operand EQ operand

not equal: operand NE operand

less than: operand LT operand

less than or equal: operand LE operand

greater than: operand GT operand

greater than or equal: operand GE operand

Accessing Data—Operands and Expressions 4-13

Description:
The reiationai operators may have operands that are:
a. both absolute numbers
b. variabie or iabei names (defined in the current moduie), that have the same type

of relocatabiiity.

The resuit of a relational operation is always an absolute number. They return an
8-or !6-bit resuit of ait i's for TRUE and ail 0's for FALSE. Some examples,

MOV A L , 3 EQ 0 ; AL = 0 (false)
MOV BX , 2 LE 1 5 ; BX = OFFFFH (true

Fieid Vaiues:
operand

An absolute number or a variabie or labei name.

Logica) Operators

Syntax:
operand OR operand

operand XOR operand

operand AND operand

NOT operand

Description:
The iogicai operators may only be used with absoiute numbers. They always return
an absolute number.

A logical operator can be either:
!. OR—iogicai "or", maps 0's in corresponding positions into 0 and i's eisewhere

in the resuit, for exampie,
11011001B OR iOOHOHB = liOllOHB

2. XOR—exciusive "or", maps corresponding bits equai in value into 0, and
corresponding bits unequal in value into i, for example,
iOHlODB XOR iiOiiiOiB = 0H00H0B

3. AND—iogicai "and", maps i's in corresponding positions into i and 0's
eisewhere in the resuit, for exampie,
lOilOOHB AND HOllOiB = iOOOOOOlB

4. NOT—iogicai negation, forms the I's complement by mapping i's to 0's and 0's
to i's, for exampie,
NOT(iOiOiiiiB) = OiOlOOOOB

4-14 ASM86

Fieid Vaiues:
operand

An absoiute number.

Attribute Overriding Operators

Segment Override

Syntax:
CStvarlab

DS:vartab

SS:varlab

ES:varlab

segnametvarlab

groupname:varlab

Description:
The segment override is used to override the segment attribute of a variable or label.
There are two uses for this override, the first is similar to an ASSUME, and the
second is used in order to store the correct offset of a variable or label.

The first form uses a segment register as the "segpart" of a memory address. In this
case you are specifying from which segment register the variable or label is address
able. This form is similar to an ASSUME, except that it is restricted to a single state
ment. it is also more error prone than the use of an ASSUME because you must
explicitly code the override for each reference to a variable or label. The explicit use
of a segment override takes precedence over any ASSUME directive. The following
example illustrates the use.

ASSUME DS:DATA, CS:CODE

DATA SEGMENT

ABYTE DB 0

;this reference

DATA ENDS

CODE SEGMENT

MOV BL, ABYTE ;reference is covered by the
;ASSUME

MOV BL, ES:ABYTE ;no ASSUME is required here for

CODE ENDS

Accessing Data—Operands and Expressions 4-15

Another use of this form is to override the implicit use of a segment register in
accessing data. The 8086/8088 wit] use the DS register in order to access data. When
the following line of code is executed, the DS register is used.

MOV BL, [BX]

You may use the segment override to change this implicit use. If, for example, your
data is addressable through the ES register and you do not have an ASSUME, you
can code the following form:

MOV BL, ES:fBX]

The instruction that is assembled will be preceded by a "segment override prefix"
byte that forces the 8086/8088 to use the ES register in order to calculate the physical
address of the variable. The same effect will occur if you ASSUME your data into
ES.

The second use of the segment override is to insure that your use of the OFFSET
operator (see below) will return the correct offset of your variable or label. When a
variable or label is defined in a segment that is part of a group, then you must use the
segment override with the group name when you use the OFFSET operator (see the
discussion of the OFFSET operator given below). This is to ensure that the offset
from the group base, rather than the segment base, is returned.

Field Values:
varlab

A variable name, label name, or address-expression.

segname

A segment name.

groupname

A group name.

PTR Operator

Syntax:
type PTR name

Description:
The PTR operator is used to define a memory reference with a certain type. The
assembler determines the correct instruction to assemble based on the type of the
operands to the instruction. There are certain instances where you may specify an
operand that has no type. These cases involve the use of numeric or register expres
sions. Here the PTR operator is used to specify the type of the operand. The follow
ing examples illustrate this use:

MOV HORD PTR [BX1, 5 ;set word pointed to by BX = 5

INC DS:BYTE PTR 10 increment byte at offset 10
;f rom DS

4-16 ASM86

This form can aiso be used to override the type attribute of a variable or label. If, for
example, you wished to access an already defined word variable as two bytes, you
could code the following:

MOV CL, BYTE PTR AWORD ;get first byte

MOV DL, BYTE PTR AWORD + 1 ;get second byte

Field Values:
type

This field can have one of the following values:
1. BYTE
2. WORD
3. DWORD
4. QWORD
5. TBYTE
6. NEAR
7. FAR

name

This field can be:
1. A variabte name.
2. A label name.
3. An address or register expression.
4. An integer that represents an offset.

SHORT Operator

Syntax:
SHORT label

Description:
The SHORT operator is used to specify that the label referenced by a JMP instruc
tion is within +127 bytes at the instruction. This operator is only used when the label
is forward referenced in the instruction. When the assembler encounters a forward
reference, it must make certain assumptions. When a label is forward referenced,
the assembler assumes that it will require two bytes to represent the relative offset of
the label. By correctly using the SHORT operator, you can save a byte of code when
you use a forward reference. If the label is not within the specified range, an error
will occur. The following example illustrates the use of the SHORT operator.

JMP FWDLAB ;three byte instruction

JMP SHORT FWDLAB ;two byte instruction

Accessing Data —Operands and Expressions 4-17

Field Values:
label

A label addressable through CS.

Attribute Vaiue Operators
The operators discussed below return the numerical values of the attributes of a
variable or label. These operators do not change the attribute of the variable or label
used.

TH)S Operator

Syntax:
THIS type

Description:
The THIS operator defines a memory location at the current location of assembly.
This location can be either a variable or a label. Its segment attribute will be the cur
rent segment being assembled and its offset will be the value of the current location
counter. Its type will be specified by the operand to this operator. Use of this
operator is similar to the use of the LABEL directive. This operator is used either in
conjunction with the EQU directive (see below) or as part of an operand to an
instruction. (The latter form will be rarely used.) It can be used to define another
name with an alternate type for a data item; for example

AHORD EQU THIS HORD
BYTE1 DB 0
BYTE2 DB 0

is equivalent to:

AWORD LABEL HORD
BYTE1 DB 0
BYTE2 DB 0

Use of the symbol (the location counter symbol) is equivalent toTHlS NEAR.

Field Values:
type

This field can have the following values:
1. BYTE
2. WORD
3. DWORD
4. QWORD
5. TBYTE
6. NEAR
7. FAR

4-18 ASM86

SEG Operator

Syntax:
SEG varlab

Description:
This operator returns the segment value of the variabie or iabei, a base relocatable
quantity. Use of this operator can have two interpretations, depending on the con
text used. In an ASSUME directive, you may use this operator to specify the seg
ment in which an object is defined. For example,

ASSUME CS:SEG START, DS:SEG COUNT

specifies that CS wiil hoid the paragraph number of the segment containing "start"
and that DS will hold the paragraph number of the segment in which "count" was
defined. This construct is usefui with objects for which you do not know the seg
ment in which they are defined (most likely defined in another module). In this case
the expression is a symbolic representation of the segment's name.

The other type of interpretation is that of a paragraph number. Here it is used either
to store the paragraph number in a variable or to initialize a segment register.

SETSTART DW SEG COUNT ;store the paragraph number
;for the segment

INIT: MOV
MOV

AX,
DS ,

SEG COUNT
AX ;init DS with count's

;segment

The SEG operator should be avoided when groups are used. Variables and labels are
relative to the base of the group and not to the segment in which they are defined.
The value returned by the SEG operator for an element that is contained within a
group will not reflect the group base.

Field Values:
varlab

The name of a variable or label.

OFFSET Operator

Syntax:
OFFSET varlab

Description:
This operator returns the offset of the variable or label from the base of the segment
in which it is defined. In most cases, the value returned is not set until link time, i.e.,
it is a relocatable number. The OFFSET operator is used primarily to initialize
variables or registers to be used for indirect addressing. Some instructions explicitly

Accessing Data—Operands and Expressions 4-19

use indirect addressing when accessing data. When coding these instructions, you
are required to initiaiize a register to the offset vaiue of the data you wish to access.
The foiiowing exampie demonstrates this use—

TRANSLATE: MOV BX, OFFSET ASCIITABLE
MOV AL, VALUE
XLAT ;BX points to translation

;tab Ie

if a variabie or labei is contained in a group (its segment is defined to be in a group),
then you must use a group override with the OFFSET operator. This ensures that the
offset used is from the group base and not from the individuai segment base. For
exampie,

DGROUP DATA1, DATA2

DATA1 SEGMENT PUBLIC

DATA1 ENDS

DATA2 SEGMENT PUBLIC

ASCIITABLE DB 0
DB 1

DB 128

DATA2 ENDS

CODE SEGMENT PUBLIC

TRANSLATE: MOV BX, OFFSET DGROUP:ASCIITABLE ;need group
; o v e r r i d e
; he re

MOVE AL, VALUE
XLAT ;BXpointsto

;t rans L at i on table

CODE ENDS

Field Values:
variab

The name of a variabie or iabel.

TYPE Operator

Syntax:
TYPE variab

4-20 ASM86

Description:
The TYPE operator returns a vaiue that represents the type of the operand. This
vaiue can be usefui in certain instruction sequences where the type of the operand is
used to caicuiate a vaiue used in incrementing a pointer. For exampie,

MOV BX, OFFSET ARRAY
MOV OX, LENGTH ARRAY
MOV SI, 0

ALAB: ADD AX, [BX + Sil

;LENGTH = # of el emen t s
;used as index into array
;array element added to
; AX

ADD SI, TYPE ARRAY
LOOP ALAB

;increment the pointer by
;the size of an array
;e1ement

TYPE returns the foiiowing values, depending on the type of the operand—
1. A byte—returns).
2. A word—returns 2.
3. Adword—returns4.
4. Aqword—returns8.
5. A tbyte—returns 10.
6. A structure name—returns a vaiue equai to the number of bytes declared in the

structure definition.
7. Anearlabei—returns 255.
8. Afariabei—returns 254.

Field Values:
variab

The name of a variabie, structure, or iabei.

LENGTH Operator

Syntax:
LENGTH variable

Description:
LENGTH returns the number of data units (bytes, words, or dwords) that have been
allocated for a variable. The data unit is equal to the type of the variable. This
operator is useful for setting a counter for a loop that accesses the elements of an
array (see example above).

AUORDARRAY DU 150 DUP (0) ;LENGTH = 150

ABYTEARRAY DB 1,2,3,4,5,6,7 ;LENGTH = 7

Accessing Data—Operands and Expressions 4-21

Field Values:
variable

The name of a variabie.

SIZE Operator

Syntax:
SIZE variabte

Description:
The SIZE operator returns the number of bytes allocated for a variabte. This vaiue is
retated to the LENGTH and TYPE operators through the following identity:

SIZE = LENGTH * TYPE

Some examples,

AWORDARRAY DM 150 DUP (0) ; S IZE = 300

ABYTEARRAY DB 1,2,3,4,5,6,7 ; S IZE = 7

MOV AX, SIZE AMORDARRAY ;AX = 300

ASIZE DB SIZE ABYTEARRAY ;ASIZE
; t o 7

is initialized

Field Values:
variable

The name of a variable.

Record Specific Operators
Use of records may involve three special operators. These operators allow you to
isolate and access the fields defined within a record. Since the fields in a record are
mapped into bits and not into byte-aligned structures, you may require that these
fields be masked off (in order to isolate only specific bits) and then shifted into the
lower order bits of a byte. (The record-specific operators are described individually
below.)

A record name can also be used in an expression. In this case the record is used to
specify a number based on the initialization used. For example, if you define the
record

R RECORD F1:8, F2:8

you could use it to define a numeric expression that will evaluate to a constant
number.

4-22 ASM86

MOV AX, RCOABH, 'C> ;AX = OAB43H

MOV BX, R<5,7> + R<3,4> ;BX = 080BH
MOV CX, R<86H, 23H> XOR R<135, 35> ;CX = 100H

Shift Count

Syntax:
recfieldname

Description:
Use of the record field name specifies the number of bits the record must be shifted
in order to move the field in it to the low order bits of a byte or word (depending on
the size of the record). For example, if you had defined the following record:

PATTERN RECORD A:3, 6:1, C:2, D:4, E:6

AREC PATTERN < >

you could use the following sequence of code to isolate and access the field C in the
record:

MOV DX, AREC
AND DX, MASK C

;mo ve record into DX
;mask out fields A,B,C,D,E--
;000011000000000013 is the
;v a 1ue used

MOV CL, C ;field name as shift count--10
;is the value used

SHR DX, CL ;DX is now equal to value of
; f i e 1 d C

Field Values:
recfieldname

The name of a field within a record.

MASK Operator

Syntax:
MASK record-field

Description:
Use of this operator defines a value that can be used to mask off fields in a record
(i.e., a value with 1's in those bit positions specified by the record field, and 0's
elsewhere), leaving only the record-field specified. This operator is used with an
AND (or TEST) instruction with the operands being 1) the record stored either in a
register or a memory location, and 2) an expression using the MASK operator. See
the previous example for an illustration.

Accessing Data—Operands and Expressions 4-23

Field Values:
record-field

The name of a field within a record.

WIDTH Operator

Syntax:
WIDTH rec

Description:
The WIDTH returns a value equal to the number of bits in either a record or a
record field. From the above example:

DB WIDTH AREG ;equaIs 16

DB WIDTH C ;equals 2

Field Values:
rec

Either a record name or record field name.

Operator Precedence
The following is a list, in decreasing order of precedence, of the classes of operators.
All expressions are evaluated from left to right following the precedence rules. You
may override this order of evaluation and precedence through the use of
parentheses.

Highest Precedence
1. Parenthesized expressions, angle-bracket (record) expressions, square-bracket

expressions, the structure "dot" operator, and the operators LENGTH, SIZE,
WIDTH, and MASK.

2. PTR, OFFSET, SEG, TYPE, THIS, and "name:" (segment override).
3. HIGH and LOW.
4. Multiplication and division: *, /, MOD, SHR, SHL.
5. Addition and subtraction:-!-,-.

a. unary
b. binary

6. Relational: EQ, NE, LT, LE, GT, GE.
7. Logical NOT.
8. Logical AND.
9. Logical OR and XOR.

10. The SHORT operator.

Lowest Precedence

4-24 ASM86

The EQU Directive

Syntax:
equ-name EQU equ-vaiue

Description:

The EQU directive is a very powerfui means to define symbois for many of the
ASM86 constructs. These symbois can form names that have more mnemonic vaiue,
or that form a "shorthand" notation for a compiex construct, in the FJELD
V ALUE section beiow, many exampies are given showing its use.

Fieid Values:
equ-name

A unique ASM86 identifier.

equ-vatue

This fieid can have the foiiowing vaiues:
1. A variabie or iabei name (may be forward referenced).

ALABEL EQU ALAB

ALAB: MOV AX, 0

2. An 8086/8088 register name.

;of array

COUNT EQU CX
POINTER EQU BX

MOV COUNT, 10 ;CX = 10
MOV POINTER, OFFSET ARRAY ;BX = offset

3. 8086/8087/8088 instruction names.

DATAMOVE EQU MOV
INCREMENT EQU INC

DATAMOVE AX, BX
INCREMENT AX

4. A numeric constant (integer or fioating-point).

PI EQU 3.14159
TOTAL EQU 6

Accessing Data—Operands and Expressions 4-25

The precision of a Heating-point number used in an EQUate is determined
by the context in which it is used. For exampie,

DD PI ;si ng Le prec i si on

DQ PI ;doubIe precision

5. An assembiy-time expression invoking numeric values.

E1 EQU 2+3

E2 EQU E1 AND 4

E3 EQU (E1 - E2) / 12

6. A register expression. These may be singie register expressions or they may
aiso inciude a segment override. This construct is useful in defining data
items to be accessed on the stack.

STACKWORD EQU WORD PTR SS:[BP + 2]

AVAR EQU EBX + 3]

ANEXTRAVAR EQU ES:[BX]

Program Linkage Directives 5
Overview of Program Linkage
ASM86 suppHes the necessary directives to support muiti-moduiar programs. A
program may be composed of many individual modules that are separately assembled
or compiled. Each module may define variables or labels that other modules may use.
The mechanisms in ASM86 for communicating symbol information from module to
module are the PUBLIC/EXTRN directives. The PUBLIC directive defines those
symbols that may be used by other modules. The EXTRN directive defines for a
given module these symbols (defined elsewhere) that can be used. In order to uniquely
name different object modules that are to be linked together, use the NAME direc
tive. The END directive, which is required in all modules, can be used to specify a
"main module," that is, a module which contains the code that will be initially executed
upon loading the program. It supplies a means to specify the start address of the
program that will be initialized by the loader. For assemblers running on 8086-based
systems, initialization values for other segment registers may also be specified in the
END directive.

The PUBUC Directive
Syntax:

PUBLIC name [, ...]

Description:

The PUBLIC directive specifies which symbols in the module are available to other
modules at link-time. These symbols may be variables, labels, or constants (17-bit
numbers, defined using EQU). All other symbols will be flagged as an error.

Fieid Vaiues:

name

Any user-defined variable, label, or constant (17-bit number).

The EXTRN Directive
Syntax:

EXTRN name:type [, ...]

Description:

The EXTRN directive specifies those symbols, which may be referenced in the module,
that have been declared "public" in another module. The EXTRN directive will specify
the name of the symbol and its type.

5-2 ASM86

Field Vaiues:
name

The name of the symbol declared to be public in another module.

type

The type of the symbol declared public in another module. This type should
agree with the type of the symbol declared public. This field can have the
following values:

t. BYTE—a variable of type byte.
2. WORD—a variable of type word.
3. DWORD—a variable of type dword.
4. QWORD—a variable of type qword.
5. TBYTE—a variable of type tbyte.
6. A structure name: indicates a variable whose type is equal to the number of

bytes allocated in the structure definition.
7. A record name: type will be either a byte or word depending on the size of

the record.
8. NEAR—a label of type near.
9. FAR—a label of type far.

10. ABS—a constant (17-bit number), always of type word.

The Placement of EXTRN's

You must be careful in placing the EXTRN directive because the location of the
EXTRN directive in relation to the definition of program segments is very critical.
The following rules apply:

I. If you know the segment in which the external symbol is defined, then place
the EXTRN directive between a SEGMENT/ENDS pair that is identical to
the SEGMENT/ENDS pair in which the object was defined in the other
module. The object can be used like any other variable or label. For exam
ple, if in the module SCAN.A86, you defined a variable such as the one
below

DATA SEGMENT WORD PUBLIC

COUNT DB 0

PUBLIC COUNT

DATA ENDS

you would place the EXTRN directive in the module, PARSE.A86, in the
following way:

DATA SEGMENT WORD PUBLIC

EXTRN COUNT:BYTE

DATA ENDS

Program Linkage Directives 5-3

2. If you do not know the segment in which the externa) symbo) is defined, or
if the segment in which it is defined is non-combinable, then place the
EXTRN directive outside of a)) SEGMENT/ENDS pairs in your program.
To address the externa) symbo) you must load the segment part (paragraph
number) of the symbo) into a segment register using the SEG operator.
MOV AX, SEG COUNT
MOV E S, AX

Then you must either use an ASSLIME directive to verify addressability
such as
ASSUME ES:SEG COUNT

MOV DX, COUNT

or use a segment override for each use of that symbo).
MOV DX, ES:C0UNT

The END Directive
Syntax:

END [regint [, ...]]

Description:

The END directive is required in a)) ASM86 modute programs. It is, appropriately,
the last statement in the modute. Its occurrence terminates the assembly process; any
text found beyond the END directive wit) be ignored (and an error wit) be issued).
Another purpose of the END directive is to define the module as being a MAINMO-
DULE. This impties that the code contained in the modute win be the code that is
initially executed when the program is loaded into memory. Execution wit) begin at
the labe) in your code specified as the start address in the END directive.

The END directive can a)so be used to define the initia) contents of DS and SS. It
specifies values to be placed in the segment registers by the toader as it loads the
program prior to execution. If this alternate means of initializing these registers is
used, then the initial values for CS:IP are required. You could also choose to write
some code to do the same initialization.

For example:

ASSUME CS:C0DE, DS:DATA, SS:STACK

DATA SEGMENT

ABYTE DB 0

DATA ENDS

STACK SEGMENT STACK

DU 10 DUP (?)
STACKTOP DU 0

5-4 ASM86

STACK ENDS

CODE SEGMENT

START: MOV AL, ABYTE ; DS is already initialized

CODE ENDS

END START, DS:DATA, SS:STACK:STACKTOP ; CS:IP points to
; CODE:START

DATA
; SS:SP points to
; STACK:STACKTOP

Field Values:

[regint]

This field defines the contents for a segment register (and also the registers IP
and SP). To initialize the segment registers, the following formats apply:

'Segname' is either a segment name or a group name. It identifies the paragraph
number to be loaded into the segment register.

'Labeiname' is the name of a label defined in the module. Its offset will be used
to initialize IP.

'Varname' is the name of a variable defined in the module. Its offset will be used
to initialize SP.

To initialize CS and IP:

To initialize SS and SP:

labelname
orCSdabelname
or

CS:segname:labelname

(the segment part of the label is used for CS)
(same as 'labelname")

(the segment part or paragraph number that is to
be loaded into CS is taken from segname)

To initialize DS:

SS:segname:varname
or

SS:segname

(SP will be initialized to the offset of varname)

(SP will be initialized to be equal to the size of
the segment)

DS:segname

Program Linkage Directives 5—5

The NAME Directive
Syntax:

NAME modname

Description:

Each object moduie that wilt be linked to others must have a unique name. The NAME
directive is used to specify this name. If it is not used, an error wiH occur and the
assembler will give the object module the default name ANONYMOUS. Using this
default name can cause problems when linking together assembly language modules.
LIB-86 will report an error if two modules have the same name.

Fieid Vaiues:

modname

A user-defined identifier. Hands-off and dual-function keywords are invalid and
will cause an error.

The 8086/8087/8088 Instruction Set

The 8086/8088 tnstruction Set

tnstruction Statement Formats
The format for the instruction statement was introduced in Chapter 4. The format is
shown beiow:

[label:] [prefix] mnemonic [operand [, operand]]

This chapter describes the 8086/8087/8088 instruction set. The instruction set con
sists of a set of mnemonics that seiect different machine operations. The instruction
set encyclopedia at the end of this chapter describes each of these mnemonics, their
operations, and aiiowed operands.

Addressing Modes
The 8086 instruction set provides severai different ways to address operands. Most
two-operand instructions allow either memory or a register to serve as one operand,
and either a register or a constant within the instruction to serve as the other
operand. Memory to memory operations are exciuded.

Operands in memory may be addressed A/ect/y with a 16-bit offset address, or
fndirect/y with &ase (BX or BP) and/or index (SI or DI), registers added to an
optional 8- or 16-bit dispiacement constant. This constant can be the name of a
variable or a pure number. When a name is used, the displacement constant is the
variable's offset (see Chapter 4).

The result of a two-operand operation may be directed to either memory or a
register. Single-operand operations are applicable uniformly to any operand except
immediate constants. Virtually ah 8086 operations may specify either 8- or 16-bit
operands.

Memory Operands

Operands residing in memory may be addressed in four ways:
* Direct 16-bit offset address
* Indirect through a base register, BX or BP, optionally with an 8- or 16-bit

displacement
* Indirect through an index register, SI or DI, optionally with an 8- or 16-bit

displacement
' Indirect through the sum of one base register and one index register, optionally

with an 8- or 16-bit displacement.
The location of an operand in an 8086 register or in memory is specified by up to
three fields in each instruction. These fields are the mode field (mod), the register
field (reg), and the register/memory field (r/m). When used, they occupy the second
byte of the instruction sequence. This byte is referred to as the Modrm byte of the
instruction.

6-2 ASM86

The mode field occupies the two most significant bits, 7 and 6, of the byte, and
specifies how the r/m fietd (bits 2, 1,0) is used in locating the operand. The r/m
field can name a register that holds the operand or can specify an addressing mode
(in combination with the mod field) that points to the location of the operand in
memory. The reg field occupies bits 5, 4, and 3 following the mode field, and can
specify that one operand is either an 8-bit register or a 16-bit register. In some
instructions, this reg field gives additional bits of information specifying the instruc
tion, rather than only encoding a register.

Description
The effective address (EA) of the memory operand is computed according to the
mod and r/m fields:

if mod = 00 then DISP = O', disp-low and disp-high are absent
tf mod = 01 then DiSP = disp-low sign-extended to 16 bits, disp-high is absent
if mod = 10 then DISP = disp-high:disp-low
if r/m = 000 then EA = (BX) +(SI) + DISP
if r/m = 001 then EA = (BX) +(DI) + DISP
if r/m = 010thenEA = (BP) + (SI) + DISP
if r/m =011thenEA = (BP) + (DI)+DISP
if r/m =100thenEA = (SI) + DISP
if r/m = 101 then EA = (DI) + DISP
if r/m = 110 then EA = (BP) + DISP'
if r/m = 111 then EA = (BX) + DISP

'except if mod = 00 and r/m = 110 then
EA = disp-high: disp-low

Instructions referencing 16-bit objects interpret EA as addressing the low-order
byte; the word is addressed by EA+l ,EA.

Encoding

mod reg r/m disp-low disp-high

Segment Override Prefixes
General register BX and pointer register BP may serve as base registers. When BX is
the base the operand by default resides in the current Data Segment and the DS
register is used to compute the physical address of the operand. When BP is the
base, the operand by default resides in the current Stack Segment and the SS seg
ment register is used to compute the physical address of the operand. When both
base and index registers are used, the operand by default resides in the segment
determined by the base register, i.e., BX means DS is used, BP means SS is used.
When an index register alone is used, the operand by default resides in the current
Data Segment. The physical address of most other memory operands is by default
computed using the DS segment register (exceptions are noted below). These
assembler-default segment register selections may be overridden by preceding the
referencing instruction with a segment override prefix.

Description
The segment register selected by the reg field of a segment prefix is used to compute
the physical address for the instruction this prefix precedes. This prefix may be com
bined with the LOCK and/or REP prefixes, although the latter has certain require
ments and consequences—see REP.

The 8086/8087/8088 instruction Set 6-3

Encoding
I 0 0 1 reg 11 0]

reg is assigned according to the following tabie:

00 ES
01 CS
10 SS
11 DS

Exceptions
The physica) addresses of all operands addressed by the SP register are computed
using the SS segment register, which may not be overridden. The physical addresses
of the destination operands of the string primitive operations (those addressed by
the DI register) are computed using the ES segment, which may not be overridden.

Register Operands

The four 16-bit general registers and the four 16-bit pointer and index registers may
serve interchangeably as operands in nearly all 16-bit operations. Three exceptions
to note are multiply, divide, and some string operations, which use the AX register
implicitly. The eight 8-bit registers of the HL group may serve interchangeably in 8-
bit operations. Multiply, divide, and some string operations use AL implicitly.

Description
Register operands may be indicated by a distinguished field, in which case REG will
represent the selected register, or by an encoded field, in which case EA will repre
sent the register selected by the r/m field. Instructions without a "w" bit always
refer to 16-bit registers (if they refer to any register at all); those with a "w" bit refer
to either 8- or 16-bit registers according to "w".

Encoding
General Registers:

Distinguished Field:

I reg") or [reg j

for mode = 11 EA = r/m (a register):

I 11 reg]

REG is assigned according to the following table:

8-Bit [w = 0]16-Bit [w = 1]

000 AX 000 AL
001 ex 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

6-4 ASM86

Instructions that reference the flag register fiie as a 16-bit object use the symbol
FLAGS to represent the file:

FLAGS X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF).X:(PF):X:(CF)

where X is undefined.

tmmediate Operands
Ail two-operand operations except multiply, divide, and the string operations ailow
one source operand to appear within the instruction as immediate data. Sixteen-bit
immediate operands that have a high-order byte that is the sign extension of the low-
order byte may be abbreviated to eight bits.

Three points about immediate operands:
* Immediate operands atways fo//ow addressing mode displacement constants

(when present) in the instruction.
* The low-order byte of 16-bit immediate operands always precedes the

high-order byte.
* The 8-bit immediate operands of instructions with s:w = 11 are sign-extended to

16-bit values.

String instructions and Memory References
Table 6-1 shows the mnemonics of the string instructions that can be coded without
operands (MOVSB, MOVSW, etc.) or with operands (MOVS, etc.).

The string instructions are unusual in several respects:
1. Before coding a string instruction, you must:

* Load SI with the offset of the source string.
* Load DI with the offset of the destination string.

2. One of the forms of REP (REP, REPZ, REPE, REPNE, REPNZ) can be coded
immediately preceding (but separated from by at least one blank) the primitive
string operation mnemonic (thus, REPNZ SCASW is one possibility). This
specifies that the string operation is to be repeated the number of times deter
mined by CX. (Refer to instruction descriptions.)

3. Each can be coded with or without symbolic memory operands.
* If symbolic operands are coded, the assembler can check the addressability

of the operands.

Table 6-1. String Instruction Mnemonics

Operation
Being

Performed
Operand Is
Byte String

Mnemonic if
Operand is
Word String

Mnemonic if

Move MOVSB MOVSW MOVS
Compare CMPSB CMPSW CMPS
Load AL/AX LODSB LODSW LOOS
Store from AL/AX STOSB STOSW STOS
Compare to AL/AX SCASB SCASW SCAS
Block Input INSB INSW INS
Block Output OUTSB OUTSW OUTS

'If symbolic operands are coded, the assembler can check their addressability. Also, their
TYPEs determine the opcode generated.

The 8086/8087/8088 tnstruction Set 6-5

* Anonymous references that use the hardware defauhs should be coded
using the operand-iess forms (e.g. MOVSB, MOVSW), to avoid the
cumbersome (but otherwise required):

MOVS ES:BYTE PTR [DI], [SI]

as opposed to the simple:

MOVSB

* Anonymous references that do not use the hardware defaults require both
segment and type to be explicitly specified:

MOVS ES:BYTE PTR [DI], SS:ESI]

* Never use [BX] or [BP] addressing modes with string instructions.
4. If the instruction mnemonic is coded without operands (e.g., MOVSB,

MOVSW), then the segment register defaults are as follows:
* SI defaults to an offset in the segment addressed by DS,
* DI is required to be an offset in the segment addressed by ES.
Thus, the direction of data flow for the default case in which no operands are
specified is from the segment addressed by DS to the segment addressed by ES.

5. If the instruction mnemonic is coded with operands (e.g. MOVS, CMPS), the
operands can be anonymous (indirect) or they can be variable references.

Example:

DESTSTRING EQU ES:BYTE PTR [DI]

SRCSTRING EQU DS:BYTE PTR [SI]

ASSUME CS:CODE, DS:DATA, ES:DATA1

DATA SEGMENT

SRCARRAY DB 10 DUP (1)

DATA ENDS

DATA1 SEGMENT

DESTARRAY DB 10 DUP (?)

DATA1 ENDS

CODE SEGMENT
MOV AX, DATA
MOV DS , AX ;INIT DS
MOV AX, DATA1
MOV ES, AX ;INIT ES

MOV SI, OFFSET SRCARRAY
MOV DI, OFFSET DESTARRAY

;INIT POINTER REGISTERS

MOV CX, 10 ;NUMBER OF ELEMENTS
REP MOVS DESTSTRING, SRCSTRING

6-6 ASM86

;PERFORM STRING OPERATION

CODE ENDS

Mnemonic Synonyms
There are some machine operations that can have different mnemonics. The dif
ferent mnemonics are aii synonyms in that they refer to the same machine instruc
tions. They are supphed by the assembler to aiiow you to think of the operation in
terms that are more helpfut for your task. Many of the conditional jump instruc
tions have more than one mnemonic. When used after a compare, the conditional
jump mnemonic can express the type of compare or the result of the compare in
terms of the flags that were set. For example,

CMP DEST, SRC
JE LAB1 ;jump if dest is equal to source

or

CMP DEST, SRC
JZ LAB1 ljump if zero flag set (dest = src)

In both cases, the same instruction will be encoded for the jump. Programmers
familiar with other assembly languages that use conditional jump mnemonics that
refer to flags may be more comfortable using this form. However, the first form that
expresses the relationship the compare is checking between the operands is more
expressive.

Organization of the instruction Set
Instructions are described in this section in six functional groups:
* Data transfer
* Arithmetic
' Logic
* String manipulation
* Control transfer
* Processor control

Each of the first three groups mentioned in the preceding list is further subdivided
into an array of codes that specify whether the instruction is to act upon immediate
data, register or memory locations, whether 16-bit words, or 8-bit bytes are to be
processed, and what addressing mode is to be employed. AH of these codes are listed
and explained in detail, but you do not have to code each one individually. The con
text of your program automatically causes the assembler to generate the correct
code. There are three general categories of instructions within each of the three func
tional groups mentioned:
1. Register or memory space to or from register
2. Immediate data to register or memory
3. Accumulator to or from registers, memory, or ports

The 8086/8087/8088 Instruction Set 6-7

Data Transfer

Data transfer operations are divided into four classes:
! general purpose
2 accumulator-specific
3 address-object
4 flag

None affect flag settings except SAHF and POPF.

General Purpose Transfers
Four general purpose data transfer operations are provided. These may be applied
to most operands, though there are specific exceptions. The general purpose
transfers (except XCHG) are the only operations that allow a segment register as an
operand.
— MOV performs a byte or word transfer from the source (rightmost) operand to

the destination (leftmost) operand.
— PUSH decrements the SP register by two and then transfers a word from the

source operand to the stack element currently addressed by SP.
— POP transfers a word operand from the stack element addressed by the SP

register to the destination operand and then increments SP by 2.
— XCHG exchanges the byte or word source operand with the destination operand.

The segment registers may not be operands of XCHG.

Accumulator-Specific Transfers
Three accumulator-specific transfer operations are provided:
— IN transfers a byte (or word) from an input port to the AL register (or AX

register). The port is specified either with an inline data byte, allowing fixed
access to ports 0 through 255, or with a port number in the DX register, allowing
variable access to 64K input ports.

— OUT is similar to IN except that the transfer is from the accumulator to the
output port.

— XLAT performs a table lookup byte translation. The AL register is used as an
index into a 256-byte table addressed by the BX register. The byte operand so
selected is transferred to AL.

Address-Object Transfers
Three address-object transfer operations are provided:
— LEA (load effective address) transfers the offset address of the source operand to

the destination operand. The source operand must be a memory operand and the
destination operand must be a 16-bit general, pointer, or index register.

— LDS (load pointer into DS) transfers a "pointer-object" (i.e., a 32-bit object
containing an offset address and a segment address) from the source operand
(which must be a doubleword memory operand) to a pair of destination registers.
The segment address is transferred to the DS segment register. The offset address
is transferred to the 16-bit general, pointer, or index register that you coded.

— LES (load pointer into ES) is similar to LDS except that the segment address is
transferred to the ES segment register.

6-8 ASM86

Flag Register Transfers
Four flag register transfer operations are provided:
— LAHF (toad AH with flags) transfers the flag registers SF, ZF, AF, PF, and CF

(the 8080 flags) into specific bits of the AH register.
— SAHF (store AH into flags) transfers specific bits of the AH register to the flag

registers, SF, ZF, AF, PF, and CF.
— PUSHF (push flags) decrements the SP register by two and transfers all of the

flag registers into specific bits of the stack element addressed by SP.
— POPF (pop flags) transfers specific bits of the stack element addressed by the SP

register to the flag registers and then increments SP by two.

Arithmetic
The 8086/8088 provides the four basic mathematical operations in a number of dif
ferent varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic are provided. Standard twos complement representation of signed values
is used. The addition and subtraction operations serve as both signed and unsigned
operations. In these cases the flag settings allow the distinction between signed and
unsigned operations to be made (see Conditional Transfer). Correction operations
are provided to allow arithmetic to be performed directly on unpacked decimal
digits or on packed decimal representations.

Flag Register Settings
Six flag registers are set or cleared by arithmetic operations to reflect certain proper
ties of the result of the operation. They generally follow these rules (see also Appen
dix C):
— CF is set if the operation results in a carry out of (from addition) or a borrow into

(from subtraction) the high-order bit of the result; otherwise, CF is cleared.
— AF is set if the operation results in a carry out of (from addition) or a borrow into

(from subtraction) the low-order four bits of the result; otherwise, AF is cleared.
— ZF is set if the result of the operation is zero; otherwise, ZF is cleared.
— SF is set if the high-order bit of the result of the operation is set; otherwise, SF is

cleared.
— PF is set if the modulo 2 sum of the low-order eight bits of the result of the

operation is 0 (even parity); otherwise, PF is cleared (odd parity).
— OF is set if the operation results in a carry into the high-order bit of the result but

not a carry out of the high-order bit, or vice versa; otherwise, OF is cleared.

Addition
Five addition operations are provided:
— ADD performs an addition of the source and destination operands and returns

the result to the destination operand.
— ADC (add with carry) performs an addition of the source and destination

operands, adds one if the CF flag is found previously set, and returns the result to
the destination operand.

— INC (increment) performs an addition of the source operand and one, and
returns the result to the operand.

— AAA (unpacked BCD (ASCH) adjust for addition) performs a correction of the
result in AL of adding two unpacked decimal operands, yielding an unpacked
decimal sum.

— DAA (decimal adjust for addition) performs a correction of the result in AL of
adding two packed decimal operands, yielding a packed decimal sum.

The 8086/8087/8088 instruction Set 6-9

Subtraction
Seven subtraction operations are provided:
— SUB performs a subtraction of the source from the destination operand and

returns the resuit to the destination operand.
— SBB (subtract with borrow) performs a subtraction of the source from the

destination operand, subtracts one if the CF fiag is found previousiy set, and
returns the resuit to the destination operand.

— DEC (decrement) performs a subtraction of one from the source operand and
returns the resuit to the operand.

— NEG (negate) performs a subtraction of the source operand from zero and
returns the resuit to the operand.

— CMP (compare) performs a subtraction of the source destination operand,
causing the fiags to be affected, but does not return the resuit.

— AAS (unpacked BCD (ASCH) adjust for subtraction) performs a correction of
the resuit in AL of subtracting two unpacked decimat operands, yieiding an
unpacked decimai difference.

— DAS (decimai adjust for subtraction) performs a correction of the resuit in AL of
subtracting two packed decimai operands, yieiding a packed decimai difference.

Muitipiication
Three muitipiication operations are provided:
— MUL performs an unsigned muitipiication of the accumulator (AL or AX) and

the source operand, returning a doubie iength resuit to the accumuiator and its
extension (AL and AH for 8-bit operation, AX and DX for i6-bit operation). CF
and OF are set if the top haif of the resuit is non-zero.

— iMUL (integer muitipiy) is simitar to MUL except that it performs a signed
muitipiication. CF and OF are set if the top half of the result is not the sign
extension of the low haif of the result.

— AAM (unpacked BCD (ASCi i) adjust for muitipiy) performs a correction of the
result in AX of multiplying two unpacked decimal operands, yielding an
unpacked decimal product.

Division
There are three division operations provided and two sign-extension operations to
support signed division:
— DIV performs an unsigned division of the accumulator and its extension (AL and

AH for 8-bit operation, AX and DX for i6-bit operation) by the source operand
and returns the single length quotient to the accumuiator (AL or AX), and
returns the singie iength remainder to the accumuiator extension (AH or DX).
The fiags are undefined. Division by zero generates an interrupt of type 0.

— IDiV (integer division) is simitar to DiV except that it performs a signed division.
— AAD (unpacked BCD (ASCH) adjust for division) performs a correction of the

dividend in AL before dividing two unpacked decimal operands, so that the result
win yieid an unpacked decimai quotient.

— CBW (convert byte to word) performs a sign extension of AL into AH.
— CWD (convert word to double word) performs a sign extension of AX into DX.

6-10 ASM86

Logic

The 8086/8088 provides the basic iogic operations for both 8- and i6-bit operands.

Singie-Operand Operations. Three-single-operand iogicai operations are provided:
— NOT forms the one's complement of the source operand and returns the resuit to

the operand. Flags are not affected.
— Shift operations of four varieties are provided for memory and register operands:

SHL (shift iogicai left), SHR (shift iogicai right), SAL (shift arithmetic left), and
SAR (shift arithmetic right). Single bit shifts, and variabie bit shifts with the shift
count taken from the CL register are available. The CF fiag becomes the last bit
shifted out, OF is defined only for shifts with count of I, and is set if the final
sign bit value differs from the previous value of the sign bit, and PF, SF, and ZF
are set to reflect the resulting value.

— Rotate operations of four varieties are provided for memory and register
operands: ROL (rotate left), ROR (rotate right), RCL (rotate through CF left),
and RCR (rotate through CF right). Single bit rotates, and variable bit rotates
with the rotate count taken from the CL register, are available. The CF flag
becomes the last bit rotated cut; OF is defined only for shifts with count of I, and
is set if the final sign bit value differs from the previous value of the sign bit.

Two-Operand Operations
Four two-operand logical operations are provided. The CF and OF flags are cleared
on all operations; SF, PF, and ZF reflect the result.
— AND performs the bitwise logical conjunction of the source and destination

operand and returns the result to the destination operand.
— TEST performs the same operations as AND, causing the flags to be affected but

does not return the result.
— OR performs the bitwise logical inclusive disjunction of the source and

destination operand and returns the result to the destination operand.
— XOR performs the bitwise logical exclusive .disjunction of the source and

destination operand and returns the result to the destination operand.

String Manipulation

One-byte instructions perform various primitive operations for the manipulation of
byte and word strings (sequences of bytes or words). Any primitive operation can be
performed repeatedly in hardware by preceding its instruction with a repeat prefix
(see REP). The single-operation forms may be combined to form complex string
operations with repetition provided by iteration operations.

Hardware Operation Control
All primitive string operations use the SI register to address the source operands.
The DI register is used to address the destination operands that reside in the current
extra segment. If the DF flag is cleared, the operand pointers are incremented after
each operation, once for byte operations and twice for word operations. If the DF
flag is set, the operand pointers are decremented after each operation. See Processor
Control for setting and clearing DF.

Any of the primitive string operation instructions may be preceded with a one-byte
prefix indicating that the operation is to be repeated until the operation count in CX
is satisfied. The test for completion is made prior to each repetition of the operation.
Thus, an initial operation count of zero in CX will cause zero executions of the
primitive operation.

The 8086/8087/8088 tnstruction Set 6-11

The repeat prefix byte aiso designates a vaiue to compare with the ZF Hag. If the
primitive operation is one that affects the ZF flag, and the ZF flag is unequal to the
designated value after any execution of the primitive operation, the repetition is ter
minated. This permits the scan operation, for exampie, to serve as a scan-whiie or a
scan-untii.

During the execution of a repeated primitive operation, the operand index registers
(St and DI) and the operation count register (CX) are updated after each repetition,
whereas the instruction pointer wiil retain the offset address of the repeat prefix byte
(assuming it immediately precedes the string operation instruction). Thus, an inter
rupted repeated operation will be correctly resumed when control returns from the
interrupting task.

Using more than one prefix on an instruction is processor dependent. Please refer to
the User's Manual for your processor for further information.

Primitive String Operation
Five primitive string operations are provided:
— MOVS (MOVSB, MOVSW) transfers a byte (or word) operand from the source

(rightmost) operand to the destination (leftmost) operand. As a repeated opera
tion, this provides for moving a string from one location in memory to another.

— CMPS (CMPSB, CMPSW) subtracts the rightmost byte (or word) operand from
the leftmost operand and affects the flags but does not return the result. As a
repeated operation, this provides for comparing two strings. With the appro
priate repeat prefix it is possible to determine after which string element the two
strings become unequal, thereby establishing an ordering between the strings.

— SCAS (SCASB, SCASW) subtracts the destination byte (or word) operand from
AL (or AX) and affects the flags but does not return the result. As a repeated
operation, this provides for scanning for the occurrence of, or departure from, a
given value in the string.

— LCDS (LODSB, LODSW) transfers a byte (or word) operand from the source
operand to AL (or AX). This operation ordinarily would not be repeated.

— STOS (STOSD, STOSW) transfers a byte (or word) operand from AL (or AX) to
the destination operand. As a repeated operation, this provides for filling a string
with a given value.

In all the cases above, the source operand is addressed by SI and the destination
operand is addressed by DI. Only in CMPB/CMPW does the Dl-indexed operand
appear as the rightmost operand.

6-12 ASM86

Software Operation Controi
The repeat prefix provides for rapid iteration in a hardware-repeated string opera
tion. The iteration controi operations (see LOOP) provide this same controi for
implementing software ioops to perform compiex string operations. These iteration
operations provide the same operation count update, operation compietion test, and
ZF fiag tests that the repeat prefix provides.

By combining the primitive string operations and iteration controi operations with
other operations, it is possibie to build sophisticated yet efficient string manipula
tion routines. One instruction that is particuiariy usefui in this context is XLAT. It
permits a byte fetched from one string to be transiated before being stored in a sec
ond string, or before being operated upon in some other fashion. The transiation is
performed by using the vaiue in the AL register as an index into a table pointed at by
the BX register. The transiated vaiue obtained from the tabie then repiaces the vaiue
initialiy in the AL register (see XLAT).

Contro) Transfer

Four ciasses of controi transfer operations may be distinguished: cails, jumps, and
returns; conditionai transfers; iteration contro]; and interrupts.

Aii contro] transfer operations cause the program execution to continue at some new
iocatton in memory, possibiy in a new code segment. Conditionai transfers are pro
vided for targets in the range -128 to +127 bytes from the transfer.

Calls, Jumps, and Returns
Two basic varieties of caiis, jumps, and returns are provided —those that transfer
control within the current code segment, and those that transfer control to an arbi
trary code segment, which then becomes the current code segment. Both direct and
indirect transfers are supported; indirect transfers make use of the standard address
ing modes as described in above.

The three transfer operations are described beiow.
— CALL pushes the offset address of the next instruction onto the stack (in the case

of an inter-segment transfer the CS segment register is pushed first) and then
transfers controi to the target operand.

— JMP transfers controi to the target operand.
— RET transfers contro] to the return address saved by a previous CALL operation,

and optionaiiy may adjust the SP register so as to discard stacked parameters.

intra-segment direct caiis and jumps specify a seif-relative direct dispiacement, thus
aiiowing pos/'n'on mdependen/ code. A shortened jump instruction is available for
transfers in the range -128 to +127 bytes from the instruction for code compaction.

Conditional Jumps
The conditional transfers of control perform a jump contingent upon various
Booiean functions of the fiag registers. The destination must be within a -128 to
+ 127 byte range of the instruction. Table 6-2 shows the available instructions, the
conditions associated with them, and their interpretation.

The 8086/8087/8088 Instruction Set 6-13

Table 6-2. 8086/8087 Conditional Transfer Operations

Instruction Condition interpretation

JEor JZ ZF = 1 "equal" or "zero"
JLor JNGE (SF xor OF) = 1 "less" or "not greater or equal"
JLEor JNG ((SF xor OF) or ZF) =

1 "less or equal" or "not greater"
JBor JNAE
or JC

CF = 1 "below" or "not above or equal"

JBEor JNA (CForZF) = 1 "below or equal" or "not above"
JPor JPE PF = 1 "parity" or "parity even"
JO OF = 1 "overflow"
JS SF = 1 "sign"
J+IEor JNZ ZF = 0 "not equal" or "not zero"
JNLor JGE (SF xor OF) = 0 "not less" or "greater or equal"
JNLE or JG ((SF xor OF) or ZF) =

0 "not less or equal" or "greater"
JNBor JAE
or JNC

CF = 0 "not betow" or "above or equa!"
or "no carry"

JNBEor JA (CForZF) = 0 "not below or equal" or "above"
JNPor JPO PF = 0 "not parity" or "parity odd"
JNO OF = 0 "not overflow"
JNS SF = 0 "not sign"

Iteration Control
The iteration controi transfer operations perform ieading- and trading-decision ioop
controi. The destination of iteration control transfers must be within a -128 to +127
byte range of the instruction. These operations are particularly useful in conjunction
with the string manipulation operations.

There are four iteration control transfer operations provided:
— LOOP decrements the CX ("count") register by one and transfers if CX is not

zero.
— LOOPZ (aiso called LOOPE) decrements the CX register by one and transfers if

CX is not zero and the ZF flag is set (loop while zero or loop while equal).
— LOOPNZ (also called LOOPNE) decrements the CX register by one and

transfers if CX is not zero and the ZF flag is cleared (loop while not zero or loop
while not equal).

— JCXZ transfers if the CX register is zero.

Interrupts
Program execution control may be transferred by means of operations similar in
effect to that of external interrupts. All interrupts perform a transfer by pushing the
flag registers onto the stack (as in PUSHF), and then performing an indirect inter
segment call through an element of an interrupt transfer vector located at absolute
locations 0 through 3FFH. This vector contains a four-byte element for each of up
to 256 different interrupt types.

6-14 ASM86

Three interrupt transfer operations provided.
— INT pushes the flag registers (as in PUSHF), ciears the TF and IF flags, and

transfers controi with an indirect caii through any one of the 256 vector elements.
A one-byte form of this instruction is avaiiabie for interrupt type 3.

— INTO pushes the Hag registers (as in PUSHF), ciears the TF and IF fiags, and
transfers controi with an indirect caii through vector eiement 4 if the OF Hag is set
(trap on overfiow). If the OF fiag is cieared, no operation takes piace.

— IRET transfers controi to the return address saved by a previous interrupt
operation and restores the saved fiag registers (as in POPF).

Processor Contro)

Various instructions and mechanisms are provided for controi and operation of the
processor and its interaction with its environment.

Flag Operations
There are seven operations provided that operate directiy on individuai fiag
registers.
— CLC ciears the CF fiag.
— CMC compiements the CF fiag.
— STC sets the CF fiag.
— CLD ciears the DF fiag, causing the string operations to auto-increment the

operand pointers.
— STD sets the DF flag, causing the string operations to auto-decrement the

operand pointers.
— CLI clears the IF fiag, disabling externai interrupts (except for the non-maskabie

externa! interrupt).
— STI sets the IF fiag, enabiing externai interrupts after the execution of the next

instruction.

Processor Halt
The HLT instruction causes the 8086 processor to enter its hait state. The halt state
is cleared by an enabled externai interrupt or RESET.

Processor Wait
The WAIT instruction causes the processor to enter a wait state if the signai on its
TEST pin is not asserted. The wait state may be interrupted by an enabied externai
interrupt. When this occurs the saved code location is that of the WAIT instruction,
so that upon return from the interrupting task, the wait state is re-entered. The wait
state is cleared and execution resumed when the TEST signai is asserted. Execution
resumes without aliowing externa) interrupts untii after the execution of the next
instruction. This instruction aliows the processor to synchronize itself with external
hardware.

Processor Escape
The ESC instruction provides a mechanism by which other processors may receive
their instructions from the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 processor does no operation for the ESC instruction
other than to access a memory operand.

The 8086/8087/8088 instruction Set 6-15

Bus Lock
A special one-byte prefix may precede any instruction causing the processor to assert
its bus-lock signa! for the duration of the operation caused by that instruction. This
has use in multiprocessing applications (see LOCK).

Single Step
When the TF flag register is set, the processor generates a type 1 interrupt after the
execution of each instruction. During interrupt transfer sequences caused by any
type of interrupt, the TF flag is cleared after the push-flags step of the interrupt
sequence. No instructions are provided for setting or clearing TF directly. Rather,
the flag register image saved on the stack by a previous interrupt operation must be
modified, so that the subsequent interrupt return operation (1RET) restores TF set.
This allows a diagnostic task to single-step through a task under test, while still exe
cuting normally itself.

If the single-stepped instruction itself clears the TF flag, the type 1 interrupt will still
occur upon completion of the single-stepped instruction. If the single-stepped
instruction generates an interrupt or if an enabled external interrupt occurs prior to
the completion of the single-stepped instruction, the type 1 interrupt sequence will
occur after the interrupt sequence of the generated or external interrupt, but before
the first instruction of the interrupt service routine is executed.

The 8086/8088 hardware protects the execution of the instruction immediately
following a POP or a MOV to a segment register instruction from any kind of inter
rupt, including type 1 interrupts used to single-step. When single-stepping through a
task under test, the single-step interrupt is not recognized until the instruction
following the POP or MOV to a segment register instruction is executed.

Example

TEST TASK SEGMENT
ASSUME CSTEST TASK

INSTRUCT POP DS
INSTRUC2: POP BX
INSTRUC3: ADD AX, [BX]

TEST TASK ENDS

1NSTRUC1 steps to 1NSTRUC3When single-stepping through TEST_TASK,
since the single-step interrupt is not recognized by the 8086/8088 until the instruc
tion following the POP to the DS segment register (POP BX) is executed.

instruction Description Formats
The formats presented in the individual instruction descriptions and briefly dis
cussed here reflect the assembly language processed by the 8086/8087/8088 Macro
Assembler (ASM86).

6-16 ASM86

Format Boxes

The individua) instruction descriptions show first a format box such as the foiiowing
exampie.

Mem/Reg * Immediate to Reg

I Opcode I ModRM]]] Data]]

These are byte-wise representations of the object code generated by the assembier
and are interpreted as follows:
* Opcode is the 8-bit opcode for the instruction. The actual opcode generated is

defined in the "Opcode" column of the instruction table that foltows each
format box.

* ModRM is the byte that specifies the operands of the instruction. It contains a
2-bit mode field (MOD), a 3-bit register fieid (REG), and a 3-bit Register or
Memory (R/M) field.

* Dashed blank boxes following the ModRM box are for any displacement
required by the mode field.

* Data is for a byte of immediate data.
* A dashed blank box following a Data box is used whenever the immediate

operand is a word quantity.

instruction Detai) Tabies

Following each format box, an instruction detail table shows the opcode, the
number of clocks required for the operation to take place, the actual operation per
formed, and a coding example for each variant of the instruction.

The instruction detail table for the instruction IMUL is shown below. The examples
in the table are neither complete nor restrictive; anyplace there is a memory operand,
any of the seven memory addressing modes can be used.

Opcode Clocks Operation Coding Example

F6 80-98 AX — AL ' Reg 8 IMUL BL
F6 (86-104)+ EA AX-AL' Mem 8 IMUL BYTESOMETHING
F7 128-154 DX:AX - AX ' Reg 16 IMUL BX
F7 (134-160) +EA DX:AX - AX ' Mem 16 IMUL WORDSOMETHING

Fiags

The flags produced by each instruction are represented by a table such as the
following:

ODITSZAPC

X---UUUUX

The 8086/8087/8088 Instruction Set 6-17

0
D
I
T
S
z
A
P
C

Effect
Code

X

U

1

0

The top tine in the table represents the individual flags, and the lower line shows the
effect on each flag by the instruction. The letters, numbers and symbols used in the
table are defined as follows:

Overflow
Direction (used in string ops)
Interrupt Enable (1=enabled)
Single Step Trap Flag (causes interrupt 1 after next instruction)
Sign
Zero
Auxiliary Carry (used primarily in BCD ops)
Parity
Carry

Effect

Modified by the instruction; result depends on operands.

Not modified.

Undefined after the instruction.

Set to 1 by the instruction.

Set to 0 by the instruction.

Table 6-3. Symbols

8086/8088
Descriptor Meaning

AX Accumulator (16-bit)
AH Accumulator (high-order byte)
AL Accumulator (low-order byte)
BX Register BX (16-bit), which may be split and addressed as two

8-bit registers.
BH High-order byte of register BX.
BL Low-order byte of register BX.
CX Register CX (16-bit), which may be split and addressed as two

8-bit registers.
CH High-order byte of register CX.
CL Low-order byte of register CX.
DX Register DX (16-bit), which may be split and addressed as two

8-bit registers.
DH High-order byte of register DX.
DL Low-order byte of register DX.
SP Stack pointer (16-bit)
BP Base pointer (16-bit)
IP Instruction Pointer (16-bit)
Flags 16-bit register space, in which nine flags reside.
DI Destination Index register (16-bit)
SI Stack Index register (16-bit)
CS Code Segment register (16-bit)
DS Data Segment register (16-bit)
ES Extra Segment register (16-bit)

SS Stack Segment register (16-bit)

6-18 ASM86

Tab!e6-3. Symbols (Cont'd.)

8086/8088
Descriptor Meaning

REG8
REG16
LSRC,RSRC

reg

EA
r/m

mode

w

d

(...)

(BX)

((BX))

(BX) + 1, (BX)

((BX) + 1,(BX))
Concatenation, e.g.,
((DX) + 1:(DX))

addr
addr-low
addr-high
addr + 1:addr

data
data-low
data-high
disp
disp-low
disp-high

+

/
%
&
)
II

The name or encoding of an 8-bit CPU register location.
The name or encoding of an 16-bit CPU register location.
Refer to operands of an instruction, generally left source and
right source when two operands are used. The leftmost
operand is also called the destination operand, and the
rightmost is called the source operand.
A field that specifies REG8 or REG16 in the description of an
instruction.
Effective address (16-bit)
Bits 2, 1, and 0 of the MODRM byte used in accessing
memory operands. This 3-bit field defines EA, in conjunction
with the mode and w fields.
Bits 7 and 6 of the MODRM byte. This 2-bit field defines the
addressing mode.
A 1-bit field in an instruction, identifying byte instructions
(w=0), and word instructions (w=1)
A 1-bit field in an instruction, "d" identifies direction, i.e.
whether a specified register is source or destination.
Parentheses mean the contents of the enclosed register or
memory location.
Represents the contents of register BX, which can mean the
address where an 8-bit operand is located. To be so used in
an assembler instruction, BX must be enclosed only in
square brackets.
Means this 8-bit operand, the contents of the memory
location pointed at by the contents of register BX. This nota
tion is only descriptive for use in this chapter. It cannot
appear in source statements.
Means the address (of a 16-bit operand) whose low-order
8-bits reside in the memory location pointed at by the con
tents of register BX and whose high-order 8-bits reside in the
next sequential memory location, (BX) + 1.
Means the 16-bit operand that resides there.
Means a 16-bit word that is the concatenation of two 8-bit
bytes, the low-order byte in the memory location pointed at
by DX and the high-order byte in the next sequential memory
location.
Address (16-bit) of a byte in memory.
Least significant byte of an address.
Most significant byte of an address.
Addresses of two consecutive bytes in memory, beginning at
addr.
Immediate operand (8-bit if w=0; 16-bit if w=1).
Least significant byte of 16-bit data word.
Most significant byte of 16-bit data word.
Displacement
Least significant byte of 16-bit displacement.
Most significant byte of 16-bit displacement.
Assignment
Addition
Subtraction
Multiplication
Division
Modulo
And
Inclusive or
Exclusive or

The 8086/8087/8088 Instruction Set 6-19

Table 6-4. Effective Address Calculation Time

EA Components Clocks*

Displacement Only 6

Base or Index Only (BX BP, SI, DI) 5

Displacement
9

Base or Index (BX, BP, SI, DI)

Base BP + DI, BX + SI 7
+

!ndex BP + SI, BX + DI 8

Displacement BP + DI + DISP 11
+ BX + SI + DISP

Base
+ BP + SI + DISP 12

Index BX + DI + DISP

Add 2 clocks for segment override

6-20 ASM86

MNEMONIC—Sample 8086/8088 Instruction
Format

opcode modrm I data [data

'------ immediate data (either 8- or 16-bits)

an offset value (either 8-or 16-bits)

a mod/rm byte if needed

the opcode

Clocks Operation

(the value
of the

MNEMONIC

opcode
byte)

Operation
(A description of the machine operation.)

Flags

ODITSZAPC

(shows the effect on the Hags)

Description
(Describes the use/operation of the instruction.)

The 8086/8087/8088 tnstruction Set 6-21

AAA—ASCH Adjust for Addition
Format

Opcode

37 4 adjust AL, flags, AH AAA

Operation
if (AL & OFH) > 9 or AF = 1 then do;

AL-AL + 6
AH - AH + 1
CF-AF-1

end;
AL-AL & OFH

Fiags

ODITSZAPC

U---UUXUX

Description
AAA is used to correct the resuit of adding two unpacked BCD digits in the AL
register. After the normai byte addition, AAA tests the auxiiiary carry flag (AF),
which is set by a carry out of the tow nibbie of AL.)f either the AF is set or the tow
nibbie of AL is greater than 9, then a carry bit is added to the AH register, and the
iow nibbie of AL is increased by 6 to produce the decimal digit. AL is masked to 4
bits whether an adjustment was performed or not, thus aiways ieaving an unpacked
BCD resuit in the iow nibbie of AL. High nibble data does not affect the corrected
resuit of the addition, so ASCii digits can be added correctly by following the AAA
with an OR AL,30H to restore the result to an ASCH character. The digit carry, in
AH, is not affected by this restoration.

6-22 ASM86

AAD—ASCH Adjust for Division
Format
[Long----- Opcode]

Opcode Clocks Operation Coding Example

D5,0A 60 Adjust AL, AH prior to division AAD

Operation
AL-AL + (AH ' OAH)
AH -0

Fiags

ODITSZAPC

U---XXUXU

Description
AAD is used to prepare 2 unpacked BCD digits (least significant in AL, most signifi
cant in AH) for a division operation that win yield an unpacked result. This is
accomplished by muitiplying AH by 10 and adding the product to AL. Then AH is
zeroed, leaving AX with the binary equivalent of the original unpacked 2-digit
number.

The 8086/8087/8088 Instruction Set 6-23

AAM—ASCH Adjust for Muttiptication
Format

Long----- Opcode]

Ctocks

D4.0A 83 Adjust AL, AH after AAM

Operation
AH-(ALZOAH)
AL-(ALMODOAH)

Flags

0 D I T S Z A P C

XU X X U U

produce 2 unpacked BCD digits (least significant in AL, most
Description
AAM is used to
significant in AH) after a multiplication of 2 unpacked digits. This is accomplished
by dividing the binary product in AL by ten. The quotient is left in AH as the most
significant digit, and the remainder is left in AL as the least significant digit.

6-24 ASM86

AAS—ASCH Adjust for Subtraction
Format

Opcode]

Opcode Clocks Operation Coding Example

3F 4 adjust AL, flags, AH AAS

Operation
if(AL&0FH)>9or AF = 1 then do;

AL-AL-6
AH - AH-1
CF-AF-1

end;
AL-AL&OFH

Flags

0 D I T S Z A P C

U---UUXUX

Description
AAS is used to correct the result of subtracting two unpacked BCD digits in the AL
register. After the normal byte subtraction, AAS tests the auxiliary carry flag (AF),
which is set by a carry out of the low nibble of AL. If the AF is set or the low nibble
of AL is greater than 9, then a borrow bit is subtracted from AH, and the low nibble
of AL is decreased by 6 to produce the proper decimal digit. AL is masked to 4 bits
whether an adjustment was performed or not, thus always leaving an unpacked
BCD result in the low nibble of AL. High nibble data does not affect the corrected
result of the subtraction, so ASCII digits can be subtracted correctly by following
the AAS with an OR AL,30H to restore the result to an ASCH character. The digit
borrow, in AH, is not affected by this restoration.

The 8086/8087/8088 tnstruction Set 6-25

ADC—Integer Add With Carry
Format
Memory/Reg + Reg

I Opcode I ModRM I I

Opcode Clocks Operation

12 3 Reg8 *- CF + Reg 8 + Reg8 ADC BL,CL
12 9 + EA Reg8 — CF + Reg8 + Mem8 ADC BL,BYTESOMETHING
13 3 Reg16*-CF + Reg16 + Reg16 ADC BX.CX
13 9 + EA Regie *- CF + Regl6 + Mem16 ADC BX.WORDSOMETHING
10 16+EA Mem8 *- CF + Mem8 + Reg8 ADC BYTESOMETHING,BL

11 16+EA Mem16^CF + Mem16 + Reg16 ADC WORDSOMETHING,BX

immed to AX/AL

4 AL--CF + AL + Immed8 ADC AL,5
4 AX-CF + AX + lmmed16 ADC AX.400H

Immed to Memory/Reg

I Opcode I ModRM'J_ _ I_ —I °3'3 I
'-(Reg field = 010)

Opcode Clocks Operation Coding Example

80 4 Reg8 — CF + Reg8 + Immed8 ADC BL.32
80 17 +EA Mem8 — CF + Mem8 + Immed8 ADC BYTESOMETHING.32
81 4 Reg16*-CF + Reg16 + Immed16 ADC BX.1234H
81 17+EA Mem16 — CF + Mem16 + Immed16 ADC WORDSOMETHING.1234H
83 4 Reg16 — CF + Reg16 + Immed8 ADC BX,32
83 17+EA Mem16 — CF + Mem16 + Immed8 ADC WORDSOMETHING.32

Operation
LeftOpnd <-CF + LeftOpnd + RightOpnd

Flags

ODITSZAPC

X---XXXXX

Description
The sum of two operands and the initial state of the carry Hag reptaces the left
operand.

6-26 ASM86

ADD—integer Addition
Format
Memory/Reg + Reg

1 Opcode) ModRM]]

Opcode Clocks Operation

02 3 Reg8 - Reg8 + Reg8 ADD BL,CL
02 9 + EA Reg8 *- Reg8 + Mem8 ADD BL,BYTESOMETHING
03 3 Reg16 Reg16 + Reg16 ADD BX.CX
03 9+EA Regie *- Regl6 + Meml6 ADD BX,WORDSOMETHING
00 16 + EA Mem8 - Mem8 + Reg8 ADD BYTESOMETHING,BL
01 16+EA Mem16 Mem16 + Reg16 ADD WORDSOMETHING,BX

immed to AX/AL

) Opcode I Data JL J

Opcode Clocks Operation Coding Example

04 4 AL AL + Immed8 ADD AL,5
05 4 AX AX + Immed16 ADD AX.400H

Immed to Memory/Reg

I Opcode 1 ModRm' I ' I] Data] [

'-(Reg field = 000)

Opcode Clocks Operation Coding Example

80 4 Reg8 Reg8 + Immed8 ADD BL,32
80 17+EA Mem8 — Mem8 + Immed8 ADD BYTESOMETHING,32
81 4 Reg16 - Reg16 + Immed16 ADD BX.1234H
81 17 + EA Mem16 - Mem16 + Immed16 ADD WORDSOMETHING.1234H
83 4 Reg16 - Reg16 + Immed8 ADD BX.32
83 17+EA Mem16 — Mem16 + Immed8 ADD WORDSOMETHING.32

before add in tast 2 cases)

Operation
LettOpnd *- LeftOpnd + RightOpnd

Flags

ODITSZAPC

X---XXXXX

Description
The sum of two operands reptaces the teft operand.

The 8086/8087/8088 instruction Set 6-27

AND—Logica) AND
Format
Memory/Reg with Reg

1 Opcode] ModRM LZ n
Opcode Ciocks Operation Coding Example

22 3 Reg8 — Reg8 AND Reg8 AND BL,CL
22 9+EA Reg8 *- Reg8 AND Mem8 AND BL,BYTESOMETHING
23 3 Reg16 — Reg16 AND Reg16 AND BX.CX
23 9 + EA Regl6 — Reg16 AND Meml6 AND BX.WORDSOMETHING
20 16 + EA Mem8 — Mem8 AND Reg8 AND BYTESOMETHING.BL
21 16 + EA Mem16*-Mem16ANDReg16 AND WORDSOMETHING,BX

immed to AX/AL

Opcode I Data J- J
Opcode Clocks Operation Coding Example

24 4 AL *- AL AND Immed8 AND AL.4
25 4 AX - AX AND Immed16 AND AX.400H

immed to Memory/Reg

I Opcode I ModRm' I] I Data I

Opcode

'—(Reg

Clocks

field = 100)

Coding Example

80 4 Reg8 — Reg8 AND Immed8 AND BL.3FH
80 17 + EA Mem8 *- Mem8 AND Immed8 AND BYTESOMETHING.3FH
81 4 Reg16^Reg16 AND Immed 16 AND BX.3FFH
81 17 + EA Mem16 *- Mem16AND Immed 16 AND WORDSOMETHING.3FFH

Operation
LeftOpnd *- LeftOpnd and RightOpnd
OF-CF-O

Fiags

0 D [T S Z A P C

0 - - - X X U X 0

Description
The result of a bitwise logical AND of the two operands replaces the left operand.
The carry and overflow flags are cleared.

6-28 ASM86

BOUND—Check Array Against Bounds [iAPX 186]
For 186 docks, see Appendix H.

Format

Opcode ModRM

Opcode Operation Coding Exampie

62 ifReg16<Mem16atEA,or BOUND BX,ARRAYFOO_4
Reg16 > Mem16 at EA + 2 then
INTERRUPTS

Operation
if left-operand (a register) < lower-limit (a word variable at EA)

or left-operand > upper-limit (at EA + 2) then do;
INTERRUPTS;

end if;

Fiags

NPLODITSZAPC

Description
BOUND is used to ensure that a signed array index is within the limits defined by a
two-word block of memory. This two word block might typically be found just
before the array itself and therefore be accessible at a constant offset of -4 from the
array, simplifying the addressing. The first word of the block at the effective address
contains the lower limit, and the second word contains the upper limit for the index,
which is in the register operand of the instruction. The effective address cannot be a
register operand —that is, the two-word block cannot be in registers.

The 8086/8087/8088 Instruction Set 6-29

CALL—Can
Format
Within segment or group, iP reiative

I Opcode] DispL I DispH I

Opcode Clocks Operation Coding Example

E8 19)P *- [P + Disp16
—(SP) <- return [ink

CALL NEAR^LABEI__ FOO

Within segment or group, Indirect

Opcode I ModRM*nz I 3
*—(Reg field = 010)

Opcode Clocks Operation Coding Example

FF 16 IP — Reg!6
—(SP) — return link

CALL SI

FF 21 + EA IP — Mem16
—(SP) *- return link

CALL WORD PTR [SI)

FF 21 + EA IP — Mem16
—(SP) *- return link

CALL POINTER_TO_FRED

Operation
if IP-relative then do;

IP - IP + Disp16;
—(SP) *- return link;

IP-(EA);
—(SP) *- return link;

Flags

ODITSZAPC

Description
There are two types of within-segment or group calis: one that is fP-reiative and is
specified by the use of a NEAR iabei as the target address, and one in which the
target address is taken from a register or variabie pointer without modification (i.e.,
is NOT iP-relative). in the first case, the i6-bit dispiacement is reiative to the first
byte of the next instruction.

The second case is specified when the operand is any (i6-bit) generai, base, or index
register—as in CALL AX, CALL BP, or CALL Di, respectiveiy—or when the
operand is a word-variabie, as in CALL WORD PTR [BP] or CALL
OPEN_ ROUTiNE[BX] (assuming that OPEN__ROUTiNE is deciared a word
array or structure element). When the effective address is a variabie, as in the
preceding two exampies, DS is the impiied segment register for aH EA's not using
BP.

6-30 ASM86

CALL
The return hnk, which is pushed to the TOS during the CALL, is the address of the
instruction foilowing the CALL.

inter-segment or group, Direct

] Opcode] offset) offset] segbase] segbase [

Opcode Clocks Operation Coding Example

9A 28 CS - segbase CALL FAR. _LABEL_ FOO
IP - offset

Operation
CS — segbase;
IP - offset,
—(SP) *- return link;

Flags

ODITSZAPC

inter-segment or group, indirect

] Opcode j ModRM*1) J

Opcode

'—(Reg field =011)

Clocks Operation Coding Example

FF 37 + EA CS*-segbase CALL DWORD PTR FOO

Operation
CS -(EA + 2);
JP-(EA);

IP - offset

Flags

0 D 1 T S Z A P 0

Description
An intersegment or group (long or far) CALL win transfer control by replacing both
the values in CS and iP. This effectively transfers control to another segment or
group by changing both the base (paragraph number) and offset values.

The 8086/8087/8088 instruction Set 6-31

CBW—Convert Byte to Word
Format

Opcode

Opcode Ctocks Operation

98 2 convert byte in AL to word
in AX

CBW

Operation
if (AL AND 80H) = 80H then do;

AH -OFFh
else do;

AH -0
end;

Flags

ODITSZAPC

Description
CBW converts the byte in AL to a word in AX by sign extension of AL through AH.
No Hags are affected.

6-32 ASM86

CLC—Ctear Carry Dag
Format

I Opcode I

Opcode Clocks Operation Coding Exampie

Operation
CF-0

Flags

ODITSZAPC

--------o

Description
CLC clears the carry flag, CF. No other flags are affected.

The 8086/8087/8088 instruction Set 6-33

CLD—Clear Direction Flag
Format

I Opcode I

Operation
DF -0

Flags

ODITSZAPC

-o-------

Description
CLD clears the direction flag, DF. No other ftags are affected.

6-34 ASM86

CL!—Clear Interrupt Enable Flag
Format
) Opcode I

Opcode Clocks Operation Coding Example

FA 2 clear interrupt flag CLI

Operation
IF -0

Flags

ODITSZAPC

--o------

Description
CH clears the interrupt enable flag, IF. No other flags are affected.

The 8086/8087/8088 instruction Set 6-35

CMC—Complement Carry Flag
Format

] Opcode]

Opcode Clocks Operation Coding Example

F5 2 complement carry flag CMC

Operation
it OF = 1 then do;

CF-0
else do;

CF-1
end;

Flags

ODITSZAPC

--------x

Description
CMC compfements the carry flag, CF. No other flags are affected.

6-36 ASM86

CMP—Compare Two Operands
Format
Memory/Reg with Reg

Opcode] ModRM) [)

Opcode Clocks Operation Coding Example

3A 3 flags — Reg8 - Reg8 CMP BL,CL
3A 9+EA flags *- Reg8 - Mem8 CMP BL.BYTESOMETHING
3B 3 flags Reg16- Regie CMP BX,CX
3B 9+EA flags <- Reg16 - Meml6 CMP BX,WORDSOMETHING
38 9 + EA flags *- Mem8- Reg8 CMP BYTESOMETHING,BL
39 9 + EA flags - Meml6- Regl6 CMP WORDSOMETHING,BX

framed to AX/AL

Opcode I Data

Opcode Clocks

3C
3D

flags *- AL - Immed8
flags *- AX - Immed16

CMP AL,5
CMP AX.400H

fmmed to Memory/Reg

[Opcode) ModRM' j] I Data

'-(Reg field = 111)

Opcode Clocks Operation Coding Example

80 4 Hags *- Reg8 -)mmed8 CMP BL,32
80 10 + EA flags - Mem8 - Immed8 CMP BYTESOMETHING.32
81 4 flags - Reg16- Immed16 CMP BX.1234H
81 10 + EA flags - Mem16-lmmed16 CMP WORDSOMETHING,1234H
83 4 flags <- Reg16 - Immed8 CMP BX.32
83 10 + EA flags *- Mem16 - Immed8 CMP WORDSOMETHING,32

Operation
flags <- LeftOpnd - RightOpnd

Fiags

0 D I T S A P C

X---XXXXX

Description
The Hags are set by the subtraction of the right operand from the ieft operand.
Neither operand is modified. A table of signed and unsigned comparisons supported
by conditional jumps is provided under the 'Jcond' heading of this chapter.

The 8086/8087/8088 instruction Set 6-37

CWD—Convert Word to Doubteword
Format

Opcode

Operation
if (AX AND 8000H) = 8000H then do;

DX-OFFFFH
else do;

DX-0
end;

Flags

ODITSZAPC

Description
CWD converts the word in AX to a doubieword in DX:AX by sign extension of AX
through DX. No Hags are affected.

6-38 ASM86

CWD
Format

[Opcode]

Opcode Clocks Operation Coding Example

27 4 adjust AL, flags. AH DAA

Operation
if (AL & OFH) > 9 or AF = 1 then do;

AL - AL + 6
AF - 1

end,
if AL > 9F or CF = 1 then do;

AL - AL + 60H
CF-1

end;

Flags

ODITSZAPC

U---XXXXX

Description
DAA is used to correct the resutt of adding two bytes, each of which contains two
packed BCD digits, in order to produce a packed decimal result. After the normal
byte addition in AL, DAA tests the auxiliary carry flag (AF), which is set by a carry
out of the low nibble of AL. If either the AF is set or the low nibble of AL is greater
than 9, then the low nibble of AL is increased by 6 to produce the correct decimal
digit, and the high nibble of AL is incremented, effecting the digit carry.

Whether this first adjustment is made or not, a second adjustment is made if AL is
greater than 9FH or if the CF is set, indicating a carry out of the high digit. In this
case, 60H is added to AL and the CF is set.

The 8086/8087/8088 Instruction Set 6-39

DAS—Decima! Adjust for Subtraction
Format

OpcodeI

Opcode Oocks Operation Coding Exampte

2F 4 adjust AL, ftags, AH DAS

Operation
if (AL & OFH) > 9 or AF = 1 then do;

AL-AL-6
AF-1

end;
if AL > 9F or CF = 1 then do;

AL-AL-60H
CF-1

end;

Flags

ODITSZAPC

U---XXXXX

Description
DAS is used to correct the resuit of subtracting two bytes, each of which contains
two packed BCD digits, in order to produce a packed decimal result. After the nor
mal byte subtraction in AL, DAS tests the auxiliary carry flag (AF), which is set by a
carry out of the low nibble of AL. If either the AF is set or the low nibble of AL is
greater than 9, then the low nibble of AL is reduced by 6 to produce the correct
decimal digit.

Whether this first adjustment is made or not, a second adjustment is made if AL is
greater than 9FH or the CF is set, indicating a borrow out of the high digit. In this
case, 60H is subtracted from AL and the CF is set.

6-40 ASM86

DEC—Decrement by 1
Format
Word Register

[opcode + reg]

2 Reg16*-Reg16-1 DEC BX

Memory/Byte Register

Opcode ModRM'

'—(Reg field = 001)

Opcode Clocks Operation Coding Example

FE 3 Reg8 — Reg8 -1 DEC BL
FE 15+EA Mem8 — Mem8-1 DEC BYTESOMETHING
FF 15 + EA Mem16 — Mem16 -1 DEC WORDSOMETHING

Operation
Operand <- Operand -1

Flags

0 D ! T S Z A P C

X - - - X XXX-

Description
The operand is decremented by].

The 8086/8087/8088 tnstruction Set 6*41

D!V—Unsigned Division
Format
Memory/Reg with AX or DX:AX

I Opcode I ModRM']]

'—(Reg field = 110)

Opcode Clocks Operation Coding Example

F6 80-90 AH.AL - AX / Reg8 DIV BL
F6 (86-96) + EA AH.AL - AX / Mem8 DIV BYTESOMETHING
F7 144-162 DX.AX - DX:AX / Reg16 DIV BX
F7 (150-168) + EA DX.AX - DX:AX / Mem16 DIV WORDSOMETHING

Operation
if byte-operation then do;

if AX / divisor > OFFH then INI 0;
else do;

AL <- AX / divisor /' unsigned division ' /
AH <- AX MOD divisor /'unsigned modulo ' /

end if;
else do; /' word-operation ' /

ifDX:AX /divisor>OFFFFH then INTO
else do;

AX DX:AX / divisor /' unsigned division '/
DX *- DX;AX MOD divisor /' unsigned modulo ' /

end if;

Flags

ODITSZAPC

U---UUUUU

Description
Depending on the opcode, either a word in AX is divided by a byte found in a
register or memory iocation, or a doubieword in DX:AX is divided by a word
register or memory iocation. A doubieword dividend is stored with its high word in
DX and low word in AX, and the results are: DX gets the unsigned modulo, and AX
gets the unsigned quotient. For a word dividend (byte divisor), the dividend is in AX
and the results are: AH gets the unsigned modulo, and AL gets the unsigned quo
tient. in either case, if the resuit is too big to fit in the designated register (AX or AL)
then an interrupt of type 0 is performed to ailow the overfiow to be handied.

6-42 ASM86

ENTER—High Levei Procedure Entry [iAPX 186]
For)86 docks, see Appendix H.

Format
I Opcode I DataL] DataH [Level]

Opcode Operation Coding Exampie

08 build new stack frame ENTER NUMDYNS.LEXLVL

Operation
right-operand = display level
left-operand = number of bytes of dynamic storage needed by the routine
-(SP) - BP;
temp *- SP;
if display level > 0 then

repeat level -1 times;
-(SP)--(BP);

end repeat;
—(SP) *- temp;

end if;
BP *- temp;
SP SP - number of dynamics;

Flags

NPLODITSZAPC

Description
ENTER is used to create the stack frame required by most block-structured high-
level languages. The first parameter specifies how many bytes of dynamic storage is
to be allocated on the stack for the routine being entered, while the second cor
responds to the lexical nesting level of the routine and determines how many stack
frame pointers are copied into the new stack frame from the preceding frame. This
list of pointers is also known as the DISPLAY. BP is used as the current stack frame
pointer. ENTER first pushes BP and saves the address of the BP-save for later use.
If the lexical level is greater than 0, then the list of outer frame pointers from the
preceding frame is copied to the new frame, the stack is marked with the temporary
holding the address of the top of this list, and BP is set to the current value of SP.
Then the dynamics are allocated by subtracting the number of bytes of dynamics
from SP.

The 8086/8087/8088 instruction Set 6-43

ESC—Escape
Format

Opcode + i I ModRM] I I

Opcode Clocks Operation Coding Example

D8 + i 8+EA data bus (EA) ESC 6.ARRAY
D8+i 2 data bus *- (EA) ESC 20,AL

Operation
if mod A 11 then data bus *- (EA)
if mod = 11 then no operation

Fiags

ODITSZAPC

Description
The ESC instruction provides a mechanism by which other processors may receive
their instructions from the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 processor does no operation for the ESC instruction
other than to access a memory operand and place it on the bus.

6-44 ASM86

HLT—Hatt
Format
I Opcode I

F4 2 halt operation HLT

Operation

Flags

ODITSZAPC

Description
The HLT instruction causes the 8086/8088 processor to enter its halt state. The halt
state is cleared by an enable interrupt or reset.

The 8086/8087/8088 instruction Set 6-45

!D!V—Signed Division
Format
Memory/Reg with AX or DX:AX

Opcode ModRM'

'—(Reg field =111)

Opcode Clocks Operation Coding Example

F6 101-112 AH,AL - AX / Reg8 IDIV BL
F6 (107-118) + EA AH,AL - AX / Mem8 IDIV BYTESOMETHING
F7 165-184 OX.AX *- DX:AX / Reg16 IDIV BX
F7 (171-190)+ EA DX.AX - DX:AX / Mem16 IDIV WORDSOMETHING

Operation
if byte-operation then do;

if AX / divisor > 7FH or AX / divisor <- 80H then INTO;
else do;

AL*-AX/divisor /'signed division'/
AH*-AX MOD divisor /'signed modulo'/

end if;
else do; /'word-operation'/

if DX:AX / divisor > 7FFFH or DX:AX / divisor - 8000H then INT 0;
else do;

AX *- DX:AX / divisor /* signed division '/
DX *- DX:AX MOD divisor /' signed modulo ' /

Flags

ODITSZAPC

U---UUUUU

Description
Depending on the opcode, either a word in AX is divided by a byte in a register or
memory iocation, or a dword in DX:AX is divided by a word register or memory
iocation. A dword dividend is stored with its high word in DX and iow word in AX,
and the resuits are: DX gets the signed modulo, and AX gets the signed quotient.
For a word dividend (byte divisor) the dividend is in AX, and the resuits are: AH
gets the signed moduio, and AL gets the signed quotient, in either case, if the resuit
is too big to fit in the designated register (AX or AL) then an interrupt of type 0 is
performed to aiiow the overfiow to be handied.

6-46 ASM86

!MUL—Signed Muitipiication
For 186 clocks, see Appendix H.

Format
Memory/Reg with AL or AX

Opcode ModRM'

'—(Reg field = 101)

Opcode Clocks Operation Coding Exampie

F6 80-98 AX - AL ' Reg8 IMUL BL
F6 (86-104) +EA AX - AL ' Mem8 IMUL BYTESOMETHING
F7 128-154 DX:AX - AX ' Reg16 IMUL BX
F7 (134-160)+EA DX:AX - AX ' Mem16 IMUL WORDSOMETHING

Mem/Reg * immediate to Reg [iAPX 186]

) Opcode *] ModRM Data])

Opcode Operation Coding Example

6B Reg 16 *- Reg 16 ' loomed 8 IMUL BX,SI,5
6B Reg 16 *- Reg 16 ' Immed 8 IMUL BX,5 ;product-*BX
6B Reg 16 <- Mem 16 ' Immed 8 IMUL BX,WORDSMTHING,5
69 Reg 16 *- Reg 16' immed 16 IMUL BX,SI,400H
69 Reg 16 *- Reg 16 ' Immed 16 IMUL BX.400H ;product-*BX
69 Reg16-^Mem16' Immed 16 IMUL BX,WORDSMTHING,400H

Operation
if byte-operation then do; /' byte operation, word result' /

AX <- AL' (Mem8 or Reg8);
if AH is a sign extension of AL then CY <- OF <- 0;
else CY *- OF 1;

DX:AX - AX ' (Mem16or Reg16);
if DX is a sign extension of AX then CY — OF <- 0,
else CY <- OF <- 1;

else do; /' immed-operation, word result' /
Reg16 *- Immed16 ' (Mem16 or Reg16);
if product fits in destination register then CY — OF — 0;
else CY-OF-1;

end if;

Flags

ODITSZAPC

X U U U U X

The 8086/8087/8088 instruction Set 6-47

!MUL
Description
There are two types of integer (signed) muitipiication in the ASM86, distinguishable
by the types of operands and the precision of the resuit:
f. Muitipiy a byte memory or register operand by a byte in AL, producing a word

resuit in AX (catted 'byte-operation, word resuit' above).
2. Muitipiy a word memory or register operand by a word in AX, producing a

dword resuit in DX:AX (caiied 'word-operation, dword resuit' above).

There is a third type of integer (signed) muitipiication in the iAPX 186,
distinguishabie by the types of operands and the precision of the result:
3. Muitipiy a word memory or register operand by a word (or byte, which wiii be

sign-extended to a word) of immediate data, producing a word resuit in a regis
ter. This instruction uses the fuli capability of the MODRM byte; therefore the
destination need not be the same register as contained the muitipiicand. For
example, 1MUL BX,S1,5 will muitipiy the contents of the SI register by 5 and
ieave the (word) result in BX (caiied 'immed-operation, word result' above).

6-48 ASM86

!N—!nput Byte, Word
Format
Fixed port

Opcode) Port J

Operation Coding ExampleOpcode Ciocks

E4 10 AL — Ports IN AL,BYTEPORTNUMBER
E5 10 AX - Port8 IN AL,BYTEPORTNUMBER

Variable port

] Opcode]

Opcode Clocks Operation

EC 8 AL - Port16(in DX)
ED 8 AX - Port16(in DX)

IN AL,DX
IN AX,DX

Operation

portnumber in instruction;
0 < portnumber < OFFH;

else
portnumber in DX;
0 < portnumber < OFFFFH;

end if;
if byte-input then AL *- ioport[portnumber];
else AX *- ioport[portnumber];

Fiags

ODITSZAPC

Description
IN transfers a byte or word from the specified input port to AL or AX. Use of the
fixed port format allows access to ports 0 through FF, and encodes the port number
in the instruction. To use the variable port format you load the DX register with a 16
bit port number and then code the mnemonic 'DX' in place of a constant port
number. This format ailows access to 64k ports.

The 8086/8087/8088 tnstruction Set 6-49

!NC—tncrement By 1
Format
Word Register

Opcode + reg

Opcode ModRM'

Opcode Clocks Operation Coding Example

40 +reg 2 Reg16-Reg16 + 1 INC BX

Memory/Byte Register

'—(Reg field = 000)

Opcode Clocks Operation Coding Example

FE 3 Reg8 — Reg8 + 1 INC BL
FE 15 + EA Mem8 — Mem8 + 1 INC BYTESOMETHING
FF 15 + EA Mem16 *- Mem16 + 1 INC WORDSOMETHINC

Operation
Operand *- Operand + 1

Flags

ODITSZAPC

X---XXXX-

Description
The operand is incremented by t.

6-50 ASM86

!NT/!NTO—interrupt
Format

Opcode type

Opcode Clocks Operation

CO 52 Interrupt 3
CD 51 interrupt type'
CE 53 or 4 interrupt 4 if FL AGS.OF =

e!se NOP

INT 3
INT 5
INTO

Operation
SP-SP-2
-(SP) - FLAGS
IF-0
IF -0
SP-SP-2
-(SP)-CS
CS - TYPE '4 + 2
SP-SP-2
-(SP) - IP
IP - TYPE ' 4

Fiags

0 D ! T S Z A P C

- - 0 0..........................

Description
INT pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through any one of the 256 vector elements.
The one-byte form of this instruction generates a type 3 interrupt.

INTO pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through vector element 4 (location I0H) if the
OF flag is set (trap on overflow). If the OF flag is clear, no operation takes place.

The 8086/8087/8088 Instruction Set 6-51

!RET—Return from tnterrupt
Format
] Opcode I

CF 24 Return from interrupt IRET

Operation
IP-(SP) + +
SP-SP + 2
CS-(SP) + +
SP - SP + 2
FLAGS-(SP) + +
SP-SP + 2

Flags

ODITSZAPC

XXXXXXXXX

Description
IRET returns controi to an interrupted routine by transferring control to the return
address saved by a previous interrupt operation and restoring the saved Hag registers
(as in POPF).

6-52 ASM86

Jcond—Jump on Condition
Operation
if condition is true then do;

sign-extend displacement to 16 bits;
IP *- IP + sign-extended displacement;
end if ,

Format

Opcode Disp t

Opcode Ciocks Operation Coding Exampie

77 16 or 4 jump if above JA TARGETLABEL (CF OR ZF) = O
73 16 or 4 jump if above or equai JAE TARGETLABEL CF = 0
72 16 or 4 jump if below JB TARGETLABEL CF = 1
76 16 or 4 jump if betow or equa) JBE TARGETLABEL (CF OR ZF)= 1
72 16 or 4 jump if carry set JC TARGETLABEL CF=1
74 16 or 4 jump if equal JE TARGETLABEL ZF = 1
7F 16 or 4 jump if greater JG TARGETLABEL ((SF XOR OF) OR

ZF) = 0
7D 16 or 4 jump if greater or equal JGE TARGETLABEL (SF XOR OF) = 0
7C 16 or 4 jump if tess JL TARGETLABEL (SF XOR OF)-1
7E 16 or 4 jump if less or equa) JLE TARGETLABEL ((SF XOR OF) OR

ZF)-1
76 16 or 4 jump if not above JNA TARGETLABEL (CF OR ZF)= 1
72 16 or 4 jump if neither above nor equai JNAE TARGETLABEL CF = 1
73 16 or 4 jump if not beiow JNB TARGETLABEL CF = 0
77 16 or 4 jump if neither beiow nor equa) JNBE TARGETLABEL (CF OR ZF) = 0
73 16 or 4 jump if no carry JNC TARGETLABEL $F = 0
75 16 or 4 jump if not equal JNE TARGETLABEL(Z3^4\

7E 16 or 4 jump if not greater JNG TARGETLABEL ((SF XOR OF) OR
ZF)-1

7C 16 or 4 jump if neither greater nor JNGE TARGETLABEL (SF XOR OF) = 1
equal

7D 16 or 4 jump if not)ess JNL TARGETLABEL (SF XOR OF) = 0
7F 16 or 4 jump if neither)ess nor equai JNLE TARGETLABEL ((SF XOR OF) OR

ZF) = 0
71 16 or 4 jump if no overflow JNO TARGETLABEL OF = 0
7B 16 or 4 jump if no parity JNP TARGETLABEL PF = 0
79 16 or 4 jump if positive JNS TARGETLABEL SF = 0

75 16 or 4 jump if not zero JNZ TARGETLABEL ZF = 0

70 16 or 4 jump if overflow JO TARGETLABEL OF-1

7A 16 or 4 jump if parity JP TARGETLABEL PF=1

7A 16 or 4 jump if parity even JPE TARGETLABEL PF = 1

7B 16 or 4 jump if parity odd JPO TARGETLABEL PF-0

78 16 or 4 jump if sign JS TARGETLABEL SF = 1

74 16 or 4 jump if zero JZ TARGETLABELZF=1

E3 18 or 6 jump if CX is zero (does not JCXZ TARGETLABEL

Flags

ODITSZAPC

The 8086/8087/8088 tnstruction Set 6-53

Jcond
Description
Conditional jumps (except for JCXZ, explained beiow) test the flags, which
presumably have been set in some meaningful way by a previous instruction.
Because there are, in many instances, several meaningful and useful ways to inter
pret a particular state of the flags, ASM86 allows different mnemonics for each
interpretation to resolve to the same op-code. This means that some op-codes are, in
effect, synonyms for others. As an example, consider that a programmer who has
just compared a character to another in AL might wish to jump if the two were equal
(JE), while another who had just ANDed AX with a bit field mask would prefer to
consider only whether the result was zero or not (he would use JZ, a synonym for
JE).

JCXZ differs from the other conditional jumps in that it actually tests the contents
of the CX register for zero, rather than interrogating the flags. This instruction is
useful following a conditionally repeated string operation (REPE SCASB for exam
ple) or conditional loop instruction (such as LOOPNE TARGETLABEL), both of
which may terminate for either of two reasons. These instructions implicitly use a
limiting count in the CX register, and looping (or repeating) ends either when the
CX register goes to zero or when the condition specified in the instruction (flags
indicating equals in both of the above cases) occurs. JCXZ is useful when the two
terminations must be handled differently.

In every case, if the condition specified in the conditional jump is true, the signed
displacement byte is sign extended to a word and added to the IP, which has been
updated to point to the first byte of the next instruction. This limits the range of the
conditional jump to 127(decimal) bytes beyond and 126 bytes before the instruction
(remember, the IP was incremented by 2 to point to the next instruction before the
displacement was added).

6-54 ASM86

JMP—Jump
Format
Within segment or group, IP relative

'—(Reg field = 100)

] Opcode] DispL] DispH I

Opcode Clocks Operation Coding Exampie

E9 15 IP — IP + Disp16 JMP NEAR_LABEI__ FOO
EB 15 IP - IP + Disp8 JMP SHORT NR _LAB_FOO

Within segment or group, Indirect

] Opcode I ModRM'] I]

Operation
if IP-relative then do;

if short then sign-extend Disp8 to Disp16;
IP - IP + Disp16,

else do;
IP-(EA);

end if;

Opcode Ciocks Operation Coding Example

FF 11 IP *- Regi6 JMP SI
FF 18 + EA IP - Mem16 JMP WORD PTR [SI)
FF 18 + EA IP — Mem16 JMP POINTER __TO_FRED

Flags

ODITSZAPC

Description
There are two types of within-segment jumps: one which is IP-reiative and is
specified by the use of a NEAR iabe) as the target address; and one in which the
target address is taken from a register or variable pointer without modification (i.e.
is NOT IP-relative). In the first case, the displacement—which is reiative to the first
byte of the next instruction—may be either a fuli word or a byte which wili be sign-
extended to a word.

The second case is specified when the operand is any (I6-bit) general, base, or index
register—as in JMP AX, JMP BP, or JMP DI, respectively—or when the operand is
a word-variable, as in JMP WORD PTR [BP], or JMP CS:CASE_ TABLE[BX]
(assuming that CASE_ TABLE was defined as an array of word pointers). When
the effective address is a variable, as in the preceding two examples, DS is the
implied segment register for ah EA's not using BP. Note especially the difference
between JMP BX and JMP [BX]. In the first jump the new IP is taken from a
register, while in the second it comes from a word variable which is pointed at by the
register.

The 8086/8087/8088 Instruction Set 6-55

JMP
Inter-segment or group, Direct

I Opcode] offset] offset] segbase] segbase]

EA 15 CS-segbase JMP FAR_LABEI__ FOO

Operation
CS — segbase
IP — offset

Flags

0D1TSZAPC

Operation
CS — EA.segbase;
IP — EA.offset;

Inter-segment or group, Indirect

] Opcode] ModRM*] I

'—(Reg field = 101)

Opcode Clocks Operation Coding Example

FF 24 + EA CS-segbase
IP — offset

JMP CASE TABLEtBX]

Flags

ODtTSZAPC

Description
The long jumps transfer control using both an offset and paragraph number
(segbase), which may be either included in the instruction itself or found in a
DWORD variable.

6-56 ASM86

LAHF—Load AH From Hags
Format

Opcode

AH

Operation
AH - SF.ZF.X:AF:X:PF:X:CF

/' 'x' indicates non-specified bit value ' /

Flags

ODITSZAPC

Description
The Sign, Zero, Auxihary carry, Parity, and Carry Fiags are transferred to AH in the
foiiowing format:

SF goes to AH bit7
ZF goes to AH bit6
AF goes to AH bit4
PF goes to AH bit2
CF goes to AH bitO

The remaining bits are indeterminate. No flags are altered.

The 8086/8087/8088 instruction Set 6*57

LDS/LES—Load Pointer to DS/ES and Register
Format

Opcode j ModRM

Opcode Clocks

C4 16 + EA
to reg16 (1 st word) and ES

LES BX.DWORDPOINTER

C5 16 + EA
to reg16 (1st word) and DS

LDS BX.DWORDPOINTER

Operation
Reg16 Mem16 @ EA
DS(orES)-Mem16@ EA + 2

/ * offset part of Virtual Address DWord ' /
/' selector part of Virtual Address DWord ' /

Flags

ODITSZAPC

Description
The double word in the memory location designated by the effective address and 3
successive bytes is treated as two word operands. The first of these in EA:EA+1 is
the offset part of the pointer and is loaded into the designated word-register. The
second word, at EA+2:EA+3, is the paragraph number (segment base) of the
address, and is loaded into the DS or ES register.

6-58 ASM86

LEA—Load Effective Address
Format
I Opcode] ModRM] []

Opcode Clocks Operation Coding Example

8D 2 + EA Reg16-EA LEA BX,SOMEVARIABLE[SI]

Operation
if EA = register then UDtrap;
else Reg 16 *- offset(EA)

Flags

ODITSZAPC

Description
The effective address of the memory operand is put in the specified register. You
should use this instruction only if EA requires run time calculation, i.e., has indexing
with index or base register. Otherwise, you should use MOV reg, OFFSET variable.

The 8086/8087/8088 instruction Set 6-59

LEAVE—High Levei Procedure Exit [iAPX 186]
For 186 clocks, see Appendix H.

Format
) Opcode I

Opcode Operation Coding Example

C9 release current stack frame LEAVE
and return to prior frame.

Operation
SP *- BP; /' burn off dynamics and display ' /
BP *- (SP)+ + ; /' recoverold frame pointer'/

Fiags

NPLODITSZAPC

Description
LEAVE is the compiementary operation to ENTER, and reverses the effects of that
instruction. By copying BP to SP, LEAVE releases all the stack space used by a
routine for its dynamics and display. The old frame pointer is now popped into BP,
restoring the caller's frame, and a subsequent RET xx instruction will follow the
back-link and remove any arguments pushed on the stack for the exiting routine.

6-60 ASM86

LOCK—Assert Bus Lock
Format
I Opcode

FO 2 assert the bus lock LOCK XCHG AX,SEMAPHORE

Operation
None.

Flags

ODITSZAPC

Description
A special one-byte lock prefix may precede any instruction. It causes the processor
to assert its bus-lock signal for the duration of the operation caused by the instruc
tion. In multiple processor systems with shared resources it is necessary to provide
mechanisms to enforce controlled access to those resources. Such mechanisms, while
generally provided through software operating systems, require hardware
assistance. A sufficient mechanism for accomplishing this is a /oc/rerf exc/tange (also
known as test-and-set-lock).

It is assumed that external hardware, upon receipt of that signal, will prohibit bus
access for other bus masters during the period of its assertion.

The instruction most useful in this context is an exchange register with memory. A
simple software lock may be implemented with the following code sequence:

Check: MOV AL,1
LOCK XCHG Sema,AL

TEST AL, AL
JNZ Check

;set AL to 1 (implies locked)
;test and set Lock
;set flags based on AL
;retry if Lock aLready set

MOV Sema,0 ;cLear the Lock when done

The LOCK prefix may be combined with the segment override and/or REP prefixes,
although the latter has certain problems. (See REP.)

The 8086/8087/8088 Instruction Set 6-61

LOOP/ LOOPE / LOOPNE /
LOOPZ/LOOPNZ—Loop Contro)
Format

Opcode I Disp z
Coding ExampleOpcode Clocks

E1 18or6 dec CX; loop if equal and CX
not 0

LOOPE TARGETLABEL

EO 19 or 5
CX not 0

LOOPNE TARGETLABEL

E1 18or6 dec CX; loop if zero and CX
not 0

LOOPZ TARGETLABEL

EO 19 or 5 dec CX; loop if not zero and CX
not 0

LOOPNZ TARGETLABEL

E2 17 or 5 dec CX; loop if CX not 0 LOOP TARGETLABEL

Operation
CX-CX-1;

sign-extend displacement to 16 bits;
IP — IP + sign-extended displacement;

end if;

Fiags

ODITSZAPC

Description
The LOOP instructions are intended to provide iteration control and combine ioop
index management with conditional branching. To use the LOOP instruction you
toad an unsigned iteration count into CX, then code the LOOP at the end of a series
of instructions to be iterated. Each time LOOP is executed the CX register is
decremented and a conditional branch to the top of the loop is performed. The five
variants of the instruction (LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ)
allow branching on three sets of conditions, since two pairs of variants are
synonymous. Conditions for branching are:

LOOP branches if CX non-zero after decrementing;
LOOPZ, LOOPE branch if CX non-zero and ZF = 1;
LOOPNZ, LOOPNE branch if CX non-zero and ZF = 0.

In every case, if the condition specified in the conditional loop is true, the signed
displacement byte is sign extended to a word and added to the fP, which has been
updated to point to the first byte of the next instruction. This limits the range of the
conditional loop to 127 (decimal) bytes beyond and 126 bytes before the instruction
(remember, the fP was incremented by 2 to point to the next instruction before the
displacement was added).

6-62 ASM86

MOV—Move Data
Format
Memory/Reg to or from Reg

Opcode] ModRM 1)]

Opcode Clocks Operation Coding Example

88 9 + EA Mem8 - Reg8 MOV BYTESOMETHING,AL
88 2 Reg8 - Reg8 MOV BL,AL
89 9 + EA Meml6 — Regl6 MOV WORDSOMETHING,AX
89 2 Reg16 - Reg16 MOV BX,AX
8A 8+EA Reg8 - Mem8 MOV AL,BYTESOMETHING
8B 8+EA Reg16 - Mem16 MOV AX,WORDSOMETHING

Direct-Addressed Memory to or from AX/AL

I Opcode] AddrL] AddrH]

Opcode Clocks Operation Coding Example

AO 10 AL-Mem8 MOV AL.BYTESOMETHiNG
A1 10 AX - Mem16 MOV AX,WORDSOMETHING
A2 10 Mem8- AL MOV BYTESOMETHING.AL
A3 10 Mem16- AX MOV AX.WORDSOMETHING

Immed to Reg

) Opcode I Data I _J

Opcode Clocks Operation Coding Example

BO + reg 4 Reg 8 - Immed8 MOV CL.5
B8 + reg 4 Reg16 - Immed16 MOV SI.400H

Immed to Memory/Reg

I Opcode] ModRM')]] Data] ___ I

'-(Reg field = 000)

Opcode Clocks Operation Coding Example

C6 4 Reg8 —Immed8 MOV BL,32
C6 10+EA Mem8-lmmed8 MOV BYTESOMETHING,32
C7 4 Reg16-lmmed16 MOV BX.1234H
C7 10 + EA Mem16*-lmmed16 MOV WORDSOMETHING,1234H

Memory/Reg to or from SReg

Opcode] ModRM']

'—(Reg field = SReg)

The 8086/8087/8088 Instruction Set 6-63

MOV
Opcode CtocRs Operation Coding Exampie

8C 9 + EA Mem16 *- SReg MOV WORDSOMETHING.DS
8C 2 Reg16 — SReg MOV AX,DS
8E 8+EA SReg* *- Mem16 MOV DS,WORDSOMETHING
8E 2 SReg' *- Reg!6 MOV DS.AX

Operation
LeftOpnd - RightOpnd

Flags

ODITSZAPC

Description
The right operand (source) is copied to the ieft operand (destination). The right
operand is not modified. No Hags are affected.

6-64 ASM86

MUL—Unsigned Multiplication
Format
Memory/Reg with AL or AX

] Opcode] ModRM*] [[

'—(Reg field = 100)

Opcode Clocks Operation Coding Exampie

F6 70-77 AX - AL ' Reg8 MUL BL
F6 (76-83)+ EA AX AL ' Mem8 MUL BYTESOMETHING
F7 118-133 DX.AX - AX ' Reg16 MUL BX
F7 (124-139)+ EA DX:AX AX ' Mem16 MUL WORDSOMETHING

Operation
if byte-operation then do; /' byte operation, word result' /

AX — AL * (Mem8 or Reg8);
if AH = 0thenCY*-OF*-0,
else CY-OF-1;

else if word-operation then do; /' word-operation, dword result' /
DX:AX — AX ' (Mem16 or Regl6);
if DX = 0then CY-OF-O;
elseCY^-OF-1;

end if;

Flags

ODITSZAPC

X---UUUUX

Description
There are two types of unsigned muitiphcation in the 8086/8088, distinguishabie by
the types of operands and the precision of the resuit:
1. Muitipiy a byte memory or register operand by a byte in AL, producing a word

resuit in AX (calied 'byte-operation, word resuit' above).
2. Muitipiy a word memory or register operand by a word in AX, producing a

dword resuit in DX:AX (cahed 'word-operation, dword resuit' above).

In both types of muitipiy the carry and overfiow Hags are used to signal whether the
product has exceeded the precision of the operands which produced it. Thus, when
multiplying two bytes, if the product is larger than can be expressed in a byte (i.e.
prod > 256.) then the CY and OF fiags will be set; otherwise, they will be cleared.

The 8086/8087/8088 instruction Set 6-65

NEG—Negate an tnteger
Format
Memory/Reg

Opcode ModRM'

'—(Reg field = 011)

Opcode Clocks Operation Coding Example

F6 3 Reg8 — OOH - Reg 8 NEG BL
F7 3 Reg16 - 0000H-Reg16 NEG BX
F6 16 + EA Mem8 *- OOH - Mem8 NEG BYTESOMETHING
F7 16+EA Mem16 *- 0000H - Mem16 NEG WORDSOMETHING

Operation
Operand *- 2's complement of Operand

Flags

0 D [I S Z A P C

X - - - X X X X 1 '

Description
The two's complement of the register or memory operand replaces the old operand
value.

6-66 ASM86

NOP—No Operation
Format

] Opcode i

Operation
Perform no operation.

Flags

ODITSZAPC

Description
NOP is a one-byte fiiter instruction which takes up space but affects none of the
machine context except iP.

The 8086/8087/8088 instruction Set 6-67

NOT—Form One's Comptement
Format
Memory/Reg

Opcode ModRM*

'—(Reg field = 010)

Opcode Clocks Operation Coding Example

F6 3 Reg8 — OFFH-Reg8 NOT BL
F6 16+EA Mem8 *- OFFH - Mem8 NOT BYTESOMETHING
F7 3 Reg16-0FFFFH-Reg16 NOT BX
F7 16+EA Mem16 - OFFFFH - Mem16 NOT WORDSOMETHING

Operation
Operand *- one's complement of Operand

Flags

ODITSZAPC

Description
The operand is inverted, that is, every i becomes a 0 and vice versa.

6-68 ASM86

OR—Logical inciusive OR
Format
Memory/Regwith Reg

RightOpnd

] Opcode] ModRM]] [

Opcode Clocks Operation Coding Example

OA 3 Reg8 — Reg8 OR Reg8 OR BL,CL
OA 9 + EA Reg8 — Reg8 OR Mem8 OR BL,BYTESOMETHING
OB 3 Reg16 — Reg16OR Reg 16 OR BX,CX
OB 9 + EA Reg16 — Reg16ORMem16 OR BX.WORDSOMETHING
08 16+EA Mem8 — Mem8 OR Reg8 OR BYTESOMETHING,BL
09 16 + EA Meml6 — Mem16 OR Reg16 OR WORDSOMETHING.BX

fmmed to AX/AL

] Opcode] Data ZE ZZ
Opcode Clocks Coding Example

oc 4 AL — AL OR Immed8 OR AL,5
0D 4 AX-AXORImmed16 OR AX.400H

Immed to Memory/Reg

[Opcode 1 ModRM' I Data)

'—(Reg field = 001)

Opcode Clocks Operation Coding Example

80 4 Reg8 — Reg8 OR Immed8 OR BL.32
80 17+EA Mem8 — Mem8ORImmed8 OR BYTESOMETHING,32
81 4 Reg 16 — Reg16OR Immed 16 OR BX.1234H
81 17 + EA Mem16 — Mem16OR Immed16 OR WORDSOMETHING,1234H

Operation
orLeftOpnd

0
LeftOpnd
OF - OF

Fiags

pT S Z A0 D

U

Description
The inciusive OR of two operands reptaces the teft operand. The carry and overftow
flags are cteared.

The 8086/8087/8088 instruction Set 6-69

OUT—Output Byte, Word
Format
Fixed port

Opcode Port

Opcode Ciocks Operation Coding Exampie

E6 10 Port8-AL OUT BYTEPORTNUMBER.AL
E7 10 Port8 - AX OUT BYTEPORTNUMBER.AX

Variable port

I Opcode^

Opcode Clocks Operation Coding Example

EE 8 Port16(in DX) - AL OUT DX.AL
EF 8 Port16 (in DX) - AX OUT DX.AX

Operation

portnumber in instruction;
0 < portnumber < OFFH;

else
portnumber in DX;
0 portnumber < OFFFFH;

end if;
if byte-output then ioport[portnumber} — AL;
else ioport[portnumber] <- AX;

Flags

ODITSZAPC

Description
OUT transfers a byte from AL or a word from AX to the specified output port. Use
of the fixed port format ahows access to ports 0 through FF, and encodes the port
number in the instruction. To use the variable port format you toad the DX register
with a 16 bit port number and then code the mnemonic 'DX' in piace of a constant
port number. This format allows access to 64k ports.

6-70 ASM86

POP—Pop a Word From the Stack
Format
Word Memory

] Opcode] ModRM']]]

'—(Reg field=000)

Opcode Clocks Operation Coding Example

8F 17+ EA Mem16 *- (SP) + + POP WORDSOMETHING

Word Register

1 Opcode + reg]

Opcode Clocks Operation Coding Example

58 + reg 8 Reg!6 - (SP)+ + POP BX

Segment Register

]opcode + SReg]

07 + (SReg'8) 8 SReg - (SP)++ POP DS

Operation
Operand *- TOS;
SP-SP + 2;

Flags

ODITSZAPC

Description
The word on the top of the stack replaces the previous contents of the memory,
register, or segment register operand. The stack pointer is incremented by 2 to point
to the new top of stack.

If the destination operand is a segment register, the value POPed will be a paragraph
number.

POP CS is NOT allowed.

The 8086/8087/8088 instruction Set 6-71

POPA—Pop AH Registers [iAPX 286]
For 186 clocks, see Appendix H.

Format
] Opcode]

Opcode Operation Coding Exampie

61 restore registers from POPA
the stack

Operation
DI -(SP)+ + ;
SI-(SP) + +;
BP - (SP)+ + ;
SP - SP + 2;
BX-(SP) + +;
DX-(SP) + +;
CX - (SP)+ + ;
AX-(SP) + +;

/' POP AND IGNORE SP '/

Flags

NPLODITSZAPC

Description
POPA restores the registers pushed by PUSH A, except that the SP value is ignored.

6-72 ASM86

POPF—Pop the TOS !nto the Ftags
Format
] Opcode]

9D 8 FLAGS *-(SP)+ + POPF

Operation
Flags *- TOS;
SP ^SP + 2;

Fiags

ODITSZAPC

XXXXXXXXX

Description
The TOS is copied to the Fiags and the stack pointer is incremented by 2 to point to
the new top of stack. Bit position to fiag assignments are:

OF - bit11
DF bit 10
iF *- bit 9
TF — bit8
SF bit 7
ZF *- bit 6
AF *- bit 4
PF - bit 2
OF -bitO

The 8086/8087/8088 tnstruction Set 6-73

PUSH—Push a Word Onto the Stack
For)86 docks, see Appendix H.

Format
Memory/Reg

I Opcode I ModRM' I I I

'—(Reg field=110)

FF 16 + EA —(SP)*- Mem16 PUSH WORDSOMETHtNG

Word Register

I Opcode+ reg]

50 +reg 11 —(SP)* Reg16 PUSH BX

Word immediate [iAPX i86]

Opcode I Data I

Opcode Operation

6A —(SP) *- Immed8 PUSH 5
(sign extended)

68 —(SP) *- Immedl6 PUSH 400H

Segment Register

lopcode + SReg]

06 + (SReg'8) 10 -(SP)-SReg PUSH DS

Operation
SP-SP-2;
TOS <- Operand;

6-74 ASM86

PUSH
Flags

0 D I I S Z A P C

Description
The stack pointer is decreased by 2 and the word operand is copied to the new top of
stack.

The 8086/8087/8088 Instruction Set 6—75

PUSH A—Push Ah Registers [iAPX 186]
For)86 docks, see Appendix H.

Format

Opcode Operation Coding Example

60 save registers on the stack PUSHA

Operation
temp - SP;
-(SP) - AX;
-(SP) - CX;
—(SP) - DX;
-(SP) - BX;
—(SP) *- temp;
-(SP) - BP;
-(SP) - SI;
-(SP) - DI;

Flags

NPLODITSZAPC

Description
PUSHA saves the registers noted above on the stack.

6-76 ASM86

PUSHF—Push the Hags to the Stack
Format

[Opcode [

Clocks

9C 10 -(SP) - FLAGS PUSHF

Operation
SP-SP-2;
TOS - Flags;

Flags

0 D I T S Z A P C

Description
The stack pointer is decremented by 2 and the fiags are copied to the new top of
stack. Ftag to bit position assignments are:

bit 11 - OF
bit10-DF
bit9 -IF
bit8 -TF
bit 7 -SF
bit 6 -ZF
bit 4 -AF
bit 2 -PF
bitO -OF

The 8086/8087/8088 instruction Set 6-77

RCL—Rotate Left Through Carry
For 186 clocks, see Appendix H.

Format
Memory or Reg by 1

I Opcode] ModRM*I I I

*—(Reg field-010)

Opcode Clocks Operation Coding Example

DO 2 rotate Reg 8 by 1 RCL BL.1
DO 15 + EA rotate Mem8 by 1 RCL BYTESOMETHING.1
D1 2 rotate Reg 16 by 1 RCL BX.1
D1 15 + EA rotate Mem16 by 1 RCL WORDSOMETHING

Memory or Reg by count in CL

I Opcode] ModRM* J_____
'—(Reg field = 010)

Opcode Clocks Operation Coding Example

D2 8 + 4/bit rotate Reg8 by CL RCL BL.CL
D2 20 + EA + 4/bit rotate Mem8 by CL RCL BYTESOMETHING.CL
D3 8 + 4/bit rotate Reg16 by CL RCL BX.CL
D3 20+ EA + 4/bit rotate Mem16 by CL RCL WORDSOMETHING.CL

Mem or Reg by Immed8 [iAPX 186]

I Opcode] ModRM-] I___] count I

'-(Reg field = 011)

Opcode Operation Coding Example

CO rotate Reg8 by Immed8 RCL BL.5
CO rotate Mem8 by Immed8 RCL BYTESOMETHING,5
C1 rotate Reg16 by Immed8 RCL BX,5
C1 rotate Mem16 by Immed8 RCL WORDSOMETHING,5

if variable-bit-rotate then count=CL or count-Immed8,
elsecount=1;
do until count=0

tempcf - CF;
CF *- high-order-bit ot operand;
operand *- operand ' 2 + tempcf;
count *- count -1;

6-78 ASM86

RCL
end do;
if not variable-bit-rotate then do;

it high-order-bit of operand <> CF then OF 1;
else OF -- 0,

end if;

Flags

ODITSZAPC

Description
The register or memory operand is rotated !eft through the CF according to the shift
count, which may be either a fixed count of) or a variable count (hat has been
loaded into the CL register. If the shift count is I, the overflow flag is set if the high
bit of the rotated operand differs from the resulting carry flag. Only CF and OF are
affected.

The 8086/8087/8088 instruction Set 6-79

RCR—Rotate Right Through Carry
For [86 clocks, see Appendix H.

Format
Memory or Reg by]

] Opcode ! ModRM' [

'—(Reg field = 011)

Opcode Clocks Coding Example

DO 2 rotate Reg8 by 1 RCR BL.1
DO 15+ EA rotate Mem8 by 1 RCR BYTESOMETHING.1
D1 2 rotate Regi6 by 1 RCR BX.1
D1 15+EA rotate Mem16 by 1 RCR WORDSOMETHING.1

Memory or Reg by count in CL

I Opcode] ModRM'"

(Reg field = 011)

Opcode Clocks Operation Coding Example

D2 8 + 4/bit rotate Reg8 by CL RCR BL.CL
D2 20 + EA + 4/bit rotate Mem8 by CL RCR BYTESOMETHING.CL
03 8 + 4/bit rotate Reg16 by CL RCR BX.CL
D3 20 + EA + 4/bit rotate Mem16 by CL RCR WORDSOMETHING.CL

Mem or Reg by Immed8 [iAPX [86]

Opcode I ModRM'] I I count

'—(Reg field = 011)

Opcode Operation Coding Exampie

CO rotate Reg8 by Immed8 RCR BL.5
CO rotate Mem8 by Immed8 RCR BYTESOMETHING,5
C1 rotate Reg16 by Immed8 RCR BX,5
C1 rotate Mem16 by Immed8 RCR WORDSOMETHING,5

Operation
if variable-bit-rotate then count=CL or count=lmmed8;
else do;

count=1;
if high-order-bit of operand <> OF then OF — 1;
else OF *- 0;

end if;
do until count=0

tempcf — CF;
OF — low-order-bit of operand;

6-80 ASM86

RCR
operand *- operand / 2;
high-order-bit of operand *- tempcf,
count count -1;

end do;

Flags

ODITSZAPC

Description
The register or memory operand is rotated right through the CF according to the
shift count, which may be either a fixed count of ! or a variable count that has been
loaded into the CL register, if the shift count is I, the overflow flag is set if the high
bit of the un-rotated operand differs from the origina! carry flag. Only CF and OF
are affected.

The 8086/8087/8088 Instruction Set 6-81

REP/REZ/REPE/REPNE/REPNZ—Repeat
Prefix

Format

I Opcode I

Opcode Clocks Operation Coding Example

F3 2 repeat next instruction until REP MOVSB
cx=o

F3 2 repeat next instruction until REPE SCASB
CX=0orZF=1 REPZ SCASB

F2 2 repeat next instruction until REPNE SCASB
CX=0orZF=0 REPNZ SCASB

Operation
do while CX <> 0;

/' acknowledge pending interrupts '/
/* perform string operation in subsequent byte ' /
CX — CX-1; /'does not affect flags'/
if string operation = SCAS or CMPS and

ZF <> repeat condition then undo;
end do;

Flags

ODITSZAPC

Description
The REP prefix causes a succeeding string operation to be repeated untit the count in
CX goes to zero (REP causes CX to be decremented after each repetition of the
string op), tf the string operation is either SCAS or CMPS (or a variant of those
such as SCASB...) then the ZF is compared to the repeat condition after the string
op is performed, and the repeat is terminated if the ZF does not match the condi
tion. For exampie, REPE SCASB wilt scan a string, comparing each byte to the AL
register, as iong as the ZF is i, indicating 'EQUAL'.

REP, REPE, and REPZ are synonymous, as are REPNZ and REPNE.

Execution of the repeated string operation win not resume property foiiowing an
interrupt if more than one prefix is present preceding the string primitive. Execution
wit) resume one byte before the primitive (presumably where the repeat resides), thus
ignoring the additionai prefixes.

6-82 ASM86

RET—Return From Subroutine
Format

[Opcode)

Opcode Ciocks Operation Coding Exampie

C3 8 intra-segment return RET
CB 18 inter segment return RET

Return and add constant to SP

] Opcode) DataL] DataH [

Operation
IP-(SP) + +;
SP-SP + 2;
if intersegment then

CS - (SP) + + ;
SP-SP + 2;

if add immediate to SP then
SP <- SP + immediate constant;

Opcode Clocks Operation Coding Example

C2 12 intra-segment ret and add RET 8
CA 17 inter-segment retand add RET 8

Flags

ODITSZAPC

Description
RET transfers contro! through a back-hnk on the stack, reversing the effects of a
CALL instruction, if the intra-segment RET is used, the back-hnk is assumed to be
just the return-fP, white inter-segment RETs assume both tP and CS are on the
stack. RETs may optionatty add a constant to the stack pointer, effectivety remov
ing any arguments to the cailed routine which were pushed prior to the CALL.

The 8086/8087/8088 instruction Set 6-83

ROL—Rotate Left
For t86 clocks, see Appendix H.

Format
Memory or Reg by [

Opcode ModRM*

'—(Reg field = 000)

Opcode Clocks Operation Coding Exampie

DO 2 rotate Reg8 by 1 ROL BL.1
DO 15+ EA rotate Mem8 by 1 ROL BYTESOMETHING.1
D1 2 rotate Regl6 by 1 ROL BX.1
D1 15+ EA rotate Meml6 by 1 ROL WORDSOMETHING.1

Memory or Reg by count in CL

Opcode ModRM'

'—(Reg field = 000)

Opcode Clocks Operation Coding Example

D2 8 + 4/bit rotate Reg8 by CL ROL BL.CL
D2 20 + Ea + 4/bit rotate Mem8 by CL ROL BYTESOMETHING.CL
D3 8 + 4lbit rotate Reg16 by CL ROL BX.CL
D3 20 + EA + 4/bit rotate Mem16 by CL ROL WORDSOMETHING.CL

Mem or Reg by !mmed8 [iAPX [86]

Opcode ModRM' count

'—(Reg field = 000)

Opcode Operation Coding Example

CO rotate Reg8 by Immed8
CO rotate Mem8 by Immed8
C1 rotate Reg16 by Immed8
C1 rotate Mem16 by Immed8

ROL BL,5
ROL BYTESOMETHING,5
ROL ,BX,5
ROL WORDSOMETHING,5

Operation
if variable-bit-rotate then count=CL or count=lmmed8;
else count=1;
do until count=0

CF high-order-bit of operand;
operand <- operand ' 2 + CF;
count — count -1;

6-84 ASM86

ROL
end do;
if not variable-bit-rotate then do;

if high-order-bit of operand <> CF then OF *-1;
else OF <- 0;

end if;

Flags

ODITSZAPC

Description
The register or memory operand is rotated left according to the shift count, which
may be either a fixed count of) or a variable count that has been loaded into the CL
register. The high order bit of the operand is copied directly to the low order bit dur
ing the rotate, as well as to CF. I f the shift count is), the overflow flag is set if the
high bit of the rotated operand differs from the resulting carry flag. (That is, if the
high and low order bits of the result are not the same.) Only CF and OF are affected.

The 8086/8087/8088 instruction Set 6-85

ROR—Rotate Right
For 186 clocks, see Appendix H.

Format
Memory or Reg by I

I Opcode I ModRM')

'-(Reg field = 001)

Opcode Clocks Operation Coding Example

DO 2 rotate Reg8 by 1 ROR BL.1
DO 15+EA rotate MemB by 1 ROR BYTESOMETHING,1
D1 2 rotate Reg16 by 1 ROR BX.1
D1 15+EA rotate Mem16 by 1 ROR WORDSOMETHING,1

Memory or Reg by count in CL

Opcode ModRM'

'—(Reg field = 001)

Opcode Clocks Operation Coding Example

D2 8 + 4/bit rotate Reg8 by CL ROR BL.CL
D2 20 + EA + 4/bit rotate Mem8 by CL ROR BYTESOMETHING.CL
D3 8 + 4/bit rotate Reg16 by CL ROR BX.CL
D3 20+EA + 4/bit rotate Mem16 by CL ROR WORDSOMETHING.CL

Mem or Reg by !mmed8 [iAPX 186]

Opcode] ModRM' I I I count

'—(Reg field = 001)

Opcode Operation Coding Example

CO rotate Reg8 by Immed8 ROR BL,5
CO rotate Mem8 by Immed8 ROR BYTESOMETHING,5
C1 rotate Reg16 by Immed8 ROR BX,5
C1 rotate Mem16 by Immed8 ROR WORDSOMETHING,5

Operation
if variable-bit-rotate then count=CL or count =lmmed8;
else count = 1;
do until count = 0

tempcf *- CF;
CF <- low-order-bit of operand;
operand *- operand / 2;
high-order-bit of operand <- CF;

6-86 ASM86

ROR
count - count -1;

end do;
if not variable-bit-rotate then do;

if high-order-bit of operand <> CF then OF—1;
else OF—0;

end if;

Flags

ODITSZAPC

Description
The register or memory operand is rotated right according to the shift count, which
may be either a fixed count of i or a variabie count that has been ioaded into the CL
register. The iow bit of the operand is copied directly to the high bit during the
rotate, as well as to the CF. if the shift count is i, the overflow flag is set if the high
bit of the rotated operand differs from the un-rotated high bit. Only CF and OF are
affected.

6-88 ASM86

SAL/SHL—Arithmetic/Logica! Left Shift
For]86 ctocks, see Appendix H.

Format
Memory or Reg by i

Opcode [ModRM*]

'-(Reg field = 100)

Opcode Clocks Operation Coding Example

DO 2 shift Reg8 by 1 SAL BL.1
DO 15 + EA shift Mem8 by 1 SHL BYTESOMETHING.1
D1 2 shift Reg16 by 1 SHL BX.1
D1 15 + EA shift Mem16 by 1 SAL WORDSOMETHING.1

Memory or Reg by count in CL

Opcode [ModRM' []]

'-(Reg field = 100)

Opcode Clocks Operation Coding Example

D2 8 + 4/bit shift Reg8 by CL SHL BL.CL
D2 20 + EA + 4/bit shift Mem8 by CL SAL BYTESOMETHING.CL
D3 8 + 4/bit shift Reg16 by CL SAL BX.CL
D3 20 + EA + 4/bit shift Mem16 by CL SHL WORDSOMETHING.CL

Mem or Reg by immediate count [iAPX 186]

Opcode) ModRM'))] count

'—(Reg field = 100)

Opcode Operation Coding Example

CO rotate Reg8 by Immed8 SHL BL.5
CO rotate Mem8 by Immed8 SAL BYTESOMETHING,5
C1 rotate Reg16 by Immed8 SAL BX,5
C1 rotate Mem16 by Immed8 SHL WORDSOMETHING,5

Operation
if variable-bit-shift then count=CL or count=lmmed8;
else count=1;
do until count=0

OF high-order-bit of operand;
operand *- operand ' 2;
count count-1;

end do;

The 8086/8087/8088 instruction Set 6-87

SAHF—Store AH in Flags
Format

Opcode

9E 4 copy AH to low byte of flags SAHF

Operation
AH-SF.ZF:X.AF.X:PF:X:CF

/' X' indicates non-specified bit value '/

Flags

ODITSZAPC

----XXXXX

Description
The Sign, Zero, Auxiliary carry, Parity, and Carry Fiags are loaded from AH in the
foliowing format:

AH bit? goes to SF
AH bit6 goes to ZF
AH bit4 goes to AF
AH bit2 goes to PF
AH bitO goes to CF

No other flags are altered.

6-90 ASM86

SAR--Arithmetic Right Shift
For t86 docks, see Appendix H.

Format
Memory or Reg by 1

] Opcode) ModRM')]]

'—(Reg field = 111)

Opcode Clocks Operation Coding Example

DO
DO
D1
D1

2 shih Reg8 by 1 SAR BL.1
15 +EA shift Mem8 by 1 SAR BYTESOMETHING.1

2 shift Reg16 by 1 SAR BX.1
15+EA shift Mem16 by 1 SAR WORDSOMETHING.1

Memory or Reg by count in CL

Opcode ModRM'

'—(Reg field = 111)

Opcode Clocks Operation Coding Example

D2 8 + 4(bit shift Reg8 by CL SAR BL.CL
D2 20 + EA + 4/bit shift Mem8 by CL SAR BYTESOMETHING.CL
D3 8 + 4/bit shift Reg16 by CL SAR BX.CL
D3 20 + EA + 4lbit shift Mem16 by CL SAR WORDSOMETHING.CL

Mem or Reg by !mmed8 [iAPX [86]

Opcode) ModRM' I]) count

'—(Reg field = 111)

Opcode Operation Coding Exampte

CO rotate Reg8 by Immed8 SAR BL,5
CO rotate Mem8 by Immed8 SAR BYTESOMETHING,5
C1 rotate Reg16 by Immed8 SAR BX,5
C1 rotate Mem16 by Immed8 SAR WORDSOMETHING,5

Operation
if variable-bit-shift then count=CL or count = immed8;
else count=1,
do until count=0

CF *- low-order-bit of operand;
operand - operand / 2; /' SIGNED DIVIDE '/
count *- count -1;

end do;

The 8086/8087/8088 instruction Set 6-89

SAL/SHL
if not variable-bit-shift then do;

if high-order-bit of operand <> CF then OF — 1;
else OF — 0;

end if;

Fiags

ODITSZAPC

X - - - X X U X X

Description
SHL (shift logical left) and SAL (shift arithmetic left) shift the operand left by
COUNT bits, shifting in low-order zero bits.

6-92 ASM86

SBB—integer Subtraction With Borrow
Format
Memory/Reg with Reg

Opcode ModRM

Opcode Clocks Operation Coding Exampie

1A 3 Reg8 - Reg8 - Reg8-CF SBB BL,CL
1A 9 + EA Reg8 <- Reg8 - Mem8 - CF SBB BL,BYTESOMETHING
1B 3 Reg16 - Regl6-Regi6-CF SBB BX.CX
1B 9 + EA Reg16 — Reg16 - Mem16 - CF SBB BX,WORDSOMETHING
18 16+EA Mem8 - Mem8- Reg8-CF SBB BYTESOMETHING,BL
19 16+EA Mem16 - Mem16- Reg16-CF SBB WORDSOMETHING.BX

immed from AX/AL

(Regfield = 011)

[Opcode [Data n
Opcode Clocks Operation Coding Example

1C 4 AL-AL-lmmed8-CF SBB AL,5
1D 4 AX-AX-lmmed16-CF SBB AX.400H

immed from Memory/Reg

[Opcode] ModRM* J_____ I___) Data [

Opcode Clocks Operation Coding Example

80 4 Reg8 - Reg8 - Immed8 - CF SBB BL,32
80 17+EA Mem8 — Mem8 - Immed8 - CF SBB BYTESOMETHING.32
81 4 Reg 16 — Reg16 - Immed16 - CF SBB BX.1234H
81 17+EA Mem16 — Mem16 - Immed16 - CF SBB WORDSOMETHING.1234H
83 4 Regl6 — Regl6 - Immed8 - CF SBB BX.32
83 17+EA Mem16 — Mem16 - Immed8 - CF

(Immed8 is sign-extended
SBB WORDSOMETHING.32

Operation
LeftOpnd - LeftOpnd - RightOpnd - CF

The 8086/8087/8088 Instruction Set 6-91

SAR
if not variabie-bit-shift then do;

OF*-0;
end if;

Flags

ODITSZAPC
X---XXUXX

Description
SAR (shift arithmetic right) shifts the operand right by COUNT bits, shifting in
high-order bits equa! to the original high-order bit of the operand (sign extension).

6-94 ASM86

SHR—Logicat Right Shift
Format
Memory or Reg by !

[Opcode] ModRM'] [

'—(Reg field = 101)

Opcode Clocks Operation Coding Example

DO 2 shift Reg8 by 1 SHR BL.1
DO 15 + EA shift Mem8 by 1 SHR BYTESOMETHING.1
D1 2 shift Reg16 by 1 SHR BX.1
D1 15+EA shift Mem16 by 1 SHR WORDSOMETHING,1

Memory or Reg by count in CL

Opcode ModRM'

'—(Reg field = 101)

Opcode Clocks Operation Coding Example

D2 8 + 4ibit shift Reg8 by CL SHR BL.CL
D2 20 + Ea + 4/bit shift Mem8 by CL SHR BYTESOMETHING.CL
D3 8 + 4/bit shift Reg16 by CL SHR BX.CL
D3 20 + EA + 4/bit shift Mem16by CL SHR WORDSOMETHING.CL

Mem or Reg by !mmed8 [iAPX)86]

Opcode ModRM' count

'-(Reg field = 101)

Opcode Operation Coding Exampie

CO rotate Reg8 by Immed8 SHR BL,5
CO rotate Mem8 by Immed8 SHR BYTESOMETHING,5
C1 rotate Reg16 by Immed8 SHR BX,5
C1 rotate Mem16 by Immed8 SHR WORDSOMETHING,5

Operation
if variable-bit-shift then count=CL or count=lmmed8;
else do;

count=1;
OF <- high-order-bit of operand;

end if;
do until count=0

CF *- low-order-bit of operand;
operand *- operand / 2; /' UNSIGNED DIVIDE ' /
count count-1;

end do;

The 8086/8087/8088 Instruction Set 6-93

SBB
Ftags

ODITSZAPC

X---XXXXX

Description
The result of subtracting the right operand, then the original value of the carry flag,
from the left operand replaces the left operand.

6-96 ASM86

STC—Set Carry Hag
Format

Opcode

Opcode Clocks Operation Coding Example

F9 2 set the carry flag STC

Operation
CF-1

Flags

ODfTSZAPC
- - -............................... 1

Description
STC sets the carry flag, CF. No other flags are affected.

The 8086/8087/8088 Instruction Set 6-95

SHR
Flags

0 D] I S Z A P C

X - - - X X U X X

Description
SHR shifts the operand right by COUNT bits, shifting in high-order zero bits.

6-98 ASM86

ST!—Set Interrupt Enable Flag
Format

[Opcode]

Operation
IF-1

Flags

ODITSZAPC

Description
STI sets the interrupt enable flag, IF. No other flags are affected.

The 8086/8087/8088 Instruction Set 6-97

STD—Set Direction Hags
Format
I Opcode]

Opcode Ctocks Operation Coding Example

Operation
DF-1

Flags

0 D I T S Z A P C

-1-------

Description
STD sets the direction f!ag, DF. No other flags are affected.

6-100 ASM86

String
Flags

0 D I I S Z A P C

MOVS Move the string pointed to by DS:Sf into memory pointed to by ES:DI.
MOVSB
MOVSW

Flags

0 D I T S Z A P C

X - - - X X X X X

SCAS Scan a string pointed to by ES.DL comparing each element to AX or
SCASB AL according to the type of string, and setting the flags to the result
SCASW of such a comparison. Used with the conditional repeat-prefix

(REPE,...), this primitive can locate the next element matching
AX/AL or next not-matching element.

Flags

0 D] I S Z A P C

LODS Load each string element into AX/AL. This primitive would be used
LODSB with the LOOP construct rather than the REP prefix, since some further
LODSW processing on the data moved to AX/AL is almost surely necessary.

Flags

0 D f I S Z A P C

STOS Store the AX or AL contents into the entire string.
STOSB
STOSW

The following operations are for iAPX I 86:

iNS Store in memory pointed to by ES:DI the block of bytes or words read
from the IO address in DX.

OUTS Output to the IO address in DX the block of bytes/words in memory
pointed to by DS:SL

Each repetition of the string operation acknowledges pending interrupts, checks CX
for zero (and stops repeating if 0), performs the string primitive operation once, adjusts
any memory pointers used by the string operation by I for bytes and 2 for words (the
adjustment is added if the FLAGS.DF is 0, otherwise subtracted), decrements CX
(which does not affect the flags), and, in the case of SCAS and CMPS or their

The 8086/8087/8088 instruction Set 6-99

String—String Operations
For 186 clocks, see Appendix H.

Format
I Opcode J

Opcode Clocks Operation Coding Example

A6 22 flags - (SI) (DI) CMPS BSTRING
A7 22 flags-(SI) (DI) CMPS WSTRING
A4 18 (DI)-(SI) M0VS BSTRING1.BSTRING2
A5 18 (DI)-(SI) MOVS WSTRING1.WSTRING2
AE 15 flags -(DI) - AX SCAS BSTRING
AF 15 flags - (DI)-AL SCAS WSTRING
AC 12 AL - (SI) LCDS BSTRING
AD 12 AX - (SI) LCDS WSTRING
AA 11 (DI) - AL STOS BSTRING
AB 11 (DI) - AX STOS WSTRING
6E (DI)-port(DX) INS BSTRING, DX
6F (DI)-port(DX:DX + 1) INS WSTRING, DX
6C port(DX)-(SI) OUTS DX, BSTRING
6D port(DX:DX + 1)-(SI) OUTS DX. WSTRING

Operation
do until CX = 0;

/' acknowledge any pending interrupts ' /
perform string primitve once;
CX-CX-1, /'does not affect flags'/
if DF = 0 then add pointer adjustment to DS and/or ES
else subtract pointer adjustment from DS and/or ES:
if SCAS or CMPS, and repeat condition does not match ZF
then undo,

end do;

Description
The string primitive operations are intended to be used primarily with the REP
prefix. There are 7 primitives which, when so prefixed, perform the following
operations:

Fiags

0 D 1 T S Z A P C

X - - - X X X X X

CMPS Compare the elements of two strings, one pointed to by ES:D1 and the
CMPSB other by DS:S1.
CMPSW

6-102 ASM86

SUB—integer Subtraction
Format
Memory/Reg with Reg

[Opcode) ModRM) [

Opcode Clocks Operation

2A 3 Reg8 *- Reg8 - Reg8 SUB BL,CL
2A 9+EA Reg8 *- Reg8 - Mem8 SUB BL,BYTESOMETHING
2B 3 Reg16 - Reg16- Reg16 SUB BX.CX
2B 9+EA Regl6 *- Reg16 - Meml6 SUB BX,WORDSOMETHING
28 16+EA Mem8 - Mem8- Reg8 SUB BYTESOMETHING.BL
29 16+EA Mem16 Mem16- Reg16 SUB WORDSOMETHING.BX

immed to AX/AL

] Opcode [ModRM']]] Data]**]

[Opcode j Data [)

Opcode Clocks Operation Coding Exampie

20 4 AL - AL-lmmed8 SUB AL,5
2D 4 AX - AX-lmmed16 SUB AX.400H

immed to Memory/Reg

(!mmed8 is sign-extended
before subtract)

*-(Reg field = 101)

Opcode Clocks Operation Coding Example

80 4 Reg8 - Reg8 - Immed8 SUB BL.32
80 17+EA Mem8 Mem8 - Immed8 SUB BYTESOMETHING,32
81 4 Reg16 Reg16 - Immedl6 SUB BX.1234H
81 17 + EA Meml6 Meml6-lmmed16 SUB WORDSOMETHING.1234H
83 4 Reg16 — Reg16-lmmed8 SUB BX,32
83 17+EA Mem16 *- Mem16 - Immed8 SUB WORDSOMETHING.32

Operation
LeftOpnd LeftOpnd - RightOpnd

Flags

ODITSZAPC

X---XXXXX

Description
The resuit of subtracting the right operand from the ieft operand replaces the ieft
operand.

The 8086/8087/8088 tnstruction Set 6-101

String
variants, checks the ZF for a match with the REP condition. As iong as the REP
condition matches, another repetition wiii be performed. For exampie, REPNE SCAS
FOO wiii stop with ES:Di pointing to the next eiement of FOO which has not yet
been scanned, and the last eiement scanned did not match the repeat condition 'Not
Equai' that is, the iast eiement scanned matched the value in AX or AL, depending
on whether FOO was a word or byte string. Repeat conditions 'NE' and 'NZ' match
ZF = 0, white 'E' and 'Z' match ZF= I.

Every string primitive has three variants. The mnemonics above, CMPS, MOVS,
SCAS, LCDS, tNS, and OUTS, are generic and require one or more operands to be
coded with them e g. REP SCAS FOO or REP MOVS FEE,FIE. These operands
are used oniy to determine the size of a string eiement- byte or word and do not
determine the addresses of the strings used. The addresses used are determined soieiy
by the contents of the register pairs ES:D) and DS:St, as appropriate. Rather than
coding operands for size specification, you may use the generic mnemonic with a 'W'
or B' suffix e.g. STOSB or CMPSW -and omit the operands entirely.

For Repeat String Operations, Clocks are:

REP MOVSB9 + 17/rep
9 + 22/rep
9 + 15/rep
9 + 13/rep
9 + 10/rep

REPE CMPSW
REPNE SCASB
REP LODSB
REP STOSW

6-104 ASM86

WA!T—Wait White TEST pin not Asserted
Format
] Opcode [

Opcode Ciocks Operation Coding Example

9B 3 + 5n* none WAIT

'3 + 5n clocks where n is the number of times the TEST line is polled and found to be inactive.

Operation
None.

Fiags

0 D I J S Z A P C

Description
The WA)T instruction causes the processor to enter a wait state if the signa) on a
TEST pin is not asserted. The wait state may be interrupted by an enabled external
interrupt. When this occurs the saved code iocation is that of the WAiT instruction,
so that upon return from the interrupting task the wait state is re-entered. The wait
state is cieared and execution resumed when the TEST signa) is asserted. Execution
resumes without allowing externa) interrupts unti) after the execution of the next
instruction. The instruction a))ows the processor to synchronize itself with external
hardware.

The 8086/8087/8088 instruction Set 6-103

TEST—Logical Compare
Format
Memory/Reg with Reg

Opcode) ModRM))

Opcode Clocks Operation Coding Example

84 3 flags - Reg8 AND Reg8 TEST BL,CL
84 9 + EA flags - Reg8 AND Mem8 TEST BL,BYTESOMETHING
85 3 flags - Reg16 AND Regl6 TEST BX,CX
85 9 + EA flags - Reg16 AND Mem16 TEST BX,WORDSOMETHING

immed to AX/AL

Opcode Clocks Operation

flags-AL AND Immed8 TEST AL,4
flags-AX AND Immedl6 TEST AX.400H

Immed to Memory/Reg

'-(Reg field = 000)

Opcode Clocks Operation Coding Example

F6 5 flags — Reg8 AND ImmedS TEST BL.3FH
F6 11 + EA flags — Mem8 AND Immed8 TEST BYTESOMETHING,3FH
F7 5 flags - Regl6 AND Immedl6 TEST BX.3FFH
F7 11+EA flags - Mem16 AND Immed16 TEST WORDSOMETHING,3FFH

Operation
flags *- LeftOpnd and RightOpnd
OF - CF - 0

Fiags

ODiTSZAPC

0 - - - X X 0 X 0

Description
The resuit of a bitwise iogicai AND of the two operands modifies the fiags. Neither
operand is modified.

6-106 ASM86

XLAT/XLATB—Tab!e Look-up Translation
Format
] Opcode]

Opcode Clocks Operation Coding Example

D7 11 replace AL with table entry XLAT ASCI LIABLE
D7 11 XLATB

Operation
AL — table entry with effective address equal to BX + AL;

Ftags

ODITSZAPC

Description
XLAT is intended for use as a tabte iook-up instruction. You put the base address of
the tabie in BX and a byte to be transited in AL. XLAT adds AL to the contents of
BX and uses the resuit as an effective address. The byte at that EA is toaded into
AL. BX is unchanged, and no ftags are modified.

The 8086/8087/8088 tnstruction Set 6-105

XCHG—Exchange Memory/Register With Register
Format
Memory/Reg with Reg

) Opcode I ModRM)] —J
Opcode Clocks Operation Coding Example

86 4 Reg8 -—- Reg8 XCHG BL,CL
86 17 + EA Mem8 "—*Mem8 XCHG BYTESOMETHING,CL
87 4 Reg16 *—* Reg16 XCHG BX,CX
87 17+EA Mem16 -—" Mem16 XCHG CX,WORDSOMETHING

Word Register with AX

I Opcode + Reg]

Opcode Clocks Operation Coding Example

90 + Reg 3 AX -—* Reg16 XCHG AX.BX

Operation
temp *- left operand;
left operand *- right operand;
right operand *- temp;

Flags

ODITSZAPC

Description
The two operands are exchanged. Segment registers are not iegai operands. The
order of the operands is immateriaL No flags are affected.

6-108 ASM86

The 8087 Instruction Set
This section provides a summary discussion of those eiements of the 8087 Numeric
Processor that are of specific interest to the 8087 programmer. The fotiowing pro
grammer accessibie features of the architecture are included: fioating-point stack;
status, control and tag words; exception pointers; and data types. An elementary
description of 8087 operation is provided to give a working understanding of
8086/8087/8088 coprocessing, 8087 numeric processing, exception handlers, and
8087 emulators.

Those users who wish detailed information on the 8087 architecture, operation, and/
or those who wish to write their own exception handlers are referred to FAe
Fawr'/y (AcT Mamra/, Supp/cwc?/.

8087 Architectural Summary
The programmer accessible features of the 8087 Numeric Processor architecture
consist of the eight floating-point stack eiements; the seven words which constitute
the 8087 environment (status word, control word, tag word, 2-word instruction
address, and 2-word data address); and the seven data types accessible by the 8087.

Fioating-Point Stack

The 8087 stack consists of eight elements divided into the fields shown in figure 6-I.
The format of the fields corresponds with the temporary real data format used in ah
stack calculations and described under Data Types.

At a given point in time, the ST field in the status word identifies the current stack
top element. This floating point stack element (rather than the status word field) is
referred to in the rest of this chapter as ST. A load (push) operation, as in FLDLN2,
decrements the stack pointer by I and loads a value (in this case Iogg2) into the new
stack top. An operation which pops the floating point stack increments the stack
pointer by I (FADDP ST(i),ST adds the contents of the stack top to the stack ele
ment designated by (i), stores the result in ST(i) and increments the stack pointer by
I, making ST(I) the new stack top, ST(0).

EXPONENT SIGNIFICAND

121623-8

Figure 6-1. The 8087 Stack Fieids

The 8086/8087/8088 instruction Set 6-107

XOR—Logical Exclusive OR
Format
Memory/Reg with Reg

[Opcode) ModRM J I
Opcode Clocks Coding Example

32 3 Reg8 - Reg8 XOR Reg8 XOR BL,CL
32 9 + EA Reg8 <- Reg8 XOR Mem8 XOR BL,BYTESOMETHING
33 3 Reg16 *- Regl6 XOR Regie XOR BX,CX
33 9 + EA Reg16 — Reg16 XOR Mem16 XOR BX,WORDSOMETHING
30 16+EA Mem8 — Mem8XOR Reg8 XOR BYTESOMETHING,BL
31 16+EA Meml6 *- Meml6 XOR Regl6 XOR WORDSOMETHING,BX

Immed to AX/AL

] Opcode I Data

Opcode Clocks Operation Coding Example

34 4 AL — AL XOR Immed8 XOR AL,5
35 4 AX-AXXORImmed16 XOR AX.400H

Immed to Memory/Reg

] Opcode I[ModRM' J] Data]]

'—(Reg field = 110)

Opcode Clocks Operation Coding Example

80 4 Reg8 — Reg8 XOR Immed8 XOR BL,32
80 17+EA Mem8 — Mem8 XOR Immed8 XOR BYTESOMETHING,32
81 4 Reg16 — Reg16 XOR Immed16 XOR BX.1234H
81 17 + EA Mem16 — Mem16XORImmed16 XOR WORDSOMETHING,1234H

Operation
LeftOpnd — LeftOpnd XOR RightOpnd
OF-OF -0

Fiags

0 D ! T S Z A P C

0 - - - X X U X 0

Description
The exclusive OR of two operands reptaces the)eft operand. The carry and overflow
flags are cleared.

6-110 ASM86

15___________ __________________ 7 0
B [03] , ST , I C2 [C1 [CO] IR]] PE] UE [OE [ZE] DE] IE]

EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)
I----- INVALID OPERATION

------------- DENORMALIZED OPERAND

--------------------- ZERODIVIDE

----------------------------- OVERFLOW

-------------------------------------- UNDERFLOW

-- PRECISION

-- (RESERVED)

--- INTERRUPT REQUEST

--------------------------------------- ---CONDITION CODEC'

-- STACK TOP POINTER'?'

--- --- BUSY

121623-10

Figure 6-3. Status Word Format

ST values
000 = element 0 is stack top
001 = element 1 is stack top

111= element 7 is stack top

Control Word
The control word consists of the exception masks, an interrupt enable mask, and
control bits as shown in figure 6-4. During the execution of most instructions, the
8087 checks for six classes of exception conditions:
1. Invalid operations—programming errors such as trying to load a floating point

stack element that is not empty, popping an operand from an element that is
empty, using operands that cause indeterminate results (0/0, square root of a
negative number, trying to store an unnormalized number which will not denor
malize, etc.).

2. Overflow—usually the exponent of the true result is too large for the destination
real format.

3. Underflow—the true exponent is too small to be represented in the result
format.

4. Zerodivide—division of a finite non-zero operand by zero.
5. Denormalized—an instruction attempts to operate on a denormalized number.
6. Precision—for instructions that perform exact arithmetic, this exception means

that some precision has been lost in reporting the results of an operation.

When one of these six conditions occurs, the corresponding flag in the status word is
set to 1. The 8087 checks the appropriate mask in the Control Word to determine if
it should process the exception with a default handling procedure on chip (mask = 1)
or invoke a user written exception handler (mask = 0).

In the first case, the exception is said to be MASKED (from user software).

The 8086/8087/8088 Instruction Set 6-109

Elements of the floating point stack can be addressed either implicitly or explicitly:
FST ST(3) Stores the contents of the stack top into element 3.
FADD Adds the contents of the stack top to the contents of ST(1),

stores the result in ST(1) and pops the stack. The result is now
in the new stack top.

Note that floating-point stack indices outside of the range 0-7 are flagged as "out of
range."

Environment

The 8087 environment consists of the seven words shown in figure 6-2.

121623-9

Figure 6-2. 8087 Environment

Status Word
The status word reflects the overall condition of the 8087; it may be examined by
storing it into memory with an 8087 instruction and then inspecting it with
8086/8088 CPU code. The status word is divided into the exception flag and status
bit fields shown in figure 6-3. The busy field (bit 15) indicates whether the 8087 is
executing an instruction (B=l) or is idle (B=0).

Several 8087 instructions (e.g., comparison instructions) result in modification of
the condition code. The condition code is contained in bits 14 and 10-8 (C3-C0) of
the status word. The condition code is used mainly for conditional branching. See
the following instruction descriptions later in this chapter for condition code inter
pretations: FCOM, FCOMP, FCOMPP, FTST, FXAM and FPREM.

Bits 13-11 of the status word points to the 8087 stack element that is the current
stack top (ST). Note that if ST=000B, a "push" operation which decrements ST,
produces ST=11 IB; similarly, popping the stack with ST=11 IB yields ST=000B.

Bit 7 (IR) is the interrupt request field. The 8087 latches this bit to record a pending
interrupt to the 8086/8088 CPU.

Bits 5-0 (PE, UE, OE, EE, DE, and IE) are set to indicate that the 8087 has detected
an exception while executing an instruction.

6-112 ASM86

Figure 6-5. Tag Word Format

15 7 0
] TAG(7)] TAG(6)] TAG(5)] TAG(4)] TAG(3) TAG(2)] TAG(1) TAG(O) [

11 - °° <" Denormal)

121623-12

Figure 6-6. Exception Pointers Format

[OPERAND ADDRESS'D

] INSTRUCTION OPCODES

] INSTRUCTION ADDRESS'D

10 0
(1) 20-bit physical address

121623-13

Exception Pointers

The exception pointers shown in figure 6-6 are provided for user-written exception
handiers. Whenever the 8087 executes an instruction, it saves the instruction address
and the instruction opcode in the exception pointers, in addition, if the instruction
references a memory operand, the address of the operand is retained aiso. An excep
tion handier can be written to store these pointers in memory and obtain informa
tion concerning the instruction that caused the error.

Data Types

The 8087 addresses seven different data types using aii of the 8086 addressing
modes. These data types and their vaiid ranges of value are shown in tabie 6-5.

Figure 6-7 describes how these formats are stored in memory (the sign is aiways
iocated in the highest-addressed byte), in the figure, the most significant digits of aii
numbers (and fieid within numbers) are the ieftmost digits.

Tabie 6-5. 8087 Data Types

Data Type Bits Significant
Digits (Decimal) Approximate Range (Decimat)

WORD INTEGER 16 4-5 -32768 < x < +32767
SHORT INTEGER 32 9 -2xio9<x<s 2xio9

LONG INTEGER 64 18 -9 x 10^8 +9 x 10I8

PACKED DECIMAL 80 18 -99.. 99 < x < +99...99 (18digits)
SHORT REAL 32 6-7 0,1.2x10*38^]xl <3.4xio38

LONG REAL 64 15-16 0,2.3x 10*308^]x) < 1.7x 10308

TEMPORARY REAL 80 19-20 0, 3.4x10*4932^ [x[< 1.1 xiQ4932

The 8086/8087/8088 Instruction Set 6-111

15 7 0
]ic] RC I PC]lEM[]pM]uM]oM]zM]DM[lM]

I EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

'----- INVALID OPERATION

------------- DENORMALIZED OPERAND

--------------------- ZERODIVIDE

----------------------------- OVERFLOW

-------------------------------------- UNDERFLOW

-- PRECISION

-- (RESERVED)

CONTROL BITS

-- INTERRUPT-ENABLE MASK"'

-- PRECISION CONTROL^

-- ROUNDING CONTROL^

--- INFINITY CONTROL!"'

---(RESERVED)

!?' Precision Control:
00 = 21 bits
01 = (reserved)
10 = 53 bits
11 = 64 bits

O' Rounding Control:

0/"projective

1 = Aftine

121623-11

Figure 6-4. Contro) Word Format

The controi bits have the following meanings:
PC: Precision controi—resuits are rounded to one of three

precisions: Temporary Reai (64 bits), Long Reai (53 bits) or
Short Reai (24 bits).

RC: Rounding Controi—resuits are rounded in one of four
directions: unbiased round to the nearest or even vaiue, round
toward +, round toward or round toward zero.

IC: infinity Contro]—there are two types of infinity arithmetic
provided: affine and projective. The defauit means of ciosing a
Number system is projective. See 77te Famr'/y Leer's
Manua/, TVumer/cs Supp/ement, for a compiete description.

Tag Word
The tag word, as shown in figure 6-5, contains tags describing the contents of the
corresponding stack eiements.

6-114 ASM86

The short and long real formats exist only in memory. If a number in one of these
formats is loaded into the stack, it is automatically converted to temporary real.

Special values are included to increase flexibility though not within the domain of
normal floating point arithmetic. These special values are listed here, but the reader
is referred to The R0R6 Famhy t/ser's Afanua/, /Vumerr'cs Supp/emem, for descrip
tions. The special values include:
* Signed zero
* and representations
* Indefinite values
* NAN values (Not-A-Number)
* Denormals
* Unnormals

8087 Operation

Coprocessing

The 8087 and host CPU act as coprocessors. They share the same instruction stream
and sometimes perform parallel executions. The 8086/8088 has a set of ESCAPE
instructions that, in memory addressing mode, cause the 8086/8088 to calculate the
address and read the contents of that address. The 8086/8088 ignores the word it
reads and executes subsequent instructions. The 8087, however, monitors the same
instruction stream and when it detects an ESCAPE it begins processing. The 8087
latches the opcode and, if there was an address calculated, the 8087 captures both
the address and the datum read by the 8086/8088. The 8087 decodes the instruction
to determine how many more words it needs from memory. It increments the
address and fetches data until all required data is read. The 8087 then releases the
bus and begins calculating while the 8086/8088 continues executing the instruction
stream.

The 8086/8088 WAIT instruction allows software to synchronize the 8086/8088 to
the 8087 so that the host processor does not execute the next instruction until the
8087 is finished with its current (if any) instruction. To accomplish this, the pro
grammer should explicitly code the FWA1T instruction immediately before an
8086/8088 instruction that accesses a memory operand read or written by a previous
8087 instruction.

if an 8087 and a processor other than its host CPU can both update a variable,
access to that variable should be controlled so that one processor at a time has
exclusive rights to it. This can be done by using an 8086/8088 XCHG instruction
prefixed by LOCK. When the 8087 no longer needs the variable, the 8086/8088
clears it and again makes it available for use.

The 8087 interrupt requests are made to the 8086/8088 as the result of detecting an
exception. Interrupts are enabled or disabled by the Interrupt Enable Mask (IEM) in
the Control Word. When iEM is set to 1, interrupts are masked (disabled). The
interrupt request remains set until it is explicitly cleared. This can be done by the
FNCLEX, FNSAVE, or FiNIT instructions.

Numeric Processing

The 8087 has four rounding modes, selectable by the RC field in the control word.
The rounding modes and their corresponding RC fields are shown in table 6-6.

The 8086/8087/8088 Instruction Set 6-113

NOTES:

121623-14

Figure 6-7. Data Formats

The three binary integer formats are identicai except for iength, which governs the
range that can be accommodated in each format. The ieftmost bit is interpreted as
the number's sign: 0 = positive and 1 = negative. Negative numbers are represented
in standard two's compiement notation (the binary integers are the oniy 8087 format
to use two's compiement). The quantity zero is represented with a positive sign (alt
bits 0). The 8087 word integer format is identicai to the 16-bit signed integer data
type of the 8086 and 8088.

Decimal integers are stored in packed decimal notation, with two decimai digits
"packed" into each byte. Negative numbers are distinguished from positive ones
oniy by the sign bit. Ail digits must be in the range 0H-9H.

The 8087 stores reai numbers in a three-fieid binary format that resembies scientific
notation. The number's significant digits are heid in the SiGNIFICAND fieid, the
EXPONENT fieid locates the binary point within the significant digits (determining
the number's magnitude), and the SIGN field indicates whether the number is
positive or negative. Negative numbers differ from positive numbers only in their
sign bit.

6-116 ASM86

Tabfe 6-7. Exception and Response Summary

Exception Masked Response Unmasked Response

Invalid
Operation

If one operand is NAN", return it;
if both are NANS, return NAN with
larger absolute value; if neither is
NAN, return/ndef/n/fe.

Request interrupt.

Zerodivide Return °° signed with "exclusive
or" of operand signs.

Request interrupt.

Denormalized Memory operand: proceed as

for exceptions.

Request interrupt.

Overflow Return properly signed °°. Register destination: adjust
exponent,' store result, request
interrupt. Memory destination:
request interrupt.

Underflow Denormalize result. Register destination: adjust
exponent,' store result, request
interrupt. Memory destination:
request interrupt.

Precision Return rounded result. Return rounded result, request
interrupt.

' On overflow, 24,576 decimal is subtracted from the true result's exponent; this forces the
exponent back into range and permits a user exception handler to ascertain the true result

8087 Emulators
Numeric processing capability is not restricted to 8087 users, intel offers two
8086/8088 software products which provide 8087 functionality. E8087 emulates the
full 8087 instruction set for assembly ianguage programs. PE8087 furnishes numeric
support for PL/M-86 software. Use of the 8087 Emulators necessitates modification
of the instruction formats presented in this chapter.

ASM86, the fntel 8086/8087/8088 assembler, produces special object code for 8087
instructions. Floating point instructions are identified in such a way that they may be
linked to the 8087 Emulators. Refer to your operating system's 8086/8087/8088
assembler operating instructions manual for a short description of this change and
link procedure.

Organization of the 8087 instruction Set

Data Transfer instructions

These instructions are summarized in table 6-8. They move operands among stack
elements or between the stack top and memory. Any of the seven data types can be
converted to temporary real and loaded (pushed) onto the stack in a single opera
tion; they can be stored in memory in the same manner. The data transfer instruc
tions automatically update the 8087 tag word to reflect the stack contents following
the instruction.

The 8086/8087/8088 Instruction Set 6-115

Table 6-6. Rounding Modes

RC Field Rounding Mode Rounding Action

00 Round to nearest Closer to b of a or c; if equally close, select
even number (the one whose least significant
bit is zero).

01 Round down (toward -°°) a

10 Round up (toward +°°) c

11 Chop (toward 0) Smaller in magnitude of a orc

Note: a < b <c;a and c are representable, b is not.

Rounding occurs in arithmetic and store operations when the format of the destina
tion cannot exactly represent the true result. This can happen when a precise tem
porary real number is stored in a shorter real format or in an integer format. Round
ing introduces an error in a result that is less than one unit in the last place to which
the result is rounded. "Round to the nearest significant bit" is the default mode and
is suitable for most applications. Other modes and applications are described in The
<%)<% Famf/y Fser '.s Manua/, Numen'cs Supp/ement.

The precision of results can be calculated to 64, 53, or 24 bits as selected by the PC
field of the control word. The default setting is 64 bits. This setting is best suited for
most applications.

The 8087's system of real numbers may be closed by either of two models of infinity.
The 1C field in the control word is set for either projective or affine closure. The
default is projective, which is recommended for most computations. Both closure
forms and their uses are described in The <%?<% Fam/7y L/ser's Marrna/, Nume/Vcs
Supp/emenf.

The 8087 can represent data and final results of calculations in the range
±2.3x10*308 to ±1.7x10308 (double precision). Compared to most computers,
including large mainframes, the 8087 provides a very good approximation of the real
number system. It is important to remember, however, that it is not an exact
representation, and that arithmetic on real numbers is inherently approximate.

Conversely, and equally important, the 8087 does perform exact arithmetic on its
integer subset of the reals. That is, an operation on two integers returns an exact
integral result, provided that the true result is an integer and is in range.

The 8087 detects the six types of exceptions shown in table 6-7. The programmer has
a choice of using the 8087 on-chip fault-handling capability by masking exceptions
in the Control Word, or writing software exception handlers and unmasking excep
tions in the control word. Table 6-3 shows the 8087 response to each situation.

If the exception is unmasked, its detection results in the generation of an interrupt.
When an interrupt is generated, the interrupt procedure (exception handler) has
available the exception flags, a pointer to the instruction causing the interrupt and a
pointer to the datum if memory was addressed. Each of the exceptions shown in
table 6-7 has a sticky flag associated with it, which means that once the flag is set, it
remains until reset by software. Several instructions can be used to clear the flag:
FCLEX clears exceptions; FRSTOR or FLDENV overwrite flags.

Those users who wish to write their own exception handlers should consult The <%)<%
Famf/y f/ser'^ Mazma/, Afumer/cs Supp/ement since they will vary widely from one
application to the next.

6-118 ASM86

The stack element form is a generalization of the ciassicai stack form; the program
mer specifies the stack top as one operand and any stack eiement on the stack as the
other operand. Coding the stack top as the destination provides a convenient way to
make use of a constant heid elsewhere in the stack. The converse coding (ST is the
source operand) aiiows, for example, adding the top into a stack eiement used as an
accumuiator.

Often the operand in the stack top is needed for one operation but then is of no fur
ther use in the computation. The stack element and pop form can be used to pick up
the stack top as the source operand, and then discard it by popping the Heating
point stack. Coding operands of ST(i),ST with a stack element pop mnemonic is
equivaient to a classical stack operation: the top is popped and the resuit is left at the
new top.
Programmers no ionger need to spend vaiuabie time eiiminating square roots from
aigorithms because processors run too siowiy. Other arithmetic instructions perform
exact moduio division, round reai numbers to integers, and scaie vaiues by powers
of two.

The 8087's arithmetic instructions (addition, subtraction, multiplication, and divi
sion) ailow the programmer to minimize memory references and to make optimum
use of the 8087 floating-point stack.

Table 6-10 summarizes the available operation/operand forms that are provided for
basic arithmetic. In addition to the four normal operations, two "reversed"
instructions make subtraction and division "symmetrical" like addition and
multiplication.
* Operands may be located in stack elements or memory.
* Results may be deposited in a choice of stack elements.
* Operands may be a variety of 8087 data types: long real, short real, short integer

or word integer, with automatic conversion to temporary real performed by the
8087.

Five instruction forms may be used across all six operations, as shown in table 6-10.
The classical stack form may be used to make the 8087 operate like a classical stack
machine. No operands are coded in this form, only the instruction mnemonic is
coded. The 8087 picks the source operand from the stack top and the destination
from the next stack element. It then performs the operation, pops the stack, and
returns the result to the new stack top, effectively replacing the operands by the
result.

Table 6-10. Basic Arithmetic Instructions and Operands

Instruction Form Form
Operand Forms

destination, source ASM86 Example

Classical stack Fop <ST(1),ST} FADD
Stack element Fop ST(i),STorST,ST(i) FSUB ST,ST(3)
Stack element

and pop
FopP ST(i),ST FMULP ST(2),ST

Real memory Fop LSI,) short-real/long-real FDIV AZIMUTH
Integer memory Flop (ST,} word-integer/short-integer FIDIV N_PULSES

Notes: Braces < 7 surround /mp/zc/t operands; these are not coded, and are shown here for
information only.

op = ADD
SUB
SUBR

destination <- destination - source
destination <- source - destination

MUL destination — destination source
DIV destination — destination source
DIVR destination — source destination

The 8086/8087/8088 Instruction Set 6-117

Table 6-8. Data Transfer Instructions

FLD
FST
FSTP
FXCH

Reat Transfers

Load real
Store real
Store real and pop
Exchange registers

FILD
FIST
FISTP

IntegerTransfers

Integer load
Integer store
Integer store and pop

FBLD
FBSTP

Packed Decimal Transfers

Packed decimal (BCD) load
Packed decimal (BCD) store and pop

Arithmetic instructions

The arithmetic instruction set for the 8087 provides a great many variations on the
basic add, subtract, multiply and divide operations, and a number of other useful
functions. Table 6-9 gives a summary of these instructions.

Table 6-9. Arithmetic Instructions

Addition

FADD Add real
FADDP Add real and pop
FIADD Integer add

Subtraction

FSUB Subtract real
FSUBP Subtract real and pop
FISUB Integer subtract
FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed

Multiplication

FMUL Multiply real
FMULP Multiply real and pop
FIMUL Integer multiply

Division

FDIV Divide real
FDIVP Divide real and pop
FIDIV Integer divide
FDIVR Divide real reversed
FDIVRP Divide real reversed and pop
FIDIVR Integer divide reversed

Other Operations

FSQRT Square root
FSCALE Scale
FPREM Partial remainder
FRNDINT Round to integer
EXTRACT Extract exponent and significand
FABS Absolute value
FCHS Change sign

6-120 ASM86

The transcendents) instructions assume that their operands are vaM and m-raz/ge.
The instruction descriptions in this section provide the range of each operation. To
be considered vatid, an operand to a transcendental must be normalized; denormais,
unnormals, infinities and NANs are considered invalid. Zero operands are accepted
by some functions and are considered out-of-range by others, if a transcendental
operand is invalid or out-of-range, the instruction will produce an undefined result
without signaling an exception. It is the programmer's responsibility to ensure that
operands are valid and in-range before executing a transcendental. FPREM may be
used to bring an operand into range for periodic functions.

Constant tnstructions

Each of these instructions (table 6-13) loads (pushes) a commonly-used constant
onto the stack. The values have full temporary real precision (64 bits) and are
accurate to approximately 19 decimal digits. Since a temporary real constant
occupies 10 memory bytes, the constant instructions, which are only two bytes long,
save storage and improve execution speed, in addition to simplifying programming.

Table6-13. Constant Instructions

FLDZ Load + 0.0
FLD1 Load + 1.0
FLDPI Load n
FLDL2T Load Iog2l0
FLDL2E Load Iog2e
FLDLG2 Load iog^n2
FLDLN2 Load Iogg2

Processor Controt tnstructions

When CPU interrupts are enabled, as will normally be the case when an application
task is running, the "wait" forms of these instructions should be used. Most of the
instructions shown in table 6-14 are used in system-level activities rather than in
computations. These activities include: initialization, exception handling, and task
switching.

Alternate mnemonics are shown for several of the processor control instructions in
table 6-14. This mnemonic, distinguished by a second character of "N", instructs
the assembler /rot to prefix the instruction with a CPU WAIT instruction (instead, a
CPU NOP precedes the instruction). This "no-wait" form is intended for use in
critical code regions where a WAIT instruction might precipitate an endless wait.
Thus, when CPU interrupts are disabled, and the 8087 can potentially generate an
interrupt, the "no-wait" form should be used.

Except for FNSTENV and FNSAVE, all instructions which provide a no-wait
mnemonic are self-synchronizing and can be executed back-to-back in any combina
tion without intervening FWAITs. These instructions can be executed by one part of
the 8087 while the other part is busy with a previously decoded instruction. To
ensure that the processor control instruction executes after completion of any opera
tion in progress, the "WAIT" form of that instruction should be used.

The 8086/8087/8088 instruction Set 6-119

The two memory forms increase the fiexibihty of the 8087's arithmetic instructions.
They permit a reai number or a binary integer in memory to be used directiy as a
source operand. This is a very usefui facility in situations where operands are not
used frequency enough to justify holding them in the floating point stack. Note that
various forms of data allocation may be used to define these operands; they may be
elements in arrays, structures or other data organizations, as well as simple scalars.

The six functional groups of instructions are discussed further in the next
paragraphs.

Comparison instructions

Each of these instructions (table 6-11) analyzes the top stack element, often in rela
tionship to another operand, and reports the result in the status word condition
code. The basic operations are compare, test (compare with zero), and examine
(report tag, sign, and normalization). Special forms of the compare operation are
provided to optimize algorithms by allowing direct comparisons with binary integers
and real numbers in memory, as well as popping the stack after a comparison.

The FSTSW (store status word) instruction may be used following a comparison to
transfer the condition code to memory for inspection. See individual descriptions of
the instructions listed in table 6-11 for interpretations of the condition code bits.

Note that instructions other than those in the comparison group may update the
condition code. To ensure that the status word is not altered inadvertently, it should
be stored immediately after the compare operation.

Table 6-11. Comparison Instructions

FCOM Compare real
FCOMP Compare real and pop
FCOMPP Compare real and pop twice
FICOM Integer compare
FICOMP Integer compare and pop
FTST Test
FXAM Examine

Transcendents! Instructions

The instructions in this group are summarized in table 6-12. They perform the core
ca/cu/ao'ons for all common trigonometric, inverse trigonometric, hyperbolic,
inverse hyperbolic, logarithmic and exponential functions. Prologue and epilogue
software may be used to reduce arguments to the range accepted by the instructions
and to adjust the result to correspond to the original arguments if necessary. The
transcendental operate on the top one or two stack elements, and they return their
results to the stack.

Table 6-12. Transcendental Instructions

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2*-1
FYL2X Y' lognX
FYL2XP1 Y*log2<X + 1)

6-122 ASM86

MNEMONtC—Sample 8086/8088 tnstruction
Format
) WAIT) op1] m/op/rm j addr!] addr2 [

f F '--------an offset value (either 8 or 16 bits)

-------------- modrm byte (middle 3 bits part of opcode)

-------------opcode (possibly two bytes)

an 8086 wait instruction, NOP, or emulator instruction

8087 Emulator
Encoding

Clocks
Typical
Range

Operation Coding Exampie

(the 8087
instruction instruction

typical (machine operation) MNEMONIC

Operation
(A description of the machine operation.)

Exceptions

I Z D 0 U P

(shows which exceptions couid be set)

The 8086/8087/8088 instruction Set 6-121

Table 6-14. Processor Control Instructions

FINIT/FNINIT Initialize processor
FDISI/FNDISI Disable interrupts
FENI/FNENI Enable interrupts
FLDCW Load control word
FSTCW/FNSTCW Store control word
FSTSW/FNSTSW Store status word
FCLEXTNCLEX Clear exceptions
FSTENV/FNSTENV Store environment
FLDENV Load environment
FSAVE/FNSAVE Save state
FRSTOR Restore state
FINCSTP Increment stack pointer
FDECSTP Decrement stack pointer
FFREE Free register
FNOP No operation
FWAIT CPU wait

6-124 ASM86

FABS—Absolute Value
Format
) WAIT [op1) op2 [

8087
Encoding

Clocks
Operalion Coding Example

9BD9E1 CD19E1 14
10-17

ST - 1ST] FABS

Operation
The absolute value instruction changes the element in the top of the stack to its ab
solute value by making its sign positive.

Exceptions

I Z D 0 U P

X

The 8086/8087/8088 Instruction Set 6-123

F2XM1-2-1
Format

) WAIT I op1]

8087 Emulator Clocks
Operation Coding Example

9B D9 FO CD 19 FO 500
310-630

ST - 2^ -1 F2XM1

Operation
This instruction calculates the function Y = 2*—]. X is taken from the top of the
floating point stack and must be in the range 0 < X < 0.5. The result Y replaces X at
the stack top.

Exceptions

I Z D 0 U P *

X X

""Operands not checked.

Description
This instruction is designed to produce a very accurate result even when x is close to
zero. To obtain Y = 2\ add I to the result delivered by F2XMI.

The following formulas show how values other than 2 may be raised to a power of
X.

1QX = 2* ' '°921O

gx 2* ' '°92C

yx 2* ' '°92Y

The 8087 has built-in instructions, described in this chapter, for loading the con
stants LOG2 10 and LOG2 e, and the FYL2X instruction may be used to calculate X
*log2Y.

6-126 ASM86

FADDP/FADD—Add Rea) and Pop
Format
Stack top + Stack Eiement

WAIT I opl] op2 + i [

8087
Execution

Clocks
Encoding Encoding Typical Coding Example

9BDEC1 CD1EC1 90
75-105

ST(1)-ST + ST(1)
pop stack

FADD

9BDEC0 + i CD1EC0 + i 90
75-105

ST(i) - ST + ST(i)
pop stack

FADDP ST(2),ST

Operation
The add reai and pop stack instruction adds the stack top to one of the stack eiements,
replacing the stack efement with the sum, and then pops the floating point stack.

Exceptions

J Z D 0 U P

X X X X X

The 8086/8087/8088 Instruction Set 6-125

FADD—Add Rea!
Format
Stack top + Stack element

] WAIT] op!] op2 + i I

8087
Encoding Encoding

Execution
Ciocks
Typical Operation Coding Example

9BD8C0 + I CD18C0 + I 85 ST-ST + ST(i) FADD ST,ST(2)
70-100

9BDCC0 + i CD1CC0 + I 85 ST(i) - ST + ST(i) FADD ST(4),ST
70-100

Stack top + memory operand

WAIT] op1] m/op/rm) addrl [addr2 I

8087
Encoding

Clocks
Typical Operation Coding Exampie

9B D8 mOrm CD 18 mOrm

Range

105+EA FADD COUNT

9B DC mOrm CD 1C mOrm

(90-120) +EA

110 + EA

(short-real)

FADD MEAN
(95-125) +EA (long-real)

Operation
The add reai instruction adds the source operand to the destination operand and
piaces the resuit in the destination. The source operand may be either the stack top,
a stack eiement, or a short or iong reai operand in memory. When the source is the
stack top, the destination is one of the stack eiements. When the source is a stack eie
ment or memory operand, the destination is the stack top.

Exceptions

I Z D 0 U P

X X X X X

6-128 ASM86

FBSTP—Packed Decima! (BCD) Store and Pop
Format

WAIT) op1) m/op/rm [addrl] addr2]

8087
Encoding

Execution

Operation Coding Exampte

9B DF m6rm CD IF m6rm 530 + EA
(520-540) + EA pop St3Ck

FBSTP FORECAST

Operation
The packed decima) store and pop stack instruction converts the contents of the
stack top to a packed decima) integer, stores the resuit at the destination in memory,
and pops the Heating point stack.

Exceptions

I Z D 0 U P

X

Note
FBSTP produces a rounded integer from a non-integra) vatue by adding 0.5
to the vaiue and then deteting least significant bits.

Users who are concerned about rounding may precede FBSTP with FRND)NT.

The 8086/8087/8088 instruction Set 6-127

FBLD—Packed Decima] (BCD) Load
Format
) WAIT] op1] m/op/rm] addrl] addr2

8087
Encoding Encoding

Execution
Ctocks
Typical Operation

9B DF m4rm CD IF m4rm 300+ EA
(290-310)+ EA

push stack
ST *- mem-op

FBLD YTD.__SALES

Operation
The BCD toad instruction converts the memory operand from packed decimat to
temporary real and pushes the result onto the stack. The sign of source is preserved,
inctuding the case when the vatue is negative zero.

Exceptions

I Z D 0 U P

X

Note
The packed decimat digits of the source are assumed to be in the range
0-9H. The instruction does not check for invaiid digits (A-FH) and the
resutt of attempting to toad an invalid encoding is undefined.

6-130 ASM86

FCLEX/FNCLEX—Clear Exceptions
Format

WAIT) op1 I OP2)

8087 Emuiator
Execution

Ciocks
Encoding Encoding Typicaf Operation Coding Example

Range

93 DB E2 CD 1B E2 5 clear8087exceptions FCLEX
2-8

90 DB E2 CD 1B E2 5 clear 8087 exceptions FNCLEX
2-8 (no wait)

Operation
This instruction ciears aii exception Hags, the interrupt request flag and the busy Hag
in the status word. As a consequence, the 8O87's INT and BUSY lines go inactive.
The FCLEX form of this instruction is preceded by an assembler-generated WAIT
instruction.

Exceptions

I Z D 0 U P

Description
FNCLEX is used in critical areas of code where a WAIT instruction might result in a
deadlock. FCLEX is used to insure that the processor control instruction executes
only after completion of any operation in progress in the NOP.

The 8086/8087/8088 instruction Set 6-129

FCHS—Change Sign
Format
] WAIT] op1 I op2

8087 Emulator
Operation Coding Example

9B D9 EO CD 19 EO 15
10-17

ST - -ST FCHS

Operation
The change sign instruction complements the sign on the stack top eiement.

Exceptions

I Z D 0 U P

X

6-132 ASM86

FCOM
Note

NANs and °° (projective) cannot be compared and return C3 = CO = ! as
shown above.

The foHowing procedures can be used to store the status word from this instructidn
and test the compare resuit.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 fiags register. For exampie, the code required to transfer the
information to the fiags register is:

FSTSW STAT_87 ;STORE RESULT FROM FCOM
FWAIT ;WAIT FOR STORE
MOV AH, BYTE PTR STAT87+1 ;MOVE STATUS BYTE TO AH
SAHF ;LOAD INTO 8086 FLAGS REGISTER

The 8086 instructions are now used to execute a conditionai branch on the resuit of
the compare as fohows:

JB - ; JUMP i f ST < source OR ST ? source
JBE - ; JUMP IF ST source OR ST ? source
JA - ; JUMP IF ST > source and NOT ST ? source
JAE - ; JUMP 1F ST source and NOT ST ? source
J E - ; JUMP 1F ST source or ST ? source
JNE - ; JUMP IF ST source and NOT ST ? source

The 8086/8087/8088 Instruction Set 6-131

FCOM—Compare Rea)
Format
Compare Stack top and Stack element

40-50

I WAIT] opl I op2 + i I

8087 Clocks
Operation Coding Exampte

9B D8 D1 CD18D1 45 ST-ST(1) FCOM

9BD8 DO + i CD18D0 + I

40-50

45 ST-ST(i) FCOM ST(2)

Compare Stack top and memory operands

I WAIT I opl I m/op/rm I addrl] addr2]

8087 Ciocks
Encoding Encoding Typical

9B D8 m2rm CD 18 m2rm 65 + EA
(60-70)+ EA

ST - memop FCOM WAVELENGTH

9B DC m2rm CD 1C m2rm 70 + EA
(65-75)+ EA

ST-memop FCOM MEAN

Operation
The compare reat instruction compares the stack top with the source operand. The
source operand may be a stack element or short or iong real memory operand.]f no
operand is coded. ST is compared with ST(1).

Exceptions

I Z D 0 U P

X X

Description
Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as fotlows:

C3 C2 CO ORDER

0 0 0 ST > source
0 0 1 ST < source
10 0 ST = source
1 1 1 ST? source

Format
Compare Stack top and Stack element and pop

I WAIT I I op2 + i]

6-134 ASM86

FCOMP
Description
FoUowing the instruction, the condition codes in the 8087 status byte refiect the
order of the operands as foiiows:

C3 C2 CO ORDER

0 0 0
0 0 1
1 0 0
1 1 1

ST > source
ST < source
ST = source
ST ? source

Note
NANs and °° (projective) cannot be compared and return C3 = CO = i as
shown above.

The foHowing procedures can be used to store the status word from this instruction
and test the compare resuit.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT 87
FWAIT
MOV AH, BYTE PTR STAT_87+1
SAHF

;STORE RESULT FROM FCOM
;WAIT FOR STORE
;MOVE STATUS BYTE TO AH
;LOAD INTO 8086 FLAGS REGISTER

The 8086 instructions are now used to execute a conditionai branch on the resuit of
the compare as foiiows:

JB - ;JUMP if ST < source
JBE - ; JUMP IF ST source
JA - ;JUMP IF ST > source
JAE - ;JUMP IF ST source
JE - ;JUMP IF ST = source
JNE - ;JUMP IF ST source

OR ST ? source
OR ST ? source
and NOT ST ? source
and NOT ST ? source
or ST ? source
and NOT ST ? source

The 8086/8087/8088 instruction Set 6-135

FCOMPP—Compare Rea) and Pop Twice
Format

WAIT] op1 I op2

8087 Emulator
Encoding

Execution
Clocks
Typical
Range

Operation

9BDED9 CD1ED9 50
45-55

ST -ST(1)
pop stack

FCOMPP

Operation
The compare real and pop stack twice instruction compares the stack top with ST(1)
and pops the floating point stack twice, discarding both operands. No operands may
be explicitly coded with this instruction.

Exceptions

I Z D 0 U P

X X

Description
Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

C3 C2 co ORDER

0 0 0 ST > source
0 0 1 ST < source
1 0 0 ST = source
1 1 1 ST ? source

Note
NANs and °° (projective) cannot be compared and return C3 = CO = 1 as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT_87 ;STORE RESULT FROM FCOM
FWAIT ;WAIT FOR STORE
MOV AH, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TO AH
SAHF ;LOAD INTO 8086 FLAGS REGISTER

6-136 ASM86

FCOMPP
The 8086 instructions are now used to execute a conditionai branch on the resuit of
the compare as foiiows:

JB - ; JUMP i f ST < source OR ST ? source
JBE - ; JUMP IF ST source OR ST ? source
JA - ; JUMP IF ST > source and NOT ST ? source
JAE - ; JUMP IF ST source and NOT ST ? source
JE - ; JUMP 1 F ST = source o r ST ? source
JNE - ; JUMP IF ST source and NOT ST ? source

The 8086/8087/8088 instruction Set 6-137

FDECSTP—Decrement Stack Pointer
Format

WAtT] op1 I °P2 I

8087
Encoding

Execution
Ciocks
Typicai Operation Coding Example

9B D9 F6 CD19F6 9 stack pointer *- 2 FDECSTP
6-12 stack pointer -1

Operation
This instruction subtracts i from the stack top pointer in the status word. No tags or
registers are aitered, nor is any data transferred. Executing FDECSTP when the
stack top pointer is 0, changes the pointer to 7.

Exceptions

I Z D 0 U P

6-138 ASM86

FDISI/FNDIS!—Disable interrupts
Format

WAIT I op1 I_____ I

8087
Encoding

Execution

Operation Coding Example

9B0BE1 CD 1B E1 5 Set 8087 interrupt mask FDISI
2-8

90 DB E1 CD 1B E1 5 Set 8087 interrupt mask FNDISI
2-8 (no wait)

Operation
The instruction sets the interrupt enabie mask in the controi word and prevents the
NDP from issuing an interrupt request. The FDfSI form of this instruction is
preceded by an assembier-generated WAiT.

Exceptions

I Z D 0 U P

Description
The NO WAiT form of the instruction (FNDISi) is intended for use in criticai code
regions where a WAfT instruction might induce an endiess wait.

Note
if WAfT is decoded with pending exceptions, the 8087 generates an
interrupt— masked or not.

The 8086/8087/8088 tnstruction Set 6-139

FD!V—Divide Reai
Format
Stack top and Stack element

] WAIT] op1] op2 + i I

8087
Encoding

Emuiator
Encoding

Execution
Clocks
Typical Operation Coding Example

9BD8 FO + i CD18F0 + I 198 ST-ST/ST(i) FDIV ST,ST(2)
193-203

9B DC F8 + i CD 1C F8-H 198 ST(i)-ST(i)/ST FDIV ST(3),ST
193-203

Stack top and memory operand

WAIT I op1 [m/op/rm I addtT] addr2___ [

8087
Execution

Clocks
Encoding Encoding Typical

Range

9B D8 m6rm CD 18 m6rm 220+ EA
(215-225) +EA (short-real)

FDIV DISTANCE

9B DC m6rm CD 1C m6rm 225+ EA
(220-230)+ EA

ST - ST/mem-op
(long-real)

FDIV GAMMA

Operation
The divide real instructions divide the destination by the source and return the quo
tient to the destination. The source operand may be either the stack top, a stack ele
ment, or a short or long real operand in memory. When the source is the stack top,
the destination is one of the stack elements. When the source is a stack element or
memory operand, the destination is the stack top.

The divide real and pop stack instruction divides one of the stack elements by the
stack top, replaces the stack element with the quotient, and then pops the floating
point stack.

Exceptions

I Z D 0 U P

X X X X X X

6-140 ASM86

FDtVP—Divide Rea! and Pop
Format

WAIT] op1 [op2+i [

&087 Ciocks
Encoding Encoding Typicai

9BDE F9 CD1E F9 202
197-207

ST(1) - ST(1)/ST FDIV

9B DE F8 + i CD1EF8+i 202
197-207

ST(i) *- ST(i)1ST FD1VP ST(3),ST

Operation
The divide reai instructions divide the destination by the source and return the quo
tient to the destination. The source operand may be either the stack top, a stack eie-
ment, or a short or iong reai operand in memory. When the source is the stack top,
the destination is one of the stack eiements. When the source is a stack eiement or
memory operand, the destination is the stack top.

The divide real and pop stack instruction divides one of the stack elements by the
stack top, repiaces the stack element with the quotient, and then pops the floating
point stack.

Exceptions

I Z D 0 U P

X X X X X X

The 8086/8087/8088 Instruction Set 6-141

FDtVR—Divide Reai Reversed
Format
Stack top and Stack eiement

194-204

WAtT [op1) op2 + i [

8087
Execution

Operation Coding Exampie

9B D8 FB + i CD 18 F8 + I 199 ST-ST(i)/ST FDiVR ST,ST(2)

9BDC FO + i CD1CF0 + I

194-204

199 ST(i) -ST/ST(i) FDIVR ST(3),ST

Stack top and memory operand

addrl addr2] WA)T] op1] m/op/rm]

8087
Encoding Operation Coding Exampie

9B D8 m7rm CD18m7rm 221 + EA
(216-226)+ EA

ST - mem-op)ST FDIVR RATE

9BDCm7rm CD1Cm7rm 226+EA ST*-mem-op/ST FDIVR SPEED
(221-231) +EA (long-real)

Operation
The divide reai reversed instructions divide the source operand by the destination
and return the quotient to the destination. The source operand may be either the
stack top, a stack eiement, or a short or iong reai operand in memory. When the
source is the stack top, the destination is one of the stack eiements. When the source
is a stack eiement or memory operand, the destination is the stack top.

The reverse divide and pop stack instruction divides the stack top by one of the stack
eiements and returns the quotient to the stack eiement. The fioating point stack is
then popped.

Exceptions

I 2 D 0 U P

X X X X X X

6-142 ASM86

FD!VRP-Divide Rea) Reversed and Pop
Format

I WAIT] op1] op2 + i I

8087 Emulator
Operation Coding Exampie

9BDEF1 CD1EF1 203 ST(1) -ST/ST(1) FDIVR
198-208 pop stack

9BDEF0+i CD1E FO + i 203 ST(i) - STZST(i) FDIVRP ST(4),ST
198-208

Operation
The divide reai reversed instructions divide the source operand by the destination
and return the quotient to the destination. The source operand may be either the
stack top, a stack eiement, or a short or iong reai operand in memory. When the
source is the stack top, the destination is one of the stack eiements. When the source
is a stack element or memory operand, the destination is the stack top.

The reverse divide and pop stack instruction divides the stack top by one of the stack
eiements and returns the quotient to the stack eiement. The fioating point stack is
then popped.

Exceptions

I Z D 0 U P

X X X X X X

The 8086/8087/8088 tnstruction Set 6-143

FENl/FNENl—Enable Interrupts
Format

WAIT) op1] op2

8087
Encoding

Execution
Clocks

Operation Coding Example

9BDBE0 CD1BE0 5 clear 8087 interrupt mask FENI
2-8

90DBE0 CD1BE0 5 clear 8087 interrupt mask FNENI
2-8 (no wait)

Operation
This instruction ciears the interrupt enabie mask in the controi word, allowing the
8087 to generate interrupt requests. The FENI form of this instruction is preceded
by an assembier-generated WAIT instruction.

Exceptions

I Z D 0 U P

Description
The NO WAIT form of the instruction (FNENI), is intended for use in critical code
regions where a WAIT instruction might induce an endless wait.

The WAIT form of this instruction (FENI), should be used in all non-critical code
regions. This form insures that the processor control instruction executes after com
pletion of any operation in progress in the NEU.

6-144 ASM86

FFREE—Free Register
Format

WAIT) op1) op2+i I

8087
Execution

Encoding Encoding

9BDDC0 + i CD1DC0 + I 11 TAG(i) masked empty FFREE ST(1)
9-16

Operation
This instruction changes the destination stack element's tag to empty. The contents
of this stack element are unaffected.

Exceptions

I Z D 0 U P

The 8086/8087/8088 Instruction Set 6-145

DADD—tnteger Add
Format

WAIT I op1] m/op/rm] addrl] addr2 ___ [

8087
Execution

Clocks
Encoding Encoding Typicai

Range

9B DA mOrm CD 1A mOrm 125 + EA
(108-143)+ EA

ST <- ST + mem-op
(short integer)

FIADD DISTANCE

9B DE mOrm CD 1E mOrm 120 + EA
(102-137) +EA

ST — ST + mem-op FIADD PULSE

Operation
This instruction adds the integer memory source to the top of the stack and returns
the sum to the destination at the top of the stack.

Exceptions

I Z D 0 U P

X XX X

6-146 ASM86

DCOM—tnteger Compare
Format

WAIT] op1] m/op/rm] addrl ___addr2 I

8087
Execution

Clocks
Encoding Encoding Typicai Coding Example

9B DA m2rm CD 1A m2rm 85 + EA
(78-91) + EA (short integer)

FICOM PASSES

96 DE m2rm CD1E m2rm 80 + EA
(72-86) + EA (word integer)

FICOM CENTS

Operation
The integer compare instructions convert the memory operand (a word or short
binary integer) to temporary rea) and compare it with the top of the stack.

Exceptions

I Z D 0 U P

X X

Description
Foiiowing the instruction, the condition codes in the 8087 status byte refiect the
order of the operands as foiiows:

C3 C2 co ORDER

0 0 0 ST > source
0 0 1 ST < source
1 0 0 ST = source
1 1 1 ST ? source

Note
NANs and °° (projective) cannot be compared and return C3 = CO = I as
shown above.

The foliowing procedures can be used to store the status word from this instruction
and test the compare resuit.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 fiags register. For example, the code required to transfer the
information to the fiags register is:

FSTSW STAT_87 ;STORE RESULT FROM FICOM
FWAIT ;WAIT FOR STORE
MOV AH, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TO AH
SAHF ;LOAD INTO 8086 FLAGS REGISTER

The 8086/8087/8088 tnstruction Set 6-147

FtCOM
The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

J8 - ; JUMP if ST < source OR ST ? source
JBE - ; JUMP IF ST source OR ST ? source
JA - ; JUMP 1F ST > source and NOT ST ? source
JAE - ; JUMP IF ST source and NOT ST ? source
JE - ; JUMP 1F ST = source o r ST ? source
JNE - ; JUMP IF ST source and NOT ST ? source

6-148 ASM86

F!COMP—Integer Compare and Pop
Format

WAIT) op1) m/op/rm] addrl) addr2

8087
Encoding Encoding

Execution
Clocks
Typical Operation Coding Exampie

9B DA m3rm CD 1A m3rm 87 + EA
(80-93) + EA

(short integer)

FICOMP LIMIT

9B DE m3rm CD 1E m3rm 82 + EA
(74-88) + EA

ST-mem-op FICOMP SAMPLE

Operation
The integer compare instructions convert the memory operand (a word or short
binary integer) to temporary reai and compare it with the top of the stack. FICOMP
additionally discards the vatue in ST by popping the Heating point stack.

Exceptions

I Z D 0 U P

X X

Description
Foliowing the instruction, the condition codes in the 8087 status byte refiect the
order of the operands as follows:

C3 C2 co ORDER

0 0 0 ST > source
0 0 1 ST < source
1 0 0 ST = source
1 1 1 ST ? source

Note
NANs and °° (projective) cannot be compared and return C3 = CO = 1 as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT_87
FWAIT
MOV AH, BYTE PTR STAT_87+1
SAHF

;STORE RESULT FROM FICOMP
;WAIT FOR STORE
;MOVE STATUS BYTE TO AH
;LOAD INTO 8086 FLAGS REGISTER

The 8086/8087/8088 instruction Set 6-149

FtCOMP
The 8086 instructions are now used to execute a conditionai branch on the resuit of
the compare as foiiows:

JB - ; JUMP 1 f ST < source OR ST ? source
JBE - ; JUMP IF ST source OR ST ? source
JA - ; JUMP IF ST > source and NOT ST ? source
JAE - ; JUMP 1F ST > source and NOT ST ? source
JE - ; JUMP 1 F ST - source o r ST ? source
JNE - ; JUMP 1F ST source and NOT ST ? source

6-150 ASM86

FiDiV-integer Divide
Format

WAIT [op! J m/op/rm]addrl addr2]

8087
Encoding Operation Coding Example

9B DA m6rm CD 1A m6rm 236 + EA ST <- ST/mem-op FIDIV SURVEY
(230-243)+ EA (short integer)

9B DE m6rm CD 1E m6rm 230+EA ST <-ST/mem-op FIDIV ANGLE
(224-238)+EA (word integer)

Operation
The integer divide instruction divides the top of the stack by the integer memory
operand and returns the quotient to the top of the stack.

Exceptions

I Z D 0 U P

X X X X X X

The 8086/8087/8088 instruction Set 6-151

FiDiVR-integer Divide Reversed
Format

WAIT) op1] m/op/rm] addrl] addr2]

8087 Ciocks
Encoding Encoding Typicai

9B DA m7rm CD 1A m7rm 237 + EA
(231-245) + EA (short integer)

FIDIVR COORD

9B DE m7rm CD 1E m7rm 230+ EA
(225-239)+EA (word integer)

FiDIVR FREQUENCY

Operation
The reversed integer divide instruction divides the integer memory operand by the
top of the stack and returns the quotient to the stack top.

Exceptions

I Z D 0 U P

X X X X X X

6-152 ASM86

F!LD—Integer Load
Format

WA)T op1 m/op/rm addrl addr2

8087
Encoding Encoding

^Ciocks
Operation Coding Exampie

9B DB mOrm CD 1B mOrm 56 + EA
(52-60)+ EA

(short integer)

FILD STANDOFF

9B DF mOrm CD 1F mOrm 50+EA
(46-54) + EA

(word integer)

FILD SEQUENCE

9B DF m5rm CD 1F m5rm 64 + EA
(60-68) + EA ST - mem-op

FILD RESPONSE

Operation
The integer ioad instruction converts the integer memory operand from its binary
integer format (word, short, or long) to temporary reai and pushes the resuit onto
the stack. The new stack top is tagged zero if ait bits in the source were zero, and is
tagged vaiid otherwise.

Exceptions

I Z D 0 U P

X

The 8086/8087/8088 Instruction Set 6-153

F!MUL—tnteger Mu!tip!y
Format

WAIT I opi] m/op/rm] addrl addr2 [

8087 Emulator
Encoding Encoding

9BDAm1rm CD1Am1rm

9BDEm1rm CD1Em1rm

Ciocks

136 + EA
(130-144)+ EA

130 +EA
(124-138)+ EA

FIMUL BEARING

FIMUL POSITION

Operation
The integer muitipiy instruction muitipiies the integer memory operand and the top
of the stack and returns the product to the top of the stack.

Exceptions

I Z D 0 U P

X X X X

6-154 ASM86

HNCSTP—tncrement Stack Pointer
Format

] WAIT] op1] op2]

8087
Encoding

Ctocks
Typical Operation Coding Exampie

9B D9 F7 CD19F7 9 stack pointer - FINCSTP
6-12 stack pointer + 1

Operation
The stack pointer increment instruction adds 1 to the stack top pointer in the status
word, it does not aiter tags or register contents, nor does it transfer data, it is not
equivalent to popping the stack since it does not set the tag of the previous stack to
empty, incrementing a stack pointer of 7 changes it to 0.

Exceptions

I Z D 0 U P

The 8086/8087/8088 instruction Set 6*155

HN!T/FN!N!T—tnitiatize Processor
Format

WAIT] op1 I °P2 I

8087 Clocks
Encoding Encoding

Range

9B DB E3 CD1B E3 5
2-8

initialize 8087 FINIT

90 DB E3 CD 1B E3 5
2-8

initialize 8087 FNINIT

Operation
The initialize processor instruction performs the functional equivalent of a hardware
RESET, except that it does not affect the instruction fetch synchronization of the
8087 and its CPU. F1NIT/FN1N1T sets the control word to 03FFH, empties ah
floating point stack elements, and clears exception flags and busy interrupts. The
F1N1T form of this instruction is preceded by an assembler-generated WAIT
instruction.

Exceptions

I Z D 0 U P

Note
The system should call the 1N1T87 procedure in lieu of executing
F1N1T/FN1N1T when the processor is first initialized, for compatability
with the 8087 emulator.

6-156 ASM86

F!ST—Integer Store
Format

WAIT) °P1] m/op/rm [addrl] addr2

B087
Execution

Clocks
Encoding Encoding Typical

9B DB m2rm CD 1B m2rm 88 + EA
(82-92)+ EA (short integer)

FIST COUNT

9B DF m2rm CD 1F m2rm 86+EA
(80-90)+ EA (word integer)

FIST FACTOR

Operation
The integer store instruction rounds the contents of the stack top to an integer
(according to the RC fieid of the controi word) and transfers the resuit to the
memory destination. The destination may define a word or short integer variable.
Negative zero is stored in the same encoding as positive zero: 0000...00.

Exceptions

I Z D 0 U P

X X

The 8086/8087/8088 tnstruction Set 6-157

HSTP—tnteger Store and Pop
Format

WAIT I op1] m/op/rm] addrl] addr2

8087
Encoding Encoding

Execution
Clocks

Operation Coding Example

9B DB m3rm CD 1B m3rm 90 + EA
(84-94)+ EA pop stack

(short integer)

FISTP CORRECTED

9B DF m3rm CD 1F m3rm 88 + EA
(82-92)+ EA

mem-op *- ST

(word integer)

FtSTP ALPHA

9B DF m7rm CD 1F m7rm 100+ EA
(94-105) + EA

mem-op - ST
pop stack
(iong integer)

FISTP READINGS

Operation
The integer store and pop stack instruction rounds the contents of the stack top to
an integer (according to the RC fieid of the controi word) and transfers the resuit to
the memory destination. The fioating point stack is popped fotlowing the transfer.
The destination may be any of the binary integer data types.

Exceptions

I Z D 0 U P

X X

6-158 ASM86

FtSUB—Integer Subtract
Format

WAIT] op1] m/op/rm] addrl] addr2 I

8087
Execution

Encoding Encoding Typicai

9B DA m4rm CD 1A m4rm 125+EA
(108-143)+ EA (short integer)

FISUB BASE

9B DE m4rm CD 1E m4rm 120+ EA
(102-137)+EA (word integer)

FISUB SIZE

Operation
This instruction subtracts the integer memory operand from the top of the stack and
returns the difference to the top of the stack.

Exceptions

I Z 0 0 U P

X XX X

The 8086/8087/8088 instruction Set 6-159

FtSUBR—Integer Subtract Reversed
Format

WAIT] opi] m/op/rm [addr!] addr2

Encoding Encoding

9BDAm5rm CD1Am5rm

9BDEm5rm CD1Em5rm

Clocks

125+EA
(109-144)+EA

120 + EA
(103-139)+ EA

ST — mem-op - ST
(short integer)

ST *- mem-op - ST
(word integer)

FISUBR FLOOR

FISUBR BALANCE

Operation
The integer subtract reversed instruction subtracts the stack top from the integer
memory source and returns the difference to the stack top.

Exceptions

I Z D 0 U P

X XX X

6-160 ASM86

FLD—Load Rea!
Format
Stack element to Stack top

WAIT) op1] op2+i]

8087
Execution

Clocks
Encoding Encoding

Range

9BD9 CO + i CD19C0+I 20
17-22

T, - ST(i) FLD ST(2)

ST-T,

Memory operand to Stack top

WAIT) opl [m/op/rm [addrl [addr2 J

8087
Encoding

Execution
Clocks
Typical

Operation

9B D9 mOrm CD 19 mOrm 43+EA
(38-56) + EA

(short real)

FLD READING

9B DD mOrm CD 1D mOrm 46+EA
(40-60)+EA

(tong real)

FLD TEMPERATURE

9B DB m5rm CD 1B m5rm 57+EA
(53-65) + EA

FLD SAVEREADING

Operation
The load real instruction pushes the source operand onto the top of the floating
point stack. This is done by decrementing the stack pointer by one and then copying
the contents of the source to the new stack top. The source may be a stack element
on the stack (ST(i)), or any of the real data types in memory. Short and long real
source operands are converted to temporary real automatically. Executing FLD
ST(0) duplicates the old stack top in the new stack top.

Exceptions

I Z D 0 U P

X X

The 8086/8087/8088 tnstruction Set 6-161

FLDCW—Load Controt Word
Format

] WAIT] op1] m/op/rm] addrl] addr2

8087 Emulator
Execution

Ciocks
Encoding Encoding Typicai Coding Exampte

9B D9 m5rm CD 19 m5rm 10+EA
(7-14)+ EA

processor control word FLDCW CONTROL

Operation
This instruction repiaces the current processor control word with the word defined
by the source operand.

Exceptions

I Z D 0 U P

Description
This instruction is typically used to establish, or change, the 8087's mode of
operation.

Note
If an exception bit in the status word is set, loading a new control word that
unmasks that exception and clears the interrupt enable mask will generate
an immediate request before the next instruction is executed. When chang
ing modes, the recommended procedure is to first clear any exceptions and
then load the new control word.

6-162 ASM86

FLDENV—Load Environment
Format

] m/op/rm] ad d r1WAIT] op1

8087
Encoding

Clocks
Operation Coding Exampie

9B D9 m4rm CD 19 m4rm 40+EA
(35-45) + EA

8087 environment - FLDENV ENV—STORE

Operation
The toad environment instruction reioads the 8087 environment from the memory
area defined by the source operand. This data shouid have been written by a
previous FSTENV/FNSTENV instruction.

Exceptions

I Z D 0 U P

Description
CPU instructions may immediately follow FLDENV, but no subsequent NDP
instruction should be executed without an intervening FWAIT or assembler
generated WAIT.

Note
Loading an environment image that contains an unmasked exception causes
an immediate interrupt request from 8087 (assuming 1EM = 0 in the envi
ronment image).

The 8086/8087/8088 instruction Set 6-163

FLDLG2—Load Log^
Format

floating point stack. The constant has temporary real precision of 64 bits and
accuracy of approximately 19 decimal digits.

] WAIT 1 opl op2 I

8087
Encoding

Execution

Operation Coding Example

9B D9 EC CD 19 EC 21
18-24 ST -Iog,o2

FLDLG2

Operation
The load log base 10 of 2 instruction pushes the value log]()2 onto the top of the

Exceptions

I Z D 0 U P

X

6-164 ASM86

FLDLN2—Load Log.2
Format

WAIT] °P1 I °P2 I

8087
Execution

Encoding Encoding

9B D9 ED CD19ED 20 push stack FLDLN2
17-23 ST-log,2

Operation
The toad tog base e of 2 instruction pushes the vatue tog<,2 onto the top of the
floating point stack. This constant has temporary reat precision of 64 bits with an
accuracy of approximately t9 decimat digits.

Exceptions

I Z D 0 U P

X

The 8086/8087/8088 instruction Set 6-165

FLDL2E—Load Logge
Format

WAIT] °p1 I °P2 I

8087
Execution

Encoding Encoding Typicai Operation Coding Example

9B D9 EA CD19EA 18 push stack FLDL2E
15-21 ST-log,e

Operation
The load log base 2 of e instruction pushes the value log2e onto the top of the
floating point stack. This value has full temporary real precision of 64 bits.

Exceptions

I Z D 0 U P

X

6-166 ASM86

FLDL2T—Load Log,10
Format

WAIT) opl I !

8087
Encoding Encoding Typical Operation Coding Exampie

9B D9 E9 CD19E9 19 push stack FLDL2T
16-22 ST-log,10

Operation
The toad tog base 2 of 10 instruction pushes the constant tog210 onto the stack. This
constant has temporary reat precision of 64 bits with accuracy of approximately 19
decimat digits.

Exceptions

I Z D 0 U P

X

The 8086/8087/8088 instruction Set 6-167

FLDP!—Load ?r
Format

WAtT] op1 J_____ I

8087
Execution

Encoding Encoding
Range

9BD9EB CD19EB 19
16-22

ST - n

FLDPI

Operation
This instruction pushes n onto the top of the stack. The n vaiue has fuii temporary
reai precision of 64 bits with an accuracy of approximate^ 19 decimai digits.

Exceptions

I Z D 0 U P

X

6-168 ASM86

FLDZ—Load +0.0
Format

WAIT] op1 I °P2)

8087
Encoding

Execution

Operation Coding Exampie

9BD9EE CD 19 EE 14 push stack FLDZ
11-17 ST-0.0

Operation
The load zero instruction pushes the value +0.0 onto the top of the floating point
stack. The constant has temporary real precision of 64 bits.

Exceptions

I Z D 0 U P

X

The 8086/8087/8088 instruction Set 6-169

FLD1—Load +1.0
Format

WAIT] op1)]

8087
Encoding

Clocks
Operation Coding Example

9BD9 E8 CD19E8 18 push stack FLD1
15-21 ST-1.0

Operation
This instruction pushes the constant + i.O onto the top of the fioating point stack.
This constant has fuii temporary reai precision of 64 bits.

Exceptions

I Z D 0 U P

X

6-170 ASM86

FMUL—Mu!tip!y Rea!
Format
Stack top and Stack element

] WAIT] opi [op2 + i

130-145'

8087
Encoding

Range

Operation Coding Exampie

9BD8 C8+i CD18C8+I 138' ST-ST*ST(i) FMUL ST,ST(3)
130-145'

9BDC C8 + i CD1CC8 + i 138' ST(i) - ST(i)' ST FMUL ST(2),ST

Clocks are when one or both operands are short.

Stack top and memory operand

] WAIT) opt] m/op/rm [addrl] addr2]

8087 Ciocks
Encoding Encoding Typical

9B D8 m1rm CD 18 m1rm 118+EA
(110-125) + EA (short rea))

FMUL SPEED

9B DC m1rm CD 1C m1rm 161 +EA' ST-ST* mem-op FMUL HEIGHT
(154-168)+EA' (long real)

'Clocks re 120+ EA when one or both o eran sar sh rtlocks are when one or both operands are short.

Operation
The multiply real instruction multiplies the destination operand by the source and
returns the product to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

Exceptions

I Z D 0 U P

X X X X X

The 8086/8087/8088 Instruction Set 6-171

FMULP—Muttipty Rea) and Pop
Format

] WAIT I op1] op2+i I

8087
Execution

Operation Coding Exampte

9B DE C8 + i CD!EC8 + i 142' ST(i) -ST(i)' ST FMULP ST(2),ST
134-148'

100
94-108 ' operands are sort.

Operation
The multiply real instruction multiplies the destination operand by the source and
returns the product to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

The multiply reai and pop stack instruction multiplies one of the stack elements by
the stack top, repiaces the stack element with the product, and then pops the Heating
point stack.

Exceptions

I Z D 0 U P

X X X X X

6-172 ASM86

FNOP—No operation
Format
) WAIT] op1) op2

8087
Encoding

Emutator
Encoding

Ciocks
Typica)
Range

Operation Coding Example

9BD9 DO CD 19 DO 13
10-16

ST-ST FNOP

Operation
This operation stores the stack top to the stack top and thus effectiveiy performs no
operation.

Exceptions

I Z D 0 U P

The 8086/8087/8088 tnstruction Set 6-173

FPATAN—Partial Arctangent
Format

WAIT] op1 I °P2 t

8087 Emuiator Ciocks
Encoding Encoding Typical Operation Coding Exampie

9B D9 F3 CD19F3 650
250-800

T, - arctan (ST(1)/ST)
pop stack

ST-T,

FPATAN

Operation
The partial arctangent instruction computes the function 0 = ARCTAN (Y/X). X is
taken from the top stack eiement and Y from ST(1). Y and X must observe the
inequality 0<Y<X< + °°. The instruction pops the floating point stack and
returns 0 to the new stack top, overwriting the Y operand.

Exceptions

I Z D 0 U P *

X X

'operands not checked

Description
This instruction assumes that the operands are valid and in-range. To be considered
valid, an operand must be normalized. If an operand is either invalid or out-or-
range, the instruction will produce an undefined result without signalling an
exception.

6-174 ASM86

FPREM—Partial Remainder
Format
I WAIT I op! I op2 I

8087
Encoding

Clocks
Operation Coding Example

9B D9 F8 CD19F8 125
15-190

ST-REPEAT (ST-ST(1)) FPREM

Operation
This instruction performs modulo division on the stack top by ST(I). FPREM pro
duces an EXACT result; the precision exception does not occur. The sign of the
remainder is the same as the sign of the original dividend.

Exceptions

I Z D 0 U P

XXX

Description
FPREM operates by performing successive subtractions. It can reduce a magnitude
difference of up to 2*" in one execution. If FPREM produces a remainder that is less
than the modulus (ST(I)), the function is complete and bit C2 of the status word
condition code is cleared. If the function is incomplete, C2 is set to I; the result in ST
is then called the partial remainder.

Software can be used to inspect C2 by storing the status word following execution of
FPREM and re-executing the instruction (using the partial remainder in ST as the
dividend), until C2 is cleared. An alternate possibility is comparing ST to ST(I) to
determine when the function is complete. If ST > ST(i), FPREM must be executed
again. If ST = ST(1), the remainder is 0 and execution is complete. If ST < ST(I), ex
ecution is complete and the remainder is ST.

Note
A context switch between the instructions in the remainder loop can be
forced by a higher priority interrupting routine which needs the 8087.

One important use of FPREM is to reduce arguments (operands) of periodic
transcendental functions to the range permitted by these instructions. For example,
the FPTAN (tangent) instruction requires its argument to be less than n/4. Using n/4
as a modulus, FPREM will reduce an argument so that it is in the range of FPTAN.
Because FPREM produces an exact result, the argument reduction does NOT intro
duce roundoff error into the calculations even if several iterations are required to
bring the argument into range. The rounding of n produces a rounded period rather
than a rounded argument.

FPREM also provides the least-significant three bits of the quotient generated by
FPREM (in C^, C,, Co). This is also important for transcendental argument reduc
tion since it locates the original angle in the correct one of eight ?r/4 segments of the
unit circle.

The 8086/8087/8088 tnstruction Set 6-175

FPTAN—Partial Tangent
Format

] WAIT] op1 I °P2 I

8087
Encoding

Execution

Operation Coding Example

9B D9 F2 CD19F2 450
30-540

Y/X - TAN (ST)

ST-Y

ST-X

FPTAN

Operation
The partial tangent instruction computes the function Y/X = TAN(9). 9 is taken
from the top stack element. The value of 6 must be within the range 0 < = 9 < 7r/4.
The result of the operation is a ratio; y replaces 9 in the stack and X is pushed,
becoming the new stack top. 9 is measured in radians.

Exceptions

I Z D 0 U P *

X X

'operands not checked

Description
The ratio result of FPTAN is designed to optimize the calculation of the other
trigonometric functions.

This instruction assumes that the operand is valid and in-range; to be considered
valid, an operand must be normalized. If the operand is invalid or out-of-range, the
instruction will produce an undefined result without signalling an exception.

6-176 ASM86

FRNDiNT—Round to integer
Format
[WAIT (op1 [op2]

8087
Encoding

Emulator
Encoding

Execution
Clocks
Typical
Range

Operation Coding Example

9B D9 FC CD 19 FC 45
16-50

ST - nearest integer (ST) FRNDINT

Operation
This instruction rounds the top stack element to an integer.

Exceptions

I 2 D 0 U P

X X

Description
Assume that ST contains the 8087 reai number encoding of the decimal vaiue
i55.625. FRNDINT wiii change the vatue to t55 if the RC field of the control word
is set to down or chop; or to 156 if it is set to up or nearest.

The 8086/8087/8088 instruction Set 6-177

FRSTOR—Restore Saved State
Format

addrl addr2 [I WAIT [op1] m/op/rm

8087
Encoding Operation Coding Example

9B DD m4rm CD1Dm4rm 202 + EA
(197-207) + EA

8087 state - mem-op FRSTOR STATE SAVE

Operation
The restore state instruction reloads the 8087 from the 94-byte memory area defined
by the source operand. This information should have been written by a previous
FSAVE/FNSAVE instruction.

Exceptions

I Z D 0 U P

Note
CPU instructions may immediately follow FRSTOR, but no NDP instruc
tion should be executed without an intervening FWAIT or an assembler
generated WAIT.

The 8087 resets to its new state at the conclusion of the FRSTOR. The 8087 will, for
example, generate an immediate interrupt request if indicated by the exception and
mask bits in the memory image.

6-178 ASM86

FSAVE/FNSAVE—Save State
Format

WA)T 1 op1] m/op/rm] addrl] addr2)

8087 Emutator
Execution

Ciocks
Encoding Encoding Typicat

Range
Operation

9B DD m6rm CD 1D m6rm 202 + EA
(197-207) + EA

mem-op ^8087 state FSAVE STATE_SAVE

90 DD m6rm CD 1D m6rm 202 + EA
(197-207) + EA

mem-op - 8087 state
(no wait)

FNSAVE STATE

Operation
The save state instruction writes the fui) 8087 state—environment pius register
stack—to the memory iocation specified in the destination operand, and initializes
the NDP. The FSAVE form of this instruction is preceded by an assembler-
generated WAIT instruction.

Exceptions

I Z D 0 U P

Description
Figure 6-8 shows the 94-byte save area iayout. Typically, FSAVE/FNSAVE win be
coded to save this image on the CPU stack.

if an instruction is executing in the 8087 when FNSAVE is decoded, the CPU queues
the save and deiays its execution untii the running instruction compietes normaiiy,
or encounters an unmasked exception. The save image, therefore, reflects the state
of the 8087 foiiowing compietion of any running instruction. After writing the state
image to memory, FSAVE/FNSAVE initializes the 8087 as if F1NIT/FNINT had
been executed.

FSAVE/FNSAVE is usefui whenever a program wants to save the current state of
the NDP and initiaiize it for a new routine. Three examples are:
1. An operating system needs to perform a context switch (suspend the task that

has been running and give control to a new task);
2. An interrupt handler needs to use the 8087;
3. An application task wants to pass a "clean" 8087 stack to a sub-routine.

The 8086/8087/8088 tnstruction Set 6-179

FSAVE/FNSAVE

INCREASING ADDRESSES

S = Sign

121623-15

Figure 6-8. FSAVE/FRSTOR Memory Layout

Note
FSAVE/FNSAVE, tike FSTENV/FNSTENV, must be protected from any
other 8087 instruction that might execute white the save is in progress.
When FSAVE is coded, this can be insured by ptacing an expticit FWAIT in
front of a subsequent no-wait mnemonic, if there is one. When FSAVE is
executed with CPU interupts disabted, an FWAJT shoutd be executed
before CPU interrupts are enabted or any subsequent 8087 instruction is
executed. Because the FNSAVE initializes the NDP, there is no danger of
the FWAtT causing an endtess wait. Other CPU instructions may be
executed between the FNSAVE and the FWAIT; this will reduce interrupt
iatency if the FNSAVE is queued in the 8087.

6-180 ASM86

FSCALE—Scate
Format
] WA)T [op1 [op2

8087
Encoding Operation Coding Exampie

9B D9 FD CD19FD 35
32-38

ST - ST * 2^<" FSCALE

Operation
This instruction interprets the vaiue contained in ST(i) as an integer, and adds this
vaiue to the exponent of the number in ST. ST(i) must be in the range -2" < ST(i)
< + 2" and ST(I) must be an integer.

Exceptions

I Z D 0 U P

X XX

Description
FSCALE is particuiariy usefui for seating the eiements of a vector because it pro
vides rapid muitipiication or division by integral powers of 2.

Note
FSCALE assumes the scaie factor in ST(i) is an integrai value in the range
-2" x < 2". If the vaiue is not an integer, but is in-range and is greater in
magnitude than i, FSCALE uses the nearest integer smalier in magnitude,
i.e., it chops the vaiue toward 0. If the vaiue is out of range, or 0 < I x [<
I, the instruction will produce an undefined resuit and wifi not signai an
exception. The recommended practice is to load the scaie factor from a
word integer to ensure correct operation.

The 8086/8087/8088 tnstruction Set 6-181

FSQRT—Square Root
Format
I WAiT] op1] op2 I

8087
Encoding Operation Coding Example

9BD9FA CD 19 FA 183
180-186

ST-^ST FSQRT

Operation
This instruction replaces the contents of the top of the stack with its square root. ST
must be in the range -0 < ST < + °°.

Exceptions

I Z D 0 U P

X X X

6-182 ASM86

FST—Store Rea!
Format
Stack top to Stack element

] WAIT L °P1 .] op2 + i]

8087
Execution

Encoding Encoding

9BDD DO+i

Stack top to

CD 1D DO + i 18 ST(i)<-ST FST ST(4)
15-22

memory operand

] WAIT [opl] m/op/rm [addrl [addr2 [

8087
Encoding

Execution
Ciocks
Typicai Operation Coding Example

9B D9 m2rm CD 19 m2rm 87 + EA mem-op *- ST FST MEAN
(84-90)+ EA (short-reat)

9B DD m2rm CD 1D m2rm 100 +EA mem-op *- ST FST READING
(96-104)+ EA (tong-reat)

Operation
The store real instruction transfers the top of the stack to the destination, which may
be another stack eiement or a short or iong reai memory operand. If the destination
is short or long real, the significand is rounded to the width of the destination
according to the RC fieid of the controi word and the exponent is converted to the
width and bias of the destination format.

Exceptions

I Z D 0 U P

X XXX

Note
If the stack top is tagged special (it contains °°, a NAN, or a denormal), the
stack top significand is not rounded. In this case, the least significant bits of
the stack top are deleted to fit the destination. The exponent is treated in the
same way. This preserves the value's identification as °°, or a NAN (expo
nent of all ones), or a denormal (exponent all zeros) so that it can be prop
erly loaded and tagged later in the program, if desired.

The 8086/8087/8088 Instruction Set 6-183

FSTCW/FNSTCW—Store Control Word
Format

WAIT [op1

8087
Encoding

Emuiator
Encoding

Execution
Ciocks
Typical
Range

Operation Coding Exampie

9B D9 m7rm CD 19 m7rm 15+EA mem-op "* processor FSTCW CONTROL
(12-18) +EA contro! word

90 D9 m7rm CD 19 m7rm 15 + EA mem-op *- processor FNSTSW CONTROL
(12-18)+ EA contro! word

(no wait)

Operation
The store control word instructions write the current processor controi word to the
memory iocation defined by the destination. The FSTCW form of this instruction is
preceded by an assembier-generated WAIT instruction.

Exceptions

I Z D 0 U P

Description
When appiication tasks are running, the WAIT form of this instruction shouid be
used. The NO WAIT form is provided for use in criticai code regions where a WAIT
instruction might induce an endiess wait.

6-184 ASM86

FSTENV/FNSTENV—Store Environment
Format

) m/op/rm] addrlWA)T] opl

8087
Encoding

Emutator
Encoding

Execution
Ciocks

Coding ExampfeTypical
Range

Operation

9B D9 m6rm CD 19 m6rm 45+EA mem-op - 8087 FSTENV ENVIRON
(40-50) + EA environment

90 D9 m6rm CD 19 m6rm 45+EA mem-op 8087 FNSTENV ENVIRON
(40-50)+ EA environment

Operation
This instruction writes the 8087 basic status (controi word, status word, and tag
word) and exception pointers to the memory iocation defined by the destination
operand. The FSTENV form of this instruction is preceded by an assembler-
generated WAIT instruction.

Exceptions

I Z D 0 U P

Description
FSTENV/FNSTENV is often used by exception handiers because it provides access
to the exception pointers which identify the offending instruction and operand.

FSTENV/FNSTENV typicaiiy saves the environment on the CPU stack. After the
environment is saved, FSTENV/FNSTENV sets aii exception masks in the pro
cessor; it does not affect the interrupt enabie mask. Figure 6-9 shows the format of
the environment data in memory. If FNSTENV is decoded white another instruction
is executing concurrently in the NEU, the 8087 does not store the environment untii
the other instruction has completed. The data saved by this instruction, therefore,
reflects the state of the 8087 AFTER any previously decoded instruction has been
executed.

Note
FSTENV/FNSTENV must be allowed to complete before any other 8087
instruction is decoded. When FSTENV is coded, an assembler-generated
WAIT should precede any subsequent 8087 instruction. When using
FNSTENV, with CPU interrupts disabled, an explicit FWAIT should be
executed before enabling CPU interrupts.

There is no risk of the FWAIT causing an endless wait. FNSTENV masks
all exceptions so that interrupt requests from the 8087 are prevented.

The 8086/8087/8088 tnstruction Set 6-185

FSTENV/FNSTENV

INCREASING ADDRESSES

INSTRUCTION
POINTER

OPERAND
POINTER

121623-16

Figure 6-9. FSTENV and FLDENV Memory Layout

6-186 ASM86

FSTP—Store Rea! and Pop
Format
Stack top to Stack element

WAIT) op1] op2+i)

8087
Execution

Encoding Encoding

9B DD D8 + i CD 1D D8 + i 20 ST(i)<-ST FSTP ST(2)

Stack top to memory operand

WAIT) op1) m/op/rm [addrl][addr2]

8087 Clocks
Encoding Encoding Typica)

9B D9 m3rm CD 19 m3rm 89 + EA
(86-92) + EA

(short-reat)

FSTP TOTAL

9B DD m3rm CD 1D m3rm 102+EA
(98-106)+EA pop stack

FSTP AVERAGE

9B DB m7rm CD 1B m7rm 55 + EA
(52-58)+ EA pop stack

FSTP TEMP STORE

Operation
The store real and pop stack instruction transfers the top of the stack to the destina
tion and then pops the stack. The destination may be another stack element, or
memory operand (short-real, long-real, or temporary-real). If the destination is
short or long real memory, the significand is rounded to the width of the destination
according to the RC field of the control word and the exponent is converted to the
width and bias of the destination format.

This instruction allows storing temporary real numbers into memory. Coding FSTP
ST(0) is equivalent to popping the stack with no data transfer.

Exceptions

I Z D 0 U P

X XXX

The 8086/8087/8088 Instruction Set 6-187

FSTSW/FNSTSW—Store Status Word
Format

WAIT] op1] m/op/rm I addrl] addr2]

8087
Execution

Encoding Encoding Typical

9B DD m7rm CD 1D m7rm 15+EA
(12-18) + EA

mem-op *- 8087 status FSTSW SAVE—STAT

90 DD m7rm CD 1D m7rm 15+EA
(12-18) + EA

mem-op - 8087 status FNSTSW SAVE—STAT

Operation
The store status word instructions write the current vaiue of the 8087 status word to
the destination operand in memory. The FSTSW form of this instruction is preceded
by an assembier-generated WAIT instruction.

Exceptions

I Z D 0 U P

Description
The three primary uses of this instruction are:
1. To implement conditional branching foiiowing a comparison or FPREM

instruction (WAIT form).
2. To poh the 8087 to determine if it is busy (NO-WAIT form).
3. To invoke exception handiers in environments that do not use interrupts (WAIT

form).

Note
If the WAIT form is used with an outstanding unmasked exception,
deadlock will resuit.

6-188 ASM86

FSUB—Subtract Rea!
Format
Stack top and Stack element

I WAiT I opl I op2 + i I

8087
Encoding

Ciocks
Typicai
Range

9BD8 EO + i CD18E0 + I 85
70-100

9BDCE8 + i CD1CE8 + i 85

70-100

ST-ST-ST(i) FSUB ST,ST(2)

ST(i)-ST(i)-ST FSUB ST(3),ST

Stack top and memory operand

[WA!T [op!] m/op/rm] addrl]

8087
Encoding Encoding

Execution
Ciocks
Typicat
Range

9B D8 m4rm CD 18 m4rm 105+EA
(90-120) +EA

9B DC m4rm CD 1C m4rm 110 + EA
(95-125)+ EA

ST-ST-mem-op FSUB VALUE
(short-real)

ST-ST-mem-op FSUB BASE

Operation
The subtract real instruction subtracts the source operand from the destination and
returns the difference to the destination. The source operand may be either the stack
top, a stack element or a short or fong reai operand in memory. When the source is
the stack top, the destination is one of the stack eiements. When the source is a stack
eiement or memory operand, the destination is the stack top.

Exceptions

I Z D 0 U P

X X X X X

The 8086/8087/8088 tnstruction Set 6-189

FSUBP—Subtract Rea! and Pop
Format

WAIT] op1] op2 + i I

8087
Execution

Encoding Encoding
Range

9B D8 E8 + i CD D8 E8 + i 90
75-105

ST(1)-ST(1)-ST FSUB

9BDEE8+I CD1EE8 + i 90
75-105

ST(i)-ST(i)-ST FSUBP ST(2),ST

Operation
The subtract reai instruction subtracts the source operand from the destination and
returns the difference to the destination. The source operand may be either the stack
top, a stack eiement or a short or iong reai operand in memory. When the source is
the stack top, the destination is one of the stack eiements. When the source is a stack
eiement or memory operand, the destination is the stack top.

The subtract reai and pop stack instruction subtracts the stack top from one of the
stack eiements, replacing the stack eiement with the difference and then pops the
fioating point stack.

Exceptions

I Z D 0 U P

X X X X X

6-190 ASM86

FSUBR—Subtract Rea! Reversed
Format
Stack top and Stack element

WAiT [op1] op2+i

8087
Encoding Operation Coding Exampie

9B D8 E8 + i CD D8 E8 + i 87 ST - ST(i) - ST FSUBR ST,ST(i)
70-100

9BDC EO+i CD1CE0 + i 87 ST(i) - ST - ST(i) FSUBR ST(3),ST
70-100

Stack top and memory operand

WAiT [opl m/op/rm J addrl addr2

8087 Ciocks

105 + EA
(90-120) + EA

110+EA
(95-125)+EA

FSUBR INDEX

FSUBR VECTOR

Operation
The reverse subtract instruction subtracts the destination from the source and
returns the difference to the destination. The source operand may be either the stack
top, a stack eiement, or a short or iong reai operand in memory. When the source is
the stack top, the destination is one of the stack eiements. When the source is a stack
eiement or memory operand, the destination is the stack top.

The 8086/8087/8088 instruction Set 6-191

FSUBRP—Subtract Rea! Reversed and Pop
Format

WAIT) op1) op2+i

8087
Encoding

Execution
Ciocks
Typical Operation Coding Exampie

9BDE E1 CD 1E E1 90 ST(1)-ST-ST(1) FSUBR
75-105 pop stack

9B0E EO + i CD1EE0 + i 90 ST(i) - ST - ST(i) FSUBRP ST(2),ST
75-105 pop stack

Operation
The reverse subtract instruction subtracts the destination from the source and
returns the difference to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

The reverse subtract and pop stack instruction subtracts one of the stack elements
from the stack top and returns the difference to the stack element. The floating
point stack is then popped.

Exceptions

I Z D 0 U P

X X X X X

6-192 ASM86

FTST—Test Stack Top Against +0.0
Format

] WAIT) op1 I J

8087 Emulator Clocks
Encoding Encoding Typical

9BD9E4 CD19E4 42
38-48

ST-ST-0.0 FTST

Operation
The test instruction compares the eiement in the top of the Heating point stack with
zero and posts the resuit to the condition code.

Exceptions

1 Z D 0 U P

X X

Description

Condition Code Test Resuits

C3 co Resuit

0 0 ST is positive
0 1 ST is negative
1 0 ST is zero (+ or -)
1 1 ST is not comparable (i.e., it is a NAN or projective °°

The 8086/8087/8088 Instruction Set 6-193

FWA!T—(CPU) Wait while 8087 is busy
Format

] WAIT

8087
Encoding Operation Coding Exampie

9B 90 3 + 5n
3 + 5n

8088 wait instruction FWAIT

Operation
This instruction is an alternate mnemonic for the CPU WAIT instruction. FWA1T
must be used instead of WAIT for 8087 emulator comparability is desired.

Exceptions

I Z D 0 U P

Description
The FWA1T mnemonic should be coded whenever the programmer wants to syn
chronize the CPU to the NDP. This means that further instruction decoding will be
suspended until the NDP has completed the current instruction. This is useful if the
CPU wants to inspect a value stored by the NDP (i.e., FIST should be followed by
FWA1T to ensure that the value has been stored before attempting to examine it).

Note
Programmers should not code WAIT to synchronize the CPU and 8087.
The routines that alter an object program for 8087 emulation change any
FWAlTs to NOPs but do not change any explicitly coded WAlTs. The pro
gram will wait forever if a WAIT is encountered in emulated execution since
there is no 8087 to drive the CPU's test pin active.

6-194 ASM86

FXAM—Examine Stack Top
Format

WAIT] op1) op2

8087
Encoding

Execution

Range

9BD9E5 CD19E5 17 set condition code FXAM

Operation
The examine instruction reports the content of the top of the Heating point stack as
positive/negative and NAN/unnormal/denormal/normal/zero, or empty. The con
dition codes which can be generated are shown in tabie 6-15.

Exceptions

I Z D 0 U P

Description
Tabte 6-15 lists and interprets all of the condition code values that FXAM
generates. Although four different encodings may be returned for an empty register,
bits C3 and CO of the condition code are both 1 in alt encodings. Bits C2 an Cl
should be ignored when examining for empty.

Table 6-15. FXAM Condition Code Settings

C3

Condition Code

co interpretation
C2 C1

0 0 0 0 + U n norms)
0 0 0 1 + NAN
0 0 1 0 — Unnorma)
0 0 1 1 - NAN
0 1 0 0 + Norma)
0 1 0 1 + OO
0 1 1 0 — Norma)
0 1 1 1 - 00

1 0 0 0 + 0
1 0 0 1 Empty
1 0 1 0 -0
1 0 1 1 Empty
1 1 0 0 + Denormal
1 1 0 1 Empty
1 1 1 0 - Denormal
1 1 1 1 Empty

The 8086/8087/8088 instruction Set 6-195

FXCH—Exchange Registers
Format
) WAIT) op1] op2+i [

8087
Encoding Operation Coding Exampie

9B D9 C8 CD19C8 12 T, -ST(1) FXCH
10-15 ST(1) - ST

ST - T,

9BD9 C8+i CD19C8+i 12 T, - ST(i) FXCH ST(3)
10-15 ST(i)*-ST

ST-T,

Operation
The exchange instruction swaps the contents of a stack element and the stack top. if
the stack eiement is not expiicitly coded, ST(1) is used.

Exceptions

I Z D 0 U P

Description
Many 8087 instructions operate oniy on the stack top; FXCH provides an easy way
to use these instructions on lower stack eiements. For example, the following
sequence takes the square root of the third element from the top.

FXCH ST(3)
FSQRT
FXCH ST(3)

6-196 ASM86

FXTRACT—Extract Exponent and Significand
Format

WA!T] op1 [op2

8087
Encoding

Execution
Ciocks

Operation Coding Exampie

9B D9 F4 CD19F4 50
27-55

ST - T,

ST -T,

FXTRACT

Operation
The extract instruction "decomposes" the number in the stack top into two numbers
that represent the actua) value of the operand's exponent and significand fields. The
"exponent" reptaces the origina) operand on the stack and the "significand" is
pushed onto the stack.

Exceptions

I 2 D 0 U P

X

Description
FXTRACT is useful in conjunction with FBSTP for converting numbers in 8087
temporary rea) format to decimat representations (e.g., for printing or disptaying).
tt can atso be usefut for debugging, since it attows the exponent and significand parts
of a reat number to be examined separately.

Note
Fottowing execution of FXTRACT, ST (the new stack top), contains the
value of the original significand expressed as a real number. The sign of this
number is the same as the operand's; its exponent is 0 true (16,383 or
3FFFH biased), and its significand is identical to the original operand's.
ST(1) contains the value of the original operand's true (unbiased) exponent
expressed as a real number. If the original operand is zero, FXTRACT pro
duces zeros in ST and ST(1) and BOTH are signed as the original operand.

Example
Assume ST contains a number whose true exponent is +4 (i.e., its exponent field
contains 4003H). After executing FXTRACT, ST(1) will contain the real number
+4.0; its sign will be positive, its exponent field will contains 4001 +) (+2 true) and its
significand field will contain 1A00 . . . 00B. In other words, the value in ST(1) will be
1.0x2' = 4.

The 8086/8087/8088 Instruction Set 6-197

FXTRACT
If ST contains an operand whose true exponent is -7 (i.e., its exponent field con
tains 3FF8H), then FXTRACT will return an "exponent" of -7.0. After the
instruction executes, ST(I)'s sign and exponent fields wilt contains C001H (negative
sign, true exponent of 2) and its significand wiii be 1 Al 100 . . . 00B. The vaiue in
ST(I)wii! be-1.11x2' =-7.0.

In both cases, foilowing FXTRACT, ST's sign and significand fieids will be the
same as the original operand's and its exponent field wiii contain 3FFFH, (0 true).

6-198 ASM86

FYL2X—Y * Log,X
Format

) WAIT [op1 j op2

8087
Encoding Operation Coding Example

9B D9 F1 CD19F1 950
900-1100

ST,-ST(D'log,(ST) FYL2X

ST -T,

Operation
This instruction caicuiates the function:

Z = Y'log^X

X is taken from the stack top and Y from ST(1). The operands must be in the ranges
0 < X <co and - °° < Y < + °°. The instruction pops the stack and returns Z at the
(new) stack top replacing the Y operand.

Exceptions

t Z D 0 U P *

X

'operands not checked

Note
This function optimizes the catenation of tog to any base other than two
since a muttipheation is atways required:

log„X = —!— * log^X
log,n

The 8086/8087/8088 instruction Set 6-199

FYL2XP1—Y*Log,(X + 1)
Format

WAIT) op!] op2

8087

9B D9 F9 CD19F9

^Clocks"

Typica)
Range

850
700-1000

Operation Coding Exampie

I, - ST + 1 FYL2XP1
T2-ST(1)*log,T,

ST-T,

Operation
This instruction caicuiates the function Z = Y*LOG2 (X + 1). X is taken from the
stack top and must be in the range 0 <] X) < (1- \^2/2). Y is taken from ST(!)
and must be in the range -°°A < Y <°°. FYL2XP1 pops the fioating point stack and
returns Z at the new stack top, replacing Y.

Exceptions

I Z D 0 U P *

X

'operands not checked

Note
This instruction provides improved accuracy over FYL2X when computing
the log of a number very close to 1. For example, when calculating 1 + E
where E « 1, being able to input E rather than 1 + E to the function allows
more significant digits to be retained.

The Macro Processing Language

tntroduction

The Macro Processing Language (MPL) of the 8086/8087/8088 Macro Assembler is
a string repTacementTacinty.Tt permits you to write repeaTeUTy used sections of code
onee ancFthen insert that code at severa! places in your program. If several pfogram-
mers are working on the same project, a library of macros in include files can be
develope&and shared try the entire team. PerhapsATPIPs most valuable capability is
conditional assembly. Compact configuration-dependent code is often critical to
microprocessor software design, and conditional-assembly of sections of code can
help to achieve the most compact code possible.

This chapter documents MPL in three parts. The first section describes how to
define and use your own macros. The second section defines the syntax an^
describes the operation of the macro processor's built-in functions. The final section
of the chapter is devotedro advanced concepts in MPL.

The first two sections give enough information to begin using the macro processor.
However, sometimes a more exact understanding of MPL's operation is needed.
The advanced concepts section should fill those needs.

Macro Processor Overview

The macro processor views the source file in very different terms than does the
assembler. To the assembler, the source file is a series of control lines, instruction
lines, and directive lines. To the macro processor, the source file is a long string of
characters. Figure 7-1 illustrates these two different views of the input file.

Figure 7-1. Macro Processor versus Assembler—Two Different Views of a Source Fite

7-2 ASM86

AH macro processing of the source file is performed before your code is assembled.
Because of this independence between the processing of macros and assembly of
code, we must differentiate between macro-time and assembiy-time. At macro-time,
assembly language symbols—labels, predefined assembler symbols, EQU symbols,
and the location counter are not known. The macro processor does not recognize the
assembly language. Similarly, at assembly-time no information about macros is
known.

The macro processor scans the source file looking for macro calls. A macro call is
actually a request to the macro processor either to (re)define a user-defined macro or
to replace a built-in or user-defined macro with its defined value.

This defined value or return value of a macro is the text that replaces the macro call.
The return value of some macros is the null string. (The null string is a character
string containing no characters.) In other words, when these macros are called, the
calls are removed from the input stream. In their place, the assembler sees the return
value kept.

Thus, when a macro call is encountered, the macro processor expands the call to its
return value. The return value of a macro is then passed to the assembler and the
macro processor continues. All characters that are not part of a macro call are
passed to the assembler.

Creating and Casing Macros
The macro processor is a character string replacement facility, ft searches the source
file for a macro call, and then replaces the call with the macro's return value. The
metacharacter (% is the default) signals a macro call. Until the macro processor
finds a metacharacter, it does not process text. It simply passes the text from the
source file to the rest of the assembler.

Since MPL only processes macro calls, it is necessary to call a macro in order to
create other macros. The built-in function DEFINE creates macros. Built-in func
tions are a predefined part of the macro language, so they may be called without
prior definition. The general syntax for DEFINE is:

%[*]DEFINE(ca//-patfern)[/oca/-symbo/-h'$t](macro-body)

DEFINE is the most important MPL built-in function. This section of the chapter is
devoted to describing this built-in function. Each of the symbols in the syntax above
(caff-patter/?, Ioca/-sy/nho/-/7'st, and macro-body) are thoroughly described in the
pages that follow. In some cases we have abbreviated this general syntax to
emphasize certain concepts.

Creating Parameteriess Macros

When you create a parameterless macro, there are two parts to a DEFINE call: the
call pattern and the macro body. The call pattern defines the name used when the
macro is called; the macro body defines the return value of the call.

The syntax of a parameterless macro definition is shown below:

%*DEFINE (ca//-paMern) (macro-body)

The is the metacharacter that signals a macro call. The '*' is the literal character
that is normally used when defining macros. The exact use of the literal character is
discussed in the advanced concepts section.

The Macro Processing Language 7-3

When you define a parameterless macro, the is a macro identifier that
will follow the metacharacter in the source file. The rules for macro identifiers are:

* The identifier must begin with an alphabetic character (A,B,C,...,Z or
a,b,c,...z).

* The remaining characters may be alphabetic, special (a question mark (?) or an
underscore character (_)), or decimal digits (0,1,2,...,9).

* Only the first 31 characters of a macro identifier are significant. Upper and
lower case characters are not distinguished in a macro identifier.

The macro-body is usually the return value of the macro call. However, the macro-
body may contain calls to other macros. If so, the return value is actually the fully
expanded macro body, including the return values of the calls to other macros.
When you define a macro using the literal character, '*', shown above, macro calls
contained in the body of the macro are not expanded until you call the macro. The
macro call is reexpanded each time it is called.

Example 1. Nested Macro

%*DEFINE(ASTRING)(PHANT)
%*DEFINE(JUMBO)(ELE%ASTRING)

Call-XJUMBO
is expanded to— ELEPHANT

The syntax of DEFINE requires that left and right parentheses surround the macro
body. For this reason, you must have balanced parentheses within the macro body,
(i.e., each left parenthesis must have a succeeding right parenthesis, and each right
parenthesis must have a preceding left parenthesis.) We call character strings that
meet these requirements ba/anced-texr

Example 2. Balanced and Unbalanced '()'

Balanced strings—

(abc)
(a(b)c)
((ab(c)d)e)

Unbalanced strings—

(abc
(a(b)c
(a b (c)

To call a macro, you use the metacharacter followed by the ca/Apadem for the
macro. (The literal character is generally not needed when you call a user-defined
macro.) The macro processor will remove the call and insert the return value of the
call. If the macro body contains any call to other macros, they will be replaced with
their return values.

7-4 ASM86

Example 3. Macro Calls

%*DEFINE(ME)(I LIKE)
%*DEFINE(MHAT(OBJECT))(MY XOBJECT)

Calls-

%ME -> I LIKE
XMHAT(BIKE) MY BIKE
%ME XMHAT(JOB) . -) I LIKE MY JOB.

Once a macro has been created, it may be redefined by a second cat] to DEFINE.

Example 4. Redefinition of Macros

%*DEFINE(LINCOLN)(GETTYSBURG)

XLINCOLN MILL EXPAND TO -* GETTYSBURG

%*DEFINE(LINCOLN)(ONE CENT)

XLINCOLN MILL EXPAND TO -t ONE CENT

The three examples below show several macro definitions. Their return values are
also shown.

NOTE
In order to postpone discussion of the use of local macro symbols for labels,
location counter relative addressing (with '$') is used in these examples.
This is done for simplicity, but is not generally recommended because dif
ferent addressing modes produce different instruction sizes which will affect
the location counter offset required.

Example 1:
Macro definition at the top of the program:

%*DEFINE(MOVE)(
MOV CX,100
LEA SI,TABLE1
LEA DI,TABLE2
REP MOVSM
)

Macro call as it appears in program:

PUSH CX
XMOVE
POP CX

The program after the macro processor makes the expansion:

PUSH CX
MOV CX,100
LEA SI,TABLE1
LEA SI,TABLE2
REP MOVSM
POP CX

The Macro Processing Language 7-5

Example 2:
Macro definition at the top of the program:

X'DEFINE (ADD5)(
MOV CX,100
MOV SI,0
MOV AX,TABLE2[$I]
ADD AX,5
MOV TABLE2ISI],AX
INC SI
INC SI
LOOPZ $-13
)

The macro cail as it appears in the original program body:

PUSH AX
XADD5
POP AX

The program after macro expansion:

PUSH AX
MOV CX,100
MOV SI,0
MOV AX,TABLE2ISI]
ADD AX,5
MOV TABLE2ISI1,AX
INC SI
INC SI
LOOPZ $-13
POP AX

Example 3:
Macro definition at the top of the program:

X*DEFINE(MOV_AND_ADD)(
XMOVE
XADD5
)

The macro cad as it appears in the body of the program:

XMOVE_AND_ADD

The program after macro expansion:

MOV CX,100
LEA SI,TABLE1
LEA SI,TABLE2
REP MOVSW
MOV CX,1OO
MOV SI,0
MOV AX,TABLE2ISI]
ADD AX,5
MOV TABLE2ISI1,AX
INC SI
INC SI
LOOPZ $-13

7-6 ASM86

Creating Macros with Parameters

If the only thing the macro processor could do was simple string replacement, then it
would not be very useful for most programming tasks. Each time we wanted to
change even the simplest part of the macro's return vaiue we would have to redefine
the macro. Parameters in macro cabs allow more generai-purpose macros.

Parameters leave holes in a macro body that are filled in when you cal! the macro.
This permits you to design a single macro that produces code for many typical pro
gramming operations.

The term parameter refers to both the formal parameters that are specified when the
macro is defined (the holes), and the actual parameters or arguments that are
specified when the macro is calied (the fill-ins).

The syntax for defining macros with parameters is very similar to the syntax for
macros without parameters. The that we described earlier actually
includes both the macro-name and an optionai parameter-//st. With this addition
the syntax for the DEFINE built-in function becomes;

%*DEFINE(macro-name[(parameter-/rsf)]) (macro-body)

NOTE
This is not the only format allowable but a specific case. The parentheses
are not the only delimiters that can be used (see the Advanced MPL Con
cepts section).

The macro-name must be a valid macro identifier.

The paramefer-/r$t is a list of macro identifiers separated by macro delimiters,
usually commas. These identifiers comprise the formal parameters used in the
macro. The macro identifier for each parameter in the list must be unique.

The macro-body must be a balanced-tex? string. The locations of parameter replace
ment (the placeholders to be filled in by the actual parameters) are indicated by plac
ing a parameter's name preceded by the metacharacter in the macro body. The
parameters may be used any number of times and in any order within the macro
body. (If a user-defined macro has the same macro identifier name as one of the
parameters to the macro, the macro may not be called within the macro body since
the name would be recognized as a parameter.)

The example below shows the definition of a macro with three parameters—
SOURCE, DEST, and COUNT. The macro will produce code to copy any number
of words from one part of memory to another.

%*DEFINE(MOVE_ADD_GEN(SOURCE,DEST,COUNT))(
MOV CX,%COUNT
MOV SI,0
MOV AX.XSOURCEESH
MOV XDESTCSI1,AX
INC SI
INC SI
LOOPZ $-13

)

To call a macro with parameters you must use the metacharacter followed by the
macro's name as with parameterless macros. However, a list of the actual
parameters must follow. In the most simple case these actual parameters are

The Macro Processing Language 7-7

enclosed with parentheses, and separted from each other by commas. The actuai
parameters must be ba/a/rcerf-text and may optionaDy contain caiis to other macros.
A simpie cail to the macro defined above might be:

XMOVE_ADD_GEN(INPUT, STORE, 100H)

The above macro catl produces the following code:

MOV CX,100H
MOV SI,0
MOV AX,INPUT[SI]
MOV STORE(SI],AX
INC SI
INC SI
LOOPZ $-13

LOCAL Symbois in Macros

The LOOPZ instruction uses offset addressing ($-13). However, if the instructions
in the macro MOVE_ ADD_ GEN are modified, the offset address ($-13) may need
to be changed. This is a disadvantage of using offset addressing. !f we chose to use a
label for the jump destination, macro modification would generally not affect the
label. However, the macro could only be used once, since a second call to the macro
would cause a conflict in label definitions at assembly time. We could make the label
a parameter and specify a different symbol name each time we call the macro. A
preferable way to ensure a unique label for each macro call is to put the label in a
LOCAL list. The LOCAL list construct allows you to use macro identifiers to
specify assembly-time symbols. Each use of a LOCAL symbol in a macro guarantees
that the symbol will be replaced by a unique assembly-time symbol each time the
macro is called.

The macro processor increments a counter once for each symbol used in the list
every time your program calls a macro that uses the LOCAL construct. Symbols in
the LOCAL list, when used in the macro body, receive a two to five digit suffix that
is the hexadecimal value of the counter. The first time you call a macro that uses the
LOCAL construct the suffix is '00'.

The syntax for the LOCAL construct in the DEFINE function is shown below. (This
is the complete syntax for the built-in function DEFINE):

%*DEFINE(macro-/7ame[parameter-/7.s/]) [LOCAL/oca/-/fst] (macro-&o</y)

The /ocaf-ffst is a list of valid macro identifiers separated by spaces. Since these
macro identifiers are not parameters, the LOCAL construct in a macro has no affect
on the syntax of a macro call.

The example below shows the MOVE_ ADD__GEN macro definition that uses a
LOCAL list:

X*DEFINE(MOVE_ADD_GEN(SOURCE,DEST,COUNT)) LOCAL LABEL (
MOV CX,XCOUNT
MOV SI,0

XLABEL: MOV AX,XSOURCE(SI]
MOV XDESTfSI],AX
INC SI
INC SI
LOOPZ XLABEL

)

7-8 ASM86

The foHowing macro cat):

%MOVE_ADD_GEN(DAT A,FILE,67)

would produce this code if this is the eleventh call to a macro using a LOCAL iist:

MOV CX,67
MOV SI,0
LABELOA: MOV AX,DATA[SI]
MOV FILEfSI],AX
INC SI
INC SI
LOOPZ LABELOA

Since macro identifiers foiiow the same ruies as ASM86, you can use any macro
identifier in a LOCAL iist. However, if you use iong identifier names, they shouid
be restricted to 26 characters. Otherwise the iabei suffix may cause the identifiers to
exceed 3 i characters and the excess characters would be truncated.

The Macro Processor's BuHt-in Functions
The macro processor has several built-in or predefined macro functions. These built-
in functions perform many usefu) operations that wouid be difficuit or impossible to
produce in a user-defined macro. An important difference between a user-defined
macro and a built-in function is that user-defined macros may be redefined, white
built-in functions cannot be redefined.

We have already seen one of these built-in functions, DEFINE. DEFINE creates
user-defined macros. DEFINE does this by adding an entry in the macro processor's
tabte of macro definitions. Each entry in the tabte includes the ca//-pattern for a
macro, and its macro 6oc(y. Entries for the built-in functions are present when the
macro processor begins operation.

Other built-in functions perform numerical and logical expression evaluation, affect
control flow of the macro processor, manipulate character strings, and perform
console I/O (see Appendix D for a listing of the MPL built-in functions).

Comment, Escape, Bracket and METACHAR
Buiit-in Functions

Comment Function
The Macro Processing Language can be very subtle, and the operation of macros
written in a straightforward manner may not be immediately obvious. Therefore, it
is often necessary to comment your macro definitions.

The macro processor's comment function has the following syntax:

%'text'

or

% 'text end-of-/me

The Macro Processing Language 7-9

The comment function always evaiuates to the nutl string. Two terminating
characters are recognized, the apostrophe and the (tine feed character,
ASCH OAH). The second form of the call allows you to spread macro definitions
over several lines, while avoiding any unwanted enJ-of-Zmes in the return value, In
either form of the comment function, the Text or comment is not evaluated for
macro calls.

The example below shows a commented macro definition:

X*DEFINE(MOVE_ADD_GEN(SOURCE,DEST,COUNT)) LOCAL LABEL (
MOV CX.XCOUNT X'COUNT SHOULD BE A CONSTANT
MOV SI,0

XLABEL X' XLABEL IS A LOCAL SYMBOL IT WILL HAVE A NUMBER ADDED
: MOV AX.XSOURCEISIJ X'SOURCE MUST BE A WORD ADDRESS'

MOV XDESTISD.AX X'DEST MUST ALSO BE A WORD ADDRESS'
INC $1
INC SI
LOOPZ XLABEL X'THIS WILL HAVE THE SAME NUMBER ADDED

X'AS THE XLABEL ABOVE'
)

Call to above macro:

%MOVE_ADD_GEN(DATA, STOR, 20H)

Return-value from above call:

MOV CX,20H MOV SI,0
LABEL07: MOV AX.DATAISU

MOV STORfSI],AX
INC SI
INC SI
LOOPZ LABEL07

Notice that the comments that were terminated with end-of-//ne removed the end-of-
/fne character along with the rest of the comment.

Note that the metacharacter is not recognized as flagging a call to the macro pro
cessor when it appears in the comment function.

Escape Function
Occasionally, it is necessary to prevent the macro processor from processing text.
There are two built-in functions that perform this operation: the escape function
and the bracket function.

The escape function interrupts the processor from its normal scanning of text. The
syntax for this function is shown below:

%n text-n-c/7aracters-/ong

The metacharacter followed by a single decimal digit designates that the specified
number of characters (maximum is 9) shall not be evaluated. The escape function is
useful for inserting a metacharacter as text, adding a comma as part of an argument,
or placing a single parenthesis in a character string that requires balanced
parentheses.

7-10 ASM86

Several examples of the escape function are shown below:

MACCALL is defined as follows:

X*DEFINE(MACCALL(ARG1, ARG2, ARG3))
(

; XARG1
; XARG2
; XARG3

)

Before Macro Expansion After Macro Expansion
(actuai parameters)

; COMPUTE 10%1% OF SUM
XMACCALL(JANUARY 23X1, 1980,

MARCH 15X1, 1980,
APRIL 9X1, 1980)

XMACCALL(1X1) ADD INPUTS,
2X1) DIVIDE BY INPUT
3X1) GET INPUTS)

-* ;C0MPUTE 10X OF SUM
-* JANUARY 23, 1 980
-> ;MARCH 15, 1980
-> ;APRIL 9, 1980
-t ;1) ADD INPUTS
-) ;2) DIVIDE BY INPUT
-> ;3) GET INPUTS

Bracket Function
The other built-in function that inhibits the macro processor from expanding text is
the bracket function. The syntax of the bracket function is shown below:

The bracket function inhibits all macro processor expansion of the text contained
within the parentheses except for the escape function, the comment function, and
parameters which are still recognized. Since there is no restriction on the length of
the text within the bracket function, it is often easier to use than the escape function.
However, since balanced text is required and the metacharacter is interpreted,
sometimes the bracket function does not do what you want and the escape function
must be used.

Consider the following macro:

X*DEFINE(DW(LIST,NAME)) (
XNAME DM XLIST
)

The macro above will add DW statements to the source file. It uses two parameters:
one for the variable name and one for the DW expression list. Without the bracket
or several escape functons we would not be able to use more than one expression in
the list, since the first comma would be interpreted as the delimiter separating the
macro parameters. The bracket function permits more than one expression in the
LIST argument:

XDM(X(198H, 3DBH, 163BH),PHONE)-) PHONE DM 198H, 3DBH, 163H

In the example above the bracket function prevents the character string '198H,
3DBH, 163BH' from being evaluated as separate parameters.

The Macro Processing Language 7-11

METACHAR Function
The buiit-in function METACHAR ailows you to redefine the metacharacter ini-
tialiy (%). its syntax is shown beiow:

%METACHAR(ba/anced-text)

The foiiowing exampie changes the metacharacter from (%) to (&):

%METACHAR(&)

The baianced-text argument may be any number of characters iong. However, only
the first character in the string, i.e., the character immediateiy after the is taken
to be the new metcharacter. Extreme caution should be taken when using
METACHAR, since it can have catastrophic effects. Consider the exampie beiow:

%METACHAR(&)

in this exampie METACHAR defines the space character to be the new
metacharacter, since it is the first character in the /?a/a/7ced-text string!

Numbers and Expressions in MPL

Many of the buiit-in functions recognize and evaiuate numerica] expressions in their
arguments. MPL uses the same ruies for representing numbers as ASM86 (see
Chapter 3):
* Numbers may be represented in base 2 (B suffix), base 8 (O or Q suffix), base iO

(D suffix or no suffix), and base 16 (H suffix).
* internai representation of numbers is !7 bits (-0FFFFH to +0FFFFH). The

processor does not recognize reai or long integer numbers.
* The operators recognized by the macro processor and their order of precedence

is shown in the iist beiow (see Chapter 4 for discussion of these operators):
1. () (highest precedence)
2. HIGH, LOW,
3. *,/,MOD, SHL, SHR
4. +,-(both unary and binary forms)
5. EQ, NE, LE, LT,GE,GT
6. NOT
7. AND
8. OR,XOR (iowest precedence)

The macro processor cannot access the assembier's symbol tabie. The values of
iabeis, iocation counter, and EQU symbois are not known during macro-time
expression evaiuation. Any attempt to use assembiy-time symbois in a macro-time
expression generates an error. However, you can define macro-time symbois with
the predefined macro SET.

SET Macro
SET assigns the vaiue of the numeric expression to the identifier, macro-ftf, and
stores the macro-id in the macro-time symboi tabie. macro-ZJ must foiiow the same
syntax conventions used for other macro identifiers. SET has the following syntax:

%SET(macro-Af, express/on)

7-12 ASM86

The SET macro cah affects the macro-time symbol tabie oniy; when SET is
encountered in the source file, the macro processor replaces it with the nuli string.
Symbols defined by SET can be redefined by a second SET cat!, or defined as a
macro by a DEFINE call. In fact, if you ever assemble your source with the GEN
control in effect you will see that SET uses the DEFINE built-in function to create
the numeric symbols.

The following examples show several ways to use SET:

Before Macro Expansion After Macro Expansion

XSET(COUNT,0)
XSET(0FFSET,16)
MOV AX, XCOUNT + XOFFSET
MOV BX, XCOUNT

-* null string
-* null string
-) MOV AX, OOH + 10H
-> MOV BX, OOH

SET can also be used to redefine symbols in the macro-time tabie:

XSET(COUNT,XCOUNT + XOFFSET)
XSET(OFFSET,XOFFSET * 2)
MOV AX, XCOUNT + XOFFSET
MOV BX, XCOUNT

-) null string
-* null string
-* MOV AX, 10H + 20H
-) MOV BX, 10H

SET is a predefined macro, not a buiit-in function; as such it may be redefined,
however, you will then loose this function.

EVAL Function
The built-in function EVAL accepts an expression as its argument and returns the
expression's value in hexadecimal. The syntax for EVAL is:

% EV AL(expression)

The express/'on argument must be a legal macro-time expression.

The return-value from EVAL foilows ASM86's ruies for representing hexadecimal
numbers (see Chapter 3). EVAL always returns an expression with at least 3
characters even if the argument evaluates to a single digit. The leading character is
always a decimal-digit (0,1,2,...,9). The remaining digits may be any hexadecimal
digit (0,I,2,...E,F). The trading character must always be the hexadecimal suffix
(H). The following examples show the return-va/ue from EVAL.

Before Macro Expansion After Macro Expansion

MOV AX, XEVAL(1+1); move two to AX

COUNT EQU XEVAL(33H + 15H + OFOOH)
ADD AX, XEVAL(10H-((13 + 6) * 2) + 7)
XSEHNUM1 ,44)
XSET(NUM2,25H)
MOV AX, XEVAL(XNUM1 LE XNUM2)

-> MOV AX, 02H; move
two to AX

-* COUNT EQU 0F48H
-> ADD AX, 0FFF1H
-* null string
-* null string
-t MOV AX, OOH

Logicai Expressions and String Comparisons in MPL
Several built-in functions return a logical value when they are called. Like relational
operators that compare numbers and return true or false (-IH or OOH), respectively,
these built-in functions compare character strings. If the function evaluates to
'TRUE,' then it returns the character string '-1H' (ah ones). If the function
evaluates to 'FALSE,' then it returns 'OOH' (zeros).

The Macro Processing Language 7-13

The built-in functions that return a logical value compare two string
arguments and return a logical value based on that comparison. The list of string
comparison functions below shows the syntax and describes the type of comparison
made for each. Both arguments to these functions may contain macro calls (the calls
are expanded before the comparison is made).

%EQS(arg7 ,arp2)
%NES(arg7,arg2)
%LTS(argf7,ar^2)

True if both arguments are identical; equal
True if arguments are different in any way; not equal
True if first argument has a lower value than second
argument; less than

%LES(arcj7 ,arr?2) True if first argument has a lower value than second
argument or if both arguments are identical; less
than or equal

%GTS(an?7 ,arp2) True if first argument has a higher value than second
argument; greater than

%GES(ar^7,ar^2) True if first argument has a higher value than second
argument, or if both arguments are identical; greater
than or equal

Before these functions perform a comparison, both arguments are completely
expanded. Then the ASCH value of the first character in the first string is compared
to the ASCII value of the first character in the second string. If they differ, then the
string with the higher ASCH value is considered to be greater. If the first characters
are the same, then the process continues with the second character in each string,
and so on. Only two strings of equal length that contain the same characters in the
same order are equal.

After Macro ExpansionBefore Macro Expansion

%GTS(16D,11H) -1H
true

these macros compare strings
not numerical values; ASCII '6'
is greater than ASCII '1'

%EQS(ABC,ABC) -* -1H
true

the character strings are
identical

%EQS(ABC, ABC) -* OOH
/a/se

the space after the comma is
part of the second argument

%LTS(CBA,cba) —* -1H
true

the lower-case characters have
a higher ASCII value than
upper-case

%GES(ABCDEF,ABCDEF) OOH
/a/se

the space at the end of the
second argument makes the
second argument greater than
the first

As with any other macro, the arguments to the string comparison macros can be
other macros.

X*DEFINE(DOG) (CAT)
X*DEFINE(MOUSE) (XDOG)
XEQS(XDOG,XMOUSE) -1H

true

7-14 ASM86

Contro) Ftow and Conditiona) Assembties

Some built-in functions expect iogicai expressions in their arguments. Logica)
expressions foiiow the same ruies as numeric expressions. The difference is in how
the macro interprets the 17-bit vatue that the expression represents. Once the expres
sion has been evaluated to a i7-bit vaiue, MPL uses oniy the iow-order bit to deter
mine whether the expression is TRUE or FALSE, ff the iow-order bit is a one (the
i7-bit numeric vaiue is odd), the expression is TRUE, if the iow-order bit is a zero
(the 17-bit vaiue is even), the expression is FALSE.

Typicaily, you win use either the reiationai operators (EQ, NE, LE, LT, GT, or GE)
or the string comparison functions (EQS, NES, LES, LTS, GTS, or GES) to specify
a iogicai value. Since these operators and functions aiways evaiuate to -!H (aii
ones) or OOH (aii zeros), you needn't worry about the singie bit test. But remember,
all numeric expressions are vaiid, and regardiess of the vaiue of the other !6 bits,
oniy the ieast significant bit counts.

IF Function
The iF built-in function evaluates a logicai expression, and based on that expression,
expands or withholds it text arguments. The syntax for the IF macro is shown below:

%IF (expression) THEN (ba/anced-fext?) [ELSE (ba/anced-tex/2)) Fl

The IF function first evaluates the expression. If the iow order bit is one, then
da/anced-text/ is expanded; if the low order bit is zero and the optionai ELSE clause
is included in the call, then da/aneed-tex/2 is expanded. If the low order bit is zero
and the ELSE clause is not included, the IF call returns the null string. FI must be
included to terminate the call.

IF calls can be nested; when they are, the ELSE clause refers to the most recent IF
call that is still open (not terminated by FI). FI terminates the most recent IF call
that is still open.

Several examples of IF calls are shown below:

This is a simple example of the IF call with no ELSE clause.

XIF (XGTS(OFFH,XVAR)) THEN (MOV AX, XVAR) F1

This is the simple form of the IF call with an ELSE clause.

XIF (XEQS(ADD AX, XOPERATION)) THEN (ADD BX, XR1) ELSE (ADD BX, XR2) FI

This is an example of several nested IF calls.

c/ose first /F) F I

open f/rst /F X1 F (XEQS(XOPER.ADD)) THEN (ADD AX,DATUM
) ELSE (

open second /F XIF (XEQS(XOPER,SUB)) THEN (SUB AX,DATUM
) ELSE (

open t/?/rd /F XIF (XEQS(XOPER,MULD) THEN (MUL DATUM
) ELSE (DIV DATUM

c/ose td/rd /F
c/ose second /F

) FI
) FI

The Macro Processing Language 7-15

Example 5. Conditional Assembly

XSET (DEBUG, 1)
XIF (DEBUG) THEN (
MOV AX, DEBUG_FLAG
OUT AX, 2
)
MOV BX, OFFSET ARRAY
SUB BX, 1

will expand to:

MOV AX, DEBUG_FLAG
OUT AX, 2
MOV BX, OFFSET ARRAY
SUB BX, 1

You could change the %SET to

XSET (DEBUG, 0)

to turn off the 'debug' code.

WHILE Function
The IF macro is useful for implementing one kind of conditional assembly—
including or excluding lines of code in the source file. However, in many cases this is
not enough. Often you may wish to perform macro operations until a certain condi
tion is met. The built-in function WHILE provides this facility.

The syntax of the WHILE macro is shown below:

% W H1LE (expression) (ba/anced-texr)

The WHILE function evaluates the expresson. If the least significant bit is one, then
the ba/anced-fext is expanded; otherwise, it is not. Once the ba/anced-fexf has been
expanded, the logical argument is retested and if the least significant bit is still one,
then the ba/anced-iexi is again expanded. This continues until the logical argument
proves false (the least significant bit is 0).

Since the macro continues processing until expression is false, the ba/anced-fexi
should modify expression, or else WHILE may never terminate.

A call to the built-in function EXIT will always terminate a WHILE macro. EXIT is
described below.

The following examples show two common uses of the WHILE macro:

XSET(COUNTER,5)
XWHILE(XCOUNTER GT 0)
(INC BX

XSET(COUNTER, XCOUNTER - 1)
)
XWHILE(XCOUNT LT OFFH) (HLT

XSET(COUNT, XCOUNT+1))
These examples use the SET macro and a macro-time symbol to count the iterations
of the WHILE macro.

7-16 ASM86

REPEAT Function
MPL offers another built-in function that wih perform the counting ioop
automatically. The built-in function REPEAT expands its balanced-text a specified
number of times. The general form of the call to REPEAT is shown below:

% REPEAT (expression) (ba/anced-text)

Unlike the IF and WHILE macros, REPEAT uses the expression for a numerical
value that specifies the number of times the ba/anced-text will be expanded. The
expression is evaluated once when the macro is first called, then the specified
number of iterations is performed.

The examples below will perform the same text insertion as the WHfLE examples
above.

XREPEAT (5) (INC BX
)

XREPEAT (OFFH - COUNT) (HLT
)

Note that the line feeds preceding the right paren in each of the above examples are
necessary for correct assembly.

EXIT Function
The EXIT built-in function terminates expansion of the most recently called
REPEAT, WHILE or user-defined macro, ft is most commonly used to avoid
infinite loops (e.g., a WHfLE expression that never becomes false, or a recursive
user-defined macro that never terminates), ft allows several exit points in the same
macro.

The syntax for EXfT is:

%EXfT

Two examples of how you might use the EXiT macro follow:

This use of EXIT terminates a recursive macro when an odd number of bytes have
been added.

X*DEFINE(MEM_ADD_MEM(SOURCE,DESTIN,BYTES)) (
MOV AL,XSOLIRCE
ADD AL,XDESTIN
MOV XDESTIN,AL
IF (XBYTES EQ 1) THEN (XEXIT)FI
MOV AL, XSOURCE + 1
ADD AL, XDESTIN + 1
MOV XDESTIN + 1, AL
IF (XBYTES GT 2) THEN

(XMEM_ADD_MEM(XS0URCE+2,XDESTIN+2,XBYTES-2))FI
)

The above example adds two pairs of bytes and stores the results in DESTfN. As
long as there are more than two pairs of bytes to be added, the macro
MEM_ ADD__MEM is expanded. That is, as long as BYTES is greater than 2, the
expansion continues. When BYTES reaches a value of f (odd number of byte pairs)
the macro is exited.

The Macro Processing Language 7-17

This EXIT is a simple jump out of a recursive ioop.

X*DEFINE(UNTIL (CONDITION,BODY))
(XBODY

XIF (XCONDITION) THEN (XEXIT)
ELSE (XUNTIL(XCONDITION,XBODY)) FI

This exampie assumes that BODY is a macro that modifies CONDiTION such that
CONDiTiON eventualiy becomes true.

String Manipulation Buiit-in Functions

The purpose of the Macro Processor is to manipuiate character strings. Therefore,
there are severat buiit-in functions that perform common character string manipula
tion functions.

LEN Function
The built-in function LEN takes a character string argument and returns the iength
of the character string in hexadecimai (the same format as EVAL). The character
string argument to LEN is hmited to 256 characters.

The syntax of the LEN macro cali is shown beiow:

°7oLEN(ba/anced-text)

Severai exampies of caiis to LEN and the hexadecimai numbers returned are shown
beiow:

Before Macro Expansion After Macro Expansion

XLEN(ABCDEFGHIJKLMNOPQRSTUVWXYZ) -i 1AH
XLEN(A,B,C) -)05H commas are counted
XLENO -> OOH
X'DEFINE(CHEESE) (MOUSE)
X*DEFINE(DOG) (CAT)
XLEN(XD0G XCHEESE) -t 09H

*the space after G is
counted as part of the
Length

SUBSTR Function
The buiit-in function SUBSTR returns a substring of its text argument. The macro
takes three arguments: a balanced character string to be divided and two numeric
arguments. The syntax of the macro caii to SUBSTR is shown beiow:

% S U B STR /e.v/, express/or? /, eYpr<?.ss/'on2)

is described above.

expressr'cm/ specifies the starting character of the substring.

express/on2 specifies the number of characters to be included in the substring.

7-18 ASM86

If expressfon/ is zero or greater than the length of the argument string, then
SUBSTR returns the nuii string.

If expressfon2 is zero, then SUBSTR returns the null string. If expression is greater
than the remaining length of the string, then all characters from the start character
of the substring to the end of the string are included.

The examples below show several calls to SUBSTR and the value returned:

Before Macro Expansion

XSUBSTR(ABCDEFG,5,1)
XSUBSTR(ABCDEFG,5,100)
XSUBSTR(123(56)890,4,4)
XSUBSTR(ABCDEFG,8,1)
XSUBSTR(ABCDEFG,3,0)

After Macro Expansion

-> E
-t EFG
-> (56)
-+ null
-* null

MATCH Function
The built-in function MATCH searches a character string for a delimiter character
and assigns the substrings on either side of the dehmder to the identifiers. The
syntax of the MATCH call is shown below:

%MATCH(ident//'/er7 dedmder /de/7d/7er2) (ba/anced-rexr)

/dendf/er/ and Zde/?zZZ*Zer2 are valid MPL identifiers.

deZZm/zer is the first character to follow ZdearffZerZ. Typically, a space or comma is
used, but any character that is not a macro identifier character may be used. You
can find a more complete description of delimiters in the Advanced Concepts section
at the end of the chapter.

baZanced-rext is as described earlier in the chapter.

MATCH searches the baZa/iced-texf string for the specified deZ/mder. When the
deZZmder character is found, then all characters to the left of it are assigned to /de/7-
/ZfZerZ and ah characters to the right are assigned to ZdentZbZer2. If the deZZmder is
not found, the entire baZanced-Zext string is assigned to fdeazfZ/'erZ and the null
string is assigned to Zdez?z/fZer2.

The following example shows a typical use of the MATCH macro.

XMATCH (NEXT,LIST) (10H, 20H, 30H)
MOV SI, VAR_PTR

XWHILE (XLEN(XNEXT) NE 0) (
MOV BX, XNEXT
MOV AX, [BX+SI]
ADD AX,22H
MOV [BX+SI], AX
XMATCH (NEXT,LIST)(XLIST)

)

Produces the following code:

MOV BX, 10H
first iteration MOV AX, [BX + SI]
ofWHILE ADD AX.22H

MOV [BX+SI], AX

The Macro Processing Language 7-19

second iteration
of WHIIE

third iteration
of WHILE

MOV BX, 20H
MOV AX, [BX+SI]
ADD AX,22H
MOV [BX+SIJ, AX

MOV BX, 30H
MOV AX, [BX+SI]
ADD AX,22H
MOV [BX+SI], AX

Console i/O Buiit-in Functions

Four built-in functions perform console I/O. The first two, IN and OUT, are line
oriented. IN outputs the characters '> >' as a prompt to the console, and returns the
next line typed at the console including the line terminator. OUT outputs a string to
the console; the return value of OUT is the null string. The syntax of both macros is
shown below:

%IN
%OUT(ba/anced-fex?)

Several examples of how these macros can be used are shown below:

%0UT(ENTER NUMBER OF PROCESSORS IN SYSTEM)
%SET(PROC_COUNT,%IN)
%0UT(ENTER THIS PROCESSOR'S ADDRESS)

ADDRESS EQU %IN
XOUTCENTER BAUD RATE)
XSET(BAUD.XIN)

The following lines would be displayed at the console:

ENTER NUMBER OF PROCESSORS IN SYSTEM >userresponse
ENTER THIS PROCESSOR'S ADDRESS >aserrespo/ise
ENTER BAUD RATE >user response

The second two, CI and CO, are character oriented functions. CI returns a single
character typed at the console. CI neither prompts for input nor echoes the character
typed. CO outputs a single character to the console; the return value of CO is the
null string. The syntax of the CI and CO macros is:

X C I
X C 0 (char)

The following example defines the macro NUMBER to be a string of three
characters typed at the console, and echoes the characters as they are typed:

XDEFINE(HUMBER)()
XREPEAT(3)(XDEFINE(A)fXCI) XCO(XA)

XDEFINE(NUMBER)(XNUMBERXA))

Advanced MPL Concepts
For most programming problems, the Macro Processing Language as described
above is sufficient. However, in some cases a more complete description of the
macro processor's function is necessary.

7-20 ASM86

However, it is impossible to describe ail of the subtleties of the macro processor in a
single chapter. With the ruies described in this section, you should be able to discern,
with a few simple tests, the answer to any specific question about MPL.

Macro Delimiters

When we discussed the syntax for defining macros, the parameter-//.^ was sur
rounded by parentheses, and parameters were separated by commas. Because we
used these delimiters to define a macro, a call to the macro required that these same
delimiters be used. When we discussed the MATCH function, we mentioned that a
space could be used as a delimiter. In fact the macro processor permits almost any
character or group of characters to be used as a delimiter.

Regardless of the type of delimiter used to define a macro, once it has been defined,
only the delimiters used in the definition can be used in the macro call. Macros
defined with parentheses and commas require parentheses and commas in the macro
call Macros defined with spaces (or any other delimiter) require that specific
delimiter when called.

Macro delimiters can be divided into three classes: implied blank delimiters, iden
tifier (or id) delimiters and literal delimiters.

Implied Blank Delimiters
Implied blank delimiters are easy to use and contribute readability and flexibility to
macro calls and definitions. An implied blank delimiter is one or more spaces, tabs
or new lines (a carriage-return/linefeed pair or just a linefeed) in any order. To
define a macro that uses the implied blank delimiter, simply place one or more
spaces, tabs or new lines surrounding the parameter list and separating the formal
parameters.

When you call the macro defined with the implied blank delimiter, each delimiter
will match a series of spaces, tabs, or new lines. Each parameter in the call begins
with the first non-blank character, and ends with the next blank character.

An example of a macro defined using implied blank delimiters is:

X*DEFINE(SENTENCE SUBJECT VERB OBJECT) (THE ^SUBJECT XVERB XOBJECT.

All of the following calls are valid for the above definition:

Before Macro Expansion After Macro Expansion

XSENTENCE TIME IS RIPE -> THE TIME IS RIPE.
XSENTENCE CATS

EAT
FISH -> THE CATS EAT FISH.

XSENTENCE
PEOPLE

LIKE FREEDOM -> THE PEOPLE LIKE FREEDOM.

Identifier Delimiters
Identifier (id) delimiters are legal macro identifiers designated as delimiters. To
define a macro that uses an id delimiter in its call pattern, you must prefix the
delimiter with the commercial at symbol (@). You must separate the id delimiter
from the macro identifiers (formal parameters or macro name) by a blank character.

The Macro Processing Language 7-21

When catling a macro defined with id delimiters, an implied blank delimiter is
required to precede the id delimiter, but none is required to follow the id delimiter.
The @ is not required.

An example of a macro defined with id delimiters is:

%*DEFINE(ADD P1 3T0 P2 3AND P3) (
MOV AX, %P1
MOV BX, AX
ADD AX, XP2
MOV %P2, AX
MOV AX, BX
ADD AX, %P3
MOV XP3, AX

)

The following call:

XADD ATOM TO MOLECULE AND CRYSTAL

returns this code when expanded:

MOV AX, ATOM
MOV BX, AX
ADD AX, MOLECULE
MOV MOLECULE, AX
MOV AX, BX
ADD AX, CRYSTAL
MOV CRYSTAL, AX

The call could also have been written

XADD ATOM TOMOLECULE ANDCRYSTAL

Literal Delimiters
The delimiters used when we documented user-defined macros (parentheses and
commas) were literal delimiters. A literal delimiter can be any character except the
metacharacter.

When you define a macro using a literal delimiter you must use exactly that delimiter
when you call the macro. If you do not include the specified delimiter character as it
appears in the definition, it will generate a macro error.

When defining a macro, you must literalize the delimiter string, if the delimiter you
wish to use meets any of the following conditions:

* uses more than one character,

* uses a macro identifier character (A-Z, 0-9, _ , or ?),

* uses a commercial at (@),

* uses a space, tab, carriage-return, or linefeed.

7-22 ASM86

You can use the escape function (Von) or the bracket function ('"o()) to literalize the
dehmiter string. Several examples of definitions and calls using a variety of literal
delimiters are shown below:

This is the simple form shown earlier:

Before Macro Expansion After Macro Expansion

X*DEFINE(MAC(A,B)) (XA XB)
XMAC(4,5)

-* null string
-> 4 5

in the following example brackets are used instead of parentheses. The commercial
at symbol separates parameters:

X*DEFINE(MOV[AX(9)BD (MOVfXA],XB)
XMOVfBX 9 DU -> MOVfBX] ,DI

In the next two examples delimiters that could be id delimiters have been defined as
literal delimiters (the differences are noted):

X*DEFINE(ADD (AX(AND)B))(ADD XA,XB) -) null string
XADD(AX AND 5) -t ADD AX, 5

To illustrate the differences between id delimiters and literal delimiters, consider the
following macro definition and call. (A similar macro definition is discussed with id
delimiters):

X*DEFINE(ADD P1
MOV AX,
MOV BX,
ADD AX,
MOV XP2, AX
MOV AX, BX
ADD AX, XP3
MOV XP3, AX

X(TO) P2 X(AND) P3) (
XP1
AX
XP2

The following call:

XADD COUNT TO INCR AND FACTOR

returns this code when expanded

MOV AX, COUNT
MOV BX, AX
ADD AX, INCR
MOV INCR, AX
MOV AX, BX
ADD AX, FACTOR
MOV FACTOR, AX

If the parameters contain strings that match the delimiters, i.e., if VoPI is ATOM,
you will get incorrect results.

Litera! vs. Norma) Mode

In normal mode the macro processor scans text looking for the metacharacter.
When it finds one, it begins expanding the macro call. Parameters are substituted
and macro calls are expanded. This is the usual operation of the macro processor,

The Macro Processing Language 7-23

but sometimes it is necessary to modify this mode of operation. The most common
use of the iiterai mode is to prevent macro expansion. The literai character in
DEFINE prevents the expansion of macros in the macro-Zrody untit you catl the
macro.

When you place the iiterat character in a DEFtNE call, the macro processor shifts to
literal mode while expanding the call. The effect is similar to surrounding the macro
body with the bracket function. The escape, comment, and bracket functions are
expanded; but no further processing is performed. Any calls to other macros arc not
expanded.

If there are no parameters in the macro being defined, the DEFINE built-in function
can be called without the literal character. If the macro uses parameters, the macro
processor will attempt to evaluate the formal parameters in the mac/o-bot/y as
parameterless macro calls.

The following example illustrates the difference between defining a macro in literal
mode and normal mode:

XSET(T0M,1)
X*OEFINE(AB) (XEVAL(XTOM))
XDEFINE(CD) (XEVAL(XTOM))

When AB and CD are defined, TOM is equal to I. The macro body of AB has not
been evaluated due to the literal character, but the macro body of CD has been com
pletely evaluated, since the literal character is not used in the definition. Changing
the value of TOM has no affect on CD, it changes the return value of AB as
illustrated below:

Before Macro Expansion After Macro Expansion

XSET(TOM,2)
XAB -> 02H
XCD -t 01 H

The macros themselves can be called with the literal character. The return value then
is the unexpanded body:

X*CD -> 01 H
X*AB -) XEVAL(XTOM)

The literalized calls to AB and CD show that CD evaluates to 01H, while AB con
tains a macro call to EVAL with %TOM as its parameter.

Atgorithm for Evatuating Macro CaHs

The algorithm the macro processor uses for evaluating the source file can be seen in
6 steps:
1. Scan the source until the metacharacter is found.
2. Isolate the call pattern. See note below.
3. If macro has parameters, expand each parameter from left to right (initiate step

one on actual parameter) before expanding the next parameter.
4. Substitute actual parameters for formal parameters in macro body.
5. If the literal character is not used, initiate step one on macro body.
6. Insert the result into output stream.

7-24 ASM86

NOTE
When isolating the call pattern, the macro processor is actually
scanning input for the specified delimiter. All text found between
delimiters is considered the actual parameter. For this reason Id
delimiters need not be terminated by spaces in a call.

The terms 'input stream' and 'output stream' are used, because the return value of
one macro may be a parameter to another. On the first iteration, the input stream is
the source file. On the final iteration, the output stream is passed to the assembler.

The examples below illustrate the macro processor's evaluation algorithm:

XSET(T0M,3)
X*DEFINE(STEVE)(XSET(T0M,XT0M-1) XTOM)
X*DEFINE(ADAM(A,B)) (
DB XA, XB, XA, XB, XA, XB
)

Here is a call ADAM in the normal mode with TOM as the first actual parameter
and STEVE as the second actual parameter. The first parameter is completely
expanded before the second parameter is expanded. After the call to ADAM has
been completely expanded, TOM will have the value 02H.

Before Macro Expression After Macro Expression

XADAM(XTOM,XSTEVE) -> DB 03H, 02H, 03H, 02H, 03H, 02H

Now reverse the order of the two actual parameters. In this call to ADAM, STEVE
is expanded first (and TOM is decremented) before the second parameter is
evaluated. Both parameters have the same value.

XSET(TOM,3)
XADAM(XSTEVE,XTOM) -* DB 02H, 02H, 02H, 02H, 02H, 02H

Now we will literalize the call to STEVE when it appears as the first actual
parameter. This prevents STEVE from being expanded until it is inserted in the
macro body, then it is expanded for each replacement of the formal parameters.
Tom is evaluated before the substitution in the macro body.

XSET(T0M,3)
XADAM(X*STEVE,XTOM) -t DB 02H, 03H, 01H, 03H, OOH, 03H

Codemacros

This chapter describes codemacros, which define 8086, 8087, and 8088 instructions.
Codemacros shouid not be confused with macros, which are described in Chapter 7.

A codemacro is a preset body of code which you define, a skeieton in which most
instructions and vaiues are fixed. They are automatically assembled wherever the
macro is invoked (used as an instruction), which saves your rewriting them every
time that sequence is needed.

However, certain names used in the definition are NOT fixed. They are stand-ins,
which are replaced by names or values that you supply in the same line that invokes
the codemacro. These stand-ins are called "dummy" or "formal" parameters. They
simply "hold the place" for the actual parameters to come. Formal parameters thus
indicate where and how the actual parameters are to be used.

You invoke the codemacro by using its name as an instruction. For example:

MOV BX, W0RD3
MAC1 PARAM1, PARAM2
ADD AX, W0RD4

MAC! above represents the use of some codemacro you defined earlier. It appar
ently requires 2 parameters, that is, the definition used 2 formats to be replaced by
these actual parameters supplied above when you invoke the codemacro.

In fact, the MOV and ADD instructions above are codemacros. The assembler's
entire instruction set is defined and implemented as a large number of codemacros.
(The definitions are at the end of this Appendix). Once you understand how this is
done, you may add instructions to those supplied as part of the assembler.

The type of macro used to implement this assembly language is called a codemacro
to distinguish it from text macros described in Chapter 7. The latter are more
familiar to programmers because previous assembly languages have included such a
facility. Text macros are not discussed in this chapter. The presentation below will
describe creating and using codemacros.

These codemacros are encoded at codemacro definition time into a very compact
form, so that ah defined codemacros may reside simultaneously in memory. Each
definition specifies a certain combination of parameters and will match only those.
Other combinations of parameters may be accommodated by redefining the
codemacro. Multiple definitions of the same codemacro name are chained together;
so that when the codemacro is called, each link of the chain can be checked for a
match of operands.

Since the 8086 instruction set consists of codemacros, it is natural to refer to a
codemacro being called as an "instruction," and to refer to its actual parameters as
"operands."

A-2 ASM86

For exampie, the language has an ADD instruction that works properiy with any
genera! register or memory iocation as a destination operand or as a source operand,
and works with immediate-data operands. This is achieved by defining ii
codemacros to generate the i i different machine instructions appropriate to these
different cases and combinations. The correct one is used because the specification
of its forma) parameters is matched by the actuai parameters suppiied in your source
code. The detaiis of how this works are covered in this chapter.

The definition of a codemacro begins with a tine specifying its name and a list of its
formal parameters, if any:

CODEMACRO name [formalist]
or

CODEMACRO name PREFX

where format_ iist is a iist of format parameters, each in the form

form_name:specifier_letter [modifier_letter] [range]

The square brackets indicate optiona) items; they are not actually used in the state
ment that you code. The singie word CODEMACRO and the name are both
required. The forma! parameters are optional, if they are present, then each one
must be foiiowed by one of the specifier letters A, C, D, E, M, R, S, X. After the
specifier letter comes an optional modifier letter: b, d, q, t, or w. There follows an
optional range specifier, which consists of a pair of parentheses enclosing either one
expression, or two expressions separated by a comma. The semantics of specifiers,
modifiers, and ranges are described below.

When no formats are used, you may code the keyword PREFX, indicating the code
macro is to be used as a prefix to other instructions. This too is optional. Examples
of prefixes in the 8086 instruction set are LOCK and REP.

The definition ends with a line as follows:

ENDM

Between the first and last lines of a codemacro definition is the body of the code
macro, the actual bit patterns and format parameters which wilt be assembied and
repiaced each time the macro is invoked. Onty a few kinds of directive are allowed in
codemacros. They are:

1. SEGFtX
2. NOSEGFIX
3. MODRM
4. RELB
5. RELW
6. DB
7. DW
8. DD
9. Record initialization

10. RFIX
11. RFtXM
12. RNFIX
13. RNFIXM
14. RWFtX

Codemacros A-3

Each of these directives, along with the speciai expression operand PROCLEN, are
explained further on in this chapter.

Some simple examples of codemacros:

Codemacro SIC
DB OF9H ; this sets the carry flag (CF) to 1.
Endm

Codemacro PUSHF
DB 9CH ; pushes all flags into top word on stack.
Endm

Codemacro ADD dst:Ab, src:Db
DB 04H
DB s rc
Endm

The first two examples simply allow a machine instruction to be invoked by the use
of a name, which is usually more easily remembered ("mnemonic") than a string of
numbers.

The third example is one of the 11 macros defining the ADD instruction, or more
precisely, defines one of the 11 ADD instructions. (There are 11 in order to cover all
the valid combinations of parameters.) It has two formal parameters, called "dst"
and "src," for destination and source operands. These formats could be called
anything; for example:

Codemacro ADD anything:Ab, other:Db
DB 04H
DB other
Endm

is the identical macro in function and format.

Specifiers
Every formal parameter must have a specifier letter, which indicates what type of
operand is needed to match the formal parameter. There are eight possible specifier
letters:

1. A meaning Accumulator, that is AX or AL.
2. C meaning Code, i.e., a label expression only.
3. D meaning Data, i.e., a number to be used as an immediate value.
4. E meaning Effective address, i.e., either an M (memory address) or an R

(register).
5. F meaning a floating point stack element, i.e., ST or ST(i).
6. M meaning a memory address. This can be either a variable (with or without

indexing) or a bracketed register expression.
7. R meaning a general Register only, not an address-expression, not a register

in brackets, and not a segment register.
8. S meaningaSegmentregisteronly, either CS, DS, ES, or SS.
9. T meaning the floating point stack top, i.e., ST or ST(0).

10. X meaning a direct memory reference, a simple variable name with no
indexing.

A-4 ASM86

A more detailed discussion of which operands match which specifier fetters appears
in the instruction-matching section fater in this chapter.

Modifiers
The optional modifier fetter imposes a further requirement on the operand, refating
either to the size of data being manipulated, or to the amount of code generated by
the operand. The meaning of the modifier depends on the type of the operand:
* For variabfes, the modifier requires the operand to be of a certain TYPE: "b"

for byte, "w" for word, "d" for dword, "q" for qword, "t" for tbyte.
* For fabefs, the modifier requires the object code generated to be of a certain

amount: "b" for an 8-bit relative displacement on a NEAR labei, "w" for
NEAR fabefs which are outside the -128 to 127 short displacement range, and
"d" for FAR labels.

* For numbers, the modifier requires the number to be of a certain size: "b" for
-256 through 255, and "w" for other numbers between -65,536 and 65,535.
The specifier-modifier pairs "Dd"; "Dq" and "Dt" are never matched.

Note that this manual uses upper-case letters for specifiers and tower-case letters for
modifiers. This is a useful language convention to cfarify the code. However it is not
required—as in all source code outside of strings, the distinction between upper and
lower case is ignored by the assembfer.

Range Specifiers
If a range is specified, it can be a single expression or two expressions separated by a
comma. Each expression must evaluate to a register or a pure number, i.e., not an
address. Range specifiers are not allowed with floating point stack elements, that is,
src=F or T. The list of number values corresponding to range registers is given in the
instruction-matching section later in this chapter. The following shows the first lines
(only) of three codemacros in the current language which use range specifiers:
1. Codemacro IN dst:Aw,port:Rw(DX)
2. Codemacro ROR dst:Ew,count:Rb(CL)
3. Codemacro ESC opcode:Db(0,63),adds:Eb

The first of these is one of the four codemacros for the IN (input) instruction. It says
that if a register is to specify the port from which to input a word, only DX will
match this codemacro. Any other register will fail to match, and the source line will
be flagged as erroneous (e.g., IN AX,BX is in error).

The second is one of the four ROtate Right codemacros. It says the word rotated can
be any word register except a segment register, or any word in memory. It is to be
rotated right some number of bit positions ("count"), where "count" is specified as
a byte register, and further specified to be CL. No other register will match (e.g.,
ROR AX, DL is in error).

The third says the "opcode" supplied as the first parameter to the ESC instruction
must be a byte of immediate-data of value 0 to 63 inclusive.

Segfix
SEGFIX is a directive, included in some codemacro definitions, which instructs the
assembler to determine whether a segment-override prefix byte is needed to access a
given memory location. !f the override byte is needed, it is output as the first byte of
the instruction. If it is not needed, no action is taken.

Codemacros A-5

The form of the directive is:
SEGFtX formal—name

where "formal_ name" is the name of a formal parameter which represents the
memory address. Because it is a memory address, the formal must have one of the
specifiers E, M, or X.

In the absence of a segment-override prefix byte, the 8086 hardware uses either DS
or SS. Which one depends on which base register, if any, was used. BP implies SS.
BX implies DS. No base register also implies DS. (This, of course, includes the three
possibilities of SI alone, DI alone, or no indexing at all.) The assembler must decide
whether this hardware-implied segment register is actually the one that will reach the
intended memory location.

The assembler examines the segment attribute of the memory-address expression
provided as the actual parameter. This attribute could be a segment, a group, or a
segment register.
* If it is a segment, the assembler determines whether that segment or a group

containing that segment has been ASSUMEd into the hardware-implied seg
ment register. If so, no override byte is needed. If not, the assembler checks the
ASSUMES of other segment registers, looking for the segment or a group con
taining it. If found, the override byte for that segment register is issued. If not
found, an error is reported.

* If it is a group, the assembler takes the same action as for a segment, except that
the possibility of an including group is ruled out: the group itself must be
ASSUMEd into one of the segment registers. Otherwise an error is reported.

* If it is a segment register, the assembler sees if it is the hardware-implied
segment register. If so, no override byte is issued. If not, the override byte for
the specified segment register is issued.

Nosegfix
NOSEGFIX is used for certain operands in those instructions for which a prefix is
illegal because the instruction cannot use any other segment register but ES for that
operand. This applies only to the destination operand of these string instructions:
CMPS, MOVS, SCAS, STOS.

The form of the directive is:

NOSEGFIX segreg, formal—name

where "segreg" is one of the four segment registers ES, CS, SS, DS, and
"formal_ name" is the name of a memory-address formal parameter. As a memory
address, the formal must have one of the specifiers E, M, or X.

The only action the assembler performs when it encounters a NOSEGFIX in
assembling an instruction is to perform an error check—no object code is ever
generated from this directive.

The assembler looks up the segment attribute of the actual parameter (memory
address) corresponding to "formal_ name." If the attribute is a segment register, it
must match "segreg." If the attribute is a group, it must be ASSUMEd into
"segreg." If the attribute is a segment, it or a group containing it must be
ASSUMEd into "segreg." If these tests fail and "formal_ name" is thus deter
mined not to be reachable from "segreg," an error is reported.

The only value for "segreg" actually used by the string instructions listed above is
ES.

A-6 ASM86

Modrm
This directive instructs the assembler to create the ModRM byte, which follows the
opcode byte on many of the 8O86's instructions. The byte is constructed to carry the
foHowing information:

1. The indexing-type or register number to be used in the instruction.
2. Which register is (aiso) to be used, or more information to seiect the instruction.

The MODRM byte carries the information in three fields:

The mod fieid occupies the two most significant bits of the byte, and combines with
the r/m to form 32 possible vaiues: 8 registers and 24 indexing modes.

The reg fietd occupies the next three bits foHowing the mod fieid, and specifies either
a register number or three more bits of opcode information. The meaning of the reg
fieid is determined by the first (opcode) byte of the instruction.

The r/m fieid occupies the three ieast significant bits of the byte. It can specify a
register as the iocation of an operand, or form part of the addressing-mode encoding
in combination with the mod field as described above.

The bit patterns corresponding to each indexing mode and register combination are
given in Chapter 1 and Appendix B. They need not concern you when you are
writing codemacros, since the assembier takes care of the encoding when you pro
vide the operands.

The form of the directive is:

MODRM formal_ _ or_ _ number, formal—name

where "format_ or__number" is either the name of a forma) parameter, or an
absolute number: and "forma)_ name" is the name of another formal parameter.

"formal_ or__number" represents the quantity which goes into the reg fieid of the
ModRM byte. If it is a number, then that same vaiue is aiways piugged into the field
every time that codemacro definition is invoked. The number in this case is a con
tinuation of the opcode identifying which instruction the hardware is to execute.

If it is a formal, then the corresponding operand (usuaiiy a register number) is
plugged in.

"formal-name" represents an effective-address parameter. The assembler examines
whether the operand supplied is a register, variable, or indexed variable, and con
structs the mod and r/m fieids which correctly represent the operand. If the operand
calls for an 8-bit or 16-bit offset displacement, the assembler generates that as weli.

An example of an 8086 instruction using ModRM:

Codemacro ADD dst:Rw, src:Ew
Segfi x src
DB 3
MODRM dst, src
Endm

The specifiers Rw and Ew indicate that this codemacro will match only when the
actual parameters in the invocation line are a full word genera) register destination,
and a full word source, memory or general register.

Codemacros A-7

Exampie I:

ADD DX, [BX] [SI] becomes
00000011 10010000
76543210 76543210

The first byte identifies this as an ADD of a memory word into a register. This par-
ticular byte covers oniy 1 of the 4 cases that are possible depending on the iowest 2
bits. If bit 1 (direction) is a 0, the ADD is FROM a register TO either a register or a
memory location. If bit i is a I, then the ADD is TO a register FROM a register or
memory iocation. The ieast significant bit, bit 0, teiis whether the data being ADDed
is byte (0) or word (I).

The second byte is the MODRM byte, with DX encoded as 010 in bits 5, 4, 3, a mode
of 10 in bits 7, 6, and an RM of 000 (see Chapter I or Appendix B for more detail).

If the source tine had inciuded a variabte; for exampie:

ADD DX, MEMWORD [BX] [SI]

then the offset of MEMWORD (low-order byte first, high byte fast) wouid foliow
the MODRM byte.

Exampie 2:

ADD DX, [DI]
00000011 10010101
76543210 76543210

As a different exampie, consider a destination of a word in memory and a source of
immediate-data. The relevant codemacros are:

Codemacro ADD dst:Ew,src:Dw
Segfix dst
DB81 H
MODRM O,dst
DW src
Endrn

Codemacro ADD dst:Ew,src:Db (-128, 127)
Segfix dst
DB 83H
MODRM O,dst
DB src
Endm

The object code generated for the instruction and data are different in the 2 cases of
a byte of data or a word of data.

Furthermore, the MODRM iine for these instructions specifies a "for
mal_ or__number" field of zero, i.e., 3 bits all zero, whereas the MODRM line for
the two examples above specified a field of dst, which became 010 to represent DX.

Example 3:

ADD [DI], 513
10000001 10000101 00000001 00000010

A-8 ASM86

Example 4:

ADD BYTE PTR [BX] [SI], 4
10000011 10000000 00000100

The immediate-data byte or word foiiows the MODRM byte.

Re)b and Retw
These directives, used in cails and jumps, instruct the assembier to generate the
displacement between the end of the instruction and the label which is supplied as an
operand. This means RELB generates the 1 byte (and RELW the 2 byte) displace
ment, or distance in bytes, between the instruction pointer value (at the end of the
codemacro) and the destination address.

The directives have the following form:

RELB formal—name

or

RELW formal_name

where "formal_ name" is the name of a formal with a "C"' (Code) specifier.

The assembler assumes that all RELB and RELW directives occur immediately after
a single opcode byte in the codemacro (as in all the JUMP and CALL instructions in
the 8086 instruction set). It needs this assumption to determine (during codemacro
matching) where the displacement starts from, so that an operand can be identified
as "Cb" or "Cw." Although the assembler allows you to define codemacros in
which RELB and RELW occur elsewhere in the definition (e.g., a multi-instruction
codemacro), you run the risk of making the wrong match when the codemacro is
invoked. If a "b" is thus matched as "w," a wasted byte is generated; if a "w" is
thus matched as a "b," an error is reported.

Examples of RELB and RELW as they appear in the 8086 instruction set are:

Codemacro JMP pLace:Cw
DB 0E9H
RELW place
Endm

Codemacro JE place:Cb
DB 74H
RELB place
Endm

These are direct jumps to labels in the CS segment. The specifier on the formal
parameter of the first macro calls for a NEAR label in the current CS segment (Cd
would mean FAR). This means a 16 bit offset, able to reach any byte in the
immediate 64K bytes of address higher than the start of the segment. RELW com
putes the distance and provides it as a word to follow the 0E9H instruction byte.

If the offset of the target is 513, then this codemacro would generate the instruction:

11101001 00000001 00000010

Codemacros A—9

The distance begins at the end of that RELW word, i.e., if you were counting the
bytes to that label, the first byte counted would be the one after the 3 bytes compris
ing this jump.

NOTE
A match oniy occurs if the label was assembled under the same ASSUME
CSmame as the jump. Only if there is a match is object code actually
generated.

The second exampie is a conditiona! jump, executed oniy if its conditions are met. in
this case, a Jump if Equai, the jump occurs if ZF=0. Conditionai jumps are always
self-reiative and limited to destinations whose distance can fit in i byte. This means
destinations no further ahead than 127 bytes and no further behind this instruction
than -128 bytes.

if the target is 99 bytes ahead, then this codemacro wouid generate the instruction:

01110100 01100011

The distance counted begins with the byte after these 2 bytes above.

DB, DW,and DD
These directives are similar to the DB, DW, and DD directives which occur outside
of codemacro definitions (see Chapter 3); however, there are some differences in the
operands they accept.

The form of the directives is:

DB cmac—expression
or

DW cmac—expression
or

DD cmac—expression

where cmac_ expression is either an expression without forward references which
evaluates to an absolute number; a formal parameter name; or a formal parameter
name with a dot-recordfield shift construct.

An absolute number means that the same value is to be assembled every time this
codemacro definition is invoked. A formal parameter means that the corresponding
actual operand is to be assembled. A dot-recordfield shift construct means that the
actual operand is to be shifted and then plugged in, as discussed later in this chapter.

The operands to these codemacro initializations are restricted, in that lists and DUP
counts are not allowed.

Note that the DQ and DT directive are not allowed inside codemacro definitions.

Record tnitiatizations
The record initialization directive allows you to control bit fields smaller than one
byte in codemacro definitions. The form of the directive is:

record—name [cmac—expression—list]

A-10 ASM86

where record_ name is the name of a previousiy-defined record (see Chapter 3), and
cmac_ expression__iist is a iist of cmac__expressions, separated by commas. (These
particuiar square brackets are not used in writing the iist; their meaning here is that
the iist is optionai.) A cmac_ expression is, as in the above section, either a number,
a format, or a shifted forma). In addition, nuii cmac_ expressions are aiiowed in the
iist; in which case the defauit record fieid vaiue as specified in the RECORD defini
tion is used.

The directive instructs the assembier to put together a byte or a word (depending on
the record), using the constant numbers and suppiied operands as specified in the
expression iist. The vaiues to be plugged in might not fit into the record fieids; in
that case, the ieast significant bits are used, and no error is reported. In addition, a
record initiaiization is subject to the foiiowing limitation: the number of fietds in the
record definition pius the number of fieids being initiaiized by absolute numbers (by
defauit or given), pius the number of fieids initiaiized by shifted formal parameters
cannot exceed 14.

RF!X

RFIX is a directive which generates two bytes: an 8086/8088 WAIT instruction
(1001 101 IB) foiiowed by the first byte of an 8086/8088 ESCAPE instruction (11011
XXXB). The form of the directive is:

RFiX format—or—number

where "format_ or__number" is either the name of a formal parameter with
specifier D or an absoiute number. The vaiue of "format_ or_ number" specifies
the tow-order three bits of the second byte generated.

As an exampie of the use of RFiX, consider the codemacro for the 8087 instruction
FLD1:

Codemacro FLD1
RFIX 001B

DB 1110 1000B
ENDM

The source statement instruction FLD generates:

1001 1011 11011001 1110 1000

The first byte is an 8086/8088 WAIT instruction. The second byte is the first byte of
an 8086/8088 ESCAPE instruction. The low-order three bits of the second byte,
foiiowed by the third byte, identify this as an FLD1 instruction.

RHXM

RF1XM is a directive which generates the same two bytes as RFIX, but aiso instructs
the assembier to determine whether a segment-override byte is needed to access a
given memory iocation. The form of the RF1XM directive is:

RFiXM formal—or_number, format—name

where "formal_ or_ number" is either the name of a format parameter with
specifier D or an absolute number, and 'format—name' is the name of a format
parameter which represents a memory address; that is, its specifier must be 'E', 'M'
or'X'.

Codemacros A-11

ff the memory address uses the default segment register, no segment-override byte is
needed and RFfXM generates the same two bytes as RFIX.

ff the memory address requires a segment-override byte, RFfXM generates three
bytes: an 8086/8088 WAIT instruction, a segment-override byte (001 reg 1 iOB), and
the first byte of an 8086/8088 ESCAPE instruction. Note that the segment-override
byte is the second byte generated, not as SEGFfX wouid generate, the first.

(See the discussion of SEGFfX for information on how the assembier determines
whether or not a segment-override byte is necessary.)

As an exampie of the use of RFfXM, consider one of the codemacros for the 8087
instruction FADD:

Codemacro FADDmemop:Mq
RFIXM 1006, memop
ModRM 0006, memop

EndM

The source statement instruction FADD QUAR [BX] generates the foliowing bytes:

1001 1011 00100110 11011100 00001010

The first byte is an 8086/8088 WAIT instruction. The second byte is the segment
override byte, specifying ES (reg=00). The third, fourth and fifth bytes identify the
fioating point instruction as FADD, with a memory operand pointed to by BX, with
a dispiacement of !0. QUAR becomes a QWORD variabie at offset iO from a seg
ment ASSUMED into the ES register oniy.

RNFtX

The RNFfX directive generates two bytes: an 8086 NOP instruction (!00f 0000B)
folfowed by the first byte of an 8086/8088 ESCAPE instruction (fiOfi XXXB).
RNFfX functions tike RFfX, except that a NOP instruction is the first byte
generated, rather than a WAIT instruction. The format of the RNFfX directive is:

RNF)X formal^or _number

where "forma)_ or__number" is either the name of a forma) parameter with
specifier D or an absotute number. The vaiue of "forma)_ or ^number" specifies
the tow-order three bits of the second byte generated.

As an exampie of the use of RNFfX, consider the codemacro for the 8086 instruc
tion FNCLEX:

Codemacro FNCLEX
RNFIX 0116
06 111 000 108

EndM

The source statement instruction FNCLEX generates the fohowing three bytes:

1001 0000 11011011 11100010.

A-12 ASM86

RNFiXM

RNFIXM is a directive which generates the same two bytes as RNF1X, but also
instructs the assembler to determine whether a segment-override byte is needed to
access a given memory iocation. RNFIXM functions like RFIXM, except that a
NOP instruction is the first byte generated, rather than a WAIT instruction. The
format of the RNFIXM directive is:

RNFIXM formal_.or_number, formal—name

where "formal_ or__number" is either the name of a formal parameter with
specifier D or an absolute number and 'formal_ name' is the name of a formal
parameter which represents a memory address, that is, its specifier must be 'E', 'M'
or'X'.

If a segment-override byte (001 reg 110B) is needed to address "formal_ name," it
immediately follows the first byte generated, i.e., the NOP instruction.

As an example of the use of the RNFIXM directive, consider the codemacro for the
8087 instruction FNSAVE:

Codemacro FNSAVE memop:M
RNfixM 101B, memop
ModRM 1106, memop

EndM

The source statement instruction FNSAVE WORD PTR SS:[BX] generates the
following bytes:

1001 0000 00110110 11011 1101 0011 0111

Note that the segment-override byte (0011 0110B) follows the NOP instruction
(10010000).

RWFtX

The RWF1X directive generates an 8086/8088 WAIT instruction (1001 1011B). The
format of this directive is:

RWFIX

NOTE
The preceding descriptions assume that the generated code is to be linked
with the 8087 chip library (8087.LIB). If the code is linked instead with the
8087 emulator library (E8O87.L1B), an emulator instruction is generated
instead of an 8087 instruction. The emulator instruction differs from the
8087 instruction in the first two bytes of code. The correct instruction may
not be determined until the program is actually linked so the Assembler
listing will always show the 8087 instructions.

Using the Dot Operator to Shift Parameters
A special construct allowed as the operand to a DB, DW, or DD, or as an element of
the operand to a record initialization, is the shifted formal parameter. The form of
this construct is:

formal—name, record—field_name

Codemacros A-13

where format_ name is the name of a format whose corresponding operand will be
an absolute number; and record_ fietd__name is the name of a record fietd. The
assembler evaluates this expression when the codemacro is invoked, by right-shifting
the operand provided using the shift count defined by the record field.

The exampte in the 8086 instruction set where this feature is used is the ESC instruc
tion, which permits communication with other devices using the same bus. Given an
address, ESC puts that address on the bus; given a register operand, no address is
put on the bus. This enables execution of commands from an external device both
with or without an associated operand. These commands are represented in the ESC
codemacro as numbers between 0 and 63 inclusive. The interpretation of the number
is done by the external device.

R53 Record RF1:5, RF2:3
R233 Record RF6:2, mid3:3, RF7:3
Codemacro ESC opcode:Db(0,63), addr:E
Segf1x addr
R53 <110116, opcode.mid3>
ModRM opcode, addr
EndM

The R53 line in the body of the codemacro generates 8 bits as follows: the high-order
5 bits become 11011B, and the low-order 3 bits are filled with the actual parameter
supplied as "opcode" shifted right by the shift count of mid3, namely 3.

Example:

Assume that you wish to use ESC with an "opcode" of 39 on an "addr" of MEM
WORD, whose offset is 477H in ES, indexed by DI.

ESC 39, ES: MEMWORD [DI]
SEGFIX addr becomes ES: = 0010 0110B
39 = 001001116
opcode.MID3 = (000)00100
R53<11011B, opcode.mid3> becomes 11011100
for[DI],MOD = 10,R/M = 101

MODRM opcode,addr puts "opcode" into bits 5, 4, 3 of the modrm byte, with bits
7, 6, 2, 1,0 filled by the appropriate mod and R/M from "addr." Since opcode is 6
bits and the field is only 3 bits wide, only the low-order 3 are used, namely 111, and
the high-order bits (100) are ignored.

Therefore MODRM opcode,addr becomes 1011 1101B followed by the offset of
MEMWORD, 0111 0111 0000 0100.

Therefore the full object code for this ESC source line is:

0010 0110 (bytel)
1101 1100 (byte 2)
1011 1101 (byte 3)
0111 0111 (byte 4)
0000 0100 (byte 5)

Note that opcode's 6 bits are split between the last 3 bits of byte 2 and bits 5, 4, 3 of
byte 3.

A-14 ASM86

PROCLEN
This special operand equais 0 if the current PROC is declared NEAR, and OFFH if it
is declared FAR. Code outside of PROC...ENDP biocks is considered NEAR. The
RET codemacros use this operator in creating the correct machine instructions to
return from a CALL to a NEAR or FAR procedure:

Codemacro RET
R413 <0CH,PROCLEN,3>
Endm

fnstead of the more famiiiar DB or DW storage allocation commands, this
codemacro makes use of a previously defined record, it is used here the same way a
DB wouid be, but with the initiaiization given inside angie brackets to show that
each fieid in the record gets its own initiai vaiue. You can tel) there are at feast 3
fields in the record (if this invocation vafidfy matches the definition, i.e., is not an
error) because 3 vafues are given, separated by commas.

Four such records are defined as one of the first acts of the assembler, to be used in
defining its instruction set. They are listed in APPENDfX A along with the
codemacros for ASM86:

R53 Record RF1:5, RF2:3
R323 Record RF3:3, RF4:2, RF5:3
R233 Record RF6:2, Mid3:3, RF7:3
R413 Record RF8:4, RF9:1, RF1O:3

The last line above, R413, defines an 8 bit record of 3 fields: the high-order 4 bits (7,
6, 5, 4) called RF8, the next (bit 3) called RF9, and the low-order 3 (bits 2, I, 0)
called RFIO. (When R413 is used as a storage allocation command, initial values for
all fields must be specified within angle brackets because none were specified in the
definition.)

In the codemacro for RET, the field RF8 is set to OCH = 1100, and RFIO is set to
3 = 011. Field RF9, which becomes bit 3 of the allocated record byte, will be 0 if the
current PROC (in which the RET appears) is typed NEAR, or it will be I if the
PROC is typed FAR.

Note that PROCLEN is defined to give 8 bits, al) zeros or all ones, but that R4I3
uses only one bit. The field size determines how many bits are used, and if more are
supplied then the high-order bits are ignored beyond the field width.

Matching of instructions to Codemacros
This section describes what might aptly be termed the heart of the 8086 assembly
language. The careful ordering of the chain of codemacro definitions of a given
instruction (for example, the ADD instruction) combines with the varied set of typ
ing requirements on the operands to produce a single assembly language instruction
mnemonic which represents many hardware instructions.

The algorithm for matching an instruction to a particular codemacro definition is as
follows:
1. In pass 1, actual parameters are evaluated. Those containing forward references

are treated as a special type, as described in each of the cases below.
2. If any of the actual parameters (when there are more than one) is a register

expression without an associated type (e.g., [BX]), or if an implicit reference to
the accumulator is made (e.g., "MOV,3"), then the other parameters are
checked to see if at least one contains an unambiguous modifier type. Numbers

Codemacros A-15

matching "b" do not suffice; but numbers matching "w," exphcitiy-given
registers, and aii typed variables do suffice to distinguish the modifier type. If
no such parameter is found, the error message "INSUFFICIENT TYPE
INFORMATION TO DETERMINE CORRECT INSTRUCTION" is issued,
and no match is attempted. Note that a single, untyped, register expression
parameter (as in FSTENV [BX]) is allowed.

3. The chain of codemacro definitions for a given instruction is searched for a
match, beginning with the last one defined and working backwards. In order for
a definition to match, the number of actual parameters must match the number
of formats in the particular definition, and each actuai must match the forma! in
specifier type, modifier (if given in the formal), and range (if given in the for
mat). The run-down of which actuals match which formats is as follows:
a. SPECIFIERS.

Forward references in pass I match C,D,E,M,X.
AX and AL match A,E,R.
Labets match C.
Numbers match D.
Non-indexed variabies match E,M,X.
Indexed variables and register expressions match E,M.
Registers except segment registers match E,R.
Segment registers CS,DS,ES,SS match S.
Floating-point stack element

(ST, ST(0), ..., ST(7)) match F.
The floating-point stack top

(ST, ST(0)) match T.
b. MODIFIERS.

The nature of modifier-matching depends on what the matched specifier is.
For numbers: Numbers between -256 and 255 match "b" only. Other

numbers match "w" only.
For labels: NEAR labels with the SAME CS-assume which are in the range
-126 to +129 from the beginning of the codemacro match "b" only.

Other NEAR labels with the same CS assume match "w" only.
NEAR labels with a different CS-assume match no modifier.
FAR labels match "d".

For variables: Type BYTE matches "b."
Type WORD matches "w."
Type DWORD matches "d."
Type QWORD matches "q."
Type TBYTE matches "t."
Other numeric types match no modifier.

Forward references match any modifier, except when typing information is
attached, with BYTE PTR, SHORT, FAR PTR, etc.

Index-register expressions without a type associated with them (e.g., [BX])
match either "b" or "w" when used with another operand of type
"b" or "w" and matches no modifier for single-operand instructions.

c. RANGES.
Range specifiers are legal only for parameters which are numbers or
registers (specifiers A, D, R, S). If one specifier follows the formal, the
value of the actual must match; if two follow the formal, the value must fall
within the inclusive range of the specifiers. For this matching, registers
which are passed as actuals assume the following numeric values:

AL: 0
CL: I
DL: 2
BL: 3
AH: 4
CH: 5
DH: 6

A-16 ASM86

BH: 7
AX: 0
CX: 1
DX: 2
BX: 3
SP: 4
BP: 5
SI: 6
DP. 7
ES: 0
CS: 1
SS: 2
DS: 3

Forward references do not match the formal if there is a range specifier.
4. If a match is found, the number of bytes of object code generated is estimated.

Forward-reference variables, unless explicitly overridden, are assumed not to
need a segment override byte. ModRMs involving forward references are
assumed to require 16-bit displacements, except if the reference has SHORT, in
which case an 8-bit displacement is assumed.

5. In pass 2, the search through the codemacro chain starts all over again, starting
at the end of the chain and working backwards just as in pass 1. The resolution
of codemacro parameters which were forward references in pass 1 might cause a
different codemacro to be matched in pass 2.

6. Object code generated by the instruction is issued in pass 2. If the number of
bytes output exceeds the pass 1 estimate, an error message is issued and the extra
bytes are withheld. The instruction is thus incomplete and the program should
not be executed. If the number of bytes is less than the pass 1 estimate, the
remaining space is padded with 90H's (NOP; i.e., no operation).

The ADD instruction (like many other instructions) provides an excellent example of
codemacro matching. The 11 codemacro definitions of the ADD instruction cover
the following cases:

DESTINATION SOURCE

1. BYTE MEMORY
2. WORD MEMORY

IMMEDIATE BYTE
IMMEDIATE BYTE (not between -128 and 127)

3. WORD MEMORY IMMEDIATE BYTE (from-128 to 127)
4. WORD MEMORY
5. AL

IMMEDIATE WORD
IMMEDIATE BYTE

6. AX IMMEDIATE BYTE
7. AX IMMEDIATE WORD
8. MEMORY BYTE OR BYTE-REGISTER BYTE-REGISTER
9. MEMORY WORD OR WORD-REGISTER WORD-REGISTER

10. BYTE-REGISTER
11. WORD-REGISTER

MEMORY BYTE OR BYTE-REGISTER
MEMORY WORD OR WORD-REGISTER

Each of the above English-language phrases is abbreviated in the codemacro defini
tions into a two-letter specifier-modifier combination. Once you are used to the
abbreviations, the codemacros themselves are easier to scan and understand than the
above English summary. Here are the first lines of each codemacro described above,
in the same order, with an English reminder of its meaning, using EA to represent an
effective address expression resolving to either a memory or register reference:

1. CodeMacroADDdst:Eb, src:Db (TO EA byte FROM data byte)
2. CodeMacroADDdst:Ew, src:Db (TO EA word FROM large data

byte)

Codemacros A-17

3. CodeMacro ADD dst:Ew, src.Db (-128,127)

4. CodeMacro ADD dst:Ew,src:Dw
5. CodeMacro ADD dst:Ab,src:Db
6. CodeMacro ADD dst:Aw,src:Db
7. CodeMacro ADD dst:Aw,src:Dw
8. CodeMacro ADD dst:Eb,src:Rb
9. CodeMacro ADD dst:Ew,src:Rw

10. CodeMacro ADD dst:Rb,src:Eb
11. CodeMacro ADD dst:Rw,src:Ew

(TO EA word FROM signed data
byte)
(TO EA word FROM data word)
(TO AL FROM data byte)
(TO AX FROM data byte)
(TO AX FROM data word)
(TO EA byte FROM register byte)
(TO EA word FROM register word)
(TO register byte FROM EA byte)
(TO register word FROM EA word)

The ordering of the codemacros is cruciaL For exampie, the instruction "ADD
AX,3" matches not oniy definition #6, but aiso definition #2, since as a register, AX
quaiifies as an Ew as weli as an Aw. Since definition #6 produces iess object code, it
shouid be seiected before definition #2. Hence, it is given iater, so that when the
assembier searches backwards from #11 up, it comes across #6 first.

Assuming that the foitowing user symbois have been defined with the foliowing
attributes:

BYTE—VAR
WORD—VAR
WORD—EXPR
B_ARRAY

byte variable
word variable
memory-address expression
byte variable

The foiiowing assembier instructions wouid match the indicated codemacro defini
tion tine above:

ADD AX,250 -* 6
ADD AX, 350 -> 7
ADD BX,WORD_EXPR -> 11
ADD BX,DX -t 11
ADD BYTE_VAR,AL -> 8
ADD BYTE_VAR,254 -) 1
ADD WORD-VAR,CX -t 9
ADD DH,BARRAYfSU -> 10
ADD CL,BYTE_VAR -) 10
ADD AL,3 -> 5
ADD W0RD_VAR, 35648-) 4
ADD W0RD_VAR, OFFSET B_ARRAY -) 4
ADD [BX] [SI] , AH -* 8
ADD [BP] , CL -t 8
ADD DX, [DI] -> 11
ADD AX, [SI] [BP] -) 11
ADD W0RD_VAR,3 -* 3
ADD WORD_VAR, 25 5 2

NOTE
Each codemacro is limited to a maximum of 128 internal bytes, which is
reached at approximate^ 60 bytes of generated object code.

A-18 ASM86

Codemacros

; 8086/186 and 8087 Codemacro Definitions

R53 Record RF1:5,RF2:3
R323 Record RF3:3,RF4:2,RF5:3
R233 Record RF6:2,Mid3:3,RF7:3
R413 Record RF8:4,RF9:1,RF10:3

; 8086/186 Codemacros:

CodeMacro AAA
DB 37H

EndM

CodeMacro AAD
DW 0AD5H

EndM

CodeMacro AAM
DW 0AD4H

EndM

CodeMacro AAS
DB 3FH

EndM

CodeMacro Adc dst:Eb,src:Db
Segfix dst
DB 8 0H
ModRM 2,dst
DB src

EndM

Segfix dst
DB 81H
ModRM 2,dst
DW src

EndM

CodeMacro Adc dst:Ew,src:Db(-128,127)
Segfix dst
DB 8 3H
ModRM 2,dst
DB src

EndM

CodeMacro Adc dst:Ew,src:Dw
Seg fix dst
DB 81H
ModRM 2,dst

DB 10H
ModRM src,dst

DW src
EndM

DB 14H
DB src

EndM

Adc ds t:Ab,s rc:Db

CodeMacro
DB 15H
DW src

EndM

Adc dst:Aw,src:Db

CodeMacro
DB 15H
DW src

EndM

Adc ds t:Aw,src:Dw

CodeMacro
Segfix

Adc
dst

dst:Eb,src:Rb

EndM

CodeMacro Adc dst:Ew,src:Rw
Segfix dst
DB 11H
ModRM src,dst

EndM

CodeMacro Adc dst:Rb,src:Eb
Segfix src
DB 12H
ModRM dst,src

EndM

CodeMacro Adc dst:Rw,src:Ew
Segfix src
DB 13H
ModRM dst,src

F.ndM

CodeMacro Add dst:Eb,src:Db
Segfix dst
DB 80H
ModRM 0,dst
DB src

EndM

CodeMacro Add dst:Ew,src:Db
Segfix dst
DB 81H
ModRM 0,dst
DW src

EndM

CodeMacro Add dst:Ew,src:Db(-128,127)
Segfix dst
DB 8 3H
ModRM 0,dst
DB src

EndM

CodeMacro Add dst:Ew,src:Dw
Segfix dst
DB 81H
ModRM 0,dst
DW src

EndM

CodeMacro Add dst:Ab,src:Db
DB 04H
DB src

EndM

CodeMacro Add dst:Aw,src:Db
DB 05H
DW src

EndM

CodeMacro Add dst:Aw,src:Dw
DB 05H
DW src

EndM

CodeMacro Add dst:Eb,src:Rb
Segfix dst
DB 0
ModRM src,dst

EndM

Codemacros A-19

DB 2 3H
ModRM dst,src

CodeMacro Add dst:Ew,src:Rw
Seg f i x
DB 1

dst

ModRM
EndM

sr c,ds t

CodeMacro Add dst:Rb,src:Eb
Seg fix
DB 2

src

ModRM
EndM

dst,src

CodeMacro Add dst:Rw,src:Ew
Segf ix
DB 3

src

ModRM dst,src
EndM

CodeMacro And dst:Eb,src:Db
Segfix
DB 80H

dst

ModRM
DB src

4 ,dst

EndM

CodeMacro And dst:Ew,src:Db
Segf ix
DB 81H

dst

ModRM
DW src

4 , ds t

EndM

CodeMacro And dst:Ew,src:Dw
Seg fix
DB 81H

dst

ModRM
DW src

4 , ds t

EndM

CodeMacro And dst:Ab,src:Db
DB 2 4H
DB src

EndM

Cod&Mscro And dst:Aw,src:Db
DB 25H
DW src

EndM

CodcMacto And dst:Aw,src:Dw
DB 25H
DW src

EndM

CodeMacro And dst:Eb,src:Rb
Seg f i x
DB 2 0H

dst

ModRM :5 K C , d S t
EndM

CodeMacro And dst:Ew s^c:Rw
Seg fix
DB 21H

dst

ModRM
EndM

src,dst

CodeMacro And dst:Rb,src:Eb
Segfix s rc
DB 22H
ModRM < s t s t c

EndM

CodeMacro And dst:Rw src:Ew
Seg fix s rc

EndM

BOUND at end

CodeMacro Call addr:Ew
Segfix addr
DB 0FFH
ModRM 2,addr

EndM

CodeMacro Call addr:Ed
Segfix addr
DB 0FFH
ModRM 3,addr

EndM

CodeMacro Call addr:Cd
DB 9AH
DD addr

EndM

CodeMacro Call addr:Cb
DB 0E8H
RelW addr

EndM

CodeMacro Call addr:Cw
DB 0E8H
RelW addr

EndM

CodeMacro CBW
DB 9 8H

EndM

CodeMacro CLC
DB 0F8H

EndM

CodeMacro CLD
DB 0FCH

EndM

CodeMacro CLI
DB 0FAH

EndM

CodeMacro CMC
DB 0F5H

EndM

CodeMacro Cmp dst:Eb,src:Db
Segfix dst
DB 80H
ModRM 7,dst
DB src

EndM

CodeMacro Cmp dst:Ew,src:Db
Segfix dst
DB 81H
ModRM 7,dst
DW src

EndM

CodeMacro Cmp dst:Ew,src:Db(-128,127)
Segfix dst
DB 83H
ModRM 7,dst
DB src

EndM

CodeMacro Cmp dst:Ew,src:Dw
Segfix dst
DB 81H
ModRM 7,dst
DW src

EndM

A-20 ASM86

DB 3CH
DB src

EndM

DB 3DH
DW src

EndM

DB 3DH
DW src

EndM

CodeMacro Cmp dst:Eb,src:Rb
DB^ 38H

ModRM src,dst
EndM

DB^ 39H

EndM

DB^ 3AH

ModRM dst,src
EndM

DB^ 3BH

EndM

CodeMacro CmpS SI ptr:Mb,DI ptr:Mb
NoSegfix ES,DI_ptr
DB^ 0A6H

EndM

CodeMacro CmpS SI ptr:Mw,DI ptr:Mw
NoSegfix ES,DI_ptr
Segfix SI_ptr
DB 0A7H

EndM

CodeMacro CmpSB
DB 0A6H

EndM

DB 0A7H
EndM

CodeMacro CWD
DB 99H

EndM

CodeMacro DAA
DB 027H

EndM

CodeMacro DAS
DB 02FH

EndM

CodeMacro Dec dst:Eb
DB^ 0FEH

ModRM l,dst
EndM

DB 0FFH
ModRM l,dst

EndM

R53 <01001B,dst>
EndM

DB 0F6H

EndM

CodeMacro Div divisor:Ew
DB^ 0F7H

EndM

; ENTER at end

CodeMacro Esc opcode:Db(0,63),addr:Eb

R53 <11011B,opcode.mid3>

EndM

R53 C11.011B,opcode.mid3>

EndM

CodeMacro Esc opcode:Db(0,63),addr:Ed

R53 <11011B,opcode.mid3>

EndM

CodeMacro Hit
DB 0F4H

EndM

DB^ 0F6H

ModRM 7,divisor
EndM

DB^ 0F7H

ModRM 7,divisor
EndM

CodeMacro Imul mplier:Eb
DB^ 0F6H

ModRM 5,mplier
EndM

CodeMacro Imul mplier:Ew
DB^ 0F7H

EndM

CodeMacro IMUL dst:RW,srcl:EW,src2:DB
Only18 6

DB 69H
ModRM dst,srcl
DW src2

EndM

Codemacros A-21

CodeMacro IMUL dst:RW,srcl:EW,src2:DB(-128,127) CodeMacro Int itype:Db(3)
Onlyl86 DB 0CCH
Segfix srcl EndM
DB 6BH
ModRM dst,srcl CodeMacro Into
DB src2 OB 0CEH

EndM EndM

CodeMacro IMUL dst:RW,srcl:EW,src2:DW CodeMacro Iret
Onlyl86 DB 0CFH
Segfix srcl EndM
DB 6 9H
ModRM dst,srcl CodeMacro JA place:Cb
DW src2 DB 77H

EndM RelB place
EndM

CodeMacro IMUL dst:RW,src2:DB
Onlyl86 CodeMacro JAE place:Cb
DB 69H DB 7 3H
ModRM dst,dst RelB place
DW src2 EndM

EndM

CodeMacro IMUL dst:RW,src2:DB[-128,127)
CodeMacro JB place:Cb

DB 7 2H
Onlyl86 RelB place
DB 6BH EndM
ModRM dst,dst
DB src2 CodeMacro JBE place:Cb

EndM DB 76H

CodeMacro IMUL dst:RW,src2:DW
RelB place

EndM
0nlyl8 6
DB 6 9H JC Equ JB
ModRM dst,dst
DW src2 CodeMacro JCXZ place:Cb

EndM DB 0E3H

CodeMacro In dst:Ab,port:Db
RelB place

EndM
DB 0E4H
DB port CodeMacro JE place:Cb

EndM DB 74H

CodeMacro In dst:Aw,oort:Db
RelB place

EndM
DB 0E5H
DB port CodeMacro JG place:Cb

EndM DB 7FH

CodeMacro In dst:Ab,port:Rw(DX)
RelB place

EndM
DB 0ECH

EndM

CodeMacro In dst:Aw,port:Rw(DX)
CodeMacro JGE place:Cb

DB 7DH
DB 0EDH RelB place

EndM EndM

CodeMacro Inc dst:Eb CodeMacro JL place:Cb
Segfix dst DB 7CH
DB 0FEH RelB place
ModRM 0,dst EndM

EndM

CodeMacro Inc dst:Ew
CodeMacro JLE place:Cb

Db 7EH
Segfix dst RelB place
DB 0FFH EndM
ModRM 0,dst

EndM CodeMacro Jmp place:Ew

CodeMacro Inc dst:Rw Segfix place

R53 <01000B,dst>
EndM ModRM 4,place

EndM

; INS,INSB,INSW at end

CodeMacro Int itype:Db
CodeMacro Jmp place:Md

Segfix place
DB 0CDH DB 0FFH
DB itype ModRM 5,place

EndM EndM

A-22 ASM86

DB 0EAH
DD place

EndM

CodeMacro Jmp place:Cb
DB 0EBH
RelB place

EndM

DB 0E9H

EndM

JNA Equ JBE

JNAE Equ JB

JNB Equ JAE

JNBE Equ JA

JNC Equ JNB

DB 7 5H P

RelB place
EndM

JNG Equ JLE

JNGE Equ JL

JNL Equ JGE

JNLE Equ JG

CodeMacro JNO place:Cb
DB 71H
RelB place

EndM

CodeMacro JNP place:Cb
DB 7BH
RelB place

EndM

CodeMacro JNS place:Cb
DB 79H
RelB place

EndM

JNZ Equ JNE

DB 70H P

RelB place
EndM

DB 7AH
RelB place

EndM

JPE Equ JP

JPO Equ JNP

DB 78H
RelB place

EndM

JZ Equ JE

CodeMacro LAHF
DB 9FH

EndM

CodeMacro LDS dst:Rw,src:Ed

DB 0C5H
ModRM dst,src

EndM

LEAVE at end

CodeMacro LES dst:Rw,src:Ed
DB^ 0C4H

Mod RM d s t,s r c
EndM

CodeMacro LEA dst:Rw,src:M
DB 8DH
Mod RM ds t,s r c

EndM

DB 0F0H
EndM

CodeMacro LodS SI ptr:Mb
S eg fix SI ptr **
DB 0ACH

EndM

CodeMacro LodS SI ptr:Mw
Segfix SI ptr
DB 0ADH

EndM

CodeMacro LodSB
DB 0ACH

EndM

CodeMacro LodSW
DB 0ADH

EndM

DB 0E2H P P

RelB place
EndM

CodeMacro LoopE place:Cb
DB 0E1H
RelB place

EndM

DB 0E0H
RelB place

EndM

DB^ 0C6H

ModRM 0,dst
DB src

EndM

DB^ 0C7H

ModRM 0,dst
DW s rc

EndM

Codemacros A-23

DB 0C7H
ModRM 0,dst
DW src

EndM

R53 <10110B,dst>
DB src

EndM

R53 <10111B,dst>
DW src

EndM

R53 <10111B,dst>
DW src

EndM

CodeMacro Mov dst:Eb,src:Rb

DB 88H
ModRM src,dst

EndM

DB 8 9H
ModRM src,dst

EndM

CodeMacro Mov dst:Rb,src:Eb

DB 8AH
ModRM dst,src

EndM

DB^ 8BH

ModRM dst,src
EndM

CodeMacro Mov dst:Ew,src:S
DB^ 08CH

ModRM src,dst
EndM

CodeMacro Mov dst:S(ES),src:Ew
DB^ 08EH

ModRM dst,src
EndM

CodeMacro Mov dst:S(SS,DS),src:Ew

DB 08EH
ModRM dst,src

EndM

DB^ 0A0H

DW src
EndM

DB^ 0A1H

EndM

DB 0A2H
DW dst

EndM

DB^ 0A3H

DW dst
EndM

CodeMacro MovS SI_ptr:Mb,DI_ptr:Mb
NoSegfix ES,SI ptr
Segfix DI ptr
DB 0A4H

EndM

CodeMacro MovS SI ptr:Mw,DI ptr:Mw

DB^ 0A5H

EndM

DB 0A4H
EndM

CodeMacro MovSW
DB 0A5H

EndM

DB^ 0F6H

EndM

DB^ 0F7H

ModRM 4,mplier
EndM

CodeMacro Neg dst:Eb

DB 0F6H
ModRM 3,dst

EndM

DB^ 0F7H

ModRM 3,dst
EndM

EndM

DB 90H
EndM

CodeMacro Not dst:Eb
Segfix dst
DB 0F6H
ModRM 2,dst

EndM

DB 0F7H
ModRM 2,dst

EndM

A-24 ASM86

CodeMacro OR dst:Eb,src:Db
Segfix dst
DB 8 0H
ModRM l,dst
DB sr c

EndM

CodeMacro OR dst:Ew,src:Dw

DB^ 81H

ModRM l,dst
DW src

EndM

DB^ 81H

ModRM l,dst
DW s rc

EndM

CodeMacro OR dst:Ab,src:Db
DB 0CH
DB src

EndM

CodeMacro OR dst:Aw,src:Db
DB 0DH
DW src

EndM

DB 0DH
DW src

EndM

CodeMacro OR dst:Eb,src:Rb
Segfix dst
DB 8
ModRM src,dst

EndM

CodeMacro OR dst:Ew,src:Rw

DB 9
ModRM src,dst

EndM

CodeMacro OR dst:Rb,src:Eb
DB^ 0AH

EndM

DB^ 0BH

ModRM dst,src
EndM

DB 0E6H

EndM

DB 0E7H
DB port

EndM

CodeMacro Out port:Rw(DX),dst:Ab
DB 0EEH

EndM

CodeMacro Out port:Rw(DX),dst:Aw
DB 0EFH

EndM

; OUTS,OUTSB,OUTSW at end

DB^ 08FH

ModRM 0,dst
EndM

CodeMacro Pop dst:S(ES)
R323 <0,dst,7>

EndM

CodeMacro Pop dst:S(SS,DS)
R323 <0,dst,7>

EndM

R53 <01011B,dst>
EndM

; POPA at end

DB 9DH
EndM

Onlyl86
DB 68H
DW src

EndM

Onlyl86
DB 6 AH
DB src

EndM

PUSH src:D

src:DB(-128,127)

DB^ 0FFH

ModRM 6,s rc
EndM

R323 <0,src,6>
EndM

R53 <01010B,src>
EndM

DB 9CH
EndM

CodeMacro RCL dst:Eb,count:D(0,31)
Onlyl86
DB^ 0C0H

ModRM 2,dst
DB count

EndM

CodeMacro RCL dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 2,dst

EndM

Codemacros A-25

CodeMacro RCL dst:Ew,count:D(0,31)
Only186
DB^ 0C1H

ModRM 2,dst

EndM

CodeMacro RCL dst:Ew,count:Db(l)
Segfix dst
DB 0D1H
ModRM 2,dst

EndM

DB^ 0D2H

ModRM 2,dst
EndM

CodeMacro RCL dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 2,dst

EndM

CodeMacro RCR dst:Eb,count:D(0,31)
Only18 6
DB^ 0C0H

ModRM 3,dst

EndM

CodeMacro RCR dst:Eb,count:Db(l)
DB^ 0D0H

ModRM 3,dst
EndM

CodeMacro RCR dst:EW,count:D(0,31)
Onlyl86
DB^ 0C1H

ModRM 3,dst

EndM

CodeMacro RCR dst:Ew,count:Db(l)

DB 0D1H
ModRM 3,dst

EndM

CodeMacro RCR dst:Eb,count:Rb(CL)

DB 0D2H
ModRM 3,dst

EndM

CodeMacro RCR dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 3,dst

EndM

CodeMacro Rep Prefx
DB 0F3H

EndM

DB 0F3H
EndM

CodeMacro RepNE Prefx
DB 0F2H

EndM

RepNZ Equ RepME

RepZ Equ RepE

R413 <0CH,Proclen,2>
DW src

EndM

R413 <0CH,Proclen,2>
DW s rc

EndM

R413 <0CH,Proclen,3>
EndM

CodeMacro ROL dst:Eb,count:D(0,31)
Onlyl86
DB^ 0C0H

ModRM 0,dst

EndM

CodeMacro ROL dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 0,dst

EndM

CodeMacro ROL dst:Ew,count:D(0,31)
Onlyl86
DB^ 0C1H

ModRM 0,dst
DB count

EndM

CodeMacro ROL dst:Ew,count:Db(l)

DB^ 0D1H

ModRM 0,dst
EndM

CodeMacro ROL dst:Eb,count:Rb(CL)
DB^ 0D2H

ModRM 0,dst
EndM

CodeMacro ROL dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 0,dst

EndM

CodeMacro ROR dst:Eb,count:D(0,31)
Only18 6

DB 0C0H
ModRM l,dst

EndM

CodeMacro ROR dst:Eb,count:Db(l)
DB^ 0D0H

ModRM l,dst
EndM

A-26 ASM86

Onlyl86
Segfix dst
DB 0C1H
ModRM l,dst

EndM

CodeMacro ROR dst:Ew,count:Db(l)
Segfix dst
DB 0D1H
ModRM l,dst

EndM

CodeMacro ROR dst:Eb,count:Rb(CL)
Segfix dst
DB 0D2H
ModRM l,dst

EndM

CodeMacro ROR dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM l,dst

EndM

CodeMacro SAHF
DB 9EH

EndM

CodeMacro SAL dst:Eb,count:D(0,31)
Onlyl86
Segfix dst
DB 0C0H
ModRM 4,dst
DB count

EndM

CodeMacro SAL dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 4,dst

EndM

CodeMacro SAL dst:Ew,count:D(0,31)
Onlyl86
Segfix dst
DB 0C1H
ModRM 4,dst
DB count

EndM

CodeMacro SAL dst:Ew,count:Db(l)
Segfix dst
DB 0D1H
ModRM 4,dst

EndM

CodeMacro SAL dst:Eb,count:Rb(CL)
Segfix dst
DB 0D2H
ModRM 4,dst

EndM

CodeMacro SAL dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 4,dst

EndM

CodeMacro SAR dst:Eb,count:D(0,31)
Onlyl86
Segfix dst
DB 0C0H
ModRM 7,dst
DB count

EndM

CodeMacro SAR dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 7,dst

EndM

CodeMacro SAR dst:Ew,count:D(0,31)
Onlyl86
DB^ 0C1H

ModRM 7,dst
DB count

EndM

CodeMacro SAR dst:Ew,count:Db(l)
Segfix dst
DB 0D1H
ModRM 7,dst

EndM

CodeMacro SAR dst:Eb,count:Rb(CL)
Segfix dst
DB 0D2H
ModRM 7,dst

EndM

CodeMacro SAR dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 7,dst

EndM

CodeMacro Sbb dst:Eb,src:Db
Segfix dst
DB 80H
ModRM 3,dst
DB src

EndM

CodeMacro Sbb dst:Ew,src:Db
Segfix dst
DB 81H
ModRM 3,dst
DW src

EndM

CodeMacro Sbb dst:Ew,src:Db(-128,127)
Segfix dst
DB 8 3H
ModRM 3,dst
DB src

EndM

CodeMacro Sbb dst:Ew,src:Dw
Segfix dst
DB 81H
ModRM 3,dst
DW src

EndM

CodeMacro Sbb dst:Ab,src:Db
DB 1CH
DB src

EndM

CodeMacro Sbb dst:Aw,src:Db
DB 1DH
DW src

EndM

CodeMacro Sbb dst:Aw,src:Dw
DB 1DH
DW src

EndM

Codemacros A-27

CodeMacro Sbb dst:Eb,src:Rb
Segfix dst
DB 18H
ModRM src,dst

EndM

CodeMacro Sbb dst:Ew,src:Rw
Segfix dst
DB 19H
ModRM src,dst

EndM

CodeMacro Sbb dst:Rb,src:Eb
Segfix src
DB 1AH
ModRM dst,src

EndM

CodeMacro Sbb dst:Rw,src:Ew
Segfix src
DB 1BH
ModRM dst,src

EndM

CodeMacro ScaS DI_ptr:Mb
NoSegfix ES,DI_ptr
DB 0AEH

EndM

CodeMacro ScaS DI_ptr:Mw
NoSegfix ES,DI_ptr
DB 0AFH

EndM

CodeMacro ScaSB
DB 0AEH

EndM

CodeMacro ScaSW
DB 0AFH

EndM

SHL Equ SAL

CodeMacro SHR dst:Eb,count:D(0,31)
0nlyl86
Segfix dst
DB 0C0H
ModRM 5,dst
DB count

EndM

CodeMacro SHR dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 5,dst

EndM

CodeMacro SHR dst:Ew,count:D(0,31)
Onlyl86
Segfix dst
DB 0C1H
ModRM 5,dst
DB count

EndM

CodeMacro SHR dst:Ew,count:Db(l)
Segfix dst
DB 0D1H
ModRM 5,dst

EndM

CodeMacro SHR dst:Eb,count:Rb(CL)
Segfix dst
DB 0D2H
ModRM 5,dst

EndM

CodeMacro SHR dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 5,dst

EndM

CodeMacro STC
DB 0F9H

EndM

CodeMacro STD
DB 0FDH

EndM

CodeMacro STI
DB 0FBH

EndM

CodeMacro StoS DI_ptr:Mb
NoSegfix ES,DI_ptr
DB 0AAH

EndM

CodeMacro StoS DI_ptr:Mw
NoSegfix ES,DI_ptr
DB 0ABH

EndM

CodeMacro StoSB
DB 0AAH

EndM

CodeMacro StoSW
DB 0ABH

EndM

CodeMacro Sub dst:Eb,src:Db
Segfix dst
DB 80H
ModRM 5,dst
DB src

EndM

CodeMacro Sub dst:Ew,src:Db
Segfix dst
DB 81H
ModRM 5,dst
DW src

EndM

CodeMacro Sub dst:Ew,src:Db(-128,127)
Segfix dst
DB 8 3H
ModRM 5,dst
DB src

EndM

CodeMacro Sub dst:Ew,src:Dw
Segfix dst
DB 81H
ModRM 5,dst
DW src

EndM

CodeMacro Sub dst:Ab,src:Db
DB 2CH
DB src

EndM

CodeMacro Sub dst:Aw,src:Db
DB 2DH
DW src

EndM

A-28 ASM86

CodeMacro Sub dst:Aw,src:Dw
DB 2DH
DW src

EndM

CodeMacro Sub dst:Eb,src:Rb
Segfix dst
DB 28H
ModRM src,dst

EndM

CodeMacro Sub dst:Ew,src:Rw
Segfix dst
DB 29H
ModRM src,dst

EndM

CodeMacro Sub dst:Rb,src:Eb
Segfix src
DB 2 AH
ModRM dst,src

EndM

CodeMacro Sub dst:Rw,src:Ew
Segfix src
DB 2BH
ModRM dst,src

EndM

CodeMacro Test dst:Eb,src:Db
Segfix dst
DB 0F6H
ModRM 0,dst
DB src

EndM

CodeMacro Test dst:Ew,src:Db
Segfix dst
DB 0F7H
ModRM 0,dst
DW src

EndM

CodeMacro Test dst:Ew,src:Dw
Segfix dst
DB 0F7H
ModRM 0,dst
DW src

EndM

CodeMacro Test dst:Ab,src:Db
DB 0A8H
DB src

EndM

CodeMacro Test dst:Aw,src:Db
DB 0A9H
DW src

EndM

CodeMacro Test dst:Aw,src:Dw
DB 0A9H
DW src

EndM

CodeMacro Test dst:Eb,src:Rb
Segfix dst
DB 8 4H
ModRM src,dst

EndM

CodeMacro Test dst:Ew,src:Rw
Segfix dst
DB 8 5H
ModRM src-,dst

EndM

CodeMacro Test dst:Rb,src:Eb
Segfix src
DB 8 4H
ModRM dst,src

EndM

CodeMacro Test dst:Rw,src:Ew
Segfix src
DB 8 5H
ModRM dst,src

EndM

CodeMacro Wait
DB 09BH

EndM

CodeMacro Xchg dst:Eb,src:Rb
Segfix dst
DB 86H
ModRM src,dst

EndM

CodeMacro Xchg dst:Ew,src:Rw
Segfix dst
DB 87H
ModRM src,dst

EndM

CodeMacro Xchg dst:Rb,src:Eb
Segfix src
DB 86H
ModRM dst,src

EndM

Segfix src
DB 87H
ModRM dst,src

EndM

CodeMacro Xchg dst:Rw,src:Aw
R53 <10010B,dst>

EndM

CodeMacro Xchg dst:Aw,src:Rw
R53 <10010B,src>

EndM

CodeMacro Xlat table:Mb
Segfix table
DB 0D7H

EndM

CodeMacro XlatB
DB 0D7H

EndM

CodeMacro Xor dst:Eb,src:Db
Segfix dst
DB 80H
ModRM 6,dst
DB src

EndM

Segfix dst
DB 81H
ModRM 6,dst
DW src

EndM

CodeMacro Xor dst:Ew,src:Dw
Segfix dst
DB 81H
ModRM 6,dst
DW src

EndM

Codemacros A-29

CodeMacro
DB 3 4H
DB src

EndM

Xor

DB 3 5H
DW src

EndM

Xor dst:Aw,src:Db

DB 3 5H
DW src

EndM

Xor dst:Aw,src:Dw

CodeMacro
Seg fix

Xor
dst

d s t: Eb, s r c : Rb

DB 30H
ModRM src,dst

EndM

CodeMacro Xor dst:Ew,src:Rw
Segfix dst
DB 31H
ModRM src,dst

EndM

CodeMacro Xor dst:Rb,src:Eb
Segfix src
DB 3 2H
ModRM dst,src

EndM

CodeMacro Xor dst:Rw,src:Ew
Segfix src
DB 3 3H
ModRM dst,src

EndM

Rfix 110B
R233 <llB,000B,dst>

EndM

CodeMacro FBLD memop:Mt
RfixM 111B,memop
ModRM 100B,memop

EndM

CodeMacro FBSTP memop:Mt
RfixM 111B,memop
ModRM 110B,memop

EndM

CodeMacro FCHS
Rfix 001B
DB 11100000B

EndM

CodeMacro FCLEX
Rfix 011B
DB 11100010B

EndM

CodeMacro FCOM memop:Md
RfixM 000B,memop
ModRM 010B,memop

EndM

CodeMacro FCOM memop:Mq
RfixM 100B,memop
ModRM 010B,memop

EndM

CodeMacro FCOM fpst:F
Rfix 000B
R233 <llB,010B,fpst>

EndM

; 8087 Codemacros:

CodeMacro F2XM1
Rfix 001B
DB 11110000B

EndM

CodeMacro FABS
Rfix 001B
DB 11100001B

EndM

CodeMacro FADD memop:Md
RfixM 000B,memop
ModRM 000B,memop

EndM

CodeMacro FADD memop:Mq
RfixM 100B,memop
ModRM 000B,memop

EndM

CodeMacro FADD dst:T,src:F
Rfix 000B
R233 <llB,000B,src>

EndM

CodeMacro FADD dst:F,src:T
Rfix 100B
R233 <llB,000B,dst>

EndM

CodeMacro FADD
Rfix 110B
DB 11000001B

EndM

CodeMacro FCOM
Rfix 000B
DB 11010001B

EndM

CodeMacro FCOMP memop:Md
RfixM 000B,memop
ModRM 011B,memop

EndM

RfixM 100B,memop
ModRM 01.1B,memop

EndM

CodeMacro FCOMP fpst:F
Rfix 000B
R233 <llB,011B,fpst>

EndM

CodeMacro FCOMP
Rfix 000B
DB 11011001B

EndM

CodeMacro FCOMPP
Rfix 110B
DB 11011001B

EndM

CodeMacro FDECSTP
Rfix 001B
DB 11110110B

EndM

A-30 ASM86

CodeMacro FDISI
Rfix 011B
DB 11100001B

EndM

CodeMacro FDIV memop:Md
RfixM 000B,memop
ModRM 110B,memop

EndM

CodeMacro FDIV memop:Mq
RfixM 100B,memop
ModRM 110B,memop

EndM

CodeMacro FDIV dst:T,src:F
Rfix 000B
R233 <HB,110B,src>

EndM

CodeMacro FDIV dst:F,src:T
Rfix 100B
R233 <HB,lllB,dst>

EndM

CodeMacro FDIV
Rfix 110B
DB 1111100LB

EndM

CodeMacro FDlVP dst:F,src:T
Rfix 110B
R233 <HB,lllB,dst>

EndM

CodeMacro FDIVR memop:Md
RfixM 000B,memop
ModRM 111B,memop

EndM

CodeMacro FDIVR memop:Mq
RfixM 100B,memop
ModRM 111B,memop

EndM

CodeMacro FDIVR dst:T,src:F
Rfix 000B
R233 <HB,lllB,src>

EndM

CodeMacro FDIVR dst:F,src:T
Rfix 100B
R233 <HB,110B,dst>

EndM

CodeMacro FDIVR
Rfix 110B
DB 11110001B

EndM

CodeMacro FDIVRP dst:F,src:T
Rfix 110B
R233 <llB,110B,dst>

EndM

CodeMacro FENI
Rfix 011B
DB 11100000B

EndM

CodeMacro FFREE fpst:F
Rfix 101B
R233 <HB,000B,fpst>

EndM

CodeMacro FIADD memop:Mw
RfixM 110B,memop
ModRM 000B,memop

EndM

CodeMacro FIADD memop:Md
RfixM 010B,memop
ModRM 000B,memop

EndM

CodeMacro FICOM memop:Mw
RfixM 110B,memop
ModRM 010B,memop

EndM

CodeMacro FICOM memop:Md
RfixM 010B,memop
ModRM 010B,memop

EndM

CodeMacro FICOMP memop:Mw
RfixM 110B,memop
ModRM 011B,memop

EndM

CodeMacro FICOMP memop:Md
RfixM 010B,memop
ModRM 011B,memop

EndM

CodeMacro FIDIV memop:Mw
RfixM 110B,memop
ModRM 110B,memop

EndM

CodeMacro FIDIV memop:Md
RfixM 010B,memop
ModRM 110B,memop

EndM

CodeMacro FIDIVR memop:Mw
RfixM 110B,memop
ModRM 1L1B,memop

EndM

CodeMacro FIDIVR memop:Md
RfixM 010B,memop
ModRM 11IB,memop

EndM

CodeMacro FILD memop:Mw
RfixM 111B,memop
ModRM 000B,memop

EndM

CodeMacro FILD memop:Md
RfixM 011B,memop
ModRM 000B,memop

EndM

CodeMacro FILD memop:Mq
RfixM 111B,memop
ModRM 101B,memop

EndM

CodeMacro FIMUL memop:Mw
RfixM 110B,memop
ModRM 001B,memop

EndM

CodeMacro FIMUL memop:Md
RfixM 010B,memop
ModRM 001B,memop

EndM

Codemacros A-31

CodeMacro FINCSTP
Rfix 001B
DB 11110111B

EndM

CodeMacro FINIT
Rfix 011B
DB 11100011B

EndM

CodeMacro FIST memop:Mw
RfixM 111B,memop
ModRM 010B,memop

EndM

CodeMacro FIST memop:Md
RfixM 011B,memop
ModRM 010B,memop

EndM

CodeMacro FISTP memop:Mw
RfixM 111B,memop
ModRM 011B,memop

EndM

CodeMacro FISTP memop:Md
RfixM 011B,memop
ModRM 011B,memop

EndM

CodeMacro FISTP memop:Mq
RfixM 111B,memop
ModRM 111B,memop

EndM

CodeMacro FI SUB memop:Mw

EndM ' P

RfixM 010B,memop
ModRM 100B,memop

EndM

CodeMacro FISUBR memop:Mw
RfixM 110B,memop
ModRM 101B,memop

EndM

CodeMacro FISUBR memop:Md
RfixM 010B,memop
ModRM 101B,memop

EndM

CodeMacro FLD memop:Md
RfixM 001B,memop
ModRM 000B,memop

EndM

CodeMacro FLD memop:Mq
RfixM 101B,memop
ModRM 000B,memop

EndM

CodeMacro FLD memop:Mt
RfixM 011B,memop
ModRM 101B,memop

EndM

CodeMacro FLD fpst:F
Rfix 001B
R233 <HB,000B,fpst>

CodeMacro FISTP memop:Mw
RfixM 111B,memop
ModRM 01 IB, memop

EndM

CodeMacro FISTP memon:Md
RfixM 01IB,memop
ModRM 011B,memop

EndM

CodeMacro FISTP memoo:Mo
RfixM 111B,memop
ModRM 11IB,memop

EndM

CodeMacro FISUB memoo:Mn
RfixM 110B,memop
ModRM 100B,memop

EndM

CodeMacro FISUB memoo:Md
RfixM 010B,memop
ModRM 100B,memop

EndM

CodeMacro FISUBR memop:Mw
RfixM 110B,memop
ModRM 101B,memop

EndM

CodeMacro FISUBR memop:Md
RfixM 010B,memoo
ModRM 101Blmemoo

EndM

CodeMacro FLD memopiMd
RfixM 001B,memop
ModRM 000B'.memop

EndM

ModRM 000B.'memop
EndM

CodeMacro FLD memop:Mt
RfixM 011B,mernoo
ModRM 101B.memoo

EndM

CodeMacro FLD fpst:F
Rfix 001B
R233 <HB, 000B,fpst>

EndM

CodeMacro FLD1
Rfix 001B
DB 11101000B

EndM

CodeMacro FLDCW memop:M

EndM

CodeMacro FLDENV memop:M
RfixM 001B,memoo
ModRM 100B,memop

EndM

CodeMacro FLDL2E
Rfix 001B
DB 11101010B

EndM

CodeMacro FLDL2T
Rfix 001B
DB 11101001B

EndM

A-32 ASM86

CodeMacro FLDLG2
Rfix 001B
DB 11101100B

EndM

CodeMacro FLDLN2
Rfix 001B
DB 11101101B

EndM

CodeMacro FLDPI
Rfix 001B
DB 11101011B

EndM

CodeMacro FLDZ
Rfix 001B
DB 11101110B

EndM

CodeMacro FMUL memop:Md
RfixM 0008,memor)
ModRM 001B'.'memop

EndM

CodeMacro FMUL memop:Mq
RfixM 100B'.memoo
ModRM 001B.memop

EndM

CodeMacro FMUL dst:T,src:F
Rfix 000B
R233 <11B.001B,src>

EndM

CodeMacro FMUL dst:F'.src:T
Rfix 100B
R233 <llB,001B,dst>

EndM

CodeMacro FMUL
Rfix 110B
DB 11001001B

EndM

CodeMacro FMULP dst:F'.src:T
Rfix 110B
R233 <HB,001B,dst>

EndM

CodeMacro FNCLEX
RNfix 0118
DB 11100010B

EndM

CodeMacro FNDISI
RNfix 011B
DB 11100001B

EndM

CodeMacro FNSAVE memop:M
RNfixM 101B,memoo
ModRM 110B .'memop

EndM

CodeMacro FNSTCW memop:M
RNfixM 001Blmemoo
ModRM lllB.'memop

EndM

CodeMacro FNSTENV memon:M
RNfixM 001B,memop
ModRM 110B,memop

EndM

CodeMacro FNSTSW memop:M
RNfixM 101B,memoo
ModRM lllB.'memoo

EndM

CodeMacro FPATAN
Rfix 001B
DB 11110011B

EndM

CodeMacro FPREM
Rfix 001B
DB 11111000B

EndM

CodeMacro FPTAN
Rfix 001B
DB 11110010B

EndM

CodeMacro FRNDINT
Rfix 001B
DB 11111100B

EndM

CodeMacro FRSTOR memoo:M
RfixM 101B,memop
ModRM 100B,memon

EndM

CodeMacro FSAVE memoo:M
RfixM 101B,memop
ModRM 110B'.memoo

EndM

CodeMacro FSCALE
Rfix 001B
DB 111111018

EndM

CodeMacro FSQRT
Rfix 001B
DB 11111010B

EndM

CodeMacro FNENI
RNfix 011B
DB 11100000B

EndM

CodeMacro FNINIT
RNfix 011B
DB 11100011B

EndM

CodeMacro FNOP
Rfix 001B
DB 11010000B

EndM

CodeMacro FST memop:Md
RfixM 001B,memop
ModRM 010B,memop

EndM

RfixM 101B.memop
ModRM 010B,memop

EndM

CodeMacro FST fost:F
Rfix 101B
R233 <HB,010B'.fnst>

EndM

Codemacros A-33

CodeMacro FSTCW memoo:M
RfixM 001B,memop
ModRM lllB^memoo

EndM

CodeMacro FSTENV memop:M
RfixM 001B,memoo
ModRM 110Bimemop

EndM

CodeMacro FSTP memop:Md
RfixM 001B'.memoo
ModRM 011B,memop

EndM

CodeMacro FSTP memop:Mq
RfixM 101B^memoo
ModRM 011B.memop

EndM

CodeMacro FSTP memon:Mt
RfixM 011B.memop
ModRM 111B,memop

EndM

CodeMacro FSTP fnet:F
Rfix 101B
R233 <HB,01.1B,fpst>

EndM

CodeMacro FSTSW memop:M
RfixM 101B,memop
ModRM lllB,memon

EndM

CodeMacro FSUB memoo:Md
RfixM 000B,memop
ModRM 100B'.memon

EndM

CodeMacro FSUB memop:Mq
RfixM 100B,memop
ModRM 100B,memoo

EndM

CodeMacro FSUB dst:T,src:F
Rfix 000B
R233 <11B'. 100B.'src>

EndM

CodeMacro FSUB dst:F,src:T
Rfix 100B
R233 <11B. 101B.'dst>

EndM

CodeMacro FSUB
Rfix 110B
DB 11101001B

EndM

CodeMacro FSUBP dst:F,src:T
Rfix 110B
R233 <HB.101B.dst>

EndM

CodeMacro FSUBR memop:Md
RfixM 000B,memon
ModRM 101B.'memop

EndM

ModRM 101B.memop
EndM

CodeMacro FSUBR dst:T'.src:F
Rfix 000B
R233 <llB,101B,src>

EndM

CodeMacro FSUBR dst:F.'src:T
Rfix 100B
R233 <llB,100B,dst>

EndM

CodeMacro FSUBR
Rfix 110B
DB 11100001B

EndM

CodeMacro FSUBRP dst:Fisrc:T
Rfix 110B
R233 <HB,100B,dst>

EndM

CodeMacro FTST
Rfix 001B
DB 11100100B

EndM

CodeMacro FWAIT
RWfi x

EndM

CodeMacro FXAM
Rfix 001B
DB 11100101B

EndM

CodeMacro FXCH fost:F
Rfix 001B
R233 <HB,001B,fpst>

EndM

CodeMacro FXCH
Rfix 001B
DB 11001001B

EndM

CodeMacro FXTRACT
Rfix 00LB
DB 11110100B

EndM

CodeMacro FYL2X
Rfix 001B
DB 11110001B

EndM

CodeMacro FYL2XP1
Rfix 001B
DB 11111001B

EndM

CodeMacro BOUND indx:RW,bptr:MW
On 1 y 18 6
Segfix botr
DB 62H
ModRM indx.botr

EndM

CodeMacro BOUND indx:RW'.botr:MD
Onlyl86
Segfix bptr
DB 6 2H
ModRM indx,botr

EndM

A-34 ASM86

CodeMacro ENTER disp:D(0.0FFFFH).level:D(0.255)
Onlyl86
DB 0C8H
DW disc
DB level

EndM

CodeMacro INS di_ptr:EB,port:RW(DX)
On 1 y 18 6
NoSeqfix ES'.di ptr
DB 6CH

EndM

CodeMacro INS di_ptr:EW,port:RW(DX)
Onlvl86
NoSeqfix ES.'di ptr
DB 6DH

EndM

CodeMacro INSB
Onlyl86
DB 6CH

EndM

CodeMacro INSW
Onlyl86
DB 6DH

EndM

CodeMacro LEAVE
Onlvl86
DB 0C9H

EndM

CodeMacro OUTS port:RW(DX).si ptr:EW
Onlyl86
Segfix siptr
DB 6FH

EndM

CodeMacro OUTSB
Onlyl86
DB 6EH

EndM

CodeMacro OUTSW
Onlyl86
DB 6FH

EndM

CodeMacro POPA
Onlvl86
DB 61H

EndM

CodeMacro PUSHA
Only18 6
DB 60H

EndM

Puroe R53.R323.R233.R413
Purge RF1,RF2,RF3,RF4.RF5
Puroe RF6.RF7,RF8,RF9
Purge RF10,Mid3

END

CodeMacro OUTS port:RW(DX),si_ptr:EB
Onlyl86
Seofix si ptr
DB 6EH

EndM

Flag Operations B
FLAG REGISTERS
Flags are used to distinguish or denote certain resuits of data manipulation. The
8086 provides the four basic mathematical operations (+, *, /) in a number of
different varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic are provided. Standard two's complement representation of signed
values is used. The addition and subtraction operations serve as both signed and
unsigned operations. In these cases the flag settings allow the distinction between
signed and unsigned operations to be made (see Conditional Transfer instructions in
Chapter 6).

Adjustment operations are provided to allow arithmetic to be performed directly on
unpacked decimal digits or on packed decimal representations, and the auxiliary flag
(AF) facilitates these adjustments.

Flags also aid in interpreting certain operations which could destroy one of their
operands. For example, a compare is actually a subtract operation; a zero result in
dicates that the operands are equal. Since it is unacceptable for the compare to
destroy either of the operands, the processor includes several work registers reserved
for its own use in such operations. The programmer cannot access these registers.
They are used for internal data transfers and for holding temporary values in
destructive operations, whose results are reflected in the flags.

Your program can test the setting of five of these flags (carry, sign, zero, overflow,
and parity) using one of the conditional jump instructions. This allows you to alter
the flow of program execution based on the outcome of a previous operation, the
auxiliary carry flag is reserved for the use of the ASCH and decimal adjust instruc
tions, as will be explained later in this section.

It is important for you to know which flags are set by a particular instruction.
Assume, for example, that your program is to test the parity of an input byte and
then execute one instruction sequence if parity is even, a different instruction se
quence if parity is odd. Coding a JPE (jump if parity is even) or JPO (jump if parity
is odd) instruction immediately following the IN (input) instruction would produce
false results, since the IN instruction does not affect the condition flags. The jump
conditionally executed by your program would reflect the outcome of some previous
operation unrelated to the IN instructions.

For the operation to work correctly, you must include some instruction that alters
the parity flag after the IN instruction, but before the jump instruction. For exam
ple, you can add zero to the input byte in the accumulator. This sets the parity flag
without altering the data in the accumulator.

In other cases, you will want to set a flag though there may be a number of interven
ing instructions before you test it. In these cases, you must check the operation of
the intervening instructions to be sure that they do not affect the desired flag.

The flags set by each instruction are detailed in the individual instructions in
Chapter 6 of this manual.

Details of Flag Usage. Six flag registers are set or cleared by most arithmetic
operations to reflect certain properties of the result of the operation. They follow
these rules below, where "set" means set to 1 and "clear" means cler to 0. Further
discussion of each of these flags follows the concise description.

B-2 ASM86

CF is set if the operation resuited in a carry out of (from addition) or a borrow
into (from subtraction) the high-order bit of the resuit; otherwise CF is
cieared.

AF is set if the operation resuited in a carry out of (from addition) or borrow into
(from subtraction) the tow-order four bits of the resuit; otherwise AF is
cieared.

ZF is set if the resuit of the operation is zero; otherwise ZF is cieared.

SF is set if the high-order bit of the resuit is set; otherwise SF is cieared.

PF is set if the moduio 2 sum of the iow-order eight bits of the resuit of the
operation is 0 (even parity); otherwise PF is cieared (odd parity).

OF is set if the signed operation resuited in an overfiow, i.e., the operation
resuited in a carry into the high-order bit of the resuit but not a carry out of the
high-order bit, or vice versa; otherwise OF is cieared.

Carry Fiag. As its name impiies, the carry fiag is commoniy used to indicate
whether an addition causes a "carry" into the next higher order digit. (However, the
increment and decrement instructions (INC, DEC) do not affect CF.) The carry fiag
is aiso used as a "borrow" fiag in subtractions.

The iogicai AND, OR, and XOR instructions aiso affect CF. These instructions set
or reset particular bits of their destination (register or memory). See the descriptions
of the iogic instruction in Chapter 6.

The rotate and shift instructions move the contents of the operand (registers or
memory) one or more positions to the ieft or right. They treat the carry fiag as
though it were an extra bit of the operand. The originai vaiue in CF is oniy preserved
by RCL and RCR. Otherwise it is simpiy repiaced with the next bit rotated out of the
source, i.e., the high-order bit if an RCL is used, the iow-order bit if RCR.

Exampie:

Addition of two one-byte numbers can produce a carry out of the high-order bit:

Bit Number: 7654 3210

AEH - 1010 1110B
+ 74H- 0111 0100B

122H 0010 0010B-22H ;carryflag-1

An addition that causes a carry out of the high-order bit of the destination sets the
fiag to i; an addition that does not cause a carry resets the fiag to zero.

Sign Fiag. The high-order bit of the result of operations on registers or memory can
be interpreted as a sign. Instructions that affect the sign fiag set the fiag equai to this
high-order bit. A zero indicates a positive vaiue; a one indicates a negative vaiue.
This vaiue is duphcated in the sign fiag so that conditional jump instructions can test
for positive and negative vaiues. The high order bit for byte vaiue is bit 7; for word
vaiues it is bit !5.

Fiag Operations B-3

Zero Fiag. Certain instructions set the zero Hag to one. This indicates that the iast
operation to affect ZF resuited in ah zeros in the destination (register or memory), if
that resuit was other than zero, then ZF is reset to 0. A resuit that has a carry and a
zero resuit sets both Hags, as shown beiow:

10100111
+ 01011001

00000000 Carry Flag = 1
Zero Fiag = 1
meaning yes, zero

Parity Fiag. Parity is determined by counting the number of one bits set in the tow
order 8 bits of the destination of the iast operation to affect PF. instructions that
affect the parity flag set the fiag to one for even parity and reset the Hag to zero to
indicate odd parity.

Auxiliary Carry Fiag. The auxiliary carry Hag indicates a carry out of bit 3 of the
accumulator. You cannot test this Hag directiy in your program; it is present to
enabie the Decimal Adjust instructions to perform their function.

The auxiliary carry flag is affected by all add, subtract, increment, decrement, com
pare, and ah logicai AND, OR, and XOR instructions.

Reserved Words

DUAL FUNCTION KEYWORD/SYMBOLS

AND NOT OR SHL SHR XOR

SYMBOLS

AAA ENTER FLDENV FXCH JNP PUSH
AAD ES FLDL2E FXTRACT J NS PUSHA
AAM ESC FLDL2T FYL2X JNZ PUSHF
AAS F2XM1 FLDLG2 FYL2XP1 JO RCL
ADC FABS FLDLN2 HLT JP RCR
ADD FADD FLDPI)D)V JPE REP
AH FADDP FLDZ)MUL JPO REPE
AL FBLD FMUL)N JS REPNE
AX FBSTP FMULP)NC JZ REPNZ
BH FCHS FNCLEX)NS LAHF REPZ
BL FCLEX FNDISI)NSB LDS RET
BOUND FCOM FNENt)NSW LEA ROL
BP FCOMP FNINIT)NT LEAVE ROR
BX FCOMPP FNOP)NTO LES SAHF
CALL FDECSTP FNSAVE tRET LOCK SAL
CBW FDISI FNSTCW JA LCDS SAR
CH FD)V FNSTENV JAE LODSB SBB
CL FDtVP FNSTSW JB LODSW SCAS
CLC FDtVR FPATAN JBE LOOP SCASB
CLD FDIVRP FPREM JC LOOPE SCASW
CL) FEN) FPTAN JCXZ LOOPNE SI
CMC FFREE FRNDINT JE LOOPNZ SP
CMP FtADD FRSTOR JG LOOPZ SS
CMPS F)COM FSAVE JGE MOV ST
CMPSB FICOMP FSCALE JL MOVS STC
CMPSW FIDtV FSQRT JLE MOVSB STD
CS FIDIVR FST J MP MOVSW STI
CWD F)LD FSTCW JNA MUL STOS
CX FIMUL FSTENV JNAE NEG STOSB
DAA FINCSTP FSTP JNB NIL STOSW
DAS FINIT FSTSW JNBE NOP SUB
DEC F)ST FSUB JNC OUT TEST
DH FISTP FSUBP JNE OUTS WAIT
D) FtSUB FSUBR JNG OUTSB XCHG
DIV FtSUBR FSUBRP JNGE OUTSW XLAT
DL FLD FTST JNL POP XLATB
DS FLD1 FWAtT JNLE POPA ??SEG
DX FLDCW FXAM JNO POPF

NON-CONFLICTING KEYWORDS

DA INCLUDE NOERRORPRINT NOPR PAGEWIDTH SB
DATE LI NOGE NOPRINT PAGING STACK
DEBUG LIST NOGEN NOSB PI SYMBOLS
EJ M1 NOLI NOSYMBOLS PL TITLE
EJECT MACRO NOLIST NOTY PR TT
EP MEMORY NOMACRO NOTYPE PRINT TY
ERRORPRINT M0D186 NOMR NOXR PW TYPE
GEN MR NOOBJECT NOXREF RESTORE WF
GENONLY NODB NOOJ OBJECT RS WORKFILES
GO NODEBUG NOPAGING OJ SA XR
IC NOEP NOPI PAGELENGTH SAVE XREF

HANDS-OFF KEYWORDS

ABS DWORD GT NE PTR SEG
ASSUME END HIGH NEAR PUBLIC SEGFIX
AT ENDM INPAGE NOSEGFIX PURGE SEGMENT
BYTE ENDP LABEL NOTHING QWORD SHORT
CODEMACRO ENDS LE OFFSET RECORD SIZE
COMMON EQ LENGTH ONLY186 RELB STRUC
DB EQU LOW ORG RELW TBYTE
DD EVEN LT PAGE RFIX THIS
DO EXTRN MASK PARA RFIXM TYPE
DT FAR MOD PREFX RNFIX WIDTH
DUP GE MODRM PROC RNFIXM WORD
DW GROUP NAME PROCLEN RWFIX ?

MPL Buitt-in Functions D
The following is a list of all MPL built-in functions.

%'texf end-of-//ne or %'fexf

%(ba7anced-7exf)

XC I

X C 0 (char)

%*DEFINE(macro-name[parameter-//sf]) [LOCAL 7oca/-//sf[(macro-body)

%n text-n-characfers-/ong

%EQS(arg7,arg2)

% E V A L(express/on)

%EXIT

%GES(arg7,arg2)

%GTS(arg7,arg2)

%IF (express/on) THEN (ba/anced-textf) [ELSE (ba/anced-fexf2)] Fl

%IN

%LEN(ba/anced-7ext)

%LES(arg7,arg2)

%LTS(arg 7, arg2)

% M ATC H (/den7/7/er7 de/imiter /dentzf/er2) (ba/anced-text)

%METACHAR(ba/anced-text)

%NES(arg7,arg2)

%OUT(ba/anced-text)

%REPEAT (express/on) (ba/anced-text)

%S ET(macro-/d. express/on)

%SUBSTR(ba/anced-text,express/on7,express/on2)

%WHILE (express/on) (ba/anced-text)

instructions in Hexadecimat Order E
00 00000000 MOD REG R/M ADD EA.REG BYTE ADD (REG) TO EA
01 00000001 MOD REG R/M ADD EA.REG WORD ADD (REG) TO EA
02 00000010 MOD REG R/M ADD REG.EA BYTE ADD (EA) TO REG
03 00000011 MOD REG R/M ADD REG.EA WORD ADD (EA) TO REG
04 00000100 ADD AL.DATA8 BYTE ADD DATA TO REG AL
05 00000101 ADD AX.DATA16 WORD ADD DATA TO REG AX
06 00000110 PUSH ES PUSH (ES)ON STACK
07 00000111 POP ES POP STACK TO REG ES
08 00001000 MOD REG R/M OR EA.REG BYTE OR (REG) TO EA
09 00001001 MOD REG R/M OR EA.REG WORD OR (REG) TO EA
0A 00001010 MOD REG R/M OR REG.EA BYTE OR (EA) TO REG
OB 00001011 MOD REG R/M OR REG.EA WORD OR (EA) TO REG
0C 00001100 OR AL.DATA8 BYTE OR DATA TO REG AL
0D 00001101 OR AX.DATA16 WORD OR DATA TO REG AX
OE 00001110 PUSH CS PUSH (CS)ON STACK
OF 00001111 (not used)
10 00010000 MOD REG R/M ADC EA.REG BYTE ADD (REG) W/ CARRY TO EA
11 00010001 MOD REG R/M ADC EA.REG WORD ADD (REG) W/ CARRY TO EA
12 00010010 MOD REG R/M ADC REA.EA BYTE ADD (EA)W/ CARRY TO REG
13 00010011 MOD REG R/M ADC REG.EA WORD ADD (EA) W/ CARRY TO REG
14 00010100 ADC AL.DATA8 BYTE ADD DATA W/CARRY TO REG AL
15 00010101 ADC AX.DATA16 WORD ADD DATA W/ CARRY TO REG AX
16 00010110 PUSH SS PUSH (SS) ON STACK
17 00010111 POP SS POP STACK TO REG SS
18 00011000 MOD REG R/M SBB EA.REG BYTE SUB (REG) W/ BORROW FROM EA
19 00011001 MOD REG R/M SBB EA.REG WORD SUB (REG) W/ BORROW FROM EA
1A 00011010 MOD REG R/M SBB REG.EA BYTE SUB (EA) W/ BORROW FROM REG
1B 00011011 MOD REG R/M SBB REG.EA WORD SUB (EA) W/ BORROW FROM REG
1C 00011100 SBB AL.DATA8 BYTE SUB DATA W/ BORROW FROM REG AL
1D 00011101 SBB AX.DATA16 WORD SUB DATA W/ BORROW FROM REG AX
1E 00011110 PUSH DS PUSH (DS) ON STACK
1F 00011111 POP DS POP STACK TO REG DS
20 00100000 MOD REG R/M AND EA.REG BYTE AND (REG) TO EA
21 00100001 MOD REG R/M AND EA.REG WORDANO(REG)TOEA
22 00100010 MOD REG R/M AND REG.EA BYTE AND (EA) TO REG
23 00100011 MOD REG R/M AND REG.EA WORD AND (EA) TO REG
24 00100100 AND AL.DATA8 BYTE AND DATA TO REG AL
25 00100101 AND AX.DATA16 WORD AND DATA TO REG AX
26 00100110 ES: SEGMENT OVERIDE W/ SEGMENT REG ES
27 00100111 DAA DECIMAL ADJUST FOR ADD
28 00101000 MOD REG R/M SUB EA.REG BYTE SUBTRACT (REG) FROM EA
29 00101001 MOD REG R/M SUB EA.REG WORD SUBTRACT (REG) FROM EA
2A 00101010 MOD REG R/M SUB REG.EA BYTE SUBTRACT (EA) FROM REG
2B 00101011 MOD REG R/M SUB REG.EA WORD SUBTRACT (EA) FROM REG
2C 00101100 SUB AL.DATA8 BYTE SUBTRACT DATA FROM REG AL
2D 00101101 SUB AX.DATA16 WORD SUBTRACT DATA FROM REG AX
2E 00101110 CS. SEGMENTOVERIDEW/ SEGMENT REG CS
2F 00101111 DAS DECIMAL ADJUST FOR SUBTRACT
30 00110000 MOD REG R/M XOR EA.REG BYTEXOR(REG) TO EA
31 00110001 MOD REG R/M XOR EA.REG WORD XOR (REG) TO EA
32 00110010 MOD REG R/M XOR REG.EA BYTE XOR (EA) TO REG
33 00110011 MOD REG R/M XOR REG.EA WORD XOR (EA) TO REG
34 00110100 XOR AL.DATA8 BYTE XOR DATA TO REG AL
35 00110101 XOR AX.DATA16 WORD XOR DATA TO REG AX
36 00110110 SS. SEGMENTOVERIDEW/ SEGMENTREG SS
37 00110111 AAA ASCII ADJUST FOR ADD
38 00111000 MOD REG R/M CMP EA.REG BYTE COMPARE (EA) WITH (REG)
39 00111001 MOD REG R/M CMP EA.REG WORD COMPARE (EA) WITH (REG)
3A 00111010 MOD REG R/M CMP REG.EA BYTE COMPARE (REG) WITH (EA)
3B 00111011 MOD REG R/M CMP REG.EA WORD COMPARE (REG) WITH (EA)
3C 00111100 CMP AL.DATA8 BYTE COMPARE DATA WITH (AL)
3D 00111101 CMP AX.DATA16 WORD COMPARE DATA WITH (AX)
3E 00111110 DS. SEGMENTOVERIDEW/ SEGMENTREG DS
3F 00111111 AAS ASCII ADJUST FOR SUBTRACT
40 01000000 INC AX INCREMENT (AX)
41 01000001 INC CX INCREMENT (CX)

E-2 ASM86

42 01000010 INC DX INCREMENT (DX)
43 01000011 INC DX INCREMENT (BX)
44 01000100 INC SP INCREMENT (SP)
45 01000101 INC BP INCREMENT (BP)
46 01000110 INC SI INCREMENT (SI)
47 01000111 INC DI INCREMENT (DI)
48 01001000 DEC AX DECREMENT (AX)
49 01001001 DEC CX DECREMENT (CX)
4A 01001010 DEC DX DECREMENT (DX)
4B 01001011 DEC BX DECREMENT (BX)
4C 01001100 DEC SP DECREMENT (SP)
4D 01001101 DEC BP DECREMENT (BP)
4E 01001110 DEC SI DECREMENT (SI)
4F 01001111 DEC DI DECREMENT (DI)
50 01010000 PUSH AX PUSH (AX) ON STACK
51 01010001 PUSH CX PUSH (CX) ON STACK
52 01010010 PUSH DX PUSH (DX) ON STACK
53 01010011 PUSH BX PUSH (BX) ON STACK
54 01010100 PUSH SP PUSH (SP) ON STACK
55 01010101 PUSH BP PUSH (BP) ON STACK
56 01010110 PUSH SI PUSH (SI) ON STACK
57 01010111 PUSH DI PUSH (DI) ON STACK
58 01011000 POP AX POP STACK TO REG AX
59 01011001 POP CX POP STACK TO REG CX
5A 01011010 POP DX POP STACK TO REG DX
5B 01011011 POP BX POP STACK TO REG BX
5C 01011100 POP SP POP STACK TO REG SP
50 01011101 POP BP POP STACK TO REG BP
5E 01011110 POP SI POP STACK TO REG SI
5F 01011111 POP DI POP STACK TO REG DI
60 01100000 PUSHA PUSH ALL DATA, INDEX, AND POINTER REGISTERS
61 01100001 POPA POP ALL DATA, INDEX, AND POINTER REGISTERS
62 01100010 MOD REG R/M BOUND REG.EA CHECK INDEX IN REG AGAINST BOUNDS AT EA
63 01100011 (not used)
64 01100100 (not used)
65 01100101 (not used)
66 01100110 (not used)
67 01100111 (not used)
68 01101000 PUSH DATA16 PUSH WORD DATA ON STACK
69 01101001 MOD REG R/M IMUL REG.EA.DATA16 MULTIPLY (EA) BY WORD DATA; SIGNED
6A 01101010 PUSH DATA8 PUSH BYTE DATA ON STACK; SIGN-EXTEND
6B 01101011 MOD REG R/M IMUL REG,EA,DATA8 MULTIPLY (EA) BY BYTE DATA; SIGNED
6C 01101100 INS DST8 BYTE INPUT, STRING OP
6D 01101101 INS DST16 WORD INPUT, STRING OP
6E 01101110 OUTS DST8 BYTE OUTPUT, STRING OP
6F 01101111 OUTS DST16 WORD OUTPUT, STRING OP
70 01110000 JO DISP8 JUMP ON OVERFLOW
71 01110001 JNO DISP8 JUMP ON NOT OVERFLOW
72 01110010 JC/JB/JNAE DISP8 JUMP ON BELOW/NOT ABOVE OR EQUAL
73 01110011 JNC/JNB/JAE DISP8 JUMP ON NOT BELOW/ABOVE OR EQUAL
74 01110100 JE/JZ DISP8 JUMP ON EQUAL/ZERO
75 01110101 JNE/JNZ DISP8 JUMP ON NOT EQUAL/NOT ZERO
76 01110110 JBE/JNA DISP8 JUMP ON BELOW OR EQUAL/NOT ABOVE
77 01110111 JNBE/JA DISP8 JUMP ON NOT BELOW OR EQUAL/ABOVE
78 01111000 JS DISP8 JUMP ON SIGN
79 01111001 JNS DISP8 JUMP ON NOT SIGN
7A 01111010 JP/JPE DISP8 JUMP ON PARITY/PARITY EVEN
7B 01111011 JNP/JPO DISP8 JUMP ON NOT PARITY/PARITY ODD
7C 01111100 JL/JNGE DISP8 JUMP ON LESS/NOT GREATER OR EQUAL
7D 01111101 JNL/JGE DISP8 JUMP ON NOT LESS/GREATER OR EQUAL
7E 01111110 JLE/JNG DISP8 JUMP ON LESS OR EQUAL/NOT GREATER
7F 01111111 JNLE/JG DISP8 JUMP ON NOT LESS OR EQUAL/GREATER
80 10000000 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TO EA
80 10000000 MOD 001 R/M OR EA.DATA8 BYTE OR DATA TO EA
80 10000000 MOD 010 R/M ADC EA.DATA8 BYTE ADD DATA W/CARRY TO EA
80 10000000 MOD 011 R/M SBB EA.DATA8 BYTE SUB DATA W/BORROW FROM EA
80 10000000 MOD 100 R/M AND EA.DATA8 BYTE AND DATA TO EA
80 10000000 MOD 101 R/M SUB EA.DATA8 BYTE SUBTRACT DATA FROM EA
80 10000000 MOD 110 R/M XOR EA.DATA8 BYTE XOR DATA TO EA
80 10000000 MOD 111 R/M CMP EA.DATA8 BYTE COMPARE DATA WITH (EA)
81 10000001 MOD 000 R/M ADD EA.DATA16 WORD ADD DATA TO EA
81 10000001 MOD 001 R/M OR EA.DATA16 WORD OR DATA TO EA
81 10000001 MOD 010 R/M ADC EA.DATA16 WORD ADD DATA W/CARRY TO EA

Instructions in Hexadecima) Order E-3

81 10000001 MOD 011 R/M SBB EA.DATA16 WORD SUB DATA W/ BORROW FROM EA
81 10000001 MOD 100 R/M AND EA.DATA16 WORD AND DATA TOEA
81 10000001 MOD 101 R/M SUB EA.DATA16 WORD SUBTRACT DATA FROM EA
81 10000001 MOD 110 R/M XOR EA.DATA16 WORD XOR DATA TOEA
81 10000001 MOD 111 R/M CMP EA,DATA16 WORD COMPARE DATA WITH (EA)
82 10000010 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TOEA
82 10000010 MOD 001 R/M (not used)
82 10000010 MOD 010 R/M ADC EA.DATA8 BYTE ADD DATA W/ CARRY TO EA
82 10000010 MOD 011 R/M SBB EA.DATA8 BYTE SUB DATA W/ BORROW FROM EA
82 10000010 MOD 100 R/M (not used)
82 10000010 MOD 101 R/M SUB EA.DATA8 BYTE SUBTRACT DATA FROM EA
82 10000010 MOD 110 R/M (not used)
82 10000010 MOD 111 R/M CMP EA.DATA8 BYTE COMPARE DATA WITH (EA)
83 10000011 MOD 000 R/M ADD EA.DATA8 WORD ADD DATA TO EA
83 10000011 MOD 001 R/M (not used)
83 10000011 MOD 010 R/M ADC EA.DATA8 WORD ADD DATA W/ CARRY TO EA
83 10000011 MOD 011 R/M SBB EA.DATA8 WORD SUB DATA W/ BORROW FROM EA
83 10000011 MOD 100 R/M (not used)
83 10000011 MOD 101 R/M SUB EA.DATA8 WORD SUBTRACT DATA FROM EA
83 10000011 MOD 110 R/M (not used)
83 10000011 MOD 111 R/M CMP EA.DATA8 WORD COMPARE DATA WITH (EA)
84 10000100 MOD REG R/M TEST EA.REG BYTE TEST (EA) WITH (REG)
85 10000101 MOD REG R/M TEST EA,REG WORD TEST (EA) WITH (REG)
86 10000110 MOD REG R/M XCHG REG,EA BYTE EXCHANGE (REG) WITH (EA)
87 10000111 MOD REG R/M XCHG REG,EA WORD EXCHANGE (REG) WITH (EA)
88 10001000 MOD REG R/M MOV EA.REG BYTE MOVE (REG) TOEA
89 10001001 MOD REG R/M MOV EA.REG WORD MOVE (REG) TOEA
8A 10001010 MOD REG R/M MOV REG.EA BYTE MOVE (EA) TO REG
8B 10001011 MOD REG R/M MOV REG.EA WORD MOVE (EA) TO REG
8C 10001100 MOD 0SR R/M MOV EA,SR WORD MOVE (SEGMENT REG SR) TO EA
8C 10001100 MOD 1 — R/M (not used)
8D 10001101 MOD REG R/M LEA REG.EA LOAD EFFECTIVE ADDRESS OF EA TO REG
8E 10001110 MOD 0SR R/M MOV SR.EA WORD MOVE (EA) TO SEGMENT REG SR
8E 10001110 MOD — R/M (not used)
8F 10001111 MOD 000 R/M POP EA POP STACK TO EA
8F 10001111 MOD 001 R/M (not used)
8F 10001111 MOD 010 R/M (not used)
8F 10001111 MOD 011 R/M (not used)
8F 10001111 MOD 100 R/M (not used)
8F 10001111 MOD 101 R/M (not used)
8F 10001111 MOD 110 R/M (not used)
8F 10001111 MOD 111 R/M (not used)
90 10010000 XCHG AX,AX EXCHANGE (AX) WITH (AX), (NOP)
91 10010001 XCHG AX,CX EXCHANGE (AX) WITH (CX)
92 10010010 XCHG AX,DX EXCHANGE (AX) WITH (DX)
93 10010011 XCHG AX,BX EXCHANGE (AX) WITH (BX)
94 10010100 XCHG AX.SP EXCHANGE (AX) WITH (SP)
95 10010101 XCHG AX,BP EXCHANGE (AX) WITH (BP)
96 10010110 XCHG AX,SI EXCHANGE (AX) WITH (SI)
97 10010111 XCHG AX,DI EXCHANGE (AX) WITH (DI)
98 10011000 CBW BYTE CONVERT (AL) TO WORD (AX)
99 10011001 CWD WORD CONVERT (AX) TO DOUBLE WORD
9A 10011010 CALL DISP16.SEG16 DIRECT INTER SEGMENT CALL
9B 10011011 WAIT WAIT FOR TEST SIGNAL
9C 10011100 PUSHF PUSH FLAGS ON STACK
9D 10011101 POPF POP STACK TO FLAGS
9E 10011110 SAHF STORE (AH) INTO FLAGS
9F 10011111 LAHF LOAD REG AH WITH FLAGS
AO 10100000 MOV AL.ADDR16 BYTE MOVE (ADDR) TO REG AL
A110100001 MOV AX.ADDR16 WORD MOVE (ADDR) TO REG AX
A2 10100010 MOV ADDR16,AL BYTE MOVE (AL) TO ADDR
A3 10100011 MOV ADDR16.AX WORD MOVE (AX) TO ADDR
A4 10100100 MOVS DST8.SRC8 BYTE MOVE, STRING OP
A5 10100101 MOVS DST16.SRC16 WORD MOVE, STRING OP
A6 10100110 CMPS SIPTR.DIPTR COMPARE BYTE, STRING OP
A7 10100111 CMPS SIPTR.DIPTR COMPARE WORD, STRING OP
A8 10101000 TEST AL.DATA8 BYTE TEST (AL) WITH DATA
A9 10101001 TEST AX.DATA16 WORD TEST (AX) WITH DATA
AA10101010 STOS DST8 BYTE STORE, STRING OP
AB10101011 STOS DST16 WORD STORE, STRING OP
AC10101100 LODS SRC8 BYTE LOAD, STRING OP
AD10101101 LODS SRC16 WORD LOAD, STRING OP
AE10101110 SCAS DIPTR8 BYTE SCAN, STRING OP

E-4 ASM86

AF10101111 SCAS DIPTR16 WORD SCAN, STRING OP
BO 10110000 MOV AL.DATA8 BYTE MOVE DATA TO REG AL
B1 10110001 MOV CL.DATA8 BYTE MOVE DATA TO REG CL
B2 10110010 MOV DL.DATA8 BYTE MOVE DATA TO REG DL
B3 10110011 MOV BL.DATA8 BYTE MOVE DATA TO REG BL
B4 10110100 MOV AH.DATA8 BYTE MOVE DATA TO REG AH
B5 10110101 MOV CH.DATA8 BYTE MOVE DATA TO REG CH
B6 10110110 MOV DH.DATA8 BYTE MOVE DATA TO REG DH
B7 10110111 MOV BH.DATA8 BYTE MOVE DATA TO REG BH
B8 10111000 MOV AX.DATA16 WORD MOVE DATA TO REG AX
B9 10111001 MOV CX.DATA16 WORD MOVE DATA TO REG CX
BA10111010 MOV DX.DATA16 WORD MOVE DATA TO REG DX
BB10111011 MOV BX.DATA16 WORD MOVE DATA TO REG BX
BC10111100 MOV SP.DATA16 WORD MOVE DATA TO REG SP
BD10111101 MOV BP.DATA16 WORD MOVE DATA TO REG BP
BE10111110 MOV SI.DATA16 WORD MOVE DATA TO REG SI
BF1O111111 MOV DI.DATA16 WORD MOVE DATA TO REG DI
CO 11000000 MOD 000 R/M ROL EA.DATA8 BYTE ROTATE EA LEFT DATA8 BITS
CO 11000000 MOD 001 R/M ROR EA.DATA8 BYTE ROTATE EA RIGHT DATA8 BITS
CO 11000000 MOD 010 R/M RCL EA.DATA8 BYTE ROTATE EA LEFT THRU CARRY DATA8 BITS
CO 11000000 MOD 011 R/M RCR EA,DATA8 BYTE ROTATE EA RIGHT THRU CARRY DATA8 BITS
CO 11000000 MOD 100 R/M SHL/SAL EA.DATA8 BYTE SHIFT EA LEFT DATA8 BITS
CO 11000000 MOD 101 R/M SHR EA.DATA8 BYTE SHIFT EA RIGHT DATA8 BITS
CO 11000000 MOD 110 R/M (not used)
CO 11000000 MOD 111 R/M SAR EA.DATA8 BYTE SHIFT SIGNED EA RIGHT DATA8 BITS
C111000001 MOD 000 R/M ROL EA.DATA8 WORD ROTATE EA LEFT DATA8 BITS
C1 11000001 MOD 001 R/M ROR EA.DATA8 WORD ROTATE EA RIGHT DATA8 BITS
C1 11000001 MOD 010 R/M RCL EA.DATA8 WORD ROTATE EA LEFT THRU CARRY DATA8 BITS
C1 11000001 MOD 011 R/M RCR EA.DATA8 WORD ROTATE EA RIGHT THRU CARRY DATA8 BITS
C1 11000001 MOD 100 R/M SHL/SAL EA.DATA8 WORD SHIFT EA LEFT DATA8 BITS
C111000001 MOD 101 R/M SHR EA.DATA8 WORD SHIFT EA RIGHT DATA8 BITS
C1 11000001 MOD 110 R/M (not used)
C111000001 MOD 111 R/M SAR EA.DATA8 WORD SHIFT SIGNED EA RIGHT DATA8 BITS
C211000010 RET DATA16 INTRA SEGMENT RETURN, ADD DATA TO REG SP
C3 11000011 RET INTRA SEGMENT RETURN
C4 11000100 MOD REG R/M LES REG.EA WORD LOAD REG AND SEGMENT REG ES
C5 11000101 MOD REG R/M LDS REG.EA WORD LOAD REG ANDSEGMENT REG DS
C6 11000110 MOD 000 R/M MOV EA.DATA8 BYTE MOVE DATA TOEA
C6 11000110 MOD 001 R/M (not used)
C611000110 MOD 010 R/M (not used)
C6 11000110 MOD 011 R/M (not used)
C6 11000110 MOD 100 R/M (not used)
C6 11000110 MOD 101 R/M (not used)
C6 11000110 MOD 110 R/M (not used)
C611000110 MOD 111 R/M (not used)
C7 11000111 MOD 000 R/M MOV EA.DATA16 WORD MOVE DATA TO EA
C7 11000111 MOD 001 R/M (not used)
C7 11000111 MOD 010 R/M (not used)
C7 11000111 MOD 011 R/M (not used)
C7 11000111 MOD 100 R/M (not used)
C7 11000111 MOD 101 R/M (not used)
C7 11000111 MOD 110 R/M (not used)
C7 11000111 MOD 111 R/M (not used)
C811001000 ENTER DATA16.DATA8 PERFORM ENTER SEQUENCE
C9 11001001 LEAVE PERFORM LEAVE SEQUENCE
CA11001010 RET DATA16 INTER SEGMENT RETURN. ADD DATA TO REG SP
CB11001011 RET INTERSEGMENTRETURN
CC11001100 INT 3 TYPE 3 INTERRUPT
CD11001101 INT TYPE TYPED INTERRUPT
CE11001110 INTO INTERRUPT ON OVERFLOW
CF11001111 IRET RETURN FROM INTERRUPT
DO 11010000 MOD 000 R/M ROL EA,1 BYTE ROTATE EA LEFT 1 BIT
DO 11010000 MOD 001 R/M ROR EA,1 BYTE ROTATE EA RIGHT 1 BIT
DO 11010000 MOD 010 R/M RCL EA,1 BYTE ROTATE EA LEFT THRU CARRY 1 BIT
DO 11010000 MOD 011 R/M RCR EA,1 BYTE ROTATE EA RIGHT THRU CARRY 1 BIT
DO 11010000 MOD 100 R/M SHL EA,1 BYTE SHIFT EA LEFT 1 BIT
DO 11010000 MOD 101 R/M SHR EA,1 BYTE SHIFT EA RIGHT 1 BIT
DO 11010000 MOD 110 R/M (not used)
DO 11010000 MOD 111 R/M SAR EA,1 BYTE SHIFT SIGNED EA RIGHT 1 BIT
D111010001 MOD 000 R/M ROL EA,1 WORD ROTATE EA LEFT 1 BIT

Instructions in Hexadecimai Order E-5

D1 11010001 MOD 001 R/M ROR EA,1 WORD ROTATE EA RIGHT 1 BIT
0111010001 MOD 010 R/M RCL EA,1 WORD ROTATE EA LEFT THRU CARRY 1 BIT
D111010001 MOD 011 R/M RCR EA.1 WORD ROTATE EA RIGHT THRU CARRY 1 BIT
D111010001 MOD 100 R/M SHL EA.1 WORD SHIFT EA LEFT 1 BIT
D1 11010001 MOD 101 R/M SHR EA,1 WORD SHIFT EA RIGHT 1 BIT
D1 11010001 MOD 110 R/M (not used)
D1 11010001 MOD 111 R/M SAR EA,1 WORD SHIFTSIGNEDEA RIGHT 1 BIT
D2 11010010 MOD 000 R/M ROL EA.CL BYTE ROTATE EA LEFT (CL) BITS
02 11010010 MOD 001 R/M ROR EA.CL BYTE ROTATE EA RIGHT (CL) BITS
02 11010010 MOO 010 R/M RCL EA.CL BYTE ROTATE EA LEFT THRU CARRY (CL) BITS
D2 11010010 MOD 011 R/M RCR EA.CL BYTE ROTATE EA RIGHT THRU CARRY (CL) BITS
D2 11010010 MOD 100 R/M SHL EA.CL BYTE SHIFT EA LEFT (CL) BITS
02 11010010 MOD 101 R/M SHR EA.CL BYTE SHIFT EA RIGHT (CL) BITS
D2 11010010 MOD 110 R/M (not used)
D2 11010010 MOD 111 R/M SAR EA.CL BYTE SHIFT SIGNED EA RIGHT (CL) BITS
D3 11010011 MOD 000 R/M ROL EA.CL WORD ROTATE EA LEFT (CL) BITS
D3 11010011 MOD 001 R/M ROR EA.CL WORD ROTATE EA RIGHT (CL) BITS
D3 11010011 MOD 010 R/M RCL EA.CL WORD ROTATE EA LEFT THRU CARRY (CL) BITS
D3 11010011 MOD 011 R/M RCR EA.CL WORD ROTATE EA RIGHT THRU CARRY (CL) BITS
D3 11010011 MOD 100 R/M SHL EA.CL WORD SHIFT EA LEFT (CL) BITS
D3 11010011 MOD 101 R/M SHR EA.CL WORD SHIFT EA RIGHT (CL) BITS
D3 11010011 MOD 110 R/M (not used)
D3 11010011 MOD 111 R/M SAR EA.CL WORD SHIFT SIGNED EA RIGHT (CL) BITS
D4 11010100 00001010 AAM ASCII ADJUST FOR MULTIPLY
D5 11010101 00001010 AAD ASCII ADJUST FOR DIVIDE
D6 11010110 (not used)
D7 11010111 XLAT TABLE TRANSLATE USING (BX)
D8 11011 — MOD — R/M ESC EA ESCAPE TO EXTERNAL DEVICE
D8 11011000 MOD 000 R/M FADD Short-real ADD4-BYTEEATO ST
D8 11011000 MOD 001 R/M FMUL Short-real MULTIPLY ST BY 4-BYTE EA
D811011000 MOD 010 R/M FCOM Short-real COMPARE 4-BYTE EA WITH ST
D811011000 MOD 011 R/M FCOMP Short-real COMPARE 4-BYTE EA WITH ST AND POP
D811011000 MOD 100 R/M FSUB Short-real SUBTRACT 4-BYTE EA FROM ST
D811011000 MOD 101 R/M FSUBR Short-real SUBTRACT ST FROM 4-BYTE EA
D8 11011000 MOD 110 R/M FDIV Short-real DIVIDE ST BY 4-BYTE EA
D8 11011000 MOD 111 R/M FD)VR Short-real DIVIDE 4-BYTE EA BY ST
D8 11011000 1 1 000 0) FADD ST.ST(i) ADD ELEMENT TO ST
D811011000 1 1 001 (0 FMUL ST. ST(i) MULTIPLY ST BY ELEMENT
D811011000 1 1 010 (I) FCOM ST(i) COMPARE ST(i) WITH ST
D8 11011000 1 1 011 (i) FCOMP ST(i) COMPARE ST(i) WITH ST AND POP
D8 11011000 1 1 100 (') FSUB ST. ST(i) SUBTRACT ELEMENT FROM ST
D8 11011000 1 1 101 (0 FSUBR ST.ST(i) SUBTRACT ST FROM STACK ELEMENT
D811011000 1 1 110 (0 FDIV ST.ST(i) DIVIDE ST BY ELEMENT
D8 11011000 1 1 111 (i) FDIVR ST.ST(i) DIVIDE ST(i) BY ST
D9 11011001 MOD 000 R/M FLD Short-real PUSH 4-BYTE EA TO ST
D9 11011001 MOD 001 R/M (not used)
D9 11011001 MOD 010 R/M FST Short-real STORE 4-BYTE REAL TO EA
D9 11011001 MOD 011 R/M FSTP Short-real STORE 4-BYTE REAL TO EA AND POP
D911011001 MOD 100 R/M FLDENV 14 BYTES LOAD 8087 ENVIRONMENT FROM EA
D911011001 MOD 101 R/M FLDCW 2-BYTES LOAD CONTROL WORD FROM EA
D9 11011001 MOD 110 R/M FSTENV 14-BYTES STORE 8087 ENVIRONMENT INTO EA
D9 11011001 MOD 111 R/M FSTCW 2-BYTES STORE CONTROL WORD INTO EA
0911011001 1 1 000 (i) FLD ST(i) PUSH ST(i) ONTO ST
D9 11011001 1 1 001 (i) FXCH ST(i) EXCHANGE ST AND ST(i)
D9 11011001 1 1 010 000 FNOP STORE ST IN ST
D9 11011001 1 1 010 001 (not used)
D911011001 1 1 010 01- (not used)
09 11011001 1 1 010 1- (not used)
D9 11011001 1 1 011 (!) '(D
D9 11011001 1 1 100 000 FCHS CHANGE SIGN OF ST
D9 11011001 1 1 100 001 FABS TAKE ABSOLUTE VALUE OF ST
D9 11011001 1 1 100 CI- (not used)
D9 11011001 1 1 100 100 FTST TEST STAGAINSTO.O
D9 11011001 1 1 100 101 FXAM EXAMINE ST AND REPORT CONDITION CODE
09 11011001 1 1 100 11- (not used)
D9 11011001 1 1 101 000 FLD1 PUSH +1.0 TO ST
D9 11011001 1 1 101 001 FLDL2T PUSH log2lOTO ST
D9 11011001 1 1 101 010 FLDL2E PUSH log2eTO ST
09 11011001 1 1 101 011 FLDPI PUSH Pi TO ST
09 11011001 1 1 101 100 FLDLG2 PUSH Iogio2 TO ST
D9 11011001 1 1 101 101 FLDLN2 PUSH loge2TO ST
D9 11011001 1 1 101 110 FLDZ PUSH ZERO TOST

E-6 ASM86

D911011001 1 1 101 111 (not used)
D9 11011001 1 1 110 000 F2XM1 CALCULATE2X- 1
D9 11011001 1 1 110 001 FYL2X CALCULATE FUNCTION Y'log2 X
D9 11011001 1 1 110 010 FPTAN CALCULATE TAN OF e AS A RATIO
D9 11011001 1 1 110 011 FPATAN CALCULATE ARCTAN OF 9
D9 11011001 1 1 110 100 EXTRACT EXTRACT EXPONENT AND SIGNIFICAND FROM ST VALUE
D9 11011001 1 1 110 101 (not used)
D9 11011001 1 1 110 110 FDECSTP DECREMENT STACK POINTER IN STATUS WORD
D9 11011001 1 1 110 111 FINCSTP INCREMENT STACK POINTER IN STATUS WORD
D9 11011001 1 1 111 000 FPREM MODULO DIVISION OF ST BY ST(1)
D9 11011001 1 1 110 001 FYL2XP1 CALCULATE VALUE OF Y'log2 (X + 1)
D9 11011001 1 1 111 010 FSQRT CALCULATE SQUARE ROOT OF ST
D9 11011001 1 1 111 011 (not used)
D9 11011001 1 1 111 100 FRNDINT ROUNDSTTO INTEGER
D9 11011001 1 1 111 101 FSCALE ADD ST(1) TO EXPONENT OF ST
D9 11011001 1 1 111 11- (not used)
DA11011010 MOD 000 R/M FIADD Short-integer ADD 4-BYTE INTEGER EA TO ST
DA11011010 MOD 001 R/M FIMUL Short-integer MULTIPLY ST BY 4-BYTE INTEGER EA
DA11011010 MOD 010 R/M FICOM Short-integer CONVERT 4-BYTE INTEGER EA. AND COMPARE WITH ST
DA11011010 MOD 011 R/M FICOMP Short-integer CONVERT 4-BYTE INTEGER EA. COMPARE WITH ST. POP
DA11011010 MOD 100 R/M FISUB Short-integer SUBTRACT 4-BYTE INTEGER EA FROM ST
DA11011010 MOD 101 R/M FISUBR Short-integer SUBTRACT ST FROM 4-BYTE INTEGER EA
DA11011010 MOD 110 R/M FIDIV Short-integer DIVIDE ST BY 4-BYTE INTEGER EA
DA11011010 MOD 111 R/M FtDIVR Short-integer DIVIDE 4-BYTE INTEGER EA BY ST
DA11011010 1 1 -- --- (not used)
DB11011011 MOD 000 R/M FILD Short-integer PUSH 4-BYTE INTEGER EA ONTO ST
DB11011011 MOD 001 R/M (not used)
DB11011011 MOD 010 R/M FIST Short integer STORE ROUNDED ST IN 4-BYTE INTEGER EA
DB11011011 MOD 011 R/M FISTP Short-integer STORE ROUNDED ST IN 4-BYTE INTEGER EA. POP
DB11011011 MOD 100 R/M (not used)
DB11011011 MOD 101 R/M FLD Temp-real PUSH 10-BYTE EA ONTO ST
DB11011011 MOD 110 R/M Reserved
DB11011011 MOD 111 R/M FSTP Temp-real STORE ST INTO 10-BYTE EA. POP
DB11011011 1 1 0- — Reserved
DB11011011 1 1 100 000 FENI ENABLE INTERRUPT
DB11011011 1 1 100 001 FDISI DISABLE INTERRUPTS
DB11011011 1 1 100 010 FCLEX CLEAR EXCEPTIONS
DB11011011 1 1 100 011 FINIT INITIALIZE PROCESSOR
DB11011011 1 1 100 1- Reserved
DB11011011 1 1 101 Reserved
DB11011011 1 1 11- — Reserved
DC11011100 MOD 000 R/M FADD Long-real ADD 8-BYTE EA TO ST
DC11011100 MOD 001 R/M FMUL Long-real MULTIPLY ST BY 8-BYTE EA
DC11011100 MOD 010 R/M FCOM Long-real COMPARE ST WITH 8-BYTE EA
DC11011100 MOD 011 R/M FCOMP Long-real COMPARE ST WITH 8-BYTE EA. POP STACK
DC11011100 MOD 100 R/M FSUB Long-real SUBTRACT 8-BYTE EA FROM ST
DC11011100 MOD 101 R/M FSUBR Long-real SUBTRACT ST FROM 8-BYTE EA
DC11011100 MOD 110 R/M FDIV Long-real DIVIDE ST BY 8-BYTE EA
DC11011100 MOD 111 R/M FDIVR Long-real DIVIDE 8-BYTE EABY ST
DC11011100 1 1 000 (i) FADD ST(i). ST ADD ST TO ELEMENT
DC11011100 1 1 001 (i) FMUL ST(i). ST MULTIPLY ELEMENT BY ST
DC11011100 1 1 010 (i) *(2)
DC11011100 1 1 011 (i) '(3)
DC11011100 1 1 100 (i) FSUBR ST(i). ST SUBTRACT ST FROM ELEMENT
DC11011100 1 1 101 (i) FSUB ST(i). ST SUBTRACT ELEMENT FROM ST
DC11011100 1 1 110 (I) FDIVR ST(i), ST DIVIDE ST(i) BY ST
DC11011100 1 1 111 (0 FDIV ST(i). ST DIVIDE ST BY ST(i)
DD11011101 MOD 000 R/M FLD Long-real PUSH 8-BYTE EAONTO ST
DD11011101 MOD 001 R/M Reserved
DD11011101 MOD 010 R/M FST Long-real STORE ST INTO 8-BYTE EA
DD11011101 MOD 011 R/M FSTP Long-real STORE ST INTO 8-BYTE EA. POP
DD11011101 MOD 100 R/M FRSTOR 94-BYTES RESTORE 8087 STATE FROM EA
DD11011101 MOD 101 R/M Reserved
DD11011101 MOD 110 R/M FSAVE 94-BYES SAVE 8087 STATE TO EA
DD11011101 MOD 111 R/M FSTSW 2-BYTES STORE 8087 STATUS WORD TO 2-BYTE EA
DD11011101 1 1 000 (i) FFREE ST(i) SET STACK TAG TO "EMPTY"
DD11011101 1 1 001 (i) '(4)
DD11011101 1 1 010 (i) FST ST(i) STORE ST INTO ST(i)
DD11011101 1 1 011 (i) FSTP ST(i) STORE ST INTO ST(i), POP
DD11011101 1 1 1- — Reserved
DE11011110 MOD 000 R/M FIADD Word-integer ADD 2-BYTE INTEGER EA TO ST
DE11011110 MOD 001 R/M FIMUL Word-integer MULTIPLY ST BY 2-BYTE INTEGER EA

instructions in Hexadecima) Order E-7

DE11011110 MOD' 010 R/M FICOM Word-integer COMPARE 2-BYTE EA INTEGER WITH ST
DE11011110 MOD< 011 R/M FICOMP Word-integer COMPARE 2-BYTE INTEGER EA WITH ST, POP
DE11011110 MOD) 100 R/M FISUB Word-integer SUBTRACT 2-BYTE INTEGER EA FROM ST
DE11011110 MOD) 101 R/M FISUBR Word-integer SUBTRACT ST FROM 2-BYTE INTEGER EA
DE11011110 MODi 110 R/M FIDIV Word-integer DIVIDE ST BY 2-BYTE INTEGER EA
DE11011110 MOD) 111 R/M FIDIVR Word-integer DIVIDE 2-BYTE INTEGER EA BY ST
DE11011110 1 1 000 (0 FADDP ST(i).ST ADDSTTO ELEMENT. POP
DE11011110 1 1 001 (i) FMULP ST(i). ST MULTIPLY ST BY ELEMENT, POP
DE11011110 1 1 010 --- '(5)
DE11011110 1 1 011 000 Reserved
DE11011110 1 1 011 001 FCOMPP COMPARE ST WITH ST(1), POP TWICE
DE11011110 1 1 011 01- Reserved
DE11011110 1 1 011 1- Reserved
DE11011110 1 1 100 (0 FSUBRP ST(i). ST SUBTRACT ST FROM ELEMENT, POP
DE11011110 1 1 101 (i) FSUBP ST(i). ST SUBTRACT ST(i) FROM ST, POP
DE11011110 1 1 110 (i) FDIVRP ST(i). ST DIVIDE STACK ELEMENT BY ST. POP
DE11011110 1 1 111 (i) FDIVP ST(i).ST DIVIDE ST BY STACK ELEMENT. POP
DF11011111 MOD 000 R/M FILD Word-integer CONVERT 2-BYTE EA AND PUSH ONTO STACK
DF 11011111 MOD 001 R/M Reserved
DF 11011111 MOD 010 R/M FIST Word-integer ROUND ST AND STORE IN 2-BYTE INTEGER EA
DF 11011111 MOD 011 R/M FISTP Word-integer ROUNDST. STORE IN 2-BYTE INTEGER EA. POP
DF 11011111 MOD 100 R/M FBLD Packed decimal LOAD BCD TO ST
DF 11011111 MOD 101 R/M FILD Long-integer CONVERT 8-BYTE INTEGER EA AND PUSH ONTO STACK
DF 11011111 MOD 110 R/M FBSTP Packed decimal CONVERT ST. STORE IN 10-BYTE BCD EA. POP
DF11011111 MOD 111 R/M FISTP Long-integer ROUND ST. STORE IN 8-BYTE INTEGER EA. POP
DF11011111 1 1 000 (i) "(6)
DF11011111 1 1 001 (i) '(7)
DF11011111 1 1 010 0) '(8)
DF11011111 1 1 011 (i) "(9)
DF11011111 1 1 --- Reserved
E0 11100000 LOOPNZ/LOOPNE DISP8 LOOP (CX) TIMES WHILE NOT ZERO/NOT EQUAL
E1 11100001 LOOPZ/LOOPE DISP8 LOOP (CX) TIMES WHILE ZERO/EQU AL
E2 11100010 LOOP DISP8 LOOP (CX) TIMES
E3 11100011 JCXZ DISP8 JUMPON (CX)=0
E4 11100100 IN AL.PORT BYTE INPUT FROM PORT TO REG AL
E5 11100101 IN AX.PORT WORD INPUT FROM PORT TO REG AX
E6 11100110 OUT PORT.AL BYTEOUTPUT(AL)TO PORT
E7 11100111 OUT PORT.AX WORDOUTPUT (AX)TO PORT
E8 11101000 CALL DISP16 DIRECT INTRA SEGMENT CALL
E9 11101001 JMP DISP16 DIRECT INTRA SEGMENT JUMP
EA11101010 JMP DISP16.SEG16 DIRECT INTERSEGMENT JUMP
EB11101010 JMP DISP8 DIRECT INTRA SEGMENT JUMP
EC11101010 IN AL.DX BYTE INPUT FROM PORT (DX) TO REG AL
ED11101010 IN AX.DX WORD INPUT FROM PORT (DX) TO REG AX
EE 11101010 OUT DX.AL BYTE OUTPUT (AL) TO PORT (DX)
EF 11101010 OUT DX.AX WORD OUTPUT (AX) TO PORT (DX)
F0 11110000 LOCK BUS LOCK PREFIX
F1 11110001 (not used)
F2 11110010 REPNZ/REPNE REPEAT WHILE (CX)^0 AND(ZF)=0
F3 11110011 REPZ/REPE/REP REPEAT WHILE (CX)X0 AND (ZF)=1
F4 11110100 HLT HALT
F5 11110101 CMC COMPLEMENT CARRY FLAG
F6 11110110 MOD 000 R/M TEST EA.DATA8 BYTE TEST (EA) WITH DATA
F6 11110110 MOD 001 R/M (not used)
F6 11110110 MOD 010 R/M NOT EA BYTE INVERT EA
F6 11110110 MOD 011 R/M NEG EA BYTE NEGATE EA
F6 11110110 MOD 100 R/M MUL EA BYTE MULTIPLY BY (EA), UNSIGNED
F6 11110110 MOD 101 R/M IMUL EA BYTE MULTIPLY BY (EA). SIGNED
F6 11110110 MOD 110 R/M DIV EA BYTE DIVIDE BY (EA), UNSIGNED
F6 11110110 MOD 111 R/M IDIV EA BYTE DIVIDE BY (EA). SIGNED
F7 11110111 MOD 000 R/M TEST EA.DATA16 WORD TEST (EA) WITH DATA
F7 11110111 MOD 001 R/M (not used)
F7 11110111 MOD 010 R/M NOT EA WORD INVERT EA
F7 11110111 MOD 011 R/M NEG EA WORD NEGATEEA
F7 11110111 MOD 100 R/M MUL EA WORD MULTIPLY BY (EA), UNSIGNED
F7 11110111 MOD 101 R/M IMUL EA WORD MULTIPLY BY (EA), SIGNED
F7 11110111 MOD 110 R/M DIV EA WORD DIVIDE BY (EA), UNSIGNED
F7 11110111 MOD 111 R/M IDIV EA WORD DIVIDE BY (EA), SIGNED
F8 11111000 CLC CLEAR CARRY FLAG
F9 11111001 STC SET CARRY FLAG
FA11111010 CLI CLEAR INTERRUPT FLAG
FB11111011 STI SET INTERRUPT FLAG

E-8 ASM86

FC11111100 CLD CLEAR DIRECTION FLAG
FD11111101 STD SET DIRECTION FLAG
FE11111110 MOD 000 R/M INC EA BYTE INCREMENT EA
FE11111110 MOD 001 R/M DEC EA BYTE DECREMENT EA
FE11111110 MOD 010 R/M (not used)
FE11111110 MOD 011 R/M (not used)
FE11111110 MOD 100 R/M (not used)
FE11111110 MOD 101 R/M (not used)
FE11111110 MOD 110 R/M (not used)
FE11111110 MOD 111 R/M (not used)
FF11111111 MOD 000 R/M INC EA WORD INCREMENT EA
FF11111111 MOD 001 R/M DEC EA WORD DECREMENTEA
FF11111111 MOD 010 R/M CALL EA INDIRECT INTRA SEGMENT CALL
FF11111111 MOD 011 R/M CALL EA INDIRECT INTER SEGMENT CALL
FF 11111111 MOD 100 R/M JMP EA INDIRECT INTRA SEGMENT JUMP
FF11111111 MOD 101 R/M JMP EA INDIRECT INTER SEGMENT JUMP
FF11111111 MOD 110 R/M PUSH EA PUSH (EA) ON STACK
FF11111111 MOD 111 R/M (not used)

REG IS ASSIGNED ACCORDING TOTHE FOLLOWING TABLE

16-BIT (W = 1) 8-BIT (W=0) SEGMENT REG

000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

EA IS COMPUTED AS FOLLOWS (DISP8 SIGN EXTENDED TO 16 BITS)

00 000 (BX) + (SI) DS
00 001 (BX) + (DI) DS
00 010 (BP) + (SI) SS
00 011 (BP) + (DI) SS
00 100 (SI) DS
00 101 (DI) DS
00 110 DISP16(DIRECT ADDRESS) DS
00 111 (BX) DS
01 000 (BX) + (SI) + DISP8 DS
01 001 (BX) + (DI) + DISP8 DS
01 010 (BP) + (SI) + DISP8 SS
01 011 (BP) + (DI) + DISP8 SS
01 100 (SD + DISP8 DS
01 101 (Dl) + DISP8 DS
01 110 (BP) + DISP8 SS
01 111 (BX) + DISP8 DS
10 000 (BX) + (SI) + DISP16 DS
10 001 (BX) + (DI) + DISP16 DS
10 010 (BP) + (SI) + DISP16 SS
10 011 (BP) + (DI) + DISP16 SS
10 100 (SI) + DISP16 DS
10 101 (DI) + DISP16 DS
10 110 (BP) + DISP16 SS
10 111 (BX) + DISP16 DS
11 000 REG AX / AL
11 001 REG CX / CL
11 010 REG DX / DL
11 011 REG BX / BL
11 100 REG SP / AH
11 101 REG BP / CH
11 110 REG SI / DH
11 111 REG DI / BH

FLAGS REGISTER CONTAINS:

X:X:X.X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

Instructions in Hexadecimai Order E-9

*The marked encodings are NOT generated by the language translators. If however,
the 8087 encounters one of these encodings in the instruction stream, it will execute
it as follows:
(1) FSTPST(i)
(2) FCOMST(i)
(3) FCOMPST(i)
(4) FXCH ST(i)
(5) FCOMPST(i)
(6) FFREEST(i) and pop stack
(7) FXCHST(i)
(8) FSTPST(i)
(9) FSTPST(i)

iAPX 86/88/186 iNSTRUCTiON SET MATRiX

Hi Lo

0 1 2 3 4 5 6 7
0 ADO

b.f.r/m
ADD

w.f.r/m
ADO

b.t.r/m
ADD ADD

b.ta
ADD
w.ia

PUSH
ES

POP
ES

1 ADC
b.f.r/m

ADC ADC
b.t.r/m

ADC ADC
b.i

ADC PUSH
SS

POP
SS

2 AND
b.f.r/m w.f.r/m

AND
b.t.r/m

AND AND
b.i

AND SEG
ES DAA

3 XOR
b.f.r/m

XOR XOR
b.t.r/m

XOR XOR
b.i

XOR SEG
SS

AAA

4)NC
AX

)NC
CX

fNC
OX

fNC
BX

fNC
SP

INC
BP

INC
SI

INC
DI

5 PUSH
AX

PUSH
CX

PUSH
DX

PUSH
BX

PUSH
SP

PUSH
BP

PUSH
SI

PUSH
DI

6 PUSHA POPA BOUND

7 JO JNO JB/
JNAE

JN8/
JAE

JE/
JZ

JNE/
JNZ

JBE/
JNA

JNBE/
JA

8
b.r/m

fmmed fmmed Immed TEST TEST XCHG
b.r/m

XCHG

9 NOP XCHG
CX

XCHG
DX

XCHG
BX

XCHG
SP

XCHG
BP

XCHG
SI

XCHG
DI

A MOV MOV
m - AX

MOV
AL-m

MOV
AX-m

MOVS
b

MOVS CMPS
b

CMPS

B MOV
i- AL

MOV
i-CL

MOV
i - DL

MOV
i- BL

MOV
i - AH

MOV
i-CH

MOV
i- DH

MOV
i - BH

c Shift
b.r/m.i

Shift RET
(i-SP) RET LES LDS MOV

w.t.r/m

D Shift
b

Shift Shift
b.v

Shift AAM AAD XLAT

E LOOPNZ/
LOOPNE

LOOPZ/
LOOPE LOOP JCXZ

IN
b

tN OUT
b.

OUT

F LOCK

REP REP
Z HLT CMC

Grp f Grp 1

Hi Lo

8 9 A B C D E F
0 . OR

b.f.r/m
OR OR OR OR

b.i
OR PUSH

CS

1 SB8
b.f.r/m

S8B
w.f.r/m

SBB
b.t.r/m

SBB SBB
b.i

SBB PUSH
DS

POP
DS

2 SUB
b.f.r/m

SUB SUB
b.t.r/m

SUB
w.t.r/m

SUB SUB SEG
CS DAS

3
b.f.r/m

CMP CMP
b.t.r/m

CMP CMP CMP SEG
DS AAS

4 DEC
AX

DEC
CX

DEC
DX

DEC
BX

DEC
SP

DEC
BP

DEC
SI

DEC
DI

5 POP
AX

POP
CX

POP
DX

POP
8X

POP
SP

POP
BP

POP
St

POP
DI

6 PUSH IMUL PUSH IMUL INS
b

INS OUTS
b

OUTS

7 JS JNS JP/
JPE

JNP/
JPO

JL/
JNGE

JNL/
JGE

JLE/
JNG ,

JNLE/
JG

8 MOV MOV MOV
b t.r/m

MOV MOV
sr.Lr/m LEA

MOV
sr.t.r/m

POP

9 CBW CWD CALL
t.d WAIT PUSHF POPF SAHF LAHF

A TEST
b.i

TEST STOS
b

STOS LODS
b

LODS SCAS
b

SCAS

B MOV
i - AX

MOV
i-CX

MOV
i- DX

MOV
i- BX

MOV
i-SP

MOV
I - BP

MOV
i - SI

MOV
i - DI

C ENTER LEAVE RET
I.(i-SP)

RET INT
Type3

INT
(Any) INTO IRET

D ESC
0

ESC
1

ESC
2

ESC
3

ESC
4

ESC
5

ESC
6

ESC
7

E CALL
d

JMP
d

JMP JMP
si.d v.b

IN OUT
v.d

OUT

F CLC STC CLI STI CLD STD
Grp 2 Grp2

w.r/m

mod r/m 000 001 010 011 too 101 110 111

Immed ADD _OR ADC SBB AND SUB XOR CMP

Shift ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR

Grp 1 TEST — NOT NEG MUL IMUL DIV iDiv

Grp 2 INC DEC CALL
id

CALL
lid

JMP JMP PUSH

Exampie Macros

This appendix presents some exampie macros. These macros are designed to support
the writing of ASM86 routines that wiii be linked to other modutes for the SMALL
mode) of computation (see An /ntror/ucr/on to ASM<%). The intent here is not to
show the fuii power of MPL. instead, it is to demonstrate a practicai use for macros
in a common programming situation.

These macros couid be buiit into an include file, if you were developing a large set of
ASM86 modules, you could use this include file at the beginning of each of your
modules to define a common interface between the modules (in this case SMALL).
Similar sets of macros could be defined to support other models of computation.

;A SET OF MACROS TO SUPPORT THE SMALL MODEL OF COMPUTATION
;T0 BE USED AS AN INCLUDE FILE

SNOLIST

;THIS MACRO MILL GENERATE A PUBLIC SEGMENT STATEMENT WITH
;A NAME AS A PARAMETER

X*DEFINE (SEG(NAME)) (XNAME SEGMENT PUBLIC 'XNAME')
;THESE MACROS ARE USED TO GENERATE THE SEGMENT DIRECTIVES
;FOR THE SMALL MODEL

;CODE SEGMENT

X*DEFINE (CSEG) (XSEG(CODE))

X+DEFINE (CEND) (CODE ENDS)

;DATA SEGMENT

%'DEFINE (DSEG) (XSEG(DATA))

X+DEFINE (DEND) (DATA ENDS)

;CONST SEGMENT

X+DEFINE (CONSEG) (XSEG(CONST))

X*DEFINE (CONEND) (CONST ENDS)

;MEM0RY SEGMENT

X*DEFINE (MEMSEG) (MEMORY SEGMENT MEMORY 'MEMORY')

X*DEFINE (MEMEND) (MEMORY ENDS)

;THIS MACRO WILL DEFINE A STACK SEGMENT. THE NUMBER OF
;WORDS TO RESERVE FOR THE STACK IS PASSED AS A PARAMETER.

X*DEFINE (STACKSEG(LENGTH)) (STACK SEGMENT STACK 'STACK'

DW XLENGTH DUP (?)

F-2 ASM86

STACK ENDS)

;THE FOLLOWING MACRO WILL GENERATE THE CODE TO INITIALIZE
;A SEGMENT REGISTER. IT WILL USE THE AX REGISTER.

X+DEFINE (INIT(SEGREG, SEGBASE)) (MOVE AX, XSEGBASE
MOV XSEGREG, AX)

;THE FOLLOWING MACROS GENERATE THE PROLOGS AND EPILOGS USED
;AT THE BEGINNING AND ENDINGS OF PROCS

X+DEFINE (PROLOG)

)
;NO PARAMETERS

(PUSH BP
MOV BP, SP

X*DEFINE (EPILOG) (POP BP
RET

;PARAMETERS TO BE POPPED OFF THE STACK

X*DEFINE (EPI(PARMBYTECOUNT)) (POP BP
RET XPARMBYTECOUNT

)

SLIST

;GROUP DECLARATIONS FOR THE SMALL MODEL

CGROUP GROUP CODE

DGROUP GROUP DATA, CONST, STACK, MEMORY

ASSUME CS:CGROUP, DS:DGROUP, SS:DGROUP, ES:DGROUP

;END OF INCLUDE FILE

The following is an exampie source fiie that uses these macros.

;AN EXAMPLE SOURCE FILE USING THE SMALL MODEL MACRO
;INCLUDE FILE

MNCLUDE SMALL.LIB

XDSEG

;some data

XDEND

XCONSEG

;constant def i ni t i ons

XCONEND

;reserve 10 words of stack

XSTACKSEGdO)

Exampte Macros F-3

XCSEG

APROC PROC NEAR
XPROLOG

; code goes here

APROC
XEPILOG
ENDP

XPROC PROC NEAR
XPROLOG

; code goes here

XPROC
XEPI(6)
ENDP

; pop 6 bytes of parameters

XCEND

END

The above source module would expand to the foUowing form:

;AN EXAMPLE SOURCE FILE USING THE SMALL MODEL MACRO
;INCLUDE FILE

^INCLUDE SMALL.LIB

;A SET OF MACROS TO SUPPORT THE SMALL MODEL OF COMPUTATION
;T0 BE USED AS AN INCLUDE FILE

$NOLIST

;GROL)P DECLARATIONS FOR THE SMALL MODEL

CGROUP GROUP CODE

DGROUP GROUP DATA, CONST, STACK, MEMORY

ASSUME CS:CGROUP, DS:DGROUP, SS:DGROUP, ES:DGROUP

;END OF INCLUDE FILE

DATA SEGMENT PUBLIC 'DATA'

;some data

DATA ENDS

CONST SEGMENT PUBLIC 'CONST'

;constant definitions

CONST ENDS

F-4 ASM86

;reserve 10 words of stack

STACK SEGMENT STACK 'STACK'

DM 10 DUP (?)

STACK ENDS

CODE SEGMENT PUBLIC 'CODE'

APROC PROC
PUSH
MOV

NEAR
BP

BP, SP

; code goes here

APROC

POP
RET
ENDP

BP

XPROC PROC
PUSH
MOV

NEAR
BP

BP, SP

; code goes here

XPROC

POP
RET
ENDP

BP
6

; pop 6 bytes of parameters

CODE ENDS

END

Example Programs G
In this Appendix, several sample programs are presented, each with several
solutions.

The first two examples illustrate transferring control to one of eight routines,
depending on which bit of the accumulator has been set to I (by earlier instructions,

Exampies 3, 4, and 5 discuss additionai methods of passing data and parameters to
procedures, illustrating the use of both the registers and the stack for passing
parameters. Exampies 6 and 7 cover muitibyte addition and subtraction, interrupt
procedures and timing loops are described in examples 8 and 9. Examples 10-13
illustrate input/output control.

The 8086 code exampies given here are not optima), and the presentation is not an
attempt at an exhaustive and compiete overview of the ianguage. These examples are
presented more as a graduai method of building famiharity, perhaps suggestive of
further improvements, rather than as idea), finished modeis. Some instruction usage
is not introduced untii the need for it has been suggested by the discussion of prior
code.

Examptes 1 and 2

Consider a program that executes one of eight routines depending on which bit of
the accumuiator is set:

Jump to routine 1 if the accumulator holds 00000001
Jump to routine 2 if the accumulator holds 00000010
Jump to routine 3 if the accumulator holds 00000100
Jump to routine 4 if the accumulator holds 00001000
Jump to routine 5 if the accumulator holds 00010000
Jump to routine 6 if the accumulator holds 00100000
Jump to routine 7 if the accumulator holds 01000000
Jump to routine 8 if the accumulator holds 10000000

MAIN PROGRAM BRANCH TABLE JUMP
PROGRAM ROUTINES

(normal procedure return sequence not provided by branch table program)

Example 1 beiow is a routine which transfers control to one of the eight possible pro
cedures depending on which bit of the accumulator is 1.

It moves the tow-order bit of the accumuiator into a flag register to find the one
signalling the correct routine, and then transfers based on that fiag. This routine
uses seven instructions, inciuding a test to prevent an infinite loop and an indirect
transfer via register BX.

Example 2 achieves the same transfer using a different technique for selecting the
appropriate address. It shifts the high-order bit of AL, and uses register SI as an
index into the branch table.

Each example contains comments, and is followed by a brief explanation.

G-2 ASM86

Exampte 1:

BRANCH ADDRESSES SEGMENT
BRANCH_TABLE_1 DM ROUTINE 1

DM ROUTINE 2
DM ROUTINE _3
DM ROUTINE 4
DM ROUTINE 5
DM ROUTINE _6
DM ROUTINE' 7
DM ROUTINE' 8

BRANCH_ADDRESSES ENDS

PROCEDURE SELECT SEGMENT

&
ASSUME CS:PROCEDURE_SELECT,

DS:BRANCH_ADDRESSES

MOV
MOV

BX,BRANCH_ADDRESSES
DS , BX ;moves above segment

CMP AL,0

;base-address i nto
;segment register DS.
;this test assures that

J E CONTINUE MAIN LINE ;some bit of AL has been

LEA

;set by earlier instructions to specify
;a routine (prior insts. not shown).

BX,BRANCH TABLE 1 ;BX set to Location holding

L: SHR AL,1
;address of first routine.
;puts Least-significant bit

JNC NOT_YET

;of AL into the carry fLag
;(CF).
;if CF = 0, the ON bit

JMP MORD PTR [BX]

;in AL has not yet
;been found.
;if CF = 1, then controL

NOT_YET: ADD BX, TYPE BRANCH_TABLE_1

;is transferred (see
;expLanation be L ow).

;i f no transfer, then

JMP L

;the bit that is ON has
;not yet been found, so
;BX is set to point to
;the next entry in the
;address-tabLe, by adding 2
;j ump to L to shift

CONTINUE MAIN LINE:
;and retest
; we reach here onLy

ROUTINE_1

;if no bit was set to
;i ndi cate a desi red
;routine

ROUTINE 2:

Example Programs G-3

ROUTINE 3:

PROCEDURE SELECT ENDS

The tine after "L:", JNC NOT. YET, reads "jump if no carry", which means
jump if CF = 0. This wit) skip over the next tine's transfer if the "i" bit, signalling
the desired procedure, has not yet appeared. If it has been found, CF will be 1 and
this conditional jump JNC will be skipped. The appropriate procedure is then
reached by the indirect jump instruction JMP WORD PTR [BX].

A jump is always to an address in the code segment, i.e., relative to CS. The offset
defining that address in the code segment is not given explicitly here. Instead, an
indirect JMP is used, with [BX] given as a pointer to the memory location where that
offset is stored.

Register BX as used here within square brackets automatically refers to the contents
of a location in the data segment. The contents of that location are the desired offset
for the jump. In other words, the Instruction Pointer is replaced by the contents of a
location in the data segment, whose offset is in BX. The next instruction, ADD BX,
TYPE BRANCH—TABLE—1, adds 2 to BX, the index into the branch table. This
causes BX to point to the next word of the table. The contents of that word are the
offset of the "next" routine, again in the code segment.

Example 2:

BRANCH ADDRESSES SEGMENT
Bl1ANCH_TABLE 1 DM ROUTINE 1

DM ROUTINE 2
DM ROUTINE 3
DM ROUTINE 4
DM ROUTINE 5
DM ROUTINE 6
DM ROUTINE 7
DM R0UTINE_8

BRANCH,.ADDRESSES ENDS
PROCEDURE_SELECT SEGMENT

ASSUME CS:PROCEDURE_SELECT,
& DS:BRANCH_ADDRE$SES

MOV BX,BRANCH ADDRESSES ;base-address of
MOV DS,BX ;segment containing

;L i st s
LEA BX,BRANCH_TABLE_1 ;base-address of List

;of branch addresses
MOV SI,7*TYPE BRANCH_TABLE_1 ;points initially to

;Last such ent ry
;i n List

MOV CX,8 ;Loop-counter allowing
;8 shifts maxi mum

L: SHL AL, 1 ;shifts high-order
;AL bit into CF

JNC N0T_YET ;if CF = 0, routine
;represented by that
;bi t not des i red

JMP MORD PTR [BXHSI] ;if CF = 1, transfer
;to procedure
;represented by most
;recent bit tested

G-4 ASM86

NOT_YET: SUB SI,TYPE BRANCH_TABLE_1

LOOP L

CONTINUE_MAIN_LINE:

ROUTINE 1:

;adjust index register
;to point to ''next''
;branch-address
;dec rement CX, if
;CX > 0, t ransfer to
;L so as to shift
;AL and retest
;Me reach here only
;if no bit was set
;to indicate a
;des i red rout i ne

ROUTINE 2:

ROUTINE_3:

PROCEDURE SELECT ENDS

In Example 2 several elements have changed, though the net result is the same.
Instead of being incremented, BX stays constant, pointing to the beginning of the
list of branch addresses. SI is used as an index (subscript) within that list.

The number of shifts is controlied by the count register CX, which the LOOP
instruction automaticaily decrements after each iteration. The accumulator AL is
searched from its most-significant-bit using the shift-left instruction (SHL) instead
of SHR. This accounts for the initialization of SI to 14, pointing initially to the last
branch-address in the list, 14 bytes past the base-address in BX. SI is subsequently
decremented in each iteration just as Example I's BX was incremented.

The instruction .IMP WORD PTR [BX][SI] uses the sum of BX and SI just as Exam
ple I used BX alone. That is, the sum gives the offset of a word in the data segment,
and the contents of that word replaces the IP. The next instruction executed is thus
the one whose code-segment offset was stored in the branch table.

If more than I bit were set in AL, these two examples would select different routines
due to selecting the rightmost or leftmost such bit.

Transferring Data to Procedures

The data on which a procedure performs its operations may be made available in
registers or memory locations. In many applications, however, reserving registers
for this purpose can be inconvenient to the system flow of control and uneconomical
in execution time, requiring frequent register saves and restores.

Reserving memory, on the other hand, can be uneconomical of space, especially if
such data is needed only temporarily. It is often preferable to use and reuse a special
area called a stack, storing and deleting interim data and parameters as needed.

Regardless of the method used to pass data to procedures, a stack will be necessary
and useful. The CALL instruction uses the stack to save the return address. The
RET instruction expects the return address to be on the stack. The stack is also
usually used to save the caller's register values at the beginning of a procedure.
Then, just before the procedure returns to the caller, these values can be restored.

Exampte Programs G-5

Exampie 3 shows the use of memory to pass parameters. Registers are used for this
in Exampie 4. Exampie 5 uses a stack.

One way to use memory to pass data is to piace the required eiements (called a
parameter iist) in some data area. You then pass the first address of this area to the
procedure.

For example, the foiiowing procedure, ADSUB, expects the address of a three-byte
parameter iist in the Si register. It adds the first and second bytes of the iist, and
stores the result in the third byte of the iist.

The first time ADSUB is caiied, at iabei CALL1, it toads the accumulator from
PLiST, adds the value from the next byte and stores the resuit in PLiST+2. Return
is then made to the instruction at RETE

AFTER first cail to ADSUB:

The second time ADSUB is caiied, at label CALL2, the prior instruction has caused
the SI register to point to the parameter iist LIST2. The accumulator is ioaded with
10, 35 is added, and the sum is stored at LIST2 + 2. Return is then made to the
instruction at RET2.

Exampte 3:

PARAMS SEGMENT

PLIST DB 6
DB 8
DB ?

LIST2 DB 1 0
DB 35
DB ?

PARAMS ENDS

STACK SEGMENT
DM 4 DUP (?)

STACK_TOP LABEL WORD
STACK ENDS

ADDING SEGMENT
ASSUME CS:ADDING, DS:PARAMS, SS:STACK

START: MOV AX,PARAMS
MOV DS,AX ;i ni t i a L i ze DS
MOV AX,STACK
MOV SS,AX ;initiaLi ze SS

G-6 ASM86

MOV SP,OFFSET STACK TOP ; i n i t i a L i z e SP
MOV SI.OFFSET PLIST

CALL1:
RET1 :

CALL ADSUB

LEA SI,LIST2
CALL2: CALL ADSUB

RET2:

ADSUB PROC
MOV AL,[SI] ;get 1st parameter
ADD AL,[SI+1] ;add 2nd parameter
MOV [SI+2],AL ;store result in
RET ;3 rd pa ramet e r

ADSUB ENDP

ADDING ENDS
END START

The instructions just prior to each CALL toad the SI register with the offset of the
first parameter to be added. The MOV statement prior to CALLI makes use of the
OFFSET operator (discussed in Chapter 4). If this operator were omitted, SI would
receive the contents of PLIST instead of its offset. The LEA instruction prior to
CALL2 automatically puts the offset of its source (2nd operand) into the register
destination (1st operand). The MOV statement is more efficient, but may only be
used if just the offset is being loaded into the register. If the address involves an
indexing register (e.g., PLIST [SI + I]), then the LEA should be used, since this will
add the contents of the SI, I, and the offset of PLIST, putting the sum in the
destination register.

A More Genera) So)ution

The approach used in Example 3 has its limitations, however. As coded, ADSUB
will process a list of two and only two numbers to be added, and they must be con
tiguous in memory. Suppose you wanted a subroutine (GENAD) which would add
an array containing an arbitrary number of bytes, located anywhere in memory, and
leave the sum in the accumulator.

CALL to GENAD:

GENAO:

Example Programs G-7

Example 4 below shows how this process can be written in ASM86. GENAD returns
the sum in the accumulator. It receives the address of the array in the BX register,
and the number of array elements in CX.

Exampte 4:

INITIAL_PARAMETERS SEGMENT
RESULT DB 0
PARM DB 6, 82, 13, 16

INITIALPARAMETERS ENDS

GENERAL-PROCEDURES SEGMENT
ASSUME CS:generaL_procedures DS:initial_parameters

;The procedure is placed first, to avoid forward
;referencing the FAR procedure GENAD. Note that the
;p rog ram
;"START2.

;start address is after the procedure, at LabeL

GENAD

INIT:

PROC FAR
PUSH SI ;save current value of SI on the

;stack (discussed beLow), so that
;this routine can use this
;register freely, restoring its
;originaL contents just prior
;to returning control to
;c a L L i ng routine.

MOV AL, 0 ;initiatize AL to receive sum.

MORE?:

MOV SI, 0 initialize SI to point to first
;a r ray e Lement

ADD AL, [BXHSI] ;add next array element to sum.

GENAD

;BX points to the start of the
;array, and SI selects an element
;of the array.

INC SI ;have SI index the next
;a r ray e L erne nt.

LOOP MORE? ;continue Looping untiL CX is
;zero (aLL array eLements have
;been added into AL)

POP SI ;restore original contents of SI.
RET ;transfer to instruction

immediately following CALL.

ENDP

;Program execution starts here (due to the Label "start"
;named on the END directive betow). Point DS to the
;INITIAL PARAMETERS segment, and cat! GENAD with the array
;PARM.

G-8 ASM86

START: MOV AX, INITIAL-PARAMETERS
MOV DS, AX

MOV OX, SIZE PARM ;number of elements is
;passed in OX

MOV BX, OFFSET PARM ;address of array PARM is
;passed in BX.

CALL GENAD
MOV RESULT, AL ;Sum is returned in AL

HLT ;******* end of program *****
GENERALPROCEDURES ENDS

END START

In GENAD, the first action is to save (PUSH) onto the stack the current value of SI
before using it. Just before the RETurn, this vaiue is restored (via POP). Thus this
procedure does not destroy the status of registers (except AL and CX) possibly relied
upon by the calling routine. Stacks are discussed in Chapter 4. Further examples
appear below.

The routine does not explicitly save the value of CS because the CALL and RETurn
save CS on the stack and restore it automatically. The accumulator AL is here
expected to be usable without saving its pre-CALL contents. Using AL, the sum is
modulo 256.

The FAR type declaration on the PROC statement forces the use of "long" CALLs
to and RETurns from this procedure. This means the procedure is not expected to be
in the same segment as all of the CALLs to it. In a "long" CALL the contents of CS
are PUSHed onto the stack first, then the IP is PUSHed onto the stack. (This allows
an eventual return to the next sequential instruction.) Control is then transferred to
the procedure by first moving into CS the segment base address for the procedure,
and then replacing the contents of IP with the offset of the procedure in that seg
ment. A "long" RETurn reverses this process by POPping the former IP contents
back off the stack into IP, and then POPping the former CS contents off the stack
back into CS.

Within the inner body of GENAD, the statement

MOV AL,0

initializes the sum to zero. The statement

MOV SI,0

initializes SI to zero, to index the first element of the passed array.

The first statement in the loop

ADD AL, [BX] [SI]

adds the array element indexed by SI into the sum in the accumulator (recall that the
BX register points to the parameter array). In the next statement (INC SI), the array
index in SI is incremented to point to the next array element. The last statement in
the loop

LOOP MORE?

executes the loop repeatedly until the count in CX (passed in as a parameter) is
exhausted.

Exampte Programs G-9

Using a Stack

Passing parameters on the stack offers different advantages than passing them in
registers. Passing parameters in registers is faster, but more complicated. The con
ventions as to which parameter should end up in which register can be confusing,
especially if there are many procedures.

For parameters passed on the stack, the convention need only specify the order they
should be pushed onto the stack. High level language compilers (e.g., PL/M-86)
generate code which passes parameters on the stack. Therefore, any procedure which
expects its parameters on the stack is callable from PL/M (see the ASM86 macro
assembler manual for more details). The 8086 also offers special instructions to facil
itate using the stack for passing parameters. The RET instruction has an optional
byte count (e.g., RET 4), which says how many bytes should be popped off the stack
in addition to the return address. This makes returning from procedures very easy.
Moreover, since the BP indexing-register uses the SS segment by default, it is very
economical to use BP to reference data near the top of the stack.

Use of stacks may require some further introduction. A stack segment is expected to
be used relative to the contents of the stack-segment register SS, just as a code seg
ment uses CS and data segments use DS or ES. The stack segment below is defined
for use in this discussion and the examples.

PARAMS_PASS SEGMENT STACK
DM 12 DUP (0)

LAST_WORD LABEL WORD
PARAMS_PASS ENDS

Four instructions use a stack in predefined ways: PUSH, CALL, POP, and
RETurn. They automatically use the stack pointer SP as an offset to the segment
base-address in SS. One of your first actions in a module which will use a stack must
be to initialize SS and SP. e.g.,
MOV AX,PARAMS_PASS
MOV SS,AX
MOV SP, OFFSET LAST_WORD

This use of LAST_ WORD is critically important due to the built-in actions of the
four instructions named above.

The first two, PUSH and CALL, store additional words on the stack by rfecre/nenr-
fng SP by 2. Thus the stack "grows downward" from the last word in the stack seg
ment toward the segment-base-address lower in memory. Each successive address
used for new data on the stack is a lower number. The location pointed to by SP is
called the Top Of Stack (TOS). When a word is stored on the stack, e.g., by the
instruction

PUSH SOURCE_DATA

SP is decremented by 2 and the source data is moved onto the stack at the new offset
now in SP. As described above in Example 4, CALL implicitly uses PUSH before
transferring control to a procedure.

The instruction

POP DESTINATION

takes the word at the "top-of-stack", i.e., pointed at by SP, and moves that word
into the specified destination. POP also then automatically acMy 2 to SP. This
causes SP to point to the next higher-addressed word in the stack segment, farther
from the segment's base-address. The figures accompanying the examples below
show the expansion and contraction of a stack.

G-10 ASM86

Exampie 5 beiow iiiustrates the use of a stack to pass the number of byte parameters
plus the address of the first one. For this exampie aii the parameters are expected in
successive bytes after that one.

Supplying the Number of Parameters and the First Address,
On the Stack

Exampie 5:

pa ramspass SEGMENT STACK
DM 12 DUP (?) ;reserve 12 words of

;stack space
L ast_wo rd LABEL WORD ;Last_word is the

;offset of top of

params_pass ENDS
;stack

data_i terns SEGMENT

first DB 11, 22, 33, 44, 55, 66
second DB 4, 5, 6
third DB 94, 88
result DX ?
dat a_i t ems ENDS

st k_usage_xmp L SEGMENT
ASSUME CS: stk_usagt;_xmpt, DS: data_items, SS:params

genaddr PROC FAR

PUSH BP ;save old copy of BP
PUSH BP, SP ;move tos to BP (see

PUSH BX
;f i gu re 4)
;save BX, so ok to use BX in

PUSH CX
;genaddr
;save CX, so ok to use CX in

MOV CX, IBP + 8]
;genaddr (figure 5)
;get count of number of bytes

MOV BX, [BP + 10]
;i n array
;get address of array of

MOV AX, 0

;byt es

;AX := 0. AX holds running

adder: ADD AL, [BX]
;sum in adder Loop.
;add in the first byte

ADC AH, 0 ;and add any carry into AH.
INC BX ;poi nt to next byte to be

LOOP adder
;added in.
;CX := CX - 1;IF CX <> 0 THEN

POP CX

;GOTO ADDER;

;The reg i sters must be

POP BX
;restored in the
jreverse order they were

POP BP
;pu s h ed.

RET 4 ;return, popping off the 2
;WORD parameters

Exampte Programs G-11

genaddr ENDP

stk_usage_xmpl ENDS

caller SEGMENT
ASSUME CS: caller, DS: data_items, SS: params_pass

start: MOV AX, data_items ;paragraph number of
;data segment to AX

MOV DS,AX ;andthentoDS.
MOV AX, params_pass jparagraph number of

;stack segment to AX
MOV SS, AX ;and then to SS
MOV SP, OFFSET tast_word ;offset of the

;stack_top to the SP

MOV AX, OFFSET first ;offset of first to
; AX

PUSH AX ;thenontothestack
MOV AX, SIZE first ;number of bytes in

;fi rst array to AX
PUSH AX ;then onto the stack
CALL genaddr ;Ca11 the far

;procedure
MOV resu1t,AX

MOV AX, OFFSET second
PUSH AX
MOV AX, SIZE second
PUSH AX ;same as above except

;do i ng second
CALL genaddr
MOV resu1t,AX

MOV AX, OFFSET thi rd
PUSH AX
MOV AX, SIZE third

PUSH AX
CALL genaddr
MOV result,AX

;same as above except
;doing third

HLT
caller ENDS

END start

To indicate why each register was saved, the above code has each PUSH placed just
prior to the first iocai use of that register. Earlier examples clustered those PUSHes
at the top of the routine, just as the POPs appear (in reverse order) at the end. This
makes it easy to see the proper order of saving and restoring. In either case you must
consider carefully where the parameters are relative to the pointer you are using,
e.g., BP. Making your own diagrams can help.

G-12 ASM86

Note that the RET instruction of "genaddr" is a RET 4; the two parameters are
popped off the stack as the RETurn is executed. Without the 4, this 12 word stack
named "PARAMS^ PASS" couid only be used three times. The fourth call would
cause two words outside that segment to be clobbered.

This is why: prior to each call the parameter words are pushed onto the stack. Then
each call uses two words of the stack to store the return address. Each execution of
the procedure pushes three more words onto the stack to preserve register values.
These last five words are popped off by the procedure's end and return, but those
first two parameters would remain.

Muttibyte Addition and Subtraction

The carry flag and the ADC (add with carry) instructions may be used to add
unsigned data quantities of arbitrary length. Consider the following addition of two
three-byte unsigned hexadecimal numbers:

32AF8A
+ 84BA90

B76A1A

To perform this addition, you can use ADD or ADC to add the low-order byte of
each number. ADD sets the carry flag for use in subsequent instructions, but does
not include the carry flag in the addition.

carry=1 carry=1

Step 3 Step 2 Step 1

32 AF 8A
84 BA 90

B7 6A 1A

The routine below performs this multibyte addition, making these assumptions:

The numbers to be added are stored from low-order byte to high-order byte begin
ning at memory locations FIRST and SECOND, respectively.

The result will be stored from low-order byte to high-order byte beginning at
memory location FIRST, replacing the original contents of these locations.

MEMORY BEFORE MEMORY AFTER

FIRST + SECOND + CF FIRST SECOND

8A + 90 + 0 = 1A 1A 90

AF + BA + 1 = 6A 6A BA

32 + 84 + 1 = B7 B7 84

The routine uses an ADC instruction to add the low-order bytes of the operands.
This could cause the result to be high by one if the carry flag were left set by some
previous instruction. This routine avoids the problem by clearing the carry flag with
the CLC instruction just before LOOPER.

Since none of the instructions in the program loop affect the carry flag except ADC,
the addition with carry will proceed correctly.

Exampte Programs G-13

MULTI_TM0 SEGMENT

ASSUME
&

CS:MULTI_TWO,
DS:ADD_DATA_2

START: MOV AX,ADD_DATA_2
MOV DS,AX

;The routine determines which number is Longer and stores
;the resuLt there. The size in bytes of the smaLLer number
;controLs LOOP1, i.e., where both numbers do have a byte
;of data to be added.
;The difference in size controLs L00P2, which is needed if
;there is a finat carry.

MOV

LEA

LEA

AX,

BX,

BP,

NUM2

SECOND

FIRST

;Ini t i a L Ly assume NUM2
;Larger, and
;gi ve BX address of
;Longer number,
;BP address of shorter
;numbe r.

CMP AX, NUM1 ;Ch ec k a s sumpt ion.
JGE NUM2_.BIGGER ;continue with vaLues

;as they are unLess N2
;> N1 .

XCHG AX, NUM1 ;Swi tch NUM2 and NUM1,
exchanging

XCHG AX, NUM2 ;through AL NUM2 now <
;NUM1.

XCHG BX, BP ;Must a L so now switch
;addresses referred to,
;so that number of
;bytes st i L L
;corresponds with
jcorrect number,
;and sum goes
;to Longer pLace.

NUM2_BIGGER :M0V CX, NUM2
SU8

MOV

CX ,

NUM2,

NUM1

CX

;NUM2 now gets
;di fference

MOV

CLC

CX, NUM1 ;of sizes. Use sma L L e r
;number of bytes for
;centraL add.
;CLear carry of
;poss i b L e prior
;sett i ng

MOV SI, 0 ;1n i t i a L i ze i ndex to
;bytes of addends. Then
;SI=SI+1.

LOOP1: MOV AL, DS: [BP] LSI] ;Get byte of shorter
;number.

ADC [BX] [SI, AL ;Add it to reLevant
;byte of

G-14 ASM86

INC

LOOP

SI

L00P1

;longer number. Then
;SI=SI+1

MOV CX, NUM2 ;Number of bytes yet
;unused i n longer
;number.

L00P2: JNB DONE ;If no carry, CF=O,
;then done.

ADC BYTE PTR [BX] LSI],0 ;Add carry to remaining
;byt es

DONE:

INC

LOOP

SI

L00P2

;of longer number. Then
;SI=SI+1.

MULTI TWO ENDS
END START

With some additionai instructions, this same routine will do arithmetic for packed-
decimal numbers. Packed-decimal means the 8 bits of each byte are interpreted as 2
decimal digits, e.g., 0110011 IB would mean 67 decimal instead of 67 hexadecimal
(103 decimal).

Below is the core of an 8086 routine to do decimal subtraction for packed-decimal
numbers.

Exampie 7:

MOV SI, 0
MOV CX, NUMBYTES
CLC

MORE?: MOV AL, FIRST [SI]
S8B AL, SECOND [SI]
DAS
MOV SECOND [SI], AL
INC SI
LOOP MORE?

interrupt Procedures

Exampie 8:

;The following illustrates the use of interrupt procedures
;for the 8086. The code sets up six interrupt procedures
;for a hypothetical 8086 system involved in some type of
;process control application. There are 4 sensing devices
;and two alarm devices, each of which can supply external
;interrupts to the 8086. The different interrupt-handling
procedures shown below are arbitrary, that is, the events
;and responses described are not inherent in the 8086 but

Exampte Programs G-15

;rather in this hypothetical control appLication. The
procedures merely illustrate the diverse possibilities
;for handling situations of varying importance and
;u rgenc y.

ASSUME CS:INTERRUPT_PROCEDURES, DS:DATA_VAR

DEVICE_1_PORT EQU 0F000H
DEVICE 2 PORT EQU 0F002H
DEVICE_3 PORT EQU 0F004H
DEVICE 4 PORT EQU 0F006H
WARNING LIGHTS EQU 0E000H
CONTROL 1 EQU 0E008H

EXTRN CONVERT VALUE:FAR
;Positioning this EXTRN here indicates
;that CONVERT_VALUE is outside of
;aLL segments in this module.

INTERRUPT_PROC_TABLE SEGMENT BYTE AT 0
ORG 08H

DD ALARM_1 ;non-maskabLe interrupt
type 2

;0ne 64K area of memory contains pointers to the routines
;that handle interrupts. This area begins at absolute
;address zero. The address for the routine appropriate
;to each interrupt type is expected as the contents of the
;doubLe word whose address is 4 times that type. Thus the
;address for the handier of non-maskabLe-interrupt type 2
;is stored as the contents of absolute Location 8. These
;addresses are aLso caLLed interrupt vectors since they
point to the respective procedures.
;The first 32 interrupt types (0-31) are defined or
;reserved by INTEL for present and future uses. (See the
;8086 User's Manual for more detail.) User-interrupt type

INTERRUPT PROC TABLE ENDS

32 must therefore use Location 128 (=80H) for its
interrupt vector.

ORG 08H
DD ALARM 2 ;INTERRUPT TYPE 32
DD DEVICE 1 ;INTERRUPT TYPE 33
DD DEVICE 2 ;INTERRUPT TYPE 34
DD DEVICE 3 ;INTERRUPT TYPE 35
DD DEVICE 4 ;INTERRUPT TYPE 36

DATA VAR SEGMENT PUBLIC

EXTRN INPUT_1_VAL:BYTE, OUTPUT_2_VAL:BYTE,
& INPUT_3_VAL:BYTE, INPUT_4_VAL:BYTE
EXTRN ALARM_FLAG:BYTE, INPUT_FLAG:BYTE
;The names above are used by 1 or more of the procedures
;beLow, but the Location or vaLue referred to is Located
;(defined) in a different moduLe. These EXTeRNaL
peferences are resoLved when the moduLes are Linked
;together, meaning aLL addresses wiLL then be known.
;DecLaring these EXTRNs here indicates what segment they
;a re in.

DATA VAR ENDS

G-16 ASM86

;The names below are defined Later in this moduLe. The
;PUBLIC directive makes their addresses avaitabLe for
;other moduLes to use.

PUBLIC ALARM_1, ALARM_2, DEVICE_1, DEVICE_2, DEVICE_3,
& DEVICE_4

INTERRUPT_PROCEDURES SEGMENT

ALARM_1 PROC FAR

;The routine for type 2, ''ALARM1'' is the most drastic
;because this interrupt is intended to signal disastrous

conditions such as power failure . It is non-maskable,
i.e.,
(CLI)

it cannot be inhibited by the CLear Interrupts
instruction.

MOV DX,
MOV AL,
OUT DX,AL
MOV DX,
MOV AL,
OUT DX,AL
HLT

WARNING_LIGHTS
OFFH

;tu rn on
CONTROL_1 ;
38H ;turn off

;mach i ne
;stop a L L

a L L Lights
processi ng

ALARM 1 ENDP

ALARM 2 PROC FAR

PUSH
PUSH
MOV
MOV
OUT

DX
AX
DX, WARNING LIGHTS
AL, 1
DX,AL

;turn on warning Light #1
;to warn operator of device

MOV ALARM_FLAG, OFFH ;set aLarm fLag to inhibit
POP AX ;Later processes which may

;now be dangerous
POP DX
IRET ;return from interrupt:

;thi s restores the f Lags
;and returns control
;the i nterrupted
;instruction stream

ALARM_2 ENDP

DEVICE 1 PROC

PUSH DX
PUSH AX
MOV DX, DEVICE_1 .PORT
IN AL, DX
MOV INPUT_1_VAL, AL

MOV INPUT_FLAG,2

;get input byte from
;device_ store value

;thi s may aLert another
;rout i ne or devi ce that
;this interrupt and input
;occurred

Exampte Programs G-17

POP AX
POP DX
IRET

DEVICE_1 ENDP

DEVICE 2 PROC

PUSH
PUSH

DX ;when this interrupt-type
AX ;occurs, the action necessary

;is to notify device_2_port
;of the event

MOV AL, OUTPUT 2 VAL ;get value, to output

DEVICE

DEVICE

MOV DX, DEVICE_2_PORT ;to device_2_port
OUT DX,AL
POP AX
POP DX
IRET

_2 ENDP

_3 PROC
PUSH DX ;when a device_3 interrupt
PUSH AX ;occurs only the Lower byte
MOV
IN
AND
MOV
POP

POP
IRET

DX, DEVICE_3_PORT ;at the port is of value
AL, DX
AL,OFH ;mask off top four bits
INPUT_3_VAL, AL ;store value for use
AX ;by L at e r rout i nes

;i n another modu L e
DX

DEVICE_3 ENDP

DEVICE 4 PROC

PUSH DX
PUSH CX ;a d e v i c e_4 interrupt
PUSH AX ;provides a value which
MOV DX, DEVICE_4_P0RT ;need s immed i a t e

conversion by another
IN AL, DX ;procedurebefore this
MOV CL, AL ;interrupt*handLer can allow

;it to be used at input_4_va

CALL CONVERT_VALUE Converts input value in
MOV INPUT4VAL, AL ;CL to new result in AL

;and saves that resu Lt in
;i nput_4_va L

POP AX
POP CX
POP
IRET

DX

DEVICE_4 ENDP

INTERRUPT PROCEDURES ENDS

END

G-18 ASM86

Timing Loop

Exampie 9:

;This example is a procedure for supplying timing Loops
;for a program. The amount of time deLayed is set by a
;byte parameter passed in the AL register, with the amount
;of time = PARAM * 100 microseconds. This is assuming that
;the 8086 is running at 8 MHZ.

ASSUME CS:TIMER SEG

TIMER SEG SEGMENT

TIME PROC

DELAY_L00P: MOV CL, 78H ;shift count for supplying
SHR CL,CL ;proper delay via SHR countdown
DEC AL jdecrement timer count
JNZ DELAY_LOOP

RET
TIME ENDP
TIMER_SEG ENDS

END

i/O Routines

The examples below (10-13) illustrate the type of procedures used by the SDK86
Serial I/O Monitor to communicate with the keyboard and display units during
execution.

The first, SIO_ CHAR__RDY, tests whether an input character is awaiting
processing.

The second SiO_ OUT__CHAR, outputs a character unless SIO__CHAR_ RDY
reports an input character is there, which is handled first.

The third, SIO_ OUT__STRING, puts out an entire string of characters, e.g., a
page heading, using SIO_ OUT__CHAR for each output byte.

Exampie 10:

SIO CHAR RDY PROC NEAR

PUSH BP ;save old value
MOV BP, SP

MOV DX, 0FFF2H ;address of status port to DX
IN AL, DX ;input from status port
TEST AL, 2H ;is read-data-ready Line=1,

;i.e., character pending?
JNZ READY ;if so, return TRUE

MOV AL, 0 ;if not, return FALSE: AL=0
POP
RET

BP jrestore old value
;done, no char waiting

Example Programs G-19

READY:

MOV AL, OFFH ;return TRUE: AL=aLL ones
POP BP ;restore o Ld va Lue
RET ;done, char is waiting

SIO CHAR RDY ENDP

Example 11:
The above procedure aiso appears in this exampie, which introduces names for some
of the specific numbers used above, and for some that wiii be used in iater exampies.
These names can make it easier to read the procedure and understand what is going
on, or at ieast what is intended.

The exampie aiso uses BX and reorders the code to save a few bytes.

TRUE
FALSE

EQU
EQU

OFFH
OH

STATUS_PORT EQU 0FFF2H
DATA PORT EQU OFFFOH

ASCII MASK EQU 7FH
CONTROL_S EQU 15H
CONTROL_Q EQU 11H

CARR RET EQU ODH

SIO_CHAR_RDY2 PROC NEAR

PUSH BX ;save oLd BX value
MOV BL, TRUE jprepare for one result
MOV DX, STATUS_PORT ;check the facts
IN AL, DX ;char waiting???
TEST AL, 2H ;if 2nd bit ON, char is
JNZ RESULT ;waiting hence skip over
MOV BL, FALSE ;FALSE set-up here if 2nd

;bi t was off, hence no
;char waiting

RESULT: MOV AL, BL ;AL receives whichever
POP
RET

BX restore o Ld BX va Lue

SIO_CHAR_RDY2 ENDP

Example 12:
SIO_OUT_CHAR PROC NEAR

;This routine outputs an input parameter to the USART
;output port when UART is ready for output transmit
;buffer empty. The input to this routine is on the stack.

PUSH BP
MOV BP, SP

CALL SIO_CHAR_RDY
RCR AL, 1
JNB OUTPUT

;keyboard input pending?
;put Low-byte into CF to test
;if no input char waiting from
;keyboard, go to output Loop

G-20 ASM86

MOV DX, DATA_PORT ;char waiting: get it
IN AL, DX ;char to AL from that port

;strip off high bit, Leaving
AND AL, ASCII_MASK ;AS C11 code
MOV CHAR, AL ;save char
CMP AL, CONTROLS ;i s char cont ro L-S?
JNZ OUTPUT ;if this haLt-dispLay signal

;i s not rec'd, conti nue
;output at OUTPUT

CHECK:

CMP CHAR, CONTROL_Q

;if controL-S rec'd, must
;await its reLease
;ControL-Q received?

JZ OUTPUT ;if this continuation-signaL
;rec'd, to do next output

CALL SIO CHAR_RDY ;keep checking for new keyboard
RCR AL, 1 ;input, Looping from CHECK
JNB CHECK ;to here untiL input waiting

MOV DX, DATA_PORT ;get waiting character
IN AL, DX
AND AL, ASCII_MASK
MOV CHAR, AL
CMP AL, CARR_RET ;if char=carriage-return,
JNZ CHECK ;skip this instruction, which

;Loops to await controL-Q, and
JMP NEXTCOMMAND ;go to NEXTCOMMAND

OUTPUT:
CONTINUE:

MOV DX, STATUS_PORT ;Loop unt i L status port
;and transmit Line indicateIN AL, DX

TEST AL, 1 ;ready to put out character
JZ OUTPUT

MOV DX, DATA_PORT ;output port address to DX
MOV AL, [BP] + 4 ;character from stack to AL
OUT DX,AL ;output character in AL through

POP BP ;restore originaL BP vaLue
RET 2 ;repositions SP behind prior

;pa ramet e r

SIO OUT CHAR ENDP

Exampte 13:

SIO OUT STRING PROC NEAR
;0utputs a string stored in the ''extra'' segment (uses ES
;as base), the string being pointed to by a 2-word pointer
; on the stack

PUSH BP
MOV BP, SP
MOV SI,0

LES BX, DWORD PTR [BP] + 4

Example Programs G-21

;Load ES with base address and BX with offset of string
;(addresses pushed onto stack by catling routine)

CHECK:

CMP BYTE PTR ES: [BX] [SI], 0
;t e rmi nator character
;i s ASCII

JZ DONE ;nutt = alt zeroes if
;done, exit

MOV AL,BYTE PTR ES: [BX] [SI] ;put next char on
PUSH AX
CALL SIO_OUT_CHAR ;stack for output by

;this called procedure

INC SI ;point index to next
; c h a r

JMP CHECK
DONE:

POP BP
RET 4 ;after return, resets

;SP behind fo rme r
;pa rame t e r s

SIO OUT STRING ENDP

186 tnstruction Set Summary H
FUNCTION FORMAT

186
Ctock
Cyctes

Comments

OATH TRANSFER
MOV = Move:
Register to Register/Memory [1 0 0 0 1 0 0 w I mod reg r/m) 2/12
Register/memory to register [1 0 0 0 1 0 1 w I mod reg r/m I 2/9
immediate to register/memory Il 1 0 0 0 1 1 w I mod000 r/m [data I data it w = 1 I 12-13 8/16-bit
Immediate to register [1 0 1 1 w reg 1 data I data if w = 1 I 3-4 8/16-bit
Memory to accumulator]i tnoooowl addr-low I addr-high [9
Accumutatorto memory 11 0 1 0 0 0 1 w 1 addr-iow] addr-high I 8
Register/memory to segment register 11 0 0 0 1 1 1 0] mod 0 reg r/m I 2/9
Segment register to register/memory]1 0 0 0 1 1 0 0 1 mod 0 reg r/m] 2/11

PUSH = Push:
Memory 1111111111 mod 1 1 0 r/m I 16
Register Io 1 0 1_O reg I 10
Segment register l0 0 0 reg 1 1 0 I 9
tmme&zte t 1 0 1 O $ $ j data] datarfs-0] 10

PU$HA = Push All 11 0 O O 0 C [- 36

POP = Pop:
Memory [1 0 0 0 1 1 11] mod 0 0 0 r/m I 20
Register [01011 reg I 10
Segment register]0 0 0 reg 1 1 1 (reg ^01) 8

HMKxP&pAli {011&6001! . 51
XCHG = Exchange:
Register/memory with register]1 0 0 0 0 1 1 w I mod reg r/m I 4/17
Register with accumuiator [10 0 10 reg I 3

= tnput trom:
]1 1 1 0 0 1 0 w I port I 10

Variabte port]1 1 1 0 1 1 0 w I 8

OUT = Output to:
Fixed port [1 1 1 0 0 1 1 w I port I 9
Variable port [1 1 1 0 1 1 1 w I 7
XLAT = Translate byte to AL [1 101011 1 I 11
LEA = Load EA to register [1 0 0 0 1 1 0 11 mod reg r/m I 6
LOS = Load pointer to DS [1 1 0 0 0 1 0 1] mod reg r/m) (mod -* 11) 18
LES = Load pointer to ES]1 1 0 0 0 1 0 0 I mod reg r/m] (mod 11) 18
LAHF = Load AH with tlags 11 0 0 1 1 1 1 1 [2
SAHF = Store AH into tlags [10 0 11110] 3
PUSHF = Push flags [1 0 0 1 1 1 0 0 I 9

[POPF = Pop flags [10 0 1110 1] 8 I
Shaded areas indicate instructions not availabie in iAPX 86,88 microsystems.

H-2 ASM86

186 INSTRUCTION SET SUMMARY (Continued)

FUNCTION FORMAT

186
Clock
Cycles

Comments

ARITHMETIC
ADD = Add:
Reg/memory with register to either [OOOOOOdwl mod reg r/m 1 3/10
immediate to register/memory]1 0 0 0 0 0 s w I mod000 r/m I data I dataifsw - 01] 4/16
Immediate to accumulator Io 0 0 0 0 1 0 w I data I data if w 1 I 3/4 8/16-bit

AOC = Add with carry:
Reg/memory with register to either l0 0 0 1 0 0 d w I mod reg r/m I 3/10
immediate to register/memory 11 0 0 0 0 0 s w I mod 01 0 r.'m I data I data if s w 01 4/16
immediate to accumuiator lO 0 0 1 0 1 0 w 1 data 1 data if w 1 I 3/4 8/16-bit

INC = Increment*
Register/memory 1 1 1 1 1 1 1 w I mod00 0 r m I 3/15
Register 0 1 0 0 0 reg 3

SUB = Subtract:
Reg/memory and register to either 10 0 1 0_1 0 d w I mod reg rm] 3/10
immediate from register/memory 11 0 0 0 0 0 s w I mod 101 rm] data I data if s w - 01 I 4/16
immediate from accumulator 10 0 1 0 1 1 0 w I data I data if w - 1 I 3/4 8/16-bit

SB8 — Subtract with borrow
Reg/memory and register to either]0 0 0 1 1 0 d w_j mod reg_ r m I 3/10
Immediate from register/memory 11 0 0 0 O 0 s w I mod 011 rm] data 1 data if s w 0 1 I 4/16
immediate from accumuiator [0 0 0 1 1 1 0 w I data I data if w 1) 3/4 8/16-bit

DEC — Decrement
Register'memory 11 1 1 1 1 1 1 w I mod 0 0 1 r m I 3/15
Register jp 1 0 0 1 reg I 3

CMP = Comparer
Register/memory with register 10 0 1 1 1 0 1 w I mod reg rm I 3/10
Register with register/memory 10 0 1 1 1 0 0 w I mod reg r m I 3/10
Immediate with register/memory 11 O 0 0 0 0 s w I mod 1 1 1 r m I data I data if s w 0 1 I 3/10
immediate with accumulator)0 0 1 1 1 1 0 w I data I data if w-1] 3/4 8/16-bit
NEG = Change sign 1 1 1 1 0 1 1 w I mod 0 1 1 r m I 3
AAA = ASCI 1 adjust for add [0 0 1 1 0 1 1 1 I 8
DAA = Decimal adjust for add [0 0 1 0 0 1 1 1 I 4
AAS = ASCH adjust for subtract [0011111 1 I 7
DAS = Decimal adjust for subtract 10010111 1 4

MUL = Multiply (unsigned): 11 1 1 1 0 1 1 w I mod 1 0 0 r/m
Register-Syte 26-28
Register-Word 35-37
Memory-Byte 32-34
Memory-Word 41-43
IMUL = Integer multiply (signed) 1 1 1 1 0 1 1 w I mod 1 01 r/m I
Register-Byte 25-28
Register-Word 34-37
Memory-Byte 31-34
Memory-Word 40-43
tMUL - Integer immediate multiply]Q 1 1 0 1 0 s 1) mod reg r/m I data j dataif s = 0] 22-25/29-32
(signed),

DIV - Divide (unsigned)) 1 1 1 1 0 1 1 w mod 1 1 0 r/m I
Register-Byte 29
Register-Word 38
Memory-Byte 35
Memory-Word 44

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

instruction Set Summary H-3

186 iNSTRUCTiON SET SUMMARY (Continued)

FUNCTION FORMAT

186
Ctock
Cyctes

Comments

ARITHMETIC [Continued):

AAM = ASCII adjust for multiply

AAD = ASCII adjust tor divide

LOGIC

11 1 1 1 0 1 1 w I mod 111 r'm I

I 1010100I00001010I

]1 1O1O1O1IOOOO1O!O

II 0 0 1 1 0 0 0 I

It 0 0 t 1 0 0 1 1

11 1 0 1 0 0 0 w I mod TIT r m 1

] 1 1 0 1 0 0 1 w 1 mod ITT r m 1

11 1 0 0 0 0 0 w I mod ITT r/m I count_]

44-52

53-61
50-58
59-67

19
15
2
4

2/15
5 + n/17 + n
5+n/17+n

AND = And:

o^Vo '"^''"0'°"

001 ROR
010 RCL
011 RCR
1 0 0 SHL/SAL
101 SHR
111 SAR

]0 0 1 0 0 0 d w I mod reg rm]

11 0 0 0 0 0 0 w I mod 1 0 0 r m] data I data if w 1 I

]0 0 1 0 0 1 0 w I_______data______ I data if w - 1 [

3/10
4/16
3/4 8/16-bit

Register/memoryand register 11 0 0 0 0 1 0 w I mod reg r m I

Il 1110 11^1 mod0 00 rm 1 data 1 dataifw = l I
3/10
4/10

Immediate data and accumulator 11 0 1 0 1 0 0 w I_______data______ I data if w = 1 I 3/4 8/16-bit

OR = Or
10 0 0 0 1 0 d w I mod reg r/m I

11 0 0 0 0 0 0 w I mod 0 01 r/m I data I data if w 1 I
3/10
4/16

Immediate to accumulator [0 0 0 0 1 1 0 w I_______data______ I dataitw-1] 3/4 8/16-bit

immediate to register/memory

10 0 1 1 0 0 d w I mod reg r/m I

11 0 0 0 0 0 0 w I mod 110 r/m I data I data if w = 1 I

3/10
4/16

Immediate to accumulator [O 1 0 1 0 vvj data] __ datai[w= 1 _ I 3/4 8/16-bit

STRING MANIPULATION.

LOOS = Load byte/wd to AL/AX
STOS = Stor byte/wd from AL/A
)NS = Input byte/wd from OX port

. OUTS = Output byte/wd to OX port

11 1 1 1 0 1 1 w I mod 01 0 r/m I

]1 0 1 0 0 1 0 w

l! 0 1 0 0 1 1 w I

]1 0 1 0 1 1 1 w [

l! 0 1 0 1 1 0 wI

1 0 1 0 1 0 1 w I

{01101 1 0 w {
[0 1 1 0 1'1 1 w]

3

14
22
15
12
10

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

H-4 ASM86

186 tNSTRUC T)ON SET SUMMARY (Continued)

FUNCKON FORMAT

186
Ctock
Cyc!es

Comments

STRING MANIPULATION (Continued):
Repeated by count in CX
MOVS Move string]1 111001 ollOIOOIGw]

CMPS - Compare string] 1 1! 1001 z] 1 0 1 0 0 1 1 w]

SCAS - Scan string [1 111001 z j 1 0 1 0 1 1 1 w

LOOS - Load string jl 1110010]l010110w]

STOS - Store string 1 11 1001 0]1 0 1 0 1 0 t w]

tNS^tnputstring)1 1 1 t 0 0 1 0 { 0 1 i 0 1 10 w{

OUTS ^Outputstring [1 1 1 1 0 0 1 0 (0 1 1 Q 1 1 1 w(

CONTROL TRANSFER

CALL = Call: __
Direct within segment j 1 110 10 0 0] disp-low I disp-high]

indirect within segment ' '

Direct intersegment] 1 0 0 1 1 0 1 0]__________ segment otfset__________ [

]_______ segment selector_________]

JMP = Unconditional jump:
Shortlong 1 110 10 1 1 j disp-low

Direct within segment]1 1 1 0 1 00 1] disp-low] disp-high]

]__________ segment selector_________

Indirect intersegment 11 111111 1 j mod 101 r m j (mod r it)

RET = Return from CALL: ___ ___
Within segment j 1 10 0 0 0 1 1 j

Within seg adding immed to SP 11 10 0 0 0 1 0 j data-low] data-high]

Intersegment] 1 10 0 10 1 1 j

Intersegment adding immediate to SP 11 10 0 10 1 0 j data-low I data-high I

8+8n
5+22n
5 + 15n
6 + 11n
6+9n

8+Sn

8+8n

14
13/19

23

38

13
13

11/17

13

26

16
18
22
25

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

tnstruction Set Summary H-5

186 INSTRUCTION SET SUMMARY (Continued)

FUNCTION FORMAT

186
C)ock
Cyctes

Comments

CONTROL TRANSFER (Continued):
JE/JZ-Jump on equal W Io 1 1 1 0 1 0 0 I dtsp I 4/13 13 if JMP
JL/JNGE = Jumpon less mt neater t)t equal Io 1 1 1 1 1 0 0 1 disp 4/13 taken

4 if JMP
not takenJLE/JNG = Jump on less or equal not greater Io 1 1 1 1 1 1 0 1 disp 4/13

JB/JMAE = Jump on below no! above or equal Io 1 1 1 0 0 1 0 1 disp I 4/13
JBE/JNA = Jump on below or equal no! above Io 1 1 1 0 1 1 0 1 disp J 4/13
JP/JPE - Jump on parity parity even Io 1 1 1 1 0 1 0 1 dtsp I 4/13
JO = Jump on oversow Io 1 1 1 0 0 0 0 1 disp 4/13
JS^ Jump on sign Io t 1 1 1 0 0 0 1 disp I 4/13
JNE/JNZ = Jump on not equal no! tero 0 1110 10 11 disp I 4/13
JNL/JGE = Jump on not less greater ot equal Io 1 1 1 1 1 0 1 1 disp I 4/13
JNLE/JG = Jump on not less or equal greater Io 1 1 1 1 1 1 1 1 disp 4/13
JNB/JAE = Jump on net Mow above ot equal 0 1110 0 1 1 I disp I 4/13
JNBE/JA = Jump on not below ot equal above Io 1 1 1 0 1 1 1 I disp I 4/13
JNP/JPO = Jump on not par par otM 011110111 disp I 4/13
JNO = Jumpon not overflow Io 1 1 1 0 0 0 1 1 disp I 4/13
JNS = Jump on not sign Io 1 1 1 1 0 0 1 1 disp I 4/13
LOOP = Loop CX times p 1 1 0 0 0 1 0 I disp J 5/15
LOOPZ/LOOPE - Loop while wo equal 11 1 1 0 0 0 0 1) disp I 6/16

6/16
16LOOPNZ/LOOPNE Loop while not aero equal]1 1 1 0 0 0 0 0 1 disp I JMP taken/

JMP not takenJCXZ = JumponCXtero 11 1 1 0 0 0 1 1 I disp [5

HlTHt Enter Procedure } 1 10 0 10 0 0) data-taw I data-tugh) L J
L-0 15 r.
L=1 25 . '-
L>1 22+16(n-1)

8LEAK-Lews Procedure)1 1 0 0 1 0 0 1)

)NT = interrupt:
Type specified I110011011 type [47
Type 3 l! 1 0 0 1 1 0 0 1 45 if)NT. taken/
!MTO = tnterrupt on overflow 11 1 0 0 1 1 1 0 1 48/4 if)NT. not

taken

)RET = [nterrupt return I 1 10 0 111 1 I 28

KKW"fN^t^eWufran$e {0 1 1 0 0 0 1 0) modrUB r/m { 33-35

Shaded areas indicate instructions not availabie in iAPX 86,88 microsystems.

H-6 ASM86

186 INSTRUCTION SET SUMMARY (Continued)

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

FUNCTION FORMAT

186
Clock
Cycles

Comments

PROCESSOR CONTROL
11 til 1 0 0 0 [2

CMC = Complement carry It 1 1 t 0 ! 0 1] 2
SIC = Set carry It 1111001] 2
CLD = Clear direction 11 1 1 1 1 1 0 01 2
STO = Set direction [11111101^ 2
CH Clear interrupt [1 1 1 1 1 0 1 0 1 2
STI = Set interrupt 11 111101 1 1 2
HLT = Halt]1 1'10 10 0] 2
WMT = Wait [1 0 0 1 1 0 1 1 1 6 if test = 0
LOCK = Bus loch prefix]1 1 1 t 0 0 0 0 I 2
ESC = Processor Extension Escape 11 0 0 1 1 T I 1 1 mod LLL r m] 6

(III LLL are opcode to processor extension)

FOOTNOTES
The effective Address (EA) of the memory operand is
computed according to the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field
if mod = OOthenDISP = O',disp-lowanddisp-high
are absent
if mod = 01 thenDISP = disp-low sign-extended to
16-bits, disp-high is absent
if mod = 10 thenDISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (SI) + DISP
if r/m = 001 thenEA = (BX) + (DI) + DISP
if r/m = 010 thenEA = (BP) + (SI) + DISP
if r/m = 011 then EA = (BP) -r (DI) + DISP
if r/m = 100 thenEA = (SI) + DISP
if r/m = 101 then EA = (DI) + DISP
if r/m = 110 then EA = (BP) + DISP'
if r/m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data it
required)

SEGMENT OVERRfDE PREFtX

Io 0 1 reg 1 1 0l

reg is assigned according to the following:

REG is assigned according to the following table:

16-Bit(w = 1) 8-Bit(w = 0)
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
1(1 DI 111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination op
erands of the string primitive operations (those ad
dressed by the DI register) are computed using the ES
segment, which may not be overridden.

reg
Segment
Register

00 ES
01 CS
10 SS
11 DS

Index

+ , addition operator, 4-12
/, division operator, 4-11
?, indeterminate initialization, 3-6, 3-7, 4-17
$, location counter symbol, 3-18, 4-17
*, multiplication operator, 4-11
??SEG, the default segment, 2-5
—, subtraction operator, 4-12

8-bit registers, 1-6
16- bit registers, 1-6
17- bit number, 3-2
186 Clocks, H-l-H-7
186 Instruction Set Summary, H-l-H-7
8086/8087/8088 Development tools, 1-1,

1-2
8086/8088 flags, Flags
8087 Control word, 6-110
8087 Data types, 3-1, 3-2, 6-112
8087 Emulators, 6-116
8087 environment, 6-109
8087 Exception pointers, 6-112
8087 Rounding masks, 6-114
8087 Status word, 6-109
8087 Tag word, 6-111

AAA, ASCII Adjust for Addition, 6-21
AAD, ASCII Adjust for Division, 6-22
AAM, ASCII Adjust for Multiplication,

6-23
AAS, ASCII Adjust for Subtraction, 6-24
ABS, external type, 5-2
ADC, Add with Carry, 6-25
ADD, 6-26
addition operator, +, 4-12
address expression 3-4, 2-6, 2-7, 4-7, 4-8
addressability of data/code, 1-9, 2-5,

4-14-4-15
addressing modes, 4-3, 6-1

based address, 4-4
based indirect address, 4-4, 4-18
direct address, 4-3
indexed address, 4-4
register indirect address, 4-3, 4-18

align-type, segment attribute, 2-2
AND, Logical And, 4-13
AND, Logical expression operator, 6-27
anonymous references, 4-5, 6-5
arithmetic operators, 4-10-4-12
Assembly language, 1-1
assembly language statements, 1-5
ASSUME directive, 1-9, 2-5-2-8, 4-5, 4-14,

4-18
AT, Segment combine-type, 2-3, 4-9
attribute operators

attribute overriding operators, 4-4-4-16
attribute value operators, 4-17-4-21

base relocatability, 4-9, 4-18
BOUND, check array, 6-28
BYTE

external variable type, 5-2
segment align-type, 2-2
variable type operand, 3-18, 4-16, 4-17

CALL, 6-29
CBW, Convert Byte to word, 6-31
character set, 1-3
CI, console input, 7-19
classname, segment attribute, 2-3
CLC, Clear Carry Flag, 6-32
CLD, Clear Direction Flag, 6-33
CLI, Clear Interrupt Flag, 6-34
CMC, Complement Carry Flag, 6-35
CMP, Compare, 6-36
CMPS, Compare String, 6-99
CMPSB, Compare Byte String, 6-99
CMPSW, Compare Word String, 6-99
CO, console output, 7-19
CODEMACRO directive, A-l-A-17
codemacro matching, A-14
codemacro modifiers, A-4
codemacro range specifiers, A-4
codemacro specifiers, A-3
codemacros, A-1 -A-17
codemacros, list of, A-18-A-33
combine-type, segment attribute, 2-2

tndex-2 ASM86

combining iogicai segments, 2-2, 2-8
COMMON, segment combine-type, 2-2
conditional jump instructions, 4-16, 6-12,

6-13, 6-52
constants, 3-2, 3-5, 4-24

ASCII, 3-3, 3-7, 3-8
binary, 3-3
decimal, 3-3
decimal real, 3-2, 3-3
hexadecimal, 3-3
hexadecimal real, 3-2, 3-3
octal, 3-3

continuation lines, 1-5
CPU hardware, overview, 1-5
Crowley, Aleister, 3-4
CWD, Convert Word to Double Word, 6-37

DAA, Decimal Adjust for Addition, 6-38
DAS, Decimal Adjust for Subtraction, 6-39
data types, 3-1, 3-2
DB, Define byte directive,3-3, A-7
DD, Define directive, 3-3, A-7
debug information, control of, 3-19
DEC, Decrement, 6-40
Delimiters, 1-4, 7-20
DIV, divide, 6-41
division operator, /, 4-11
dot operator, codemacro operator, A-12
DQ, Define word directive, 3-4
DT, Define tbyte directive, 3-4
DUP, repeated data initialization, 3-7, 3-8
DW, Define word directive, 3-3, A-7
DWORD

external variable type, 5-2
variable type operand, 3-18, 4-16, 4-17

END directive, 5-3
ENTER, high level entry, 6-43
EQ, Relational expression operator, 4-12
EQU directive, 4-17, 4-24
ESC, Escape, 6-42
EVEN directive, 3-19
expression operands, 4-2, 4-6-4-8

address expressions, 4-7, 4-8
numbers, 4-2, 4-6, 4-25

EXTRN directive, 4-9, 4-10, 5-1

F2XMI, Calculate, 6-123
FABS, absolute value, 6-124
FADD, add real, 6-125
FADDP, Add real and pop, 6-126
FAR

external label type, 5-2
label type operand, 3-18, 4-16, 4-17
PROC type, 3-17

FBLD, Load packed decimal, 6-127
FBSTP, Store packed decimal, 6-128
FCHS, change sign, 6-129
FCLEX, clear exceptions, 6-130
FCOM, Compare real, 6-131
FCOMP, Compare real and pop, 6-133
FCOMPP, Compare real and pop twice,

6-135
FDECSTP, Decrement stack pointer, 6-137
FDISI, Disable interrupts, 6-138
FDIV, Divide real, 6-139
FDIVP, Divide real and pop, 6-140
FDIVR, Reversed divide real, 6-141
FDIVRP, Reversed divide real and pop,

6-142
FENI, Enable interrupts, 6-143
FFREE, Free stack element, 6-144
FIADD, Add integer, 6-145
FICOM, Compare integer, 6-146
FICOMP, Compare integer and pop, 6-148
FIDIV, Divide integer, 6-150
FIDIVR, Reversed divide integer, 6-151
FILD, Load integer, 6-152
FIMUL, Multiply integer, 6-153
FINCSTP, Increment stack pointer, 6-154
FIN IT, Initialize processor, 6-155
FIST, Store integer, 6-156
FISTP, Store integer and pop, 6-157
FISUB, Subtract integer, 6-158
FISUBR, Reversed subtract integer, 6-159
Hags, 6-4, 6-8, 6-14, 6-16, B-l-B-3
FLD, Load real, 6-160
FLDCW, Load control word, 6-161
FLDENV, Load 8087 environment, 6-162
FLDL2E, Load log^e, 6-165
FLDL2T, Load log JO, 6-166
FLDLG2, Load log..2, 6-163
FLDLN2, Load log.2, 6-164
FLDPI, Load II, 6-167
FLD1, Load +1.0, 6-169

ASM86)ndex-3

FLDZ, Load +0.0, 6-168
floating point stack, 4-2, 6-108
FMUL, Multiply real, 6-170
FMULP, Multiply read and pop, 6-171
FNCLEX, Clear exceptions with no WAIT,

6-130
FNDISI, Disable interrupts with no WAIT,

6-138
FNENI, Enable interrupts with no WAIT,

6-143
FNINIT, Initialize processor with no WAIT,

6-155
FNOP, No operation, 6-172
FNSAVE, Save 8087 state with no WAIT,

6-178
FNSTCW, Store control word with no

WAIT, 6-183
FNSTENV, Store 8087 environment with no

WAIT, 6-184
FNSTSW, Store 8087 status word with no

WAIT, 6-187
forward references, 1-3, 2-7
FPATAN, Partial arctangent, 6-173
FPREM, Partial remainder, 6-174
FPTAN, Partial tangent, 6-175
FRNDINT, Round to integer, 6-176
FRSTOR, Restore 8087 state, 6-177
FSAVE, Save 8087 state, 6-178
FSCALE, Scale, 6-180
FSQRT, Square root, 6-181
FST, Store real, 6-182
FSTCW, Store control word, 6-183
FSTENV, Store 8087 environment, 6-184
FSTP, Store real and pop, 6-186
FSTSW, Store 8087 status word, 6-187
FSUB, Subtract real, 6-188
FSUBP, Subtract real and pop, 6-189
FSUBR, Reversed subtract real, 6-190
FSUBRP, Reversed subtract real and pop,

6-191
FTST, Test, 6-192
FWAIT, CPU WAIT alternate form, 6-193
FXAM, Examine, 6-194
FXCH, Exchange, 6-195
FXTRACT, Extract exponent and

significand, 6-196
FYL2P1, Calculate Y log^X + 1), 6-199
FYL2X, Calculate Y logzx, 6-198

GE, Relational expression operator, 4-12
general register set, 1-6
GROUP directive, 2-8, 4-9, 4-18
GT, Relational expression operator, 4-12

HIGH operator, 4-10
HLT, Halt, 6-44

identifiers, 1-4
indeterminate initialization of data, 3-6
initializing a segment register, 2-6, 2-8, 4-18,

5-3-5-5, F-2
IDIV, Integer Divide, 6-45
IMUL, Integer Multiply, 6-46
IN, Input byte or word, 6-48
INC, Increment, 6-49
INPAGE, segment align-type, 2-2
INS, input IO address to memory, 6-100
instruction operands, 4-1, 4-2

immediate, 4-2
register, 4-2, 6-3
memory, 4-3, 6-1-6-3

instruction statements, 4-1, 6-1
INT, Interrupt, 6-50
integer constants, 3-2
interrupt procedures, G-14
interrupts, 6-13-6-14
INTO, Interrupt on Overflow, 6-50
IRET, Interrupt Return, 6-51

JA, Jump or Above, 6-52
JAE, Jump or Above or Equal, 6-52
JB, Jump or Below, 6-52
JBE, Jump or Below or Equal, 6-52
JC, Jump or Carry Flag, 6-52
Jcond, conditional jump instructions,

see conditional jump instructions
JCXZ, Jump or CX Zero, 6-52
JE, Jump or Equal, 6-52
JG, Jump or Greater, 6-52
JGE, Jump or Greater or Equal, 6-52
JL, Jump or Less, 6-52
JLE, Jump or Less or Equal, 6-52
JMP, Jump, 6-54-6-55
JNA, Jump or Not Above, 6-52
JNAE, Jump or Not Above or Equal, 6-52
JNB, Jump or Not Below, 6-52
JNBE, Jump or Not Below or Equal, 6-52

!ndex-4 ASM86

JNC, Jump on No Carry Fiag, 6-52
JNE, Jump or Not Equai, 6-52
JNG, Jump or Not Greater, 6-52
JNGE, Jump or Not Greater or Equai, 6-52
JNL, Jump or Not Less, 6-52
JNLE, Jump or Not Less or Equai, 6-52
JNO Jump or Not Overflow Fiag, 6-52
JNP, Jump or Not Parity Flag, 6-52
JNS, Jump or Not Sign Flag, 6-52
JNZ, Jump or Not Zero Flag, 6-52
JO, Jump or Overflow Fiag, 6-52
JP, Jump or Parity Flag, 6-52
JPE, Jump or Parity Even, 6-52
JPO, Jump or Parity Odd, 6-52
JS, Jump or Sign, 6-52
JZ, Jump or Zero Flag, 6-52

label
attributes of, 3-1-3-2
defining, 3-2, 3-15-3-18, 4-1, 4-24
operand of instruction or expression, 4-3

LABEL directive, 3-17-3-18, 4-17
LAHF, Load AH with Flags, 6-56
LDS, Load Pointer into PS, 6-57
LE, Relational expression operator, 4-12
LEA, Load Effective Address, 6-58
LEAVE, high level exit, 6-59
LENGTH operator, 4-20
LES, Load pointer into ES, 6-57
location counter ($), 3-18
LOCK, Lock Bus, 6-60
LCDS, Load String, 6-100
LODSB, Load byte string, 6-100
LODSW, Load word string, 6-100
logical segments, segments
logical operators, 4-13
LOOP, 6-61
LOOPE, Loop while Equal, 6-61
LOOPNE, Loop while Not Equal, 6-61
LOOPNZ, Loop while Not Zero, 6-61
LOOPZ, Loop while Zero, 6-61
LOW operator, 4-10
LT, Relational expression operator, 4-12

Macro Processor Language (MPL), 1-5, 7-1
arguments to macros, 7-6
arithmetic expressions, 7-11

bracket function, 7-10
call-literally character (), 7-6
CI, console input, 7-19
CO, console output, 7-19
comments as macros, 7-8
conditional assembly, 7-14
console I/O, 7-19
DEFINE function, 7-2
delimiters

comma, 7-6
identifier, 7-20
literal, 7-21
other, 7-20

EQ, relational operator, 7-11
EQS, string compare function, 7-12
escape function, 7-9
EVAL function, 7-12
EXIT function, 7-16
GT, relational operator, 7-11
GTS, string compare function, 7-12
IF ... THEN ... [ELSE ...] Fl function,

7-14
IN function, 7-19
LE, relational operator, 7-11
LEN function, 7-17
LES, string compare function, 7-12
local symbols, 7-7
logical expressions, 7-11, 7-12
MATCH function, 7-18
metacharacter (%), 7-11
NE, relational operator, 7-11
NES, string compare function, 7-12
OUT function, 7-19
parameters, 7-6
REPEAT function, 7-16
SET, Built-in macro function, 7-11
string compares, 7-12
SUBSTR function, 7-17
values, range of, 7-11
WHILE function, 7-15

MASK operator, 4-22
memory segmentation model, 1-8
MEMORY, segment combine-type, 2-2
mnemonic, 1-1, 4-1, 4-24, 6-1, 6-6, 6-20,

6-122
MOD, expression operator, 4-11
modrm byte, 6-2, 6-16
MODRM, Codemacro directive, A-6

ASM86 !ndex-5

module, object, 1-1
module, source, 1-9, 5-1, 5-5
MOV, Move data, 6-62
MOVS, Move string, 6-100
MOVSB, Move byte string, 6-100
MOVSW, Move word string, 6-100
MUL, Multiply, 6-64
multiplication operator, *, 4-11

NAME directive, 5-5
NE, Relational expression operator, 4-12
NEAR

external label type, 5-2
label type operand, 3-18, 4-16, 4-17
PROC type, 3-17

NEG, Negate, 6-65
NOP, No operation, 6-66
NOSEGFIX, Codemacro directive, A-5
NOT, Logical expression operator, 4-13
NOT, Logical Not, 6-67
Notational Conventions, v
NOTHING, Assume operand, 2-5, 2-7
numbers, 4-6, 4-10, 4-24
Numeric Data Processor, see 8087

OFFSET operator, 2-9, 4-15, 4-18
offset relocatability, 4-9, 4-18
offset, variable/label attribute, 1-8, 3-1, 3-4,

3-6, 3-15, 4-8, 4-9
operands

expressions, 4-2, 4-6—4-8
instructions, 4-1—4-3, 6-1, 6-3

operator precedence, 4-23, 7-11
operators, expression

arithmetic, 4-10-4-12
attribute, 4-14-4-21
logical, 4-13
record-specific, 4-21-4-23
relational, 4-12-4-13

OR, Logical expression operator, 4-13
OR, Logical Or, 6-68
ORG directive, 3-18
OUT, Output byte or word, 6-69
OUTS, 6-100

PAGE, segment align-type, 2-2, 4-9
PARA, Segment align-type, 2-2, 4-9

paragraph boundary, 1-8
paragraph number

segment base pointer, 1-8, 2-7
variable/label attribute, 3-1, 4-18

parameter passing, G-4-G-12
physical address, 1-8
physical segments, ^gg segments
pointer to variable/label, 3-6, 6-7
POP, Pop from stack, 6-70
POPA, Pop All Registers, 6-71
POPF, Pop Flags, 6-72
prefix, instructions, 4-1
PREFX, Codemacro directive, A-2
PROC/ENDP directives, 3-2, 3-15-3-17
PROCLEN, Codemacro directive, A-14
program linkage, 5-1-5-5
program module, 1-4, 5-1, 5-5
PTR operator, 4-15-4-16
PUBLIC directive, 5-1
PUBLIC, segment combine-type, 2-2, 4-9
PURGE directive, 3-19
PUSH, Push onto stack, 6-73
PUSHA, Push All Registers, 6-75
PUSHF, Push Flags, 6-76.

QWORD
external variable type, 5-2
variable type operand, 4-16, 4-17

RCL, Rotate through Carry Left, 6-77
RCR, Rotate through Carry Right, 6-79
real constants, 3-2-3-3
RECORD directive, 3-8
record field-name, usage as shift count, 4-22
records

allocation and initialization, 3-8, 3-10,
A-7

definition, 3-8-3-9
introduction, 3-8
record-specific operators, 4-21-4-23

record-specific operators, 4-21-4-23
register expression, 4-3-4-6, 4-7-4-8, 4-25
registers, 4-24

base or pointer registers, 1-6, 4-3, 4-4, 4-5,
4-7

general registers, 1-6
implicit use of, 1-7, 4-4-4-6, 4-15, 6-5
segment registers, 1-7, 4-4-4-6

!ndex-6 ASM86

related publications, v
relational operators, 4-12, 4-13
RELB, Codemacro directive, A-8
relocatability, 4-9
relocatable expressions, 4-9, 4-12
RELW, Codemacro directive, A-8
REP, Repeat, 6-81
REPE, 6-81
repeated initialization of data, 3-7-3-8
REPNE, 6-81
REPNZ, 6-81
REPZ, 6-81
reserved words, 6-1
RET, Return, 6-82
RFIX, Codemacro directive, A-10
RFIXM, Codemacro directive, A-10
RNFIX, Codemacro directive, A-l 1
RNFIXM, Codemacro directive, A-l 2
ROL, Rotate Left, 6-83
ROR, Rotate Right, 6-85
RWFIX, Codemacro directive, A-13

SAHF, Store AH into Flags, 6-87
SAL, Shift Arithmetic left, 6-88
SAR, Shift Arithmetic Right, 6-90
SBB, Subtract with Borrow, 6-92
SCAS, Scan string, 6-100
SCASB, Scan byte string, 6-100
SCASW, Scan word string, 6-100
scope of identifiers, 1-4, 3-15
SEG operator, 2-7, 2-9, 4-18
SEGFIX, Codemacro directive, A-4
segment attribute of variables/labels, 3-1,

3- 4, 3-6, 4-8, 4-9
SEGMENT/ENDS directive, 1-9, 2-1—2-5,

4- 9
segment override, 4-14, 4-15
Segment Override Prefix, 2-6, 4-14, 4-15,

6-2
segment register, default usage, 4-4-4-6
segments

logical segments, 1-8, 2-1, 4-9
physical segments, 1-8, 2-1, 4-9

separators, 1-4
shift count, record name, 4-22
SHL, expression operator, 4-11
SHL, Shift Left, 6-88

SHORT operator, 4-16
SHR, expression operator, 4-11
SHR, Shift Right, 6-94
SIZE operator, 4-21
ST, 8087 registers, 4-2
STACK, segment combine-type, 2-2, 4-9
STC, Set Carry Flag, 6-96
STD, Set Direction Flag, 6-97
STI, Set Interrupt Flag, 6-98
storage of 16-bit data in memory
STOS, Store string, 6-100
STOSB, Store byte string, 6-100
STOSW, Store word string, 6-100
string instructions, 4-5, 6-4—6-6, 6-10-6-12,
6-99
strings, constants, ASCII
STRUC/ENDS directive, 3-11
structure fields, accessing of, 4-8
structures

allocation and initialization, 3-12-3-14,
4-8

definition, 3-11, 3-12
introduction, 3-10

SUB, subtract, 6-102
subtraction operator, —,4-12
syntax notation, 1-10

TBYTE
external variable type, 5-2
variable type operand, 3-18, 4-16, 4-17

TEST, 6-103
THIS operator, 4-17
tokens, 1-4
TYPE operator, 4-19-4-20
typing of operands, 1-3, 4-15, 4-17
type of variable or label, 3-1-3-2, 3-4

variable
attributes of, 3-1, 4-9
defining, 3-3-3-5, 4-24
initializing, 3-4, 3-5-3-8
operand of instruction or expression, 4-3

WAIT, 6-104
WIDTH operator, 4-23

ASM86)ndex-7

WORD XCHG, Exchange, 6-105

externa! variable type, 5-1
Segment align-type, 2-2
Variable type operand, 3-18, 4-16, 4-17

XL AT, Translate, 6-106
XLATB, Translate, 6-106
XOR, Logical Exclusive Or, 4-13
XOR, Logical expression operator, 6-107

intj ASM86 Assembly Language Reference Manual
122385-001

WE'D LIKE YOUR OPINION

Please use this form to help us evaluate the effectiveness of this manual and improve the quality of future
documents

To order publications, contact the Intel Literature Department (see page ii of this manual).

Fill in the squares below with a rating of 1 through 10:

POOR AVERAGE EXCELLENT

123456789 10
IZ Readability
IZi Technical depth
IZ Technical accuracy
IZI Usefulness of material for your needs
IZ Comprehensibility of material
IZ OVERALL QUALITY OF THIS MANUAL

If you gave a 4 or less (in any category), please explain here:

What suggestions would you have for improving this manual:

* * * ATTENTION * * *

Receive 50% off on the next Intel publication you buy. Send us your comments, and we'll
send you a 50%-off certificate.

If you would like us to call you for more specifics about this book, provide the following information.
Please print clearly.

Name___

Phone Number (_______)__

Address ._____ _ ___

Thanks for taking the time to fill out this form.

WE'D HKE YOUR COMMENTS . . .

This document is one of a series describing intei products. Ybur
comments on the back of this form wiii heip us produce better manuats.
Each repiy wiii be reviewed. At) comments and suggestions become the
property of intei Corporation.

if you are in the United States, use the preprinted address provided on
this form to return your comments. No postage is required, if you are not
in the United States, return your comments to the intei sates office in your
country. For your convenience, a iist of internationai safes offices is
provided on the back cover of this document.

NO POSTAGE
NECESSARY

)F MAiLED
iNTHE

UNiTED STATES

BUStNESS REPLY MA)L
FtRST CLASS PERMtT NO. 79 HtLLSBORO, OR

POSTAGE WiLL BE PAiD BY ADDRESSEE

intei Corporation
DTO Technical Publications, HF2-38
5200 N.E. Eiam Ybung Parkway
Hihsboro, OR 97124-9987

ii Jndu JitJ J Jniid) J Jnini<imi Jn!i

	How to Use This Manuai

	Notations! Conventions

	Table of Contents

	Page

	Page

	Page

	Page

	Figures

	Page

	Overview of the ASM86 Assembly Language

	The 8086/8087/8088 Devetopment Environment

	An Overview of the Assembly Language

	Basic Assembiy Language Constituents

	Character Set

	Tokens and Separators

	Detimiters

	tdentifiers

	Statements

	An Overview of the Macro Language

	CPU Hardware Overview

	The Genera! Register Set

	The Segment Register Set

	The 8086/8088 Memory Segmentation Mode!

	Format for Directive Specifications

	woutd expand to

	The actuat number of items that can appear in the list is typically limited by constraints internal to the assembler.

	Segmentation

	Overview of Segmentation

	The SEGMENT/ENDS Directive

	Syntax:

	Description:

	Field Values:

	Muitipie Definitions for a Segment

	"Nested" or "Embedded" Segments

	The Default Segment—??SEG

	The ASSUME Directive

	Syntax:

	Description:

	Field Values:

	Forward Referenced Names in an ASSUME Directive

	Muttipte ASSUME Directives

	The GROUP Directive

	Syntax:

	Description:

	Field Values:

	Use of the OFFSET Operator With Groups

	Defining and initializing Data

	Overview of Variables and Labeis

	Constants

	Defining and initializing Variabies (DB, DW, DD, DQ, DT Directives)

	Syntax:

	Description:

	Field Values:

	tntroduction to Records

	The RECORD Directive

	Record Tempiate Definition

	Syntax:

	Description:

	Field Values:

	"Partial" Records

	Record Aiiocation and initialization

	Syntax:

	Description:

	Field Values:

	tntroduction to Structures

	The STRUC Directive

	Structure Tempiate Definition

	Syntax:

	Description:

	Field Values:

	Structure Allocation and Initialization

	Syntax:

	Description:

	Field Values:

	Defining Labeis

	The PROC Directive

	Syntax:

	Description:

	Field Values:

	The LABEL Directive

	Syntax:

	Description:

	Field Values:

	The Location Counter ($)

	The ORG Directive

	Syntax:

	Description:

	Fieid Vaiues:

	The EVEN Directive

	Syntax:

	Description:

	The PURGE Directive

	Syntax:

	Description:

	Using the PURGE Directive to Contro! Debug information

	Accessing Data—Operands and Expressions

	8086/8087/8088 tnstruction Statements

	Description:

	Field Values:

	Operand Types

	Registers

	Segment Registers:

	General Registers (16 Bits):

	General Registers (8 Bit):

	Pointer and Index Registers:

	Floating Point Stack

	Immediate Operands

	Memory Operands

	Direct Address

	Register Indirect Address

	Based Address

	Indexed Address

	Based Indexed Address

	Segment Register Defaults

	Overview of Expressions

	Types of Expression Operands

	Numbers

	Address Expressions

	Accessing Structure Fieids

	Relocatable Expressions

	Arithmetic Operators

	HtGH/LOW

	Syntax:

	Description:

	Field Values:

	Muitipiicationand Division

	Syntax:

	Description:

	Fieid Values:

	Shift Operators

	Syntax:

	Description:

	Fieid Values:

	Addition and Subtraction

	Syntax:

	Description:

	Field Values:

	Relational Operators

	Syntax:

	Description:

	Fieid Vaiues:

	Logica) Operators

	Syntax:

	Description:

	Fieid Vaiues:

	Attribute Overriding Operators

	Segment Override

	Syntax:

	Description:

	Field Values:

	PTR Operator

	Syntax:

	Description:

	Field Values:

	SHORT Operator

	Syntax:

	Description:

	Field Values:

	Attribute Vaiue Operators

	TH)S Operator

	Syntax:

	Description:

	Field Values:

	SEG Operator

	Syntax:

	Description:

	Field Values:

	OFFSET Operator

	Syntax:

	Description:

	Field Values:

	TYPE Operator

	Syntax:

	Description:

	Field Values:

	LENGTH Operator

	Syntax:

	Description:

	Field Values:

	SIZE Operator

	Syntax:

	Description:

	Field Values:

	Record Specific Operators

	Shift Count

	Syntax:

	Description:

	Field Values:

	MASK Operator

	Syntax:

	Description:

	Field Values:

	WIDTH Operator

	Syntax:

	Description:

	Field Values:

	Operator Precedence

	Highest Precedence

	Lowest Precedence

	The EQU Directive

	Syntax:

	Fieid Values:

	Program Linkage Directives

	Overview of Program Linkage

	The PUBUC Directive

	The EXTRN Directive

	Field Vaiues:

	The Placement of EXTRN's

	The END Directive

	The NAME Directive

	The 8086/8087/8088 Instruction Set

	The 8086/8088 tnstruction Set

	tnstruction Statement Formats

	Addressing Modes

	Memory Operands

	Description

	Encoding

	Segment Override Prefixes

	Description

	Encoding

	Exceptions

	Register Operands

	Description

	Encoding

	tmmediate Operands

	String instructions and Memory References

	Mnemonic Synonyms

	Organization of the instruction Set

	Data Transfer

	General Purpose Transfers

	Accumulator-Specific Transfers

	Address-Object Transfers

	Flag Register Transfers

	Arithmetic

	Flag Register Settings

	Addition

	Subtraction

	Muitipiication

	Division

	Logic

	Two-Operand Operations

	String Manipulation

	Hardware Operation Control

	Primitive String Operation

	Software Operation Controi

	Contro) Transfer

	Calls, Jumps, and Returns

	Conditional Jumps

	Iteration Control

	Interrupts

	Processor Contro)

	Flag Operations

	Processor Halt

	Processor Wait

	Processor Escape

	Bus Lock

	Single Step

	instruction Description Formats

	Format Boxes

	instruction Detai) Tabies

	Fiags

	MNEMONIC—Sample 8086/8088 Instruction

	Format

	Operation

	Flags

	Description

	AAA—ASCH Adjust for Addition

	Format

	Operation

	Fiags

	Description

	AAD—ASCH Adjust for Division

	Format

	Operation

	Fiags

	Description

	AAM—ASCH Adjust for Muttiptication

	Format

	Operation

	Flags

	Description

	AAS—ASCH Adjust for Subtraction

	Format

	Operation

	Flags

	Description

	ADC—Integer Add With Carry

	Format

	Operation

	Flags

	Description

	Operation

	Flags

	Description

	AND—Logica) AND

	Format

	Operation

	Description

	BOUND—Check Array Against Bounds [iAPX 186]

	Format

	Operation

	Fiags

	Description

	CALL—Can

	Format

	Flags

	Description

	CALL

	Operation

	Flags

	Description

	CBW—Convert Byte to Word

	Format

	Operation

	Flags

	Description

	CLC—Ctear Carry Dag

	Format

	Operation

	Flags

	Description

	CLD—Clear Direction Flag

	CL!—Clear Interrupt Enable Flag

	Format

	Operation

	Flags

	Description

	CMC—Complement Carry Flag

	Format

	Operation

	Flags

	--------x

	Description

	CMP—Compare Two Operands

	Format

	Operation

	Fiags

	Description

	CWD—Convert Word to Doubteword

	Format

	Operation

	Flags

	Description

	CWD

	Format

	Operation

	Flags

	Description

	DAS—Decima! Adjust for Subtraction

	Format

	Operation

	Flags

	Description

	DEC—Decrement by 1

	Format

	Operation

	Flags

	Description

	D!V—Unsigned Division

	Format

	Operation

	Flags

	Description

	ENTER—High Levei Procedure Entry [iAPX 186]

	Format

	Operation

	Flags

	Description

	ESC—Escape

	Format

	Operation

	Fiags

	Description

	HLT—Hatt

	Format

	Operation

	Flags

	Description

	!D!V—Signed Division

	Format

	Operation

	Flags

	Description

	!MUL—Signed Muitipiication

	Format

	Operation

	Flags

	!MUL

	Description

	!N—!nput Byte, Word

	Format

	Operation

	Fiags

	Description

	!NC—tncrement By 1

	Format

	Operation

	Flags

	Description

	!NT/!NTO—interrupt

	Format

	Operation

	Description

	!RET—Return from tnterrupt

	Format

	Operation

	Flags

	Description

	Jcond—Jump on Condition

	Operation

	Format

	Flags

	Jcond

	Description

	JMP—Jump

	Format

	Flags

	Description

	JMP

	Operation

	Description

	LAHF—Load AH From Hags

	Format

	Operation

	Flags

	Description

	LDS/LES—Load Pointer to DS/ES and Register

	Format

	Operation

	Flags

	Description

	LEA—Load Effective Address

	Format

	Operation

	Flags

	LEAVE—High Levei Procedure Exit [iAPX 186]

	Format

	Operation

	Fiags

	Description

	LOCK—Assert Bus Lock

	Format

	Operation

	Flags

	Description

	LOOP/ LOOPE / LOOPNE /

	LOOPZ/LOOPNZ—Loop Contro)

	Format

	Operation

	Fiags

	Description

	MOV—Move Data

	Format

	MOV

	Operation

	Flags

	Description

	MUL—Unsigned Multiplication

	Format

	Operation

	Flags

	Description

	NEG—Negate an tnteger

	Format

	Operation

	Flags

	Description

	NOP—No Operation

	Format

	Operation

	Flags

	Description

	NOT—Form One's Comptement

	Format

	Operation

	Flags

	Description

	OR—Logical inciusive OR

	Format

	Description

	OUT—Output Byte, Word

	Format

	Operation

	Flags

	Description

	POP—Pop a Word From the Stack

	Format

	Operation

	Flags

	Description

	POPA—Pop AH Registers [iAPX 286]

	Format

	Operation

	Flags

	Description

	POPF—Pop the TOS !nto the Ftags

	Format

	Operation

	Fiags

	Description

	PUSH—Push a Word Onto the Stack

	Format

	Operation

	PUSH

	Flags

	Description

	PUSH A—Push Ah Registers [iAPX 186]

	Format

	Operation

	Flags

	Description

	PUSHF—Push the Hags to the Stack

	Format

	Operation

	Flags

	Description

	RCL—Rotate Left Through Carry

	Format

	RCL

	Flags

	Description

	RCR—Rotate Right Through Carry

	Format

	Operation

	RCR

	Flags

	Description

	REP/REZ/REPE/REPNE/REPNZ—Repeat

	Prefix

	Format

	Operation

	Flags

	Description

	RET—Return From Subroutine

	Format

	Flags

	Description

	ROL—Rotate Left

	Format

	Operation

	ROL

	Flags

	Description

	ROR—Rotate Right

	Format

	Operation

	ROR

	Flags

	Description

	SAL/SHL—Arithmetic/Logica! Left Shift

	Format

	Operation

	SAHF—Store AH in Flags

	Format

	Operation

	Flags

	Description

	Format

	Operation

	SAL/SHL

	SBB—integer Subtraction With Borrow

	Format

	Operation

	SAR

	Flags

	SHR—Logicat Right Shift

	Format

	Operation

	SBB

	Ftags

	Description

	STC—Set Carry Hag

	Format

	Operation

	SHR

	ST!—Set Interrupt Enable Flag

	Format

	Operation

	Flags

	STD—Set Direction Hags

	Format

	Operation

	Flags

	Description

	String

	String—String Operations

	Operation

	Description

	SUB—integer Subtraction

	Format

	Operation

	Flags

	Description

	String

	WA!T—Wait White TEST pin not Asserted

	Format

	Operation

	Fiags

	Description

	TEST—Logical Compare

	Format

	Operation

	Description

	XLAT/XLATB—Tab!e Look-up Translation

	Format

	Operation

	Ftags

	Description

	XCHG—Exchange Memory/Register With Register

	Format

	Operation

	Flags

	Description

	The 8087 Instruction Set

	8087 Architectural Summary

	Fioating-Point Stack

	Operation

	Fiags

	Description

	Control Word

	Environment

	Status Word

	Exception Pointers

	Data Types

	Tag Word

	8087 Operation

	Coprocessing

	Numeric Processing

	8087 Emulators

	Organization of the 8087 instruction Set

	Data Transfer instructions

	Arithmetic instructions

	Constant tnstructions

	Processor Controt tnstructions

	Comparison instructions

	Transcendents! Instructions

	MNEMONtC—Sample 8086/8088 tnstruction

	Format

	Operation

	Exceptions

	FABS—Absolute Value

	Format

	Operation

	Exceptions

	F2XM1-2-1

	Format

	Operation

	Exceptions

	Description

	FADDP/FADD—Add Rea) and Pop

	Format

	Exceptions

	FADD—Add Rea!

	Format

	Operation

	Exceptions

	FBSTP—Packed Decima! (BCD) Store and Pop

	Format

	Operation

	Exceptions

	Note

	FBLD—Packed Decima] (BCD) Load

	Format

	Operation

	Exceptions

	Note

	FCLEX/FNCLEX—Clear Exceptions

	Format

	Operation

	Exceptions

	Description

	FCHS—Change Sign

	Format

	Operation

	Exceptions

	FCOM

	Note

	FCOM—Compare Rea)

	Format

	Operation

	Exceptions

	Description

	Format

	FCOMP

	Description

	FCOMPP—Compare Rea) and Pop Twice

	Format

	Operation

	Exceptions

	Description

	Note

	FCOMPP

	FDECSTP—Decrement Stack Pointer

	Format

	Operation

	Exceptions

	FDISI/FNDIS!—Disable interrupts

	Format

	Operation

	Exceptions

	Description

	Note

	FD!V—Divide Reai

	Format

	Operation

	Exceptions

	FDtVP—Divide Rea! and Pop

	Format

	Operation

	Exceptions

	FDtVR—Divide Reai Reversed

	Format

	Operation

	Exceptions

	FD!VRP-Divide Rea) Reversed and Pop

	Format

	Operation

	Exceptions

	FENl/FNENl—Enable Interrupts

	Format

	Operation

	Exceptions

	Description

	FFREE—Free Register

	Format

	Operation

	Exceptions

	DADD—tnteger Add

	Format

	Operation

	Exceptions

	DCOM—tnteger Compare

	Format

	Operation

	Exceptions

	Description

	Note

	FtCOM

	F!COMP—Integer Compare and Pop

	Format

	Operation

	Exceptions

	Description

	Note

	FtCOMP

	FiDiV-integer Divide

	Format

	Operation

	Exceptions

	FiDiVR-integer Divide Reversed

	Format

	Operation

	Exceptions

	F!LD—Integer Load

	Format

	Operation

	Exceptions

	F!MUL—tnteger Mu!tip!y

	Format

	Operation

	Exceptions

	HNCSTP—tncrement Stack Pointer

	Format

	Operation

	Exceptions

	HN!T/FN!N!T—tnitiatize Processor

	Format

	Operation

	Exceptions

	Note

	F!ST—Integer Store

	Format

	Operation

	Exceptions

	HSTP—tnteger Store and Pop

	Format

	Operation

	Exceptions

	FtSUB—Integer Subtract

	Format

	Operation

	Exceptions

	FtSUBR—Integer Subtract Reversed

	Format

	Operation

	Exceptions

	FLD—Load Rea!

	Format

	Operation

	Exceptions

	FLDCW—Load Controt Word

	Operation

	Exceptions

	Description

	Note

	FLDENV—Load Environment

	Format

	Operation

	Exceptions

	Description

	Note

	FLDLG2—Load Log^

	Format

	Exceptions

	FLDLN2—Load Log.2

	Format

	Operation

	Exceptions

	FLDL2E—Load Logge

	Format

	Operation

	Exceptions

	FLDL2T—Load Log,10

	Format

	Operation

	Exceptions

	FLDP!—Load ?r

	Format

	Operation

	Exceptions

	FLDZ—Load +0.0

	Format

	Operation

	Exceptions

	FLD1—Load +1.0

	Format

	Operation

	Exceptions

	FMUL—Mu!tip!y Rea!

	Format

	Operation

	Exceptions

	FMULP—Muttipty Rea) and Pop

	Format

	Operation

	Exceptions

	FNOP—No operation

	Format

	Operation

	Exceptions

	FPATAN—Partial Arctangent

	Format

	Operation

	Exceptions

	Description

	FPREM—Partial Remainder

	Format

	Operation

	Exceptions

	Description

	Note

	FPTAN—Partial Tangent

	Format

	Exceptions

	Description

	FRNDiNT—Round to integer

	Format

	Operation

	Exceptions

	Description

	FRSTOR—Restore Saved State

	Format

	Operation

	Exceptions

	Note

	FSAVE/FNSAVE—Save State

	Format

	Operation

	Exceptions

	Description

	FSAVE/FNSAVE

	Note

	FSCALE—Scate

	Format

	Operation

	Exceptions

	Description

	Note

	FSQRT—Square Root

	Format

	Operation

	Exceptions

	FST—Store Rea!

	Format

	Operation

	Exceptions

	Note

	FSTCW/FNSTCW—Store Control Word

	Format

	Operation

	Exceptions

	Description

	FSTENV/FNSTENV—Store Environment

	Format

	Operation

	Exceptions

	Description

	Note

	FSTENV/FNSTENV

	FSTP—Store Rea! and Pop

	Format

	Operation

	Exceptions

	FSTSW/FNSTSW—Store Status Word

	Format

	Operation

	Exceptions

	Description

	Note

	FSUB—Subtract Rea!

	Format

	Operation

	Exceptions

	FSUBP—Subtract Rea! and Pop

	Format

	Operation

	Exceptions

	FSUBR—Subtract Rea! Reversed

	Format

	Operation

	FSUBRP—Subtract Rea! Reversed and Pop

	Format

	Operation

	Exceptions

	FTST—Test Stack Top Against +0.0

	Format

	Operation

	FWA!T—(CPU) Wait while 8087 is busy

	Format

	Operation

	Exceptions

	Description

	Note

	FXAM—Examine Stack Top

	Format

	Operation

	Exceptions

	Description

	FXCH—Exchange Registers

	Format

	Operation

	Exceptions

	Description

	FXTRACT—Extract Exponent and Significand

	Format

	Operation

	Exceptions

	Description

	Note

	Example

	FXTRACT

	FYL2X—Y * Log,X

	Format

	Operation

	Exceptions

	Note

	FYL2XP1—Y*Log,(X + 1)

	Format

	Operation

	Exceptions

	Note

	The Macro Processing Language

	tntroduction

	Macro Processor Overview

	Creating and Casing Macros

	Creating Parameteriess Macros

	Creating Macros with Parameters

	LOCAL Symbois in Macros

	The Macro Processor's BuHt-in Functions

	Comment, Escape, Bracket and METACHAR Buiit-in Functions

	Comment Function

	Escape Function

	Bracket Function

	METACHAR Function

	Numbers and Expressions in MPL

	SET Macro

	EVAL Function

	Logicai Expressions and String Comparisons in MPL

	Contro) Ftow and Conditiona) Assembties

	IF Function

	WHILE Function

	REPEAT Function

	EXIT Function

	String Manipulation Buiit-in Functions

	LEN Function

	SUBSTR Function

	MATCH Function

	Console i/O Buiit-in Functions

	Advanced MPL Concepts

	Macro Delimiters

	Implied Blank Delimiters

	Identifier Delimiters

	Literal Delimiters

	Litera! vs. Norma) Mode

	Atgorithm for Evatuating Macro CaHs

	Codemacros

	Specifiers

	Modifiers

	Range Specifiers

	Segfix

	Nosegfix

	Modrm

	Re)b and Retw

	DB, DW,and DD

	Record tnitiatizations

	RF!X

	RHXM

	RNFtX

	RNFiXM

	RWFtX

	Using the Dot Operator to Shift Parameters

	PROCLEN

	Matching of instructions to Codemacros

	Codemacros

	Flag Operations

	FLAG REGISTERS

	MPL Buitt-in Functions

	instructions in Hexadecimat Order

	Exampie Macros

	Example Programs

	Examptes 1 and 2

	Exampte 1:

	Example 2:

	Transferring Data to Procedures

	Exampte 3:

	A More Genera) So)ution

	Exampte 4:

	Using a Stack

	Supplying the Number of Parameters and the First Address, On the Stack

	Exampie 5:

	Muttibyte Addition and Subtraction

	Exampie 7:

	interrupt Procedures

	Exampie 8:

	Timing Loop

	Exampie 9:

	i/O Routines

	Exampie 10:

	Example 11:

	Example 12:

	Exampte 13:

	186 tnstruction Set Summary

	186 INSTRUCTION SET SUMMARY (Continued)

	186 iNSTRUCTiON SET SUMMARY (Continued)

	186 tNSTRUC T)ON SET SUMMARY (Continued)

	186 INSTRUCTION SET SUMMARY (Continued)

	186 INSTRUCTION SET SUMMARY (Continued)

	FOOTNOTES

	* * * ATTENTION * * *

	BUStNESS REPLY MA)L

