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Preface

How to Use This Manual

This manual describes the assembly language lor the 8086/8088 and the 8087, You
should already be lfamiliar with the 8086/8087/8088 before attempting to use this
manual. Il you arc not familiar with the 8086/8087/8G88 family of processors, you
may wish to read the following manuals first:

. IAPX 86/88/186/188 User's Manual-Programmer's Reference, order number
210911, which is the basic reference document for IAPX ¥6/88, and
TAPX 186/188 users. It includes a general description of the 8087 Numeric
Processor.

. An tntroduction 10 ASM86, order number 121689, which is an introduction to
programming in assembiy language for the 8086/8088.

The ASM86 Assembly Language Reference Manual is provided with the 45486
Macro Assembler Operating Instructions, which describes how to assemble your
8086/8087/8088 program modules. 11 also contains a hist of manuals lor related [ntel
development tools, such as utilities and high-level language (ranslators.

Before plunging into this manual you should read Chapter 1. Tt introduces some of
the concepts, terminology, and conventions that are used throughout the manuai.
Sections labeled " Overview™ are introductions 10 material covered in a chapter. These
sections are intended to give you an overall perspective of the material. In Chapter 3,
there are two sections entitled “[ntraduction (o0...”. These sections introduce two data
structures unique to the assembly language. You should read these sections early in
your use of the manual. The following is a briefl description of the chapter contents;

. Chapter 1 discusses the important issues of the machine architecture (registers,
segmentation) and introduces the assembly language.

. Chapter 2 discusses the assembler directives that control segmentation (defining
program scgmems).

. Chapter 3 discusses the definition of variables and labels and the definition and
initialization of data storage. [t also describes the many data structures supplied
by the assembly language.

. Chapter 4 describes the possible operand types that yau can use with machine
instructions. [1 also describes the assembly-time cxpressions that you can use.

. Chapter 5 describes the directives that allow you tae develop modular programs,
both in assembly language and assembly language programs that will link to
modules wrilten in other 8086,/8088 languages.

. Chapter 6 fully describes the instruction sets for the 8086,/8088 and the 8087.

. Chapter 7 describes the macro language supplied by the assembler.

Notational Conventions

typeface This typeface indicates computer output or user input.
The characters must be entered in the order shown.
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UPPERCASE

itatic

directory-name

filename

pathpame

pathnamel,

pathnamez, ...

variable-name

Vx.y

()

punctuation

< Cf =~

Characters shown in uppercase must be entcred in the
order shown. You may coter the characters in uppercase
or lowercase.

[talic indicates a metasymbol that may be replaced with
an item that Muifills the rules for that symbol. The actual
symbol may be any of the following:

Is that portion of a pathiname that acts as a f{ite Jocator
by identifying the directory containing the fitename.

Is a valid name for the part of a pathname thal names a
file.

Js a valid designation for a file; in its entirety, 2 pathname
consists of a directory-name and a filename.

Arc generic labels placed on sample listings where onc or
more user-specified pathnames would actually be printed.

Is a valid name for a variable.

Is a generic label placed on sample listings where the
version number of the product that produced the listing
would actually be printed.

Brackets indicate optional arguments and parameters.

Braces indicate that one and only one of the enclosed
items must be entered unless the field is also surrounded
by brackets, in which case, 1he item is optional.

At least one of the enclosed items must be selected uniess
the field is also surrounded by brackets, in which case,
the items are optional. The items may be used in any
order unless otherwise noted.

In syntax descriptions, the vertical bar separates options
within brackets [ ] or braces { ¥.

Ellipses indicate that the preceding argument or param-
cter may be repeated.

The preceding item may be repeated, but each repetition
must be separated by a comma.

Punctuation other than ellipses, braces, and brackets must
be entered as shown,

Indjcates a carriage return.



Table of Contents

Chapter 1 Page
Overview of the ASM86 Assembly Language

The 8086/8087/8088 Development Environment 1-1
An Overview of the Assembly Language ..o, 1-1
Basic Assembly Language Constituents .............. i-3
CRATACIET SCU ..ottt et e et a e aae et b e aa s e eb e st st ebaaras 1-3
Tokens and Scparators 1-4
Delimiters ........cccorvveennns 1-4
Identifters ... -4
SEAEMENTS o 1-5
“An Overview of the Macro Language 1-5
CPU Hardware OVErvIEW ... er et esaer e 1-5
The General Register Set ... e 146
The Segment Register Set ...t e e s 1-7
The 8086/8088 Memory Segmentation Model ...cocovoriiieriiieriieee e e e 1-8
Format for Directive Specifications ... eseens 1-9
Chapter 2
Segmentation
Overview of SEZMENTALION ..ot cee s ee e et et sa e e et ssnaae e 2-1
The SEGMENT/ENDS Dircctive ... 2-1
Multiple Definitions for a Scgment ...... 2-3
“Nested™ or “Iimbedded™ Segments ... 2-4
The Default Segment - 2SEG e e 2-5
The ASSUME DIFECLIVE oo ettt e e s 2-5
Forward Referenced Names in an ASSUME Dircctive ... 2-7
Multiple ASSUME DIreclives ..o e 2-8
The GROUP DIreCtive ..ottt e et seba s eba e en 2-8
Use of the OFFSET Operator with Groups ...t 29
Chapter 3
Defining and Initializing Data

Overview of Variables and Labels ..o e e e 3-1
CONSTANIS 1. iiiii et ettt e ea oo ome oo e oo e e r e et eae e e e rtame et ame et sne e benneesan 3-2
Defining and Initializing Variables (DB, DW, DD, DQ, DT Directives) 3-3
Introduction Lo Records 3-8
The RECORD DireCtive oottt 3-8
Record Template Definition ... e e 3-8

HPArtIAl RECOIAS oieiiiieee e e e e e in e e eae e 3.9



viii Asmse

Page
Record Allocation and Initi2aliZation ...t 3-9
[NtrOAUCTION 10 SEIUCLUTES  .ocviriieiieeeis e e srestasee e s saa s e oot s st ava et essenas e 3-10
The STRUC DHICCHVE weeiiieeii et e et a e bt e bbb st easveaneesaanarrranense s sanarean 3-11
Structurc Template Definition 3-11
Structure Allocation and Tnitialization ......cccoviiiiciinniiinen, 3-12
Defining Labels ..ot e e eane s 3-15
The PROC DIFECHVE  ooviieeeeiieees e eeeeie ettt st e s et m s semm s et 3-15
The LABEL DHIECUVE  ..iiiiriici ettt ser s saae st st e e srae s v es e tenr s saae et senre 3-17
The Location Counter ($) 3-18
The ORG DIBCLIVE uiiiiiiiiiiiieii ettt ettt e e et oot st e et e et a e e e st saneas 3-18 -
The EVEN DITECHVE ..ottt e e e 3-19
The PURGE DITECLIVE ovviieeeiieieri it iassee e e ens e 3-19
Using the PURGE Directive to Control Debug Information 319
Chapter 4
Accessing Data—Operands and Expressions
RO86 /8087 /8088 Instruction StAEMENTS ..o 4-1
OPrand TYPES oot e bt et e e et e taae bt 4.2
RICBISLETS  ooriiiiieeieeeree ettt oot iaae st e e e e e et s esat s e e e et iaarresea et s saeas s sanrs st tes s vaannnessannnttiees 4-2
Floating Point Stack ............ 4-2
Immediate Operands ... 4-2
Memory Operands ... 4-3
Direct AAress ..o e e e e 4-3
Register Indircct Address 4-3
Based Address 4-4
Indexed AdAress ... e 4-4
Based Indexed AQAress ..ot e s 4-4
Segment Register Defaults 4-4
Overview of EXpressions ..o 4-6
Types of Exprcssion Opcrands 4-6
INUIMDEES 1ottt e e eae s b bt e et a e s e eae o e ne et 4-6
AAAress EXPIESSIONS .oovovvriiieririicriiecresic e tesa s e sra et ese e saesae e e sse s esnrnes 4-7
Accessing Structure Fields 4-8
Relocatable EXPressions ...t eee ettt ettt s rse s e 4-9
ATHRMELIC DPETALOTS oottt et e ab e s e e e ae oo e e ee e e 4-10
HIGH/LOW ...... OO O TSP PO TSN U PSR DPRIO O RRU SRR 4-10
Multipiication and Division ..... e ea b bt a et e e e 4-11
Shift Operators e 811
Addition and SUDTFACHON  .oiciiiiieiiiir i ettt et s e 4-12
Relational Operators ...ttt e 4-12
LOICAl OPEIALOTS ettt ettt e ettt eb et aa bt eaa e 4-13

Attribute Overriding OPErators ..ot ettt eee s 4-14



TN

Table of Contents X

Segment Override

PTR Operator .............
SHORT Operator
ALribute Value OPeralors ...ocoooiieeieiieoties ettt ete et e sae e braanr e seenens 4-17
THIS Operator 4-17
SEG Operator 4-18
OFFSET Operator ..o e e 4-18
TYPE Operator .....cccccieiiiiiieeniieieeiiaenas 4-19
LENGTH Operator ....c.o.oooeeevieeeiiieeee e v 4220
SIZE Operator ...ooocccoveiiiiinecieeeeieeer e 4-21
Record Specific Operators 4-21

SRIFE COUNE et e e e et a e ie et ts ae et e e e eascta s easa s seaeeene
MASK Operator
WIDTH OPErator ..o s
Operator Precedence ...t et
Highest Precedence
Lowest Precedence

The EQU DIrECLIVE ooeeiiiiieet et ceieeet s eeee et ettt es ettt et eaeae s tae e e setas e rereenn

Chapter 5

Program Linkage Directives

Overview of Program Linkage ... e 5-1

The PUBLTC DITECHVE .oiiieiiieeeieeeei it ettt e s oot a e en s 2t e eaae s iaaans 5-1

The EXTRN DIFECHVE ..ottt ettt e ettt e bt st e e ts s s ee 5-1
The Placement of EXTRN's 5-2

The END Directive .....cooeeiivenee. 5-3

The NAME DIIECUTVE ittt ettt st sba e baes 5-5

Chapter 6

The 8086/8087 /8088 Instruction Set

The 8086,/8088 Instruction Set 6-1

Instruction Statement Formats 6-1

Addressing Modes ..o 6-1
Memory Operands ..o, 6-1
Segment Override Prefixes 6-2
RERISTEr OPEIAMKS Loviiiiicieriiee sttt et ce ettt eae s are s enens 6-3
Immediate Operands .........cccceviiriiiiiccees 6-4

String Instructions and Memory References 6-4

Mnemonic SYnonyms .......ccoocvevveneiiinnn 6-6

Organization of the Instruction Set 6-6

Data Transfer oot e b et 6-7
General Purpose TTaNSIErs .ooooeiieierce e ettt e e e 6-7



X ASMS86

Page
Accumulator-Specific Transfers ... e 6-7
Address-Object Transfers ..o 6-7
Flag Register Tranfers ... e 6-8
ATIHHMETIC et e 6-8
Flag Register Settings
Addition
SUDEFACHION ittt iieet ettt eae e a e e b b s e e e e e e e ene s ent e s
MUTIPHCALION oot et ety
DHVISTON  1oeeirveectsicrecesie e e ebie b s asta et e s e s er s en et s eaee e ebr s st e natsae e st e e ebrent et s eaea s e e b eeaeerr e aaes
IS L O USROS
Two-Operand Operations ...
String Manipulation ...
Hardware Operation Control
Primitive String OPeration ..o e ettt e e
Software Operation Contro!
CONtrol TrANSTET oottt st e e e e e s see e et s s et
Calls, Jumps, and RELUITIS .o.ovveiiiiee e eae e e s e e
Conditional Jumps
Iteration Controi ......
Interrupts ..o,
Processar COmMTOl ..o e et s e e e b e
Flag Operations ..ocooiiieriiee ettt et
Processor Hall ..o e e e e
ProCessor WAIL ..ooooveoiiieiriiees e e e e e e e e e e a s e et s ran s aaa e
Processor Escape
BUS LOCK oot ettt e et
SINEIE SUCD oottt ittt e a et e et e
Instruction Description FOTMALS ..ot 6-15
FOPMAL BOXES oottt oo et e e e et e bbbt s e et st bt 6-16
Instruction Detail Tables 6-16
FIAES oo e 6-16
The 8087 Instruction Set ........... .. 6-108
Q087 Architectural SUMITIATY i et 6-108
Floating=-POInt SEACK ..oooriiiieriies et ierr et eoe et et snan i 6-108
ERVITOMMCNL ittt e et s b s s b e e e 6-109
SHALUS WOIA oo e et e b s e e e s et bt e e b e e e sra e 6-109
Control Word ... v 62110
Tag Word ............. R e 6-111
Exception Pointers e 6112
DIALE THPES  oiioeetiiiere e et iaetert et ee et eas b ear et ed e e et e bee et et ettt ettt 6-112
BOBT OPETALION oooioviiieerriticeres ettt rres et e e v e bt eaa e e s aa e oot e b ae e et anbsscnsaa s e ans 6-114

COPTOCESSSING  covioverieemerit it car e e et aa s e sae ke e et skt ees o et et n s eba s 6-114

TN



Table of Contents  Xi

INUMETIC PrOCESSING oottt et asi e sb et e e et sbanns e et essaee
8087 EMUIALOTS .oooiioiiiiiecrei et e sa e et aae b
Organization of the 8087 Instruction Set ...
Data Transfer INSUrUCHIONS (oot
Arithmetic TNSIUCTIONS oo i ittt et aeae et bb e
Comparison INSIPUCHIONS ..o
Transcendental INSITUCHIONS i ettt e e e eeae e e s
Constant [nstructions .
Processor Control INSEEUCTIONS ... e s sae e rte e reaaeeereesnnr e 6-120
Chapter 7
The MACRO Processing Language
IO U IO 1ttt e e oottt e ettt a e e annen 7-1
Macro Processor OVEIVIEW .t e e et e e e e ettt r e 7-1
Creating and Calling Macros ............. 7-2
Creating Parameterless Macros ......... e 12
Creating Macros with Parameters 7-6
LOCAL Symbols in MACIOS ..o.icieeiiiecieciicetivienrs e e iesae et ceerisee s e esneesaesssreesssseseessnnenss 7-7
The Macro Processor’s Built-in FURCEONs ..o 7-8
Comment, Escape, Bracket and METACHAR Built-in Functions ..........cccceonninnn. 7-8
CommMENt FUDCHON ..ooiiriieereercies ettt e e e e e e e e eassr e 22 e emmasrsssaeesrrresnas s 7-8

Escape Function
Bracket Function

Logical Expressions and String Comparisons in MPL ...
Control Flow and Conditional Assemblies .......cooeevinnee.
IF FUNCIION oottt aeeee e cteeaae s raaae e s asae b e e e iasar e s ivesarssassrrtaaeeeisnnrrianannnsies
WHILE FUunCHON (oot sne s e e e nnnnasnnns
|28 28 5 NG N VY T AT R
EXIT FUNCHOR  oeniieieeeiiicciieee ettt eee e e et maa e e e eaasaraa s e s emmveessassmrrrraae e eanasameaeerannes
String Manipulation Built-in Functions ...
T ULEN FURCHOM oottt ettt cen et e et sasear st eases et caeea sensssanaresenenaneaan
SUBSTR Function .....
MATCH Function
Console 1/Q Built-in FUNCHONS  ..oo.iiviiiiiii i eieieeecrs ettt ste e sae e esessesva e s
AAvanced MPL CORCEPLS ..ot et e bas st e s s b snaseba e
Macro Delimiters ..o e
Implied Blank Delimiters
Identifier DelMILETS .....ccveieericeee et e ie e e e e e rve e e et e e e s e e e s e e et se e e s aeenes



xii AsSMm86

Literal DelimIlErs ..oooccerrieeeiiieineeet e
Literal vs. Normal MOGE ..ooooereeieerrcccer e e
Algorithm for Evaluating Macro Calls ......occcooevivniieericrenenn

Appendix A
Codemacros

Appendix B
Flag Operations

Appendix C
Reserved Words

Appendix D
MPL Buiit-In Functions

Appendix E
instructions in Hexadecimal Order

Appendix F
Example Macros

Appendix G
Example Programs

Appendix H
186 Instruction Set Summary

Figures

1-1

1-2 The General Register Set ..o
1-3 The Segment Register Set ..o e
1-4 Generating a Physical Address ...
3-1 “Partial” Record Definition .....c.ccovrivrncvrens e
3-2 Structure Definition and Allocation

6-1 The 8087 Stack Fields oo
6-2 8087 EnVIFONMENL ..ot
6-3 Status Word Format .o

6-4 Control Word FOrmat ...oooooovvioeieee e e

the IAPX 86,88 Family Development ProCess ........oooooviiivoiiieriiececes e

Page
7-21
7-22
7-23



Table of Contents  Xiii

6-5
6-6
6-7
6-8
6-9
7-1

Page
Tag WOrd FOIIMAt ..o e ettt bbb 6-112
Exception POINters FOrMal oo e e 6-112
B F R P 0T 4 oo § - OO 6-113
FSAVE/FRSTOR Memory Layoul ...t ceeniciesneieeesneeessnen 6-179
FSTENY and FLDENY Memory Layouts .....occcciiriiiireieeri i, 6-185

Macro Processor versus Assembler—Two Different Views of a Source File ... 7-1

Tables

1-1
3-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15

Implicit Use of General Registers 1-7
CONStants ......oceeevvecveeeviieeesieeeens et 33
String Instruction MNCMOTICS  ..vvieerviiriecieeerieerriasseieeeescnnanas e eeeisseeasseeensieeeeaninnes 6-4
8086,/8087 Conditional Transfer Operations .........ocoeovreeeeoicorieeeeieeseeeen 6-13
SHIMBOIS Lottt et e b et eaes 6-17
Effective Address Calculation Time ..coocovivieicoorriees e e e 6-19

8087 Data Types
Rounding Modes

Exception and Response SUMMATY ..ot e evesne s 6-116
Data Transfer INSIFUCTIONS ...vviiiieiiieeri e ee et et e et e e e e et e et e et s s et eeesaaeaans 6-117
Arithmetic INSIIUCHIONS .oooviiiiiiiiieeeece e eee e e st e ee e e csnar e e e e e ieeareaasrrmiaaererann

Basic Arithmetic Instructions and Operands
Comparison InStructions ....ooccvvveiieriicencceiens s
Transcendental Instructions ...
ConStant INStTUCTIONS oottt s sttt a e v e s s et
Processor Control INSIrUCHIONS . o.ovvriiieerrieeei it es i ceee e eeesceriae e e e sannnns e
FXAM Condition Code SetiNgs . oooiieio i ee e cetnre e e eaaae ;






Overview of the ASM86
Assembly Language

The 8086/8087 /8088 Development Environment

This chapler presents an overview of ASM86, a macro assembly language for the
8086 and 8088 microprocessors, oplionally in combination with the 8087 Numerie
Data Processor. The ASM86 Macro Assembler generates object modules, which
contain machine instructions and data, from programs written in ASM86. Programs
may be written solcly in assembly language or can be a modular combination of ASM&6
and other high-level Janguage modules. After the ASM86 modules have been assem-
bled, they can be processed by the following IAPX 86,88 utilities:

. LINKS$6 combines object modules into load modulces.

. LOCS86 binds load modules to absolute memory addresses.

» LIB&6 helps build and manage libraries of object modules.

* O1186 converts an 8086/8088 object module to Intel Hex IFormat.

Figure 1-1 describes the iAPX 86,88 development process.

This revision of the ASME6 Language Reference Manual includes information on the
iAPX 186 instructions. These instructions can be used onty if you use the iAPX 186
assembler. The 186-only instruciions are indicated by having 1APX 186 in parenthe-
sey after the mnemonic. Clocks of iIAPX 186 are given in Appendix H of this manual.

An Overview of the Assembly Language

The assembly language for the 8086 /8088 is used to write and structure programs (o
be assembled, linked, located, and executed on an 8086 or 8088 micrapracessor,
optionally in combination with an 8087 Numeric Data Processor. There are directives
to control program segmentation, the allocation of data, including structured data
types, and 10 structure multi-module programs through relocation and linkage dirce-
tives. The assembly language features a set of operators for assembly-time expres-
sions, which allow the user to manipulate and control the data typing in a simple way
and supply @ means lo perform assembly time arithmetic.

A very important feature of the assembly language is its simplilied instruction
mnemonics. Many assemblers require the programmer to remember a diflerent
mnemonic for cach machine opcode. For example, a4 “move immediate™ would require
a different mmemonic than a “move memory™. The 8086/8088 instruction sel uses a
single mnemenic for cach generic instruction type. Thus, all “moves™ use the mnemonic
“MOV”. The opcode generated is dependent on the operands supplied with the
instruction. A move from memory could be written—

MIV AX, COUNT

where COUNT is a variable. An immediate move would be written as:

MOY DX, 0A'23H

In ¢ach case the mnemonic is the same. This simplification allows the prograramer 10

concentrate on the programming task and not on remembering a large set of mnemon-
ics. In order 10 determine the correct instruction to generate, the assembler examines
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the operands and determines their “type” (byte/word, variable/constant, etc.) and
then uses this information to select the appropriate code.

The 8086 and 8088 have instructions to manipulate both 8 and 16-bil data. ASM86
1s a “strongly-typed™ language in that it checks that operands in an instruction are of
the same “type”. This prevents the programmer from inadvertantly moving a word
variable into an 8-bit destination. lor example. This would be an ¢rror that might not
be detecled unti] run-lime. The assembler will catch this error at the time of assem-
bly, saving the programmer the chore of debugging this error. However, one of the
features of programining in assembly language is the ability 10 manipulate data in
every possible way, including the above “illegal™ operation. ASM&6 has many diree-
tives and expression operators 1o override this 1yping mechanism so that these types
of operations ¢can be performed (see Chapter 4).

The assembler allows you to lorward reference variables and labels in your program.
A forward reference is a use of a variable or label prior to its definition. For example:

MV AX, COUNT i forward reference ta CDUNT
COUNT DW 15 ; definition of COUNT
When you make a forward relerence such as that shown above, the assembier must
make a guess as to the nature of the thing referenced. In this case it will assume that
it is a word variable because AX is a word register. However, it could be a constant
if 1t was delined as:
COUNT JEGul 15 ; definition of COUNT as & constant
Lo !
[t is possible for the assembler to make a poor or incorrect guess that could lead to
an error message or inefficient code. It is recommended that you try to avoid forward

references as much as possible in vour program. A good practice is to deline all your
variables and data at the top of your program.

Basic Assembly Language Constituents

This section discusses the elements that constitute a source file in the ASMR6 assem-
bly language.

Character Set

The character set used in ASM86 is a subset of both ASCII and EBCDIC character
sets. The valid characiers consist of the alphanumerics:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyr
0123456789
along with these special characters:
4 Y- [ s Es ol @8 &
and the non-printing characters:

space tab carriage-return line-feed
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If an ASMS86 program comains any character that is not in this sel, the assembler

will treat the character as a blank. The combination of a linefeed or carriage-return/

linefeed immediately followed by an ampersand represents a continuation line gnd is —
treated as a blank (except within a character string or comment).

Upper- and lowercase letters are not distinguished from each other (except in charac-
ter strings). For example, xyz and XYz arc interchangeable.

Blanks are not distinguished from each other and any unbroken sequence of hlanks is
considered to be the same as a single blank {(except within a character string).

Spectal characters and combinations of special characters have particular meanings
in a program, as described in the remainder of this manuval,

Tokens and Separators

A token is the smallest meaningful unit of a source program, much as words are the

smallest meammgful units of a book in English. Separators are used to separat¢ two

adjacent tokens so that they are not mistakenly thought to be one longer (oken. The

maost commonly used separator is the blank. Any unbroken sequence of blanks may

be used wherever a single blank is allowed. Horizomntal tabs are also used as separators

and are interpreted by the assembler identically 1o blanks except that they may appear

as multiple blanks in the list file {sce operator’s manual). Any illegal character, or .
character used 1n an illegal context, is also treated as a separator.

Delimiters

Delimiters are special characters that serve to mark the end of a token and also have
a special meaning unto themselves {as opposed to separators, which merely mark the
end of a token). Commas, plus-signs, squarc brackets, etc., all serve as delimiters.
When a delimiter is present, separators nced not be used: however, using separators
often makes your programs easier to read and, therefore, easier to understand.

Identifiers

An identifier is used to name a user-defined entily tn a program. This could be a
segment, 2 group, a variable, a label, or a constant defined with an EQU (Equate)
dirgctive. The format for an identifier is as follows:

1. The identificr must begin with a letter or one of three special characters: e
a. A guestion mark (7). with hexadecimal value 3FH
b. A commercial at-sign (@), with hexadecimal value 40H
[ An underscore {_), with hexadecimal value SFH

2. It may contain letters or digits and the three special characters.

3. The identifier name is considered unique only up to 31 characters, but it can be
of any length {up to 255 characiers).

4. Every identifier has global scope within your program module.
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Statements

Just as tokens may be seen as the assembly language counterparts (o the English
concept of words, 50 may statements be viewed as analogous to sentences. A stale-
ment is a specification (o the assembler as to what action to perform. In fact, one way
of viewing a computer program is as a sequence of statements which, when taken as
an aggregate, is intended to perform a particular function. Statements may be divided
into (wo lypes: instructions and directives.

Instructions are translated by the assembler inlo machine instruction code which
“instruct™ the 8086/8087/8088 to perform certajn operations. Directives arc not
translated into machine instruction code by the assembler but rather “direct” the
assembler itself to perform certain clerical functions.

Usually a statement will occupy one line in your source file. A linc is a sequence of
characters ended by a lerminator (line-feed or carriage-return/line-feed combina-
tion). However, ASM86 provides for continuation lines which allow 4 statement to
occupy more than one physical line in your source file. Any statement may be contin-
ued il the first character following the terminator is an “&”. (Symbols, however, may
NOT be broken across continuation lines. Character strings may not be continued
across continuation lines; the string must be closed with an apostrophe on one line
and then reopened with an apostrophe on a subsequent continuation line, with an
intervening *,”. Comments are considered to be ended by a terminator; if 4 comment

is continued then the first non-blank character following the “&” must be a *;”.)

An Qverview of the Macro Language

The assembler contains as its [ront-cnd a macro processor. The macro processor scans
the source file for macro definitions and macro calls written in Macro Processor
Language ({MPL). Macro calls arc expanded according 10 macro definitions, and the
resulting source assembly language 1s assembled by the assembler. By using MPL,
you ¢an create macros specific to your application that can generate sequences of
assembly language instructions or directives. The macro processor is a very powerful
string replacement facility that can help 1o simplify a programming task. Repeatedly
used code scquences can be replaced by a simple macro call. Also, frequently used
assembler directive statements can be replaced by macro calls. Details for the use of
MPL are in Chapter 7.

CPU Hardware Overview

The 8086 and 8088 execute cxactly the same instructions. The instruction set includes
arithmetic and logical, program transfer, and data transfer operations. 1t also includes
the following new operations:

. Multiplication and division of signed and unsigned binary numbers as well as
unpacked decimal numbers

. Move, scan, and compare operations for strings up to 64K bytes in length
e Non-destructive bit testing

. Byte translation from one code to another

. Soliware-generated interrupts

. A group of instructions that can help coordinate the activities of multiprocessor
systems
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This section wiil give a broad overview of the machine architecture by presenting the
register set for the 8086/8088. The 8087 is discussed in Chapter 6.

The General Register Set

The 8086/8088 has a set of cight 16-bit gencral registers which are shown in
Figure 1-2. These general registers are subdivided into two sets of four registers. The
first set is called the data registers, Each 16-bit data register is further divided into
two B-bit registers, allowing its upper (high) and lower halves to be separately
addressed. This means that each data register can be used interchangeably as a
16-bit register, or as two 8-bil registers. Each of these 16-bit and 8-bit registers can
parlicipate in arithmetic and logical operations. The data register set is given below:

16-Bit Register 8-Bit Registers
High Low
AX AH AL
BX BH BL
CcX CH CL
DX DH DL

The second set of general registers consists of Lhe pointer and index registers. These
registers can participate in most of the same 16-bit arithmetic and logical operations
as the data registers. In mast cases, however, these registers are used as pointer ot
index registers for addressing data objects in memory, The addressing modes availa-
ble on the 8086/8088 arc discussed in Chapter 4. These registers are:

BP — base poimer©
SP - stack pointer

ST —squrce index

D1 - - destination index

] 3,7 v
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Data < 8H H 3L
GROUP Tx count
w1 ct
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1 STACK
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ob DFSTINATION
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.
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Figure 1-2. The General Register Set
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Some of the 8086/8088 instructions make implicit use of general registers. Table 1-1
lists the general types of instructions which use these registers. You should reler to
the complete description of cach instruction given in Chapter 6 for a discussion of
this implicit use.

Table 1-1. Implicit Use ot Genaral Registers

Register COperations
AX Ward Multiply, Word Divde, Ward 11O
AL Byle Multiply, Byle Divide, Byte |/O, Translale, Decimal Arithmetic
AH Byle Multiply, Byle Divide
BX Translate
cx String Operations, Loops
CL Vanable Shift and Rotate
DX Word Multiply, Word Divids. Indirget I/O
sp Stack Operations
§i String Qperations
0]} String Operations

The Segment Register Set

The 8086/8088 is capable of addressing a megabyte of metory. This megabyte can
be accessed through four segments by the CPU. Each segment is 64K bytes in size.
The four segment registers (CS. S8, DS, ES) indicale the base locations for these
segments. They are shown in Figure 1-3 below, The four segments are functionally
defined as containing code, data (two segments), and the hardware stack. The CS
register points Lo the current code segment, lrom which instructions are fetched. The
SS register points to the current stack segment. All hardware stack operations are
performed on locations in this segment. The DS register points 10 the current data
segmenl thatl generally containg program variables. The ES register points to the
current extra segment; it ts typically used for data storage. These registers are acces-
sible to programs and can be manipulated by several instructions.

15
os SEoment
os Sedhem
5 HEEN
ts Es)l(-'lia\:i NT

9800722-8

Figure 1-3. The Segment Reglster Set
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The 8086/8088 Memory Segmentation Model

The 8086,/8088 can address a megabyte of memory (1,048.376 bytes). This memory
space is viewed by the CPU at run-time as four functional portions called physical
segments. Each physical segment is dedicated for a particular use. One is dedicated
10 conlain cede, one for data, onc for the hardware stack, and an extra segment that
is usually used for data.

A segment register contains a 16-bit value, used to point to the start or base of a
physical segment. The contents of a segment register determine the upper 16 bits of
a 20-bit address. Thus, each physical segment must begin at an address whose low
four bits are zero. Such a location is called a “paragraph boundary.” The value in a
segment register is called a “paragraph number.” Thus the location 12340H is indicated
by paragraph number 1234H. For a segment register to point to this location (denot-
ing the start of a physical segment at that location) it would be loaded with the value
1234H defining a 64K segment starting at absolute address 12340H.

It requires 20 bits (0 address a megabyte of memory, The 20 bits are composed from
two portions by the CPU. The first portion is the 16-bit paragraph number discussed
above. It specifies where the physical segmem begins in memory. Another quantity
is required to specily the location of a particular object within that physical segment.
This quantity is called the offset portion of the address. It defines a location at a
specific offset [rom the start of the physical segment. Each offset is a 16-bit quantity,
allowing you (o address up to 64K bytes in a physical segment.

How then docs the hardware generate a 20-bit address from these two values? First,
the paragraph number in the appropriate segment register is multiplied by 16 (shifted
left 4 bits). The result is then added to the offsct yiclding the 20-bit address (see
Figure i-4). The hardware automatically performs this operation. You, however must
cnsure: 1) that the correct paragraph number is loaded into the correct segment regis-
ter and 2) that the instruction uses the correct offset value. The first ts usually handled
by somg¢ inttialization code al the start of the program or by the loader. The second
is handled by the assembler, as long as the instrucuon is correctly coded.

The assembler, while assembling the source file, is producing code/data for only one
segmenl at a time. Within a segment, the assembler needs only to keep track of the
offsct of an object, whether it be code or data. The offset is referred to as the “location
counter,” which may be¢ user programmable. This same situation is true during Lhe
execution of a program; only one segmenl is active at a given time for either code or
data. Once a segment register is set with the basc of a particular segment, objects
wilthin that segment can be referred 1o using only their offsets within that segment.
Because of the segmentation model used, the programmer is usvally only manipulat-
ing the offset part when coding an instruction.

SHIFT LEFT2ANS SEGMENY
BASE
LOGICAL

19 [
15 °
N O S
15 Q
2 a8 2 PHYSIC AL ADDRESS
19 9
TOMEMORY

9800722-18

Figure 1-4. Generating a Physical Address
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An important concept to keep in mind while programming the 8086,/8088 is “address-
ability.” The objecl in memory which you are referencing must be addressable at run-
time. This means that the appropriale segment register contains the base of the segment
in which the object is focated. You must insure that the proper value is loaded into a
segment register before the object is referenced by an instruction. This is accom-
plished by using the appropriate sequence of instructions to initialize the segment
register. There are assembler directives described in Chapter 2, which help to insure
that you are aware of the addressability of data and code while writing a program.,
The following example shows the definitions of two segments, one lor data and onc
for code. In the code scgment, there is an ilustration of the 1ype of code that is used

to imitialize a segment register.
Example:
-
DATA SEGMENT
ABYTE DB ]

JATA ENDS

ASSUME CS:CODE, DS:DE_&

CDDE SEGMENT,
o

—_—

LEIRY AX, DATA
MoV DS, AX

i
‘CODE EHDS_J

3

define a segment for data
seme dala!

end of segment definltion
defines the addressabillly
of Lhe contents of these
seqments

define a segment for ceode

AX = base address of DATA
segment. an:tialize DS,

date

now addressable through DS

end of segment definition

A source module is a separaltely assembled or compiled source file. An executable
program can be made up of one or more modules. A single module can define- -

- A part of a physical segment
. A complete physical segment
» Paris of several physical segments

. Several complete physical segments

A physical segment is composed of one or more “logical segments.” These are defini-
tions of segments made in your program through the use of assembler directives
designed for this purpose. You can specily a set of Jogical segments and their contents
{code. data, etc.} and control how Lhey are combined into physical segments. The
mechanism for accomplishing this task is discussed in Chapter 2.

Format for Directive Specifications

The chapters that follow will discuss the form and use of the assembler directives.
The lollowing describes the format used to specify how each directive is written and
the meaning and use of the different fields that can be part of a directive.
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Syntax

The (ollowing notation is used to show the syntax of the direclives,

1. lLower case sitings represent fields that can be replaced cither by user-supplied
strings {such as names) or by assembler keywords. These items are referred to
as Freld Vaiues. The actual replacement values are specified for each directive
in the sections entitled Field Values.

2. Upper case strings represent assembler keywords (e.g.. SEGMENT, DB, END,
or NAME).

3. Optional items are shown in brackets, ie., [item]. These items are optional in
the syntax. Use of these fields is specified for each directive. 1n some cases the
absence of this item (“nonc specilied™) denotes a deluault case, which is noted
where appropriate.

4. Theitewm |, ... ] represents the optional repetition of a specific item. The syntax
thing U, ... )
would expand to
thing, thing, thing,

The actual number of ttems that can appear in the list is typically limited
by constraints internal to the assembler.

Description

This scction ts a paragraph which describes the meaning and use of the directive.

Field Values

This scction describes the values used in specific fields shown in the syntax of the
directive. Upper case strings denote assembler keywords.

Additiona! Notes

After the above sections, there may be sections dealing with important considerations,
cancepts, or applications of the particular divective. These sections should be read
carefuliy.
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Overview of Segmentation

The 80868088 directly addresses one megabyte of memory. This megabyte is viewed
by the CPU through four segments, each containing up 10 64K bytes. These four
segiments are called physical segments. The start of each segment is defined by the
value placed in a segment register. This value is called a paragraph number. It
defines a paragraph boundary in memory, an address divisible by 16 (least signifi-
cant hexadecimal digit is equal to 011).

The four segments are ¢lassified as code, daa, stack, and extra. They are defined by
the four sepmenl registers:

CS forcode ¥
DS_for data) v
SS for stack v
ES forextra V' E{

Lxecutable instructions will be in a physical segment defined by the value in CS. Any
stack operations will accur within the segment defined by SS. Data is normally
found in the segment defined by DS, but it can also be placed in the segments
defined by the other segment registers. The contents of the physical segments in
memory during 1he evecution of a program are defined through the assembly
language as logical segments. A physical segment can contain any number of togical
segments that were specificd in the program source code {enher one or mote
modules). The SEGMENT directive is used (o both define a logical segment and to
control how the segments will be combined 10 form a physical segment. The
GROUP directive 15 another way to combine logical scgments with certain restric-
1ions. Because all code and data must lic within some physical scgment during pro-
gram execulion, a way (o specify this addressability is required during assembly time
10 check for this condition. The ASSUME directive serves this purpose.

The SEGMENT/ENDS Directive

Syntax:

name SEGMENT |align-type’ [pgmb_in_e-w] [‘classname’]

pname ENDS

Description:

The SEGMENT/ENDS directive is used to define a logical scgment. This segment
may bc combined with other segments in the same module and/or with segments
defined in other modules. These segmenls will form the physical segments, located
in memory, that are pointed to by the segment registers. The programmer will place
within the SEGMENT/ENDS pair the code, data, or stack. Within a source module,
cach occurrence of an equivalent SEGMENT/ENDS pair (with the same name) is
viewed as being one part of a single program segment.
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Field Values:

name

The name for the segment, a unique ASM86 identifier.

[align-1vpe]

This field specifies on what type of boundary in memory the segment will be
located.

The values it may have are:

1.

1h

None specified—the default value of paragraph alignment. The scgment
will begin on an address divisible by 16 (i.e., an address whose least signifi-
cant hexadecimal digit is equal to 0H).

PARA- paragraph alignmcent (same as default).

BYTE--bytc alignment; scgment may start at any address,

WORD—word alignment; segment will start at aneven address (i.e., teast
significant bit equal 1o 0B). (See EVEN directive, page 3-19.}

PAGE—page alignment; segment will start at an address whose (wo least
significant hexadecimal digits arc equal 10 00H.

INPAGE—inpage alignment; the entire segment musl fit within 256 bytes
and, when located, must not overlap a page boundary (i.e.. 00H, 100H,
200H, ..., OFFOOH).

[combine-type|

This field specifies how the segment will be combined with segments from other
modutes 10 form a physical segment in memory. The actual combination will
occur during the LLINK86 and LOCS86 phase of development. The values far thiy
field are:

1.

None specified—the default value of non-combinable. The segment will not
be cambined with any othier sepment. (INote, however, Lhat separate pieces
of this segment in the same module will be combined.)

PUBLIC—all segments of the same name that are defined to be public will
be combined (concatenated o form one physical segment). The order of
combination is controlled during the use of LINKRS. The length of the
resulting physical segment will equal the sum of the lengths of the segments
cambined.

COMMON. -all segments of the same name that are defined to be common
will be overlapped to form one physical segment; all of the combined
scgments begin at the same physical address. The length of 1the physical seg-
ment will be equal to the lengih of the largest sepment combined.

STACK—all segtnents of the same name that are defined to be stack will be
combined nto a physical segment so that cach combined segment will end
at the same address (overlaid against bigh memory} and will grow
“downward.”” The length of the stack segment after combination will equal
the sum of the lengths of the segments combined.

MEMORY —all segments of the same name that are defined to be memory
will be combined so thal the first memory segment encountered by LINK86
will be treated as the physical “‘memory’ segment. In the list of modules
linked together by LINK86, the first module that contains a ‘“‘memory’” seg-
ment will be used to define the physical ““memory'" segment. It will be
located at an address above all other segments in the program. Any other
segments of the type memory that are encountered by LINK&6 will be com-
bined as common with the first segment. 'I'he length of the memory segment
will be equal to the length of the first memory segment encountered.
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6. AT expression—this is an absolute physical segment to be located at the
memory address defined by the expression. This expressmn will represent a
paragraph number. For example, if the expression is 45_45_1:]. then the, Seg-
ment will bg located at paragraph number_4444H or absolute memory

address144440H. Ttie expression must evaluate to a constani (see Lhap—
ter 3). No forward references are altowed.

| ‘classname’]
The classname 15 used (o indicate that segments are to be located (by LOCS6)
near each other in memory. This is not a means of combining segments so that
they arc addressable from the same segment register. The classname indicates

that certain uncombined segments are to be put in the same general area in
physicat memory (for example, ROM).

Example:

The following two segments will be located adjacent to one another—

DATA1 SEGMENT BYTE 'ROM‘ "~

. LA,
\3_,«/
DATA1 ENDS

DATAZ SEGMENT BYTE 'ROM'

DATA2 ENDS

Multiple Definitions for a Segment
You may “‘open’’ and ‘“‘close’” a segment (with SEGMENT and ENDS directives)

within the module as many times as you wish. All *‘parts’’ of the segment which you
define are treated together by Lhe assembler as parts of one segment.

The following two occurrences of the segment DATA—

DATA SEGMENT PUBLIC

ABYTE DB 0
AMORD DV 0

DATA ENDS
DATA SEGMENT PUBLIC

ANOTHERBYTE DB 0
ANOTHERWORD DW D

DATA ENDS



2-4 aAsMmase6

are equivalent to—

DATA SEGMENT PUBLIC

ABYTE pB 0
AWORD bW 0
ANOTHERBYTE 0B 0
ANOTHERWORD Dk 0

DATA ENDS

When you re-open a segimenl, you do not need to re-specify its attributes. However,
you cannot change its attributes. The following is correct:

CODE SEGMENT BYTE PUBLIC
CODE ENDS

CODE SEGMENT

CODE ENDS

The following will be flagged as an error:
DATA SEGMENT WORD 'ROM

DATA ENDS

DATA SEGMENT BYTE 'ROM'

OATA ENDS

“Nested’’ or ‘‘Embedded’” Segments

Segments arc never physically nested or embedded in memory. However, you may
nest segment deflinitions in your program. This is only a lexical nesting and does not
represent a physical nesting. For example, the following is a tegal construct:

CODE SEGMENT ;begin CODE

DATA.SEGHENT ;begin DATA, stop assembling CODE
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DATA ENDS ;end DATA, begin assembling CODE
;again
CODE ENDS send CODE

The assembler will treat the CODE segment separate from the DATA seement. The
contents of the DATA scgment are not contained within the CODE segment. The
foliowing will be flagged as an error because SEGMENT/ENDS pairs must be
matched as shown above:

CODE SEGMENT +begin CODE
DATA SEGMENT :begin DATA
CODE ENDS ;an error! ! Cannot close CODE before

;closing DATA

DATA ENDS

The Default Segment—2??SEG

All variables and instructions must lie within some segment at run-time. 1f vou do
not specify a segment to coatain your code or data, the assembler will create a seg-
ment named ??SEG, in which 1his code or data will lie, This segment is non-
combinable and paragraph aligned.

The ASSUME Directive

Syntax:
ASSUME  segreg:segpart |, ...

or

ASSUME NOTHING

Description:

Al run-time, every memory reference (a variable or label) requires 1wo parts jo order
to be physically addressed: a paragraph number (segment part) and an offset {within
the segment). The paragraph number will be in one of the segment registers, defining
the physical segment in which the variable or label lies. (This value will have been
placed in the segment register by the appropriate initiahization code.) The offset
value will be contained in the instruction which makes the reference. These two
values are used to compulte the absolute address of the object referenced. You use
the ASSUME directive 1o define what the contents of the segment registers will be at
run-time. This is done (o help the assembler cosure that the ¢ode or data referenced
will be addressable. The assembler will check each memory reference for address-
ability based on the contents of the ASSUME directive. The ASSUME directive does
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not initialize the segment registers; it is used by the assembler (o help you (o be aware
of the addressability of the code and daita. Unless ihe code or data is addressable (as
defined either by an ASSUME or a segment override) the assembler will report an
error, The ASSUME directive also helps the agsembler decide when 1o automatically
generate a segment override instruction prefix. (See Chapter 4 on the Segment Qver-
ride Prefix.) The follawing example iliustrales the use of ASSUME—

V(ssuns DS:DATA, C$:CODE ;the DATA segment is

;addressable through DS and
;the CODE-Segment_ through CS
DATA SEGMENT PUBLIC T T -

ABYTE 0B 0
AWORD 0B 0

DATA ENDS

DATAX SEGHMENT PUBLIC
WHERE 0 0

DATAX ENDS

CODE SEGMENT PUBLIC

MOV AX, DATA ;AX = base address of DATA
MOV DS, AX ;initialize DS
MOV AL, ABYTE ;DS points to base aof DATA

;segment that contains ABYTE.
iInstruction will use offset of
;ABYTE to address value

ALAB: MOY AWORD, 15 ;€S points to base of CODE
JNP ALAB ;€S initiavized when program
iloaded, instruction will use
;offset of ALAB to calculate
; jump

MOV AH, WHERE +AN ERROR!!IIY! DS has not been
;initialized with the base
;address of the segment DATAX
;and no ASSUME has been made!
;The assembler does not know
;where WHERE is,

MOV AX, DATAX

MOV ES, AX ;initialize ES
ASSUME ES:DATAX ;DATAX now in ES
MOV AH, WHERE ;assembler will automatically

;assemble an ES instructian
;prefix to address WHERE

CODE ENDS
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Field Values:

SCEreg
One of the 8086/8088 segment register names: €S, DS, S8, or ES.
segpart

This field defines a paragraph number in one of the following ways:
I. A segment name, asin:

ASSUME CS:CODE, DS:DATA
2. A previously defined group name (see page 2-8), as in:
ASSUME CS:CODEGRP, DS:DATAGRP

3. Anexpression{sce page 4-18) of the form:
SEG variable-name  or SEG label-name or - SEG external-name,
asin:
ASSUME CS:SEG START, DS:SEG COUNT
4. The keyword NOTHING. which states that nothing is defined o be in 1hat
segment register at that time. [[ a segment register is assumed (o contain
NOTHING, the assembler will not generaie instructions thar use this seg-
ment register for memory addressing.
Example:
ASSUME ES:NOTHING
The form ASSUMLE NOTHING is cquivalent to:
ASSUME CS:NOTHING, BS:NOTHING, SS:NOTHING, ES:NOTHING

This is the default, which remains in effect until the tirst ASSUME directive
iy seen.

Forward Referenced Names in an ASSUME Directive

You may forward reference a name (i.e., refer 1o name no yot defined} in an
ASSUME directive only if that name is the name of a segment. This is in the form:

ASSUME CS:CODE ;The name CQODE is a forward reference

CODE SEGMENT ;CODE defined here

CODE ENDS

Il the name is not the name ol a segment, an error will be reported.
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Multiple ASSUME Directives

An ASSUML dircctive will stay in effect until it is changed by another ASSUME.
That is, if you assume some contents m CS, that assumption will hold vnil you
assume some new contents or NOTHING in CS,

The GROUP Directive

Syntax:
name GROUP segpart [, ..°

Description:

The GROUP directive 1s used to combine severa) logical scgments together, so that
they will form one physteal segment (i.e., they will all be addressable Ivam the same
base) after the program has been located. The size of the group is cqual 1o the sum of
the sizes of all the segments specified in the GROUP directive. The tolal size muost he
less than or equal to 64K bytes. The assembler will make no checks (0 see if the size
of the group will be correct. This check 1s made by 1.OCS86. The group name can be
used as il it were a segment name {except in another GROUP directive). The ovder of
the segments in the group directive will not necessarily be the order of the segments
m memory after the program is located.

The GROUP directive serves as a *‘shorthand’ way of referring 1o a combination of
segments. lis utility is in specilying a collection of segments that are 10 be grouped at
link-time 10 form one physical segment. However, the assembler views the program
content in terms of segments. When vou define a variable or label {see Chapter 3},
the assembler assigns that variable or label (0 the segment m which i1 was deflined.
The oifser associated with the variable or label is from the base of 1s segment and
not from the base of the group.

Onc use of the group name is in the ASSUME directive. If, for example, vou have
defined many different data segments that you intend to form into one physical seg-
ment when the program is located in memory, you could combine these segments
with the GROUP directive. Since the contents of all these data segments will be
addressable through DS during the execution of the program, you may use the group
name in the ASSUME and o inttialize DS. For example,

DATAGRP GROUP DATA?T, OATAZ

DATA1 SEGMENT

ABYTE VLY

DATA ENDS

DATAZ SEGMENT

AWORD DW 0

DATA2 ENDS

ASSUME DS:DATAGRP, DS:CODE suse group name in ASSUME

COO0E SEGMENT

——
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MOV AX, DATAGRP| ;AX = base address of group

MOV DS, A, ;initialize DS

MoV AX, AWORD ;addressable through D})
CODE  ENDS

Field Values:

name
A unique ASMS6 identifier that is used as the name for the group.
segpart

The field deflines 4 paragraph number in one of the following ways:

1. A segment name, 4 in:

CODEGRP GROUP CODE1, CODEZ2

I

An expression (see page 4-18} of the form:
SLEG variable-name  or SEG label-name  or SEG external-name,

asin:

DATAGRP GROUP SEG START, SEG COUNT

Use of the OFFSET Operator With Groups

When using the OFFSET operator (see page 4-18) with a variable or label whose seg-
MeENt is in a group, ¥ou musi use the group name as a segment override (see page
4-14) in the expression, s in:

MOY BX, OFFSET DATAGRP:COUNT

Also, il you wish 10 s1ore the paragraph number of 4 variable or label, you must use
this constract:

DW DATAGRP:COUNT
DD DATAGRP:COUNT
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Overview of Variables and Labels

The twe most referenced objects (other than registers) in a program arc vanables
and labels. You define these objects in your program. Variables refer to data items,
arcas of memory where values are stored. Labels refer (0 sections of code that may
be jumped to or CALLed. Each variable and labhe! has a unique name in your
program.

A variable is defined through a data definition s1atement or the LABEIL directive.
Each variable has three attribuies:

I. Segment—The segment i which the variable was defined. 1t is a valuc that
represents the paragraph number of the segment.

2. Oifset—The offset (current location counter) of the variable defined. It 15 a
16-bit value which represents the distance in bytes from the base (or s1art) of the
segment to the start of the variable in memory.

3. Type—The size of the data item in bytes. In most cascs this type is specified
through a keyword in the definition. The type of a variable determines how i
may be used in an instruction and also, in some cases, how data will be stored
within that variable. The possible types are:

BYTC—one byte—8086/8088 data types.

WORD—one word (iwo bytes) --B086/8088 data types.

DWORD—one double-word (four bytes)—RO86/8088 or 8087 data typces.
QWORD—one quad-word (cight bytes)—8087 data 1ypes.

TBYTE—one ten-byte (1en bytes) 8087 data types.

A structure  a multi-byte, “‘struclured’ 8086./8088 data type.

7. Arecord—an 8 or 16 bit, ‘'bit-encoded’’ 8086,/8088 data (ype.

Al e

When you define a variable, the assembler will store its definition, which hicludes
the above attributes. In Chapter 4, there is a discussion of expression operators that
allow you to obtain or (0 override these attributes.

Labels define addresses for executable instructions. They represent a “name’ for a
location in the code. This “*name’ or label is a location that can be jumped (0 or
CALLed. The labelis an operand of the CALL, IMP, and condilional jJump instruc-
tons. A label can be defined three ways: 1) a name lollowed by a *“:"" associated
with an instruction statement, 2) a PROC directive, or 3) with a LABEL direcuve.
Like a variable, a label has threc auributes, two of which are the same as those for a
variable:

I. Segmenl—same as variable.

2. Offset- same as variahle,

3. Type—for a label, the type specifies the type of jump or CALL that must be
made 10 that location. ‘there are two types:

1. NEAR—this type represents a label that will be accessed by a jump or
CALL that lies within the same physical segment. This type ol access is
referred to as an imira-segment jump or CALL. In this case, only the offset
part of the Jabel is used in the jump or CALL instruction.
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2. FAR-—(his type represents a label that will be accessed from another
segment. In this case, because control is transferred from one physical seg-
nient to another, the contents of the CS register must be changed by the
jumap or CALL. A far label will be represented in the jump or CALL
instruction by its offset and its scgment part (to be loaded into CS).

A special form for defining a label is the PROC directive. This form specifies a
sequence of code that will be CALLed just as a subroutine in a high-level language.
The PROC directive defines a label with a type, either NEAR or FAR. 11 also defines
a context for the RET instruction so that the assembler can delermine the tvpe of
RET o code (cither a ncar RET or a far RET). This construct can heip to structure
your programs into clearly defined subroutines. But, unlike high-level language proce-
dures, there is no scoping of names and you can “fall into” an imbedded “procedure.”

Constants

A constant is a pure number without any attributes. In general, a constant can be
binaty, octal, decimal, hexadecimal, ASCII, decimal real, or hexadecimal real. A
constant ¢an evaluate to one of three types: 8-bit, 16-bit, or real. These types cannot
necessarily be used 1n the same context. You should verify the correct use of constants.
The assembler will report an error il a constant 1s used incorrectly. The proper contexts
for a particular type are noted throughout this manual. Table 3-1 gives the rules for
forming cach type of constant. A constant that can be represented in 8 or 16 bits has
a special internal representation in the assembler. These constants are referred to as
‘}7-bit numbers.” The maximum range of values for these numbers ts —QFFFFH to
OFFFEH. All assembly time expressions use two's complement arithmetic on L 7-bit
numbers. Real canstants (or Moating point aumbers) are restricted to DD, DQ, DT,
and EQU directives. (For further information on the use of reals and the 8087 sce
The 8086 Fumily User's Manual Numerte Supplement.)

There is a special set ol conslants thai are used in programming for the 8087. In
general, these constants are referred to as “‘reals.’” The actual types are:

Short integer —four bytes.

Shart real--four bytes.

Long integer—eight bytes.

[.ong real—eight bytes.

Packed decimal number—ten byles.

DN A B W M) —

Temp-reai—ten bytes.

A short, long, or temp-real can be expressed in three ways:
1. Decimal real—without cxponent.
1.234
3.14159
98.6
1234.4321
l.
2. Decimal real—with exponent.
6.8E27
1.23E-3
1E6

3. Hexadecimal real.

40490F DBR
DCO0N000OR
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Integers (includes packed decimal) can be expressed in either binary, octal, decimal,
or hexadecimal notation. The type of data allocation {the directive) you choose will
affect the range of valuecs that can be used in the initialization. These ranges are
noted below under the appropriate directive.

Table 3-1. Constants

Constant Type Rules tor Formation Examples
Binary A sequence of 0's and 1's followed by the 1B
(Base 2) letter '8° 100011118
Qctal A sequence of digits O thiough 7 iollowed 1710
{Base &) by cither the lelter O’ or the letler *'Q° 4567Q
777770
Decimal A sequence of digils 0 though 9, ophion 3309
iBase 10} ally follewed by the lelter D' 33080
Hexadecimal A sequence of digis 0 through 9 andfor 55H
{Base 16) letters A through F lollowed oy the ietter 2EH
'H'.tSequence must begin with §-9) DBEACH
OFEH
ASCII Any ASCIl string enclosed in quotes AT, "BC!
{More \han 2 chars. vahd ior DB only.} ‘UPDATE.EXT'
Decimal Real A decimal fraction, oplionally followed by 3.1415927
(Base 10) an exponenl, The frachion is a seguence 002E7
of digits 0 through 8. A decimal point is 1E-32
required if no exponenl is present and is 1.
optional otherwise The exponent slarls
with an £, followed by an optional sign
ang digits from 0-9.
Hexadecimal A sequence of digits 0 -9 and/for letters A 40490FDBR
Real {Base 16} through F followed by the letler R. The QCH000000R
sequence must begin with 0 9. Total
number ol digits must be (8, 16, 20) or {9,
17, ). )t odd numbered, the first digit
must be (.

Defining and Initializing Variables
(DB, DW, DD, DQ, DT Directives)

Syntax:
I byte initialization:
fname] DB init [, ...]
2 byte initialization:
qame] DWW oinit [, L]
4 byte iniialization:
[name| DD it [, ...]
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8 byte initialization:
[name| DQ init [,...]

10 by (e initialization:
[name] DT imit [,...]

Description:

The DB, DW, DD, DQ, and DT directives are used to define variables and/or
initialize memory. When the directive is used with a name, jt specifies a named
variable whose segment part is the current segment ang whose offset is the current
location ¢counter. Its tvpe depends on the type of dala initialization statement used.
The variable can be initialized to a value, as in:

COUNT DB 10 ;a variable initialized to 10
or itcan simply reserve space with no specific initial value:
FLAGS DW 7 ;reserve a word

You may also usc these directives to define (he contents of memory when the pro-
gram is loaded. To specify 10 bytes of 0, you might code

oe 0,0,0,0,0,0,0,0,0,0
or
0B 10 DUP (0) ;a DUP is a repeated initialization
There are many types of values that can be used to initialize data. The following is a
list of the possible types of initialization:
1. Constanl expressions—a numeric value.
TEN DB 10
2. lIndeterminate initializaton.

RESERVE DW 7

3. Anaddress expression: -the offset or base part of a variable or label,

POINTER DW COUNT ;store offset of COUNT

SEGBASE DW DATA ;store base address of DATA
;segment

APTR DD COUNT ;store offset and segment part
;of COUNT

4. An ASCU string ol more than two characters—DB only.
MESSAGE DB 'HELLO THERE'
MYHEROQ DB 'ALEISTER CROWLEY'

5. Aldist of inttializations.
STUFF 08 10, 'A STRING', O, 'Q'

NUMBS DWw 1, 2, 3, 4, OFFFFH

P
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6. A rcpeated initialization, where the quantity in the ‘( }" is repeated ‘number
DUP’ limes.

TENS oe 10 pup (10)
PATTERN DW 100 DUP (0,1,65535)

When a number 15 stored in 16 bits, it is stored with 11s low-order byte preceding the
high-order byte in memory, For example, if vou were 1o code

DW 1234H
it would be stored as

4 12
low high
——> increasing memory addresses

in memary. If you specify a string in a DB directive it will be stored with one ASCII
character per byte in the same order as the characters appear inthe string.

DB ‘ABC!
is stored as
4] 42 43

in memaory.

Field Values:

[narue)

A unique ASMS&6 identifier. It defines a variable whose offset will be the current
localion counter. Its type will be the type of the data initialization unit. Its
lengih will be equal to the number of bytes initialized.

ini

There are nany possible values for init depending on the usage and context. Init
has five possible types, listed below. The form used will depend on what type of
nitialization vou wish to pertorm. The different forms and contexts are nated
below.

. A constant expression,
a. | byle initialization - - a constant or expression that evaluates to 8-bits

(i.e., —255 1o +255 decimal).

b. 2 byte imnalization—u consiant or expression that evaluates 10 [6-bils

(i.¢., —65535 to +65533 decimal),

¢. 4 byteinitialization—

1. A constant or expression that evaluates to 16-bits (a |7-bit
number). The upper 16 bits arc sign-extended in assemblers that
support the 8087, cls¢ they arc initialized to QH.

2. Short integer in the range =2 +1 10 =2 —{_ which is —4 294 Y67
295 1o +4 294 967 295

3. Realin the range —2'% 1o —2'3_ ), +2 120 +212 or approximately
—3.4F3810~-1.2F —38,0. 1.2E 3810 3.4E38.
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d. B-byte initialization—

1. long integer in the range -~ 2% +1 to +2% —1, which is =18 246 744
073709 551 61510 +18 446 744 073 709 551 615.

2. Real in the range —210% (o =22 42102 o 42102
approximately —1.7E308 to —2.3E 308, 0, 2.3 -308 to 1.7E308.

3. A consiant {17-bit number), which wili be sign-extended to fit in a

DQ field.
¢. 10-byte inttialization—

1. Long integer in the range —10'¥ + 1 (o +10'* =] which is
—9959999999999499999 [0 +999999999999539%99 . The number will
be stared as packed decimal (BCD) format.

2. Real in the range —2!8% (o —210%2 (0, +2 1682 (o 21884 o
approximately -1.1E4932 10 -3.4E-4932, 0, 34E-4932 (0
+1.184932,

The charactey *?”° for indeterminate iniialization.

10 situations where vou wish (0 reserve storage but do not need to itialize
that arca to any parsticular value, vou can use the special character 7",
This character specifics that the area will be reserved. The reserved area will
be imtialized with an mmdeterminate value, I can be used with any of the
data minalization directives.

ABYTE pg 2 ;reserve a byte

AWOGRD pw ? sreserve a word (2 bytes)
ADWORD ©OD °? ireserve a dword (& bytes)
AQWORD D@ ? ;reserve a gqword (8 bytes)
ATBYTE DT ? ;reserve a thyte (10 bytes)

When used in a speciac DUP construct, ©77 can be used 1o specify no
initialization (see below).

tihalizing with an address-expression—DW and DD only.

You can initialize a DW or DD with a variable name, fabel name, segment
name, or group name. When you use a variable or label name in a DW, vou
arg initralizing with the oftser of that vartable or lahel.

OW  COUNT ;store the offset of COUNT
;from its segment
DW DATAGRP:COUNT istore the offset of COUNT

sfrom its grouc (DATAGRP)

Usiog a segment name or group name in a DW will store the paragraph
number of that ilem.

OW LCODE ;store the paragraph number of {0DE
;segment

In a DI, the use of @ variable or label name will stare the offset of the
variable ov label 1n the lower order word and the segment part (paragraph
aumber) in the higher order word. This Forms a pointer 1o that item.

00  COUNT ;store 3 pointer to COUNT

which 1§ equivalent (o:

DW  COUNT ;store the oftfset of COUNT

PW SEG COUNT ;store the paragraph number of
;COUNT's segment
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Use of segment or group name in a 3D will store the paragraph number in
the low order word and initialize the higher order word with 00H.
Inttializing with a string—DB only.

[na DB you can deline a string up to 255 characters long. Each character is
stored in 2 byte, where successive characters occupy successive bytes. The
string must be enclosed with single quotes. If you wish 10 include a single
quote in a string, code it as two consecutive quoles. Examples are given
below.

ALPHABET DB 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
DIGITS DB '0123456789%"

WITHGUQTE DB 'THIS AIN"T HARD'!' ;inserting quote
;in string

Ina DW and DD you may code a string of either one or 1wo characters. In
this case, the string s interpreted (o be a2 number and it will be stored as a
number. For example.

NUMB DW 'AB'
is equivalent to
NUMB DW 4142H

where the low byte is stored {irst followed by the high byie. The same con-

vention is true for a DD. In 1thal case, the upper 16 bits witl be intnatized to

00H.

Initializing with a repedted value,

There 15 a special construct thar can initialize an area of memory with a

repeated value or list of values. T'he form [or this construct is given below.

repeatval DUP  (val |, ...]|

“Repeatval is a positive numbcer from ) to 63335 1t specifies the number

of data nitiahization units 1o be initialized (hytes, words, dwords, quords,

oribyles). *Val'' may be any of the following:

1. An expression—either numeric {appropriale 10 the dala initializanon
unit) or an address-expression for a DW or DD,

(3]

A T forindeterminate inttiahzation. 1 the special form

DB aepeatval DUP () or

DW  repealval DUP () or

DD repeatval DLP () or

DQ  rtepeaval DUP (M ot

DT  repeatval DUP (7)

is used. then no data initialization record will he produced in the obyect
module, but the area will be reserved. Any other use of the **72°" will

cause a data inibalizalion record 1o be produced, but the value used for
mtualization will be indelerminale,

Asan example:

WORD1 0B 2 pUP (?)
WORD?Z DW 1 DUP (?)

will bath reference word variables without initializing datd, whereas
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WORD3 oW 7

WORDA DB 1 DUP (2,7}

WORDS DB 1 DUP (?), 1 DUP (7}
WORDS 0B 2 DuP (1 DUP (?))

will all initialize words to an indeterminate value.

3. Astring where the data initialization unit is a DB.
STRING DB 10 DUP (*HELLO")
4. Alist of the above items following the rules given above (or each item.

STRINGS DB 10 OUP ('HELLO','GOO0BYE’)
ADDEXPS bW 3 DUP (COUNT, START, NEXT)
NUMBS Db 100 DUP (1, OFFFFH, 15 101010108)
DIFFERENT DB 25 DUP (2, 'NSJRAJ', 3D

5. “Val” may also be another DUP statemeni, lollowing again all the
above rules. DUP's may be nested up to eight levels deep.

MORESTRINGS OB 15 DUP ('HELLO', 3 pUP {'GOODBYE'))
MORENUMBS 0w 27 DuUP (1, 3, 5, DUP (2, S5, 7))
NESTEDOUP 0B 3 DUP (4 DUP (5 BUP (1, 6 DUP (0))))

Introduction to Records

ASMS6 has a special daia initialization staiement that allows you 10 construct bit-
encoded dara structures called records. A record may be either 8 or 16 bits in size.
Each record is deined 10 have a number of fields containing a certain munber of hits
per ficld. You can store information in these fields and also aceess that information.
Records are useful where you wish to access specific bits in a data structure, These
could he flag bits, ficlds in a data structure used 10 store a real number, etc. There
are special operators used 10 access the fiedds in a record. These are discussed in
Chapter 4. There are two steps in using a record. The first defines a “template’’ for
the recard. This specifies the size of the record and its fields. The second step uses
the record name in a data initialization statement to actually allocate the storage.
These steps are described below.

The RECORD Directive

Record Template Definition

Syntax:
nanie RECORD field-name:exp [~ initval] [, ... ]

Description:

A record is a bit pattern you define in order 10 format byles or words for bi-
packing. A record can be from | to 16 bity in size. Records are first detined through
the Record Template Delinition. Data can then be atlocated and initialized through
the use of 1the record name in a data initizlization statement (given below), Some
examples:

ERRORFLAGS RECORD IOERR:3=0, SYSTEMERR:3=0, MEMERR:3=0

SIGNEDNUMS RECORD SIGN:1, NUMBER:15

o
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Field Values:

name

This is & unique ASMS86 identilier, which is the name for the record template
defined.

ficld-name
This is a unique ASMS6 identifier, which defines a bit field within the record.

exp

This is @ constant or expression that evaluates to be a number in the range 1 10
16. This value specifies he number of biss in the field. (If a symbol is used in an
expression, it must not be a forward reference.) The sum of the “texp’s’” in a
record definition must not exceed 16; if they do, an error will be reported.

[= initval]

This is a constant or expression that evaluaies t0 a number that can be
represented by the number of bits defined for that field. This optional clause
defines a default value for the field. If no initval is specified, the default value is
zeeo. This default value can be overriden ducing allocation and initialization.

“Partial’’ Records

A “‘partial’” record 15 a record that does not fully occupy a byte or word. The
assembler will right-justify the fields within the record in the leasy significant bit-
positions of the byte or word defined by the record. The undefined {(unallocated) bus
have a value of zero when the record is used to allocate storage. If vou defined a
record as below

QUASI RECORD A:6, B:6

it will be formatted as follows:

15 12 1 6 5 ]
QUASI (detinition, not storage)

(undefined) (A) By

4bits 8 its b bits

Figure 3-1. '‘Partial’’ Record Definition
Record Allocation and Initialization

Syntax:
|[namec] record-pame < [exp] [, ...]>

or

‘name] record-name repeat-val DUP (<[exp] [....]>)



3-10 asmse

Description:

Use of this form will allocate data in the form specified by the record template used.
Y ou may override any default values given in the record definition. For example,

FLAGS ERRORFLAGS <0,3,0>

FLAGSA ERRORFLAGS <> yne initialization pverrides
PLUSONE SIGNEDNUMB <0,1>

MINUST15 SIGNEONUMB <1, 15>

Field Values:

Iname]
A unique ASMS86 ideatilier that is a name for the byte ur word allocated.
record-name

This is the name of the previously defined record template that defines how the
bits within the byte or word are (o be allocated.

[exp]
You may oplionally override default values of record fields when you allocate
the storage. The ‘‘exp’” must evaluate 1o a number that will fit in the number of
bits in the field you wish 10 override. You may override all, some, or nonc of the
fields in the record temiplate. The following rules apply:

For a record with N fields, each field ts represented in the allocation statement,
as shown below—

<TLLM12,63,...,In>

To override a particular field, place the vatue in the position of that licld in the
allocation statement. To override **f3"" you would code

<, 2>
To override “*fn'’ you would code

Crrenms 2>
Each “‘empty’ override (the **,'") specifies one ficld; you can skip fields up to
the field you wish to override just by (yping a **,"” for that tield. You do not
need to type anything for fields after the onc you wish to override if vou are not
specifying any values for them. Te allocate a record with no overrides you
simply code:

<>

repeatyval

A positive integer that indicates the number of records to be allocated.

Introduction to Structures

You can define “‘structured’” data blocks built from the basic types of data
initialization statements. These data blocks are called “*structures.”” A structure is
composed of data initialization statements that define the fields within a block of
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data. Each of the fields can be separately accessed. For example, if you wish to
define a data structure that contains a complex number that has two [ields, you
could code the following:

COMPLEX STRUC

REALPART 0q 0
COMPLEXPART D@ D

COMPLEX ENDS

This code defines a template that can then be used to allocate storage. T'o store the
complex number 1.2 * 3,50, you would code the following:

VALUE COMPLEX <1.2, 3.5>

To perform any calculations based on this value, you would refer to the fields of the
structure as

VALUE.REALPART
and
YALUE.COMPLEXPART

in the instruction (see Chapter 4}).

The STRUC Directive
Structure Template Definition

Syntax:
name STRUC

|tieldname] data-init

name ENDS

Description:

A structure is a “siructured”” data type. This is similar 10 a **record”’ data tvpe in
Pascal, except that the type of elements you may define for a structure are restricted
to the data types allowed in ASM86. (i.e.. byte, word, dword, qword, and tbyte). A
STRUC/ENDS pair defines a storage template with various sublields of possibly
different types. This template can then be used 1o allocate data based on the *‘struc-
ture” of the template. You may define values for the fields that can then be over-
riden {with some exceptions) when the structure is used to initiahze storage. An
example of a structure is shown below.

EMPLOYEE STRUC

EMPNAME DB ' ;20 chars allowed
HOURRATE DD 5.60 ;dollars per hour
NUMBHOURS DB 7 ;hours per week to be used

EMPLOYEE ENDS
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This structure template could then be used to creaie data structures for different
employces. You can override the inttial values when the data is allocated and you
may programmatically change the values in allocated structures {see Chapter 4).

Field Values:

name
A unigue ASMB6 identifier that is the name for the structure template defined.
fieldname

A untque ASMR6 identifier. This name will be used to access 1he fields within an
allocated struciure. It represents an offset from the base of the allocated struc-
ture. In the example above, the ficld HOURRATE would have an offset of 20
from the beginning of the structure. This value (expressed by the fieldname) is
used in instructions to access the field. (See Chapter 4.) A fieldname has the
following attributes:

segment —none
offset—number of bytes from start of structure
lype—I1ype of 1t
data-init
This may he any ailowed data initialization statement (DB, DW, DD, DQ, or

DT). Refer to the section **Defining Variables™ for the details on all the allowed
forms.

Structure Allocation and (nitialization

Syntax:

[name| structure-name < fexpl [, ...]>

or

[name] structurc-name repeatval DU (<[exp) |,...]™
Description:

Use of this statement will allocate storage based on the structure template used. The
amount of siorage allocated will be a function of the number of bytes defined in the
template. tnitial vafues in the fields may be overriden with ¢erain restrictions {sce
below). An array of structures can be allocated by ustng the form with a “*DUP’".
For example,

ACOMPLEXNUMB COMPLEX <1.6, 7.8>
JONES EMPLOYEE <'JONES, SAM', 2.00, 60>
PEOPLE EMPLOYEE 20 DUP (<>)

Field Values:
|name]

A unique ASME6 identifier. This name wiil define a variable whose scgment
part will be the current scgment and whose offset will be the current location
counter. Its type will be an integer equal to the number of bytes allocaied by the
template.
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structure-name

A name of a previously defined struciure template.

repeatval

A positive integer that indicates the number of structures 1o be allocated.

This Mield is a value that will override the default value given in the template
deflinition. Its type must match the type of the field. It may be gither a constant,
an ¢xpression, a siring, or the indeterminale initialization character, *“?’". The
value can only be used 1o override fields that meet the following restrictions:

l. The ficld specified in the structure template definition cannot be a list of
values or a DUP clause.

2. A DB that is imtialized with a single string of two or more characters can he
overriden cenly with another string. If the overriding string is shorter than
the original string, the remaining characters of the default siring are used. If
the overnding string is longer, it is truncated.

3. The value must fit within the hield you wish to override.

Example of overridable fields—

OVERRIDABLE STRUC

ASTRING DB 'ABCDEFG!
DONTCARE DW ?

AREAL Db 3.14159
OVERRIDABLE ENDS

Example of non-overridable fields -

NONOVERRIDE STRUC

ALTST B 1, 2, 3
ADUP DM 10 DLP ()
NONOVERRIDE ENDS

For a siruciure with N fields, cach ficld is represemied in the aliocation state-
ment as shown below—

<f1,£2.03,....in>

To override a parlicular ficld, place the value in the position of that field in the
allocation statement. To override **f3"" you would code

<, 2>
To override **[n’" you would code

Lo 2>
Each “‘empty”” override (*,”") specifies one fickd. You can skip fields up 1o the
ficld you wish to override just by typing a '™ for that field. You do not need io
type anything for any ficlds after the one you wish to override if you are not
specifying any values for them. To allocate a structure wilh no overrides you
simply code:

<>
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@ DFEFINE a STRUCTURE templaie by enciosing a
st of data-delinition  directives  belween
STRUC/ENDS. inutiai default vafues will be
asssgned Lo structure fields unless overridden duor-
ing allocaifon. {(Muliple fields, e.g., THIRD. can-
not be overridden )

BLUEPRINT STRUC
FIAST OW (OFFFEM
SECOND DWW  BUFFER
THIRD ©B 1.5
FOURTH DB "A°
FIFTH 0o 7
SIXTH Dw 257

BLUEPRINT ENOS

“WIRTUAL™
STRUCTURE

6 F T f  E| Emst
I, OFFSET (BUFFER) | SECOND
Ce 5 "0 77 | thieD

@ ALLQOCATE storage for single oz multiple copics
waing the structure-name  from @ as an
assembly-time operator The biss in angle-brackets
tells the assembler which default values 1o over.
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Defining Labels

A label, a symbolic name for a particular location in an instruction sequence, may
be defined in one of three ways. The first way is the most common. The format is
shown below:

label:  [instruction]

where  “label™ is a unique ASME6 identifier and  ‘“‘instruction™ is an
3086/8087/8088 instruction. This label will bave the following atiributes:

b, Segment—ihe current segment being assembled.

2. Offset—the current value of the location counter.

3. Typc~—willhe NEAR.

An example of this form of label definition is:
ALAB: MOV AX, COUNT

The second means of defining a label is the PROC directive. This can be used to
define either a near or far label. The third means iy the LABEL. directive. (Do no
confuse the use of The term “*label™ with the name of this directive.} Either a near or
far label can be defined. See below for a discussion of the PROC and LABEL
directives,

The PROC Directive

Syntax:
name PROC  |iype,

name  LENDP

Description:

A PROC directive iy used o define a label and to delineate a sequence of instruc-
nony that are usually interpreted to be a subrouting, that is, CALLed either from
within the same physical scgment (neav) or From another physical segmene (far). The
primacy use of the PROC directive is Lo give a ivpe 1o the RET insoruction enclosed
by the PROCSENDP patr. A PROC is different from a high-level language
subrouting or procedure. There is no scoping of namesina PROC. All user delined
variables and labels in @ program must be unique. Also, there is no *“‘block
stracturing” of PROC s, 1T a PROC i delined within a PROC, execution can **fal!
e the PROC. For example

P PROC NEAR
MOy  AX, 15 ;execution begun here will
ADD  CX, AX ;continue tarough to the MOV AX, 0

P2 PROC NEAR

MOV AX, O
CMP AX, COUNT
JE LA



3-16 AsmB6

SUB COUNT, 1
LAB: MOV AX, ©
RET ;exit P1 and P2 here!

P2 ENDP
tMp DX, 10 ;never will be executed!!!
JE LAB
RET

P1 ENDP

The 8086/8088 has two types of RET instructions, either near or far, that must cor-
respond to the type of CALL made. Given below is an example of both a near and a
far PROC, each with their appropriate CALL.

Example 1 —A NEAR PROC.
LOCALCODE SEGMENT PUBLIC
ANEARPROC PROC NEAR

;some code

RET  ;will be near RET
ANEARPROC ENDP —
CALL ANEARPROC :a near CALL

LOCALCODE ENDS
Example 2—A FAR PROC.

GLOBALCODE SEGMENT WORD

AFARPROC PI'QOC FAR

;some code

RET  ;will be a far RET
AFARPROC  ENDP
GLOBALCODE ENDS
SPECSEG  SEGMENT BYTE

CALL AFARPROC :will be a far call
;intersegment

SPECSEG  ENODS
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Field Values:

name¢

This is a unique ASM86 identifier that defines a label whose segment attribule is
the current segment, and whose offset is the current location counter. Tts type is
defined in the PROC directive.

type

This field specifies the (ype for the label defined. ‘T'he possible values are:
l. None specified—defaults to NEAR.

2. NEAR—to define a near label.

3. FAR—to define a lar label.

This field will specify to the assembler whai( type of CALL instruction to generate
for the procedure and what type of RET instruction o code for any RET instruction
found between the PROC/ENDP pair.

The LABEL Directive

Syntax:
name LABEL 1ype

Description:

The LABEL directive creates a name for the current Jocation of assembly, whether
data or code. You use the LABEL directive to define a variable or a 1abel that will
have the lollowing attributes:

1. Segment—rthc current segment being assembled.
2. Offset—the current offset within that segment.
3. Type—the operand to the LABEL directive.

The LABEL directive 15 useful for defining a different name with possibly a difl-
ferent type for a location that is named through the usual means. For example, if
you desire Lo access 1wo conseculive bytes as both a word and as two different bytes,
the following usage of the LABEL directive will allow both forms of access.

AWORD LABEL WORD
LOWBYTE DB 0
HIGHBYTE DB ¢

[t can also be used (o define two labels of different types for the same location of
code. This is useful if a section of code is to be called both near and far. (The pro-
grammer musl be carctul in this case to insurc that the right RET is ¢xecuted for the
type of CALL made.) The following (potentially deadly} example illustrates this usc.

ARFARLABEL LABEL FAR
NEARLAB: MOV AX, BX

Field Values:

name¢

A unique ASMB86 identificr.
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type

This field identilles the 1ype that is to be assigned to this namme and tocation. It
can spectly a vastable or a label depending on the type. This {ield can have the
following values:

1. BYTE—defines a variable of type byte.
WORD—defines a variable of type word.
DWORD—defines a variable of type dword.
QWORD—defines a variable of typc gword.
TRYTE—defines a variable of type thyte.

A structure name—the type will be equal (0 the number of bytes allocated
by the structure.

[= NIV I OV ¥

7. Avrgcord name-—the type wili either be a byte or word depending on the size
of the record.

8. NEAR—defines alabel of type near.

9. FAR—deflines a label of 1ype far.

The Location Counter ($)

The location counter keeps track of the current offset within the current segment
that is being assemibled. This value is symbolized by the character %", which inay
be used in certain cobtexts, (i.e., expressions ar instructions) (sce Chapler 4). This
symbol represents a near label, whose artributes are.

SepMent —Cuirent segment
offsei —current offsey
lype—near

The assembler will maintain the correct offset within a segment even if the segment
is repeatedly “opened” and ‘‘closed’ in the module with the approprtate
SEGMENT/ENDS pairs.

The ORG Directive

Syntax:
ORG  exp
Description:

The ORG directive allows you to control the location counter within the current seg-
nent. You use the ORG directive 1o sct the location counter Lo the desired value. Be
careful in the use of this directive not 10 overwrite any previously allocated data or
code by ORGing to a location previously allocated. The ORG directive is used (o
locate code or data at a particular location (offsel} within a segment. Used with an
absolute segment, you can specify the actual location in memory in which the code
or data will be located,

Ficld Values:

exp

This is an expression that is evaluated modulo 65536, The expression must not
inctude any forward references. You may use the value of the current location
counter, '3’ in an expression, such as:

ORG OFFSET ($+1000)
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Avoid expressions of the form
ORG OFFSET ($-1000>

since this will averwrite your last 1000 bytes of assembly (or will re-ORG high in
the current segment if the expression evaluates (o a negative number).

The EVEN Directive

Syntax:
EVEN

Description:

The EVEN direclive ensures that the code or data following the use of the directive
will be aligned on a word boundary. For 8086 data, this may result in a fasier feich-
time. The assembler will insert 2 NOP (90H) in froot of the code or data, il it is
necessary, to force the word alignmeni. The EVEN directive cannot be used in a byte
aligned segment—an error messape will be issued.

The PURGE Directive

Syntax:
PURGE  name [, ...]

Description:

The PURGE direcuve deletes the defimition ol a specified symbaol, allowing the sym-
bol 10 be redefined. All occurrances of the symbol following the PURGE directive
and the redetinition of (he symbol will use the new definition. 1t will remain unde-
fined after it is purged unless it is redelined. A reference (o a symbal after a purge,
but before a redefinition is a forward reference (o the redefinition. 10 no redefinition
occurs, the reference will cause an error. The following types of symbols cannot be
purged—

I.  Register names

2. Thesymbol ??SEC.

3. Hands-off keywords (see list in Appendix C).

4, Asymbol that appears ina PUBLIC statement.

Using the PURGE Directive to Control Debug Information

The PURGE directive can be used to control the symbol information placed in the
object module by the assembler when the DEBUG control is specified. (Sce the
ASMB6 macro assembler manual for a description of the DEBUG control. 1T you do
not wish to have information placed in the object module lor certain symbols, you can
purge those symbols at the end of the program just before the END statement.
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8086/8087/8088 Instruction Statements

Syntax:

[label:] [prefix] mnemonic [operand |, operand])

Description:

The instruction statements form the core of an assembly language program. These
statements define the actual program that the CPU (and NDP) will execute. This
chapter describes the operands used in the assembly language. The 8)86/8087/8088
instruction set is defined and discussed in Chapter 6. The operand field specifies the
object of the machine operation. For a two operand instruction, one of the operands
is considered a destination operand and the other is 1he source operand. This form is
given below.

INSTRUCTION DESTINATION, SOURCE

Some examples, shown below, illustrate some instruction statements:

MoV AX, 0 ;place 0 into AX
ADD CL, DL ;L = CL + DL
ALAB: REP MOVSB ;with prefix instruction and Llabel

Refer to Chapier 6 for the use of the Prefix instructions.

Field Values:
[label:)

A unique ASME6 identilier, followed by a colon, that is used 1o deline a label.
(See Chapter 3.)

[prefix|

An BOB6/BORE Prefix instruction, iwe., LOCK and REP instructions. (See
Chapter 6.)

mnemonic

An 8086, 8088 or 8087 instruction. These are fully described in Chapter 6.
operand

There are many possible tvpes of operands, including registers, constant values.

variables, and labels. The operand you specify will depend on the instruction
coded. Al of the various operand types are discussed below,
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Operand Types

Registers

The B0O86/8088 registers can be used as explicit operands to many instroctions. [n
two-operand instructions they may be used for both source and destination. The
register set is shown below.

Segment Registers:
CS8,DS,SS,ES

General Registers {16 Bits):
AX,BX, CX, DX, SP, RP, SI, DI

General Registers (8 Bit):
AL, AH, BL, BH,CL, CH, DL, DH

Pointer and Index Registers:

BX, B, SI, DI
The different sets overlap. Each of the gencral regisiers (8 and 16 bit) can participate
 arithmetic and logical operations. The Pointer and Endex registers are also used in

cerfain address modes (see Regisier Expression section below). The segmenn registers
can be used in MOV’s, PUSH's, and PQP’'s.

Floating Point Stack

The 8087 has it’s own set of ‘registers” called the floating-point stack. There are
eight stack elements that can be referenced. The form is ST(i), where 't refers to the
element () through 7. The top-of-stack 15 always ST(0), which may be abbreviated as
ST.

Immediate Operands

An immediate operand is a constant valuc (number), Thisisa 17 bit”’ number (sce
Chapter 3). immediate operands are used as source operands in an 808678088
instruction statement. For example,

MOY AL, S ;AL = 5

CMP  AX, OFFFFH ;compare AX to OFFFFH

An immediate operand can also be an expression that cvaluates 1o a number. This
chapter discusses all the types of expressions.

Examples of expressions as imniediate operands:

CMP AL, 15 OR & ;an expression example--compare
AL with 15

ADD DX, (23 % 2) /7 10 ;add & to DX

—
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Memory Operands

A memory operand refers to a particular location in memory. The general term for a
memory operand is an “‘addrsess expression.” An address expression may be a sim-
ple variable or label name, or it may invalve registers, structure fields, and/or con-
stants. Each address expression will veflect a particular addressing mode. The
8086/8088 has many different types of addressing modes. They are:

Direct Address

The operand is a simple variable or label name. The name expresses the offset of the
operand that is used to calculate the address.

MOV  AX, COUNT ;move the word value at memory location
sCOUNT into AX

JMP  ALAB ;jump tc memory location ALAB

Register Indirect Address

In this case the offset of the memory location is contained in one oi the pointer or
index registers (BX, BP or $i, D[). To address the location you must first load the
oflfset into the register and then use the register name in brackets as the operand. For
example, to indirectly address a variable you would code the following:

MOV BX, OFFSET AVAR
MOV AX, [BX] sAX = conterts of AVAR

A IJMP or CALL insiruction ¢an use any 16-bin general register for indirect
addressing.

MOy AX, OFFSET ALAB
JMP AX ;no ©. are needed here!'--s'mp.e
;indirect jump to ALAB

MOV TARG, QGFFSET ALAB

MOV BX, OFFSET TARG

CALL [BX] ;0] used here (a register
;expressign)!'--two leve., indirect
yjump to ALAB

The 1wo levels of indirection in IMPsCALL. |[BX] are schematically depicted as
Tallows:

JMPICALL |BX!

| OFFSET ADTARG BX

ACTARG {DWORD)

OFFSET TARGET

OFFSET TARGET M
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Based Address

The base address mode is similar to regisler indirect mode excepl that, in this case, a
displacement is added to the contents of the register. With this mode the register can
point (o the base of a data structure in memory and the displacement can then be
used to access a field within the data structure.

MOy BX, OFFSET DATASTRUC ;BX = base of DATASTRUC
MOV AX, [BX + 5] ;AX = word located at the
;fifth byte of DATASTRUC

Based addressing is typically used with cither BX or BP as the base register though
STand DI may aiso be used. The displacement may be cither 8 or 16 bits.

Indexed Address

Indexed addressing is similar to based addressing except that the registers S1 or Df
are vsed along with a variable name. These registers are used as an index from the
offset represented by the variable name. The contents of the register used as an index
specifies a byte displacement from the offser of the vanable. You may also use a
displacement value 1o the operand.

Moy §sI, @ ;set indices to 0
Moy DI, ©
MOY CX, LENGTH SQURCE
ALAB: MOV AX, SOURCEI[SI] ;indexed address
MOv DESTIDIY, AX
INC ST
INC ST ;index next word in SOURCE
INC ©OI
INC DI ;index next word in DEST
LOOP ALAB

Based Indexed Address

This mode uses the contents ol a base regisler (BX. BP). the contents of an index
register (81, D), and an optivnal displacement. With this mode you may poin? the
base register a1 the base of a data structure and then use the index register as an
index into that structure.

MOV BX, OFFSET ARRAYSTRUC ;locad base acdress

Moy SI, ¢ ;index value
ALAB: MOV AX, [BX + SI] ;get element

ADb S1, 2 ;increment index

JMP  ALAB

Segment Register Defaults
Variable references such as:

[B8X]
-1y
WORD PTR [DI]
[BX].FIELONAME
BYTE PTR [BP]

. ~
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are lermed “‘anonymous references’ because no variable name is given from which
a segment can be determined. {The structure field in the fourth example bas a type
and olfset, but no segment associated with it.)

Segment registers for anonymous references are determined by hardware defaulls,
unless you explicitly code a segiment prefix operator. The hardware defaults are:

s [BX] normally defaults 1o segment register DS

¢ |BP| normally defaults to segment register S8

*  When anindex register is used without a base register (as in WORD PTR |D1] or
[ST+ 3]y, the default segment register is DS

*  When an index register is used with a base register (as in [BP||S1] or BYTE PTR
[BX]|DI]), the default segment register is that of the base register (SS or DS, in
these cases).

There are (wo variable-referencing exceptions for defaults:

1. Operations which implicitly reference the stack (PUSH, POP, CALL, RLET,
INT, and IRET) always use S8, and cannot be overridden. (The construcl [SP)
is not an addressing mode, and thus you caanot assemble e.g. MOV |SP], BX,
much less override it.)

2. String instructions always use ES as a segment register for operands pointed to
by DI.

Special care must be taken 10 ensure that the correct segment is addressed when an
anonymous offsct is specified. Unless vou code 4 segment prefix override, the hard-
ware default segment will be addressed, and the anonymous offset applied to it.

Thus, if a programmer’s declared variables all reside in segment SEGI:

SEGT SEGMENT
FOO DH.J 560 bup (8> ; 500 words of 0's

SEG1 EI;IDS
and tl his ASSUME directive in segment CODFE L is as fotlows:

ASSUME CS:CODE1, DS:SEG1

then all references to named variables in segment SEG | will assemble correctly. But
suppose our programmer elects 10 use BP as an index repister to access elements of
FOO in SLG1, as lollows:
MOov BPF, OFFSET FOO Load BP with offset of FOO in
SEG1.

Put first word of FOO into AX,

i No assembly-time error, but wrong
i seg-reqg (S5 instead of DS) at

i run-time,

nov AXx, [BP)
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Because no variable name is present (for ASSUME o check), and because no seg-
ment override prefix is specified, the [BP] reference, by default, specifies an offsct
address that will be combined with the SS segment register, and not the DS, as
intended. The code should read:

MOV BP, OFFSET FOO ;Load BP with offset of FOD in
SSEGT.
M0VY AX, DS:(BP] ;Use DS seg-reg for DATA1, put

;tirst word of FOO into AX.

Overview of Expressions

An expression can definc a value that inintalizes data or is used as an operand to an
instruction. An expression can ipecify a numeric value or define an address in
memory that will then serve as an instruction operand. There are many different
kinds ol operators that you may use Lo create expressions:

*  Arithmelic Operators
high and low (HIGH, LOW)
addition and subtraction (+, —)
multiplication and division (*, 7/, MOD)
shifting operators (SHR, SHL)
*  logical Operators (AND, OR, XOR. NOT)
¢ Relational Operators (EQ, LE, LT, GE, GT, NE)
*  Attribute operators
attribuie overciding operators {segment override, PTR, SHORT, THIS)
attribute value operators (SEG, OFFSET, TYPE, LENGTH, SIZE)
¢ Record-Specific Operators {shift count, MASK, WIDTH)

These operators can be used 10 define numbers or with the attribute operators you
may define vaniables or labels. Each type of operator is discussed below,

Types of Expression Operands

Numbers

A number or constant (1 7-bit number) can be used n most expressions. There are
some timitations in the use of relocatable numbers (these are numbers whose values
are unknown during assembly). These limitations and the definition for relocatable
numbers are discussed below. The atiribute value operators (e.g., OFFSET) rerurn
numbers that can be relocatable. Simple numbers or constants (such as **27") can be
used without any limitations for most operators and expression types. An absolute
number is a value known at assembly time.
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Address Expressions

An address expression defines a location in memory. This location ¢an be viewed as
cither a variable or lahel, depending on the type of expression used. The simplest
address expression is the name of 4 vanable or label. In this case, the name implies
addressing using the offset of the variable or 1abel.

ADD DX, COUNT ;COUNT is simple address expression

ADD DX, CCUNT + 2 ;In this case, the address
;expression has the same zsegment
;and type as COUNT but has an
;offset that is two greater

ADD DX, COUNT(2] ;15 equivalent to CQUNT + 2

A register expression is an address expression that uscs a pointer and/or index
register, This form was shown above under the discussion of addressing modes. The
different types of register expressions are shown betow:

I. |pointerreg] or  [indexreg)

(BX] [s1?
(BP] [DI]

ra

[pointerreg + indexreg|

[(Bx + SI]
(Bx + OI)
fgp + §1)
(gp + DI]

3. pointerreg + disp]  or  [indexreg + disp)

(gx + displ [ST + disp!
{BP + displ [DI + disp!

4. pointerreg + indexreg ~ disp|

[BX + SI + disgp:
(BX + DI + disp]
(Bp + SI + disp]
fBP + DI + disp]

NOTE
Disp can be either an 8 or 16 bitdisplacement.

NOTE
You may also substitute a set of **[ " for the *+’" in these types of
expressions. l'or example, the following are equivalent forms:

[BX + SI] isthesameas [BXI[SI]
[BP + DI + 2) isthesameas [BX1[DI)[2]

A register expression can be combined with a simple address expression 1o form a
more complex address. This allows [or indexed variables or doubly-indexed
variables. The form is:

name [reg exp]
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Examples:

COUNTIBX] ;simple index

COUNTIBX + 21 ;index plus displacement
CQUNTLBX + SI) ;double index

A register expression implies that the address of the operand will be computed using
the run-time contents of the registers used. IF'or the examples above, the offset of the
variable COUNT will be added to the contents of the register(s) in the register
expression.

You may use a register expression by itself as an operand. This case is called an
anonymous reference hecause the reference has no explicit type (either byte, word,
ctc.). When using Lhis form you must insure that a type is specified. For a itwo

operand instruction where one of the operands is a register, the assembler will deter-
mine the Lype from the type of the register. For example:

MOV  CX, [BX) ;move word peointed to by BX

In all other cases using an anonymous reference, you nmust specify the type using the
PTR operator (discussed below). For example:

MOY WORD PTR [DI], S ;assign two bytes

INC BYTE PTR [BX + 2] ;increment a byte

Accessing Structure Fields

Another form of address expression uses a siructure field name as a displacement
that is added (0 an offset. A field name represents an of fset within the structure (see
Chapter 3). For example,

ASTRUC STRUCTURE

ABYTE 0B 0 ioffset = 0
AWORD DW 0 ;offset = 1
BYTEZ2 b8 0 ;affset = 3

ASTRUC ENDS

The Tield names can then be combined with a variable name or register expression 10
form an address expression. This address expression has the following attributes:

scgment—same as variable or machine default for register expression

offset  —offset of variable or register expression plus the offsel of the field within
the structure.

type  —type of structure lield.
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For example,
ANARRAY 0B 1,2,3.4,

MOV AL, ANARRAY.BYTEZ AL will equal &
MOY CX, ANARRAY.AWORD sCX will equal 0302H
MOV  BX, OFFSET ANARRAY ;BX holds offset

MOY AL, [BX].ABYTE AL will equal 1

Relocatable Expressions

Address expressions (those involving variables and labels) and numeric expressions
may have results which cannot be known until logical segments have been combined
and localed. These expressions are termed **relocatable.” The following rules define
when an cxpression is rclocatable. There are some testrictions on the use of
relocatable expressions with some of the operators. These restrictions are noted
below for each operator.

1. Segments and Groups—the name of a segment or group can be used to represent
its paragraph number in an expression. This value is retocatable for all segments
and groups except for a segment defined with the ““‘AT exp” form of the SEG-
MENT directive. These values are assigned by the locaior or loader. This type of
relocatability is called **Base relocatability.™
Example:

DATAGRP GROUP DATA1, DATAZ

DATA1 SEGMENT PUBLIC

DATA1 ENDS

DATA2 SEGMENT PUBLIC

SEGSTQRE DW DATAGRP ;DATAGRP is base relocatable
SEGBASE DW DATA1 ;DATAY is base relocatable
DATAZ ENDS

2. Variables and Labels—a variable or label is no1 considered to be relocatable if it
is defined in a ‘‘non-relocatable segment.”” This is a segment that has either a
PARA or PAGE ailignment type and s not a PUBLIC or STACK segment, or it
was defined with the "AT exp'' combine-type. Use of a variable name in an
expression implies the value of its offset within its segment. This value will be
relocatable for any variable or label that is defined in a “‘relocatable’ segment
or in an EXTRN directive. A relocatable variable or label is “‘offset
relocatable.” These values are assigned by the linker.

Example:
DATA SEGMENT PUBLIC

ABYTE DB 0
AWORD DW ABYTE ;ABYTE is offset relocatable

DATA ENDS
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3. Numbers—a consiant is relocatable if it 1s defined in an EXTRN directive with
type ABS. Tn this case the term ‘‘relocatable” indicates that the value of the
number, defined in another module, is unknown at assembly time,

Example:
EXTRN ANUMBER:ABS

DATA SEGMENT
AWODRD DW ANUMBER ;ANUMBER is relocatable

DATA ENDS

Arithmetic Operators

HIGH/LOW

Syntax:

HIGH  operand
LOW  operand

Description:

These operators are calted the “'byte isolation'” operators. HIGH and LOW accept
either a numeric expression or a variable or label as an operand. HIGH returns the
high-order byte; LOW the low-order byte. M the operand is an absotute number then
the result will be absolute. [n all other cases, the result wilt b relocatable. An ervor
will result if these operators are used with an operand or expression involving a seg-
ment or group name. For example,

MOV AH, HIGH (1234K) ;AH = 12H
TENWEX EQU LOW (OFF10H) ;TENHEX = 10H

These operators can be applied 10 cach other; if Q 5 a refacalable value, the fotlow-
ing identities apply:

LOW LOW @ = LOW Q
LOWHIGH © = BIGH O
HIGHLOW Q =0
HIGH HIGH Q = 0

Field Values:

operand

A Tiumeric expression or a variable or label name.
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Multiplication and Division

Syntax:

Multiplication: operand * operand

Division: operand 7/ operand
Modulo: operand MOD  operand
Description:

You may only use these operators with absolute numbers, and the result is always an
absolute number. [ither operand may be a numeric expression, as long as the
expression evaluates to an absolute number. Some examples,

CMP AL, 2x& ;compare AL to 8

MOV CX, 123H/16 ;CX = 124

Ficld Values:

operand

An absolute number.

Shift Operators

Syntax:
Shift right: operand SHR  count
Shift lefr: operand SHI. count
Description:

The shift operators will perform a “*hit-wise™ shift of the operand. The operand will
be shifted **count” bits either 1o the right or 1he left. Bits shified into the eperand
will be set to 0. The operands must be numeric expressions that evaluate to absolute
numbers. I'or example,

MOD BX, OFACBH SHR & ;BX = BX + OFACH

Field Values:

operand
A numeric expression that evaluates to an absolute nomber.
count

An absolule number thal represents the number of bits the operand is to be
shifted, either right or left.
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Addition and Subtraction

Syntax:
Addition: operand + operand
Subtraction: operand - operand
Description:
These operators can be used with either absoluie or relocatgble operands, but there
are certain restrictions in the use of relocatable operands. The following shows all
the allowed uses of absolule and relocatable operands.
ABS =an abselute operand
RELOC = arelocatable operand
ABS + ARS ABS - ARS
ABS + RELOC RELOC - ABS
RELOC + ABS RELOC - RLELOC
NOTE
“reloc—reloe’ is only allowed for operands with the same 1ype of
relocatability and the quantities are defmed tn 1he samme segment (both are
either base or oifset relocatable). The result of “‘reloc-retoc’ is an absolute
number.
Field Values:
operand
An expression evaluating 10 an absolute number or a variable or label name.
Relational Operators
Syntax:
equal: operand EQ operand —
not equal: operand NE operand
less than: opesand LT operand
less than or equal: operand LE operand
grealer tham: operand G operand

greater than or equal: operand GE  operand
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Description:

The relational operators may have operands that are;

a. both absolute numbers

b. variablg or label names {defined in the curcent module), that have (he same lype
of relocatabihty.

The result of a relational operation is always an absolutc number. They return an
8-or 16-bit result of all 1's for TRUE and all 0's for FALSE. Some examples,

MDY AL, 3 EG O v AL = 0 (false)
Mov  Bx, 2 LE 15 7 BX s+ OFFFFH (true)
Field Values:

operand

An absolule number or a variable or [abel name.

Logical Operators

Syntax:
operand OR operand

operand XOR operand
operand AND operand

NOT operand

Description:

The logical operators may only be used with absolute numbers. They always return
an absolute number.

A logical operator can be either:

1. OR—logical *or””, maps 0's in corresponding pasitions into 0 and 1’s elsewhere
in the result, for example,
11011001B CR 10011011B = (10110118

2. XOR—exclusive *‘or’’, maps corresponding bits equal in value inlo 0, and
corresponding bits unegual in value into !, for example,
10111011B XOR 1101110IB = 011001108

3. AND—logical *‘and’’, maps 1's in corresponding positions into 1 and 0's
elsewhere in the result, for example,
10110011B  AND 1101101B = [10000001B

4. NOT. logical ncgation, forms the I’s complement by mapping 1's to ¢'s and 0s
to 1's, for example,
NOT(10M01111BY = 010100008
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Field Values:

operand

An absotute number.

Attribute Overriding Operators \
Segment Override \

Syntax:
CS:varlab
DS:varlab
SS:varlab
ES:varlab
segname:varlab

groupname:variab T

Description;

The segment overside is used 10 override the segment attribute of a variable or label.
There are two uses for this override, 1the firsg is similar 10 an ASSUME, and the
second 15 used In order (o store 1the correct offset of a vatiable or label.

The first forim uses a segment vegister as the “segpart’ of a memory address. In this
case you are specifying from which segment register the variable or label is address-
able. This form is similar to an ASSUME, except that it is restricted (0 a single staie-
ment. It js also more error prone than the use of an ASSUME because yvou must
explicitly code the override for cach reference to a variable or label. The explicit use
of a scgment override takes precedence over any ASSUME directive. The (ollowing
example illustrates the use.

ASSUME DS:DATA, CS:CODE

DATA SEGMENT

ABYTE DB 0

DATA ENDS —
CODE SEGMENT

MOV BL, ABYTE ;reference is covered by the
JASSUME

MOY BL, ES:ABYTE ;no ASSUME is required here for
;this reference

CODE ENDS
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Another use of this form is to override the implicit use of a segnment register in
accessing data. The 808678088 will use the DS register in order (0 access data. When
the following line of code is executed, the DS register is used.

MOV BL, (8X)

You may use the segment override to change this implicit use. 1f, for example, vour
data is addressable through the ES register and you do naot have an ASSUME, vou
can code the foliowing form:

MOV BL, ES:[BX)

The instruction that is assembled will be preceded by a “‘segnient override prefix”
byte that forces the 80868088 to use the ES register in order to calculate the physical
address ol the variable, The same effect will accur it you ASSUME vour data into
ES.

The second use of the segment override is 1o insure that your use of the QFFSET
operator (see below) will return the correct offset ol your variable or label. When a
variable or label is defined in a segment that is pari of a group, then you must use the
segment override with the group name when vou use the OQFFSET operator (see the
discussion of the OFFSLET operator given below). This is to ensure that the oflfset
from the group base. rather than the segment base, is returned.

Field Values:

varlab

A variable name, label name, or address-expression.
SEBNaMme

A segment name.
groupname

A group name.

PTR Operator

Syntax:
wpe PTR name

Description:

The PTR operator is used to detine a memocy reference with a certain type. The
assembler determines the correct instruction to assemble based on the wype of the
operands to the instruction. There are certain instances where you may specily an
operand thal has no type. These cases involve the use of numeric or register expres-
sions, Here the PTR operator is used 10 specily the type of the operand. The follow-
ing examples illustrate this use:

MOY WORD PTR [BX], 5 ;set word pointed to by BX =5

INC DS:BYTE PYR 10 ;increment byte at offset 10
;from DS
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This form can also be used 10 overnide the type atiribute of a variable or label. 1, for
example, vou wished to access an already defined word variable as two bytes, vou
could code the following:

MOV (L, BYTE PTR AWORD ;aet first byte

MOY DL, BYTE PTR AWORD + 1 ;get second byte

Fieid Values:

type

This field can have one of the following values:

1. BYTE
2. WORD
3. DWORD
4, QWORD
5. TBYTE
6. NEAR
7. FAR

name

This field can be:

l. A variable name,.

2. Alabel name.

3. Anaddress or register €xpression.

4.  An integer that represents an offset.

SHORT Operator

Syntax:
SHORT label

Description:

The SHORT operator is used 10 specify that the tabel referenced by a IMP instruc-
tton is within +127 bytes at the instruction. This operator is only used when the {abel
15 forward referenced in the instruction. When the assembler encounters a forward
reference, it must make certain assumptions. When a label is forward referenced,
the assembler assumes that it will require two bytes to represent the relative offset of
the labet. By correctly using the SHORT operator, you can save a byte of code when
you use a forward reference. If the label is not within the specified range, an crror
will occur. The following example iNustrates the use of the SHORT operator.

Jup FWDLAB ;three byte instruction

JMP SHORT FWDLAB ;tWwo byte instruction
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Field Values:
label

A label addressable through CS.

Attribute Value Operators

The operators discussed below return the numerical values of the attributes of a
variable or label. These operators do not change the attribute of the variable or label
used.

THIS Operator

Syntax:
THIS type
Description:

The THIS operator defines a memory location at the current location of assembly.
This location can be either a variable or a label. lts seement atiribute will be the cur-
rent segment being assembied and its offset will be the value of the current location
counter. Its type will be specified by the operand to this operator. Use of Lhis
operator is similar to the use of the LABEL directive. This operator is used either in
conjunction with the EQU directive (see below) or as part of an opetand 1o an
instruction. {The latter form will be rarely used.) It can be used to define another
name with an alternate type for a data item; for example

AWORD EQU THIS WORD
BYTE1 0B 0
BYTE?2 DB 0

is equivalent10:

AWORD LABEL WORD
BYTE1 0B 0
BYTE? DB 0

Use of the symbol **§" (the location counter symbol) is cquivalent to THIS NEAR.

Field Values:

lype

This field can have the following values:
BYTE

WORD

DWORD

QWORD

TBYTL

NEAR

FAR

NN B e ho -
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SEG Operator

Syntax:
SEG  varlab
Description;

This operator returns the segment value of the variable or label, a base relocatable
quantily. Usc of this operator can have two imerpretations, depending on the con-
text used. In an ASSUME direciive, you may use this operator 10 specify the seg-
meunt 10 which an object is defined. For example,

ASSUME CS:SEG START, DS:SEGC COUNT

specifies that €S will hold the paragraph number ol the segment containing “*start™
and that DS will hold the paragraph number of the segment in which *‘caunt’ was
defined. This construct 15 useful with objects for which vou do not know the seg-
ment in which they are defined (mosi likely delined i another module). In this case
the expression is a symbolic representation of the segment’s name.

The other (ype of interpretation is that of a paragraph number. Here it is used either
to store the paragraph number in a variable or to inilialize a segment register.

SETSTART DW SEG COUNT ;store the paragraph number
;for the segment
INIT: MOV  AX, SEG COUNT
MOV DS, AX ;init DS witn count's

jsegment

The SEG operator should be avoided when groups are used. Variables and labels are
relatve to the base of 1he group and not to the segment in which they aie defined.
The value returned by the SEG operator for an clement thar s contained within a
group will not refleci the group base.

Fieid Values:
varlab

The name of & variable or label.

OFFSET Operator

Syntax:
QFESET  varlab

Description:

This operator returns the offset of (the varable or label from the base of the segment
in which it is defined. In most cases. the value returned is not set untii link time, i.e.,
i is a relocatable number. The OFFSET operator is vsed prnimarily to ]m[llai_lze
variables or registers to be used for indirect addressing. Some instructions explicitly
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use indirect addressing when accessing data. When coding these instructions, you
are required (o initialize a register to the offset value of the data you wish (o access.
The following example demonstrates this use —

TRANSLATE: MOY BX, OFFSET ASCIITABLE

MOV AL, VALUE

XLAT :BX points to translation

;table

Il a variable or label is contained in a group (its segment is defined to be in a group),
then yau must use a group override with the OI'FSET operator. This ensures that the
offset used s from (he group base and not from the individual segment base. For
example,
DGROUP DATAT, DATA?

DATAY SEGMENT PUBLIC

DATAT  ENDS
DATAZ SEGMENT PUBLIC

ASCIITABLE DB O
0 1

0B 128

DATAZ ENDS

CODE SEGMENT PUBLIC

TRANSLATE: MOV BX, QFFSET DGROUP:ASCIITABLE ;need group
;override
;here

MOYE AL, VALUE
XLAT ;BX pcints to
;jtranstation table

{ODE ENDS
Field Values:
varlab

The name of a variable or label.

TYPE Operator

Syntax:
TYPE varlab
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Description:

The TYPE operator returns a value that represents the type of the operand. This
value can be useful in certain instruction sequences where the type of the operand is
used (o calculate a value used in incrementing a pointer. For example,

MOY¥ BX, OFFSET ARRAY

MOY CX, LENGTH ARRAY ;LENGTH = # of elements
MOy SI1, ¢§ sused as index into array
ALAB: ADD AX, [BX + SII ;sarray element added to
s AX
ADD S1, TYPE ARRAY yincrement the pointer by
LOOP ALAB sthe size of an array
;element

TYPE returns the following values, depending oo the type of the operand-—
A byte—returns 1.

A word—returns 2.

A dword—rewurns 4,

A qword--returns 8.

L N T

A thyte—returns 10,

L=

A strocture name—returns a value equal to the number of byres declared in the
structure definition.

-3

A near label—returns 258,
8. A fariabel —returns 254,

Field Values:
variab

The name of a variable, siruciure, or label.

LENGTH Operator

Syntax:
LENGTH variable

Description:

I.LENGTH returns the number of data units {(bytes. words, or dwords) that have been
aliocated for a vaniable. The data unit is equal to the type of the variable. This
pperator is useful {for setting a counter for a loop that accesses the elements of an
array {see example above).

AWORDARRAY DW 150 DUP (D) JLENGTH = 150
7

ABYTEARRAY pE 1,2,3,4,5,6,7 JLENGTH
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Field Values:

variable

The name of a variable.

SIZE Operator

Syntax:
SIZL:  variable

Description:

The SIZE operator returns the number of byles allocated for a variable. This value is
related to the LENGTH and TYPE operators through the following identity:

SIZE=LENGTH * TYPE
Some examples,

AWORDARRAY DW 150 DUP (0) ;STZE 300

H

7

ABYTEARRAY 0B 1,2,3,4,5,6,7 ;SIZE
MOY AX, SIZE AWORDARRAY AX = 300

ASTZE DB SIZE ABYTEARRAY JASIZE is initialized
s to 7

Field Values:

variable

The name of a variable.

Record Specitic Operators

Use of records may involve three special opcrators. These operators allow you Lo
isolate and access the fields defined within a record. Since the lields in a record are
mapped into bils and not inlo byte-aligned structures, you may require that these
fields be masked off (in order (o isolate only specific bits) and then shifted imo the
jower order bits of a byte. {The record-specific operators are described individually
below.)

A record name can also be used in an expression. In this case the record is used to
specify a number based on the initialization vsed. For example, if you detine the
record

R RECORD F1:8, F2:8

you could use it to define a numeric cxpression that will evaluate 1o a constant
number.



4-22 ASMS6

MOV AX, R<OABH, 'C'> TAX = 0AB43H
MOV BX, R<5,7> + R<3,4> ;BX = 080BH
MOV (X, R<B86H, 23W> XOR R<135, 35> ;(X = 100H

Shift Count

Syntax:

reclieldname

Description:

Use of the record field name specifies the number of bits the record must be shified
in order to move the tield in it to the low order bits of a byte or word {depending on
the size of the record). For exampie, i vou had defined the following record:

PATTERN RECORD A:3, B:1, L:2, D4, Esé

AREC PATTERN < >
you could usc the following sequence of code to isolaie and access the Tietd C in the
vecord:

MOY DX, AREC imove record into DX

AND DX, MASK ¢ ;mask out fields A,B,C,D,E--

;000011000000000013 is the
;value used

MOV CL, C ;field name as shift ¢ount-=-10
;is the value used

SHR DX, CL ;0X is now equal to value of
;field C

Field Values:

recfieldname

The name of a field within a record.

MASK Operator

Syntax:
MASK rccord-field

Description:

Use of this operator defines a value that can be vsed to mask off fields in a record
{i.e., a value with I's in those bit positions specified by the record (eld, and 0's
elsewhere), leaving only the record-field specilied. This operator is used with an
AND (or TEST) instruction with the operands being I) the record stored either in a
register or a memorsy location, and 2) an expression using the MASK operator. See
the previous example for an illustration.
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Field Values:

record-field

The name of a field within a record.

WIDTH Cperator

Syntax:
WIDTH rec

Description:

The WIDTH returns a value equal (0 the number of bits in cither a record or a
record field. From the above example:

DB WIDTH AREC ;equals 16
DB WIDTH C ;equals 2
Field Values:

Tee

Either a record name or record field name.

Operator Precedence

The following is a lis1, in decreasing ordet of precedence, of the classes of operators.
All expressions are evaluated from lelt to right following the precedence rules. You
may override this order of evaluation and precedence through the use of
pareniheses.

Highest Precedence

1. Parenthesized expressions, angle-bracket (record) expressions, squarc-bracket
expressions, (he siructure “*dot’" operator, and ihe operators LENGTH, S1ZE,
WIDTH, and MASK,

. PTR, OFFSET, SEG, TYPE, THIS, and “name:™’ (segment override).
. HIGH and LOW.,

. Muliiplicavion and division: *, /, MOD, SHR, SHI..

. Addition and subtraction: +, .

T N NIV )

a. unary
b. binary

. Relational: EQ,NE, LT, LE,GT, GE.

. Logical NOT.

. Logical AND.

. Logical OR and XOR.

. The SHORT operator.

D e @ -~ O

Lowest Precedence
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The EQU Directive

Syntax: -
equ-name EQU cqu-value
Description:
The EQU directive is a very powerful means 1o define symbols for many of the
ASMB6 constructs. These symbols can form namcs that have more mnemonic vaiue,
or that form a “‘shorthand™ notation for a complex construct. In the FIELD
VALUE section below, many examples are given showing its use.
Field Values:
equ-name
A unigque ASMB6 identifier.
N
equ-value
This field can have the following values:
. A variable or label name (may be forward referenced}.
ALABEL EQU ALAB
ALAB: MOV AX, O
2. An 8086/8088 register name.
COUNT EQU  CX
POINTER EQU BX
MO¥ COQUNT, 10 X =10
MOV POINTER, OFFSET ARRAY ;BX = offset
;of array
3. B086/8087/8088 instruction names.
R

DATAMOVE EQU MOV
INCREMENT EQU INC

DATAMOVE AX, BX
INCREMENT  AX

4. A numeric constant (integer or floating-point).

Pl EQU  3.14159
TOTAL EQU 6
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The precision of a floating-point number used in an EQUare is determined
by the context in which it is used. lFor example,

DD PI ;single precision
0Q Pl ;double precision

An assembly-time expression involving numeric values.

E1 EQU 2 + 3
E? EQU E1 AND 4
E3 EQu  (E1 - E2) f 12

A register expression. These may be single register expressions or they may
also include a segment override, This construct iy useful in deflining data
items o be accessed on the stack.

STACKWORD EQU WORD PTR SS:[BP + 2]

AVAR EQU [BX + 3}

ANEXTRAVAR EQU ES:[BX]



TN




Program Linkage Directives

Overview of Program Linkage

ASMS86 supplies the necessary directives to support multi-modular programs. A
program may be composed of many individual modules that are scparatcely assembled
or compiled. Each module may defince variables or labels that other modules may use.
The mechanisms in ASM86 for communicating symbol information from module to
module are the PUBLIC/EXTRN directives. The PUBLIC directive defines those
symbols that may be used by other modules. The EXTRN dircctive defines for a
given module these symbols (defined elsewhere) that can be used. In order o uniquely
name different object medules that arce to be linked tagether, use the NAME direc-
tive. The END directive, which is required in all modules, can be used to specily a
“main module,” thal is, a module which contains the code that will be initially executed
upon loading the program. It supplies a means to specify the start address of the
program that will be initialized by the loader, For assemblers running on 8086-based
systems, initialization values for other segment registers may also be specified in the
END directive,

The PUBLIC Directive
Syntax:

PUBLIC name [, ... ]

Description:

The PUBLIC directive specifies which symbols in the module are available 10 other
modules at link-time, These symbols may be variables, labels, or constants (17-bit
numbers, defined using EQU). All other symbols will be flagged as an error.

Field Values:

name

Any wser-defined variable, label, or constant {17-bit number).

The EXTRN Directive
Syntax:

EXTRN name:type [L...]

Description:

The EXTRN directive specifies those symboals, which may be relerenced in the module,
that have been declared “public™ in another module. The EXTRN directive will specify
the name of the symbeol and its type.
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Field Values:

name

The name of the symbol declared to be public in another module.
1ype

The type of the symbol declared public in another module. This type should
agree with (he type of the symbol declared public. This ficld can have the
following values:

I. BYTE—a variable of 1ype byte.

. WORD—a variable of type word.

. DWORD—a variable of type dword.
. QWORD—a variable ol type qword.
. TBYTE —a variable of type thyic.

. A structure name: indicates a variable whose 1ype is equal 10 the number of
bytes allocated in the structure definition.

7. A record name: type will be either a byte or word depending on the size of
the record.

8. NEAR- -alabel of type near.
9. FAR- .alabel of type far.
10, ABS—a constant (17-bit number), always of type word. —_

[ R ]

The Placement of EXTRN’s

You must be careful in placing the EXTRN directive because the location af the
EXTRN directive in relation 1o the definition of program segments i3 very critical.
The following rules apphy:

1. If you know the segment in which the cxternal symbol is defined, then place
the EXTRN directive berween a SEGMENT/ENDS pair thai is identical to
the SEGMENT/ENDS pair in which the object was defined in the other
moduale. The object can be used like any other variable or label. For exam-
ple, if 1n the module SCAN.A86, vou defined a variable such as the one
helow
DATA SEGMENT WORD PUBLIC
COUNT o 0
PUBLIC COUNT
DATA ENDS

you would place the EXTRN directive in the modole, PARSE. A86, in the
{ollowing way:

DATA SEGMENT WORD PUBLIC
EXTRN COUNT:BYTE

DATA ENDS
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2. Il you do not know the segment in which the external symbel is delined, or
it the segment in which it is defined 15 non-combinable, then place the
EXTRN directive outside of all SEGMENT/ENDS pairs in your program.
To address Lhe external symbo! you must load the segment part (paragraph
number) of the symbol into a segment register using the SEG operator.

Moy AX, SEG CCUNT
Mgv  E5, AX

Then you must either use an ASSUME directive o verify addressability
such as
ASSUME ES:SEG COUNT

MOy DX, COUNT
or use a segment override for each use of that symbol.

mov DX, ES:COUNT

The END Directive
Syntax:

END [regint [...]]

Description:

The END directive is required in all ASM8B6 module programs. It is. appropriately,
the last statement in the module. [1s occurrence terminates the assembly process; any
text found beyond the END directive will be ignored (and an error will be issucd).
Another purpose of the END directive is to deline the module as being a MAINMO-
DULE, This implies that the code contained in the module will be the code that is
initially executed when the program is loaded into memory. Execution will begin at
the label in your code specilicd 4s the start address in the END directive.

The END directive can also be used to define the initial contents of DS and SS. It
specilics values to be placed in the scgment registers by the loader as it loads the
program prior to execution. [f this alternate means of initializing these registers is
used, then the initial values for CS:1P are required. You could also choose to write
some code (o do the same initialization.
for example:
ASSUNE CS:CODE, D5:DATA, S85:5TACK
DATA SEGMENT

ABYTE DE 0
DATR ENDS
STACK SEGMENT STACK

Duw 10 DUP (?)
STACKTOP DW &

.
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STACK ENDS

CODE SEGMEANT

START: MOV AL, ABYTE i DS 15 already initialized

CODE ENLCS

END START, DS:DATA, SS:STACK:STACKTOP ; CS:1P poinls to
; CODE:START
3 LS peints to
JATA

3 S5:SP peints to
s STRCK:STACKTOP

Field Values:
fregint|

This field defines the contents for a segment register (and also the registers IP
and SP). To initialize the segment registers, the following formats apply:

‘Segname’ is cither a segment name or a group name. L1 identilies the paragraph
number 10 be loaded into the segment register.

‘Labelname’ is the name of a label defined in the module. [1s offset will be used
to initialize 1P.

‘Varname is the name of a variable defined in the module. Its offset will be used
o initjalize SP.

To initialize CS and 1P:

labelname {the segment part of the label is used for CS)
orCS:labelname (same as ‘labelname™)
or

CS:segname:labelname (the segment part or paragraph number that is to

be loaded into CS is taken [rom segname)

To initialize 8S and SP:

SS:segname:varname {SP will be inttialized o the offset of varname)
or
SS:segname {SP will be initialized to be equal to the size of

the segment)
To initialize DS:

DS:segname
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The NAME Directive
Syntax:

NAME medname

Description;

Each object module that will be linked to others must have a unique name. The NAME
directive is used to specify this name. If it is not used, an error will occur and the
assembler will give the object module the default name ANONYMOUS. Using this
default nume can cause problems when linking together assembly language modules.
L1B-86 will report an error il two modules have the same name.

Field Values:
modname

A user-defined identifier. Hands-off and dual-function keywords are invalid and
will cause an error.
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The 8086 /8087 /8088 Instruction Set

The 8086/8088 Instruction Set

Instruction Statement Formats

The farmat for the instruction statement was introduced in Chapter 4. The format is
shown below:

[tabel:} [peefix nnemonic joperand [, operand|,

T'his chapter describes the 8086/8087/8088 instruction scl. The instruction set con-
sists of a set of mnemonics that sclect different machine operations. The instruction
set encyclopedia at the end of this chapter describes each of these mnemonics, their
operatians, and allowed operands.

Addressing Modes

The 8086 instruction set provides several different ways 10 address operands. Most
Iwo-operand instructions allow cither memory ar a register 10 serve as one operand,
and cither a register or a constant within the iasiruciion 1o serve as the other
operand. Memory (0 memory operations arg excluded.

Opcrands in memory may be addressed direcrly with a 16-biv offset address, or
indirectfy with base {BX or BP) andsor index (Sl or DI} registers added w0 an
opiional 8- or 16-bit displacemens consrant. This constan ¢an be the name of a
variable or « pure number. When a name is used, the displacement constant is the
variable's offsed (see Chapler 4).

The result of & two-operand operation may be direcled to either memory or a
register. Single-operand operations are apphcable unmiformly to any operand except
immediate constams. Virtually all 3086 operations may specify chber 8- or 16-bit
operands.

Memory Operands

Operands residing in memory may be addressed in four ways:

*  Direct 16-bit offsel address

¢ Indirect through a base regisier, BX or BP, optionally with an 8- or 16-bit
displacement

« Indirect through an index register, SEor DI, optionally with an 8- or 16-bit
displacement

* Indirect through the sum of one base register and onc index register, optionalty
with an 8- or 16-bit displacement.

The location of an operand in an 8086 register or in memory is specified by up to

three fields in each instruction. These ficlds are the mode ficld (mod), the register

field (reg), and the register/memory tield (r/m). When used, they occupy the second

byie of the instruction sequence. This byte is referred o as the Modrm byte of the

mnstruction.
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The mode field occupies the two most significant bits, 7 and 6, of the byte, and
specifies how the r/m field (bits 2, 1, 0) is used in locating the operand. The r/m
field can name a register that holds the operand or can specify an addressing mode
(in combination with the mod field) thai points to the location of the operand in
memory. The reg field occupies bits 5, 4, and 3 following the mode ield, and ¢an
specify that onc operand is either an 8-bit register or a 16-bil register. 1n some
instruciions, this reg field gives additional bits of information specifyving the instruc-
tion, rather than only encoding a register.

Description

The cffective address (EA) of the memory operand 1s computed according o the
mod and r/7m ficlds:

itmod — 0 then DISP = 0°, disp-low and disp-high are absent
ifmod = 01 then DISP = uisp-low sign-extended to 18 bits, disp-high is absenl
if mod = 10 then DISP = disp-high:disp-low

ifrim = 000then EA = (BX) + {SI) + DISP

itrim - 001 then EA = {BX) + |Dl) + DISP

itrim = 010then EA ={BP) + (Sh + DISP

itr/m = 011then EA =(8P) + {DI) + DISP

ifrim = 100 then EA ={Sh + DISP

itrim = 101 then EA ={Dl} + DISP

ifrim = 110 hen EA = (BP} + DISP*

ifrim = f111henEA - (BX} « DISP

‘exceptitmod =40 and rim = 11¢ then
EA - disp-high: disp-low

Instructions referencing 16-bit objects mierpret EA as addressing the Jow-arder
byte; the word is addressed by EA+1,EA.

Encoding

[ modreqrim [ oipiow [ _sisoman |

Segment Override Prefixes

General register BX and pointer register BP may serve as base registers, When BX iy
the base the operand by default resides in the current Data Segment and the DS
register is used (0 compure the physical address of the operand. When BP is the
base, the operand by defauli resides in the currcnl Stack Scgment and the 8§ seg
ment register is used 1o compute the physical address of the operand. When both
base and index registers arc used, the operand by default resides i the segment
deicimined by Lthe base register, i.¢., BX means DS is used, BP means S8 is used.
When an index register alone is used, the operand by default resides in the current
Data Segment. The physical address of most other memory operands is by default
computed using the DS segment register {exceptions are noted below). These
assemnbler-defaull segment register selections may be overridden by preceding the
referencing instruction with a segmeunt override prefix.

Description

The segment regisier selected by the reg field of a segment prefix is used to compute
the physical address for the tnstruction his prefix precedes. This prefix may be com-
bined with the LOCK and/or REP prefixcs, although the latter has certain require-
menis and consequences —see REP.
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Encoding

reg is assigned according o the following table:

Segmeni
(1] ES
D1 cs
10 SS
u o}

Exceptions

The physical addresses of all operands addressed by the SP register are computed
using the SS segment regisier. which may not be overridden. The physical addresses
of the destination operands of the string primitive operations (those addressed by
the DI register) are computed using the ES segment, which may not be overridden.

Register Operands

The lour 16-bit general registers and the four 16-bit pointer and index regisiers may
serve interchangeably as operands in nearly all 16-bit operations. Three exceptions
(0 note are multiply, divide, and some string operations, which use the AX regisier
inplicitly. The eight 8-bit registers of the HL group may serve interchangeably in 8-
bit operations. Multiply, divide, and some string operations use Al implicitly.

Description

Register operands may be indicated by a distinguished field, in which case REG will
represent the selected register, or by an encoded held, in which case EA will repre-
sent the register selecied by the r/m field, Instructions without a “'w™ bit always
refer to 16-bit registers (if they refer (o any register acall}; those with a **w™ bit refer

1o cither 8- ar i6-bit registers according 1o “*w'",

Encoding

Gengral Registers:

Distinguished Field.

r reg‘ or [ reg

for mode - 11 EA - rim{aregister.
11 req

REG is assigned according 10 the following table:

16-Bit [w = 1] 8-Bit [w = Q]
000 AX Do0 AL
001 CX 001 CL
010 DX 510 DL
01t BX 011 BL
100 SP 100 AH
101 BP i1 CH
10 SI 110 DH

111 O 1M1 BH
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Instructions tha reference the flag register file as a 16-bit object use the symbol
FLAGS 1o represent the Jite:

FLAGS X:X:X:X:(OFL{DFR(IFITFRISF)AZE X AAF P X {PFYEXACE) N
where X is undefined.
——

Immediate Operands

All rwg-operand operations except multiply, divide, and the string operattons allow

one source operand to appear within the instruction as immediate data. Sixteen-bit

immediate operands that have a high-order byte that is 1the sign extension of the low-
order byte may be abbreviated 10 eighi bits.

Three points about immediate operands:

¢ Iinmcdiate operands always foffow addressing mode displacement constants
{when present} in the instruction.

»  The low-order byte of 16-bit immediatc opecrands always precedes the
high-order byte.

*  The 8-bit immediatc operands of instructions with s:w = L1 arc sign-extended to
16-bt values.

String Instructions and Memory References

Table 6-1 shows the mnemonics of the string instructions that can be coded without R

operands (MOVSB, MOVSW | e1¢.) or with operands (MOVS, etc.).

The string instructions are wnusual in several respects:

1. Before coding a steing instruclion, you musl:

*  Load 31 with the offset of the source string.
¢ fLoad DI with the oftset of the desiination string.

2. Oneof the forms of REP (REP, REPZ, REPE, REPNF, REPNZ) can be coded
immediately preceding (but separated from by ar least one blank) the primitive
string operation moemonic {thus, REPNZ SCASW is one possibility). This
specifies that the string operation is to be repeated the number of times derer-
mined by CX. (Refer to insiraction descriptions.)

3. Each can be coded with or without symbolic memory operands.

* {f symbolic operands are coded, the assembler can cheek the addressability
of the operands.
Table 6-1. String Instruction Mpemeonics
Operation Mnemeonic it Mnemonic it Mnemonic if
Being Operand |s Operand |s Symbolic Operands
Periormed Byte Siring Word String Are Coded*
Ramma

Move MOVSB MOVSw MOVS
Compare CMPSB CMPSW CMPS
Load ALFAX LODSB LODSW LODS
Store from ALIAX $T0SB STOSW §TOS
Compare to ALIAX SCASB SCASW SCAS
Block tnput INSB INSW INS
Block Qutput OUTSB ouUTSW QUTS

“If symbonc operands are coded, the assembler can check their addressabulity. Also. their

TYPEs determine the opcode generated.
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*  Anonymous references that use the hardware defaults should be coded
using the operand-less forms (c.g. MOVSB, MOVSW), 10 avoid the
cumbersome (but otherwise required):

MOVS ES:BYTE PTR [DI], [SI]
as opposed o the simple:

MO¥SB

¢ Anonymous references that do not use the hardware defaults require both
segment and type to be explicitly specified:

MOVS ES:BYTE PTR (DI), SS:([SI]

* Never use [BX] or {BP] addressing modes with string instructions.

4. If the instruction mnemonic is coded without operands {(e.g., MOVSR,
MOVSW), then the segment register defaults are as follows:

*  Sldefaults to an of (set in the segment addressed by DS,
* Dlisrequired to be an offset in the segment addressed by LS.

Thus, the direction of data flow for the default case in which no operands are
specified is from the segment addressed by DS to the segment addressed by ES.

5. Il the instruction mnemonic is coded with operands {e.g. MOVS, CMPS), the
operands can be anonymous (indirect) or they can be variable relerences.

Example:

DESTSTRING EQU ES:BYTE PTR [DI)
SRCSTRING EQU DS:BYTE PTR [$11]
ASSUME CS5:CODE, DS:DATA, ES:DATA)
DATA SEGMENT

SRCARRAY DB 10 DUP (1)

DATA ENDS

DATAT SEGMENT

DESTARRAY DB 10 DUP (?)

DATA1 ENDS

CO0E SEGMENT
MOV AX, DATA

Moy DS, AX FINIT DS
MOV AX, DATA1
MOV ES, AX ;INIT ES

MOV SI, OFFSET SRCARRAY
MOV DI, OFFSET DESTARRAY

;INIT POINTER REGISTERS

MOV CX, 10 ;NUMBER OF ELEMENTS
REP MOVS DESTSTRING, SRCSTRING



6-6 Asmss

;PERFORM STRING OPERATION

CODE ENDS

Mnemonic Synonyms

There are some machinc operations thar can have diffcrent mnemonics. The dif-
ferent mnemonics are all synonyms in that they refer 1o the same machine instruc-
tons. They are supplied by the assembler (o allow you 10 think of the operation in
lerms that are more helpful for your task, Many of the condifional jump instruc-
vons have more than one mnemonic, When used after a compare, the conditional
jump mnemonic can express the type of compare or the result of the compare in
terms of the flags that were set. For example,

CMP  DEST, SRC
JE LAB1 ;jump if dest is equal to sgurce

or

CMP  DEST, SRC
JZ LABI sjump if zero flag set {(dest = src)

In both cascs, the same instruction will be encoded for the jump. Programmers
familiar with other assembly languages that use conditional jump nnemonics that
refer to flags may be more com(fortable using this form. However, the first form that
expresses the relationship the compare is checking between the operands is more
eXPressive.

Organization of the Instruction Set

Instructions are described in this section in six functional groups:
*  Datatransfer

* Arithmelic

*  Logic

¢ Siring manipulation

e Contro! transfer

*  Processor control

Each of the first three groups mentioned in the preceding list ts further subdivided
into an array of codes that specily whether the instruction is to act vpon immediate
data, register or memory locations, whether 16-bit words, or 8-bit bytes are o be
processed, and what addressing mode is 10 be employed. All of these codes are listed
and explained in detail, bur you do not have (o code each one individually. The con-
text of your program automatically causes the assembier to generate the correct
code. T'here are three general categories of instructions within each of the three func-
tional groups mentioned:

1. Register or memory space 1o or from register
2. Immediate data to register or memory
3. Accumulator to or from registers, mecmory, or ports
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Data Transfer

Data transfer operations are divided into four classes:
1 gencral purpose

2 accumulator-specific

3 address-object

4 flag

None affect flag seitings except SAHF and POPF,

Gengral Purpose Transfers

Four gencral purpose data transfer operations are provided. These may be applied
to most opcrands, though there are specific exceptions. The general purpose
transfers (except XCHQ) are the only operations that allow a segment regisier as an
operand.

—-- MOV performs a byte or word transter from the source {righunost) operand o
the destination (leftmost) operand.

— PUSH decrements the SP register by two and then transfers a word lvom the
source operand to the stack element currently addressed by SP.

— POP transfers a word operand from the stack element addressed by the SP
register to the destination operand and then increments SP by 2.

— XCHG exchanges the byte or word source operand with the destination operand.
The segment registers may not be operands of XCHG.

Accumulator-Specific Transfers

Three accumulator-specific transfer operations arc provided:

—- IN transfers a byte {or word) from an input port (o the AL regisier {or AX
repister). The port is specified either with an inline data byte, allowing fixed
access (o ports 0 through 255, or with a port number in the DX register, allowing
vatiable access 1o 64K input ports.

— OUT s similar to IN except that the {ransfer is from the accumulator to the
oulput port.

— XLAT performs a table lookop byte translation. The AL register is used as an
index into a 256-byte table addressed by the BX register. The byte operand so
selected is transferred to AL.

Address-Object Transfers
Three address-object transfer operations are provided:

— L.LEA (load effective address) transfers the offset address of the source operand to
the destination opcrand. The source operand must be a memory operand and the
destination operand must be a 16-bit genceral, pointer, or index register.

— LDS (load pointer into DS) transfers a “‘pointer-object” {i.e., a 32-bit object
conlaining an offset address and a segment address) from the source operand
{which must be a doubleword memory operand) to a pair of destination registers.
The segment address is transferred to the DS segment register. The ofset address
is transferred 10 the 16-bit general, pointer, or index register that you coded.

— LES (load pointer into ES) is simitar to LDS except that the segment address is
transferred to the ES segment register.
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Flag Register Transfers

Four llag register transter operations are provided:

— LAHF (load A wiath flags) transfers the flag registers SF, ZF, AF, PF, and CF
{the 8080 flags) into specific bits of the AM register.

— SAHF (store AH into flags) transfers specific bits of the AH register to the flag
registers. SF, ZF, AF, PF, and CF.

— PUSHF (push flags) decrements the SP register by two and transfers all of the
flag registers into specific bits of the stack element addressed by SP.

— POPF (pop flags} transfers specific bits of the stack element addressed by the SP
regisier to the flag registers and then increments SP by twa.

Arithmetic

The 8086/8088 provides the four basic mathematical operations in a number of dif-
ferent varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic are provided. Standard twos complement representation of signed values
is used. The addition and subtraction operations serve as both signed and unsigned
operations. In these cases the flag settings aliow the distinction between signed and
unsigned operations to be made (see Conditional Transfer), Correction operations
are provided 1o allow arithmetic 10 be performed direcdy on unpacked decimal
digits or on packed decimal representations.

Flag Register Settings

Six flag registers are set or cleared by arithimetic operations to reflect certain proper-

tics of the result of the operation. They generally follow these rules (see also Appen-

dix C):

—-- CFissetif the operation results in a carry out of (from addition) or 2 borrow into
(from subtraction) the high-order bit of the result; otherwise, CFis cleared.

— AF is set if the operation results in a carry out of (from addition) or a borrow into
{from subtraction) the low-order four bits of 1he result; otherwise, AF s cleared.

— ZFisset if the result of the operation is zero; otherwise, ZF is cleared.

— SF is set if 1be bigh-order bit of the result of the operation is sef; otherwise, SF is
cleared.

— Pt is set if the modulo 2 sum of the low-order eight bits of the result of the
operation is 0 {even parity); otherwise, PF is cleared (odd pariiy).

— QF is set if the operation results in a carry inlo the high-order bit of the result but
not a carry out of the high-order bit, or vice versa; otherwise, OF is cleared.

Addition

Five addition operations are provided:

— ADD perferms an additton of the source and destination operands and returns
the result to the destination operand.

— ADC (add with carry) performs an addition of the source and destination
operands, adds one if the CF flag is found previously set, and returns the resul( to
the destination operand.

— INC (increment) performs an addition of the source operand and one, and
returns the result 10 the operand.

— AAA (unpacked BCD (ASCII) adjust for addition) performs a correction of the
result in AL of adding two unpacked decimal operands, yielding an unpacked
decimal sum.

— DAA (decimal adjust for addition) performs a correction ol the result in AL of
adding two packed decimal operands, yielding a packed decimal sum.



The 8086 /8087 /8088 Instruction Set 6—9

Subtraction
Seven subtraction operations are provided:

— SUB performs a sublraction of the source from the destination operand and
returns the result 1o the destination operand.

— SBB (subtract with borrow) performs a subtraction of the source from the
destination operand, subtracts onc if the CI flag is found previously set, and
returns the result to the destination operand.

— DEC {decrement) performs a subiraction of one from the source operand and
returns the result to the operand.

— NEG (negate) performs a subrraction of the source operand from zero and
returns the result to the operand.

— CMP (comparc¢) performs a subtraction of the source destination operand,
causing the flags to be affected, but does not rewurn the result.

— AAS (unpacked BCD (ASCII adjust for subtraction) performs a correction of
the result in AL of subtracting two unpacked decimal operands, yielding an
unpacked decimal difference.

— DAS {decimal adjust for subtraction) performs a carrection of the result in AL of
subtracting two packed decimal operands, yielding a packed decimal difference.

Multiplication

Three multiplication operations arce provided:

— MUL performs an unsigned multiplication of the accumulator {AL or AX) and
the source operand, returning a double length result (o the accumulator and its
exiension (AL and AH for 8-bit operation, AX and DX for 16-bit operation}. CF
and OF are set if the top half of the result is non-zero.

— IMUL (integer multiply) is similar to MUL escept that it performs a signed
muttiplication. CF and OI° are set it the top half ol the result is not the sign-
extension af the low half of the result.

AAM (unpacked BCD (ASCID adjust for multiply) performs a correction of the
result in AX of multiplying two unpacked decimal operands, yielding an
unpacked decimal product.

Division

There are three division operations provided and 1wo sign-extension operations 10

support signed division:

— DIV performs an unsigned division of the accumulator and its extension (AL and
AH for 8-bit operation, AX and DX lor 16-bi1 operation) by the source operand
and returns the single length quoticnt to the accumulator (AL or AX), and
returns the single length remainder to the accumulator exiension (AH or DX).
The flags are undefined. Division by zero generates an interrupt of type 0.

— IDIV {integer division) is similar to DIV except thar it performs a signed division,

- AAD (unpacked BCIY (ASCII) adjust Tor division} performs a correction of the
dividend in Al before dividing lwo unpacked decimal operands, so that the result
will vield an unpacked decimal guotient.

— CBW (converl byte to word) performs a sign extension of AL into AH.

— CWD (convert word to double word) performs a sign extension of AX into DX.
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Logic
The 8086/8088 provides the basic logic operations for both 8- and 16-bit operands.

Single-Operand Operations. Three-single-operand logical operations are provided:

— NOT f[orms the one’s complement of the source operand and returns the result to
the operand. Flags are not affected.

— Shift operations of four varieties are provided for memory and repister operands:
SHL (shift logical left), SHR (shift logical right), SAL (shifi arithmetic left), and
SAR (shift artthmetic right). Single bit shifts, and variable bit shifts with the shitt
count taken from the CI. register are available. The CF flag becomes the last bit
shifted out, OF is defined only for shifis with count of I, and is set if the final
sign bit value differs from the previous value of 1he sign bit, and PF, SF, and ZF
are set to reflect the resulting value,

— Rotate operations of four vaneties are provided for memory and register
operands: ROL (rotate left), ROR (rotate right), RCL (rotate through CF left),
and RCR (rotate through CI right). Single bit rotates, and variable bit rolates
with the rotate count taken from (he CI. register, are availabie. The CF {lag
becomes the last bit rotated cut; OF is defined only for shifts with count of 1, and
is set if the final sign bit value differs from the previous value of the sign bit.

Two-Operand Operations

Four two-operand logical operations are provided. The CV¥ and OF [lags are cleared

on all operations; St, PE and ZI" vreflect the result.

— AND performs the bitwise logical conjunction of 1he source and desunanoen
operand and returns the result (0 the destination operand.

— TEST performs the same operations as AND, caustng the flags 10 be aflected bul
does not relurn the resuic.

- OR performs the bitwise logical inclusive disjunction ol the source and

destination aoperand and returns the result to the destination operand.

— XOR performs the bitwise logical exclusive disjunction of the source and
destination operand and returns the resuli 1o the destination operand.

String Manipulation

One-byte instructions perform various prinitive operations for the maniputation of
byle and word strings {(sequences of bytes or words). Any primitive operation can be
performed repeatedly in hardware by preceding its instruction with a repeat prefix
(se¢c REP). The single-operation forms may be combined 10 form complex string
operations with repetition provided by ilcration operations.

Hardware Operation Control

All primitive string operations use the S1 register to address the source operands.
The DU register is used (o address the destination operands that reside in the current
extra scgment. Il the DF flag is cleared, the operand potnters are incremented alier
gach operation, once for byte operations and twice [or word operations. [f the DF
flag is set, the operand potnters are decremented after cach operation. See Processor
Control for setting and clearing DF.

Any of the primitive string operation instructions may be preceded with a one-byte
prefix indicaling that the operation is to be repeated uniil the operation count in CX
is satisfied. The 1est for completion is made prior 1o each repetition of the operation.
Thus, an initial operation count of zero in CX will cause zero executions of the
primitive operation.
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The repeat prelix byte also designates a value (o compare with the ZF flag. If the
primitive operation is ove that affects the ZF flag, and the ZF flap is unequal to the
designated value after any execution of the primitive operation, the repetition is ter-
minated. This permits the scan operalion, for example, to serve as a scan-while or a
scan-until.

During the execution of a repeated primitive operation, the operand index registers
{SJ and DI) and the operation count register (CX) are updated after each repetition,
whereas (he instruction pointer will retain the offset address of the repeat prefix byte
(assuming it immediately precedes the siring operation insiruction). Thus, an inter-
rupted repeated operation will be correctly resemed when control returos {rom the
interrupting task.

Using more than one prefix on an instruction is processor dependent. Please refer 1o
the User’s Manual for your processor for further information.

Primitive String Operation

Five primitive string operations are provided:

—-MOVS (MOVSB, MOVSW) transfers a byte (or word) operand from the source
{rightmos() operand to the destination (leftmost) operand. As a repeated opera-
tion, this provides for moving a string from one localion in memory 10 another.

— CMPS {CMPSB, CMPSW) subtracts the rightmosi byte (or word) operand from
the leltmost operand and affects the flags but does not return the result. As a
repeated operation, this provides for comparing two strings. With the appro-
priate repeat prefis it is possible to determine after which string element the two
strings become unequal, thereby establishing an ordering betwecn the strings.

— SCAS (SCASB, SCASW) subiracis the destination byte (or word) operaud from
AL (or AX) and affects 1he Tlags but does not return the result. As a repeated
operation, this provides for scanning for the occurrence of, or departure from, a
given value in the string.

— LODS (LODSB, LODSW) transfers a byte (or word) operand from the source
operand to AL {(or AX). This operation ordinarily would not be repeated.

— STOS (STOSD, STOSW) transfers a byte (or word) operand from AL (or AX) to
the destination operand. As a repeated operation, this provides for fitling a string
with a given value.

In all the cases above, the source operand is addressed by ST and the destination
operand is addressed by DI Only in CMPB/CMPW docs the Di-indexed operand
appear as Lhe rightmost operand.



6-12 AsMmsée

Software Operation Control

The repeat prefix provides for rapid iteranon in a hardware-repeated siring opera-
tion. The iteration control operations (see LOOP) provide this same control for
implementing software loops 10 perform complex siting operations. These iteration
operations provide the same operation count update, operation completion test, and
ZF flag tests that the repeat prefix provides.

By combining the primitive siring operations and iteration control operations with
other operations, it is possible to build sophisticated yct efficient string manipula-
iton roukines. One instrucilion that is particularly useful in this context s XLAT. It
permits a byte fetched from one string to be translated before being stored in a sec-
ond siring, or betore being operated upon in some other fashion. The translation is
performed by using the value in the AL register as an index into a table pointed a1 by
the BX register. The iranslated value obtained from the table then replaces the vatue
nitally in the AL register (see XLAT).

Control Transfer

FFour classes of control transfer operations may be distinguished: calls, jumps, and
returay; conditional translers: iteration control; and interrupts.

Allcontrol transfer operations cause the program execution to continuc at some new
location in memory, passibly in a new code segment. Conditional transfers are pro-
vided for targets in therange -128 to +127 bytes from the wransfer.

Calls, Jumps, and Returns

Two basic varicties of calls, jumps, and returns are provided—those that transfer
control within the current code segment, and those that transfer controt 1o an arbi-
trary code segment, which then becomes the current code segment. Both dircct and
indirect transfers are supported; indirect transfers make use of the standard address-
g modes as described in above.

The three transfer operations are described below.

— CALL pushes the offset address of the next instruction onto the stack {in the case
of an inter-segment transfer the CS segment register is pushed first) and then
1ransfers control to the target operand.

— JMP transfers control to the 1arget operand.

— RET transfers control 10 the return address saved by a previous CALL operation,
and optionally may adjus! the SP register s0 as to discard stacked parameters.

Intra-segment direct calls and jumps specify a self-relative direct displacement. thus
allowing position independent code. A shortened jump instruction is available for
transiers in the range —128 to +127 bytes Irom the instruction for code compaction.

Conditional Jumps

The conditional transfers of control perform a jump contingent upon various
Boolean functions of the flag registers. The destination must be within a =128 o
+127 byte range of the instruction. Table 6-2 shows the available instructions, the
conditions associated with them, and their interpretation.
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Table 6-2. 8086/8087 Conditional Transfer Operations

Instruction Condition Interpretation
JE orJz ZF =1 “‘equal'’ or “'zero™
JLor JNGE {SF xar OF) =1 "less' or “'nol greater ar equal '
JLE or ING {(SF xor OF) or ZF) =

1 Y'less or equal’’ or '"not grealer’
JB or JNAE CF =1 “‘below’” or "'not above or equal’’
orJC or''carry”’
JBE or JNA {CForZFy=1 “'below ar equal™ or 'not above'”
JP or JPE PF=1 “parity’ or 'parity even'
3O OF -1 "overflow"”
Js SF-1 sign'!
JNE or JNZ ZF-0 “not equal’’ or ''not zero'”
JNL or JGE {SF xor QF} -0 "'not less' or "‘greater or equal™
JNLE ar JG ({SF xor OF) or 2F) =

Q0 "not less or equal’ or 'greater”’
JNB or JAE CF =20 "'not below" or 'above or equal’’
or JNC or*'no carry'’
JNBE or JA {CFur2Fy=0 T'not below or equal™ or 'above’”
JNP or JPO PF-0 “'nol panty” or "'parity odd "’
JNO OF=0 nol overflow™
JNS SF-0 “nol sign"’

“U'Above' and “'below’ reter to the relabion between two unsigned values, while "greater™
and *'less’’ refer 10 the relahon between two signed values.

Iteration Control

The teration control transfer operations perform leading- and wrailing-decision loop
control. The destinavion of iteration control transfers must be withina - 128 10 +127
byte range of the instruction. These operations are particularly useful in conjunction
with the string manipulation operations.

There are four iteration control transfer operations provided:

— LOOP decrements the CX (“‘count’) register by one and transfers if CX is not
7ero.

— LOOPZ (also called LLOOPE) decrements the CX register by one and transfers if
CX isnot zero and the ZF flag is set (loop while zero ot loop while equal).

— LOOPNZ (also called LOOPNE) decrements (he CX register by onc and
transfers if CX is not zero and the ZF tlag is cleared (loop while not zero or loop
while not equal).

— JCXZ wransfers if the CX register is zero.

Interrupts

Program execution control may be (ranslerred by means of operations similar in
effect to that of external interrupts. All interrupts perform a transfer by pushing the
Mag registers onto the stack (as in PUSHF), and then performing an ndirect inter-
segment call through an element of an interrupt transfer vector located at absolute
locations 0 through 3FFH. This vector contains a four-byle element for each of up
1o 256 different interrupt types.
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‘Three interrupt transler operations provided.

— INT pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through any one of the 256 vector elements.
A one-byte form of this instruction is available for interrupt type 3.

— INTO pushes the flag registers (as in PUSHF), clears the TT and IF flags, and
wransiers control with an indirect call through vector elemenc 4 if the OF flag is set
(trap on overflow). If the OF flag is cleared, no operation takes place.

— IRET t(ransfers controi to the return address saved by a previous intcrrupt
operation and restores the saved flag registers (as in POPF).

Processor Control

Various instructions and mechanisms are provided for control and operation of the
processor and Hs interaction with its environment.

Flag Operations

There are seven operations provided that operate directly on individual flag

regis(ers.

— CLC clears the CF flag.

— CMC complements the CF flag.

- §TC sets the CF flag.

— CLD clears the DV flag, causing the string operations (o auto-incremen( the
operand pointers.

— STD sets the DF flag, causing the string operations to auto-decrement the
operand pointers.

— CLI clears the IF flag, disabling external interrupts (except for the non-maskable
exicrnal inferrupi}.

— ST sets the IF flag, enabling external tnterrupts after the execution of the next
mstruction,

Processor Halt

The HLT instruction causes the 8086 processor (o enter its haly state. The halt state
i1scleared by an enabled external interrupt or RESET.

Processor Wait

The WAIT instruction causes the processor to enter a4 wait state if the signal on its
TEST pin is not asserted. The wail statc may be interrupted by an enabled external
interrupt. When this occurs the saved code location is that of the WAIT instruction,
50 that upon return from the interrupting task, the wait stale is re-entered. The wait
state is cleated and execulion resumed when the TEST signal is asserted. Execution
resumes withoul allowing external interrupts until afier the execution of the next
instruction. This instruction allows the processor to synchronize itsell with external
hardware.

Processor Escape

The ESC instruciion provides a mechanism by which other processors may receive
their instructions from the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 processor does no operation for the ESC instruction
other than to access 2 memory operand.
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Bus Lock

A special one-byte prefix may precede any insiruction causing the processor to assert
its bus-lock signal for the duration of the operation caused by that instruction. This
has use in multiprocessing applications {see LOCK).

Single Step

When the TT flag register is set, the processor gencrates a type | interrupt afier the
execution of each instruction. During interrupt transfer sequences caused by any
type of interrupt, the TF flag is cleared after the push-flags step of the interrupt
segquence. No instructions are provided for setting or clearing TF dircctly. Rather,
the flag register image saved on the stack by a previous interrupt operation tmust be
modified, so that the subsequent interrupt return operation (IRET) restores TF set.
This allows a diagnostic task to single-step through a task under test, while stl) exe-
cuting normally itself.

IT the single-stepped instruction itsell clears the TF flag, the type | interrupt will still
occur upon completion of the single-stepped instruction, If the single-stepped
instruction penerates an interrupt or 1f an enabled external interrupt occurs prior (0
the completion of the single-steppcd instruction, the type 1 interrupt sequence will
occur after the interrupt sequence of the generated or external interrupt, but before
the firstinstruction of the interrupt service routine is executed.

The 8086/8088 hardware protects the execution of the instruction immediately
following a POP or a MOV 10 a scgment register instruction from any kind of inter-
rupt, including type 1 interrupts vsed to single-step. When single-stepping through a
task under test, the single-step interrupt is not recognized until the nstrocton
following the POP or MOV (0 a segment register instruction is executed.

Example
TEST .TASK SEGMENT
ASSUME CS:TEST .TASK
INSTRUCH: POP DS
INSTRUGZ: POP BX
INSTRUCS: ADD AX, [BX]
TEST TASK ENDS

When single-stepping through TEST _TASK, INSTRUCI seps to INSTRUC3
since the single-step interrupt is not recognized by the 8086/8088 until the instruc-
tion following the POP to the DS segment register (POP BX) is executed.

Instruction Description Formats

The formats presented in the individual instruction descriptions and briefly dis-
cussed bere reflect the assembly language processed by the 8086/8087/8088 Macro
Assembler {ASMB6).
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Format Boxes

The individual instruction descriptions show tirst a format box such as the following
example.

Mem/Reg ¥ Inmediate to Reg

Opcode ModRM - l ___ J Data | : :l

These are byte-wise representations of the object code generated by the assembler

and are interpreted as {ollows:

*  Opcode is the 8-bit opcode for the instruction. The actual opcode generated is
defined in the “*Opcode’ ¢olumn of the instruction table that follows cach
format box.

*  ModRM is the byte that specifies the operands of the instruction. It contains a
2-bit mode field {MOD), a 3-bit register field {(REG), and a 3-bit Register or
Memory (R/M) field.

¢  Dashed blank boxes following the ModRM box are for any displacement
required by the mode leld.

¢  Datais for a byte of immediale data.

* A dashed blank box following a Data box i1s used whenever the immediate
operand is a word quantity.

instruction Detail Tables

Following each formal box, an instruction detail table shows the opcode, the
number of clocks required for the operation 1o take place, the actual operation per-
formed, and a coding example [or each variant of the instruction.

The instruction detail table for (he instruction IMUILL is shown below. I'he examples
in the table are neither complete nor restrictive; anyplace there is a memory operand,
any of the seven memory addressing modes can be used.

Opcode Clocks Operation Coding Example
FB 80-98 AX -~ AL"Req8 IMUL BL
Fé (86-104) + EA AX -+ AL Mem@ IMUL BYTESOMETHING
F7 128-154 DX -AX +~ aX " Reg 16 IMUL  BX
F? (134 160) + EA DX:AX «- AX * Mem 16 IMUL  WORDSOMETHING
Flags

The Mlags produced by each instruction are rcpresented by a table such as the
following:

0D PTYTS ZAPC
X - - =uUyuuuXx

P
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The top line in the table represents the individual flags, and the lower line shows the
effect on each flag by the instruction. The letters, numbers and symbols used in the
table are defined as follows:

Flag Definition
(6] Overflow
D Direction {used in slring ops)
| Imerrupt Enable {1-gnabled)
T Single Step Trap Flag (causes interrupt 1 after next insiruction)
S Sign
Z 2ero
A Auxiliary Carry (used primarily in BCD ops)
P Parity
C Carry
Etfect
Code Effect
X Moditied by the ingiruction; result gepends on operands.
- Not modilied.
U Undehined atter the instrucition,
1 Setto 1 by the instruction.
0 Setto 0 by the instruction.
Table 6-3. Symbols
8Q86/3088 .
Descriplor Meaning
AX Accumulator {16-bit}
AH Accumulator {mgh-order byte}
AL Accumulalor (‘ow-order byte)
BX Regisler BX {16-bi), which may be split ang addressed as {wo
8-bitregisters
BH High-order byte of regisier BX.
BL Low-order hyle of register BX.
CX Regisler CX {16-hit), which may be split and addressed as two
8-bitregisters.
CH High-order byte of register CX.
CL Low-nrder byle of register CX.
OX Regisler DX {16-brly, which may he splil and addressed as two
&-btregisters.
OH Higr-order byte of register DX
DL Low-order byte of register DX.
SP Stack pointer {16-bit)
8P Base pointer {16-bit}
I4 Instruction. Pointer {15-bil)
F ags 16-tit register space, in which nine flags reside.
DI Desbination Index register {16-bit}
Sl Stack Index register {16-bit)
cs Code Segment register (16-bit)
DS Data Segment register (16-bit)
ES Extra Segment register (16-bit)
88 Stack Segment register {16-bit}
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Table 6-3. Symbols (Cont'd.)

Meaning

808678088
Descriptor
REG8
REG16
LSRG, RSRC
req
Ea
rim
mode
w
]
l...}
(BX)
{BX))
(BX} + 1.(BX}
((BX) + 1.¢BXY)

Concatenation, e.q.,
{{DX} + 1:(DX)}

aodr
addr-low
addr-high
addr + 1: addr

dala
data-low
data-high
disp
disp-low
disp-high

The name or encoding of an 8-bit CPU register lecation.

The name or encoding of an 16-bit CPU register location.
Refer 1o operands of an instruction, generally left source and
right source when lwo operands are used. The leftmost
operand is also called the deslination pperand, and the
rightmost is called the source operand.

A field that specifies REGE or REG16 in the description ot an
instruction.
Effeclive address (16-bit)

Bits 2, 1, and 0 of the MODRM byie used in accessing
memory operands. This 3-bit lield defines EA, in conjunction
with the mode and w tields.

Bits 7 and 6 of the MODRM byte. This 2-bit field defines the
addressing mode.

A 1-bit field in an instruction, identilying byte instructions
(w=D), and word instructions (w—1)

A 1-bit field in an instruction, "*d" identifies direction, i.e.
whether a specified regisler is source or destination,
Parentheses mean the contents of the enclosed register or
memory location,

Represents the contents of register BX, which ¢can mean the
agdress where an 8-bit operand is located. To be so used in
an assembler instruction, BX must be enclosed only in
square hrackets.

Means this 8-bit operand, the conlents ol the memory
focation pointed at by the contents of register BX. This nota-
tion 15 only descriptive for use in this chapter. It cannot
appear in source stalements.

Means the address (of a 16-bd operand} whose low-osdoer
8-Dits reside in the memory location pointed at by the con-
ten1s of register BX and whose high-order 8-bits reside in the
nex! sequential memory location, (BX) + 1

Means the 16-bit operand that resides therc.

teans a 16-bil word that is Ihe concatenation of two B-bit
bytes, the low-ordeér byte in the memaory location poynted at
by DX and the high-croer byte in the nexl sequential memory
location.

Address (16-bit) of a byte in memory
Leas signiticani bytle ol an address.
Most signilicant byte of an address.

Addresses pftwo ¢onseculive bytes inmemory, beginning at
addr.

Immediate operand (8-bit if w=0;16-bitit w=1)
Least significant byte of 16-bit data word.
Most significant byte of 16-bil data word.
Displacement

Least significant byte of 16-bit displacement.
Most significant byle of 16-bit displacement.
Assignment

Addition

Subftraction

Multiplication

Dwision

Module

Ana

Inciusive ar

Exclusive or
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Table 6-4. Effective Address Calculation Time

EA Components Clocks*
Displacement Only 6
Base or Index Only (BX BP,SL.OI) 5
Displacement .

¥
Basc or Index (X, BP.SI. DI
Base BP + DI, BX + 81 7
+
Index BP + 81, BX+ D\ 8
Displacement 8P + Di + ISP "
+ BX + S1+ DISP
Base
+ BP + S1+ QISP 12
Index BX + Dl + DISP

*Add 2 clocks for segment override
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MNEMONIC —Sample 80868088 Instruction

Format

|_opcode mdrm I - : | data l dataj
[ R Y

immediate data (etthar 8- or 16-bits)

an oflset value {either 8- or 16-bits)

amod/im byte \f needed

the cpcode
Opcode Clocks Operation Coding Exampis
Ithe value {n,mber ol clocks {ihe maching operalian) MNEMONIC
ofthe required)
apcode
bytel
QOperation

{A deseripuion of the machine operation.)

Flags
0D 1 TS 2 4APC

{shows the effect on the flags)

Description

{Describes the use/operation of the instruction.)



The 8086 /8087 /8088 Instruction Set 6—-21

AAA—ASCII Adjust for Addition

Format

Opcode Clocks Operation Coding Example

37 4 adjusl AL l:ags. AH ABA

Operation

it (AL & OFH) > 8 or AF = 1 then do;
AL~ AL + B
AH—AH + 1
CF — Af —1

end;

AL~ AL&OFH

Flags

DI TS 2ZAPC

v ---uUuxuzx

Description

AAA is used to correct the result of adding two unpacked BCD digits in the AL
register. After the normal byte addition, AAA tests the auxiliary carry flag (AF),
which is sct by a catry out of the low nibble of AL. It either the AF ts set or 1he low
nibble of Al is greater than 9, then a carry bit is added to the All register, and the
low mbble of AL 15 increased by 6 to prodoce the decimal digit. AL is masked to 4
bits whether an adjustment was perfarmed or not, thus always leaving an unpacked
BCD result in the low nibble of AL. High nibble data does not affect the corrected
result of the addition, so ASCII digits can be added correctly by following the AAA
with an OR AL,30H to restore the result to an ASCII character. The digit carry, in
AH, is not affected by this restoration.,
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AAD—ASCII Adjust for Division

Format

| long——o0pcode |

Qpcode Clocks Operaiion Coding Example
D5.GA 80 Agjust AL, AM prigr to division AAD

Operation

AL — AL + (AH* 0AH)

AH -0

Flags

op I TS ZTAPC

Uu---XXuxuw

Description

AAD is uscd to prepare 2 unpacked BCD digits (leasy significant in AL, most signifi-
cant in AH) for a division operation that will vield an unpacked result. This is
accomplished by multiplying AH by 10 and adding the product to AL. Then AH is
seroed, leaving AX with the binary equivaient of the original unpacked 2-digit
number.
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AAM—ASCII Adjust for Multiplication

Format

| Long —— Opcode |

Opcode Clocks Operalion Ceding Example

D4.0A 83 Adjust AL, AH after AAM
mulnplication

Operation

AH — (AL ! DAH)
AL ~ (AL MOD 0AH)

Flags

0DI1I TS 2 APC

b=---XXUxu

Description

AAM is used to produce 2 unpacked BCD digits (least significant in AL, most
significant in AH) afier a multiphication of 2 unpacked digits. This is accomplished
by dividing the binary product in AL by ten. The quotient is left in All as the most
significant digit, and the remainder is leftin AL as the least significant digit.
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AAS—ASCII Adjust for Subtraction

Format

Qpcode Clocks Operation Coding Example

3F 4 adjust AL, flags, AH AAS

Operation

if (AL & OFH} > 9 or AF — 1 Llhen do:
AL~ AL-B
AH — AH -1
CF — AF -1

end;

AL —~AL&OFH

Flags

0D1 TS ZAPC

Uu-=--uuxux

Description

AAS is used 10 correct the result of subtracting 1wo unpacked BCH digits in the AL
register. After the normal byte subiraction, AAS tests 1he auxiliary carry flag (AF),
which is set by a carry out of the low nibble of Al 1f the AF is set or the low nibble
of Al is greater than 9, then a borrow bitis subtracted from AH, and the tow nibble
of AL is decreased by 6 to produce the proper decimal digit. AL s masked to 4 bits
whether an adjustment was performed or not, thus always leaving an unpacked
BCD result in the low nibble of AL. High mbble data does not aflect the corrected
result of the subtraction, so ASCII digits can be subtracted correctly by following
the AAS with an OR AL,30H 10 restore the result to an ASCI! character. The digil
borrow, in AH, is not affected by this restoration.
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ADC —Integer Add With Carry

Format

Memory/Reg + Reg

Opcode ModRM
Opcode Clocks Operation

12 3 Regt -~ CF + Reg#f + Regd

12 9+ EA Reg8 ~ CF + Regh + MemB

13 3 Req1é ~ &F + Regl6 + Reglb
13 9+EA Reg16 - CF + Reglé + Memibp
10 16+ EA MemB ~ CF + Mem# + Regh

11 16 +EA Memi1B6— CF + Mem1§ + Regl6

[Immed to AX/AL

Opcode Dala I |
Opcode Clocks Operalion
i d AL = CF + AL + linmedd

k] 4 AX - CF + AX + Immedid

Immed (0 Memory/Reg

_ _ 1

Coding Example

ADC BL.CL

ADC BL.BYTESOMETHING
ADC BX.CX

AUC BX WORDSOMETHING
ADC BYTESOMETHING.BL
ADC WORDSOMETHING BX

Coding Example

ADC AL.b
ADC AKX, AD0H

Opceode ModRM* Data |
‘~{Req field =010)
Opcade Clocks Cperation Coding Example
A0 1 Reg - CF + Reqd + Immeda ADC BL.22
80 17+FA Mems - OF = Mem8 + Immeas ADC BYTESOMETHING 32
81 4 Reg16 — CF + Rnglé + Immea1h ADC 8X,1234H
81 17+EA Mem10 — CF + Mem1f + Immedif ADC WORNDSOMFTHING 121aM
33 4 Renl6 — CF + Regio + Immeds AUC BX,32
a2 17+EA Mem1d — CF + Mem1f + Immeds AOC WORDSOMETHING 32
(ImmedB is sign-ex‘endec
hefore add inlast 2 cases)
Operation

LeftQpnd ~ CF ~ LeftOpnd + RightCpnd

Flags

ocp1 T8 ZAPC
X - - - X X X XX

Description

The sum of two opcrands and the initial state of the carry flag replaces the left

operand.



6-26 Asmss

ADD—Integer Addition

Format
Memory/Reg + Reg

l Opcode rModHM |7_F

_ ]

Opcode Clocks Operaticn Coding Example
02 3 Regd - Regd + Regs ADD BL.CL
D2 9+EA Regd ~ Regd + Memg ADD BL.BYTESOMETHING
03 k| Reg16 ~ Regtd + Reglh ADD BX.CX
03 9+ EA Req16 — Req16 + Mem1§ ADD BX,WORDSCMETHING
oo 16+EA Memg — Memd + Regf ADD BYTESOMETHING .BL
o1 16+ EA Mem16 ~ Mem16 ~ ReglB ADD WORDSOMETHING.BX

immed to AXSAL

[ opcoste [  Daa | ]

Opcode Ciocks Operalion Coding Example
04 4 AL — AL » Immed8 ADD AL S
05 4 AX — AX + Immed16 AGD  AX 400H

Imined to Memory/Reg

R N N IR N O

"—tReg fields - 600)
Opcade Clocks QOparation Coding Exampie
80 4 Feql «- Regd + Immedd ADD BL.32
80 17+EA Memd - Mem8 + Immeds ADD BYTESGCMEIHING.32
81 q Heg'b- Reglé + Immed1s ADD BX,1234H
81 17+ EA Memi1b — Mem1E + lknmed16 ADD WOSDSOMETHING, 1234H
a3 q Reqlt — Regé - Immedd ADD 8X.32
a3 17+ EA Mem16 — Mem16 + Immed?d ADD WORDSOMETHING 32

{'mmcd8 s sn-extenned
before acd in 1ast 2 cases)

Operation
LeftOpnd ~ LeftOpnd + RightCpnd

Flags

0p 1 TS 2ZAPRC
X - - - X X X x X

Description
The sum of 1wo operands replaces the left operand.
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AND—Logical AND

Format
Memory/Reg with Reg

[ opcode | Moarm [ [ ]

QOpcode Clocks Operalion Coding Example
22 3 Rcgd — Regh AND Regh AND BL.CL
22 9+ EA Regd ~ Reg AND Memi AND BL.BYTFSOMETHING
23 3 BeglB — Regl16 ANO Reqls AND BX.CX
23 9+EA Reg16 — Reg16 AND Memib AND BX.WORDSOMETHING
20 16+ EA Mermd ~ MemB AND Regs ANC BYTESOMETHING .BL
21 16+ EA Memi1b = Mem16 AND ReQtb ANC WORDSOMETHING, BX

Immed 10 AX/AL

Opcode Data r : j

Opcode Clocks Qperation Coding Example
2 4 AL = AL AND lmmea8 AND AL
25 & AX - AX AND Imniey16 AND  AX 400H

Immed to Memory/Reg

Qpcode I ModRm* : I_ : I Data | . j

“. (Req lield = 100)

Opcode Clocks Operation Coding Example
ac q Aegé - RegB AND ImMmMeal AND Bl 3FH
an 17 +EA Memd - Mem8 AND Immeds AND BYTESOMETYHING 3F
4 q Aegld - Reglf AND IMmedB AND BX.3FFhH
&1 1 +ER Mem1l - Memit AND Immen1 AND WORDSONETHING AFSH
Operation
LeftOpnd — Le!tOpnd and RightCpnd
OF« GF- D
Flags
cDplL T S§2APC
¢ - - - X x U &g
Description

The result of a bitwise logical AND of the two operands replaces 1the lel! pperand.

The carcy and overflow {lags are cleared.
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BOUND—Check Array Against Bounds [iAPX 186]

For 186 clocks, see Appendix H.

Format

Opcode J ModRi ] F__ I : :]

Opcode QOperalion Coding Example

62 itReg1b < Memi16atEA, or BOUND BX.ARRAYFQO 4
Reg16 » MemigatEA ~ 2tnen
INTERRUPT %

Operation

‘flelt-operand (arcgisicr) < lower-hmitiaword variaile at EA)
o7 \ef\-operand » cpper-nmatfat EA + 2) 1hen do.
INTERRUPT 5.
endaf;

Flags

T

N PLODI TS Z AP

Description

BOUNTD is used 1o ensiire that a signed array index ts within the limits delined by a
wo-word bleck of memory, This two ward block might vpically be found just
before the array atself and therefore be accessible at a constant of[set of —4 [rom the
array. simphfyving the addressing. The liest word of the block ar the effective address
contains the lower limit, and the second word contains the upper liri for the index,
which is tn the register operand ol the instruction. The effeciive address cannot be a
register operand  that is, the two-word black cannot be in registers.
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CALL—Call

Format

Within scgment or group, LP relative

Opcode DisplL [ DispH
Opcode Clochs QOperalion Coding Example
3] 19 1P~ 1P 4 Disp'6 CALL NEAR LASEL. FOO

—(SP) ~ relurn link

Within segment or group, Indirect

Opcode ModRM* j
*—(Reg lield = 010)
Opcode Clocks Operation Coading Example
FF 16 IF ~ Regl6 CALL sl
—(SP} = ratuin link
FF 21+ EA IP - Mem16 CALL WORDPTR S|
—ISP} - relurnlink
FF 21+ EA IP - Mem1§ CALL POINTER TQ FRED

—ISP) ~ return link

Operation

il IP-relative then do.
IP =P + Displ6;
—(SP) ~ return fink;

else do;

IP « (EAY;
—{SP) +- return link;
end if;

Flags

0D I TS ZAPRPC

Description

There are two (ypes of within-scgment or group calls: ong that is IP-relative and i3
specified by the use of a NEAR label as the target address, and one in which the
targel address is taken from a register or vartable pointer without modification (i.e.,
15 NOT IP-relative). In the Tirst case, the 16-bit displacement is relative 1o the first
byte of the next instruction.

The second case is specified when the operand is any (16-bit) general, base, or index
register—as in CAll AX, CALIL BP, or CALI DI, respectively—or when the
operand is a word-variable, as in CALL WORD PTR [BP] or CAILL
OPEN_ROUTINFE|BX] (assuming that OPEN_RQUTINE is declared a word
array or structure element). When the effective address is a variabie, as in the
preceding (wo examples, DS is the implied scgment register for all EA's not using
BP.
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CALL

The return link, which is pushed to the TOS during the CALL, is the address of the
tnstruction lollowing the CALL.

Inter-segment or group, Direct

Opcode ‘ olfset J olfset segbase segbase
Oprcode Clocks Operation Coding Example
9A 28 CS - segbase CALL FAR LABEL FOO
IP - affset
Operation

CS + seghase:
iP — offsey;
—(SP) «- return link;

Flags

Inter-segment or group, Indirect

Opcode [ModRM' [ :—T:j

*—(Reg field = 011)

Qpcoade Clocks Operation Coding Example
FF 37+ EA S +~ segbase CALL DWORD FTRFOO
IP — olfset
Operation
CS —(EA+2),
JP ~{EA);
Flags

0Di TS ZAPCT

Description

An intersegment or group (long or far) CALL will transier control by replacing boih
the values in CS and IP. This effectively transfers control to another segment or
eroup by changing both the base {paragraph number} and offsct values.
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CBW—Convert Byte to Word

Format

Opeode Clocks Operation Cading Example

L) 2 aonvertbyte in AL to word CBw
in AX
QOperation

if (AL AND 80H) = 80H thendo;
AH ~ OFFh

else do;
AH —0

end,

Flags

Description

CBW converts the byte in AL to a word in AX by sign extension of AL through AH.
No flags are affected.
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CLC—Clear Carry Flag

Format

Opcode Clocks Qperalion Coding Exampie

F8 2 ¢lear the cacry flag cLC

Operation
CF~0

Flags

Description
C1.C clears the carry flag, CF. No other flags are affected.
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CLD—Clear Direction Flag

Format

Opcode Clocks Operation Coding Example

FC 7 clear ¢irectian llag CLD

Operation
OF « 0

Flags

0DI TS ZAPC

Description

CLUD clears the direction flag, DI°. No other flags are affected.
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CLI—Clear Interrupt Enable Flag

Format

Qpcode Clocks Operation Coding Example

FA 2 clear inlesrup! flaq o]

Operation
\F -0

Flags

Description

C1.] clears the interrupt enable flag, 1F. No other flags are affected.
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CMC—Complement Carry Flag

Format

Qpcode Clacks Operation Cading Example

F3 2 complement carry flag CMC

Operation

itCF =1then do;
CF-0

else do;
CF~1

end,

Flags

9D 1 TS ZAPC

Description
CMC complements the carry Mlag, CF. No other Mags are affected.
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CMP—Compare Two Operands

Format
Memory/Rep with Reg

| Opcode ModRM - [_ ::l

Opcode Clocks Operalion Coding Exampls
3A 3 ftags ~ RegB - Regy8 CMP  BL.CL
3A GaEA flags +~ Regl - Mem8 CMP BL.BYTESOMETHING
ag 3 flags +~ Reg'6 - Reglo CMP  BX,CX
ki 9+EA flags «+ ReQl16-Memib CMP BX WORDSOMETHING
38 9+EA flags — Mem8 - Regé CMP  BYTESOMETHING.BL
39 9+ EA flags — Mem16 - Regl1f CMP WORDSOMETHING BX

Immed 10 AXAAL

Opcode |  Ows | ::\

Opcode Clacks Operalian Coding Example
3C 4 Fags « AL - Immeds CMP AL.S
30 a 1ags « AX - Immedié CMP  AX d00H

Imtned to Memory/Reg

i Opcode MoOdRM* | Data I |

*—{Reg field = 111)

Opcode Clocks Operation Cading Example
80 4 flags ~ Reg® - Im'redd CMP BL.32
50 10+ EA flags ~ Mem3 - Immeod CMP  BYTESOMETHING 32
a1 ] ‘lags <~ Regl6-Immedi6 CMP  BX,123aH
& 10+ Ea ‘lags ~ Mem16 . \mmecié CMP WORDSOMETHING,1234H
B3 q ‘lags <~ Reg16 . Imme:dB CMP  [X 32
43 17+ EA flags - Mem16 ITmedd CMP WORDSOMETHING 32

{lmmed &is sign-exiended
before sub in last 2 cases)
Operation
flags ~ LeftOpnd - RightGpnd

Flags
0D 1T SV APC
X - = - X X X % X

Description

The flags are set by the subtraction of the right operand from the left operand.
Neither operand is modified. A table of signed and unsigned comparisons supported
by conditional jumps is provided under the ‘Jcond” heading of this chapter.
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CWD—Convert Word to Doubleword

Format

| Opcode |

Opcode Clocks Operatlon Coding Exampte

99 3 convert word in AX to CWD
doubleword in DX:AX
Operation

if (AX AND 8000H) = 8000H then do;
DX — OFFFFH

else do;
DX=-9§

end;

Flags

0D T1TTSZAPCE

Description

CWD convers the word in AX to a doubleword in DX:AX by sign extension of AX
through DX. No flags are affected.
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CwD

Format

Opcade |

Opcode Clocks Operation Coding Example

27 q adjust AL. Mags AN Daa

Operation

if (AL & OFH) > 9 or AF - 11then do:
AL+ AL+ B
AF ~1
end;
it AL > 9F or CF = 1 then do;
AL < AL ~ 60H
CF 1
end.

Flags

ce I TS5 2APC

U=-=-=-X%X X X X

Description

DAA s used (0 correct the result of adding two bytes, each of which conlains two
packed BCD digits, in order 10 produce a packed decimal result. After the normal
byte addition in Al., DAA tesis the auxiliary carry flag (AF), which is set by a carry
out of the low nibble of AL, If either the AF is set or the low nibhle of Al is greater
than 9, then the low nibble of AL is increased by 6 to produce the correct decimal
digit, and the high nibble of AL is incremented, effecting the digit carry.

Whether this first adjustmen: is made or not, a second adjusument is made if AL is
greater than 9FH or it the CF is sct, indicating a carry out of the high digit. In this
case, 60H is added to AL and the CF is set,
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DAS—Decimal Adjust for Subtraction

Format

Opcode Clacks Operation Coding Example

2F q adjust AL, tlags. AH DAS

QOperation

it (AL & OFH} > 9 or AF -1 then do;
AL~ AL-6
AF —1
end;
11 AL > 9F or CF = 1 then do,
AL — AL -60H
CF ~1
end;

Flags

o1 TS zZAPRPC

Uu---X XX X X

Description

DAS 15 used 10 correct the result of subiracting two bytes. each of which contains
wwo packed BCD digits, in order to produce a packed decimal result. After the nor-
mal byte subtraction in AL, DAS tests the auxiliary carry flag (AF), which is set by a
carry out of the low nibble of AL. If either the AF is set or the low nibble of AL is
greater than 9, then the low nibble of AL is reduced by 6 to produce the correct
decima) digit.

Whether this first adjustment is madc or not, a second adjusiment is made if AL is
greater than 9FH-or the CF is sel, indicating a borrow out of the high digit. In this
case, 60H is subtracted from A l. and the CF is sel.
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DEC—Decrement by 1

Format
Word Register

Opcode + reg

Optode Clocks Operalion Coding Example

B reg 2 Regl6 - Reglb-1 DEC BX

Memory/Byte Register

oreose [ weam [~ 1 ]

'—{Reg lield = 001}
Opcade Clocks Cperalion Coding Example
re 3 Regl + Aeg8-) DEC 8L
FE 15+EA Mem8 «- Mem§ -1 DEC BYTESOMETHING
FF 15+EA Mem1§ -- Mem16 - 1 DEC WORDSCOMETHING

Operation

Operand — Operand - 1

Flags

06 D>DI1 TS ZAPTE

Description

The operand is decremented by 1.
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DIV —Unsigned Division

Format
Memory/Reg with AX or DX:AX

Opcode ModRM® : [ _:l

*—{Reg field — 110}

Opcode Clocks Opaeration Coding Example
F& 30-90 AH.AL - AX i Reg? DIV RI
F6 186-36) + EA AH AL — AX  Mem3 DIV AYTESOMETHING
F7 144-162 DX, AX » DX.AX ! Reglb DIv BX
F7 {15C-166) + EA DX AX ~ OX-AX f Memts Dy WORDSOMETHING
Operation

if byte-operation then do;
WAX ! divisar > DFFH then INT 0;

else do.
AL — AX ! divisor {* unsigned division * !
AH «~ AXMOD divisor {* unsigned modulo */
end if:
else du: {* word-operation */
itDX:A¥X t divisor > OFFFFH thenINTO
else do;

AX =~ DX_AX [ dwisor I* unsigned division * f
DX ~ DX:AX MOD divisar /™ unsigned modulo */
end if.,
endil,

Flags

01 7T S5 2 APC

- --yuvuuwuy

Description

Depending on the opcode, either a word in AX (s divided by a byte found in a
register or memory location, or a doubleword in DX:AX is divided by a word
register or memory location. A doubleword dividend is stored with its high word in
DX and low word 1in AX, and the results are: DX gets the unsigned maodulo, and AX
gets the unsigned guotient. For a word dividend (byte divisor). the dividend is in AX
and the results are: AH gets the unsigned modulo, and Al. gets the unsigned quo-
tient. 1o cither case, if the resultis too big to fitin the designated register (AX or AL)
then an interrupt of Lvpe 0is performed to allow the overflow to be handled.
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ENTER—High Level Procedure Entry [iAPX 186]

For 186 clocks. see Appendix H.

Format
Qpcode I Datal DalaH l Level J
Opcode Qperation Caoding Exampie
C8 builgt new slack trame ENIER NUMDYNS.LEXLVL
Operation

right-operand  display level
lelt-operand = number of bytes of dynamic starage needed by the routing
—ISPy - BP:
lemp + SP;
it display level >0 then

repeat level - 1times;

—iSP) ~ —(BP):

end repeat;

—(SPy = \emp:
end if;
8P «~ temep:
SP ~ SP-number of dyramics;

Flags

NPLODTITSZAPL

Description

ENTER is used 1o create the stack Trame required by most block-siructured high-
level languages. The first parameter specifics how many byies of dynamic storage is
to be allocated on the stack for the routine being entered, while the second cor-
responds to the lexical nesting level of the rouline and determines how many stack
frame pointers are copied into the new stack frame from the preceding frame. This
list of pointers is also known as the DISPLAY. BP is used as the current stack frame
pointer. ENTER first pushes BP and saves the address of the BP-save lor later use.
Il the lexical Icvel is greater than O, then the List of outer frame poiners from the
preceding frame is copied 10 the new frarne, the stack is marked with the tenporary
holding the address of the top of this list, and BP is set to the cursent value of SP.
Then the dvpamics are allocated by subtracting the number of bytes ol dynamics
from SP.
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ESC—Escape

Format
ENEE
Opcode Clocks Operalion Ceoding Example
D8+ 3+ EA databus — (EA) ESC f6,ARRAY
D&+ 2 data nus ~ (EA} ESC 20.AL
Operation

i mod # 11 then databus ~ {EA)
if mod = 11 then no operation

Flags

001 TS Z AP

Description

The ESC instruction provides a mechanism by which other processors may receive
their instructions fram the K086 instruction siream and make use of the 8086
addressing modes. The 8086 processor does no operation for the ESC instruction
other than to access a memory operand and place it oa the bus.
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HLT —Halt

Format

| Opcode |

Opcode Clocks Operalian Coding Example

Fd ¢ hall operation HLT

Operation

cease operabon;

Fiags

Description

The HLT instruction causes the 8086/8088 processor 10 enter its hal state. The halt
state 1s cleared by an cnable interrupt or reset.
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IDIV—Signed Division

Format
Memory/Reg with AX or DXCAX

Opcode ModRM” r :‘

*—{Reg field =111)

Opcode Clocks Operation Coding Example
F6 101-112 AH AL -- AX i Reg8 ICIv - BL
F6 (107-118) + EA AH AL - AX/ Mem§ 101y BYTESOMETHING
F7 165-184 DX AX - DX.AX ! Reglf 10y B8X
F7 (171-190)+ €A DX.aX « DX:AX ! Mem1B IV WORDSOMETHING
Operation

if byte-operation then do;
if AX { divisor > 7FH or AX ! divisor — 80H then INT Q;

else do,
AL — AX ! divisor i* signed division */
AH < AX MOD divisor {* signed modulo *!
end if;
eise do, t* word-operation !
W DX:AX [ divisor > 7FFFH or DX:AX ! divisor — BOGOH then INT 0:
elsedo;

AX < DX.AX / dwisor 1* signed division *!
DX < DX.AX MOD divisor {* signed modulo */
end if;
end it;

Flags

0C0ITSZAPRPC

Description

Depending on the opcode, cither a word in AX is divided by a byte in a register or
memory location, or a dword in DX:AX is divided by a word register or memory
location. A dword dividend is stored with i1s high word in DX and Jow word in AX,
and the results are: DX gets the signed modulo, and AX gets the signed quotient.
For a word dividend {byte divisor} the dividend is in AX, and 1he results are: AH
gets the signed modulo, and AL geis the signed quotient. In either case, il the result
is too big to lit in the designated register (AX or AL) then an interrupt of type 0 is
performed to allow the overflow to be handled.
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IMUL —Signed Multiplication
For 186 clocks. see Appendix H.

Format
Memory/Reg with AL or AX

Qpcode MOdRM* [ 1

*—{Reg field = 101)

Opcode Clocks Operation Coding Exampla
) 80-98 AX =~ AL " Regd IMUL 8L
Fé 186-104)+ EA AX — AL " Mem$ IMUL BYTESOMETHING
7 128154 DX:AX ~ AX * Req16 IMUL BX
E7 11341601+ EA DX:aX ~ AX * Mem1E IMUL WORDSOMETHING

Mem/Reg * Immediate 10 Reg [1APX 186]

| Oocode ModR# | . Data .

Opcode Operaiion Coding Example

6B Reg 16~ Reg 16 * Immed 8 IMUL BX,S51,5
6B Reg 16~ Reg 16 * Immed & IMUL BX.5 .product -+ BX
68 Reg 16 ~ Mem 16 * Immed 8 IMUL  BX WORDSMTHING.5
69 Reg 16— Reg 16 Immead 16 TMUL  BX,S1.400H
69 Reg 16 — Reg 16 * Immed 16 IMUL BX.400H .producl — BX
69 Reg 16 — Mem 16 * Immeqd 16 IMUL BX,WORDSMTHING 400K

Operation

il byte-operation then do; 1* byte operation, word result !

AX + AL " {Mem8 or Reg8);
if AH is a sign exlension ol AL then CY ~ OF — [;
else CY ~ OF - 1,
else if word-operation then ¢a;  /° word-operation, dword resull *f
DX:AX ~ AX " (Mem16 or Reg1€);
itDX is a sign extension of AX then CY ~ OF — ¢,
else CY « OF — 1.
elsedo; 1= immed-operalion, word result *{
Regl16 ~ Immed16 * {Mem16 or Reg16),
if product lits in destination register then CY ~ OF ~ D;
else CY ~ OF — 1;
end il;

Flags

0D 1T S ZaAaAPC
X - - =~VuUuvuuux
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IMUL

Description
There are two 1ypes of integer (signed) multiplicalion in the ASMB86, distinguishable
by the types of operands and the pyecision of the result:

L. Multiply a byte memory or register operand by a byte in AL, producing a word
result in AX (calted ‘byte-operation, word result’ above).

2. Multiply a word memory or regisier operand by a word in AX, producing a
dword result in DX:AX (called ‘word-operation, dword result’ above}.

There is a third type of integer (signed) multiplication in the IAPX 186,
distinguishahle by the 1ypes of operands and the precision of the result:

3. Multiply a word memory or register operand by a word (or byte. which will be
sign-extended to a word) of immediate data, producing @ word result in a regis-
ter. This instruction uses the full capability of the MODRM byte; therefore the
destination nced not be the same register as contained the multiplicand. For
example, IMUL BX.,S1.5 will muluiply the contents of the Siregister by 5 and
leave the (word) result i BX {called ‘immed-operation, word result’ above).
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IN—Input Byte, Word

Format
Fixed port
Opcode Port
Opcode Ciocks Operation Coding Example
Ed 19 AL~ Pori8 IN AL.BYTEPORTNLIMBER
€S 10 AX - PorB N AL BYTEPORTNUMBER

Vartable port

Opcode Clocks Operation Cading Example
EC L} AL — Port160n DX) IN  ALDX
ED a AX — Port1&{in DX) N A%.DX
Operation

it fixed-pori then
portnumber in instruction;
0 < partnumber < OFFH;
else
porinumber in DX;
0 £ portnumber < OFFFFH:
endif;
if byte-inpul then AL < ioport[porinumber]|,
else AX + joport|portnumber];

Flags

0D1I TS 2 APRPT

Description

IN translers a byie or word from the specified input port to AL or AX. Use of the
fixed port formau allows access (o poris O through FF, and encodes the port number
in the instruction. To use the variable port format vou load the DX register with a 16
bit port number and then code the mnemonic ‘DX’ in place of a constant por
number. This format allows access to 64k ports.
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INC—Increment By 1

Format

Word Register

Opcode +reg

Opcods Clocks Operation Coding Example

Ny

40+ reg RrQ16 — Reglb + 1 INC ©X

Memory/ Byte Register

Opcode | ModRM" T

*—{Reg tield = 000y
Opcode Clocks Qperation Coding Example
FE k| Aegd — Regd 1 1 INC BL
FE 15+ EA MemS « Memé + 1 INC  BYTESOMETH.NG
FF 15+ EA Memi6 - Memif + § INC WORDSOMETHING

Operation

Operand ~ Operand + 1

Flags

0DI TS 2ZAPC

X == - X X X X -

Description

The operand is incremented by 1.
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INT/INTO—Interrupt

Format

I Opcode ] type j

Opcode Clocha Operation Coding Example

cC 52 Inferrupt 3 INT 3

CD 51 Interruot “type’ INT 5

CE 53 or 4 Interrupt 4 il FLAGS OF 1, INTO
else NOP

Operation

SP+ SP-2
—(SP) ~ FLAGS
IF -0

TF -0
SP—SP-2
—(8P)« C3
CS~TYPE*4 ¥ 2
SP—SP-2
—(SP) - IP
IP—TYPE* 4

Flags

0 DI TS ZAFPT

PO T DTN

Description

INT pushes the flag registers (as in PUSHY), clears the T1 and [F flags, and
translers control with an indirect call through any one ol the 256 vector elements.
The one-byle form of (his instruction gencrates a type 3 interrupt.

INTO pushes the flag repisters (as in PUSHF). ¢leary the TF and IF flags, and
transfers control with an indirect ¢all through vector ¢lement 4 (location 10H) if the
OF Nagis set (trap on overflow). I7 the OF flag is clear, no operation takes place.
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IRET —Return from Interrupt

Format

Cpeode Clacks Cperation Coding Example

CF 24 Relurn iromanterrupt IRET

Operation

P~ (SP) + +
SP~SP +2

CS —(SP) + +
SP~-SP +2
FLAGS + (8P) + +
SP~35P +2

Flags

0D1 TS ZAPC
X X X X X X X X X

Description

IRET returns control 10 an interrupted routine by transferring control to the return
address saved by a previous interrupt operation and restoring the saved flag regisiers
(as in POPF).
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Jcond—Jump on Condition

Operation

it condilion is true then do;
sign-exlend displacement 10 16 bils,
(P —IP + sign-exlended displacement;

end if,
Format
! Opcode | Disp __,
Opcode Clocke Operation Coding Example
77 16 or4 ump If above JA TARGETLABEL (CF OR ZF)=0
73 16ord jump it above or equal JAE  TARGETLABEL CF-0
72 16or ¢ jump if below JB TARGETLABEL CF=1
76 160rd jump if below or equal JBE  TARGETLABEL (CF OR ZF)—1
72 16or4 iump If carry sat JC TARGETLABEL CF=1
14 16 0r 4 wump if equal JE TARGE FLABEL ZF =1
7F 160r 4 ump it greatsr G FARGETLABEL ((SF XOR OF) OR
ZF)-0
7D 18ora jump it greater or equal JGE TARGETLABEL (SF XOR OFy=0
C 16ord jump Jf 'ess Ju TARGETLABEL |SF XOR CF): t
7E 16ord iump «f \ess or equal JLE TARGETLABEL ((SF XOR OF) OR
ZF) -1
76 160r4 Jump if ot above JNA  TARGETLABEL {CF OR ZF)=1
72 16ord |ump if neither abave nor equal JNAE TARGETLABEL CF=1
73 16or4 jump f not below JNB TARGETLABEL CF=0
77 16ord jump if nenther below nor egual JNBE TARGETLABEL {CF OR ZF}=0Q
73 16004 jump o ag carry JNC  TARGETLABEL _[;F-ﬁ
75 16ard jump 1 ok equat JUNE  TARGETLABELZE=:G
7E 16 or 4 Jump «t 70N greater JNG  TARGETLABEL {{SF XOR QOF; OR
ZF)=-1
7C 16 0r 4 jump ol nesiner greater nor JNGE TARGETLABEL (SF XOR OF) =1
equal
7D 160r 4 Lrop  not less JNL  TARGETLABEL (SF XOR OF}=0
7F 1600 4 Jurrp o newher less nar equal SNLE TARGETLABEL {(SF XOR OF) OR
2F-0
71 1Bard Jump il no overflow JNG  TARGETLABEL OF =0
78 16ora Jump if no panty JNF  TARGETLABEL PF=10
79 1Bord Jurnp it positive JNS  TARGETLABEL SF D
75 160r 4 jump it not zero JNZ  TARGETLABEL ZF-0
70 16oré yump it overflow 4O TARGETLABEL OF -1
7A t6ord jurnp i panty JP TARGETLABEL PF=1
A 1Gord Jurmnp il party even JPE TARGETLABEL PF~-1
7B 16ord jump it parity odd ) JPCY FTARGETLABEL PF
78 16ord jurmp it sign Js TARGE ILABEL SF=1
74 160r 4 ump it zero Jz TARGETLABEL ZF -1
E3 18or 6 sumpaf CX is zero (does nol JCXZ TYARGETLABEL
test flags)
Flags
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Jcond

Description

Conditional jumps (except (or JICX7Z, explained below) test the flags, which
presumably have been sct in some meaningful way by a previous instruction.
Because there are, in many instances, several meaningful and useful ways 10 inter-
pret a partcular state of the flags, ASM86 allows different mnemonics for each
interpretation 10 resolve to the same op-code. This means that some op-codes are, in
effect, synonyms for others. As an example, consider that a programmer who has
just compared a character to another in AL might wish to jump if the (wo were equal
(JE). while another who had just ANDed AX with a bit field mask would prefer to
consider only whether the result was zero or not (he would use JZ, a synonym [or
JE).

JCX7Z differs from the other conditional jumps in that it actually tests the contents
of the CX register for zero, rather than interrogating the flags. This instruction is
useful following a conditionally repeated string operation (REPE SCASB for exam-
ple) or conditioual loop instruction {such as LOOPNE TARGETLABEL), both of
which may terminale for either of two reasons. These instructions implicitly use a
limiting ¢ount in the CX register, and looping (or repeating) ¢nds either when the
CX register goes (0 cero or when the condition specified in the instruction (flags
indicating equals in both of the above cases) occurs, JCXZ is uselul when the two
terminations must be handled differently.

In every case, il the condition specified in the conditional jump is true, the signed
displacement byte is sign extended 1o a word and added to the IP, which has been
updated to point to the first byte of the next instruction, This imits the range of the
conditional jump to [27(decimal) bytes beyond and 126 byies beflore the instrucuion
(remember, the IP was tncremented by 2 to point to the nest instruction before the
displacement was added).
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JMP—Jump

Format

Within segmeunt or group, IP relative

Cpcode r DisplL |_ Els—iH:\

Opcode Clocks Operation Coding Example
ES 1% IP —IP + Qispit JMF NEAR LABEL FOQ
EB 15 P+ IP + Dispd J4P SHORTNR LAB FOO

{Disp8 sign-extended}

Within segment or group, Indirect

Opcode ModRM* I : | _ :I

T ~(Reg field = 100}

Opcode Clocks Operation Coding Example
FE 1 P ~ Reg16 JMP  SI
FF 18~EA IP -~ Mem1§ JMP WORD PTR |5t
FF 18+ EA IP -~ Mem16 JMP POINTER TGO _FRED
Operation

if IP-relative then do;
il short then sign-extend Disp8 to Disp16;
IP ~ P + Dispi§,

elsedo;
IP < (EA).

end it

Flags

0D I TS ZAPLC

Description

There are two types of within-segment jumps: onc which is IP-relative and is
specified by the use of a NEAR label as the target address; and one in which the
targel address is taken from a register or variable pointer without modification (i.e.
is NOT 1P-relative). In the first case, the displacement—which is relative to the first
byte of the next instruction—may be either a full word or a byte which will be sign-
extended to a word.

The second case is specified when the operand is any (16-bit) general, base, or index
register—as in JMP AX, JMP BP, or JMP DI, respeclively—or when the operand is
a word-variable, as in JMP WORD PTR [BP], or JMP CS:CASE__TABLF|BX|
{assuming that CASE._TABLE was defined as an array of word pointers). When
the effective address is a vaciable, as in the preceding (wo examples, DS is the
implied segment register for all EA’s not using BP. Note especially the difference
between JMP BX and JMP (BX]. In the fitst jump the new IP is waken from a
register, while in the second it comes from a word variable which is pointed at by the
register.
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JMP

[nter-segment or group, Direct

| Opcode ] olfsel otfsel segbase segbase

Cpcode Clocks Operation Coding Example

EA 15 CS — segbase JMP FAR. _LABEL _FQOQ
IP ~ offsel

Operation

CS -~ segbase

IP ~ olfset
Flags

0D )T S2ZAPC

Inter-segment or group, Indirect

Opcode ModRM*

“—(Reg field = 101)

Qpcode Clocks QOperation Coding Example
FF 244 EA C§ + segbiase JMP CASE TABLE|BX)
IP ~ pltset
Operation
C$ -- EA.segbase;
1P ~ EA.otisel;
Flags

0DI1 TS5 2 APC

Descriplion

The long jumps transfer control using both an offset and paragraph number
(seghase), which may be either included in the instruction itself or found In a
DWORD variable.
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LAHF—Load AH From Flags

Format
Opcode Clocks QOperalion Coding Example
9F 4 copy 10w byte ot llags word Lo LAHF
AH
Operation

AH — SF:ZF . X:AF.X:PF:X:CF
I* x'indicates non-specified bit value * ¢

Flags

Description

The Sign, Zero, Auxiliary carry, Parity, and Carry Flags are transferred to AH in the
following format:

SF goes to AH bit7
ZF goes to AH bité
AF goes to AH bitd
PF goes to AH bit2
CF goes to AR bit0

The remaining bits are indeterminate. No flags are altered.
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LDS/LES—Load Pointer to DS/ES and Register

Format
[ Opcade | ModrM ] |
Opcode Clocks Operation Cading Example
c4 164+ EA dword pomler al EA goes LES BX ,DWORDPOINTER
109916 (181 word)and ES
(2nQ word)
Cs 16+EA dword pointer al EA goes LDS BX,DWORDPOINTER
toreqlbitsiword)and DS
12nd word)
Operation
Reg16 — Memié @ EA 1* offset parl of Virtual Address DWord '/

DS (or ESY — Mem16 g2 EA + 2 1* selector part ol Virtual Address Diword *¢

Flags

Q0D I TS 2 APC

Description

The double word in the memory location designated by the clfective address and 3
sucecessive byles is (reated as two word operands. The first of these in FAEA+T is
the offsel part of the pointer and is loaded into the designated word-register. The
second word, at EA+2:EA ], 15 the paragraph number {segment base) of the
address, and is loaded inlo the DS or ES register.
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LEA —Load Effective Address

Format
r Opcode I ModAM |
Opcode Clocks Operation Coding Exampla
8D 2+EA Reg16 ~ EA LEA BX.50MEVARIABLE |S1)
Operation

it EA = regisler then UDtrap;
else Reg 16 v offset(EA}

Flags

001 TS 2 APC

Description

The cifective address of the memory operand is put ip the specilied register. You
should use this instruction only tf EA requires run time calculation, 1.e.. has indexing
with index or base regisier. Otherwise. vou should use MOV reg, OFFSFET variable.
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LEAVE—High Level Procedure Exit [iAPX 186]

For 186 clocks, see Appendix H.

Format
Opcode Operation Coding Example
c9 release current stack lrame LEAVE
and relurn to priar frame.
Operation
SP-+ BF; ! burn otf dynamics and display * ¢
BP ~{SP)+ +; ' recoverold frame pointer '/
Flags

N PLODTITTS ZAPC

Description

LEAVE is the complemeniary aperaton o ENTER, and reverses the eifects of that
instrucoon. By copying BP 10 SP, LEAVLE releases all e stack space used by a
routine for its dynamics and display. The old frame pointer is now popped into BP,
restoring the caller's frame. and a subsequent RET xx insiruction will follow the
back link and remove any arguments pushed on the stack for the exiling routine.
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LOCK—Assert Bus Lock

Format

Qpcode Clocks Cperation Coding Example

FO ? assert the bus lock LOCK XCHG AX.SEMAPHORE

nextinstruction

Operation
None.

Flags

0D ITSZAPC

Description

A special one-byte lock prefix may precede any instruction. 11 causes the processor
to assert its bus-lock signal for the duration of the operation caused by the instruc-
tion. In multiplc processor sysiems with shared resources it is necessary to provide
mechanisms to enforce controlled access to those resources. Such mechanisms, while
gencrally provided through software operating systems, require hardware
assistance. A sulfictent mechanism for accomplishing this is a focked exchange (also
known as test-and-set-lock).

I is assumed that exiernal hardware, upon receipt of that signal, witl prohibit bus
access for other bus masters during the period of its assertion.

The instruction most useful in this context is an exchange regisier with memory. A
simple software Jock may be tmplemented with the following code sequence:

Check: MOV AL, ;set AL to 1 (implies locked)
LOCK XCHG Sema, AL test and set lock
TEST AL, AL set flags based on AL
JNZ Check retry if lock already set

IQDV Sema, ;clear the lock when done

The LOCK prefix may be combined with the segment override and/or REP prefixes,
although the latter has certain problems. (Sec REP.)



The 8086/8087 /8088 Instruction Set 6-61

LOOP/LOOPE/LOOPNE /
LOOPZ/LOOPNZ—Loop Control

Format
| Opcode | Disp
Opcode Clocks Operation Coding Example
El 13arb dec CX: loop il equal and TX LOOPE  TARGETLABEL
noi0
EG 19or§ dec CX, loop it noteqoal arg LOOPNE 1TARGETLARFI
CXnoll
E1 18or6 dea $X.1Gog 1 zero and CX LOORZ TARGFTILAREL
nel)
EO 19orh dec CX, leop il ol zero and CX LOOPNZ TARGETLASEL
LTe1aH
E2 17or5 dec CX; lIoop il CX not O LOOP  TARGETLABEL
Operation
CX=CX-1.

if {condition is true) and (CX <> Oy \hen do:
sign-extend displacemen| to 16 bits;
{P — IP + sign-exlended displacement:
end if;

Flags

0ODI TS 2 APC

Description

The LOOP instructions ace intended o provide ileration control and combine loop
index management with conditional branching. To use the LOOP instruction you
load an unsigned iteration count into CX, then code the LOOP at the end of a serigs
of insiructions (o be iterated. Each time LOOP 15 execured the CX register s
decremented and a conditional branch o the 10p of the loop is performed. The five
varians of the insicuction (LOOP, LOOPE, 1L OOPZ, LLOOPNE. and 1.OOPNZ)
allow branching on three sels of conditions, since two pairs of variants arc
synonymous. Conditions for branching are:

LOCP branches il CX non-zero alter decremenling;
LOGPZ, LOOPE branch 1f CX non-zerp and 2F = 1:
LOOPNZ, LOOPNE tranchif CX non-zerg and ZF - (.

In every case, il the condition specified in the conditional loop is true, the signed
displacement byte is sign cxtended (0 a word and added o the [P, which has been
updated (0 point 10 the first byte of the next instruction. This limits the range of (he
conditional loop 10 127 (decimat) bytes beyond and £26 bytes betore the instruction
(remember, the IP was incremented by 2 to point (o the next instruction before the
displacement was added).
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MOV —Move Data

Format

Memory/Reg to or from Reg

Opcode ModRM [

Opcode Clocks Qperatlon Coding Example
38 9+ EA Mem$ — Reg8 MOV BYTESOMETHING AL
88 2 Regl + Regs MOV BL.AL
8 9+EA Mem16 ~ Reglb MOV WORDSOMETHING AX
8% 2 Reg16 ~ Req1b MOV  BX AX
8A B+EA Reg8 — Mems MOY  AL.BYTESOMETHING
88 §+EA Aeg!6 «~ Mem16 MOV  AX.WORDSOMETHING

Direct-Addressed Memory to or from AX/AL

Opcode r AddrL AddrH

Opcode Clocks Operation Coding Example
Al 10 AL+~ MemB MOV AL BYTESOMETHING
Al 10 AX +-Mem16 MOV AXWORDSOMETHING
AZ 10 Mem8 ~ AL MOV BYTESOMETHING AL
AJ 10 Mem16 +~ AX MOY AX.WORDSOMETHING

Immed 10 Reg

r—mg | Drata ] : j

Qpcode Clocks Oparation Codfng Example
BO+rteg 4 feg B ~ Immeds MOV CLS
B3 treg 4 Reg16 - Immed16 MOV S1,400H

Immed to Mcmory/Reg

[_Opcode I ModRM‘_' : I : _r Data l :‘

*—{Reg field = 000)

Opcode Clacks Operalion Coding Example
o] L] RegB ~ Immeds MOV BL.32
cs 10+ EA Mem8 — Immeds MOV BYTESOMETHING 32
c? 4 Regl1é — Immed1é MOV BX,1234H
c? 10+ EA Memi6 ~ Immed16 MOV WORDSOMETHING,1234H

Memory/Reg to or from SReg

Opcode ModRM* - ‘ _ :’

*—{Reg field - SReq)
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MOV

Opcoda Clocks Operalion Coding Example
BC 9+EA Memi6 - SReg MOV WORDSOMETHING .05
BC 2 Reg16 ~ SRey MOV AX.DS
8E B+EA SReg* — Mem16 MOV DS.WORDSOMETHING
8E 2 SReg® ~ Reg16 MOV DS.AX

*CS not allowed

Operation
LeftOpnd ~ RightOpnd

Flags

0D1 TS ZAPC

Description

The right operand (souorce) is copied to the left operand {destination). The right
operand is not modified. No flags are affected.
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MUL —Unsigned Multiplication

Format
Memory/Reg with AL or AX

[ opcose [ moarw- | [ ]

*—(Reg field - 100}

Opcode Clocks Operation Coding Examnple
F6 70-77 AX — AL " Rey$ MUL BL
F@ (76-83) + EA AX ~ AL " Mem§ MUL BYTESOMETHING
F7 114-133 DX AX ~ AX* Reglb MUL 8x
F7 (124-939; + EA DX.AX ~ AX " Meml16 MuUL WORDSOMETHING
Operation
if byte-operation then do; {* byte operation, ward result */

AX — AL * (Mem8 or Reg3):
it AH - @thenCY ~ QF — (;
else CY ~ OF ~1;
else if ward-operalion then do; 1 * word-operation, dword resull * f
DX:AX — AX * {(Mem16 or Regl16);
i1DX = DihenCY ~ OF < ;.
alseCY —~ OF — 1;
end if;

Flags

00 I TS ZAPC
X - --0uUuuvux

Description

There are two types of unsigned multiplication in the 8086/8088, distinguishable by

the types of operands and the precision of the resuit:

1. Multiply a byte memory or register operand by a byte in AL, producing a word
result in AX {called ‘byie-operation, word resuit” above).

2. Mulaply a word memory or register operand by a word in AX, producing a
dword result in DX:AX (called ‘word-operation, dword result’ above).

In both types of multiply the carry and overllow flags are used to signal whether the
product has exceeded the precision of the operands which produced it. Thus, when
muliiplying two bytes, if the product is larger than can be expressed in a byte (i.c.
prod > 256.) then the CY and OF flags will be set; otherwise, they will be cleared.
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NEG—Negate an Integer

Format

Mcmory/Rep

[ opcose | Moarm- T ]

*—{Reg field =011}

Opcode Clocks Operation Coding Example
F§ 3 Regd «~ J0H - Heg 8 NEG 8L
Fr K] Heg1E + 0D00H - Regib NEG BX
F6 16+ EA Memg ~ C1H Mem8 NEG BYTESOMETHING
F7 164 EA Memit «~ 0000H - Memb NEG WORDSOMETHING
Operation

Operand « 2's complement of Operand

Flags

0D 1 TS 2a?PC

‘except when operand is zero, then CF« 0

Description

The two's complement of the register or memory operand replaces the old operand
value.
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NOP—No Operation

Format

Opcode Clocks Operation Coding Example
0 3 no operalion NOP
Operation

Perform no operation.

Flags

021 7S ZAPC

Description

NQOP is a one-byte [iller instruction which takes up space but affects none of the
machine context except IP.
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NOT—Form One’s Complement

Format
Memory/Reg

Opcode ModRM* | ]

“—tReg field =010)
Qpcode Clocks Operation Coding Example

Fé 3 Reg8 ~ (FFH - Reg8 NOT BL

Fé 16+EA Mem§ ~ OFFH - MemB NOT BYTESOMETHING

F7 3 Feg16 «- OFFFFH - Regi6 NOT 8X

F7 16+ EA Mem16+ DFEFFH - Memi6 NOT WORDSOMETHING
Operation

Operand + cne's complement of Qperand

Flags

eI T8 2ZAPRPC

Description

The operand is inverted, that is, every | becomes a 0 and vice versa.
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OR—Logical Inclusive OR

Format

Memory/Reg with Reg

S

Opcode ModRM
Opcoda Clocks Dpetation
04 k| Regd — Regb OR Reqg
04 9+ EA Regd — Regd OR Mems
0B 3 Req16 ~ Regq16 OR Reg 16
0B 9+ EA Reg16 ~ Reg!6 OR Mem1§
08 16+ EA MemB «- MemB Of Regd
a3 161 EA Mem16 — Mem1§ OR Regi6

Immed to AX/AL

]

Opcode Data
Opcode Clocks

0c q

ab 1

Operaiion

AL ~ AL OR Immed§
AX ~ AX OR Immed1t

Coding Example

OR BL.CL

OR BLBYTESOMETHING
OR BX.,CX

OR BX.WORDSOMETHING
OR BYTESOMETHING AL
CR WORDSOMETHING.BX

Coding Example

OR aLs
0A  AX,400H

Immed to Memory/Reg

Opcode ModRM: | :_]—: T i l_:j

*—(Reg field = 001}

Opcode Clocks Oparation Coding Example
80 a Regh — Reg8 OR.mmedd OR BL.2?
an 17 + EA Memb — Mem8 OR Immeds OR BYTESOMETHING 32
81 4 Reg1é ~ Reglb OR Immed1§ OR BX.1234H
o 17+EA Memig - Memi6 OR immed16 O WORDSOMETHING 12341
Operation
LeftOpnd « LeftOpnd or RightOpnd
OF « CF - 0
Flags
oD TS ZAPC
g - - - X x P o0
Description

The inctusive OR of two operands replaces the left operand. The carry and overllow
flags are cleared.



The 8086 /8087 /8088 Instruction Set 6-69

OUT —Output Byte, Word

Format
Fixed port
Opcode Port
Opcode Clocks QOperation Coding Example
EG 10 Port§ - AL OUT BYTEPORITNUMBER AL
E? 10 Pert8 « AX QUT BYTEPORTNUMBER AX

Vanable port

Opcode Clocks Operalion Coding Example
EE 8 Porti6 (in DXy — AL QUT DX.aL
EF 8 Portt6 (ir DX) ~ AX OUT DX.AX
Operation

il fixed-port then
portnumber in instruction;
0 < portnumber £ OFFH;
else
porinumber n DX;
0 = portnumber £ OFFFFH;
end;
if byte-oulpul then ioport|porinumber) — AL;
else ioport|portnumber] — AX;

Flags

0DI1I TS 2ZAPC

Description

OUT transfers a byte from AL or a word from AX (o the specified output port. Use
of the fixed port format allows access 1o poris 0 through FF, and encodes the port
number in the instruction. To use the variable port format you load the DX register
with a 16 bit port number and then code the mnemonic ‘DX in place of a constant
port number. This format allows access to 64k poris.



6~70 AsMs86

POP—Pop a Word From the Stack

Format

Word Memory

|——Opcode ( ModRM* J T ::l

‘—(Reg field=000)
Opcode Clocks Operalion Cading Example

3F 17+ EA Mam1d <SPPI+ + POP WORDSOMETHING

Word Register

| Opcode +reg

Opcode Clocks Operalion Coding Exampie

58 + reg 8 Reglf — (5P + + POP  BX

Scgment Register
Opcude + SReg

Opcode Clocks Operation Coding Example

07 +(SReg"8) 8 SReg -« (SPyb POP 03

Operation

Operand ~ TOS,
SP—SP 4+ 2

Flags

001 TS ZAPC

Description

The word on the top of the stack replaces the previous contents of the memory,
register, or segment register operand. The stack pointer is incremenied by 2 (o point
1o the new 10p of stack.

[f the destination operand is a segment register. the value POPed will be a paragraph
number,

POP CS i NOT allowed.
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POPA—Pop All Registers [iAPX 286]

For 186 clocks, see Appendix H.

Format

Cpcode Operation Coding Exampie

61 reslore registers from POPA
the stack

Operation

DI~ {SP}~ +,

Sl+~ (EP)+ 4.

BP —~ I1SP)+ +

SP—-SP + 2; i* POP AND IGNORE SP
BX ~{SP)+ +;

DX —(SP) + +;

CX —(SP)+ +;

AX —(SP)+ +;

Flags

NPLODI)I TS ZAPTE

Description

POPA restores the registers pushed by PUSHIA, except that the SP value is ignored.
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POPF—Pop the TOS Into the Flags
Format

Opcode Clocks QOperation Coding Example

D B FLAGS - (SPi+ 4 POPF

Operation

Flags «- TOS;
SP« SP + 2,

Flags

0D 1 TS ZAPC
X X X X X X X X X

Description

The TOS is copied o the Flags and the stack pointer is incremented by 2 to poial (o
the new top of stack. Bit position (0 lag assignments are:

OF ~bit1
DF « bit10
IF —DilS
TF —bd
SF ~bu7
ZF ~bnb
AF -~ bitd
PF  « bit2
CF +bith
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PUSH—Push a Word Onto the Stack

For 186 clocks, see Appendix H.

Format

Memory/Reg

Opcade [ ModRM " : :j

‘—{Reg field=110)

Opcoge Clocks Operation Coding Exampie

e 164 EA (SP - Memib PLSH WORDSOMETHING

Word Register

Opcode Clocks Operalion Coding Eaample

a0+ req n 5P+ Reqlb PUSH B8X

Word Immediate [1APX 186]

[__ (._:)pcone-_ Data | : j

Opcode Operaticn Coding Example
BA {SP}+ Immeds PUSH §
{sign extendeq;
68 —{3P) ~ Immed1é PUSH 400H

Segment Register

Opcode + SReg

Opcode Clocks Operation Coding Example
06+(SReg'8) 10 {$P) — SReg PUSH DS
Operation
SP—-SP-2;

TOS » Operand;
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PUSH

Flags

00D I TS ZAPC

Description

The stack painter is decreased by 2 and the word eperand is copied 10 the new top of
stack.
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PUSHA —Push All Registers [iAPX 186]

For 186 clocks, see Appendix H.

Format

Qpcode Operation Coding Example

60 save registers on the stack PUSHA

Operation

temp - SP:
—(SP) - AX:
—iSPy~ CX.
—(SPY — DX,
—iSP) ~ BX:
—(SP) ~ temp;
—{SP) - BP.
—(SPy ~ &I,
—(SP)~ Dl

Flags

Description

PUSHA saves the registers nated above on the stack.
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PUSHF —Push the Flags to the Stack

Format
Opccdﬂ

Opcode Clocks QCperation Coding Example

C 10 —t8P) - FLAGS PUSHF

Operation

SP - SP.2;
TOS ~ Flags;

Flags

001 TS Z APl

Description e

The stack potnter is decremented by 2 and the flags are copied to the new 10p of
stack. Flag to bit position assignments are:

o 11« OF
bit 10« DF
bitd «-IF
bit8 ~TF
bit7 ~ SF
bit6 —2ZF
bitd « AF
bn2 - PF
bitd —CF



The 8086/8087 /8088 Instruction Set

6-77

RCL —Rotate Left Through Carry

For |86 clocks, see Appendix H.

Format

Memory or Reg by |

| Opcode ModRM* T __ J

‘—(Reg field—010)

Qpcode Clocks Operation Coding Example
no Z rotate RegSby 1 ACL BL,!
Dy 15+ EA rolale Memb by 1 ACL EYTESOMETHING 1
[a}] 2 rolate Aeg 16 by 1 RCL B8X»
D1 15+FA rolatc Mer 6oy i RCL  WORDSOMETHING 1

Memory or Reg by couns in CL

Opcode J_ModHM' [ o ] : :]

‘—(Reg field=010)

Opcode Clocks Operation Coding Example
G2 B+4ini rotale Angh oy CL RCL BL.CL
(a¥] 20+ EA~&IBi rotate Mem8 by CL RCL BYTESONETWING.CL
03 B+atnid niale Regifi iy CL AacL BXCL
03 20+ EA s albit rotagle MemiB by CL ACL WORDSONMETHING.CL

Mem or Reg by [mmed8 [1APX 186]

Opcode 1 ModRM* ] I count

“—{Reg fhieid - 0113

Opcode Operation Coding Example
Co rotate Reg8 by immeds RCL BL.5
co rotate Mem3 ny ImmedB RCL BYTESOMETHING 5
a1 rotate Reg1b by Immeds RCL 8X5
C1 rotate Mem16 by Immed8 ACL WORDSOMETHING.5
Operation

if variable-bit-rotate then count=CL or count=Immed8:
else count=1;
do until coun1=0

lempef — CF:

CF « high-oruer-bit ot operand;

operand - aperand * 2 + tempcl;

count = count-1,
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RCL

ond do;

il not variable-bit-rolate then do.
i high-order-tit of operand <> CF ihen OF ~ 1:
else OF + O

end il

Flags

agp1rszaAapPpc

K - = - - - - -X

Description

The regisier or memory aperand is rotated left through the CF according o the shilt
count, which may be cither a fixed coum of | or a variahle count that has heen
loaded into the CIL. register. If the shift count s 1. the overflow flag is set il the high
bit ol 1he rotated operand difiers from the resulting carry flag. Only CF and OF are
affected.
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RCR—Rotate Right Through Carry

For 186 clocks, see Appendix H.

Format
Memory or Reg by 1

Optode ModRM® [ |
*—(Reg field - 011)
Qpcode Clocks Qperalion Coding Example
Do 2 rotate Reg8 by 1 RCR 8L.1
0o 15+EA rolate Memg8 by 1 RCA SYTESOMETHING 1
03} 2 rolate Regld by 1 RCR BX.
a3} 15+EA cotate Memi16 by 1 RCA WORDSOMETHING 1

Memory or Reg by count in CL

Opcode ModRM* I |

—{Reg tield = 011}

Opcode Clacks Operalion Coding Example
074 B+ 41bit rotate Reg8 by CL RCA EBL.CL
D2 0+EA+aiDy rotate Mem8 by CL ACAR BYTESOMETHING.CL
03 g+ a1t rolale Regl6i by Cl RCR Bx.CL
03 204+ EA + 41bil rotate Memi§ oy CL RCR WORDSOMETHING.CL

Mem or Reg by Immed8 [iAPX 186]

Opcode I ModRM* I T I counlt

*—iReg tield = 011}

Opcode Operation Coding Example
cn rolale Reg8 by Immed8 ACR BL.S
co rolale MemB by Immed8 ACR BYTESOMETHING.5
C1 rolate Reg16 by Immeds RCR BX.,5
1 rolale Mem16 by Immed8 ACR WORDSOMETHING 5
Operation
if variable-bit-rotate then coum==CL or count=Immeds;
else do;
count=1;
if high-order-bit of operand <> CF then OF « 1;
else OF - 0,
end if;
do until count=0
tempcf« CF;

CF ~— low-order-bit ol operand,
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RCR

operand « operand f 2,
high-orders-bit of operand « tempct:
count — count -1,

end do;

Flags

Qo1 178 2Z A PC
X - - - - - - X
Description

The registey or memory operand is rotated night through the CF according 10 the
shift count, which may be cither a fixed count of | or a variable count 1har has heen
loaded into the CL register. If the shift count is |, the overflow flag is set if the high
bit of the un-rotaied operand ditfers from the ariginal carry flag. Only C¥ and OF
are atfected.
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REP/REZ/REPE/REPNE/REPNZ—Repeat

Prefix
Format
Qpcode Clocks Oparation Coding Example
F3 F repeal nextnsiruction until REP MOVSE
€x-0
F3 2 reépeal next resiruchon until REPE SCASE
CX-0o0r ZF=1 REPZ SCASB
F2 2 repeal nextinsiruclion yahl REPNE SCASB
CX-0ur2F 0 REPNZ SCASB
Operation

dowhile CX <> 0;
1* acknowledge pendinginterrupts *f
t* perform string operation in subsequent byte *!
CX =~ CX-1; /' does not affectflags *!
if string operation = SCAS or CMPS and
ZF <> repeat condition then undo;
end do;

Flags

Description

The REP prefix causes a succeeding string operation to be repeated until Lhe count in
CX goes to zero (REP canses CX to be decremented alter cach repetition of the
string op). 1f the string operation is either SCAS or CMPS (or a varian of those
such as SCASB...) then the ZF is compared 10 the repeat condition after the string
op is performed, and the repeat is terminated if the ZF does not match the condi-
tion. For example, REPE SCASB will scan a string, comparing cach byte (o the AL
register, as long as the ZF is 1, indicating ‘EQUAL’.

REP, REPL, and REPZ are synonymous, as are REPNZ and RELPNE.

Execution of the repeated string operation will nol resume properly f{ollowing an
interrupt if more than one prefix 1s present preceding the string primitive. Execution
will resume one byle belore the primitive {(presumably where the repeat resides), thus
ignoring the additional prefixes.
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RET—Return From Subroutine

Format
Opcode |
Opcode Clochs Qperation Coding Example
Cc3 8 Intra-segment ieloimn HET
CB 18 inter-segment return RET

Return and add constant 1o SP

Opcode l Datal DataH ]

Qpcode Clocks Opersiion Cogding Example

c2 1z itha-segmen) rel and add RET 8
ca 17 inler-segment ret and a¢e RET 8

Operation

P~ {SP) + +;
SP—SP + 2
itintersegment then
CS~{SP)+ 1.
SP~SP + 2
if add immediate to SPihen
SP + 5P + immediale constant;

Flags

0D TS ZAPC

Description

RET transfers control through a back-tink on the stack, reversing the effeets of a
CALL instruction. If the intra-sepment RET is used, the back-link is assumed 10 be
just the return-[P, while inter-segment RETs assume both 1P and CS are on the
stack. RETs may optionally add a constant to the stack pointer, effectively remov-
ing any arguments 10 the called routine which were pushed prior to the CALL.
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ROL —Rotate Left

For 186 clocks, see Appendix H.

Format

Memory or Reg by |

Opcode MogRM* | T J : :l

*—(Reg lield = 000)

Opcode Clacks Operalion Coding Exampie
[oli] 7 rofale Rea8 by 1 ROL. BL1
Do 15+ EA rolale Mem3 by 1 AL BYTESOMFETHING
D1 2 ratate RegiG by 1 RO. 8X1
m 15+EA r0lale Memib by 1 RO WORDSOMETHING 1

Memory or Reg by count in CL

Opcode MOGRM* ’
*--[Reqg hield -- 000)
Opcaode Clacks Operation Coding Example
D2 B+aind rjale RegB by CL ROL BL.CL
D2 20+ Ea+dibn rolate Memé by CL ROL BYTESOMETHING.CL
D3 B+ ditnt wotate Aegisby CL ROL BX CL
c2 20+EA ) &bl rolate MemiB by CL ROL WORDSOMETHING.CL

Mem or Reg hy Immed8 [iAPX 186]

[ opcove mosrn: | | count

“—{Regq field - DOO}

Opcode Operation Coding Example
G0 rolale Regs by Immeds ROL BL.5
Co rovale MemB by Immeds ROL BYTESOMETHING 5
Ct rotate Reg16 by Immedd AOL .BX.5
C1 rolale Mem16 by Immed8 RCOL WORDSOMETHING.S
Operation

if variable-bit-rotate ther count=CL or count=Immeds;
else count=1:
do unul count=0

CF ~ high-order-tit ot operand;

operand — operand * 2 + CF;

counl = count - 1;
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ROL

end do,
if not variable-bil-rotate then do;
it high-order-bit of operand <> CF lhen OF - 1:

else OF « 9;

end 1f,

Flags

00 1T 5 2 APC
X - - - - - - =X
Description

The regisier or memory operand is rotated left according to the shift count, which
may be eithey a fixed count of | or a variable count that has been loaded into the CL
register. The high order bit of the operand is copicd dirccily to the low order big dur-
ing the rovate, as well as to CF. I the shift counr s ¥, the overflow flag is sed if the
high bit of the rotated operand differs from the resulting carry flag. (That is, if the
high and tow order bits of the result are no! the same. ) Only CF and OF are affected.
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ROR—Rotate Right

FFor 186 clocks, see Appendix H.

Format

Memory or Reg by |

[ Opcode MadRM* T [ :j

“—({Regq field = 001}

Opcade Clocks QOperation Coding Example
Do 2 rotate Regq8 by 1 ROR BL.1
0o 15+ EA rolate Mem8 by ¥ ROR BYTESOMETHING 1
D1 2 ro{ale Reg16 by 1 ROR BX.1
m 1£+EA rolate Memid by 1 ROR WORDSOMETHING.1

Memory or Reg by countin CL

Opcode | MogRM™ | | ::‘

‘—{Reg tield = 001}

Dpcode Clocks Operation Coding Example
oz B &ibit rolate RegB by CL ROR BL.CL
D2 20+EA+ 4Rl rolate Mem8by CL AROR BYTESOMETHING.CL
e ad+ainl ‘olate Reg1b by CL ROR BX.CL
o W0+EAxalLY rolate Memi16 by CL ROA WORDSOMETHING CL

Mem or Reg by [mmed8 [IAPX [86]

Opeode ModRM* | | [ count
*—{Regq field - J01)
Opcode Operation Coding Example
cé rotate Regd oy Immed3 ROR BL.5
Co rotate Memd by Immedg ROR BYTESOMETHING.5
C1 rotate Reg16 by Immeds ROR BX.,5
C1 rofate Mem16 by Immeda ROR WORDSOMETHING.5
Operation

it variable-bit-rotate then count=CL or count—mmed8;
else count - 1;
do uniil count ~ 0

tempct ~ CF;

CF ~ low-ardes-bit of operand.

operand — operand ! 2;

high-order-bit of operand — CF:
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ROR

count ~ count-1;

enddo;

it not variable-tit-rotate then do;
if high-arder-tit of operand < - CF then OF «- 3.
else OF +-0;

end if;

Flags

001 TS ZAPC

Description

The register or memory operand is rotated right according to the shift count, which
may be either a fixed count of 1 or a variable count that has been loaded into the CL
register. The low bit of the operand is copied directly to the high bit during the
rotate, as well as to the CF. If the shift count is 1, the overflow flag is set il the high
bit of the rotated operand differs from the un-rotated high bit. Only CF and OF are
affected.
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SAL /SHL — Arithmetic/Logical Left Shift

For 186 clocks, see Appendix H.

Format

Memory ot Reg by |

[ oscede [ mommm- [ [ ]

*—{Reg field = 100}

Opcode Clocks
o0 2
Do 15+E48
o1 2
™ 15+EA

Oparallan

shift RegB by t
shitt Mem8B by 1
shift Reg16 by 1
shift Mem16 by 1

Memory o Reg by count in CL

Qpcode J ModRM*

‘- -(Regq held ~ 100)

QOpcode Clocks
D2 g+ alv
02 20~ EA~Albt
[oX3 2+ 4dibnt
na 20 + EA + &/bit

Opsration

shitt Rag8 by CL
shilt MemB by CL
shift Reg16 by CL
shift Mem16 by CL

Mem or Reg by immediate count [iAPX (86]

Opcode rModRM‘ : : I count [

]

Coding Example

340 Bl
SHL BYTESOMETHING 1
SHL Bx.*
SaL WORDSOMETHING,)

Coding Example

SHL BL.Cu
SAL GYTESOMETHING.CL
Sal Bx.CL
SHL WORDSOMETHING.CL

Opcode

Co
<o
C1
C1

Operation

*—{Reg field = 100}
Operation

rolate Rege by Immed8

rolate Mem&B by Immed8
rotate Reg16 by Immed8
rotate Mem16 by Immed3a

SHL
SAL
SAL
SHL

it variable-bit-shift then count=CL or count ~immeds;

else count=1;

do until count=0
GF =- high-order-bit of operand,
operand — operand * 2;
count < count - 1;

end do.

Coding Example

BL.S
8YTESOMETHING S
BX.5
WORDSOMETHING,5
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SAHF —Store AH in Flags

Format
Opcode Clocks Operation Coding Exsmple
9E 4 copy AH to low byte of flags SAHF
word
Operation

AH —~ SFZF:X:AF:X:PF.X:CF

{7 "X indicates non-specified bit value */

Flags

0ODI TS ZAPC

- = ==X XX XX

Description

The Sign, Zero, Auxiliary carry, Parity, and Carry Flags are loaded from AH in the
following format:

AH bit? goesto SF
AH bit6 goesto ZF
AH bitd4 goesto AF
AH bit2 goesto PF
AH bit} goes to CF

No other flags are altered.
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SAR—Arithmetic Right Shift
For 186 clocks, see Appendix H.

Format
Memory ot Reg by 1

Opcﬂch ModRM* L :J_::]

‘—(Reg held =111)

Opcode Clocks Operalion Caoding Example
all] ? shift Reg8 by 1 SAR 8L
DO 15+EA shift Mem8 by 1 SAR BYTESOMETHING 1
s}l 2 shiit Reg16 by 1 SAR BX0
O 154 EA shift Mem16 by 1 SAR WORDSOMETHING.Y

Memary or Reg by count in CL

OpcodeJ ModRM* J : :j

‘- (Reqg tield = 111)
Qpcode Clocks Operation Coding Example
cz B+ 4ibit shift RegB by CL SAR BL.CL
D2 20+ EA+4ibin shitt MemB by CL SAR BYTESOMETHING.CL
D3 B+ 4/bit shitt Regi6 by CL SAA BX.CL
D3 20 + EA + 41Dy shitt Mem16 by CL SAR WORDSOMETHING CL

Mem or Reg by [mmed8 [IAPX [86]

_ I : l coum_j

*—{Reg higld = 111y

Opcode | ModRM® |

Opcode Operation Coding Example
ca rotate Reg8 by ImmedB SAR BL.S
Co rolate Memg by Immeds SAR BYTESOMETHING.5
C1 rolale Reg16 by Immedd SAR BX.5
C1 rolale Mem1% by Immeds SAR WORDSOMETHING 5
QOperation
if variable-bit-shift then count=CL or count =immed8s;
else count=1;

do until couni=t
CF ~cw-order-bit of operand;
operand — operand / 2, " SIGNED DWIGE */
count — count-1;

end do,
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SAL/SHL

if not variable-bit-ghift then do;
if igh-order-tit of operand <> CF then OF ~ 1,
else OF = 0.

endil;

Flags

oD TS 2ZaAaPC

Description

SHIL {shift logical left) and SAL (shifv unthmetic teft) shift the operand left by
COUNT hbits, shifting in low-order zero bits.
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SBB —Integer Subtraction With Borrow

Format

Memory/Reg with Reg

_ ]

Opcode ModRM

Qptode Clocks Operatian
1A 3 RegB + ReqB - Reg8 -CF
TA 9+ EA RegB +~ Reqs - Mems -CF
18 k| Aeg16 — Regle Regib CF
18 9+ EA Reg16 ~ Reg16 - Mex16-CF
18 16+ EA Mem8 ~ MemB - Regd - CF
19 15+ EA Mem1g ~ Mem16 - Reqté -CF

Immed from AX/AL

__ ]

AL+~ AL - Immedd-CF

IV Opcode ( Data
Qpcode Clocks Operation
1C 4
] 4

AX — AX -Immealt - CF

Ceding Example

SBB BL.CL

SBE BL.BYTESOMETHING
$8B BX.CX

588 BX.WORDSOMETHING
§8B BVIESOMETHING BL
BB WORDSOMETHING .BX

Coding Example

SBB ALS
SBB AX.A00R

Immed from Memory/Reg

[ opcoge | Maorm- [ T T oaa | ]

*—{Reg field = 911)

Opcode Clocks Operation Coding Example
80 L] Reg8 ~ Regd - lmmecs - CF SBE BL.32
a0 17+ EA Mem8 — Meamad - Immedd - CF SBB BYTESOMETHING, 32
EY a Reg16 — Reqi6 - Immed1i-CF SEB BX1234H
8t 174 EA Memig ~ Mem16 -Immed16 CF SBB WORDSOMETHING 1234F
83 3 Reg16 - Regl6- Immods - CF SBB BX.32
83 7+ EA Memi§ — Mem 16 - Immedd - GF SBB WORDSOMETRING,32

{immadd s sign-extended
before subtract

Operation
LeltQpnd ~ LeftOpnd - RightCpnd - CF
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SAR

if not variable-bit-shift then do:
QF - 0;
end il;

Flags

¢ 21T %S5 2 A PC

X - - - X XU X X

Description

SAR (shift arithmetic cight) shifts the operand right by COUNT bits, shifting in
high-order bits equal (o the original tigh-order bit of the operand (sign extension).
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SHR—Logical Right Shift

Format
Memory or Regby 1

—

“—|Req held - 101}

Opcode Clocks Qperetion Coding Example
Do z shift ReqB by 1 SKR BL.1
Do 15+FA shift Mem8 by 1 SHA BYFTESOMETHING.1
D1 2 shifl Reg16 by 1 SHR BXA
o1 15+ EA shitt Mem16 by 1 SHR WOACSOMETHING.

Memory or Reg by countin CL

Opcoge | MooRM® | | :j

“—{Reg field = 101)

Opcode Clacks Qperation Coding Example
D2 g+ 4dipit shift Reg8 by CL SHR AL.CL
02 20+Ea+dibit  shift Mem8 by CL SHR BYTESOMETHING.CL
D3 8 calibt stuft Reg16 by CL SHR BX.CL
D3 20+EA+atbat shift Mem16 by CL SHR WORDSOMETRING.CL

Mem or Reg by Immed8 [1APX 186]

[ opcoge | modAm- r_: [ : | count ’

*—{Reg field - 101)

QOpcode Operation Coding Example
o rotate Regd by Immeds SHR BLS
co rotate Mem8 by Immed8 SHR BYTESOMETHING.S
@] rotate Reqth by Immed8 SHR BX.5
Ci rotate Mem16 by Immed8 SHR WORDSOMETHING 5
Operation
if variable-bit-shift then count=CL or count=Immeds;
else do:
count=1;
OF «— high-order-bit of operand.
endil;

do unlil count=9
CF + low-order-bit of operand.
operand < operand J 2; {* UNSIGNED DIVIDE */
count — count-1;

end do:
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SBB

Flags

0D I TS ZAPC

X - =--%X %X X XX

Description

The result of subtracting the right operand, then the ariginal value of the carry flag,
from (he lelt operand replaces the lefl operand.
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STC—Set Carry Flag
Format

Opcoda Clocks Operation

F% 2 setthe carry Nag

Operation
GF ~1

Flags

0pbit 71758 2Z 4¢P C

Description
STC sets the carry flag, CF. No other flags are affected.

Coding Example

STC
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SHR

Flags

gp1 TS5 2ZAPC

K- - =X kU xX

Description
SHR shifts the operand right by COUNT bits, shifting in high-order zero bits,



6—98 aAsMmase

STI—Set Interrupt Enable Flag
Format

Opcode Clocks Operation GCoding Exampie

FB 2 setinterrupt flag 571

Operation
IF -1

Flags

QDI TS ZIAPC

Description
STI sets the interrupt enable MNag. [F. No other {Tags are aflected.
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STD—Set Direction Flags

Format

Opcode Clocks Operalion Coding Example

FD 2 sefdirectian flag STD

Opération
DF ~ 1

Flags

cpI1 TS ZAPL

Description
STD sets the direction flag, DF. No other flags are affected.
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String

Flags

D DT TS

MOVS
MOVSB
MOVSW

Flags

SCAS
S5CaS8B
SCASW

1.ODS
LODSB
LODSW

STOS
STOS8
S5TOSW

Z AP C

Move the string poinied to by DS:SI inte memory pointed o by ES:DI.

Scan « string potnted o by ES:IDI, compuring cach clemeni to AX or
Al according 0 1he type of stning, and setting the flags 10 the result
of such a comparison. Used with the conditional repcat-prefix
(REPE..). this primitive can focate the next element matching
AX /AL or next not-matching element.

Z AP C

toad euch string element inlo AX/AL. This primitive would be used
with the LLOOP construct rather than the REP prefix, since some fuither
processing on the data moved 10 AX /AL 15 alinost surely necessary.

Z APC

Store the AX or AL contents into the enlire siring,

The fotlowing operations ure for IAPX 186

INS

OUTS

Store in memory pointed to by ES:DI the block of bytes or words read
from the [O address in DX.

Cutpul 1o Lhe 10 address in DX the block of bytes/words in memory
pointed to by DS:SL

Fach repetition of the string operation acknowledges pending interrupts. checks CX
for zero {and stops repeating if G), performs the siring primitive operation once, adjusts
any memory pointers used by the string operation by 1 for bytes and 2 for words (the
adjustment is added 1f the FLAGS.DF is 0, otherwise subtructed), decrements CX
{which does not affect the flags). and. in the case of SCAS and CMPS or their
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String—String Operations

For 186 clocks, see Appendix H,

Format
Opcode Clocks Opetation {oding Example
A6 22 fags ~ (Sh-1Dnp CMPS  BSTRING
AT 22 llags «-(SI1- (D) CMPS  WSTRING
Ad 18 1D ~ 18N MOVS BSTRINGI.BSTRINGZ
AS 18 {oh — 151 MOVS WSTRINGT WSTRING?
AE 15 flags + {D) - AX SCAS BSTRING
AF 15 flags — {0l - AL SCAS WSTRING
AC 12 AL < 15 LOOS BRSTRING
Al 12 AX — {81 LODS WSTRING
A& n (D) — AL STCS  BSTRING
AB n {D1) - AX STOS  WSTRING
6€ (DI}~ port(DX} INS  BSTRING, OX
6F {D)—port{DX:DX t 1) INS  WSTBING. DX
6C paniDX) —(S1 QUTS DX. BSTRING
) pOrDX: DX + 1) (S1) QUTS DX. WSTRING
QOperation
dounti CX =0Q;

1" acknowledge any pending intecrupts =/
pertorm string primitve once;
CX~CX-1, = does notatiect flags * !
1 DF = 0 then add pointer agjustment 1o DS andfor ES
else subtract pointer adjusiment from 0S and/or ES:
Vi SCAS or CMPS, and repeat condition does not match ZF
thenundo,
end do;

Description

The string primitive operaltons are nfended to be used primarily with the REP
prefix. There are 7 primitives which, when so prefised, perform the following
operatnns:

Flags

ODI TS 2ZAPTE

A - - - X XX xx

CMPS Compare the elements of two strings, one pointed to by ES:D{ and the

CMPSB other by DS:SI.
CMPSW
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SUB—Iinteger Subtraction

Format
Memory/Reg with Reg

[Opeome [ wormw | ] ]

Opecade Clacks Ogeratian Coding Exampie
2A 3 Reqgs - Regs - Aegs SUB BL.CL
2A 9+ EA Reqd ~ Regs - Mems SUB BLBYTESOMETHING
2B 3 Req1t ~ Reg16 - Reglb SUB BX.CX
28 841 EA Reg16 — Regib - Mam16 SUB BX WORDSOMETHING
2B 16+ EA Mem8 — Memg - Reg8 SUB BYTESOMETHING BL
29 16+ EA Memib ~ Mem1é - Aeglh SUB WORDSOMETHING BX

Immed to AX/AL

Opcode [ Data ‘L :l

Opcode Clocks Operalion Coding Exampie
2C 4 AL ~ AL-immedd SUB AL.S
0 4 AX ~ AX -immedif SUB  AX 400H

{mmed to Memory/Reg

F{)pcode WodF{M‘ r I _r Data :’

*—(Reg field = 101)

Qpcode Clocks Operation Coding Example
80 4 RegB - - Aeg8 - ImmedB SUe 8L.32
80 17 +EA Mems — MemB - Immedd S5UB BYTESOMETHING,32
81 4 Reg16 - Reg16 - Immedid SUB BX,1234R
81 17+EA Mem16 — Memi6 - Immed1t SUB WORDSOMETHING,1234H
83 4 Regi6 -~ Reglf - Immede SUB BX .32
83 17+EA Mem16 - Mem16- Immeds SUB WOROSOMETHING.32

UmmedBd is sipn-extended
belnre subiract)

Operation
LeltOpnd ~ LeftOpnd - RightOpnd

Flags

ep1 TS ZAPC
X = = =% XX XX

Description

The result of subtracting the tight operand from the left operand replaces the left
operand.
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String

variants, checks the ZF for a match with the REP condition. As long as the REP
condition matches, another repetition wifl be performed. For example, REPNE SCAS
FOO will stop with ES:DI1 pointing 10 the next element of FOO which has not yet
heen scanned, and the last element scanned did not match the repeat condition ‘Not
Equal™ that is, the last element scanned malched the value in AX or AL, depending
on whether FOO was a word or byle string. Repeat conditions *“NE” and *NZ” match
ZF =0, while '‘E’ and *Z" muatch ZI--1.

Every string primitive has three variants, The mnemonics above, CMPS, MOVS,
SCAS, LODS, INS, and QUTS. ure generic and require one or more operands to be
coded with them e.g. REP SCAS FOO or REP MOVS FEE.FIE These operands
arc uscd only to determine the size of a string element- byte or word: and do not
determine the addresses of the strings used. The addresses used are determined solely
by the contents of the register patrs ES:DI and DS;SI. as appropriate. Rather than
coding operands for size specification, you may use the genertc mnemonic with a "W’
or *B' suffix- e.g. STOSB or CMPSW .and omil the operands entirely.

For Repeat String Operations, Clocks are:
Clocks Coding Example

9+ 17frap REP MQOVSB
9 +22frep REPE CMPSW
9+ 15/rep REPNE SCASE
9t 13/rep AcP LODSEe
9 ¢ 10frep REF STOSW
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WAIT —Wait While TEST pin not Asserted

Format
‘ Opcode
Opcode Clocks Operalion Coding Example
9B 3+5n* nche WAIT

“3+5n clocks wherse nis he number of imes the TEST line is polled and found to be nactive.

Operation
None,

Flags

001 1TSS 2ZAPC

Description

The WAIT instruction causes the processor 10 enter a wait state if the signal on a
TEST pin is not asserted. The wait state may be interrupted by an cnabled external
interrupt. When this occurs the saved code location is that of the WAIT instruction,
50 that upon return from the interrupting task the wait state is re-entered. The wait
state is cleared and execution resumed when the TEST signal is asserted. Execution
resumes without allowing externai interrupts until after the execution of the next
instruction. The instruction allows the processor to syachronize itself with external
hardware.
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TEST—Logical Compare

Format
Memory/Reg with Reg

[ Opcose | modRm | ]

Opcode Clocks Qpetation Coding Example
84 3 fags + RegB AND Regd TEST BL.CL
84 9+EA lags — Reqs AND MemB TEST BL.BYTESOMETHING
85 3 tlags ~ Reg16 AND Regle TEST BX.CX
8BS 9+EA Hags ~ Reg16 AND Memif TEST B8XWORDSOMETHING

Immed 10 AX/AL

[ opcose [ 0aw | ]

Opcode Clocks Operation Coding Example
A8 4 flags - AL AND Immed38 TEST AL.a
Ag 4 Bags + AX AND Immedi1é TEST  AN.800MH

Immed to Memory/Reg

T T o 7]

Opcode J ModRM* I

*—{Reg field = 00Q)

Qpcode Clacks Operation Coding €xample
Fé s flags — Regé AND Immeda TEST BL.JIFH
Fé 114 EA flags ~ MemB AND Immed3 TEST BYTESOMETHING 3FH
F? [ flags «~ Req16 AND Immed16 TEST BX3FFH
F7 N+EA flags ~ Mem16 AND Immedi6 TEST WORDSOMETHING, 3FFH
QOperation
flags ~ LeitOpnd and RightOpnd
OF —~ CF ~ 0
Flags
o1 TS ZAPCT
P - - - ¥ &£ ¢ 0
Description

The result of a bitwise logical AND of the two operands modifies the flags. Neither
operand is modified.
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XLAT/XLATB—Table Look-up Translation

Format

Opcoda Cilocha Operation Coding Example

D7 41 replace AL wah tahle eniry XLAT ASCII_TABLE
D7 1 XLATB

Operation
AL ~ table entry with eflective address equal to BX + AL:

Flags

Description

XLAT is intended for use as a table look-up instructton, You put the base address of
the table in BX and a byte to be transtated in AL. XLA7 adds AL to the contents of
BX and uses the vesult as an effective address. The byte at that EA is loaded into
AL. BX is unchanged, and no {lags are modified.
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XCHG—Exchange Memory/Register With Register

Format

Memory/ Reg with Reg

Opcode r ModRM T _—_j

Opcode Clocks Operation Coding Example
86 4 Regd + - Regd XCHG  BL.CL
B6 17+ EA Mem§ - = Mem8 XCHG BYTESOMETHING.GL
87 a Req16+ - Regif XCHG BX CX
A7 17+ FA Mem16 --— Memi§ XCHG CX WORDSOMETHING

Word Register with AX

Opcode + Reg

Opcode Clocks QOperation Cading Example
90 + Reg 3 A% —- Reqlé ACHG  AX.BX
Operation

temp ~ left operand:
teit operand ~ righl operand;
right operand - temp;

Flags

0D 1 TS ZAPCL

Description

The wwo operands are exchanged. Segment registers are not legal operands. The
order of the operands is immateriat. No flags arc affected.
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The 8087 Instruction Set

This section provides & summary discussion olb those elements of the 8087 Numeric
Processor that are of specific interest to the 8087 programmer. The following pro
grammer accessible features of the architecture are included: floating-point stack;
status, conteol and tag words; exception pointers; and data types. An clementary
description of 8087 operation is provided to pive a working undersianding of
8086/8087/8088 coprocessing, 8087 numeric progessing, exception handlers, and
8087 emulators.

Those users who wish detailed information on the 8087 architecture, operation, and/
or those who wish (o write their own exception handlers are referred to 7he 8086
Family User's Manual, Numerics Supplement.

8087 Architectural Summary

The programmer accessible teatures of the 8087 Numeric Processar architecture
consist of the eight floaring-point stack clements; the seven words which constitute
the 8087 environment (status word, conirol word. tag word, 2-word instruction
address, and 2-word data address); and the seven data types accessible by the 8087,

Floating-Point Stack

The BO87 stack consists of cight elements divided ttto the tields shown in figure 6.1,
The format of the ficlds carresponds with the temporary real data formai vsed 1 all
stack caleniations and described under Data Types.

At a given point in lime. the ST field in the status word identifies the current stack
op element. This floating point stack element (rather than the status word field) is
referred (o in the rest of this chapter as ST. A load {(push) operation, asin FLLDLN2,
decrements the stack pointer by | and loads a value {in this casc log,2) inlo the new
stack top. An operation which pops the (loating point stack increments the stack
pointer by 1 {FADDP ST(),ST adds the contents of the stack top to the stack ele-
ment designated by (i), stores the result in ST() and increments the siack pointer by
I, making ST(1) the new stack top, ST(0).

b4] 64 62 0
S EXPONENT SIGNIFICAND Rak]
312

5T1 STACK POINTER

§1i0) - - TOP
I

ST(7

| 8761

STISI

SY4)

121623-8

Figure 6-1. The 8087 Stack Fields
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XOR—Logical Exclusive OR

Format
Memory/Reg with Reg

Opcode | ModRM | ]

Opcode Clocks Cperation Coding Example
k] 3 Reg8 ~ Regé XOR Reyl XOR BL.CL
2 9+EA Regs ~ Aegl XOR Mems XOR BL,BYTESOMETHING
23 k| Reg1t — Regl8 XOR Regls XOR BX.CX
33 SrEA Reg16 - Reg16 XOR Mem16 XOR BX WORDSOMETHING
30 15+ EA Mem8 - Mem8 XOR Regé XOR BYTESOMETHING BL
K3l 16+EA Mem16 — Mam16 XOR Reg1b XOR WORDSOMETHING,BX

Immed to AX/AL

[ Opcode Data :l

Opcade Clocks QOperalion Coding Example
34 4 AL =- AL XOR Immea§ XOR AL
35 4 AX - AX XORImmead16 XQR  AX,A)0H

Immed 10 Memory/Reg

Opcode | ModRM” l T | : I Data T j

*-tReglield = 110)
Opcode Clocks Qperation Coding Example
80 4 Regd ~ Regh XOR immeds XOR BL.3?
B0 i7+EA Mem3 ~ Mems XOR Immeds XQOR BYTESOMETHING .32
1] 4 Req16 ~ Aeg16 XOR Immed16 XOR BX,1234H
81 17+EA Mem16 ~ Mem16 XOR Immeg18 XOR WORDSOMETHING »234H
Operation
LeftOpnd «— LettOpnd XOR RightOpnel
QF —CF -0
Flags
0D1 71T S5 ZAPC
0 - - - xxu K\
Description

The exclusive OR of two operands replaces ihe ielt operand. The carry and overflow
flags are cleared.
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15

0

7
o o, [eelal] Trwlolalo]]
I ST, [ PE | VE OE[ZE OE| 1€

[— EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)
‘ INVALID OPERATION - -
—— DENORMALIZED OPERAND
2EAQDIVIDE

OVERFLOW
UNDEALLOW
PRECISION

{RESERVED)
WNTERRUPT REQUEST

CONDITION CODE'
STACK TOP POINTERIZ

BUSY

121623-10

Figure 6-3. Status Word Format

ST values
000 = clement O is stack top
001 = element | is stack top

111 = element 7 is stack top

Control Word

The control word consists of the exception masks, an interrupt enable mask, and
control bits as shown in figure 6-4. During the execution of most instructions, the
8087 checks for six classes of exception conditions:

1. Invalid operations—programming errors such as trving to load a floating point
stack element that is not empty, popping an operand from an element that is
empty, using operands that cause indeterminale results (3/0, square root of a
negative number, trying to store an unnormalized number which will not denor-
malize, etc.}.

2. Overflow—usually the exponent of the true result is too large for the destination
real format.

3. Underflow—the true exponent is too small to be represented in the result
format.

4, Zerodivide—division of a finite non-zero operand by zero.
5. Denormalized—an instruction artempts to operate on a denormalized number.

6. Precision—for instructions that perform exact arithmeric, this exceplion means
that some precision has been lost in reporting the results of an operation.

When one of these six conditions occurs, the corresponding fiag in the sialus word s
set to |, The 8087 checks the appropriate mask in the Control Word to determine if
it should process the exception with a default handling procedure on chip (mask = 1}
or invoke a user written cxception handler (mask = 0).

in the first case, the exception is sawl to be MASKED (from user software).
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Elements of the floating point siack ¢an be addressed either implicitly or explicitly:

FSTST(3) Stores the contents of the stack top into clement 3.

FADD Adds the contents of the stack top to the contents ol ST(1),
stores the result in ST(1} and pops the siack. The result is now
in the new stack top.

Note that floating-point stack indices outside of the range 0-7 are flagged as *‘out of
range."’

Environment

The 8087 environiment consists of the seven words shown in figure 6-2.

195 ¢
8 1 csl'# s1 | czlerfeom - [pe]ueoe | ze [oe|e STATUS WORD
ic [ e 3 |EMI|' < ewfom| - [zm[ou] |  contrROLworo
TRGITY | TAGE! | TAGH) | TAG@: | YAGar | TAGIZ | TAGIT | TAGE:
| | ; | TAG WORD FOAMAT
16158 |
—_ 1 I'nstaucTion apoREss
anst [ 0 ] INSTAUCTION OPCDOE |
16 L58 g
1V arasnDRESS
“M3H l 0 |
‘RESERVED
121623-9

Figure 6-2. 8087 Environment

Status Word

The status word reflects the overall condition of the 8087; it may be examined by
storing 11 into memory with an 8087 instruction and then inspecting it with
8086/8088 CPL) code. The status word is divided into the exception flag and siatus
bit fields shown in figure 6-3. The busy field (bt 15} indicates whethier the 8087 15
executing an instyuction (B=1) or is idle (B=0).

Several 8087 instructions (e.g., comparison instructions) result in modification of
the condition code. The condition code is ¢contained in bits 14 and 10-8 (C3-C0} of
the status word. The condition ¢ode is used mainly for conditional branching. See
the following instruction descriptions later in this chapter for condition code inter-
pretations: FCOM, FCOMP, FCOMPP, FTST, FXAM and FPREM.

Bits 13-11 of the status word points to the 8087 stack element that is the current
stack top (ST). Note that if ST=000B, a ‘‘push’’ operation which decrements ST,
produces ST=111B; similarly, popping the stack with ST=111B yields ST=000B.

Bit 7 (IR) is the interrupt request ficld. The 8087 latches this bil to record a pending
interrupt to the 8086/8088 CPU.

Rits 5-0 (PF, UF, OE, EE, DE, and IE) are set to indicate that the 8087 has detected
an exception while executing an instruction.
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11 = Empty
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Figure 6-5. Tag Word Fermat

DPERAND ADDRESS{"
I INSTRUCTION OPCODE?
[ INSTRUCTION ADDRESS! )
10 0

1 20-9it physical agdress
1711 12asl signiticand dns ol agcade. 5 most signiticand birls are always A0ST hoah 1110118}

12162313

Figure 6-6. Excaption Pointers Format

Exception Pointers

‘The exception pointers shown in figure 6-6 are provided for user-written exception
handlers. Whenever the 8087 executes an instruction, it saves the instruction address
and the instruction opcode in the exception pointers. In addition, if the instruction
references a memory operand, the address of the operand is retained also. Ao excep-
tien handler can bc written to store these pointers tin memory and obtain informa-
tion concerning the instruction that caused the error,

Data Types

The 8087 addresses seven different data Iypes using ali of the 8086 addressing
modc¢s. These data types and their valid ranges of value are shown tn table 6-5.

Figure 6-7 describes how these formats are stored in memory (the sign is always
located in the highest-addressed byic). In the figure, the most significant digits of all
numbers (and field within numbers) are the leftmost digits.

Table 6-5. 8087 Data Types

Data Type Bits Digsiigllgi::irr‘:\alj Approximate Range {Decimal}
WORD INTEGER 1% 25 -32768 < x § 132767
SHORT INTEGER 32 9 -2x10% & x5 2% 107
LONG INTEGER 64 18 —9x 1018 < x g +9x1018
PACKED DECIMAL | 80 18 -99...99 £ x5 +99...99 (18 digits)
SHORT REAL 32 6-7 0,1.2x10738 ¢ x| €3.4x10%8
LONG REAL 6a 15-18 0,23x907308 < |} £1.7x10308
TEMPORARY REAL { 80 19-20 0,3.4%1074932 ¢ §x| < 1.1 x101932
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EXCEPTIQN MASKS (1 = EXCEPTION IS MASKED)
INVALID OPERATION
DENOAMALIZED OFERAND

| ZERQDIVIDE
————  OVERFLOW
UNDERFLOW

PRECISION
[RESERVED}
CONTROL BITS
\NTERRUPT-ENABLE MASK
PRECISION GONTRQOL'D

ROUNDING CQNTROL(D!
INFINITY CONTROLIA

[RESERVED}

% Inlerrupt-Enable Mashk;

0 = Interrupts Enablea

1 - Interrupts Oisabled (Masked|
‘2 Precision Conlrol:

Qr = 24 bits

01 = {reserved)
10 = 53 bits
11 = 64 hits

31 Rounding Conlrol

00 = Aound |a Nearestor Even

@1 - Round Dowa 1fowaid )

10 = Round Bp {towaid - )

11 - Chop ITruncate Toward Zera)
"0 Intinity Control

Q0 - Projecive

1 = Alline

121623-11

Figure 6-4. Control Word Format

The control hits have the following meanings:

PG

RC:

Tag Word

Precision control--results are rounded to one of three
precisions: Temporary Real (64 bits), Long Real (53 bits) or
Short Reai (24 bits).

Rounding Control—results are rounded in one of four
directions: unhiased round to the nearest or even value, round
toward +, round toward —, or round toward zero.

Infinity Control—there are two types of infinity arithmetic
provided: affine and projective. The default means of closing a
Number system is projective. See The 8086 Family User's
Manual, Numerics Supplement, for a complete description.

The tag word, as shown in figure 6-5, contains tags describing the contents of the
corresponding stack elements.
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The short and long real formats exist only in memory. If a number in one of these
formats is loaded into the stack, i is automatically converled to temporary real.

Special vajues are included to increase flexibility though not within the domain of
normal floating point arithmetic. These special values are listed here, but the reader
is referred 10 The 8086 Family User's Manual, Numerics Supplement, for descrip-
tions. The special values include:

s Signed zcro

¢ 4o gpd —o representalions

¢ Ipdefinite values

¢ NAN values {Noi-A-Number)
¢ Depormals

¢  Unnormals

8087 Operation

Coprocessing

The 8087 and host CPU act as coprocessors. They share the same instruction stream
and sometimes perform parallel executions. The 8086/8088 has a set of ESCAPE
instructions that, in memory addressing mode, cause (he $086/8088 to calcutate the
address and read the coutents of that address. The 8086/8088 ignores the word i
reads and executes subsequent instructions. The 8087, however, monitors the same
instruction stream and when it detects an ESCAPE it begins processing. The 8087
latches the opcode and, il there was an address calculated, the 8087 captures both
the address and the datum read by the 8086/8088. 'I'he 8087 decodes the instruction
{0 determine how many more words it needs lrom metmory. It increments the
address and fetches data until all required data is read. The 8087 then releases the
bus and begins calculating while the 8086/8088 continues executing 1he mstruction
slream.

The 808678088 WAILT instruction allows software 1o synchronize the 8086/8088 to
the 8087 so that the host processor does not execute the next instruction until the
ROR7 is Minished with its current (if any) instruction. To accomplish (his, the pro-
grammer should explicitly code the FWAIT instruction immediately before an
8086/8088 instructton that accesses a memory operand read or written by a previous
8087 instruction.

If an 8087 and a processor other than its host CPU <an both update a variable,
access to that vanable should be controlled so that one processor at a time has
exclusive rights 10 it. This can be done by using an 8086/8088 XCHG instruction
prefixed by LOCK. When the 8087 no fonger needs the variable, the 8086/8088
clears it and again makes it available for use.

The 8087 interrupt requests are made o the 808678088 as the result of detecting an
exception. Inlerrupts are enabled or disabled by the Interrupt Enable Mask (LEM) in
the Control Word. When IEM is set to f, interrupis are masked (disabled). The
interrupt request remains sel until it is explicitly cleared. This can be done by the
FNCLEX, FNSAVE, or FINIT instructions.

Numeric Processing

The 8087 has four rounding modces, selectable by the RC field in the control word.
The rounding modes and their corresponding RC fields are shown in table 6-6.

EaN
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~#——— |MCREASING SIGNIFICANCE

[TWO'S
WORD INTEGER E COMPLLMENT)

15 Q
e TWa's
SHORTINTEGER H MAGNITUDE ] COMPLEMENT)
31 D]
_ (TWO'S
LONG INTEGER 'il MAGNITUDE JCOMPLEMENI;
63 0

MAGNITUDE

PACKED DECIMAL |S A
| | ‘°|r|¢|a.d|5|°-a.d|3|ﬂ|hd-| (Y0 0s ) Qg di g 05 Ay dy A, 00 Oy

72 72 0

BIASED
SHORT AEAL |S’ EXFONENTJ SIGNIFICAND

3 2% _ N 0

LoNGREnLH gEIASEY 1 SIGNIFICAND |

53 s2%_ L o

TEMPORARY REAL ls‘ oo 4IT| SIGNIFICAND I

79 61 63° 0

NOTES
5 = Sign bit {0 - positive. 1 - negalivel
9n = Decimal daget {two per bylep
X = Bits have no s.gnificance: 8087 ignores wher loading secos when storing
4 = Posilion at implicit binary point
= Integer b of signilicand. 510red in temporary real. implici® in shorl 4ad long real
Exponent Bias normaliréd valuest
Shor Real. ‘27 1TFHI
Long Real” 1023 (3FFHI
Tamporary Real: 16383 |3FEEA)

121623-14

Figure 6-7. Data Formats

The three binary integer formats are identica) except for length, which governs the
range thal can be accommodated in each format. The lelfumost bit is interpreted as
the number’s sign: 0 = positive and | = negative. Negative numbers are represented
in standard two's complemcnt notation (the binary iniegers are the only 8087 format
1o use two's complement). The quantity zero is represented with a positive sign (all
bits 0). The 8087 word integer format is identical to the 16-bit signed integer dala
type of the 8086 and 8088.

Decimal integers are stored in packed decimal notation, with two decimal digits
“packed’” into each byle. Ncgative numbers are distinguished tfrom positive ones
only by the sign bit. All digits must be in the range OH-9H.

The 8087 stores real numbers in a hree-field binary format that resembles scientific
notation. The number’s significant digits are held in the SIGNIFICAND field, the
EXPONEN tield locates the binary point within the significant digits {determining
the number’s magnitude), and the SIGN fiekl indicates whether the number ts
positive or negative. Negative numbers differ from positive numbers only in beir
sign bil.
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Table 6-7. Exception and Response Summary

Exception Masked Response Unmasked Response
fnvatid If one operand 18 NAN'*. relurn it; | Requestinterrupt,
Operalion if bath are NANS, return NAN with

larger absolute value; if neither is
NAN, return indefinite .

Zerodwide Return = signed with “'exclusive | Requestinterrupl.
or'' ol operand signs.

Denormalized | Memory operand: proceed as | Requestinterrupl.
usual. Register operand: coavert to
valid unnormai, then re-evaluate
tor excepiions.

Overflow Relurn properly signed « Register deslination: adjust
expangnt,* store result, reguest
inierrupt.  Memory  deslination:
requestintecrupt,

Underilow Denormalize resull. Register destination: adjust
exponent,’ sicre rcsull, request
interrupt  Memory destination:
requestinterrypt.

Precision Refurn rounded result. Return rounded result, request
interrupt

' On overtiow, 24,576 decimal is sudtracted from the true result’'s exponeny; his {orces the
expanent back into range and permils a uSer exception handler 1o ascertain the true result
from the adjusted resuit that is returned. On underflow, the same constanl 1s added \o the
‘rue resuil’'s exponent.

** NAN is a member of a ciass of special values that existin the real formals only See the The
8086 Famify User's Manual, Numerics Supplement.

8087 Emuiators

Numeric processing capability is not restricted 1o 8087 users. Intel offers two
808678088 sofiware products which provide 8087 functionatity. E8087 emulates the
Tudl 8087 instruction set for assembly language programs. PERO87 furnishes numeric
suppori for PY./M-86 sofiware. Use of the 8087 Linulawrs necessitates modification
of the instruction formats presented in this chapier.

ASMHEG, the lntel 8086 ,/8ORT/BOBSR assembler, produces special object code for 8087
instructions. I'loatling point instructions are identified in such a way thal they may be
linked (o the 8087 Lmulatars. Refer (o your operating sysiem’s 8086,/8087,/3088
assembler operating instructions manual lor a short description of this change and
link procedure.

Organization of the 8087 Instruction Set

Data Transfer Instructions

These instructions are summarized in table 6-8. They move operands among stack
elements or between the stack top and memory. Any of the seven data types can be
converted to temporary real and loaded {pushed) onto the stack in a single opera-
tion; they can he stored in memory in the same manner. The data transfer instruc-
nons automatically update the 8087 1ag word to reflect the siack contents following
theinstruction.

—
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Table 6-6. Rounding Modes

RC Field Rounding Mode Rounding Action
a0 Round 10 nearest Closer to & of a or ¢; it equally close, select
even number (the one whose least significant
bitis zero).
01 Round down (toward ~ea) a
10 Round up (toward ~o) [
" Chop (toward 0) Smallerin magnitude of 2 ar¢

Note:a < b <c;a and ¢ are represeniable, b is not.

Rounding occurs in arithmetic and store operalions when the format of the destina-
tion cannot exactly represent the true result. This can happen when a precise tem-
porary real number is stored in a shorler real format or in an integer format. Round-
ing introduces an error in a result that is less than one unit in the last place to which
the result is rounded. **Round (o the nearest significant bit” is the default mode and
is suitable for most applicattons. Other modes and applications are described in The
8086 Family User's Manual, Numerics Supplement.

‘The precision of results can be caleulated (0 64, 53, or 23 bits as selected by the PC
field of the control word. The default setting is 64 bits. This setting is best suited for
most applicalions.

The 8087°s system of real numbers may be closed by cuther of 1wo models of infinity,
The IC field in the control word is set for either projective or alfine ¢losure, The
default is projective. which is recommended for most compuiations. Both closure
forms and their uses are described in The 8086 Familv User's Manual, Numerics
Supplement.

The 8087 can represent data and final results of catculations in the range
+2.3x1078 1o +1 Tx10™® (double precision). Compared to most computers,
in¢cluding large mainframes, the §087 provides a very good approximation of the real
number system. It 15 important to remember, however, that it 15 nol an exact
representation, and that arithmetic on real numbers is inherently approximate.

Conversely, and equally important, (he 8087 does perform ¢xact arithmetic on its
integer subset of the reals. That is, an operation on (wo integers returns an cxact
integral result, provided that the true result is an jnteger and is in range.

The 8087 detects the six types of exceptions shown in table 6-7. The programmer has
a choice of using the 8087 on-chip fauli-handling capability by masking exceptions
in the Conirol Word, or writing software exception handlers and unmasking excep-
tions in the control word. Table 6-3 shows the 8087 response to each situation.

If the exception is unmasked, its deteclion results in the generation of an interrupt.
When an interropt is gencrated, the interrupt procedure {excception handler) has
available the exception flags, a pointer to the instruction causmg the interrupt and a
pointer to the datum if memory was addressed. Each of the exceptions shown in
1able 6-7 has a sticky flag associated with it, which means thai once the flag is set, it
remains until reset by software, Several instructions can be used to clear the fiag:
FCILEX clears exceptions: FRSTOR or FLDENYV overwrite flags.

Those users who wish to write their own exception handlers should consult The 8086
Family User's Manual, Numerics Suppiement since they will vary widely from one
application to the next.
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The stack element form is a generalization of the classical stack form; the program-
mer specifies (he stack top as one operand and any stack element on the stack as the
other operand. Coding the stack top as the destination provides a convenient way to
make use of a consiant held efsewhere in the stack. The converse coding (ST is the
source operand} allows, for example, adding the top into a stack element used as an
accumulator.

(ften the operand in the stack top is needed for ane operation but then is of no fur-
ther use in the computation. The stack element and pop form can be used to pick up
the stack top as the source operand, and then discard it by popping the floating
point stack. Coding operands of ST(1),ST with a stack element pop mnemonic is
cquivalent to a classical stack opcration: the top is popped and the result is lelt al the
new top.

Programmers no longer need (o spend valuable time eliminating square roots from
algorithms because processors run too slowly. Other arithmectic instructions perform
exact modulo division, round real numbers 1o integers, and scale values by powers
of two.

The B087’s arithmetic instructions {(addition, subtraction, multiplication, and divi-
sion) allow the programmer (0 minimize memory references and to make optimum
use of the 8087 floating-point stack.

Table 6-10 summarizes (he available operation/operand forms that are provided for
basic arithmetic. In addition to the four normal operations, (wo ‘‘reversed”
instructions make subtraction and diviston ‘‘symmetrical’’ like addition and
multiplication.

¢ QOperands may be located in stack elements or memory.
e« Results may be deposited in a choice of stack elements,

¢ Operands may be a varicty of 8087 data types: long real, short real, short integer
or word integer, with automatic conversion 1o temporary real performed by the
8087.

Five insteuction forms may be used across all six operations, as shown in table 6-10.
The classical stack form may be used (© make the 8087 operate like a classical stack
machine, No operands arc coded in this form, only the insiruction maemonic is
coded. The 8087 picks the source operand from the stack 1op and the destination
from the ncxt stack element. It then perlorms the operation, pops the stack, and
reiurns the result to the new stack 10p, cffectively replacing the operands by he
result.

Table 6-10. Basic Arithmetic Instructions and Operands

Instruction Form M":;?;“‘c deg:’if‘:":‘::::::fce ASM86 Example

Classical stack Fop {ST{1),8T} FADD

Stack element Fop ST1),ST or ST.ST{n FSUB ST,ST(&H

Stack element FopP ST(iy, ST FMULP  ST{2),ST
and pop

Real memory Fop {ST,} short-real{long-real FOIV AZIMUTH

Integer memory Flop {ST,} word-integer! short-integer | FIDWV N__PULSES

Notes: Braces { 1} surround implicit operands,; lhese are nol coded, and are shown here for
information only.

op = ADD  deshnalion + destination + source
SUB  destination « destnation - source
SUBR destination + source — destination
MUL destination ~ deslinalion - source
DIV destination «— deslinalion + source
DIVR  destination — source = destination
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Table 6-8. Data Transfer Instructions

Real Transfers

FLD Load real

FST Store real

FSTP Store real and pop
EXCH Exchange reqisters

Integer Transters

FILD Imeger load
FIST Inleger store
FISTP Imeger store and pop

Packed Decimal Transiers

FBLD Packed decimat (BCD) load
FBSTP Packed decimal (BCD} store and pop

Arithmetic Instructions
The anthmeuc instruciion set for the 8087 provides a great many variations on the

basic add, subtract, multuply and divide operadions, and 4 number of other useful
functions. Table 6-9 gives a summary of these instructions.

Table 6-9. Arithmetic Instructions

Addition
FADD Add real
FADDP Add real and pop
FIADD Inleger add

Subtraction

FSUB Subtract real

FSUBP Subtract real and pop

FISUB Integer subtrac)

FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed

Multiplication

FMUL Multiply real
FMULP Multiply real and pop
FIMUL integer multiply
Division
FDIV Divide real
FDIvP Divide real and pop
FIDIV Integer divide
FDIVR Divide real reversed
FDIVRP Divide real reversed and pop
FIDIVR Integer divide reversed

Other Operations

FSORT Square root

FSCALE Scale

FPREM Partial remainder

FANDINT Round ¢ integer

FXTRACT Exlract exponent and significand
FABS Absolule value

FCHS Change sign
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The transcendental instructions assume that their operands are valid and in-range.
The instruction descriptions in this section provide the range of each operation. To
be considered valid, an operand (o a transcendental must be normalized; denormals,
unnormals, infinities and NANs are considered invalid. Zero operands are accepted
by some functions and are considered out-of-range by otheys. If a transcendental
operand is invalid or out-of-range, the instruction will produce an undefined result
without signaling an exception. [Uis the programmer’s cesponsibility (o ensure that
operands are valid and in-range belore executing a transcendental. FPREM may be
used to bring an operand into range for periodic functions.

Constant Instructions

tach of these instructions (table 6 13) loads (pushes) a commonly-used constant
onto the stack. The values have full temporary real precision {64 bits) and are
accurate to approximately 19 decimal digits. Since a temporary real constant
occupies 10 memory byles, the constant instructions, which are only two bytes fong,
save storage and hmprove execution speed, in addition 1o simplifyiug programming.

Tahle 6-13. Constant Instructions

FLDZ Load + 0.0
FLD1 Load +1.0
FLDPI Load »
FLDL2T Load 109510
FLDL2E Load logoe
FLDLG2 Load logq 2
FLDULN2 Load logg

Processor Control Instructions

When CPU interrupts are enabled, as will normally be the case when an application
task is running, the *wait’’ forms of these instructions should be used. Most of the
instructions shown in table 6-14 are used in system-level activities rather than in
computations. These activities include: initialization, exception handling, and {ask
switching.

Alternate mnemonics are shown for several of the processor controi mstructions in
table 6-14. This mnemonic, distinguished by a second character of **N’', instrucis
the assembler not 1o prefix the instruction with 2 CPU WAILT instruction (instead, a
CPU NOP precedes the instruction). This “‘no-wait'’ form is intended for use in
critical code regions where a WAIT instrucuon might precipitate an endless wait.
Thus, when CPU initerrupts are disabled, and the 8087 can potentially generate an
interrupt, the ‘‘no-wait'" form should be used.

Except for FNSTENY and FNSAVE, all insiructions which provide a no-wail
mnemonic are self-synchronizing and can be exccuted back-to-back in any combina-
tion without intervening FWAILTs. These instructions can be ¢xecuted by one part of
the 8087 while the other part is busy with a previously decoded instruction. To
cnsure that ihe processor control instruction executes after completion of any opera-
tion in progress, the “WAIT’’ form of that instruction should be used.
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The two memory forms increase the flexibility of the 8087's arithmetic instructions.
They permit a real number or a binary integer in memory to be used directly as a
source operand. This is a very useful facility in situations where operands are nol
used frequently enough to justify holding them in the floating point stack. Note that
various forms of data allocation may be used to define these operands: they may be
clements in arrays, structures or other daia organizations, as weil as simple scalars.

The six functional groups of instructions are discussed further in the next
paragraphs.

Comparison Instructions

Each of these instructions (tabic 6-11) analyzes the top stack element, often in rela-
tionship 1o another operand, and reports the result in the status word condition
code. The basic operations are compare, lest (compare with zero), and examine
(report tag, sign, and normalizauon). Special forms of the compare operation are
provided to opumize algorithms by allowing direct comparisons with binary integers
and rcal numbers in memory, as well as popping the stack after a comparison.

The FSTSW (store status word) instruction may be used following a comparison (0
transfer the condition code to memory for inspection. See individual descriptions of
the instructions listed in (able 6-11 for interpretations of the condition code bits.

Note that instructions other than those in the comparison group may update the

condition code. To ensure thal the stalus word is not altered inadvertently, it should
be stored immediately afler the comparc operation.

Table 6-11. Comparison Instructtons

FCOM Compare real

FCOMP Compare real and pop
FCOMPP Compare real and pop twice
FICOM Integer compare

FICOMP integer compare and pop
FTST Test

FXAM Examine

Transcendental instructions

The instructions in this group are summarized in table 6-12. They perform the core
calculations for all common trigonometric, inverse trigonometric, hyperbolic,
inverse hyperbolic, logarithmic and exponential functions. Prologue and epilogue
software may be used 10 reduce arguments to the range accepted by the instructions
and to adjust the result to correspond to the original arguments if necessary. The
transcendentals operate on the top one or two stack elements, and they return their
results to he stack.

Table 6-12. Transcendental Instructions

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2%-1

FYL2X Y *logoX

FYL2XP1 A\ Ioggtx +1)
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MNEMONIC —Sample 8086/8088 Instruction

Sl
Format o
[ war [ opt  [miopim | agdt | adare |
I:an offsel value {either 8 or 16 bits)
mogrm byle (middle 3 bits part of opcodce)
opcode (possibly two bytes)
an B036 wait instruction, NOP, or emulator instruction
Execution
BOB7 Emulaior Clocks . .
Encading Encoding Typical Operation Coding Example
Range
Ithe #0987 (emubalor 1ypical {machine operahon) MNEMONIC
instruction insteuction range
coding) coding)
P
Operation

(A description of the machine operation.)

Exceptions
1z2000UFP

{shows which exceptions could be set)
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Tablc 6-14. Processor Control Instructions

FINIT/FNINIT Initialize processor
FOISUFNDISI Disable interrupts
FENIFNEN! Enable interrupts
FLDCW Load control word
FSTCW/FNSTCW Slore control word
FSTSWIFNSTSW Store status word
FCLEX{FNCLEX Clear exceptions
FSTENV{FNSTENY Stare environment
FLDENYV Load envirorment
FSAVE/FNSAVE Save state

FRSTOR Aesiore stale

FINCSTP Incremem Stack ponter
FODECSTP Decrement stack potnler
FFREE Frec register

FNOP No operation

FWAIT CPU wait
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FABS —Absolute Value

Format

[Twar | “om | op2 | e

Exsacution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Coding Example
Range
38 DREI CL 19 E 14 8T+ ST FABS
mn7

QOperation

The absolule value instruction changes the etement (o the top of the stack 1o its ab-
solute value by making s sign positive.

Exceptions

120 0¢U0UP

e
X
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F2XM1-2x—1

Format
WAIT opt op2
Execution
B0BY Emulalor Clocks .
Encoding Encoding Typicat Operatian Coding Example
Range
9B DI FQ CD19FO 500 ST~25 1 F2XMe
310-630
Operation
This instruction calculates the {function Y = 2% 1, X is taken from the top of the

floating point stack and must be in the range 0 € X < 0.5, The resull Y replaces X at
the stack 1op.

Exceptions

12 000UP »

X X

*Qperands not checked.

Description
This instruction 1s designed 1o produce a very accurale result even when x is ¢close 10
zero. Toobtain ¥ = 2%, add 110 the result delivered by F2XMI.

The following formuias show how vatues other than 2 may be raised to a power of
X.

0% =2+ Ing10
g*=2* T lagge
y* _pr 7 logyy
The 8087 has built-in instructions, described in this chapter, for loading the con-

stants LOG; 10 and LOG; ¢, and the FYL2X instruction may be used to calculate X
*log: Y.
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FADDP/FADD—Add Real and Pop

Format
Siack top + Stack Element

T

Execution
BOB7 Emulator Clocks .
Encoding Encoding Typical Operation Coding Exampie
Range
3B DECH CD1ECH 90 ST(4y— ST + ST FADD
75-10%5 PoOp stack
9BOECD « i CDAECG+: 90 STy~ 5T « ST FADOP ST(N.ST
75-10% pop stack

Operation

The add real and pop stack instruction adds the stack top o one of the stack elements,
replacing the stack clement with the sum, and then pops the floating point stack.
Exceptions

J Z DOUVUP

£ X X X X
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FADD—Add Real

Format

Siack top + Stack element

WAILT opl op2 + i
Execution
8087 Emulalor Clocks .
Encoding Encoding Typical Operation Coding Example
Range
9B DB GO +1 CDt8CA +1 85 ST <~ 8T ~ ST FARD ST.STi
70 100
IBOCCO+iI CDICCE+i 85 STy~ 8T + 8T FADD §Tt{a),5T
70-100

Siack top + memory operand

WAIT opl miopfrm addrt | addrz j

Execution
8087 Emulater Clocks . .
Encoding Encoding Typical Operation Coding Example
Range

9B 08 mOrm COAGmorm 105+ Ea ST~ 8T + Tem-op FADD COUNT
(90-120) + EA (shart-real)

4B OC mbrm CO1Cmbrm 110+EA ST «~ 81 + nem-op FADD MEAN
{95-12%) + EA {long-real|

Operation

The add real instruction adds the source operand to the destination operand and
places the result in the destination. The source operand may be either the stack Lop,
a stack element, or a short or long real operand in memory. When the source is the
stack top, the destination is one of the stack elements. When the source is a stack ele-
ment or memory operand, the destination is the stack top.

Exceptions

1 20D0DUP
X X X X X
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FBSTP—Packed Decimal (BCD) Store and Pop

Format
‘ WAIT ] opl | mioplrm [ addrt | adadrz '
Execulion
8087 Emulator Clocks .
Encading Encoding Typical Cpetation Coading Example
Range
98 DF mBrm C.I0HIF méro 530+ €A mem-op ~ ST FBSTP FORECASYT
(520-54001 + EA DOP stack
QOperation

The packed decimal store and pop stack instruction converts the contents of the
stack top to a packed decimai integer, stores the result at the destination in memory,
and pops the floating paint stack.

Exceptions

12DpOouvr®P
X

Note

FBSTP produces a rounded integer from a non-iniegral value by adding 0.5
to (he value and then deleting feast significant bits.

Users who are concerned about rounding may precede FBSTP with FRNDINT,

P
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FBLD—Packed Decimal (BCD) Load

Format

[ war T opt [ mioprm | adan | addrzj

Execulian
2087 Emulator Clocks . 3
Encoding Encoding Typical Operatian Coding Example
Range
98 OF mdrm CDIF marm 300 +EA push stack FEBLD YTD. .SALES

1290-310)+ EA ST ~ mem-gp

QOperation

The BCD load instruction converts the memory operand from packed decimal to
temporary real and pushes the result onto the stack. The sign of source ts preserved,
including the case when the value is negative zero.

Exceptions

1 2004UP
X

Note

The packed decimal digits of the source are assumed (o be in the range
0-9H. The instruction does not check for invalid digits (A-FH) and the
result of attempting to load an invalid encoding is undelined.
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FCLEX/FNCLEX—Clear Exceptions

Format
/"""*_
‘ WAIT l opl ] op2 ]
Execuilion
8087 £mulator Clochs . )
Encoding Encoding Typical Qperalion Coding Example
Ranga
¢8 DB E2 CO 1B E2 5 clear 8087 excephons FCLEX
28
90 0B E2 CD1BE2 5 clear 8087 excesctions FNCLEX
2-8 (No wraith
Operation
This instruction clears all exception flags, the interrupt request flag and the busy flag
i the status word. As a consequence, the 8087's INT and BUSY lines go inactive.
The FCLEX form of this instruction s preceded by an assembler-gencrated WAIT
instruetion.
Exceptions T
i zoouwr
Descripticn

ENCLEX is used in critical areas of code where a WAIT instruction might result ina
deadlock. FCLEX is used o insure thay the processor control insiruction executes
only after completion of any operanan in progress io the NOP.
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FCHS—Change Sign

Format
[ war | oot | em2 |
Execution
8087 Emulstor Clocks )
Encoding Encading Typical Operatian
Range
98 D9 EO CD19ED 15 ST -8T
1047
Operation

Coding Example

FCHS

The change sign instruction complements the sign on the stack top element.

Exceptions

1T zDoOouP
X
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FCOM

NANs and o {projective) cannot be compared and returp C3 = C0 = as
shown above.

The following procedures can be usced 10 store the status word from this instruction

and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For cxample, the code reguired to transfer the

information 1o the flags register is:

FSTSW STAT_87

FWAIT

MOY AH, BYYE PTR STAT_87+1

SAHF

The 8086 instructions are now used to execute a conditional branch on the result of

the compare as follows:

B - Jump
JBE - ;JuMp
JA - ;JuMP
JAE - ;JUMP
JE - :JUMP
INE - ;JUMP

i f
i
If
If
IF
IF

ST
ST
ST
ST
ST
ST

W VA A

sgurce
source
squrce
source
spurce
sQurce

Note

;STORE RESULT FROM FLOM

JWAIT FOR STORE

;sMOYE STATUS BYTE TO AM
INTO 8086 FLAGS REGISTER

i LDAD

OR §T ?
OR ST 7
and NQT
and NOT
or ST ?
and NOT

source
source
ST ? source
ST 7 source
sQurce
ST ? source
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FCOM—Compare Real

Format

Compare Stack top and Stack element

[ war [ op op2+i |
Execution
8087 Emulator Clacks . .
Encoding Encoding Typical Operation Cading Example
Range
98 D3 01 CD 18 D1 LES ST ST FCOM
40-50
SBDB DO+ CD1BD0+i a5 ST ST} rcoM ST
40-50

Comparce Stack top and memory operands

WAIT op1 T miopfrm | ﬂ | ﬂj

Execulion
8087 Emulator Clochks .
Enceding Encoding Typical Operation Coding Example
Range

98 D8 mZrm CO 18 m2rm 65+ EA 5T - memop FCOM WAVELENGTH
(60-70}+ EA {short-real)

498 DC m2rm CDAC m2rm 70+ €A ST - memop FCOM MEAN
165-75) 1 EA {long rcal)

Operation

The compare real instruction compares the stack top with the source operand. T'he
source operand may be a stack element or short or long real memory operand. If no
operand is coded. ST is compared with ST{I).

Exceptions

1ZD0DOUP

X X

Description

Following the instruction, the condition codes in the 8087 siatus byie reflect the
order of the operands as follows:

c3 c2 co ORDER

0 0 ¢ ST > saurce

0 0 1 ST < source

q 0 0 ST = source

1 1 1 ST 7 source
Format

Compare Stack top and Stack element and pop

Lowar [ oot | opoer |
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FCOMP

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
otder ol the operands as follows:

C3 c2 Co ORDER
0 [¢] 0 ST » source
0 i} 1 ST < source
1 0 1] ST = source
1 1 1 ST 7 source
Note
NANs and = (projective) cannot be compared and return C3 = C0 = | as

shown above.

The following procedures can be used to store the status word (rom this instruction
and test the compare result.

The condition code can be transferced from the 8087 status byte to memory, an 8086
register, or the 8086 [lags register. For example, the code required Lo transfer the
information to the flags register is:

FSTSW STAT 87 ; STORE RESULT FROM FCOM

FWAIT {WAIT FOR STORE

MOY AH, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TO AH

SAMF ;LOAD INTO 8086 FLAGS REGISTER

The 8086 instructions are now used (o execute a conditional branch on the result of
the compare as follows:

JB - ;JUMP if ST
JBE - ;JUMP IFf ST
JA - ;JUMP IF ST
JAE - ;JUMP IF ST
JE - ;JUMP IF ST
JNE - ;JUMP IF ST

source QR ST 7 source
source OR ST ? source
source and NOT $§T ? source
source and NOT ST ? source
source or ST ? source
source and NOT ST ? source

WV VA A
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FCOMPP—Compare Real and Pop Twice

Format
| WAIT l opi [ op2
Executian
8087 Emulator Ciocks )
Encoding Encoding Typical Operation Coding Example
Range
9B DE D9 CD1EDS 50 8T -5TH) FCOMPP
25-55 pog stack
pop stack
Operation

The compare real and pop stack iwice instruction compares the stack top with ST(1)
and pops the floating point stack (wice, discarding both operands. No operands may
be explicitly coded with this instruction.

Exceptions

I ZpouUur
X X

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

C3 c2 co ORDER

0 0 ? ST > source

0 0 1 ST < source

1 0 ] ST = source

1 1 1 ST ? saurce
Note

NANs and ¢ (projective) cannot be compared and return €3 = C0 = 1 as
shown above,

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, \he code required to transfer the
information to the flags register is:

FSTSW STAT_87 ySTORE RESULT FROM FCOM

FWAIT ;WAIT FOR STORE

MOY AH, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TO AH

SAHF ;LOAD INTO 8086 FLAGS REGISTER
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FCOMPP

The 8086 instructions are now used (o cxecute a conditional branch on the result of
the compare as (ollows:

source QR ST ? source
source OR ST 7 sqource
source and NOT ST ? source
sgurce and NOT ST ? source
source or ST ? source
source and NQGT ST ? source

JB - ;JUMP if ST
JBE - ;JUMP IF ST
JA - ;JUMP IF ST
JAE - ;JUMP TF ST
JE - ;JUMP IF ST
JNE - ;JUMP IFf ST

W VA A
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FDECSTP—Decrement Stack Pointer

Format
| WAIT | opl J op2 J
Executlon
8087 Emulator Clocks
Encoding Encoding Typica Operation Coding Example
Range
9B DI FE CD19F6 9 stack painter ~ 2 FDECSTP
612 stack poiater  §

Operation

I'his instruction subtracts 1 from the stack 1op pointer in the status word. No tags or
registers are altered, nor is any data transferred. Execuling FDECSTP when the
slack top pointcr is 0, changes the pointerta 7.

Exceptions

1 Z2D0D0GUP
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FDISI/FNDIS|—Disable interrupts

Format
| WAIT —[ opi op2
Execution
8087 Emulator Clacks i
Encoding Encoding Typical Operation Coding Example
Range
$8 DB E1 CD1BE1 5 Set 8087 interrupl mask FDISI
2B
90 DB EY CD1BE1 5 Set1 087 interrupt mask FNDIS!
2-8 1NO wail)
Operation

The instruction sets the interrupt enable mask in the control word and prevents the
NDP from issuing an interrupt request. The FNISI form of this instruction is
preceded by an assembler-genecrated WAIT.

Exceptions

1 ZDO0UP

Description

The NO WAIT form of the instruction (FNDISI) is intended for use in critical code
regions where a WAIT instruction might induce an endless wait.

Note

If WAIT is decoded with pending cxceptions, the B087 generates an
interrupt— masked or not.
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FDIV —Divide Real

Format

Stack top and Stack element

|_ WAIT I opl op2+i

Execution
8087 Emulator Clochks .
Encoding Encoding Typical Operation Cading Example

Range

IBDEFR+i CO18FQ i 198 ST - STIST{i) FDW  ST.STi2)
193-203

B DC F811 CD1C F8+i 19A ST(i) - ST ST FDIV  §T43).8T
183-203

Stack top and memory operand

wAT | opt [ miopsm I_a_d_dﬂ | agrz___\

Execulion
8087 Emulaior Clocks . .
Encoding Encoding Typical Operation Coding Example
Range
48 DA mérm CD1&mbrm 220+ Ea ST ~ §™imem-op FDW¥V DISTANCE
1215-225) + €A (short-real)
98 DG mbrm CD 1Cmbrm 225+EA 87T~ §Timem-op FDIY GAMMA
1220-2301+ EA Liong-real)

Operation

The divide real instructions divide the destination by the source and return the quo-
tient (o the destination. The source operand may be either the s1ack op, u stack ele-
ment, or a short or long real operand in memory. When the source 15 the stack top,
the destination is one of the stack elements. When the source is a stack element or
memory operand, the destination 1s the stack 10p.

The divide real and pop stack instruction divides one of the stack elements by Lhe
stack 10p, replaces the stack elemem with the quotient, and then pops the {loaling
point stack.

Exceptions

I1Z0DO0OUP
X x X X X X
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FDIVP—Divide Real and Pop

Format
I WAIT I opl | op24i ]
Execuiion
BO87 Emulator Clotks .
Encoding Encoding Typical Operation
Range
3B DE F8 GDIEF9 202 ST}~ STOIST
197-207 pop slack
9B DE FB+1 CDI1E F&+1 202 ST4) ~ STHIST
197-207 pop stack
Operation

The divide real instructions divide the destunation by 1he source and reiurn the guo-
tient 10 the desunation. The source operand may be either the stack 10p, a stack ele-
ment, or a short or long real operand in memory. When the source is the stack 10p,
the destination is onc of the stack elcments. When the source is a stack element or

memory operand, the destination 1s the stack (op.

The divide real and pop stack instruction divides one of the stack elemenis by the
stack Lop, replaces the stack element with the quotient, and then pops the floating

point stack.

Exceptions

12 004P

X X X x X X

Coding Example

FOw

FOIVP  STI2LST
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FDIVR—Divide Real Reversed

Format

Stack top and Stack element

WAIT opi ‘ op2 +i —I
Execution
8087 Emulator Clocks .
Encoding Encoding Typlcal OGperation Coding Example
Range
9B D8 FB+i CD 18 F8+: 198 ST ~ ST(i)IST FOIVR STST
194-204
IBOCFI+i CDICGFO+1 189 ST STISTI FDIVR ST{3;,5T
194-204

Stack top and memory operand

WAIT ap! 1 miop/rm | B i‘ﬂ | a_dﬂ:]

Execution
2087 Emulalor Clocks ) _
Encoding Enceding Typical Operation Coding Example
Range

98 D8 m7rm CD18mfrm W+ EA ST ~ mem-opiST FDWWVR RATE
(216-226) + EA (shori-real}

8B DC m7rm CDIC m7tm 226+EA 5T ~ mem-op! ST FDIVR SPEED
(221-231)+ EA (leng-real)

QOperation

The divide real reversed instructions divide the source operand by the destinaiion
and r¢turn the quotient to the destination. The source operand may be cither the
stack top, a stack clement, or a short or long real operand in memory. When the
source is Lthe stack 1op, the destination 15 one of the stack elements. When the source
is a stack element or memaory operand, the destination is the stack top.

The reverse divide and pop stack instruction divides the stack top by one of the stack
elements and returns the quotient to the stack element. The floating point stack is
then popped.

Exceptions

12D00UP
X X X % X X
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FDIVRP-Divide Real Reversed and Pop

Format
[ war | opt | opasi |
Execulion
8087 Emulator Clocks
Enacoding Encoding Typical Operalion
Range
8B DE F1 CD1EFY 203 ST(1) ~ STIST()
198-208 pop slack
9B DE FO +1 CDIEFO +1 203 8T(i) ~ STISTH
198-208
Operation

Ceding Example

FDIVR

FOIVAP  STid).57

The divide real reversed instructions divide the source operand by (he destination
and return the quotient to the destination. The source operand may be either the
stack top, a stack element, or a short or long real operand in memory, When the
source i1s the stack top, the destination is one of the stack elements. When the source
is 4 stack element or memory operand, the destination is the stack top.

The reverse divide and pop stack instruction divides the stack top by onc of the stack
elements and returns the quotient 10 the stack element. The floating point stack is

then popped.

Exceptions

1 ZDOUP

X X X X X X
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FENI/FNENI—Enable Interrupts

Format
| WAIT { opl | op2 —I
Execution
BOB7 Emulator Clocks . )
Encoding Encoding Typical Operation Coding Exampie
Range
9B 0B ED CO1B ED 5 clear 8087 inteérrupt mask FENI
2-8
90 DB EQ CO1BEQ 5 clear 8087 interrupl mask FNENI
2.B (NG waith
Operation

This instruction clears the interrupt cnable mask in the control word, allowing the
8087 to penerate interrup! requests. The FENI form of this instruction is preceded
by an assembler-generated WAIT instruction.

Exceptions

1 Z00UP

Description

The NO WAILT form of the instruction (FNENI), is intended for use in ¢ritical code
regions where a WAIT instruction might induce an endless wait.

The WAIT lform of this instruction (FENI), should be ased in all non-critical code
regions. This form insures that the processor control instrucuon executes aller com-
pletion of any operation in progress in the NEU.
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FFREE —Free Register

Format ~

[ war | om [ opesi |

Executlon
a087 Emulator Clocks . )
Encoding Encoding Typicat Operation Coding Example
Range
gBDDCO+1 CD1DCO+s " TAG{) masked empty FFREE ST{1)
9-16

Operation

This instruction changes the destination stack element’s 1ag 1o empty. The contents
of this stack element are unaffected.

Exceptions

1200uUPpP

T
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FIADD—Integer Add

Format
‘ WAIT | opl | miopfrm | addr1
Enecution
8087 Emulator Clocks
Encoding Encoding Typlcal Operation
Range
98 DA mQrm CO1AmOrm 125+ EA ST~ &T + mem-op
(108-143) ~EA (shortinteger)
98 DEmOrm  CD1E mOrm 120~EA ST — 5T + mem-op
(102-137) » EA (word inleger)
Operation

addr2 '

Coding Example

FIADD DISTANCE

FIADD PULSE

This instruction adds the integer memory source 10 the top of the stack and returns
the sutn to the destinarion at the top of the stack.

Exceptions

120900UP

X X X

X
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FICOM—Integer Compare

Format
I_ WAIT [ opl | miopirm | addrl ‘ agdr2
Execution
8087 Emulatar Clocks
Encoding Encoding Typical Operation Coding Example
Range
98 OA m2rm CO1AmM2rm B85 + EA ST - mem-cp FICOM PASSES
(78-91) + EA Ishortinteger)
98 BE m2rm CD1Em?rm 80 + EA ST - mem-gp FICOM CENTS
(72-86) - EA tword integery
Operation

The integer compare instructions convert the memory operand {(a word or short
binary integer) 1o temporary real and compare it with the top of the stack.

Exceptions

I ZDpOoOUue
X X

Description

Following the insiruction, the conditton codes in the 8087 status byte reflect the
order of the operands as follows:

c3 c2 co ORDER
0 ¢ ] ST » source
0 i} 1 ST < source
1 0 4 ST = source
1 1 1 ST ? source
Note
NANs and e {projective) cannot be compared and return C3 = C0 = | as

shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte 10 memory, an 8086
register, or the 8086 flags register. For example, the code required 10 transfer 1he
information to the flags register is:

FSTSW STAT_87 ;STORE RESULT FROM FICOM
FWAIT JWAIT FOR STORE

MOV AHM, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TQ AH

SAHF ;LOAD INTQO 8086 FLAGS REGISTER
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FICOM

The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

spurce OR ST ? source
source OR ST ? source
source and MOT ST ? source
source and NOT ST ? source
seurce or ST ? source
source and NOT ST ? source

JB - ;JUMP if ST
JBE - ;JUMP IF ST
JA - ;IJUMP IF ST
JAE - ;JUMP IF 3T
JE ~ ;JUMP IF ST
JNE - ;JUMP IF ST

W VA A
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FICOMP —Integer Compare and Pop

Format
( WAIT | apl | miopfrm i addr I addr2
Execution
8087 Emulator Clocks .
Encoding Encoding Typleal Operation Cading Example
Range
9B DA mIrm CD 1A m3rm 87 - EA ST - mem-op FICOMP  LIMIT
(80-93) + EA pop stack
(shorlinteger)
9B OE m3rm CD1E m3tm 82 - EA ST - mem-op FICOMP SAMPLE
(74-88) + EA pop slack
iword integer}
Operation

The integer compare instructions convert the memory operand {a word or shor
binary integer)} to temporary real and compare it with the top of the stack. FICOMP
additionally discards the value in ST by popping the floating point stack.

Exceptions

1200 UP
X X

Description

Following the instruction, the condition codes in the 8087 status bytie reflect the
order of the operands as follows:

C3 c2 Cco OADER

0 Q 0 ST > source

0 0 1 8T < source

1 0 0 ST - source

1 1 1 ST 7 source
Note

NANSs and e (projective) cannol be compared and return C3 = C0 =1 as
shown ahove.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 starus byte to memory, an 8086
register, or the 8086 llags register. For example, the code required to transfer the
information 1o the {lags register is:

FSTSW STAT_87 ;STORE RESULT FROM FICOMP
FWALT ;WAIT FOR STORE

MOY AH, BYTE PTR STAT_87+1 ;MOYE STATUS BYTE TO AH

SAHF ;LOAD INTO 8086 FLAGS REGISTER

P
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FICOMP

The 8086 instructions are now used 10 exccute a conditional branch on the result of

the compare as follows:

JB - ;JUMP if ST
JBE - ;JUMP IF ST
JA - ;JUMP IF ST
JAE - :JUMP IF ST
JE - ;JUMP IF ST
JNE - ;JUMP 1F ST

WV N A

w0

source
source
source
source
source
source

OR ST ?
OR ST 7
and NOT
and NOT
or ST ?
and NOT

source
source
ST ? source
$T ? source
source
ST ? source
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FIDIV =Integer Divide

Format
' WAIT ] opl J mioptrm | addn addr2 |
Execution
8087 Emulator Clocks ) _
Encoding Encoding Typical Operation Coding Exsmple
Range
9B DA mbrm CD1A mbrm 236+ EA ST — ST/mem-op FIDIV SURVEY
(230-243) + EA {shortinteger}
48 DE mbrm CD1E mbrm 230+ EA 5T -~ STtmem-op FIDIV ANGLE
(224-238) + EA {word integer)
Operation

The integer divide imstruction divides the top of the stack by the integer memory
operand and returns the quoticnt to the top of the stack.
Exceptions

1 2D0D0UP
X X X X XX
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FIDIVR~-Integer Divide Reversed

Format
| war | opt | mioprrm [ adan | agare '
Execution
23087 Emulator Clocks i .
Encoding Encoding Typical Operation Coding Example
Range
IBOAMIrm  CO1Am?rm 237 - EA ST - mem-opiST FIDIVR COORD
{231-245) ~ EA tshartinteger)
9B DE mZrm CD1E m7vm 230+EA ST =~ mem-op)ST FIDIVR FREQUENCY
{225-239)+ EA (word inleger)
Operation

The reversed integer divide instruction divides the integer memory operand by the
top of the stack and returns the quotient o the stack top.
Exceptions

I ZbOouUP
XX X X x X
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FILD—Integer Load

addr2 :‘

Format
I WAIT | opt I mlopfrm | addr1
Execuilion
BOB? Emulaier Clocks
Encoding Encoding Typical Operation
Range
98 0B mOrm  CD 1B mOrm S6+EA push stack
(52-60}+ EA ST - mem-op
{shortinieger)
9B DF mbGrm CD1F mdrm S04 EA push stack
146-54) + EA 8T ~ mem-op
(word inleger)
9B DF mbrm CO1F m&rm f4-EA push stack
(60-6B) + EA ST — mem-cp
({long integer)
Operation

Coding Example

FILD STANDOFF

FILD SEQUENCE

FILO RESPONSE

The integer load instruction converts the integer memory operand from its binary
integer format (word, short, or long) to temporary real and pushes the result onto
Lthe stack. The new stack top is tagged zero i all bits in the source were zero, and is
tagged valid otherwise.

Exceptions

I1Zobour

X
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FIMUL—integer Multiply

Format
[ war [ op | miopirm | adari | addr2 ]
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Exemple
Range
9B DAmMIm CD1AmIrm 136+ EA ST ~ ST * mem-ap FIMUL BEARING
(130-144) + EA (shortinleger}
98 DE mirm CD1Emitm 130+ EA 8T ~ §T* mem-op FIMUL POSITION
(124 138) + EA \word integer)
Operation

The integer multiply instruction multiplies the integer memory operand and the Lop
of the stack and returns the product 1o the 10p of the stack.
Exceptions

1'2D0D0uUP

X X X X
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FINCSTP—Increment Stack Pointer

Format —
[ war T op [ ez ]
Execution
8087 Emulator Clocks .
Encading Encoding Typical Operation Coding Example
Range
9809 F7 CD19F7 9 sfack pointer «— FINCSTP
612 slack pointier + 1
Operation

The stack pointer increment instruction adds 1 to the stack top pointer in the status
word. It dees not alter tags or register contents, nor does it transfer data. It is not
equivalent 10 popping the stack since it does not set the tag of the previous stack to
cmpty. Incrementing a stack pointer of 7 changes it 1o 0.

Exceptions

I12D00UP
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FINIT /FNINIT —Initialize Processor

Format
| WAIT | opl l op2 |
Execulion
8087 Emulator Clocks . _
Encoding Encoding Typical Operation Coding Example
Range
SBDBE3 CD1BE3 5 ilialize 5087 FINIT
2-5
S0DBE3 CDIBES] 5 initialize 8087 FNINIT
2.8 N0 wait}
Operation

The initialize processor instruction performs the functional equivalent of a hardware
RESET, except that it does not affect (he instruction fetch synchronization of the
8087 and its CPU. FINIT/FNINIT sets the controt word to 03FFH, empties all
floating point stack elements, and clears exception flags and busy interrupis. The
FINIT form of this instruction is preceded by an assembler-generated WAIT
instruction.

Exceptions
tzopoeur

Note

The svstem should call the INIT87 procedure in licu of cxecuting
FINIT/FNINIT when the processor is lirst initialized, for compatability
with the 8087 emulator,
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FIST—Integer Store

Format
F'war | opt [ miopim | adart | addr2 :]
Exsculion
8087 Erulalor Clocks .
Encoding Encading Typical Qperation Codlng Example
Range
9B DB mM2rm  CD 1B m2rm 88+ EA mem-op ~ ST FIST COUNT
(B2-92}+ EA |shortinteger)
98 DF m2rm CO 'F m2rm 85+ EM mem-op ~ ST FIST FACTOR
(80-30) 1 EA {word inleger}
Operation

The integer store instruclion rounds the contents of the stack top to an integer
(according (0 the RC field of the comrol word) and 1ransfers the resull to the
memory destination. The destination may define a word or short integer variable.
Negative zero is stored in the same encoding as positive zero: 0000...00.

Exceptions

I12Z2o0GvUuP

X

X
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FISTP—Integer Store and Pop

Format
l WAIT | api | mfopfrm | addr1 | aogdr2 :l
Execution
8087 Emulaior Clocks .
Enceding Encoding Typical Operation Coding Example
Range
9B DB m3Irm  CD 18 m3rm 90+ EA mem-ap - ST FISTP CORRECTYED
(84-94) » EA pop slack
{short inleger}
9B DF m3rm  CD 1F m3em 38+ EA mem-op ~ ST FISTP ALPHA
{82-92) + EA pop stack
(word inleger)
9B DF m7rm CD 1F m7rm 100 +EA mem-op -~ 8T FISTP READINGS
(34-109) + EA pap slack
l:ong integer)
Operation

The integer store and pop stack instruction rounds the contents of the stack top to
an integer (according 10 the RC field of the control word) and transfers the result to
the memory desuination. The floating point stack is popped following the (ransfer.
The destination may be any of the binary integer data types.

Exceptions

I Zp0uer
X X
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FISUB—Integer Subtract

Format
I WAIT \ opl . miopirm | addr1 l addr2
Executlon
8087 Emulaior Clocks :
Encoding Encoding Typical Operation Coding Example
Range
9B DA marm CD 1A mdrm 125+ EA 8T ~S8T mem-op FISUB BASE
{108-143) + €A (short intager)
98 DE m4rm CD1E m4rm 120+ EA ST+ ST - mem-ap FISUB SIZE
{102-137) + EA (wordinlager)
Operation

This instruction subtracls the integer memory operand from the (op of the stack and
returns the difference (o the top of the stack.

Exceptions

l1zoo0uUuwvp

X X X

X
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FISUBR—Integer Subtract Reversed

Format
| WAIT apl ’ miopfrm | addr1 | addr? :]
Execution
8087 Emulator Clocks . i
Encoding Encoding Typical Operation Coding Example
Range
9B DA mStm CD1A mSrm 125+ EA ST - mem-gp - ST FISUBR FLOOR
(108-1a4) + EA {shart inleger}
98 DE mSrm CD1E mSrm 120 +EA ST - mem-op - ST FISUBR BALANCE
1103-128) + EA {word mteger)
Operation

The integer subtract reversed instruction subtracts the stack top from the integer
memory source and returns the difference to the stack top.
Exceptions

1200UP
X X X X
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FLD—Load Real

Format

Stack elemcent 10 Stack 1op

WAIT opl op2+i
Execution
8087 Emulator Clocks .
Encoding £ncoding Typical Operation Coding Example
Range
9BDICO+1  CD19CO+i 20 T, - ST} FLD ST(2
17-22 push stack

ST- T

1

Memory operand Lo Stack top

WAIT opt [ mropim addr1 I addr2 :I

Execulion
8087 Emuialar Clocks ) X
) ) ) Operation Coding Example
Encoding Encoding Typical
Range
9B 09 mdrm CD 19 mOrm 43+ EA push siack FLD READING
{38-56} + EA ST+~ mam-op
(short realj
98 DD mirm CD 10 mOrm A6+ EA push stack FLD TEMPERATURE
(10-60} + EA ST —~ mem-op
{long real)
98 DB m5rm CO1B mSrm 57+EA push slack FLD SAVEREADING
(63-65)+EA §T + mem-op
{temp real}

Operation

The load real instruction pushes the source operand onto the top of the floating
point stack. This is done by decrementing the stack pointer by onc and then copying
the contents of the source to the new stack top. The source may be a stack element
on the stack (ST(i)), or any of the real data types in memory. Short and long real
source operands are converted (o temporary real automatically. Executing FLD
ST{0) duplicates the old stack top in the new stack top.

Exceptions

rzopouwe
X X
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FLDCW —Load Control Word

Format

[ war | opt [ mroprm | addn | addr2:|

Executlon
BOB? Emulator Clocks
Encading Encading Typical Operation Cading Example
Range
9B D9 m5rm CO 1@ mbrn 104+ EA pracessorcontrol word FLDCW CONTROL
(7-t4)+ EA ~ mem-op

Operation

This instruction replaces the current processor controf word with the word defined
by the source operand.

Exceptions

Iz bouP

Description

This instruction is typically used to establish, or change, the 8087's mode of
operation.

Note

If an exception bit in the staius word 15 set, loading a new control word that
unmasks that exception and clears the interrupt enable mask will generate
an immediate request before the next instruction is executed. When chang-
ing modes, the recommended procedure is to first clear any exceptions and
then load the new control word.
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FLDENV —Load Environment

Format

[ war | opt | miopim | adon | ader |
Execulion

ROB7 Emulaior Clocks

Encoding Encading Tynical Qperation Coding Exampie
Range

9B 09 mdrm CD19mdrm 40+ EA 8087 environment - FLOENY ENV_STORE
(35-45}1 EA mem-ap

Operation

The load environment instruction reloads the 8087 environment from the memory
area defined by the source operand. This data should have been written by a
previous FSTENV/FNSTENYV instruction.

Exceptions

1ZDOUP

Description

CPU instructions may immediately follow FLLDENV, but no subsequent NDP
instruction should be executed without an intervening FWAIT or assembler-
generaled WAIT.

Note

Loading an ¢nvironment image that contains an unmasked exceplion causes
an immediate interrupt request from 8087 (assuming 1EM = 0 in the envi-
ronment image).
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FLDLG2—Load Log,,2

Format

r_ WAIT | opl | op2 J

Execulion
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9B DIEC CD19EC 21 push stack FLDLG2Z
18-24 ST~ log,.2

Operation

The load log base 10 of 2 instruction pushes the value Jogip2 onto the wop of the
floating pownt stack. The constant has temporary real precision of 64 bits and
accuracy of approximately 19 decimal digits.

Exceptions

1 Z2D0D0O0UP
X
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FLDLN2—Load Log,2

Format

| war |

8087
Encoding

9B DY ED

Operation

The load log base e of 2 instruction pushes the value log,2 onto the top of the
floating point stack. This constant has temporary real precision of 64 bits with an
accuracy of approximately 19 decima! digits.

Exceptions

12 0D0UP

X
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FLDL2E—Load Log,e

Format

[ war [ op

8087 Emulator
Encading Encoding
98 DI EA CD19EA
Operation

op2 |
Execution
Clocks .
Typical Opaeration Coding Example
Range
18 push stack FLDL2E
w21 5T —log,e

The load log base 2 of ¢ instruction pushes the value logse onto the top of the
floating point stack. This valuc has full temporary real precision of 64 bits.

Exceptions

12DO0UP
X
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FLDL2T—Load Log,10

Format
N
| WAIT op2 ]
Execution
BOS? Clocks .
Encoding Typical Operation Coding Exampie
Range
9B DY ES 19 push s1ack FLOL2T
16-22 ST —log,10
Operation
The load log base 2 of 10 instruction pushes the constant log;10 onto the stack. This
constant has temporary real precision of 64 bits with accuracy of approximately 19
decimal digits.
Exceptions
1ZobaQQue®e
—~

X
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6-167

FLDPl—Load =

Format
[ war | om [ om
Execution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Cading Example
Range
IBDOEB CD19EB 18 push stack FLDP)
16-22
ST+ n
Operation

This instruction pushes 7 onto the top of the stack. The n value has full iemporary
real precision of 64 bits with an accuracy of approximately 19 decimal digits.
Exceptions

Il Z 0 0UP
X
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FLDZ—Load +0.0

Format —
[ war [ ep [ o2 |
Execution
8087 Emulator Clacks ) .
Encoding Encoding Typical Operatian Coding Example
Range
3BDYEE CD19EE " pusn stack FLDZ
117 ST~09
Operation
The load zero instruction pushes the vatue +0.0 onto the top of the Noating point
stack. The constant has lemporary real precision of 64 bits.
Exceptions
[ ZooOoup?P
X T
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FLD1—Load +1.0

Format
[ war ] opt T op2 ]
Execution
8087 Emulstor Clocks . .
Encading Encoding Typical Operation Coding Example
Range
9B 039 EE CD19EB 18 push stack FLD1
15-21 §T~10
Operation

T'his instruction pushes the constant +1.0 onto the top of the floating point stack.
This constant has full temporary real precision of 64 bils.
Exceptions

12 pQuUwP
X
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FMUL —Muiltiply Real

Format

Stack top and Stack element

wat [ opr T op2ai

Execution
8087 Emulatar Clocks _ .
Encoding €ncoding Typical Operation Coding Example
Range

9B D3 CE+1 CD1BCB~i 138* ST+~ ST *STIi) FMUL  ST,57(3)
130-145°

B DCCh +1 CDI1CCo v 133 STHi) ~- ST * 8T FMUL  8T42),8T
130-145°

97
*Clocks are when one or both operands are shaort.
90-105

Stack top and memory operand

wair | op1 miop/rm adan | aavr2 |
Execulion
8pa7 Emulalor Clacks . .
Encoding Encoding Typical Operalion Coding Example
Range
48 DB m1rm CD18 nirn 1e+EA ST --§T * mem-op FMUL SPEED
(110-125)+ EA (shortreal
9B DCmirm CD1Cmirm 161 + EA* ST~ ST - mem-op FMUL HEIGHT
{154-1€8} r EA" Long reaky
120 1 EA
“Clocks are when one or both aperands are short
(112-126) + EA
Operation

The mukliiply real instruction multiphes the desunalion operand by the source and
returns the product (o the destination. The source operand may be either the stack
10p, a stack element, or a short or fong real operand in memory. When the source is
the stack 1op, the destination is one of the stack elemenis. When the source s a stack
clement or memory operand, the destination is the stack top.

Exceptions

I 2p00UP
X X X X X
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FMULP—Multiply Real and Pop

Format

[ war | om [ op2+i |
Execution

8087 Emutaior Clacks . .
Encoding Encoding Typlcal Gperation Coding Example
Range
SBDEC8 ++¢ CDIEC34i 142 SYliy— STt * ST FMULP ST{2).ST
134-148" pop stack
. 100
Clocks are when ona or bolh operands are shory,
94-108
Operation

The multiply real instruction multiplies the destination operand by the source and
returns the product to the destination. The source operand may be either the stack
top, a stack clement, or a short or leng real operand in memory, When the source is
the stack top, the destination is one of the stack elements. When the source 1s a stack
element or memory aperand, the destination is the stack top.

The multiply real and pop stack instruction multiplies one of the stack elemenis by
the stack top, replaces the stack element with the product, and then pops the floating
point stack.
Exceptions

1 Z00UP

X XX X X
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FNOP—No operation

Format ——
[ war ] [ e |
Execulion
8087 Clocks 3 .
Encoding Typical Qperalion Cading Example
Range
98 03 00 CD 1900 13 ST+ 5ST FNOP
10-16
Operation
This operation stores the stack top 1o the stack top and thus effectively perfarms no
operation.
Exceptions
2D 06 UP
T
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FPATAN—Partial Arctangent

Format

[ war | o [ op2 |

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9B DYF3 CD19F3 650 T, arctan{STi1)IST) FPATAN
250-800 pop stack
ST~T,

Operation

The partial arctangent instruction compuates the funciion @ = ARCTAN (Y/X). X is
taken from the top stack element and Y from ST(1). ¥ and X must observe the
inequality 0 < ¥ < X < + o The instruction pops the floating point stack and
returns O to the new stack top, overwriting the Y operand.

Exceptions

120 0UFRP =

X X

“operands notchecked

Description

This instruction assumes tha( the operands are valid and in-range. To be considered
valid, an operand must be normalized. If an operand is either invalid or out-or-
range, the instruction will produce an undefined result without signalling an
exception,
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FPREM—Partial Remainder

Format
[ war T om | ez |
Exacution
8067 Emulator Clochs )
Encoding Encoding Typical Operation Cading Exampte
Range
9B DO Fa CD19F8 12§ ST ~ REPEAT{ST - STi1y) FPREM

15-180

Operation

This instruction performs modulo division on Lthe stack top by ST(1). FPREM pro-
duces an EXACT result; the precision exception does not occur. The sign of the
reinainder is the same as the sign of the original dividend.

Exceptions

1 Z2Db0O0UcFP
X X X

Description

FPRFEM pperates by performing successive subtractions. It can ceduce @ magnitude
difference of up 10 2* in one execution, [f FFREM produces a remainder that is less
thap 1he modulus (STi1)}, the function is complete and bu C2 of the status word
condition code is ¢leared. If the function s incomplete. C2 isset to 1; the result in 8T
15 then called the partial remainder.

Software can be used to inspect €2 by storing the status word following execution of
FPREM and re-executing the instruction {using the partial rematnder in ST as 1he
dividend), unu] C2 is cleared. An alternaie possibility is comparing ST to ST(1) to
determine when the function is complete. I ST > ST(1}, FPREM must be exccuted
again. If ST =S8T(1}, the remainder is O and exccution is complete. [F ST < ST{), ex-
ecution is complete and the remainder is ST.

Note

A contexl switch between the instructions in the remainder loop can be
forced by a higher priority interrupting routine which needs the 8087.

One important use of FPREM is to reduge arguments (operands) of periodic
transcendental functions to the range permitted by these instructions. For example,
the FPTAN (tangent) instruction requires its argument to be less than n/4. Using n/4
as a modulus, FPREM will reduce an argument so thal it is in the range of FPTAN,
Because FPREM produces an exact resull, the argument reduction does NOT intro-
duce roundoff error into the calculations even if several iterations are required to
bring the argument into range. The rounding of m produces a rounded period rather
than a rounded argument.

FPREM also provides the leasi-significant three bits of the quotient generated by
FPREM (in C,. C,, C,). This is also important for transcendental argument reduc-
tion since it locates the original angle in the correct one of cight /4 segments of the
unit circle.

TN
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FPTAN—~Partial Tangent

Format
[ war T om [ opz ]
Executlon
8087 Emulatar Clocks . . .
Encoding Encoding Typical Opsration Coding Example
Range
9B 09 F2 CD19F2 450 FPTAN
Y +— TAN(ST)
30-540
ST ¥
push slack
§T«-X
Operation

The partial tangent instruction computes the function Y/X = TAN(®). 9 is taken
from the top stack element. The value of @ must be within the range 0 <<= 0 <X 7 /4,
The result of the operation is a ratio; y replaces © in the stack and X is pushed,
becoming the new stack top. © is measured in radians.

Exceptions

1200QUP =+
X X

‘operands not checked

Description

The ratio result of FPTAN s designed to optimize the calculation of the other
trigonometric functions.

This instruction assumes that the operand is valid and in-range; to be considered
valid, an operand must be normalized. If the operand is invalid or out-of-range, the
instruction will produce an undefined result without signalling an exception.
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FRNDINT —Round to Integer

Format

[ war [ oot | o2 |

Execution
8087 Emulsior Clocks .
Enceding Encading Typical Operation Coding Example
Range
9B DS FC CD13FC 45 ST « nearestinteger(ST) FRNDINT
16.50

Operation

This instruction rounds the top stack element to an integer.

Exceptions

12090 UP
X X

Description

Assume that ST comains the 8087 real number encoding of the decimal value
155.625. FRNDINT will change the value to 155 if the RC field of the control word
is set to down or chop; or to 156 if it is set 1o up O nearest.

TN
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FRSTOR—Restore Saved State

Format

[ war [ ot | miopim | agorn | agsz |

Execution
BOB? Emulator Clochs )
Encading Encoding Typical Operation Cading Example
fAange
SB DD m4érm CD 1D m4rm 202 ! EA 8087 state — mem-op FRSTOR STATE SAVE

(187-207) + EA

Operation

The restore state instruction reloads the 8087 from the 94-byte memory area defined
by the source operand. This information should have been written by a previous
FSAVE/FNSAVE instruction.

Exceptions

1zZDpoUuUP

Note

CPU instructions may immediately follow FRSTOR, but no NDP instruc-
tion should be executed without an intervening FWAIT or an assembler-
generated WAIT.

The 8087 resets to its new state at the conclusion of the FRSTOR. The 8087 will, for
example, generate an immediate interrupt request if indicated by the exception and
mask bits in the memory image.
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FSAVE/FNSAVE—Save State

Format

[ war [ op [ miopirm | agan | aadrz:)

Execution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Coding Example
Range

9B DD mbrm CD 1D mBrm 202 + EA mem-op - E087 s1ate FSAVE STATE. SAVE
(197-207) — EA

90 DD m&rm GO 1D mBrm 202 + EA mam-op — 8087 state FNSAVE STATE
(197-207) © EA {no wait)

Operation

The save staie instruction writes the full 8087 state—environment plus register
stack—10 the memory locanon specified tn the destination operand, and initializes
the NDP. The FSAVE form of this instruction is preceded by an assembler-
generated WAIT instruction.

Exceptions

1z2D0pQuUue®P

Description

Figure 6-8 shows the 94-byte save area layout. Typically, FSAVE/FNSAVE will be
coded to save this image an the CPLU siack.

If an instruction is executing in the 8087 when FNSAVE is decoded, the CPU gueues
the save and delays 118 execution until the running instruction completes normally,
or encounters an unmasked cxception. The save image, therefore, reflects the state
of the 8087 following completion of any running instruction. After writing the state
image to memory, FSAVE/FNSAVE initializes the 8087 as if FINIT/ENINT had
been executed.

FSAVE/FNSAVE is useful whenever a program wauls (o save the current state of
the NDP and initialize it for a new routine. Three examples are:

). An operating system necds (o perform a context switch (suspend the task that
has been running and give control to a new task);

2. Aninterrupt handler needs 1o use the 8087;
3. Anapplication task wanls (0 pass a ‘‘clean”’ 8087 stack to a sub-routine.
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FSAVE/FNSAVE

INCREASING ADDRESSES
1§ 0
CONIROL WORD +0
STATUS WORD -2
TAG WORD +4
INSTRUCTION P50 +6
T
POINTER ) | ipag.16 ul OPCODE .
OP15-0 +10
OPERAND
POINTER omg-ml 0 1z
SIGNIFICAND 15-0 +14
SIGNIFICAND 21-16 + 16
TOP STACK
ELEMENT:ST SIGNIFICAND 47-32 +18
SIGNIFICAND 63.48 +20
4
S EXPONENT 140 *22
SIGNIFICAND 15-0 +24
SIGNIFICAND 31.16 + 26
ELEeNS o ¢ SIGNIFICAND 47.32 +28
N SIGNIFICAND 63-48 +30
SI EXPONENT 14-0 +32
AN J.
s
SIGNIFICAND 15-0 +84
SIGNIFICAND 31-16 +86
LAST STACK
ELEMENT:ST{T SIGNIFICANQ 47-32 +38
N SIGNIFICAND 63-4B + 490
SI EXPONENT 14.0 +92
NOTES
5 = Sign
81 0ol each Nield s rightmost. leas! signiticant bi1 od corresponding
registe: held
Bt 63 of signiicand is nteger bl jassumed binary point 15 wnmediately
19 the fighil
121623-15

Figure 6-8. FSAVE/FRSTOR Memory Layout

Note

FSAVE/FNSAVE, like FSTENV/FNSTENY, must be protected from any
other 8087 instruction that might execute while the save is in progress.
When FSAVE is coded, this can be tnsured by placing an explicit FWAIT in
front of a subsequent no-wait mnemonic, if there is one. When FSAVE is
executed with CPU interupts disabled, an F'WAIT should be cxecuted
before CPU interrupts are enabled or any subsequent 8087 instruction is
executed. Because the FNSAVE initializes the NDP, there ts no danger of
the FWAIT causing an endless wait. Other CPU instructions may be
exccuted between the FNSAVE and the FWAIT; this will reduce interrupt
latency if the FNSAVE is queued in the 8087,
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FSCALE—Scale

Format
[ war [ oot [ om2 |
Exgcution
8087 Emulator Ciocks .
Encoding Encoding Typical Operation Cading Example
Range
9B DI FO CD13FD 3 8T « 8T = 25T FSCALE

32-23

Operation

This instruction interprets the value contained in ST(1) as an integer, and adds this
value to the exponent of the number in ST. ST(!) must be in the range —2'* € 8T(1)
<+ 2" and ST{1) must be an integer.

Exceptions

12D0D0CUP
X X

Description

FSCALE is particularly useful for scaling the elements of a vector because it pro-
vides rapid multiplication or division by integral powers of 2.

Note

ESCALE assumes the scale factor in ST(1) is an tntegral value in the range
~2'" € x < 2. If (he value is not an integer, but 15 in-range and iy greater in
magnitude than 1, FSCALE uses the nearest integer smaller in magnitude,
i.e., it chops the value toward 0. If the value is out of range, or0 < | x [ <
1, the instruction will produce an undefined result and will not signal an
exception. The recommended practice is to load the scale factor from a
ward integer {o ¢nsure correct operation.
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FSQRT—Square Root

Format

[ WAIT I opl j op?2 I

Execution
a087 Emulatar Clocks
Encoding Encoding Typical Operation Cocing Example
Range
SBDIFA CD18FA 183 ST~ 87 FSQRT
180-1B6

Operation

This instruction replaces the contents of the top of the stack with its square root. ST
must be in the range ~0 € ST < + .
Exceptions

1ZDoOouUuPr
X X X
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FST—Store Real

Format

Stack top to Stack element

[ war T oo [ opeei

Executfon
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
980D DO+ CD1DDY+i 18 SThy — 8T FST STi4)
15-22

Stack top to memaory operand

l WAIT l opil ] mfop}rm_L addr1 I addr2 :I

Execution
2087 Emulator Clocks .
Eacoding Encosing Typical Operatian Coding Example
Range

9B D9 m2rm CD19m2rm 87+ €A mam-op - ST FST MEAN
{84-90)+ EA (shori-real)

98 DD m2rm CDID m2rm 100+ EA mem-op -~ ST FST READING
(96-104) + EA {long-real)

Operation

The store real instruction transfers the top of the stack to the destination, which may
be another stack element or a short or Jong real memory operand. If the destination
is short or long real, the significand is rounded to the width of the destination
according to the RC field of the control word and the exponent is converted to the
width and bias of the destination format.

Exceptions

120 0uPp
X X X X

Note

If the stack top is tagged special (it contains @, a NAN, or a denormal), the
stack top significand is not rounded. In this case, the least significant bits of
the stack top are deleted to fit the destination. The exponent is treated in the
same way. This preserves the value's identification as ¢, or a NAN (expo-
nent of all ones), or a denormal (exponent all zeros) so that it can be prop-
erly loaded and 1agged later in the program, if desired.
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FSTCW/FNSTCW —Store Control Word

Format

[ war T om [ miopirm | asort | acarz |

Execution
8087 Emulator Clacks
Encoding Encoding Typical Operation Coding Example
Renge
9B OIm?im CD13m7rm 15+ EA mem-op = processor FSTCW CONTROL
{12-18) + EA control word
80 09 m7rm CD19m7trm 15+ EA mem-op «— pro¢essor FNSTEW CONTROL
{12-18)+ E£A control word
(no wait)

Operation

The store control word insiructions write the current processor control word to the
memory location defined by the destination. The FSTCW form of this instruction is
preceded by an assembler-generated WAIT instruction.

Exceptions

1 ZDOUP

Description

When application tasks are running, the WAIT form of this instruction should be
used. The NO WAIT form is provided for use in critical code regtons where a WAIT
instruction might induce an endless wait.
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FSTENV/FNSTENV —Store Environment

Format
| war | opt | miopiem | addr | addr2 :]
Exzecution
3087 Emulator Clacks
Encoding Encoding Typicat Operation Coding Example
Range
9B D8 mérm CD 19 mbrm 454 A mem-op ~ 8087 FSTENV ENVIRON
(40-50) + EA environmenl
90 D9 mérm CD 18 mérm A5+ EA mem-op - 8087 FNSTENY ENVIRON
(40-50)+ EA anvirgnment
(no wait)
Operation

This instruction writes the 8087 basic status (control word, slatus word, and tag
word) and exception pointers 10 the memory location defined by the destination
operand. The FSTENV form of this instruction is preceded by an assembler-
generated WAIT instruction.

Exceptions

I ZbouUe

Description

FSTENV/FNSTENV is often used by exception handlers becaunse it provides access
1o the excepiion pointers which identify the offending instruction and operand.

FSTENV/FNSTENYV typically saves the environment on the CPU stack. Afier the
environment is saved, FSTENV/FNSTENY sets all exception masks in the pro-
cessor; it does not affect the interrupl epable mask. Figure 6-9 shows the format of
the environment data in memory. Hf FNSTENYV is decoded while another instruction
is executing concurrently in the NEU, the 8087 does nat store the environment until
the other instruction has completed. The data saved by this instruction, therefore,
reflects the state of the 8087 AFTER any previously decoded instruction has been
executed.

Note

FSTENV/FNSTENV must be allowed to complete before any other 8087
instruction is decoded. When FSTENV is coded, an assembler-generated
WAIT should precede any subscquemt 8087 instruction. When using
FNSTENYV, with CPU interrupts disabled, an explicit FWAIT should be
exccuted belore enabling CPU interrupts.

There is no risk of the FWAIT causing an cndless wait. FNSTENY masks
all exceptions so that interrupt requests from the 8087 are prevented.
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FSTENV/FNSTENV

INCREASING ADDRESSES
15 0

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

INSTRUCTION Pise 8
POINTER Y | 1p1s16 o ORCODE 8
OPERAND oP15-0 +10
FOINTER OPIQ-‘ﬁl a +12

12162318

Figure 6-9. FSTENV and FLDENV Memory Layout
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FSTP—Store Real and Pop

Format
o
Stack top to Stack element
WAIT J_ op1 l op2+i ]
Execution
8087 Emulator Clacks
Encoding Encodling Typical Operailon Coding Example
Rangs
9B D008 +i CDIDD8 +i 20 ST(i) ~ ST £STP STIZ
1724 pop stack
Stack top 10 memory operand
[ war [ ot [ miopim | agon | agarz |
Execution
2087 Emulalor Clocks X
Encoding Encoding Typlcal Operalion Cading Example
Range o~
498 08 m3rm CD 19 m3rm B9+ EA mem-op « ST FSTP TQTAL
(86-92y + EA pop stack
{shart-real)
98 DD m3rm CR1IDmIrm 102+ EA mem-ap +~ 8T ESTP  AVERAGE
(93-108) + EA Dop stack
flong-real}
98 DB m7tm CD 1B m7rm 55+ EA mem-op — ST FSTP TEMP STORE
152-58) + EA pop stack
(temp-real)
Operation
The store real and pop stack instruction transfers the top of the stack to the destina-
tion and then pops the stack. The destinalion may be another stack clement, or
memory operand (short-real, tong-real, or temporary-real). 1f the destination is
short or long real memory, the significand is rounded (o the width of the destination
according to the RC ficld of the control word and the exponent is converted to the
width and bias of the destination format.
This instruction allows storing temporary real numbers into memory, Coding FSTP —~

ST(0) is equivalent ta popping the stack with no data ransfer.

Exceptions

1Z2000ULP
X X X X
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FSTSW/FNSTSW —Store Status Word

Format
[ war | oot | mioprm [ agam | ader2 ]
Execulion
8087 Emulalor Clacks . .
Encoding Encoding Typical Qperation Coding Example
Range
98 00 m7rm CD1DmIrm 154 €A mem-op ~ 08T status FSTSW SAVE__STAT
12-18)+ EA word
30 DD m7rm CD10 m7rm 15+EA mem-op - 8087 status FNSTSW SAVE_ STAT
12-18) + €A word
{no wait)
Operation

The store status word instructions write the current value of the 8087 siatus word 10
the destination operand in memory. The FSTSW form of this instruction is preceded
by an assembler-generated WAIT instruction.

Exceptions

1 Z20DO0WVUP

Description
The three primary uses of this instruction are:

I. To implement conditional branching following a comparison or FPREM
instruction (WAIT form).

2. Topoll the 8087 to determine if it is busy (NO-WAIT form).

3. Toinvoke exceplion handlers in environments that do not use interrupts {WAILT
form).

Note

1f the WAIT form is used with an outstanding unmasked cxception,
deadlock will result.
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FSUB—Subtract Real

Format
S~
Stack top and Stack element
I WAIT l opl | op2+i I
Execution
8087 Emuletor Clogks
Encoding Encadlng Typical Operation Coding Example
Range
9B DAED +i CD1BED+i 45 ST « 5T - S¥1y FSUB ST.ST(2}
70-100
S80CE8 +i CDICEB+ i 85 ST{) = §Tiik - ST FSUB ST(3.8T
70-100
Stack top and memory operand
[ war | oor | miopirm ] agan addr2 ]
Execution
BOB? Emulator Clocks il
Encoding Encoding Typical Operation Coding Example
Range
9B DB macm CD tgmarm 105+ EA ST+ ST - mem-op FSUB VALUE
(90-120}+ EA (shart-real)
98 DC mdrm CD I1C mdrm 10~EA ST - ST - mem-op FSUE BASE
(95-129) +EA ylong-realy

Operation

The subtract real instruction subtracts the source operand from the destination and
returns the difference to the destination. The source operand may be either the stack
top. a stack element or a short or tong real operand in memory. When (he source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the desiination is the stack top.

Exceptions

1 Zoouwvw
X X X X X




—
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FSUBP—Subtract Real and Pop

Format

| WAIT ] opil I op2+i |

Execution
8087 Emulator Clocks . )
Encoding Encoding Typical Operation Cading Example

Range

9BDYES +i CDDREB + i 90 ST{1}~ 8Tt} - ST FSUB
73-105 pop stack

9BDEE8+I CDIEE8 +i 90 ST — ST(i) - ST FSUBP $T{2),ST
75105 pop sfack

Operation

The subtract real instruction subtracts the source operand from the destination and
rewurns the difference to the destination. The source operand may be either the stack
(op, a stack element or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elemments. When the source is a stack
element or memory operand, the destination is the stack top.

The subtract real and pop stack instruction subtracts the stack top from one of the
stack elements, replacing the stack element with the difference and then pops the
floating point stack.

Exceptions

120 ¢ UP
*® X X X X
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FSUBR—Subtract Real Reversed

Format

Stack top and Stack element

WAIT L op1 J op2+i

Executian
a0a7y £mulator Clacks ) ;
Encoding Encoding Typical Operation Coding Example

Range

9BD8EB +i CDDSEB + i 87 ST ~ 8Ty - 8T FSUBR ST.5T{i)
7000

8B DCED+i CD1CEQ»i a7 ST(i) -~ 8T - STi FSUBR ST{3).87
70-100

Stack top and memory operand

| WAIT | opl | miopirm | addr | addr2 j

Execulion
8087 Emulator Clocks .
Encoding Encoding Typical Operalion Coding Example
Range
Q9B DB m5rm CD 18 m5Stm 105 + EA ST ~ mem-op ~ ST FSUBR INDEX
(90-120) + EA {short-real)
9B DC m5rm CD tCmbrm 110+ EA ST ~ mem-op — 8T FSUBR VECTOR
{95125) + EA ilong-reah

Operation

The reverse subtract instruction subtracis the destiination from the source and
returns the difference 1o the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.
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FSUBRP —Subtract Real Reversed and Pop

Format
| WAIT J op1 | op2+i |
Execution
8087 Emulator Clocks )
Encoding Encoding Typical Operation Coding Example
Range
9B DE €1 CD1EE1 90 §T¢1) =~ 8T STy FSUBR
75-105 pop stack
498 DE €0 +1 CO1EEQ+ 590 STty ~ $7 - 8Tii) FSUBRP ST(2),5T
75105 poD Stack
Operation

The reverse subtract instruction subtracts the desrination from the source and
returns the difference 1o the destination. The source operand may be either the stack
top, a stack element, or a short or lonp real operand in memory. When the source s
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination 18 the stack top.

The reverse subtract and pop stack instruction subtracts one aof the stack elements
from the stack top and returns the dilference to the stack element. The floating
point stack is then popped.

Exceptions

iZoouUuere
X X X X X
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FTST—Test Stack Top Against +0.0

Format ra
r WAIT opi _l op?
Execution
8087 Emulator Clochs ., .
Encoding Encoding Typical Operstion Coding Example
Range
9B DY E4 CD19E4 42 ST~8T 0¢ FTST
3848
Operation
The test instruction compares the clement in the Lop of the [loating point stack with
zero and posts the result to the condition code.
Exceptions
I ZD0DO0UP
X b 4 P
Description
Condition Code Test Results

Cc3 co Resull

0 0 ST is positive

0 1 ST is negative

1 0 STis zero{+ or -}

1 1 ST is not comparable {(1.e.. itis a NAN or projective «}
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FWAIT—(CPU) Wait while 8087 is busy

Format

Execution
8087 Emulator Clocks
Encoding Encoding Typical QOperation Coding Example
Range
98 30 A+5n 8086 waitinstruction FWAIT
2+5n

Operation

This instruction is an alternate mnemonic for the CPU WAIT instruction. FWAIT
must be used insicad of WAIT for 8087 emulator compatability is desired.

Exceptions

1 20D0UP

Description

The FWAIT mnemonic should be coded whenever the progranmmer wants to syn-
chranize the CPU 1o the NDP. This means that further instruction decoding will be
suspended until the NDP has completed the current instruction. This is useful if the
CPU wants to inspect a value stored by the NDP (i.c., FIST should be followed by
FWAIT to ensure that the value has been stored before atiempting to examine it).

Note

Programmers should nat code WALT (0 synchronize the CPU and 8087,
The routines that alter an object program for §087 emulation change any
FWAITs to NOPs but do not change any explicitly coded WALTs. The pro-
gram will wail forever if a WAIT is encountered in emuiated execulion since
there is no 8087 1o drive the CPU’s test pin active.
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FXAM—Examine Stack Top

o
Format
[‘ WAIT [ opt l op2 '
Exacution
8087 Emulatar Clocks . )
Encoding Encoding Typical Qperation Cading Example
Range
98 DIES CD13ES 17 set condition code FXAM
12-23
Operation
The examine instruction reports the content of the top of the floating point stack as
positive/negalive and NAN/unnormal/denormal/normal/zero, or empty. The con-
dition codes which can be generated are shown in table 6-15.
Exceptions
1200UP o~
Description
Table 6-15 lists and interprets all of the condition code values that FXAM
generates. Although four different encodings may be returned for an empty repister,
bits C3 and CO of the condiion code are both | in all encodings. Rits C2 an CI
should be ignored when examining for empty.
Table 6-15. FXAM Condition Code Settings
Conditien Code
Int i
ca c2 o1 co nterpretation
0 0 0 ] + Unnormal
0 0 o3 1 + NAN
0 D] 1 0 - Jnnormal
0 0 1 1 - NaN
0 1 D ] + Normal
0 1 0 1 i e
Q 1 1 0 -~ Normal il
0 1 1 1 ~ o
1 ¢ 0 13 +0
1 4] 0 1 Empty
1 4 1 0 -0
1 ¢ 1 1 Empty
1 1 0 0 + Denormal
1 1 0 ) Empty
1 1 1 0 - Denarmal
1 1 1 1 Emply
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FXCH—Exchange Registers

Format
l WAIT [ opl | op2+i l
Enecution
A087 Emulator Clacks . )
Encoding Encoding Typical Operation Cading Example
Range
9B D2C8 GCD1SC8 12 T,~ ST(NH FXCH
1015 ST() —- 8T
8T-T,
98 09 C8+1 CO9C8 4+ 12 T, ~ 5Ty FXCH STi3y
10-15 STy~ ST
81T,
Operation

The exchange instruction swaps the contents of a stack element and the stack top. IT
the stack element is not explicitly coded, ST(]) is used.

Exceptions

129 0UP
X

Description

Many 8087 instructions operate only on the stack top; FXCH provides an easy way
10 use Lhese instructions on lower stack elements. For example, (he following
sequence takes the square root of the third element from the top.

FXCH 8T{3)
FEQRT
FXCH STl
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FXTRACT—Extract Exponent and Significand

Format O
| WAIT ] opt _I op2 —l
Execuiion
8087 Emulator Clocks ) )
Enceding Encading Typical Oparation Coding Example
Range
98 DY F4 CD19F4 50 T, - exponent(ST) FXTRACT
22-55 T, ~ significand (ST)
§T--T,
push stach
ST+ 1,
Operation
The extract instruction “*decomposes’’ the number in the stack top into two numbers
that represent the actual vatuc of the operand’s exponent and significand fields. The
“exponent’’ replaces the original operand on the stack and the “significand’ is
pushed onto the stack.
P
Exceptions
I1ZpQU®
X
Description
FXTRACT is useful in conjunction with FBSTP for converting numbers in 8087
temporary real format to decimal representations {c.g., for printing or displaying).
It can also be useful for debugging, since it allows the exponent and significand paris
of a real number to be examined separately.
Note

Following execution of FXTRACT, ST (the new stack top), contains the

value of the original significand expressed as a real number. The sign of this

number is the same as the operand’s; ils exponent is O true (16,383 or

IFFFH biased), and its significand is identical to the original operand’s.

ST(1) contains the value of the original operangd’s true {unbiased) exponent

expressed as a real number. [f the original operand is zero, FXTRACT pro-

P

duces zeros in ST and ST(1) and BOTH are signed as the original operand.

Example

Assume¢ ST contains a number whose truc exponent is +4 {i.e., its cxponen [icld
contains 4003H), After executing FXTRACT, ST(1) will contain the real number
+4.0; its sign will be positive, its exponent field will contains 4001 +) (+2 true) and its
significand field will contain 1400 . . . 00B. In other words, the value in ST(1) wil] be
1.0x2¢=4.
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FXTRACT

If ST contains an operand whose true exponent is =7 (i.e., its exponent ficld con-
tains 3FF8H), then FXTRACT will return an ‘‘exponent’ of -7.0. After the
instruction executes, ST(1)’s sign and exponent fiefds will contains COOTH (negative
sign, true exponent of 2) and its significand will be 141100 . . . O0B. The value in
ST(1) will be =1.11x2° = ~7.0.

in both cases, following FXTRACT, ST’s sign and significand fields wiil be the
same as the original operand’s and its exponent fietd will contain 3FFFH, (0 true).
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FYL2X—Y ® Log.X

Format

towar [ opr | op2

Exscution
8087 Emulator Clocks
Encoding Encading Typical
Range
9B DY F1 CD19F1 950
900-1100
QOperation

This instruction ¢alculates the function:

Z - Y*log,X

Operalion

ST, ~ 8T(1} * log, (ST)
pop stack
ST+ T,

s

Cading Example

FyL2x

X is taken from the stack top and Y from ST(1}. The aperands musi be in the ranges
0 <X <% and — o <Y <+ o, The instruction pops the stack and returns Z al the

{new) stack top replacing the Y operand.

Exceptions

120D GU®P «
X

*operands not checked

Note

This function optimizes the calculation of leg o any base ather than two
since a multiplication is always required:

10g, X = .l1_ v fog,X

0g,n
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FYL2XP1—Y " Log,(X + 1)

Format

[ war T oot [ op2 |

Execution
8087 Emulatar Clocks
Eacoding Encoding Typical Operatian Coding Example
Range
9B DIFY CD19Fy 850 T, =5T +1 FYL2XP1
700-1000 T,- STy *0q, T,
pop stack
ST+ T,

Cperation

This instruction calculates the function Z = Y*LOG, (X + 1). X is taken from the
stack top and must be in the range 0 < | X | < (10— 2/2). Y is taken from ST(!}
and musl be in the range —=A <Y <. FYL2XP1 pops the floating point stack and
returns Z at the new stack top, replacing Y.

Exceptions

1 Z2D0UP +
X

‘operands not checked

Note

This instruclion provides improved accuracy over FYL2X when computing
the log of a number very close to 1. For example, when calculating 1 + E
where E << 1, being able to input E rather than | + E 1o the function allows
more significant digits to be retained.






The Macro Processing Language

Introduction

The Macro Processing Language (MPL) of the 8086/8087/8088 Macro Assembler is
a string replaceient facility. It permits you to wriié répéatedly used sections of code
once and-then insert that code at several places in your program. If several program-
mers are working on the same project, a library of macros in include files can be
developed and shared by the entire leam. Perhaps MPL"s most valuable capability is
conditional assembly. Compact configuration-dependent code is often critical o
microprocessor software design, and conditional assembly of sections of code can
help to achieve the most compact code possible. -

This chapler documents MPL in three parts. The first section describgs how (o
define and use your own macros. The second section defines the syntax and
describes the operation of the facro processor’s built-in functions. The final section
of the chapter is devdited 1o advanced concepts in MPL.

The first two sections give enough information (o begin using the macro processor.
However, somelimes a morce ¢xact understanding of MPL's operation is needed.
The advanced ¢oncepts section shouid fill those needs.

Macro Processor Overview

The macro processor views the source lile in very different terms than does the
assembler. To the assembler, the source file is a series of control lines, instruction
lines, and directive lings. To the macro processor, the source file is a long string of
characters. Figure 7-1 illustrates these two different views of the input [lile.

MOV AX.27

/ lm// )j}lj :I| <Ta Y 3 QL P 2 O ;.'
o . i 0|0l LS Gl
e ey

| 2l CRILF Pg

121623-17

Figure 7-1. Macro Processor versus Assembler—Two Different Views of a Source File
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All macro processing of the source file is performed before your code is assembled.
Because of this independence between the processing of macros and assembly of
code, we must differentiate between macro-time and assembly-time. At macro-time,
assembly language symbols—labels, predefined assembler symbols, EQU symbols,
and the tocation counter are not known. The macro processor does not recognize the
assembly language. Similarly, al assembly-time no information about macros is
known.

The macro processor scans the source lile looking for macro calls. A macro call is
actually a request to the macro processor either to (reddefine a user-defined macro or
1o replace a built-in ar user-defined macro with its defined value,

This defined value or return value of a macro is the 1ext that replaces the macro call.
The return value of some macros is the null string. (The null string is a character
string conlaining no characiers.) In other words, when these macros are called, the
calls are removed from the input stream., In their place, the assembier sees the return
value kept.

Thus, when a macro call is encountered, the macro processor expands the call (o its
return value. The return value of a macro is then passed io the assembler and the
macro processor continues. All characters that are not part of a macro call are
passed 1o the assembler.

Creating and Calling Macros

The macro processor is a character string replacement facility. It searches the source
file for a macro call, and then replaces the call with the macro’s return value. The
metacharacter {% is the delault) signals a macro call. Until the macro processor
finds a metacharacter, it does not process text. It simply passes the texi from the
source fije to the rest of the assembler.

Since MPI, only processes macro calls, it is necessary to call a macre in order 10
create other macros. The built-in function DEFINE creates macros. Built-in func-
tions arc a predefined part of the macro language, so they may be called without
prior definition. The general syntax for DEFINE is:

% [*| DEFINE(call-pattern)|focai-symbol-fist |(macro-body}

DEFINE is the most important MPL buitt-in function, This seciion of the chapter is
devoted to desenibing this buithi-in function. Each of the symbols in the syntax above
{calf-patiern, local-symbol-list, and macro-body) are thoroughly described in the
pages that follow. In some cases we have abbreviated this general syntax to
emphasize certain concepls.

Creating Parameterless Macros
When you creale a parameterless macro, there are two parts to a DEFINE call: the
call pattern and the macro body. The call patiern defines ithe name used when the
macro is called; the macro body delines the reiurn value of the call.
The syntax of a parameterless macro definition is shown below:

%e*DEFINFE (call-pattern} (macro-body)
The ‘%’ js the metacharacter that signals a macro ¢all. The ** is the literal character

that is normally used when defining macros. The exact use of the literal character is
discussed in the advanced concepts section.
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When you define a paramelerless macro, the calf-pattern is a macro identifier that
will follow the metacharacter in the source file. The rules for macro identifiers arg:

*  The identificr must begin with an alphabetic character (A,B,C,...,Z2 or
a,b,c,...7).

* The remaining characters may be alphabetic, special {a question mark (?) or an
underscore character { ), or decimal digits (0,1,2,...,9).

*  Only the fitst 31 characters of a macro identifier are significant. Upper and
lower case characters are not distinguished in a macro identifier,

The macro-body s usudlly the return value of the macro call. However, the macro-
body may conlain calls (0 other macros. ([ so, the return value is actually the fully
expanded macro body, including the return values of the calls to other macros.
When vou define a macro using the literal character. ***, shown above, macro calls
contained in the body of the macro are not expanded until you call the macro. The
macro call is reexpanded each time it is called.

Example 1. Nested Macro

A*DEFINECASTRING) (PHANT)
%*DEFINECJUMBO) (ELEXASTRING)

Call—% JUMBQ
s expanded 10—ELEPHANT

The syntax of DEFINE requires that left and right parentheses susround the macro-
body. Iror this reason, you must have balanced parentheses within the macroe body.
(i.c., cach left parenthesis must have a succeeding right parenthesis, and each right
parenthesis must have a preceding lel: parenthesis.) We call character sirings that
meet these requirements batanced-texe.

Example 2. Balanced and Unbalanced ‘()
Balanced strings—

{abc)
(albl}c)
{Cab(cid)e)

L nbalanced strings—

(abe
(afblc
{ab(c)

To call 2 macro, you use the metacharacter followed by the calt-pattern for the
macro. (The literal character is generally not needed when you call a user-defined
macro.} The macro processor will remove the call and insert the return value of the
call, If the macro body contains any call to other macros, they will be replaced with
their return values.
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Example 3. Macro Calls

S*DEFINECMEY (1 LIKE)
A¥DEFINECWHAT COBJECT)) (MY %OBJECT)

Calls—
4ME s 1 LIKE
YWHAT(B1KE) + MY BIKE

AME ZWHAT(JO0B). > I LIKE MY JOB.

Once 2 macro has been created, il may be redefined by a second call 10 DEFINE.
Example 4. Redefinition of Macros

¥*DEFINECLINCOLNY (GETTYSBURG)

%LINCOLN W1LL EXPAND TO » GETTYSBURG
X*DEFINECLINCOLN) (ONE CENT)

ALINCOLN WILL EXPAND TO - ONE CENT

The three examples below show several macro definitions. Their return values are
also shown.

NOTE
[n order o postpone discussion of the use of Jocal macro symbols lor labels,
location counler relative addressing (with '$7) is used in these examples.
This is done for simplicity, but is not gencrally recommended because dil-
ferent addressing modes produce dilferent instruction sizes which will affect
the location counter offset required.

Example 1:
Macro definition at the top of the program:

%+DEFINE (MOVE)
MOV CX,100

LEA SI,TABLE?
LEA DI, TABLE2
REP MOVSW

)

Macro call as it appears in program:

PUSH CX
%MOVE
POP CX

The program after the macro processor makes the expansion:

PUSH CX

MOV C€X,100
LEA SI,TABLE1
LEA SI,TABLEZ2
REP HOVSM

POP CX
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Example 2:

Macro definition at the top of the program;

LA*DEFINE (ADD5)(

MOV CX,100

MOV SI,0

MOV AX, TABLE2(SI}
ADD AX,5

MOV TABLE2(S1],AX
INC §1

INC SI

LoopPz $-13

)

The macro call as it appears in the original program hody:

PUSH AX
AADDS
POP AX

The program alter macro expansion:

PUSH AX

#OV CX,100

MOV SI1,0

MOY AX,TABLE2{SI]
ADD AX,S

MOY TABLE2LSI],AX
INC ST

INC ST

LOOPZ $-13

POP AX

Example 3:
Macro definition at the top of the program:

%*DEFINECMOV_AND_ADD) ¢
%MOVE

%ADDS

)

The macro call as it appears in the body of the program:
XMOYE_AND_ADD
The program after macro expansion:

MOV CX,100

LEA SI,TABLET

LEA SI,TABLEZ

REP MOVSN

MOV CX,100

MOV SI1,0

MOV AX,TABLE2[SI]
ADD AX,5

MOV TABLEZ2[S1],AX
INC SI

INC ST

LOOPZ $-13
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Creating Macros with Parameters

If the only thing the macro processor could do was simple string replacement, then it
would not be very useful for most programming tasks. Each time we wanted to
change even the simplest part of the macro’s return value we would have to redefine
the macro. Parameters in macro calls allow more general-purpose macros.

Parameters leave holes in a macro body (hat are filled in when you call the macro.
This permits you to design a single macro that produces code for many typical pro-
gramming operations.

The erm parameter refers to both the formal parameters that are specified when the
macro is deflined (the holesy, and the aciual parameters or arguments that are
specified when the macro is called {(1he fill-ins).

The syntax for defining macros with parameters is very similar to the syntax for
macros without parameters. The calf-pattern that we described earlier actually
includes both the macro-name and an optional parameter-fist. With this addition
the syntax for the DEFINE built-in {unction becomes:

G ¥ DEFINE(macro-name({parameter-fist})) (macro-body)

NOTE

This is not the only format allowable but a specific case. The parentheses
are nol ithe only delimiters that can be used (sce the Advanced MPL Con-
cepts section).

The macro-name must be a valid macro identifier.

The parameter-fist is a list of macro idenlifiers separated by macro delimilers,
usually commas. These identifiers comprise the formal parameters used in the
macro. The macro identifier for each parameter in the list must be unique.

The macro-body must be a balanced-rext string. The locations of parameter replace-
ment (the placeholders to be filled in by the actual paramerers) are indicated by piac-
ing a parameter's name preceded by the metacharacter in the macro body. The
parameters may be used any number of times and in any order within the macro
body. (If a user-defined macro has the same macro identifier name as one of the
parameters (o the macro, the macro may not be called within the macro hody since
the name would be recognized as a parameter.)

The example below shows the definition of a macro with three parameters—
SOURCE, DEST, and COUNT. The macro will produce code to copy any number
of words from one part of memory (0 another.

%*DEFINE(MOVE_ADD_GEN{SOURCE,DEST,COUNT))(
MOY CX,%COUNT
MOV SI,0
MOV AX,%SOURCE[ST]
MOV ZDESTISI], AX
INC ST
INC ST
LOOPZ $-13
)

To call a macro with parameters you must use the mctacharacter followed by the
macro’s name as with parameterless macros. However, a list of the actual
parameters must follow. In the most simple case these actual parameters are
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enclosed with parentheses, and separled from each other by commas. The actual
parameters must be bafanced-text and may optionally contain calls 1o other macros.
A simple call to the macro defined above might be:

%MOVE _ADD_GEN(CINPUT, STORE, 100H)
The above macro call produces the following code:

MOY CX,100H

MOV SI,0

MOV AX,INPUT[SI]
MOY STORE[SI],AX
INC SI

INC SI

LOOPZ $-13

LOCAL Symbols in Macros

The LLOOPZ instruction uses offset addressing {3-13). However, if the mmstructions
in the macro MOVE _ADD _ GEN are modified, the offsct address (3-13) may need
to be changed. This is a disadvaniage of using offset addressing. If we chose to use a
label for the jump destination, macro modification would generally not affect the
lahel. However, the macro could only be used once, since a second call 1o the macro
would cause a confhet in label definitgons at assembly ime. We could make the tabel
a parameter and spectly a different symbol name each time we call the macro. A
preferable way to ensure a unique label for each macro call is to put the label in a
LOCAL list. The LOCAL list construct allows you to us¢ macro identifiers to
specify assembly-tiime svmbols. Each use of a LOCAL symbol in a macro guarantees
that the symbol will be replaced by a unique asseimnbly-time symbo) €ach time 1he
macro is called.

The macro processor increments a counter once for each symbol used in the list
every time your program calls a macro that uses the 1LOCAJ. construct. Symbols in
the LOCAL list, when used in the macro body, receive a two to five digit suffix that
is the hexadecimal value of the counter. The first time you call a macro that uses the
LOCAL construct the suffix is ‘00,

The syntax for the LOCAL construct in the DEFINE function is shown below. (This
is the complete syniax for the built-in functuion DEFINE):

% * DEFINE(macro-name|parameter-ist]) |LOCAL Jfocat-fist] (macro-body)

The focal-tist is a list of vabid macro identifiers separated by spaces. Since these
macro identifiers are not parameters, the LOCAL construct in a macro has no affect
on the syntax of a macro call.

The example below shows the MOVE _ADD__GEN macro definition that uses a
LOCAL list:

Z*DEFINE(MOVE_ADD_GEN(SQOURCE,DEST,COUNT)) LOCAL LABEL (
MGV CX,%COUNT
MOv¥ S1,0
XLABEL: MOV AX,%XSOURCE[SI]
HOV XDESTIESIIT,AX
INC SI
INC SI
LOOPZ XLABEL
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The following macro call:
XMOVE_ADD_GEN(DATA,FILE,67)
would produce this code il this is the eleventh call to a macro using a LOCAL list:

MOV CX,67

MOV 51,0

LABELOA: MDYV AX,DATALSI]
MOV FILE[SI),AX

INC SI

INC S1

LOOPZ LABELOA

Since macro identifiers follow the samc rules as ASMS86, you can use any macro
identifier in a LOCAL list. However, if you use tong identifier names, they should
be restricted to 26 characters. Qiherwise the label suffix may cause the identifiers to
exceed 31 characters and the excess ¢haracters would be truncated.

The Macro Processor’s Built-in Functions

The macro processor has several built-in or predefined macro functions. These built-
in functions perform many uselul operations that would be difficult or impossible to
produce in a user-deflined macro. An important difference between a user-defined
macro and a built-in function is that user-defined macros may be redefined, while
built-in functions cannot be redefined.

We have alrcady secen onc of these built-in functions, DEFINE. DEFINE creates
user-defined macros. DEFINE does this by adding an entry in the macro processor’s
table of macro definitions. Fach entry in the table includes the cait-pattern for a
macro, and its macro body. Entries for the built-in functions are present when the
macro processor begins operation.

Other built-in functions perform numerical and logical expression cvaluation, affect

control flow of the macro processor, manipulate character strings, and perform
console 1/0 (see Appendix D lor a listing of the MPL built-in functions).

Comment, Escape, Bracket and METACHAR
Built-in Functions

Comment Function
The Matro Processing Language can be very subtle, and the operation ol macros
written in a straightforward manner may nol be immediately obvious. Therefore, it
is often necessary 10 comment your macro definitions.
The macro processor’s comment function has the following syntax:

Yo'text’

or

% '‘text end-of-line
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The comment function always evaluates to the null string. Two (erminating
characters are recognized, the apostrophe and the end-of-iine (line feed character,
ASCI] 0AH). The second form of the call allows vou to spread macro definitions
over several lines, while avoiding any unwanted end-of-tines in the return value, In
either form of the comimnent function, the text or comment is not evaluated for
macro calls.

The example below shows a commented macro definition:

A%DEFTHE(MOVE_ADD_GEN(SOURLE,DEST,CAUNT)) LOCAL LABEL {
MOV CX,XCOUNT  X'COUNT SHOULD BE A CONSTANT
NOY 51,0
RLABEL %' WLABEL 1S A LOCAL SYMBOL IT WILL HAVE A NUMBER ADDED
T MOV AX XSODURCE[SI] %'SDURCE MUST BE A WORD ADDRESS

MOY XDEST(SL], AX X'DEST MUST ALSO BE A WORD ADDRESS'
INC S1
INC SI
LOOPZ HLABEL R THIS WILL HAVE THE SAME NUMBER ADDED

X‘AS THE XLABEL ABOVE'

Call 1o above macro:
YMOVE_ADD_GEN(DATA, STOR, 20H)
Return-vatue from above call:

WOV CX,20H MOY SI,0
LABELO7: MOY AX,DATALSI]

MOV STOR(SII,AX

INC ST

INC SI

LODPZ LABELQ7

Notice (hat the comments that were terminated with epd-of-line removed the epd-of-
fine character along with the rest of the comment,

Notec that the metacharacter is not¢ recognized as flagging a cali to the macro pro-
cessor when it appears in the comment function.

Escape Function

Qccasionally, il is necessary to prevent the macro processor from processing text.
There are two built-in functions that perform this operation: the escape funclion
and the bracker tunction.

The escape function interrupts the processor from its normal scanning of text. The
syntax for this function is shown below:

%on text-n-characters-fong

The metacharacter followed by a single decimal digit designates that the specified
number of characters (maximum s 9) shal! not be evaluated. The escape function is
uscful for inserting a metacharacter as text, adding 2 comma as pari of an argument,
or placing a single parenthesis in a characler string that requires balanced
parentheses.
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Several examples of the escape function are shown below:

MACCALL (s defined as follows:

A*DEFINE(MACCALL(ARGY, ARG2, ARG3))

(
%ARG1
; %ARG2
LARG3
)
Betore Macro Expansion Atter Macro Expansion

{actuai parameiers)

; COMPUTE 10%1% OF SUM

%MACCALL{JANUARY 23%1, 1980,
MARCH 15%1, 1980,
APRIL 9%1, 1980)

AMACCALL(1%1) ADD INPUTS,
2%1) DIVIDE BY INPUT
3%1) GET INPUTS)

;COMPUTE 10% OF SUM

; JANUARY 23, 1980
JMARCH 15, 1980
JAPRIL 9, 1980

;1) ADD INPUTS
:2) DIVIDE BY INPUT
;3) GET INPUTS

L A 2

Bracket Function

The other built-in function that inhibits the macro processor from cxpanding text is
the bracket function. The syntax of (he bracker function is shown below:

Y (balanced-text)

The bracket function inhibits all macro processor expansion of 1he text contained
within the parentheses except (or the escape function, the comment function, and
parameters which are still recognized. Since there s no restriction on the length of
the text within the bracket function, it 1s often easier (0 use than the escape function.
Howcver, since balanced text is required and the melacharacier i3 interpreted,
sometimes the bracket function does not do what you want and the escape function
must be used.

Consider the follawing macro:

A*DEFINECOW(LIST ,NAME)) (
ANAME  DW ZLIST
)

The macro above will add DW statements to the source file. [t uses two parameters:
ane for the variable name and one {or the DW cexpression list. Without the bracket
or several escape functons we would not be able to use more than one expression ip
the Hst, since the first comma would be interpreted as the delimiter separating the
macro parameters. The bracket function permits more than one expression in the
LAST argument:

XOW(%C198H, 3DBH, 163BH) ,PHONE)~> PHONE DW 198H, 3DBH, 163H

In the example above the bracket function prevents the character string ‘198H,
3DBH, 163BH’ from being evaluated as separate parameters.

PasiN
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METACHAR Function

The built-in function METACHAR allows you 10 redefline the metacharacter ini-
tially (%%). [1s syntax is shown below:

%METACHAR(balanced-text)
The lollowing example changes the metacharacter from (%) to (&):
ZMETACHAR(Z)

The balanced-text argument may be any number of characters long. However, only
the (irst character in the string, i.e., the character immediately after the (7, is taken
10 be the new melcharacter. Extreme caution should be i1aken when using
METACHAR, since it can have catastrophic effects. Consider the example below:

AMETACHARC &

In this example METACHAR defines the space character 10 be (he new
metacharacter, since it is the first character in the balanced-texs string!

Numbers and Expressions in MPL

Many of the built-in funcuons recognize and evaluate numerical expressions in their
arguments. MPL uses the same rules for representing numbers as ASM86 (see
Chapter 3):

* Numbers may be represented in base 2 (B suffix), base 8 (O or Q suffix), base 10
(D suffix or no suffix), and base 16 (H suffix).

* Internal represeniation of numbers is 17 bits (~OFFFFH to +OFFFFH). The
processor does not recognize real or long integer numbers.

¢ The operators recoghized by the macro processor and their order of precedence
is shown in the list below (see Chapter 4 for discussion of these operators):

. (1} {bighest precedence)
HIGH, LOW,

*,/,MOD, SHL, SHR

+, —(both unary and binary forms)
CQ,NE,LE,LT,GE,GT

NOT

AND

OR, XOR {lowest precedence)

20 A N L o B

The macro processor cannot access the assembler's symbol table. The values of
labels, location counter, and EQU symbols are not known during macro-time
expression evaluation. Any attempt to use assembly-time symbols in a macro-time
expression generates an error. However, you can define macro-time symbols with
the predeflined macro SET.

SET Macro

SET assigns the value of the numeric expression to the identifier, macro-id, and
stores the macro-id in the magro-time symbol table. macro-id must follow the same
syntax conventions used for other macro identifiers. SET has the following syntax:

Y%SET(macro-id, expression)



7-12 Asmse

The SET macro call affects the macro-time symbol table only; when SET is
encountered in the source file, the macro processor replaces it with the null string.
Symbels defined by SET can be redefined by a second SET call, or deflined as a
macro by a DEFINE call. In fact, if you cver assemble your source with the GEN
control in effect you will see that SET uses the DEFINE built-in function to create
the pumeric symbols.

The following examples show several ways to use SET:

Betore Macro Expansion After Macro Expansion
ASET(COUNT, 0>
ASET(OFFSET,18)

MOV AX, %COUNT + XOFFSET
MOy B8X, XCOUNT

null string
null string
MOV AX, OOH + 10H
MOV BX, O0H

L T I

SET can also be used to redefine symbols in the macro-lime tahle;

ASETCCOUNT, %COURT + XOFFSET) = null string
ASETC(OFFSET,X0FFSET * 2) s null string
MOV AX, %COUNT + XOFFSET + MOV AX, 104 + 20K
MOY BX, XCOUNT > MOV 8X, 10H

SET is a predefined macro, not a buili-in function; as such it may be redefined,
however, you will then loose this function.

EVAL Function

The built-in function EVAL accepts an expresston as its argument and returns the
expression's value in hexadecimal, The syntax for EVAL is:

% EV ALlexpression)
The expression argument imust be a lepal macro-time expression,

The return-vatue from EVAL follows ASMB86's rules for representing hexadecimal
numbers {see Chapler 3). CVAL always returps an expression with at least 3
characters even if the argument evaluates to a single digit. The leading character is
always a decimal-digit €0,1,2,....9). The remaining digits may be any hexuadecimal
digit {0,1,2,...E,F). The trailing character must always be the hexadecimal suffix
{H}. The following examples show the refurn-value from EVAL:

Belore Macro Expansion After Macro Expansian

MOY AX, ZEVAL{(1+1); move two to AX + MOV AX, 02H; move
two to AX

COUNT EQU OF&8H
ADD AX, OFFF1H
null string

null string

MOV AX, QOH

COUNT EQU XEVAL(33H + 15H + OFQOHD
ADD AX, XEVAL(I0H-({13 + 6) * 2) + 7)
ZSET(NUM1,44)

USET(NUMZ,25H)

MOV AX, %EVALCZNUMY LE ZNUM2Z)

L T 2

Logical Expressiens and String Comparisons in MPL

Several built-in functions return a logical value when they are called. Like relational
operators that compare numbers and return true or false {(~1H or C0H), respectively,
these built-in functions compare character strings. Lf the function evaluates to
‘TRUE,’ then it returns the character string ‘—1H’ (all oncs). It the function
evaluates to ‘FALSE,’ then it returns ‘O0H’ {zeros).
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The built-in functions that return a logical value compare two bafanced-text string
arguments and return a logical value based on that comparison. The list of string
comparison functions below shows the syntax and describes the type of comparison
made for each. Both arguments to these functions may contain macro calls {the calls
are expanded before the comparison is made).

%EQS(argt .arg2) True it both arguments are identical; equal
%NES{arg?.arg2) True if arguments are different in any way; not equal

%LTS{arg?.arg2) True if first argument has a lower value than second
argument; less than
%LES(argt ,argd) True if first argument has a lower value than second

argument or if both arguments are identical; less
than ar equal

%GTS{argt arg2) True if first argument has a higher value than second
argument; greatsr than

%GEStarg? arg2) True if first argument has a higher value than second
argument, or if both arguments are identical; greater
than or equal

Before these functions performt a comparison, both arguments arc complctely
expanded. Then the ASCII value of the first character in the first string is compared
to the ASCIL value of the first character in the secand string. (f they differ, then the
string with the higher ASCII value is considered to be greater. If the first characters
are the same, then the process continues with the second character in each striag,
and so on. Only two strings of equal length that coniain the same characters in the
samme order are equal.

Belore Macro Expansion After Macro Expansion

%GTS(160,11H) - -1H these macros compare stiings
trte  not numerical values: ASCH ‘&
is greater than ASCI '1°

%EQS(ABC, ABC} - -1H the character strings are
true  identical
%EQS({ABC, ABC) - DOH the space after the comma is
false partof the second argument
%LTS{CBA,cba) - -1H the lower-case characters have
true a higher ASCIl value than
Lupper-case

I

%GES{ABCDEF,ABCDEF ) 00H the space at the end of the
faise second argument makes the
second argument greater than

the first

As with any other macro, the arguments to the string comparison macros can be
other macros.

%A*DEFINE(DOG) (CAT)

A*DEFINE(MOUSE) (XDBOG)

XEQS(ADOG, AMOUSED -1R
true
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Control Flow and Conditional Assemblies

Some built-in functions expect logical expressions in their arguments. Logical -
expressions follow the same rules as numeric expressions. The difference is in how

the macro interprets the 17-bit value that the expression represents. Once the expres-

sion has been evaluated to a 17-bit value, MPL uses anly the low-arder bit to deter-

mine whether the expression is TRUE or FALSE. If (he low-order bii is a one (1he

t7-bit numeric value 15 odd), the expression is TRUE. If the low-order bit is a z¢ro

{the 17-bii value is even), the expression is FALSE.,

Typically, you will usc either the relational operators (EQ, NE, LE, LT, GT, or GE)
or the string comparison functions {EQS, NES, LES, 1.TS, GTS, or GES) to specify
a logical value. Since these operators and functions always evaluate 1o ~ 11 (ali
ones) or O0H (all zeros), you needn’t worry about the singie bit 1es1. Bul remember,
all numeric expressions are valid, and regardiess of the value of the other 16 bits,
only the least significant bit counts.

IF Function

The IF built-in function ¢valuates a logical expression, and based on that expression,
expands or withholds it text arguments. The syntax for the IF macro is shown below:

%IF (gxpression) THEN (baianced-text!) ELSE {balanced-text2)iFl —

The LF lunction first evaluates the expression. If the low order bit is one, then
balanced-rext ! is expanded; if the low order bit is zero and the optional ELSE clausc
is included in the call, then balfanced-rext2 is expanded. If the low order bit is zero
and the E1.SE clause is nat included, the 1F call returns the null steing. FI must be
included (0 terminate the call.

IT calls can be nesled; when they are, the ELSE clause refers 1o the most recent IF
call that is still open (not terminated by FI). F1 terminates the most recent IF call
that is still open.

Several cxamples of IF calls are shown below:

This is a simple example of the IF call with no ELSE clanse.
LIF (%GTSCOFFH,%ZVAR)) THEN (MOV AX, XVAR) F1
This is the simple form of the IF call with an ELSE ¢lause.

X1F (XEQSCADD AX, XOPERATION)) THEN (ADD BX, %R1) ELSE (ABD BX, %R2) FI

This is an example of several nesied 1F calls. —
open first IF %IF (XEQS{XOPER,ADD)) THEN ( ADD AX,DATUM
} ELSE ¢
open second iF %1F (XEQS(XOPER,SUB)) THEN { SUB AX,DATUM
) ELSE {
open third IF XIF {XEQS(XOPER,MULT)) THEN ( MUL DATUM
) ELSE (DIV DATUM
close thirg IF YEI
close second iF YFI

close first IF JFI
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Example 5. Conditional Assembly

%SET (DEBUG, 1)
%1F (DEBUGY THEN ¢
MOY AX, DEBUG_FLAG

OUT  AX, 2
)
MOV BX, OFFSET ARRAY

Susp  BX, 1

will expand to:

MOV AX, DEBUG_FLAG

0uUT  AX, 2
MOV B8X, OFFSET ARRAY
SUB  BX, 1

You could change the %SET to
%SET {DEBUG, O

to 1urn off the *debug’ code.

WHILE Function

The IF macro ts useful for implementing one kind of conditional assembly—
including or excluding lines of code in the source lle. However, in many cases this is
not enough. Often you may wish to perform macro operations untit a certain condi-
tion 1s met. The built-in function WHILE provides this facility.

The syntax of the WHILL macro is shown below:

TWHILE (expression)  (balanced-text)

The WHILE function evaluates the expresson . Lf the least significant bit is one, then
the balanced-text is expanded; otherwise, it 1s not. Once the balanced-text has been
expanded, the logical argument is retested and if the least significant bit is still one,
then the bafanced-text is again expanded. This continues until the logical argument
proves false (the least significant bit is Q).

Since the macro continues processing until cxpression is lalse, the batanced-toxt
should modify expression, or else WHILE may never terminate.

A call to the built-in function EXIT will always terminate a WHILE macro. EXIT is
described below.

The following examples show two common uses of the WHILE macro:

%SET(COUNTER,S)
AWHILECACQUNTER 67 0)

(INC BX

ASET(COUNTER, XCOUNTER - 1}
}

AWHILECXCOUNT LT OFFH) ( HLT
ASETCCOUNT, XCOUNT+1) )

These examples use the SET macro and a macro-time symbol to count the iterations
of the WHILE macro.
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REPEAT Function

MPL offers another built-in function that will perform the counting loop
automatically. The built-in function REPEAT expands its bafanced-text a specified
number of times. The gencral form of the ¢all to REPEAT is shown below:

W REPEAT (expression} (balanced-text)

Unlike the IT and WHILE macros, REPEAT uses the expression for a numerical
value that specifies the number of times the bafanced-text will be expanded. The
expression 1§ evaluated once when the macro is first called, then the specified
number of iterations is performed.

The examples below will perform the same text insertion as the WHILL cxamples
above.

AREPEAT (5) (INC BX
)

ZREPEAT (OFFH - COUNT) C(HLT
)

Note that the line feeds preceding the right paren in each of the above examples are
necessary for correct assembly.

EXIT Function

The EXIT built-in funciion terminates expansion of the most recently called
REPEAT, WHILE or user-defined wmacro. It is most commonly used to avoid
infinite loops {e.g., a WHILLE expression thal never becomes false, or a recursive
user-defined macro that never terminates). It allows several exit points in the same
macro.

The syntax tor EXIT is:
GeEXIT
Two examples of how you might use the EXIT macro follow:

This use of EXIT terminates a recursive macro when an odd number of bytes have
been added.

%«DEFINE(MEM_AOD_MEM(SOURCE,DESTIN,BYTES)} (
MOY AL,%XSOURCE
ADD AL,%DESTIN
MOV XDESTIN,AL
IF (%BYTES EQ 1) THEN (XEXIT)FI
MOV AL, %SOURCE + 1
ADD AL, XDESTIN + 1
MOV XDESTIN + 1, AL
IF (XBYTES GT 2 ) THEN
(XMEM_ADD_MEM{XSOURCE+2 XDESTIN+2,XBYTES-2))FI
)

The above example adds 1wo pairs of bytes and siores the results in DESTIN. As
long as there are more than two pairs of bytes to be added, the macro
MEM_ADD MEM is expanded. That is, as long as BYTES is greater than 2, the
expansion continues. When BYTLS reaches a value of 1 (odd numbcr of byle pairs)
the macro is exited.
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This EXIT is a simple jurap out of a recursive 10op.

A*¥DEFINECUNTIL (CONDITIQN,B00OY))

(X8ooY
XIF (XCONDITION) THEN (ZEXIT)
ELSE (ZUNTIL(%CONDITION,XBODY)) FI

This example assunics that BODY is a macro that modifies CONDITION such that
CONDITION cventually becomes true,

String Manipulation Built-in Functions

The purpose af the Macro Processor is to manipulate character strings. Therefore,
there are several built-in functions that perform common characier siring mantpula-
tion functions.

LEN Function

The built-in function LEN 1akes a character string argument and returns the length
of the character string in hexadecimal {the same format as EVAL). The character
string argument to LEN is limited o 256 characters,

The symax of the LEN macro call is shown below:
Y LEN(balanced-texr)

Several examples of calls to LEN and the hexadecimal numbers returned are shown
below:

Before Macro Expansion Alter Macro Expansion

YLENCABCDEFGHIJKLMNOPQRSTUVWXYZ) > 1AH
%LENCA,B,C) 5 05H commas are counted
ALENC() > 00H

Z*DEFINE(CHEESE) (MOUSE)

Z*DEFINEC(DOG) (CAT)

YLENCXDOG %CHEESE) 5 QGH
“the space after 6 1s
counted as part of the
length

SUBSTR Function
The buili-in function SUBSTR veturns a subsiring of ils (ext argument. The macro
takes three arguments: a balanced character string 1o be divided and two numcric
arguments. The syntax of the macro call to SUBSTR is shown below:

% S1UBSTR(balanced-text exprossiond expressionl)
balanced-text is described above.

expressionl specifies the starting character of the substring.

expression2 specifies the number of characters to be included in the substring.
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If expression! is 2ero or greater than the length of the argument string, then
SUBSTR rewrns the null string.

[f expression2 is zero, then SUBSTR returns the nul) string. If expression2 is greater
than the remaining length of the string, then atl characters from the start character
of the substring to the end of the siring are included.

The examples below show several calls to SUBSTR and the value returped:

Before Macro Expansion After Macro Expansion
%SUBSTR(ABCDEFG,5,1? » E
*SUBSTR{ABCDEFG,S,100) + EFG
YSUBSTR(123(56)890,4,4) 4+ (56)
#SUBSTR(ABCDEFG,8,1) + null
XSUBSTR(ABCDEFG,3,0) - nult

MATCH Function

The built-in function MATCH searches a character string for a delimiter character
and assigns the substrings on either side of the delimiter 10 the identifiers. The
syntax of the MATCH call is shown below:

WMATCHdentifierf deliniter identifier2) (balanced-texe)
identificrf and identffier2 are valid MPL identifiers.

deitmiter is the first characier 10 follow identifier!. I'vpically, a space or comma 1§
used, but any character 1hai is not a macre identifier character may bhe used. You
can find a more complete description of delimiters in the Advanced Concepts section
at the end of the chapter.

balanced-rext is as described carlier in the chapter.

MATCH searches 1he balanced-text string for the specified delimiter. When the
defimiter characters found, then all characiers to the left of it are assigned 10 1den-
tifiers and all characters 10 the cipht are assigned to idemifier2. Il the defimiter is
not found, the entite bafanced-texr siring is dssigned 10 idemtifier? and the null
string is assigned to identifier2.

The following example shows a typical vse of the MATCH macro.

%HATCH (NEXT,LIST) (10H, 20H, 30H)
MOY SI, YAR_PTR
UWHILE (ZLENCZNEXT) NE Q) <
MOV BX, ZNEXT
MOV AX, (BX+5I]
ADD AX,22H
HOY [BX+SI], AX
Y¥MATCH (REAT,LISTICXLIST)
)

Produces the following code:

MOV BX, 10H
first iteration MOV AX, [BX+S1)
of WHILE ADD AX,22H

MOY [BX+S11, AX
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MOV BX, 20H

second iteration MOY AX, [BX+SI]
of WHIIE ADD AX,22H
MOY (BX+SI], AX
MOV BX, 30H
third iteration MOV AX, [BX+SI]
of WHILE ADD AK,202H

MOV [BX+ST], AX

Console |/0Q Built-in Functions

Four built-in functions perform console 1/O. The first twg, [N and QUT, are line
ariented. [N outputs the characters “ = == as a prompt to the console, and returns the
next line typed at the consele including the tine terminator. OUT outputs a string to
the console; the return value of OUT is the nuil string. The syntax of both macros is
shown helow:

o llN
%OUT(balanced-text)

Several examples of how these macros can be used are shown below:

%OUT (ENTER NUMBER OF PROCESSORS IN SYSTEM)

#SET(PROC_COUNT,XIN)

AOUT(ENTER THIS PROCESSOR'S ADDRESS)
ADDRESS EQU XIN

AOUT{ENTER BAUD RATE)

LSET(BAUD,%IN)

The following lines would be displayved at the console:

ENTER NUMBER OF PROCESSOQORS IN SYSTEM >userresponse
ENTER THIS PROCESSOR'S ADDRESS >userresponse
ENTER BAUD RATE >userresponse

The second two, CI and CO, are character oriented functions, C[ returns a single
character typed at the console. C] neither prompts for input nor echoes the character
typed. CO outputs a single character 1o the console: the return value of CO is the
null string. The syntax of the CI and CO macros is.

1cl
XC0 Cchary

The following example defines the macro NUMBER to be a string of three
characters 1yped at the console, and echoes the characters as they are typed:

YXDEFINECNUMBER) ()
YREPEAT(3)C YDEFINECAX(XCIY XC0{%a2
IDEFINECNUMBER)ICXNUMBERXA) )

Advanced MPL Concepts

For most programming problems. the Macro T'rocessing Language as described
above is sulficient. However, in some cases a more complete description of the
macro processor's function is necessary.
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However, it is impossible 10 describe all of the subtleties of the macro processor in a
single chapter. With the rules described in this section, you should be able to discern,
with a few simple tests, the answer to any specific question about MPL.

Macro Delimiters

When we discussed the syotax for defining macros, the parameter-fist was sui-
rounded by parentheses, and parameters were separated by commas. Because we
used these delimiters 10 define a macro, a call 1o the macro required that these same
delimiters be used. When we discussed the MATCH function, we mentiongd that a
space could be used as a delimiter. ITn fact the macro processor permits almost any
character or group of characters 10 be used as a delimiter.

Regaraless of the type of delimiter used to define a macro, once it has been deiined,
onty the delimiters used in the definioon can be used in the macro call. Macros
defined with parentheses and commas reguire parenptheses and commas in the magro
cill Macros defined with spaces tor any other delimiwer) require that speafic
detimirer when called.

Alacro delmiters ¢an be divided o three classes: implied blank delimiiers, iden-
teler for idpdelimaters and tigral delimiers.

[mplied Blank Delimiters

[mphed blank delimiters are casv 1o use and vontribute readability and flexibility 10
macro alls and defininans. An implied blank dehmiter is one o1 more spaces, tabs
or new lines {a carsiage-relurnslinefced pain or just a linefeed) m any order. 1o
define a macro that uses the implied blank delimiter, simply place one or more
spaves. 1abs or new lings surrpunding 1he parameter list and separating the formal
parameters.

When vou call the macro defined with the implied blank dehmiter, cach delimiter
will mateh a series of spaces. 1abs, or new lines. Each parameier in the call begins
with the Dirst non-blank ¢character. and ends with the nexy blank character.
Anevample of a macro defined using imphied Blank dehmiters is:

*DESINECSENTENCE SUBJECT YERB 08JECT) (THE XKSUBJECT XVERB XOBJECT.

All ol the (ollowing calls are valid for the above dehnition:

Betore Macro Expansion After Macro Expansion
ASENTENCE TIME IS RIPE + THE TIME IS RIPE.
ASENTENCE CATS

EAT
FISH - THE CATS EAT FISH.
ASENTENCE
PEOPLE
LIKE FREEDOM » THE PEDPLE LIKE FREEDOM,

identifier Delimiters

identifier (1d} delimiters are legal macro identifiers designated as delimiiers. To
define 2 macro that uses an id delimiter 10 its call pattern, you must prefix the
dehimiter with the commercial a1 symbol (2). You must separate the id delimiter
[vom the macro identifiers (formal parameters or macro name) by a blank character,
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When calling 2 macro defined with id delimiters, an implied blank delimiter is
required (o precede the id delimiter, but none is required 10 follaw the i delimiter.
The & is not required.

An example of a macro delined with id delimiters is:

%*DEFINECADD P1 3TO P2 3AND P3) (
MOV AX, %P1
MOV BX, AX
ADD AX, %P2
MOV %P2, AX
MOV AX, BX
ADD AX, %P3
MOV %P3, AX

The following call;
%ADD ATOM TQ MOLECULE AND CRYSTAL
reluros this code when expanded:

MOV AX, ATOM
MOV BX, AX

ADD AX, MOLECULE
MOY MOLECULE, AX
MOV AX, BX

ADD AX, CRYSTAL

MOV CRYSTAL, AX

The call could also have been writien

AADD ATOM TQMOLECULE ANDCRYSTAL

Literal Delimiters

The delimiters used when we documented user-defined macros (parentheses and
commas) were literal delimiters. A literal delimiter can be any chavacter excepl the
metacharacier.

When you deline a nlacro using a kneral defimiter you must use exactly thai delimiter
when vou calt the macro. il you do notinclude the speeified delimiter character as it
appears in the definition, it witl gencrate 2 macro error.

When defining a macro, you must literalize the delimiter steing, if the delimiter vou
wish to use meets any of the following conditions:

¢ uses more ithan one character,
= ysesamacroadentifier character (A-Z,0-9, L or 7y,

*  uses acommercial at{@?).

*  uses a space, tab, carriage-return, or linefeed.
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You can use the cscape function (%n) or the bracket funcion {Ys(h) 1o lireralize the
detimviter string. Several examples of definitans and calls using a variety of lieral
debimiiers are shown below:

This is the simple form shawn earlier;

Before Macro Expansion After Macro Expansion
X*DEFINE(MACCA,BY) (%A %B) 4 nucl string
AMAC(4,5) 2 4 5

In the Tollowing example brackers are used insiead of parentheses. The commereial
ai symbol separales parameters:

A*DEFINE(MOVIAZC @ >8)) (MOV{ZA],%B)
WMOV(BX @ DI + MOVEBX),DI

In the next two examples delimiters thai could be id delimiters have been defied as
literal delimiters (the cdhiferences are noted):

A¥DEFINECADD (A% CANDIB))(AODD %A, %B) » null string
LADD{ AX AND 5) + ADD AX, S

To tustrate the diiferences between id delimiters and literal dehmuers, consider the
following macro definition and call. (A similar macre dennition 18 dcussed with id
delimtiers):

LxDEFINE(ADD P1 %(T0) P2 %(AND) P3 ) (
MOV AX, %P1
MOY BX, AX
ADD AX, %P2
MOV %P2, AX
MOV AX, BX
ADD AX, %P3
MOV %P3, AX
)

The following call:
4ADD COUNT TO INCR AND FACTOR
relurns this code when expanded

MOV AX, COUNT
MOV BX, AX
ADD AX, INCR
MOV INCR, AX
MOV AX, BX

ADD AX, FACTOR
MOV FACTOR, AX

Il the parameiers contain strings that match the delimiters, ie., it %P1 < ATOM,
you will get incorrect resulis.

Literal vs. Normal Mode

In normal mode the macro processor scans lext looking 'or the metacharacier.

When it finds one, i1 begins expanding the macro call. Parameters are substituted
and macro calls are expanded. This is the usual operation of the macro processor,
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but sometimes 11 is necessary 10 modify this moade of operation. The most comsnon
use of the titeral mode is to prevent macro expansion. The tieral character in
DEFINE prevents the expansion of macros in the macro-body unidd you call the
macro.

When you place the literal character ina DEFINE call, the macro processor shitis ta
literal mode while expanding the call. The effect is similar 1¢ surrounding the macro
body with the bracker funcuon. The escape. comment. and bracket functions arc
expanded; but no further processing is performed. Any calls 10 other macros are noi
expanded.

I{ there are no paramelers i the macro being delined. ihe DEYINE butli-in function
can be called without the hieral character. Il yhe macro uses paramueters, the mucro
provessor will atlemnpt 10 evaluate the formul parameters iy the macre-body as
parameteriess macro calls.

The Tollowing example iHlustrates the dilference between deflining @& macro in lreral
mode and normal mode:

ASETCTOM,T)
YDEFINECAB) (XEVAL(XTOM))
ADEFINEC(CD) (XEVAL{%XTOM))

When AB and CD are delined, TOM is egual 10 |. The macro body ol AB has not
been evaluated due to the literal character, but the macvo body of D has been com-
pletely evaluated, since the ltteral character is not used in the definition. Changing
the vatue of TOM has no affect on CD, it changes the return value of AB as
iltusirated below:

Aefore Macro Expansion After Macro Expansion

ASET(TOM,2)
XAB + 02H
%eD + 01H

The macros themselves can be called with the literal characier. The return value then
is the unexpanded body:

A*C0 + 01tH
A+ AB - AEVAL(XTOM)

The literalized calls 1o AR and CD show that CD evaluates to 0LH, while AB con-
1ains a macro catl 1o EVAL with % TOM as its parameter.

Algorithm for Evaluating Macro Calls

The algorithm the macro processor uses for evaluating the source tile can be seen
6 steps:

. Scan the source until the metacharacter is found.

2. lsolate the call pattern. Sec note below.

3. Il macro has parameters, expand ach parameter from Jeft to right (initiate step
one on aclual parameter) before expanding the next parameter.

4. Substitute actual parameters for formal parameiers in macro body.
1f 1the literal character is not used. initiate step ang on macro body.
6. Inscrtthe result inio output stream.

N
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NOTE

When isolating the call pattern, the macro processor is actually
scanning input for the specified delimiter. Al 1exi Tound between
delimiters is considered the aciual parameter. For this reason Id
delimiters need not be terminated by spaces in a call.

The terms “input stream” and ‘output stream” are used, because the return value of
one macro may be a parameter 10 another. On the first iteration, 1the inpul stream is
the source file. On the final iteration, (he outpui stream is passed 10 the assembler.

The examples below illusirate the macro processor's evatuauon algorithm:

ASET(TOM,3)

%*DEFINECSTEVE) (XSETCTOM,%TOM-1) %TOM)
%*DEFINECADAMCA,B))

BB %A, %8B, %A, %8, XA, %B

)

Here is a call ADAM in 1he normal mmode with TOM as the Nest actoal parameter
and STEVE as the second aciual parameier. The {iest pacameier s completely
expanded before the second parameter is expanded. After the call 10 ADAM has
been complelely expanded, TOM will have the value G2H.

Before Macro Expression Afier Macro Expression
RADAM(LTOM, XSTEVE) + DB 03H, 02H, O03H, 02H, 03H, 02H

Now reverse the arder of the (wo actual parameters. In this call 1o ADAM. STEVE
is cxpanded first {(and TOM s decremented) before 1he second parameler is
evaluated. Both parameters have the same value.

%SET(TOM,3)
%ADAM (XSTEVE, %TOM) » DB 02H, O2H, 02H, 02, 02H, O2H

Now we will lneralize the call 10 STEVE when n appcars as the first aciual
parameter. This prevents STEVE from being expanded unul it is inscried in the
macre body, then it is expanded for each replacement of the Tormal parameters.
Tom is cvaluated before the substitution in the macro body.

ASET(TOM, 3)
ZADAM(Z*STEVE , XTOM) + 0B 02K, 03H, 01H, 03H, 00H, O03H



Codemacros

This chapter describes codemacros, which define 8086, 8087, and 8088 instructions.
Codemacros should not be confused with macros, which are described in Chapter 7.

A codemacro is a preset body of code which you define, a skeleton in which most
instruciions and values are fixed. They are automatically assembled wherever the
macro is tnvoked (used as an instruction), which saves your rewriting them every
ume that sequence s needed.,

However, certain names used in the definition are NOT fixed. They are stand-ins,
which are replaced by names or values that you supply in the same line that invokes
the codemacro. These stand-ins are called *‘dummy’’ or *“formal’’ paramelers. They
simply ‘*hold the place™ for (he actual parameters to come. Formal parameters thus
indicale where and how (he aclual parameters are to be used.

You invoke the codemacro by using its name as an mstruction. For example:

MOV  BX, WORD3
MACT PARAMY, PARAM2
ADD  AX, WORD4

MAC! above represents the use of some codemacro you defined earlier. 1{ appar-
cnily requires 2 paramelers, that is, the definition used 2 formals 1o be replaced by
these actual parameters supplied above when you invoke the codemacro.

In fact, the MOV and ADD instructions above are codemacros. The assembler’s
entire instruction set is defined and implemented as a large number of codemacros.
{The definitions are at the end of this Appendix). Once you understand how this is
done, you may add instructions fo those supplied as part ol the assembier.

The type of macro used to implement this assembly language is called a codemacro
to distinguish it from text macros described in Chapter 7. The latter are more
familiar 10 programmers because previous assembly languages have included such a
facility. Text macros are not discussed in this chapter. The presentation below will
describe crealing and using codemacros.

These codemacros are encoded at codemacro definition time into a very compact
form, so that all defined codemacros may reside simultanecusly in memory. Each
definition specifies a certain combination ol parameters and wiil match oniy those.
Other combinations of paramelers may be accommodated by redefining the
codemacro, Multiple definitions of the same codemacro name are chained together;
50 that when the codemacro is called, each link of the chain can be ¢checked for a
maltch of operands.

Since the 8086 instruction set consists of codemacros, tt is natural to refer to a
codemacro being calied as an “*instruction,’ and to refer to its acival parametcrs as
“operands.’’
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For example, the language has an ADD instruction thal works properly with any
general register or memory location as a destination operand or as a source opevand,
and works with immediate-data operands. This is achieved by defining 11
codemacros to generate the L1 different machine instructions appropriate 10 (hese
different cases and combinations. The correct one is used because the specification
of its formal parameters is matched by the actual paramelers supplied in your source
code. The details of how this works are covered in this chapler.

The definition of a codemacro begins with a line specifying i1s name and a list of its
formal parameters, if any:

CODEMACROQ name [formal_ list]
or

CODEMACRO name PREFX
where formal _list is a lis1 of formal parametcrs, cach in the form
form _name:specitier_ letter [modifier__letter| [range|

The square brackets indicate optional items; they are not actually used in the state-
ment that you code. The single word CODEMACRO and the name are hoth
required. The formal paramciers are optional. If they are present, then each one
must be [ollowed by one of the specilier letters A, C, D, E, M, R, S, X. Alter the
specifier letter comes an optional modifier letter: b, d, q. t, or w. There (ollows an
optional range specifier, which consists of a pair of parentheses enclosing either one
expression, oOF (wo expressions separated by a comma. The semantics of specifiers,
modifiers, and ranges are described below.

When no formals are vsed, you may code ithe keyword PREFX, indicating the code-
macro is to be used as a prefix to other instructions. This (oo is optional. Examples
of prefixes in the 8086 instruction set are LOCK and REP.

The definition ends with a line as follows:
ENDM

Retween the first and last ines of a codemacro definition is the body of the code-
macro, the actual bit patierns and formal parameters which will be assembled and
replaced each rime the macro is invoked. Only a few kinds of directive are allowed in
codemacros. They dre:

1. SEGFIX

. NOSEGFIX
MODRM
RELB
RELW

0B

Dw

0D

. Record initialization
. RFIX

. RFIXM

. RNFIX

. RANFIXM

. RWFIX

O = D w2

W N — DO
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Each of these directives, along with the special expression operand PROCLEN, are
explained further on in this chapier.

Some simple examples of codemacros:

Codemacro STC
OB OF9H ; this sets the carry flag (CF) to 1.
Endm

Codemacro PUSHF
08 9CH ; pushes all flags into top word on stack.
Endm

Codemacro ADD dst:Ab, src:Db
0B 04H

08 src

tndm

The first two examples simply aliow a machine instruction ¢ be invoked by the use
of a name, which is usually more easily remembered (**mnemonic'’) than a string of
numbers.

The third example is onc of the 11 macros defining the ADD instruction, or more
precisely, defines one of the 11 ADD instructions. (There are |1 in order o cover alil
the valid combinations of parameters.) It has two formal parameters, called **dst’’
and *‘src,” for destination and source operands. ‘I'hese formals could be called
anything; for example:

Codemacro ADD anything:Ab, other:Db
08 O4H

DB other

Endm

is the identical macro in function and format.,

Specifiers

Every formal parameler must have a specifier letter, which indicates what type of
operand is needed to match the formal parameter. There are eight possible specifier
letters:

1. A meaning Accumulator, thatis AX or AL.

2. C meaniog Code, ie., alabel expression ondy.

3. D meaning Data, i.e., a number to be used as an immediate value.

4. E meaning Effective address, be., cither an M (memory address) or an R
(register).

5. F  meaning a floating point siack element, r.e., ST or ST().

M meaning a memory address. This can be either a variable (with or without
indexing) or a bracketed register expression.

7. R meaning a general Register only, not an address-expresston, not a register
in brackets, and not a segment register,

. S meaning a Segment register only, etther CS, DS, ES, or SS.
9. T meaning the floaling point stack top, i.e., ST or ST{0).

10. X meaning a dircct memory reference, a simple variable name with no
indexing.
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A more detailed discussion of which operands match which specifier letters appears
m the instruction-matching section later in this chapter.

Modifiers

The optuonal modifier letter imposes a further requirement on the operand, relating
either to the size of data being manipulated, or to the amount of code generated by
the operand. The meaning of the modifier depends on the type of the operand:

*  For variables, the modifier requires the operand 10 be of a certain TYPE: *b"*
for byte, ““w” for word, *‘d"’ for dword, “*q”" for gword, “t" for tbyte.

¢ For labels, the modifier requires the object code generated to be of a certain
amount: '*b"" for an 8-bit relative displacement on a NEAR label, “‘w’" for
NEAR labels which are outside the —128 to 127 short displacement range, and
“d’’ for FAR labels.

» For numbers, the modifier requires the number to be of a cerlain size: ‘b’ for
256 through 255, and “‘w'’ for other numbers between —65,536 and 65,535,
The specifier-modifier pairs ©*Dd’'; **Dg" and **Dt"’ are never matched.

Note that this manual uses upper-case letters for specifiers and lower-case letters for
modiliers. This is a useful language convention Lo ¢larify the code. However it is not
requited—as in all source code outside of strings, the distinction between upper and
lower case is ignored by the assembler.

Range Specifiers

If a range 1s specified. it ¢can be a single expression or (wo expressions separated by a
comma. Each expression must evaluate to a register or a pure number, i.€., not an
address. Range specifiers are not allowed with floating point stack elements, that is,
sr¢=F or T. The list of number values corresponding to range registers is given in the
instruction-maiching section later in this chapter. The following shows the lirst lines
{only) of three codemacros in the current language which use range speciliers:

1. Codemacro [N dst:Aw,port:Rw (DX}
2. Codemacro ROR dst:Ew,count:Rb(C1.)
3. Codemacro ESC opcode:Db(0,63),adds:Eb

The first of these is one of the four codemacros for the IN (input) instruction. 11 says
that if a regisier is (0 specify the port from which to input a word, only DX will
match this codemacro. Any other register witl fail to march, and the source line will
be flagged as erroneous {e.g., IN AX,BX is in error).

The second is one of the four ROtate Right codemacros. It says the word rotated can
be any word register excepl a segment register, or any word in memory. ILis to be
rotated right some number of bit positions (‘‘count’’), where ““count” is specified as
a byte register, and further specified to be CL. No other register will match (e.g.,
ROR AX, DL isinerror).

The third says the “opcode’ supplied as the first parameter to the ESC instruction
must be a byte of immediate-data of value 0 to 63 inclusive.

Segfix

SEGFIX is a directive, included in some codemacro definitions, which instructs the
assembler to determine whether a segment-override prefix byte is needed 10 access a
given memory location. If the override byte is needed, it is output as the first byte of
the instruction. If it is not needed, no action is taken.
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The form of the directive is:
SEGFIX formal name

where *‘formal__name” is the name of a formal parameter which represenls the
memory address. Because it 18 a memory address, the formal must have one of the
specifiers E, M, or X.

In the absence of a segment-override prefix byte, the 8086 hardware uses either DS
or SS. Which one depends on which base register, if any, was used. BP implies SS.
BX implics DS. No base register also implies DS. (This, of course, includes the three
possibilities of ST alone, DI alone, or no indexing at all.) The assembler must decide
whether this hardware-implied segment register is actually the one that will reach the
intended memory location.

The assembler examines the segment attribute of the memory-address expression
provided as the actual parameter. This attribute could be a sepment, a group, or a
segment register.

¢ [f it is a segment, the assembler delermines whether that segment or a group
containing that segment has been ASSUMEd into the hardware-implied seg-
ment register. If so, no override byte is needed. 1f not, the assembter checks the
ASSUMESs of other segment registers, looking for the segment or a group con-
taining it. If found, the override byte for thal segment register is issued. If not
found, an ervor is reported.

¢ Ifiris a group, the assembler takes the same action as for a scgment, ¢xcept that
the possibility of an including group is ruled out: the group itself must be
ASSUMEd into onc of the segment registers. Otherwise an error is reported.

o If it is a segment register, the assembler sees if it is the hardware-implied
segment register. If so, no override byie is issued. If not, the override byte for
the specified segment register is issued.

Nosegfix

NOSEGFIX is used for certain operands in those instructions for which a prefix is
ilicgal because the instruction cannot usc any other segment register but ES for that
operand. This applies only to the destination operand of these string instructions:
CMPS, MOVS, SCAS, STOS.

The form of the directive is:
NOSEGFIX segreg, formal _name

where ‘‘segreg” is one of the four segment registers ES, €S, SS, DS, and
““formal_ name’’ is the name of a memory-address formal parameler. As a memory
address, the formal must have one of the specifiers E, M, or X.

The only aclion the assembler performs when it encounters a NOSEGFIX in
assembling an instruction is to perform an error check—no object code is ever
generated from this directive,

The assembler looks up the segment atiribute of the actual parameter (memory-
address) corresponding to “‘formal__name."’ [ the attribute is a segment register, il
must match “‘segreg.’’ Il the attribute is a group, it must be ASSUMEd inio
‘'segreg.”” IT the attribute is a segment, it or a group containing it must be
ASSUMECd into *“‘segreg.”” If these tests fail and “*formal__name'" is thus deter-
mined not to be reachable from '*segreg,’” an error is reported.

The only value for *‘segreg’ actually used by the string instructions listed above is

.
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Modrm

This directive instructs the assembler (0 create the ModRM byte, which follows the
opcode byte on many of the 8086’s instructions. The byte is constructed to carry the
following information:

I. The indexing-type or register number to be used in the insiruction.
2. Which register is {also} (o be used, or more information to select the instruction.

The MODRM byte carries the information in three fields:

The mod field occupies ihe two most significant bits of the byle, and combines with
the r/m to form 32 possible values: § registers aud 24 indexing modes.

The reg field occupies the next three bits following the mod field, and specifies either
a register nuinber or three more bits of opcode information. The meaning of the reg
field is determined by the first {opcode} bytc of the insiruction.

The r/m field occupies the three Jeast significant bits of the byte. 1t can specify a
register as the location of an operand, or form part of the addressing-mode encoding
in combination with the mod field as described above.,

The bit palterns corresponding to cach indexing mode and register combination are
given tn Chapter | and Appendix B. They need not concern you when you are
writing codemactros, since the assembler 1akes care of the encoding when you pro-
vide the operands.

The form of the directive is:
MODRM formal__or__number, formal _name

where “'formal__or_ number’ is either the name of a formal parameter, or an
absolute number: and “formal _name’" is the name of another formal parameter.

“formal__or _number’’ represents the quantity which goes into the reg field of the
ModRM byte, [f it is a number, then that same value is always plugged into the field
every lime that codemacro definition is invoked. The number in this case is a con-
tinuation of the opcode identifying which instroction the hardware is to execute.

[f it is a formal, then the corresponding operand (usually a register number) is
plugged in.

“formal-name”’ represents an effective-address parameter. The assembler examines
whether the operand supplied is a register, variable, or indexed variable, and con-
struets the mod and r/m fields which correctly represent the operand. ¥f the operand
calls for an 8-bit or 16-bit offset displacement, the assembler generates that as well.
An example of an 8086 instruction using ModRM:

Codemacro ADD dst:Rw, src:Ew

Segfix sre¢
D8 3

MOORM dst, src
Endm

The specifiers Rw and Ew indicate that this codemacro will maich only when the
actual paramelers in the invocation line are a full word general register destination,
and a full word source, memory or general register.
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Example |:

ADD 0x, {BX) [SI] becomes

00000011 10010000
76543210 76543210

The first byte identifies this as an ADD of a memory word into a register. This par-
ticular byte covers only | of the 4 cases that are possible depending on the lowest 2
bits. If bit 1 {direction} is a 0, the ADD is FROM a register TO either a register or a
memory location. 1f bit 1 is a 1, then the ADD is TO a register FROM a register or
memory location. The least significant bit, bit 0, tells whether the data being ADDed
is byte {0} or word (1).

The sccond byte is the MODRM byte, with DX encoded as 010 in bits 5, 4, 3, a mode
of 10in bits 7, 6, and an RM of 000 (see Chapter t or Appendix B for more detail).

If the source line had included a variable; for example:
400 DX, MEMWORD iBX] [S1I]

then the offset of MEMWORD (low-order byte first, high byte last) would follow
th¢ MODRM bvie.

Example 2:

ADD DX, [bID

00000011 10010101
76543210 76543210

As a different example, consider a destination of a word in memory and a source of
immediate-data. The relevant codemacyos are:

Codemacro AOD dst:Ew,src:Dw
Segfix dst

OBB1H

MODRM 0,dst

DW src

Endm

Codemacro ADD dst:Ew,src:Db (-128, 127)
Segfix dst

DB 83H

MODRM 0,dst

DB src

Endm

The object code generated for the instruction and data are different in the 2 cases of
a byte of data or a word of data.

Furthermore, the MODRM line for these instructions specifies a ‘‘for-
mal__oy_number’” field of zero, i.e., 3 bits all zero, whereas the MODRM line for
the (wo examples above specified a field of dst, which became 010 to represent DX.
Example 3:

ADD DI, 513
10000001 10000101 00000001 00000010
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Example 4:

ADD BYTE PTR [BX] (SI), &
1000001t 10000000 00000100

The immediate-data byte or word follows the MODRM byte.

Relb and Relw

These directives, used in calls and jumps, instruct the assembler (o generate the
displacement between the end of the instruction and the label which is supplied as an
operand. This means RELB generates the 1 byte {(and RELW the 2 byte) displace-
ment, or distance in bytes, between the instruction pointer value (at the end of the
codemacro) and the desunation address.

The directives have the following form:
RELB tormal__name
or
RELW formal_name
where ‘‘formal__name’’ is the name of a formal with a **C’*’ (Code) specifier.

‘The assembler assumes that all RELB and RELW directives occur immediately after
a single opcode byte in the codemacro (as in all the JUMP and CALL instructions in
the 8086 instruction set). [t needs this assumpiion to determine (during codemacro
matching} where the displacement starts from, so thal an operand can be identilied
as “Ch™ or “Cw.”’ Although the assembler allows you to define codemacros in
which RELB and RELW occur elsewhere in the definition {e.g.. a multi-instruction
codemacro), you run the risk of making the wrong match when the codemacro is
invoked. If a **b’’ is thus matched as **w,”” a wasted byle is generated; if a “'w'” is
thus matched as a “‘b,’” an error is reported.

Examples of RELB and RELW as they appear in the 8086 instruction set are:

{odemacro JMP place:Cw
DB 0E%H

RELW place

Endm

Codemacro JE place:Cb
DB 74H

RELB place

Endm

These are direct jumps to labels in the CS segment. The specifier on the formal
parameter of the first macro calls for a NEAR label in the current CS segment (Cd
would mean FAR). This means a 16 bit offsel, able to reach any byte in the
immediate 64K bytes of address higher than the start of the segment. RELW com-
putes the distance and provides it as a word to follow the OE9H instruction byte.

I the offset of the target is 513, then this codemacro would generate the instruction:

11101001 00000001 00000010
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The distance begins at the end of that RELW word, i.e., if you were counting the
bytes to that label, the fitst byte counted would be the one after the 3 bytes compris-
ing thas jump.

NOTE

A match only occurs if the label was assembled under the same ASSUME
CS:name as the jump. Only it there is a match is object code actually
generated.

The second example is a conditional jump, execuled only if 1s condinons are met. In
this case, a Jump if Equal, the jump occurs if ZF=0, Conditional jumps are always
self-relative and limited 10 destinations whose distance can fit in 1 byte. This means
destinations no further ahead than 127 bytes and no further behind this instruction
than ~128 bytes.

Lf the target is 99 bytes ahead, then this codemacro would generate the instruction:
011107100 01100011

The distance counted begins with the byte after these 2 bytes above.

DB, DW, and DD

These directives are similar to the DB, DW, and DD directives which occur outside
ol codemacro definitions (see Chapter 3}; however, there are some differences in the
operands they accepl.

The form of the directives is:

DBcmac  expression
or

DWcmac expression
or

DD cmac expression

where ¢cmac. expression 1s either an expression without forward references which
evaluates Lo an absolute number; a formal paramcter nanie; or a formal parameter
name with a dot-recordficld shift construct.

An abselute number mcans that the same value is to be assembled every time this
codemacro definition is invoked. A formal paramerer means that the corresponding
actual operand s 10 be assembled. A dot-recordfield shift construct means that the
actual operand is 10 be shifted and then plugged in. as discussed later in this chapier.

The operands 10 these codemacro initializations are restricted, in that lists and DUP
counts are not allowed.

Note that the DQ and DT directive are not allowed inside codermacro definitions.

Record Initializations

The record initdalization directive allows you to control bit fields smailer than one
byte in codemacro definitions. Yhe form of the directive is:

record__.name [cmac.__expression__list|
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where record__name is the name of a previously-defined record (see Chapter 3), and
cmac _expression__list is a list of cmac__expressions, separaled by commas. (These
particular square brackels are pot used in writing the lis(; their mcaning here is that
the list is optional.) A cmac _expression is, as in the above section, either a number,
a formal, or a shifted formal. In addition, null cmac. expressions are allowed in the
list; in which case the default record field value as specified in the RECORD defini-
tion is used.

The directive instructs the assembler to pul together a byte or 2 word (depending on
the record), using the constant numbers and suppiied operands as specified in the
expression list. The values to be plugged in might not {ii into the record fields; in
that case, the least significant bits are used, and no error is reported. In addition, a
record initialization is subject 10 the following Hmitation: the number of fields in the
record definition plus the number of fields being inttialized by absolute numbers (by
default or given), plus the number of fields initialized by shiflted formal parameters
cannot exceed 14,

RFIX
RFIX is a directive which generaics two bytes: an 8086/8088 WAIT instruction
(1001 1011B) followed by the first byte of an 80868088 ESCAPE instruction {11011
XXXB). The form of the directive is:

AFIX formal _or_ number
where “‘formal_or__number” is either the name of a formal parameter with
specifier D or an absolute number. The vatuc of *‘formal_or . number’ specifies

the Jow-order three bits of the second byte generated.

As an example of the use of RFX, consider the codemacro for the 8087 insiruction

FLDI:
Codemacro FLDI
REIX 0018
D8 1110 10008
ENDM

The source statement instruction FL.I> generaies:

1001 1011 11041001 1110 1000

The first byte is an 8086/8088 WAIT instruction. The second byle is the first byte of
an 8086/8088 ESCAPE instruction. The low-order three bits of the second byte,
followed by the third byte, identify this as an FI.D1 instruction.

RFIXM

RFIXM is a directive which gencrates the same two bytes as RFIX, but also instructs
the assembler to determine whether a segment-override byte is needed to access a
given memory location. The form of the RFIXM direciive is:

RFIXM formal _or__number, formal._name

where ‘‘formal__or._number’’ is either the name of a formal paramcter with
specifier D or an absolute number, and ‘formal__name' is the name of a formatl
parameter which represents a memory address; that is, its spectfier must be *E", ‘M’
or ‘X .
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If the memory address uses the defavlt segment register, no segment-override byle is
needed and REIXM generates the samc two bytes as RFIX,

[f the memory address requires a segment-override byte, RFIXM generates three
bytes: an 808678088 WAIT instruction, a seement-override byte (001 reg 110B), and
the first byte of an 8086/8088 ESCAPE instruction. Note that the segment-overiide
byle is the second byle generated, not as SEGFIX would generate, the first.

(See the discussion of SEGFIX for information on how the assembler determines
whether or nol a segment-override byte is necessary.)

As an example of the use of RFIXM, consider one of the codemacros for the 8087
instruction FADD:

Codemacro FADDmMemop: Mg

RFIXM 1008, memop
ModRM 0008, memop
EndM

The source statement instruction FADD QUAR {BX) generates the foltowing byies:

1001 1011 00100110 11011100 00001010

The first byte is an §086/8088 WAIT insteuction. The sccond byte is the segment-
override byte, specilying ES (reg=00). The third, fourth and fifth bytes identify the
floating point instruction as FADD, with a memory operand pointed 10 by BX, with
a displacement of 10. QUAR becomes a QWORD variable at offsel 10 from a seg-
ment ASSUMED into the ES register only.

RNFIX

The RNFIX directive generates two bytes: an 8086 NQP instruction (1001 0000B)
followed by the first byte of an BOB6/8088 ESCAPL instruction {11011 XXXB).
RNFIX functions like RFIX, except that a NOP instruction is the first byte
generated, rather than a WAILT instruction. The format of the RNIFIX directive is:

RNFIX faormal. or number
where ‘‘formal__or__number® is either the name of a formal parameter with
specifier D or an absolute number. The value of “‘formal or _number” specifies
the low-order three bits of the second byte generated.
As an example of the use of RNFIX, consider the codemacro for the 8086 instruc-

tion FNCLEX:

Codemacro FNCLEX

RNFIX 0118
08 111 000 108
EndM

The source statement instruction FNCLEX generates the following three bytes:

1001 0000 11013011 11300010,
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RNFIXM

RNFIXM is a directive which generates the same two bytes as RNF1X, but also
instructs the assembler 10 determine whether a segment-override byte is needed to
access a given memory location. RNFIXM functions like RFIXM, except that a
NOP instruction is the first byte generated, rather than a WAIT instruction. The
format of the RNFIXM directive is:

BNFIXM jormal_ or_number, formal_name
where “‘formal__or__number' is cither the name of a formal parameter with
specifier D or an absolute number and ‘formal__name' is the name of a formal
parameter which represents a memory address, that is, its specifier must be ‘E’, ‘M’
or X7,

IT & segment-override byte (001 reg 110B) is needed to address “‘formal__npame,”” it
immediately follows the first byte generaled, i.e,, the NOP instruction.

As an example of the use of the RNFIXM directive, consider the codemacro for the
8087 instruction FNSAVE:

Codemacro FNSAYE memop:M

RNfixM 1018, memop
ModRM 1108, memop
EndM

The source statement instruction FNSAVE WORD PTR S$S:|BX) generates the
following bytes:

1001 0000 00110110 11011 1101 0011 0114

Note that the segment-overnide byte (0011 0110B} follows the NOP instruction
(10010000).

RWFIX

The RWFIX directive generales an 8086/8088 WAIT instruction (100t 1011R). The
format of this directive is:

RWFIX

NOTE

The preceding descriptions assume that the generated code is to be linked
with the 8087 chip library (8087.1.1B). IT the code¢ is linked instead with the
8087 emulator library (E8087.LIB), an emulator instruclion is generated
instead of an 8087 instruction. The emulator instruction differs from the
8087 instruction in the first two bytes of code. The correct instruction may
not be determined until the program is actually linked so the Assembler
listing will always show the 8087 instrucsions,

Using the Dot Operator to Shift Parameters
A special construct allowed as the operand 1o a DB, DW, or DD, or as an ciement of
the operand to a record initialization, is the shifted formal parameter. The form of

this construct is:

formal__pame.record field__name

P
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where formal name is the name of a formal whose corresponding operand will be
an absolutc number; and record_ field _name is the name of a record fietd. The
assembler evaluates this expression when the codemacro is invoked, by right-shifting
the operand provided using the shift count defined by the record field.

The example in the 8086 instruction set where this fealure is used is the ESC inslruc-
tion, which permits communication with other devices using the same bus. Given an
address, ESC puls that address on the bus; given a register operand, no address is
put on the bus. This enables execution of commands from an external device both
with or without an associated operand. These commands are represented in the ESC
codemacro as numbers between 0 and 63 inclusive. The interpretation ol 1he number
18 done by the external device,

R53 Record RF1:5, RFf2:3

R233 Record RFé:2, mid3:3, RF7:3
Codemacro ESC opcode:Db{(0,63), addr:E
Segfix addr

R53 <110118, opcode.mid3>
ModRM opcode, addr
EndM

The RS53 line in the hody ol the codemacro generates 8 bits as foilows: the high-order
5 bits become 1101 B, and the low-order 3 bits are filled with rhe actual parameter
supplied as “‘opeode’” shifted right by the shift count of inid3, namely 3.

Example:

Assume that you wish to use ESC with an *‘opcode’ of 39 on an “addr™ of MEM-
WQORD, whose offset is 477H in ES, indexed by DI.

ESC 38, ES: MEMWORD [DI)

SEGFIX addr becomes ES: - 001001108

39 =001001118

opcode.MID3 = (000)00100

R53<110118B, opcode.mid3> becomes 11011100

tor [DI],MOD = 10,R/M = 101
MODRM opcode,addr puts “‘opcode’ into bits 5, 4, 3 of the modrm byie, with bits
7,6, 2, 1,0 filled by the appropriate mod and R/M from “addr.’” Since opcode is 6

bits and the field is only 3 bits wide, only the low-order 3 are used, namely 111, and
the high-order bits (100) are ignored.

Thereiore MODRM opcode,addr becomes 1011 1101B followed by the offset of
MEMWORD, 011101110000 0100.

Therefore the full object code for this ESC source ling is:

0010 0110 (byte 1)
1101 1100 (byte 2)
1011 1101 {byte 3)
0111 0111 (byte 4}
0000 0100 (byte 5}

Note that opcode’s 6 bils are split between the Jast 3 bits of byte 2 and bits §, 4, 3 of
byte 3.
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PROCLEN

This special operand equals 0 if the current PROC ts declared NEAR, and OFFH if it
is dectared FAR. Code outside of PRQC...ENDP blocks is considered NEAR. The
RET codemacros use this operator in creating the correct maching instructions to
return from a CALL loa NEAR or FAR procedure:

Codemacro RET
R413 <OCH,PROCLEN,3>
Endm

Instcad of the maore familiar DB or DW storage allocation commands, this
codemacro makes use of a previously defined record. IUis used here the same way a
DB would be, but with the initialization given inside angle brackets (o show that
each field in the record gets its own initial value. You can tell there are at least 3
fields in the record (if this invocation validly matches the definition, i.e.. is nat an
error) because 3 values are given, separated by commas.

Four such records are defined as one of the first acts of the assembler; to he used in
defining its instruction sel. They are listed in APPENDIX A atong with the
codemacros for ASM86:

R53 Record RF1:5, RFf2:3

R323 Record RF3:3, RF4:2, RFS5:3
R233 Record RF6:2, Mid3:3, RF7:3
R413 Record RF8:4, RF9:1, RFI10:3

The last line above, R413, defines an 8 bit record of 3 fields: the high-order 4 biis (7,
6, 5, 4) called RF8, the next {bit 3} cailed RF9, and the low-order 3 (bits 2, I, )
called RELO. (When R413 is used as a storage allocalion command, initial valacs for
all ficids must be specified within angle brackets because none were specilied in the
definition.}

In the codemacro for RET, the field RFE is set to OCH = 1100, and RF10 s set to
3 =011. Field RF9, which becomes bit 3 of the allocated record byte, will be O if the
current PROC {in which the RET appears) is typed NEAR, or it will be | if the
PROC is typed FAR.

Note that PROCLEN is delined 10 give 8 biis, all zeros or al) ones, but that R413
uses only one bit, The field size determines how many bits are used, and if more are
supplied then the high-order bits are r1gnored beyond the field width.

Matching of Instructions to Codemacros

This section describes what might aptly be termed the heart of the 80B6 assembly
language. The careful ordering of the chain of codemacro definitions of a given
instruction {for example, the ADD instruction} combines with the varied sct of typ-
ing requirements on the operands to produce a singie assembly language instruction
mnemonic which represents many hardware instructions.

The algorithm lor malching an instruction Lo a particular codemacro definition is as
follows:

§. Inpass I, actual parameters arc evaluated. Those conlaining forward references
are treated as a special type, as described in cach of the cases below.

2. 1f any of the actual parameters (when there are more than one) is a register
expression without an associated type (e.g.. [BX]), or if an implicit reference 10
the accumulator is made (e.g., “MOV.,3""), then the other paramelers are
checked to see if at least one contains an unambiguous modifier type. Numbers
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matching **b’" do not suffice; but numbers matching *‘w,” explicitly-given
registers, and all typed variables do suffice 1o distinguish the modifier type. IT
no such parameter is found, the error message “'INSUFFICIENT TYPE
INFORMATION TO DETERMINE CORRECT INSTRUCTION" is issued,
and no match 15 attempted. Note that a single, untyped, register expression
parameter (asin FSTENYV |BX]) is allowed.

The chain of codemacra definitions for a given instruction ts searched for a
match, beginning with the 1ast one defined and working backwards. in order for
a definition to maich, the number of aciual paramelers must maich the number
of formals in the particular defipition, and each actual must match the formal in
specifier type, modifier (if given in the formal), and range (if given in the for-
mal). The run-down of which actuals match which lormals ts as follows:

a. SPECIFIERS.
Forward references in pass 1 mawch C,D,E.M X,
AX and Al. match A E,R.
{.abels match C.
Numbers match 13,
Non-indexed variables maich E.M X,
indexed variables and register expressions match E,M.,
Registers cxcept scement registers match E,R.
Segment registers CS,DS,ES,S58 match S.
Floating-point stack element
{ST, 5T, ..., ST(Nymawch F.
The floating-point stack top
(ST, ST{0}) match T.

b. MODIFIERS.
The nature of modilier-matching depends on what the matched specifier is.
For numbers: Numbers belween —256 and 255 match *'b’" only. Other
numbers match “‘w’’ only.
For labels: NEAR labels with the SAME CS-assume which are in the range
=126 to +129 from the beginning of the codemacro match **b™" only.
Other NEAR labels with the same CS assume match “‘w’’ only.
NEAR labels with a different CS-assume match no modifier.
['AR labels match *d"’.
For variables: Type BYTE matches *b."”
Type WORD maiches “w."’
Type DWORD matches ©*d.”’
Type QWORD matches “*q."
Type TBY TE matches **1.”"
Other numeric types match no modifier.
Forward references match any madifier, except when typing information is
attached, with BYTE PTR, SHGRT, FAR PTR, elc.
Index-register expressions without a type associated with them {e.g., [BX])
maich either “b’" or “‘w’ when used with another operand of type
“b" or “'w’ and maiches no modifier for single-operand instructions.

¢. RANGES.
Range specifiers are legal only for parameters which are numbers or
registers (specifiers A, D, R, 8). IT on¢ specificr follows the formal, the
value of the actual must match; if iwo follow the formal, the valuc must fall
within the inclusive range of the specifiers. For this maiching, registers
which are passed as actuals assume the following numeric values:

Al: 0
ClL: 1t
DL 2
BL: 3
AH: 4
CH: 5
DH: 6
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BH:
AX:
CX:
DX:
BX:
SP:
BP:
SI:
DI;
ES:
CS:
SS:
DS:
Forward references do not match the formal if there is a range specifier.

4. If a maich is found, the number of bytes of object code generated is estimated.
Forward-reference variables, unless explicttly overridden, are assumed not to
nged a scgment override byte. ModRMs involving forward references are
assumed to require 16-bit displacements, except if the reference has SHORT, in
which case an 8-bit displacement is assumed.

5. ln pass 2, the search through (he codemacro chain starts all over again, starting
at the end of the chain and working backwards just as in pass 1. The resolution
of codemacro parameters which were forward references in pass 1 might cause a
different codemacro to be matched in pass 2.

6. QObject code generated by the instruction is issued in pass 2. §f the number of
bytes output exceeds the pass | estimate, an error message is issued and the extra
byles are withheld. The instruction is thus incomplete and the program should
not be executed. If the number of bytes is less than the pass | estimate, the
remaining space is padded with 90H’s (NQP; i.c., no operation).

T R == IR I~ NV I ST SR - RO |

The ADD instruction {like many other instructions) provides an excelient exampic of
codemacro matching. The |1 codemacro definitions of the ADD instruction cover
the following cases:

PESTINATION SOVRCE

1. BYTE MEMORY IMMEDIATE BYTE

2. WORD MEMORY IMMEDIATE BYTE ¢(notbelween —128 and 127)
3. WORD MEMORY IMMEDIATE BYTE (fram ~128 t0 127}
4. WORD MEMORY IMMEDIATE WQRD

5. AL IMMEDIATE BYTE

6. AX IMMEDIATE BYTE

7. AX IMMEDIATE WORD

8. MEMORY BYTE ORBYTE-REGISTER  BYTE-REGISTER

3. MEMCRY WORD OR WORD-REGISTER WORD-REGISTER

10. BYTE-REGISTER MEMORY BYTE OR BYTE-REGISTER
11. WORD-REGISTER MEMORY WORD OR WORD-REGISTER

Each of the above English-language phrascs is abbreviated in the codemacro defini-
tions into a two-letter specifier-modifier combination. Once you are used to the
abbreviations, the codemacros themselves are easier 10 scun and understand than the
above English saummary. Here are the first Jines of each codemacro described above,
in the same order, with an English reminder of its meaning, using EA to represent an
effective address expression resoiving to either a memory or register reference:

1. CodeMacro ADD dst:Eb, sr¢:Ob
2. CodeMacro ADD dst:Ew, src:Ob

{TO EA byte FROM dala byte)

({TO EA word FROM large data
byte)
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CodeMacro ADD dst:Ew, src:Db (—128,127}

(TO EA word FROM signed data
byle)

4. CodeMacro ADD dst.Ew, sr¢.Dw (TO EA word FROM data word)

5. CodeMacro ADD dst:Ab, src:Db {TO AL FROM data byte)

6. CodeMacro ADD dst Aw, src:Db (TO AX FROM data byte)

7. CodeMacro ADD dst:Aw. src:Dw (TO AX FROM data word)

8. CodeMacro ADD dst:Eb, src:Rb (TO EA byle FROM register byte)

8. CodeMacro ADD dst:Ew. src:Rw (TO EA word FROM register word)
10. CodeMacro ADD dst:Rb, sr¢:Eb {TO register byte FROM EA byle)
11. CodeMacro ADD dst:Rw, src:Ew [TO register word FROM EA word)

The ordering of the codemacros is crucial, For example, the instruction **ADD
AX,3" matches not only definition #6, but also definition #2, since as a register, AX
gualifics as an Ew as well as an Aw. Sincc definition #6 produces less object code, it
should be selected before definition #2. Hence, it is given later, so that when the
assembler searches backwards fyom #) 1 up, it comes across #6 first.

Assuming that the following user symbols bave becn defined with Lhe following
atuributes:

BYTE__VAR byte variable
WORD. VAR word variable
WORD__EXPR memory-address expression
B_ARRAY byte variable

The following assembler instructions would match the indicated codemacro defini-
tion line above:

ADD AX,250 4 b
ADD AX,3S0 5 7
AOD BX,WORD_EXPR = 11
ADD BX,DX + 11
ADD BYTE_VAR,AL - 8
ADD BYTE_VAR,254 - 1
ADD WORD_VAR,CX + 9
ADD DH,BARRAY[SI) - 10
ADD CL,BYTE VAR = 10
ADD AL,3 45
ADD WORD_VAR,35648+ &

ADD WORD_VAR, OFFSET B_ARRAY =+ &
ADD [BXJ(SI), AH - 8
ADD (BP},CL + 8
ADD DX, [DI1] 5 11
ADD AX,fS1108P1 2 11
ADD WORD_VAR,3 + 3
ADD WORD_VAR,255 =+ 2

NOTE

Each codemacro is limited to a maximum of 128 intcrnal bytes, which is
reached al approximately 60 bytes of gencraled object code.
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Codemacros

; B@B6/186 and BEB7 Codemacro Definitions

RS3 Record RFl:5,RF2:3

R323 Record RF3:3,RF4:2,RF5:3
R233 Record RF6:2,Mid3:3,RF7:3
R413 Record RF8:4,RF9:1,RF1lQ:3

; 890B6/186 Codemacyos:

CodeMacro ARA

PB  37H
EndM
CodeMacro AAD

DW GADSH
EndM
CodeMacro ARM

DW @AD4H
EndM

CodeMacra AARS
OB QFNH
EndM

CodeMacro Ade dst:Eb,src:ibb
Segfix dst

CcR 80H
ModRM 2,dst
DB stc

EndM

CodeMaczo Adc dst:E«,src:Db
Segfix dst

DB 31H
ModRM 2,dst
bW sre

tndM

CodeMacro Ade dst:Sw,sec:Db(-128,127)

Segfix dst

DB 83K
ModRM  2,dst
a8 src

EndM

CodeMacro Ade dsSt:Rw,sSrc:lw
Seqfix dst

DB 8iH
MedRM 2,dst
DR sec

EnémM

CodeMacro Ade: dst:Ab,s¥c:lh
DB 14K
DB stC

EndM

CodeMacro Adc dst:Aw,src:ibh
DB 15H
DW src

EndM

CodeMacre Adc dst:Aw,src:Dw
DR L5H
DWW sr¢

EndM

CodeMacro ade dst:Ep,s8rciRb
Segfix dst
DB 18H
ModRM  src,dst

EndM

CodeMacro Adc dstiEw,srzc:ifRw
Seqgtix dadst

DB 1iH
ModRM  sto,dst
EndM

CodeMacro adc dst:Rb,StcCtE
Seqfix sre

DB 12H
MOodRM  dst,src
EndM

CodeMacro Ad¢ dstiRw,src:Ew
Segfix src

DB 138
ModR% dst,sr¢
FndM

CodeMacro Add dst:Eb,src:Db
Segfix dst

DB 8@H
ModR¥ §,dst
D8  src

EndM

CodeMacro AdAd dst:Ew,src:Db
Segfix dst

DR 81y
ModRM @,dst
DW src

EndmM

CodeMacro Add dsStifw,src:Db{-128,127)

Segfix dst

DB B1R
ModRM 0,dst
DB sxc

EndM

CodeMacro AIA 4st:fw,srco:lw
Segfix dst

DB BlH
ModRM d,dst
LW src

End™

CodeMacro Add dst:db,src:iDb

DB @44
nNe  sxc
ZndM

CodeMacro Add dst:Aw,src:Db
DB @5H
oW sre

EndM

CodeMacro Add dst:iAw,s5re:bw

ne  Gs5H
Dk sIc
EndM

CodeMacro Add dst:Eb,sSrc:Rb
Segfix dst

[0 I}
ModRM stc.dst
EndM

Pian
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CaodeMacro hdd dAst:Ew,src:fw
Segfax  dst

[nlz] 1
ModRM sr¢,dst
EndM™

CodeMacro Adgd dst:Xb,.s5rc:Eb
Seqftix src

2B 2
ModRM dst,sra
Endm

CodeMacro Add JdSE:Rw,.SIC:Ew
Segfliz  Ssto

DR 3
ModRM dst,src
EndM

CodeMacra And dskt:igb,sgaith
Segfix dst

DB B0H
ModRM 4,dst
DU sre

EndM

CoderMacro And dsk:iFw,sraibh
Segqfix dst

LR BIH
ModR™M 4,dst
W osrce

EndM

CodeMacro And dstiiw,srciDdw
Segfix dst

py o gl1u
ModR™M  4,dst
DW sre
EndM
CodeMacra And dst:idb,src:0b
DB 24H
3131 s5Y¢
LadM

CodeMacto And dstirAw,s5rc:Db

OB 254
DW  sxc
End™

CodeMaceo And dstidw,sectDw
DB 25H
oW osrC

EndM

CaodeMacro And dst:Eb,sro:iib
Segfix dsk

DR 20M
ModRM  syo,dsEe
bndM

CodeMacro And dSL:Ew,Src:Rw
Seglix dst

0B 214
ModRM  src,dst
EndM

CedeMacro And dst:BRb,svc:Eb
Seqlix src

DB 224
ModaM  dst,sro
EndM

CodeMacro And dst:Rw,SI¢!Ew
Segfix src
DB 23k
MOARM  dst,sre

Eod™

BOUND at end

CodeMacro Call addr:bw
Seqgfix  addr

OB BCFH
ModRM  2,addr
EndM

CodeMacro Call addr:Ed
Segfix adde

0B AFEH
ModRM  3,3ddr
EndM
CadeMacro CTall addr:<d
DR 9aY
DN addc
Enam

CedeoManro Tall addr:Cb
N8 @ESH

Relw adgrx

EndmM

CedeMacro Call addr:Cw
DB SESH
Relw sddr

EndM

CaodeMacro CoW

DB 98H
Endm
CodeMacro CLC

NE  @FBH
EndM

CodeMacro CLD
DB @FCH
FEnd¥

CodeMacro CLI
og  aran
ndy

CodeMacro TMC
D3 aF3d
EndM

CodeMacco Tmp dstiEb,sroilb
Secii1x dst

DB BgH
ModRM  7,dst
DR sro

andM

CodeMacro Cup dst:Fw,sroibb
Segfix ast

DR BlH
Mocdg&™M  7,dst
CW src

Yod™

CodeMacro Cmp dst:Ew,sec:Dh(-128,127)

Segfix dst

DB B34
ModRM  7.dst
2B  src

EndmM

CodeMacre Cmp dst:Ew,sre:dw
Segfix dst

DB 81H
ModRM  7,dst
DW stc

FndM
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CodeMacre Cmp dst:bb,syc:Db

DB 3CH
DB  sre
Endi

CodeMacro Cmp dst:Aw,src:Db
DB 3DH
0w srce

EndM

CodeMacro Cmp dst:Bw,src:Dw
OB 30H
0R  sxc

Endm

CodeMacro Cmp Ast:FEb,sra:Rb
Segfix dst

R 38H
ModRM  scc.dst
EndM

CodeMacro Cmp dst:Ew,src:Rw
Segfix dst

DB 398
ModRM src,dst
EndM

CodeMacto Cmp dst:Rb,sic:Eb
Seqfix syo

[823] 3AH
ModRM dst,scc
EndM

CodeMacto Cmp dstiRw,sSEc:Ew
Segfix src

DB 36H
ModRM  dst,src
EncM

CodeMacro CmpS SIU_ptr:iMb,2[_ptc:*b
NoSegfix £5,DI ptr
Segfix SI_ptr~
DB @AcH

EndH

CodeMacero TmpS SJ_ptridw,21_ptr:iMw
NoSegfix ES,DI_ptr
Segfix SI_ptr

DR @ATH

EndM

CodeMacra CmpSs
DB GAGH

Endm

CodeMaced CmpsSW
NE BarH
fndM

CodeMacro CwD
DB 99H
EndM

CodeMacro Daa
DR 2274
Endn

CodeMacro RAS
DB P2FN
EndM

CodeMacro Dec¢ dst:Eb
Segfix dst
DB OFEH
MadRM  1,ds5t

EndM

CodeMacro Cec dSt:Ew
Segfix dst

DB @FFH
ModRM 1,dst
EndM

CodeMacrao Dec dStiRe
k53 <Blo@lB,dst>
EndM

CodeMacro iy divisor:Eb
Seqfix divisor

DB OQF&H
ModRM 6 ,divisor
EndM

CodeMacro Div Aivisor:Ew
Segfix divisor

DB @F7H
ModRM 6, divisor
£EndM

; ENTER at end

CodeMacyo ¥sc opcode:Dbt®,63),addr:Eb

Segfix addr
R53 <11¢118,0pcode.midl>
ModRM opcode,addy

End™M

CodeMacro EBsc opcode:0bi0,63) ,addr:Ew

Segfiix addr
R33 <113118,cpcode.mid3>
ModRM  opcode,addr

EndM

CodeMacro Esc opcode:lb(d,63}) ,addr:Ed

Segfix addr
R53 <11l¢ll®,cpcode.mid3>
ModRM opcode,addr

EndM
CopdeMacro Hle
DB @F4H

EndmM

CodeMacro IDww divisor:Eb
Segfix divisor

DB GEEH
ModRM 7 ,divisor
EndM

CodeMaceo IDiv divisor:Ew
Segfix dQiviser

DB @F7H
ModRM 7,divisor
FndM

CodeMacro Imul mpliex:Eb
Segfix mplier

NB dF6y
ModRM  5,mplier
End

CodeMacro Imul mplier:Ew
Segfix mplier

DB QF7H
ModRM S,mplier
EndM

CodeMacro IMUL dst:BW,srcl:EW,sre2:08

Onlylesé
Segfix srcl
DB 69%H
ModRM dst,srcl
DW syc2
EndM

—
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CodeMacro IMUL dst:RW,stcliEBW,Ssrc2:DA(-12R,127)

Onlyléa6
Segfix srcl
UB 63
ModRM dst,srcl
DA sxc2
EndM

CodeMacro IMUL dst:i:RW,srcliEW,src2:0W

Oonlylgs
Seyfix secl
DB 691
ModRM dsk,srcli
DW  src2
£ndM

CodeMacro IMUL dstiRW,src2:0B
OnlylBé
DR 691
ModRM dskt,dst
DW Sru?
EndM

CodeMacro IMUL dst:RW,skc2:DB(-128,127]

Oonlyl®6
DB §BH
ModRM  dst,dst
nB  sra2
EndM

CodeMacro IMUL dSt:iRW,.src2:DW
Onlylss
DB 69k
ModRM  dst,ést
DW  srea2
EngdM

CodeMacro In dst:Ab,pert:Db
DB @F4H
DB port

EndM

CadeMacry In dstrAw,port:Db
DB @ESH
DB port

End™

CodeMacro In dst:Ab,port:Rw (DX}
DB 2ECH
EndM

CodeMacro In dst:iAw,port:Rw{DX}
DB GEDH
EndM

CodeMacro Inc 4st:fEb
Segfix dst

DB @PEH
ModRM  @,dst
EndM

CodeMacro Inc dst:Ew
Segfix dst

DB GFFH
ModRM  @,dst
EndmM

CadeMacro Inc dstiRw
R53  <Plédpn.dst>
EndM

; INS,INSB,INSW at end

CodeMacro Int itype:0b
08 @CDH
DB itype

EndM

CodeMacro Int itype:Db (3}
DB @CCH

EndM

CodeMacra TntQ
DB OCEH

EandM

CodeMacra Jret

DB @CFH

£ndM

ZodeMacro JA place:Ch
pa TIH
RelP oplace

FndM

CodeMacro JAE plave:Cb
- 738
RelB place

Endn

CodeMacro JB wnlace:Ch

0B 72H
RelB place
ZodM
CodeMacra JBE place:Cb
DB 76H
RelB place
EncM

JC  Equ IJIB

gdeMacro JCXZ place:Chb
ne  @E3H
Reld place

EndM

CodeMacro JE place:lh
DB  74H
RelB place

EndA

CodeMacro JC place:Ch

DB TFH
%el8 place
End™

CodeMacro JGE place:Cb

DB 7DH
RelB ©place
Endm

CodeMacro IL place:Ch

(V1 I
Relll place
tndM

CodeMacra JLE place:Cb
Db 7EH
RelB place

EndM

CodeMacro Jmp place:Ew
Segfix place

DB QFFH
ModR¥ 4,place
End#™

CodeMacra Jmp place:mMd
Sagfix place

DB @FEH
ModRM  5,place
EndM
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CodeMacro Jmp place:Cd
DB QFAH
DD place

EndM

CodeMacre Jmp place:Ch
DB AERH
Rel® place

EnaéM

CodeMacro Jmp place:Cw
03 @E9H
RelWw place

EndM

JNA Equ JBE
JNAE Equ JB
JNB Equ JAE
JNBF Equ JA
INC Equ JNB

CodeMaczo JINE place:d
DB 75H
RelB place

EndmM

JNG Equ JLE
JNGE Equ JL
JNL EqQu JGE
JNLE Equ JG

CodeMacro JNO place:Cd
pe 71
RelR place

EndMm

CodeMacro NP place;Ch
DB 7BE
RelE place

EndM

CodeMacro JINS nlace:Cb
OB 794
RelE place

EndmM

JNZ Equ JNE

CodeMacro JO place:Ch
B 70H
RelB place

£ndM

CeodeMacro JP place:Co
ng  7al
Reld place

EndM

JIPE Egu 3P

JPO Equ JINP

CodeMacro 18 place:Cb
op 7ERH
RelB place

EndM

3z Fqu JE

CodeMacro LAHF
DB BFH
EndM

CodeMacro LUS dst:Rw,arc:Ed
Smyfix srce

OB ACSH
MedRM  dst,sec
EnaM

LEAVE at engd

CodeMacro LES dst:Rw,src:fd
Seqfix sIC

DB @T4R
ModRM dst,sr¢
EndM

CodeMacro LEA dst:Rw,srciM
DB 8DH
ModRM dst,src

EndM

CodeMacro Lock Prefx
DB BFGY

EodM

CodeMacro LodS SI ptriMb
Segfix  SI ptr
DB @ACH

EndM

CodeMacro LodS SI pre:Mw
Segfix S1_ptr
DB FADH

Engm

CodeMacro LodSa

DB JACH

EndM

CodeMacro LodSw
DB RADOH

Encm

CodeMacro Loop place:Ch
DB @E2H
RelB place

EndM

{odeMacro LoopE place:lb
DB @FLH
RelB place

EnaM

CodeMacro LoopNE place:Ch
DB QEGH
Reld place
EngM
LoopNZ Equ LoopNE
LoopZ Equ LoopE

CodeMacro Mov dst:Eb,SeciDb
Segfix dst

DB QC6H

ModrRM  B,dst

DB  srco
EndM

CodeMacro Mov dsti:Ew,src:Db
Segfix dst

DB  QCTH
ModRM 9,45t
DW sre

EndM
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CodeMacvro Mov dstiEw,sSrc:Dw CodeMacro Maov dst:%b,SrciAb
Segfix dst Seqfix dst
DB B8CTA oe BA2H
ModRM  G,dst oW dst
DR src EndM
EndH
CodeMacro Mov dstiXw,STCIAW
CodeMacro Mov dst:Rb,sec:Db Seqfix dst
R53 <1811¢B,dst> DB ¢all
OB src DWW dst
EndM EndM
CodeMacroc Mov dst:RW,scc:Db CadeMacro MovS SI_ptriMb,DI_ptriMb
R53 <1¢111B,dst> NoSegfix RS,S51_ptr
DW src Segfix DI_ptr
EndM DB @A4d
EndM
CodeMacro Mav dst:Rw,3rciDw
R53 <18111B,dst> CodeMacro MovS SI_ptr:Mw,BI _ptriMw
DWW sre NoSeqfix E5,S81 ptr -
EndM Segfix DI ptr
DB @ASH
CodeMacro Mov AsSrtIED,src:Rk Endm
Segyfix dst
DB B8H CodeMacro Movse
ModRM  syc,dst DR PAH
EndM endM
CodeMacro Mov dstiEw,scciRw CodeMacro MovSW
Seqfix dst DB BASH
DB B9H EndM
¥odRM src.dst
Fndi CadeMacro Mul mpliet:Eh
Segfix mplier
CodeMacro Mov dsy:Rb,src:ED OB O@F6&H
Segfix src ModRM 4, mplicr
DB 8AH EndM
ModRM  dst,srce
EndM CodeMacro Mul mplier:Ew
Segfix mplier
CodeMacro Mov dASt:RW,SYCiEw BB GP7H
Seqgfix src ModRM  4,mwplier
5B 8BH EndM
ModRM dst,sec
Endm

CodeMacro Neg dst:Eb
Segfix dst

CodeMacro Mov dstiEw,src:s DR GE&H
Segfix dst ModRM 3,48t
DR @BCH EndM
ModRM src,dst

EndM

CodeMacro Neq dstiFfw
Segfix dst

CodeMacro Mov dst:S(ES).src:Ew DB Q¥F¥7H
Segfix sxc ModRM  3,dst
9B @8EH EndM
ModRM dst,src

Fndw CodeMacro Nil

£ndM

CodcMacro Mov dst:S5(SS5,D0S),src:Ew

Segfix sro CodeMacro Nop

DB 2BEH
ModRM dst,scc Engs e
EndM B

CodeMacro Not dst:Eb

CodeMacro Mov dst:ab,syc:Xb -
© ! Seqfix dst

2 bhan™ oot
oW sre ModRM  2,dst

EndM EndM

CodeMacro Mov dstiAw,src:Xw CodeMacro Naot dst:Ew
Sengfix src Segfix dst
DB @AlH DB AP7H
DW sxc #ModRM  2,d4st

EndM EndM
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CodeMacro OR dst:Eb,src:Dh ; DUTS5,0UTSB,OUTSW at end
Seqfix dst
be - aait CodeMacro Pop dst:Ew
ModRM  1,dst seqfix dst
DB src DB @BFH
EngM ModRM  0,dst
EndM
CodeMacro OR dst:Ew,scciDw
Segfix dst CodeMacro Pap dst!'S({ES
o8 81H R323 <2.,dst,7>
ModRM  1,dst EngdH
DWW  src
EndM CodeMacro Pop 4s5t:5({55,25)
R323 <9,dst,7>
CaodeMacro OR dst:Ew,Syc:Db EngM
Seqfix dst
oR 81H CodeMacre Pop dstiHw
McdRM 1,4dst R513 <@l@l1B,dst>
DW src¢ EndM
EndM

; POPA at end
CodeMacto OR dstiAb,src:Db

DB BCH
D3 sre CodeMacro Popl
Endd DB 3DH
EndM
CodeMacro OR dst:Aw,stc:ilhb
OB  GDH
DW  SKc CodeMacro PUSH srce:D
EndM OnlylBé
DB 68K
CodeMacyo (R dstiAw,srci:Dw DW  src
DB GDH EndM
Dw src
End CodeMacyo PUSH src:DR{-128,127;
onlyl8e6
CodeMacro OR dst:Eb,src:Rb OB 6AH
Segfix dst 0B scco
DB 8 EndM
ModRM  sKc,dst
EndM
CadeMacto Push srciEw
CodeMacro OR dst:iEw,stc:Rw Segfix src
Seqfix dst DB @F¥H
PB 9 ModRM  6,sKC
ModRM src.dst EndM
EndmM

CodeMacro Push stc:$

CodeMacro QR dst:Rb,syc:Eb
R323 <¢,src,6>

Seyfix src

DB  QAH EndM

ModRM  dst,sre
£nd¥ CodeMacro Push Src:Rw
CodeMacro OR dst:Rw,Src:Ew En§:3 <@10188,src>

Segfix sre

DR @BH

ModRM  dst,Stc ; PUSHA moved to end
Endm

CodeMacro Pushf

CodeMacro Out port:Db.dst:Ab DB 9CH

DB OE6H £ndm

0B port
Endt CodeMacro RCL dst:Eb,count:D(6,31)
CodeMacro Qut port:db,dst:Aw 2gé¥iiﬁdst

ba  @R7H DB GCOH

DB port ModRM  2,dst
Endi DB count

EndM

CodeMacro Qut port:Aw(DX) ,dst:ab

DB BEEH
end® CodeMacro RCL dst:Eb,count:iDbil}

Segfix dst

CodeMacro Out port:i:Rw{DX),dst:Aw De  @DUH

DR GEFH ModRM 2,dst

EndM EndM
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CodeMacro RCL dst:Ew,count:D(f%,31)
OnlylBs
Seqfix dst
DB ¢CilH
ModRM  2,dst
DB count
EndM

CodeMacro RCL dst;Ew,count:bbil)
Segfix dst

DB  @D1H
ModRM  2,4st
EndM

CodeMacro RCL dst:Eb,count:Rb(CLY
Segfix dst

0B 8D2H
ModaM 2,dst
EndM

CodeMacro RCL dst:fw,count:Rb{CL[)
Segfix dst
D8 apIn
ModRM 2,dst

EndM

CodeMacro RCR dst:Eb,count:D{@F,31)
Oonlylas
Segfix dst
DB QCan
ModR™ 3,dst
DB  count
EndM

CodeMacro RCR dst:fb,count:Ch{l)
Segfix dst
DB @DOH
ModRM  1,dst

EndM

“ndeMacro RCR dst:EwW,count:C(3,31)
OnlylB6
Seqfix dst
DE #C1H
MadRM  3,dst
DB count
EndM

CodeMacre RCR dstiEw,.count:Db(l)
Segfix dst

DB @LIH
ModkM  3,dst
EndM

CodeMacra RCR dst:Eb,counl:Rb(CL)
Segfix  dst

Ny 8D
ModRM  3,dst
Endm

CodeMacro RCR dst:Ew,count:Rbi{CL})
Segtix dst

CB  9D3H
ModRM  3,dst

EndM

CodeMacro Rep Prefx
DB @F3H

EndM

CodeMacro RepkE Prefx
DB BF3H

EndM

CodeMacro RepNE Prefx
DB @F2H
EndM

RepNZ Equ RepNE
RepZ Equ RepE

CedeMacro Ret sre:Db
R413 <BCH,Proclen,2>
DW srC

EndM

CodeMacxo Ret src:bw
R413 <@dCu,Praclen, 2>
OW src

EndM

CodeMacra Ret
R413 <6CH, Preclen, >
EnadM

CodeMacro ROL dst:Eb,count:n{l,3l)
Onlylsé
Seqfix dst
DR 4C@H
ModeM 8,dst
08 count
sadM

CodeMacyes ROL dst:Fh,count:Db(l)}
Segfix dst

DB @D@H
ModRM @ ,dst
EndM

CpodeMacro ROL dst:Ew,count:D{@,31)
Onlyldeé
Segfix dst
D @ClH
ModRM  @,dst
DB count
EndMm

CodeMacro ROL dst:Zw,counkt:Db(l)
Seqfix st

DB {C1H
ModRM  2,dst
EndM

CodeMacro ROL dst:Eb,count:Ro{CL)
Segfix dst

0B @028
ModRM  3,dst
EndM™

CodeMacre ROL dstiEw,count:RbiCL)
Segfix dst

D3 @D3H
MadRM  @,dst
EndM

CodeMacra RCR dst:Eb,count:D{d,31}
Onlyl3é
Seqfix dst
DB  BC2H
McdRM 1,dst
08  count
Endls

CedeMacro ROR dst:Eb,countiOb(l)
Segfix dst
DB @DAH
ModRM  1,dst

EndM
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CodeMacto ROR dst:i:Ew,count:Di(0,31})
anrlylgse
Segfix dst
DB gCiy
ModB&M 1,dst
DB count
EndM

CodeMacro ROR dst:Fw,count:Db (1)
Segfix dst

RPB  GDLE
ModRM 1.dst
EndMm

CopdeMacro ROR dst:Fb,caunt:Rb{CL)
Segfix dst

DB  Q@OD2H
ModrRM  1,dst
EndM

CodeMacro ROR dst:Ew,count:Rb(CL)
Segfix dst
DB @D3H
ModRM 1,dst

EndM

CodeMacre SAHF
DB 9EH
Endm

CodeMacro SAL dst:iEn,count:D(@, 31)
OniylEé
Seyfix dst
DB GCOR
ModRM 4,dst
3B count
EndM

CodeMacro SAL dst:Eb,count:Dh{l)
Seqfix dst

DB @DOH
ModRM  4,dst
EndM

CodeMacro SAL dstiEw,count:D(&,31)
Onlyl8é
Segfix dst
ve Bl
ModAM  4,dst
DA count
EndM

CodeMacrao 5al, dst:Ew,count:ibi(l}
Segfix dst

ny| An1H
ModRM  4.dst
EndM

CodeMacro SAL dst:i:Eb,count:Rb{{L)
Segfix dst

DB JID2ZH
ModRN  4,dst
EndM

CodeMacro 5AL dst:Ew,count:Rb{CL)
Segfix dst
DB @D3H
ModRM  4,dst

EndM

CodeMacro SAR dst:Eb,count:2{e,2))
Onlylgs
Segfix dst
OB 9CaH
ModRM  7,dst
DB count
EndM

CodeMacro SAR dstiEb,count:Db(l)
Segfix dst

DB GDRH
ModRM  7.dst
EndM

CodeMacro $AR dst:Ew,count:D(8,31)
anlyligse
Seqfix dst
DB QC1H
ModRM 7,dst
DB count
EndM

CodeMacro SAR dst:Ew,count:Db(l)
Segfix dst

DB GDI1H
ModRM  7,dst
EndM

CodeMacro SAR dst:Eb,count:Ro{CL}
Segfix dst

VB  @D2H
ModRM  7,dst
Endr

CodeMacro SAR dst:Ew,counti!Rb(CL)
Segfix dst

OB BD3W
ModRM  7,dst
EndM

CodeMacro Sbb dst:Rb,stc:Db
Segfix dst

OB B@H
ModRM 3 ,dst
OB syc

EndM

CadeMacro Sbb dst:Ew,srcibb
Segfix dst

b8 BlH

ModRM  3,4st

DW srco
Endn

CodeMacro Sbbh dst:Ew,SteiDb{-128,127)

Seqgfix dst

OB BJH
ModRM 3,dst
DB src

EndM

CodeMacro Sbb dstiBw,5rc:lw
Segfix dst

DB 81H
ModRM  3,dst
oW sre

EndM

CodeMacro Sbo 4st:do,s5rcc:Db
DB 1CH
DB src

EndM

CodeMacro Sbb dst:Aw,srcibDb
DB 1DH
DW  sxc

EndM

CodeMacro Sbh dstiAw,src:Dw

DB 1CH
CW src
EndM
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CodeMacro Shb dst:Eb,srciRb
Segfix dst

vB  18H
ModRM  src,dst
EndM

CodeMacro Sbb dsti:Ew,sSrc:iRw
Segfix dst

bR 19H
ModRM src¢,dst
EndM

CodeMacro Sbb dst:Rb,src:Eb
Seqfix sre

DB lah
ModRM  dst,src
EndN

CodeMacro Sbb ASt:Rw,sSrc:Ew
Segfix srIc

0B 1BH
ModRM dst,src
EndM

CodeMacro ScaS DI_ptr:Mb
NoSegfix ES,DI ptr
DB @AEM -

EndM

CodeMacra Sca5 DI_petr:Mw
NoSegfix ES.D1_ptr

DB BAKYH

End¥

CuvdeMacro Scase
DB GAEH

EngMm

CodeMacrq ScasSw
D8 @AAFH
EndM

SHL Egu &AL

CodeMacro SHR dst:Eb,count:D(é,23L)
Oonlylg6
Seqfix dst
DA 4les
ModRM 5,dst
CB count
EndM

CadeMacro SHR dst:Eb,count:2b(l}
Segfix dst
0GR 9ngH
ModrM  5,dst

Endh

CodeMacro SHR dstifw,count:D{3,3))
OnlyiB6
Segfix dst
DB @aClH
ModRM  5,dst
LB count
Endm

CodeMacro SHR dskt:iFfw,ceunt:nb(1)
Segfix 4dst

N2 L 1H
ModRM  5,Ast
EndM

CodeMacro SHR dst:Eb,count:RbCL
Seqfix ast
DD @C2H
ModRM  5,dst

EndmM

CodeMacro SHR dst:Ew,count:!Rb(CL}
Segfix dst

DE B03H
ModRM 5,dst
EndM

CodeMacro STC

UB @F9H
EndM
CodeMacro ST

DB 49FDH
EndM

CodeMacro STI
0B AFBH
EndM

CoadeMacro Sto$ DI ptriMb
NoSegfix ES,DI ptr
DB PARAH

EndM

CodeMacro 5to8 DI_ptr:Mw
NoSegfix €5,21_ptr
DB GABH

EndM

CodeMacyo StoSB
DB GAAM
EndM

CodeMacro StosW
CB QaABH
End™

CodeMacro Sub dst:Eb,src:Db
Segfix dst

DB 8@H
MGARM S,dst
DB src

EndM

CodeMacro Suo dstiEw,src:lb
Segfix dst

0B §1H
ModRM  5,dst
DW  src

ndM

CodeMaceo Sub dstiEw,scciDb(-12R,127)

Segfix dst

DB  @3H
ModRM  5,dst
DB  src

EndM

CodeMacro Sub dSt:Ew,src:Dw
Segfix dst
7B 81H
ModRM  5,dst
OW  svc
EndM

CodeMacro Sub dst:Ab,src:Db
DB 2CH
DB sr¢

EndM

CodeMacro Sub dst:3w,src:Db
DB 2DH
DW sr¢

Endi
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Cadetacro Sub dst:Aw,src:dv

De 2DH
DW src
EndM

CodeMacro Sub dst:Eb,src!Rb
Segfix dst

DB 28H
ModRM src,dst
EndM

CodeMacro Sub dstiEw,5vciRw
Segfix dast

DB 29H
ModRM  src,.dst
EndM

CodeMacrao 5Sub dsti:Rb,s¢c:Eb
Segfix srkc

DB 2AH
McdRM  dst,src¢
EndM

CodeMacroc Sub dst!Rw,src:Ew
Segfix src

DB 2RH
ModRM dst,src
EndM

CodeMacro Test dst:EZb,src:Db
Segfix dst

OB JF&#
ModRM B,dst
BB sxo

EndM

CodeMacre Test dst:Ew,sStc:lb
Segfix dst

0B @F7H
ModRM  @,dst
DW src

EndM

CadeMacra Test dst:Bw,sco:dw
Segfix dst

DB BF7H
ModRM  @,dst
OW src

Endm

CodeMacro Test dstiAb,src:Db
DB  @AABH

DB src

EndM

{odeMacro Test dst:Aw,src:Db
DB  BA9H
0¥l sre

EpdM

CodeMacro Test dst:Aw,src:bw
DB GA9H
DW  src

EncM

CodeMacro Test dstiBb,src:Rb
Segfix dst

DB B4dY
Modam  sre,dst
EndM

CodeMacro Test dst:Fw,src:iRw
Segfix dst

DB BSH
ModRM src,dst
£ndM

CodeMacro Test dstiRb,stc:Eb
Seyfix sIcC

DB 843
ModRM dst,src
EndM

CodeMacro Test dstiRw,srciiw
Segfix src

DB 85H
ModRM dst,sre
EndM
CodeMacro Wait
DB  G9BH
EndM

CodeMacro Xchg dstiEb,src:Rb
Segtix dst

OB BeEH
MedRM  scc,dst
FndM

CodeMacro Xchqg dAst:iEwW,Src:Rw
Segqfix dst

DB BTH
McdRM  sre,dst
Endn

CodeMacro Xchg dst:Rb,src:bb
Seqgfix sec

DB 86H
ModRM  dst,src
FadM

CodetMacro ¥chg dst:Rw,src:Ew
segfix src

DB 878
ModRM  dst,src
EndM

CodeMacro Xchg dst!Rw,src:iw
RS3 <1B€1PB,dst>
EnadM

CodeMacro Xchg dst:Aw,src:kw
R531 <196l9¥B,s1c>
endM

CodeMacro Xiat table:Mb
Segfi1x table

2B UDTE

End#

CodeMacro Xlat®
D8 OD7H

EndM

CodeMacro Xoxr dst:Eb,src:Db
Segfix dst

DR  8PH
ModRM  6,dst
TB  sre

EndM

CodeMacro Xor dst:Ew,src:Db
Segfix 4ast

DB Blil
ModRM 6,dst
LW src

EndM

CogeMacio Xor dstilfw,5rc:ilDw
Segfix dst

N 814
ModRM 6,dst
oW stc

EndM

et
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CodeMacro Xor dst:Ab,src:Dd
DB 34H
DB src

EndM

CodeMacro ¥Xor dst:Aw,syc:iDb
OB  315H

DW src

EndM

CodeMacro Xor dst:AwW,src:dw
DB 35H
Dw  src

EndM

CodeMacro ¥or dst:Eb,srCiRb
Segfix dst

DB 38H
ModRM  sre,dst
EndM

CodeMacro Xor dst:Ew,Src:Rw
Segfix dst

CB  31H
McdRM  syc,dst
EndM

CodeMacro Xoxr dstiRb,sxc¢:Fb
Segfix src¢

0B 32H
ModRM  dst,scc
EndM

{CodeMacro Xor dst:Rw,src:iEw
Segfix src

DB 33H
ModRM  dst,src
EndM

; 8097 Codemacros:

CodeMacro F2xXMl

REix 4@¢lB

0B 111109B6R
EndM
CodeMacro FABS

Rfix G913

DR 13190018
Endm

CodeMacro FADC memop: M4
RfixM 6003,memop
ModRM G848 ,memop

EndM

CodeMacroc FADD memop;:Mq
RfixM 108B,memop
ModRM  @02B,memop

EndM

CodeMacro T[ADD dst:T,src:F
rfix @093
R233 <11B,@9¢R,src>

EndM

CodeMacrv FADD dst:f,sre:T
REix 10@8
R233 <11R,0008B,dst>

End:

CodeMacro FADD
Rfix llé@e
DB ll@eceolB
EngM

CodeMacro FRADOP dst:F,syc:T
Rfix 1148
R233 <1lB,G08B,dst>

EndM

CodeMacre FBLD memop:Mt
RfixMm  1118,memop
ModRM  106@B,memop

EndM

CodeMacro FBSTP memop:Mt
RfixM LLL1B ,memop
ModRM  119B memop

EndM

CedeMacro FCHS
Rfix $0QlB
DR 11l16@06¢8B
2ngdm

CodeMacro VCLEX

Rfix e@llR
DB 11109@19B
EndM

CodeMacro FUOM memop:Md
REixM @B3B,memop
ModRM  d10B,memop

EndM

CodeMacro FCOM memop:¥Mg
RfixM 19@R,memop
ModRM G108 ,memap

Endm
CodeMacro FCOM  Epst:f
Rfix 09@8
R23) <11PB,918H,fpst>
EndM

CodeMacro FCOM

Rfix @OEBB
DR 1181¢921R8
EndM

CadeMaceo FCOMP memop:Md
RfixM 009B,memop
ModfM  @11B,memop

EndM

CodeMacro FCOMP memop:My
RfixM 1@8&B,memap
ModrRM  Q11B,memop

EndM

CocdeMacro FCOMP  fpst:F

Rfix UQUB

R233 <11B,011lB,fpst>
EndM
CodeMacro FCOMP

Rfix @@@s

DB 11411291p
EndM

CodeMacro FCOMPP

Rfix 11¢8
DB 116114018
End™

CodeMacro FDECSTP

Rfix @ALE
OB 1111911@B
EndM
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CodeMacro FDISI

Rfix @118
OB 111@6¢91B
EndM

CadeMacro FDIV memop:Md
RfixM @0888,memop
ModRM 118B,memop

EndM

CodeMacroe FDIV memap:Mg
RfixM 1008 ,memop
MadRM 110B,memop

End

CodeMacro FDIV dst:T,srcifF
Rfix @@aBR
R233 <11B,11@B,stc>

End¥

CodeMacro FDIV dst:F,srec:T
Rfix 1@¢B
R233 <(L1B,111B,dst>

EndM

CodeMacro FDIV

rRfix 1148
08 21l11@61B
EnaM

CodeMacro FOIVP dst:F,src:T

Rfix 1l16@
R233 <11iB,111B,dst>
EndM

CodeMacro FDIVR memop:iMd
RfixM Q@0B.memop
ModRM 111B,memop

End™

CodeMacro FDIVR memapiMqg
RfixM 160B,memop
ModRM  111B,memop

EndM

CodeMacro FDIVR ds5t:iT,scc:F
Rfix 60OR
R233 <11B,111B,src>

EndM

CodeMaczo FDIVR dst:P,src:T

Rfix 18¢B
R233 <11B,1108,dst>
EndM

CodeMacro FDIVR

Rfix 11€B
DB 1111998818
EndM
CodeMacro FDIVKRP dst:F,stc:T
Rfix 116B
R233 <11B,110B,dst>
EndM

CodeMacro FENI

Rfix @Gl11B
DB 111600068
EngM

CodeMacro FFREBE fpst:F
Rfix 1@1B
R233 <L1B,000P,fpst>
EndM

CodeMacro FIADD memop:Mw
RfixM 11@B,memop
MOARM @9@B ,memop

EndM

CodeMacro FIADD memop:Md [l
RfixM Q10B,memop
ModRM G68B,memop

EndH

CodeMacro FICOM memop:iMw
RfixM 119B,memop
ModRM (1¢B,memop

EndM

CodeMacro FICOM memop:Md
RfixM ©19B,memop
ModRM  B10B.memop

EndM

CodeMacro FICOMP memop:Mw
RfixM 118B,memop
ModRM @118 ,memop

EndM

CodeMacro FICOMP memap:Md
RfixM OQLOB,memap
ModRM 811B,memop

End™

CodeMacrq FIDIV memop:Mw
RfixM 110B,memop
ModRM 116B,memop

£ndM

——

CodeMacro FILDIV memop:Md
RfixM @l4B,memop
ModRM 110B,memop

EndM

CodeMacro FIDIVR memop:Mw
REixM L1¢B,memop
ModRM 111B,memop

EndM

CodeMacra FIDIVR memop:Md
RfixM Q10B,memop
ModRM  111B ,memoep

EndM

CodeMacte FILD memop:Mw
RfixM 111B,memop
ModRM @O@GEB,memop

EndM

CodeMacruo FILD memop:Md
RfixM @llB,memop
ModrRM QQ0B,memop

EndM

CodeMacro FILD memop:Mg
RfixM 111B,memop
MadRM  1G1B,memop —~

EndM

CodeMacro FIMUL memop:Mw
RfixM 116B,memop
ModRM  QPlB,memap

EncM

CodeMacro FIMUL memop:Md
RfixM (12B,memop
ModRM 29418 ,memop

Endm
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CodeMacro FINCSTP

Rfix OFLB

DB 1llll@llls
EndM
CodeMacro FINIT

Rfix @1l1lB

DB 11160011B
EndM

CodeMacro FIST memopiMw
Rfix¥ 111B,memop
ModRM 9108,memop

EnamM

CodeMacro FIST memop:Md
RfixM 2118, memop
ModRM  @1@B,memop

EndM

CodeMacre FISTP memog:¥Mw
REixM 111B,memop
ModRM 49118, memop

EndM

CodeMacro FISTP memop:Md
RfixM G11B,memop
ModRM  B1lB,memop

EndM

CodeMacro FISTP memop:Mg
RfixM 111B,memop
ModRM 111B,memop

EndM

CodeMacro FISUB memop:Mw
RfixM 116B,memop
ModRM 106B,memop

EndM

CodeMacro FISUB memop:iMd
RfixM @16B,memop
ModRM  12BB,memop

EnaM

CodeMacro FISUBR memop:Mw
RfixM 11@B,memop
MOdRM  1@1B,memap

Endn

CodeMacro FISUBR memap:Md
RfixM @l0B,memop
ModRM 1@1B,memop

EndM

CodeMacro FLD memop:iMd
RfisxM €d1B,memop
ModRM  @G@B,memop

EndX

CodeMacro FLD memop:Mg
RfixM 191B,memop
ModRM  #£8B,memop

EndM

CodeMacro FLD memop:Mt
Rfix¥ @llp,memop
MOodRM 1PLlB,memop

EndM

CodeMacre FLD fost:F
Rfix 601B
R233 <118,9060B,f{pst>

CodeMacra FISTP memoniMw
REixM 11lRm,memnn
ModRM - AL1R, “emop

EndM

CodeMacro FISTP memon:MA
RfixM d11B,memop
ModRM  211B,memop

EndM

CodeMacro FISTP memon:Mao
RfixM  111B,mamon
ModRM  1118,memopn

EndM

CodeMacro FISUD memon:Mw
RfixM 1198,memcp
ModRM 1868 ,memop

EndM

CodeMacto  FISGR memon:iMd
RfixM Gl@&8,memon
MoriRM  1@G0@E,memop

EndM

CodeMacro FISURBR mMenon:iMw
RfixM 1108, memop
Mod®M ldla,memoD

EndM

CodrMacro FISUBR memop:ivdg
REixM @1@a,mempn
MadRM  1@LB Imemap

EndM

CodeMactro FLD memop:Md
RfixM B9lB,memop
ModRM  AGER, memop

EndM

CodeMacro FLN mamop:iMg
RfixM l4lB.memap
MadRM  DFGR [memop

EndM

CodeMacro FLD memopiMt
RfixM 9Ll1B,meman
ModRM  1G1FR.memav

End™
CodeMacro FLD Epst:F
REix Q61w
R233 <119.@99n,fpst>
EndM

CodeMacye FLOD1

Rfix @9Llp
nA 1L1818603
EndM

CodeMaczo  FLDCW memoo:M
RfixM QAQIB,nemoD
MadRM 1¢1B, memop

EndM

CodeMacroe  FLDENY memop:M
RfixM @@L1R,memon
MordRM 14D, memon

End™

CodeMacre FLDL2E
Rfix @@L~
DB 111016188
EnaM

CodeMacro FLOL2T

Rfix ¢0lB
0B 111419618
EndM
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CodeMacrto FLDLG2
Rfix 60le
DB 111311488
EndM

CodeMacro FLDLNZ
Rfix @81B
D8 1LldllAle
Endm

CodeMacro  FLDPI
Rfix @018
OR  111ldl9lle
EndM

CodeMacra FLDZ
rREix @018
DB lll1@lllem
EndM

CodeMacro FMUL memop:Md
RfixM (GEDB,memon
ModRM  GOLR.memoDn

EndM

CodeMacto FMUI. memop Mg
REixM  1A4B.memnn
ModRM  2@1R.menup

EndM

CodeMacro FMUL dst:i:T,scc:F
Rfix Go@aB
R233 <J1IR,P3d1R,s7c>

EndM

CodeMacro FMUL  Adsar:zf.sre:T
REix 1968
RZ213 <11B,B86t8,dst>

EndM

Codetacro FMOL
Rfiw 1198
DB ligGi9ale
EndM

CodeMacra FMULP AstiFlsge:T
Rfix 11@R
®233 <11B,281B,&st>

EndM

CadeMacrm  FNUCLEX
RNfiy @119
OB 111Rdaige
EndM

CodeMacro FNDIST
RNfix O11R
DB 1114€9G1B
EndM

CodeMacro FNENI
RNfix A1LR
DR 1114090408
EndM

CodeMacro ENINIT
RNFix @11R
ng  1ligeells
EndM

CodeMacro FNOP
Rfix @01B
N8 11A10R048
EndM

CodeMacrn  FNSAVE =emop:M

RNfixM 1081B,memon

ModRM  118B.memop
EndM

e

CodeMacro FNSTCW memon:iM

RNfixM GH1R.memoo

ModRM 111R.memop
Endm

CodeMacro FNSTENY wmemnn:M
RNfixM  40lB,nemop
ModRM  L18B,memon

EndM

CodeMacro FNSTSW memopiM
RNfixM 181R,memon
ModRM 1) 1R.memonp

EndM

CodeMacta FPATAN
Rfix ©91B
Dy 111166118
EndM

{ndeMacro FPREM
Rfix 601w
CR 111116@9B
EndM

CodeMarrn  FPTAN
Rfi1x @013
DB 1111¢@1lRB
EndM

CodeMacra FRNDINT
Rfix @AALR
n\e 111111938
EndM

CodeMacrn  FRSTOR memao:M
RfixM 1GlB,memop
ModRM  186R,memen

FnaM

CnAdeMacrn  FSAVE memon ™M
RfixM 1@LlB,memoo
ModRM  L14R | mamawn

PndM

CodeMacre FSCALL
Rfix @89lB
DB 11111tAlH
Endm

CadeMacra FSQRT
REix GOLB
Da 1l11l6laeB
EndH

CndeMacrn  FST menoo:Md

RfixM @0le,memop

MOdRM  @14B,memop SN
EndM

CodrMacen  FST memop:iMg
REixM 1GlB.memop
ModRM  @1lEB,meman

PnaM
CoAnMarto FST fost:F
Rfix 141D
R233 <1l1lB,0l0B.fnst>
EnAN
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CaodeMacco FSTCW memop:M CodeMacro FSUBR  dsat:T,.stesb
RfixM 0G61B,memaop REix @@em
ModRM 111BImemoo R233 <11B,101B,s5cc>

EndM EndM

CodeMacro FSTENV memon:ii

REixM @01B,memon CodeMacra FSUBR dst:P.isrc:T

- Rfix 1668
Eon 1 11688.memo0 R233 <11B,1608,dst>
FndM
CodeMacro FSTP memon:iMd
REfixM  B01B Imemno CodeMacra FSUBR
ModRM  G1LlB,memop Rfix 114B
EndM [3:] 111629018
EndM
CodeMacto FSTP memoo:Mg
REixM 1318 memop CodeMacro FSUERe  Ast:iP.steo:T
ModRM  @l18.memop Rfix 1188
EndM R233 <118, 190B,dst>
EndM
CodeMacro FESTP meman:Mt
REixM @11R.memop CndeMaces FTST
ModRM 111B,memop Rfix @GOLB
EndM ne 111431388
EndM
CodeMacro FSTP  fnat:?
rRfix 1l@ln CodeMacyo FWAIT
R233 <1lB,0118,foust> RWFEi x
EndM FndmM
CodaMacro FSTSW memop:M CadaMacrn  FXAaM
R€txM 16lB,memco Rfix GOlR
ModRM  111R,memon pH 111861018
EndM End™

CodaMacrn  FSUS memop:Md CodoMacrn EXCH fuoat<F

RfixM B830B,memap REix GLB
nodfM 100 memoD R233 <118, 6013, fpst>
" EndM

CndeMacro FSUB memop:Mg

RfixM 1AGB,memop CodeMacro FXCH

k rfix @nlR
. ZSdFM 190R ,mamon ne 119813318
" End

CodeMacro FSUR dst:T,sce:? CodeMacro FXTRACT

rfix 00dB .
. . Rfix #9218
L 1a8B! 6]
Fn§£33 <11B.1889B.stc on 111191088
o SndM
CodeMacra FSUH  Ast:F,sec:7
REix 1368 CodeMacro FYL2X
R?33 <1IR.1G1AR.AgE> Rfi1x @@1A
EncdM DB 1111653218
EndM
CodeMacro  FSUB
Rfix 11686 CadeMacro FYL2XPL
OB 11191 681R Rfix @0LlG
En:™ DB 1l1ll1l@@l®
EndM
CodeMacea FSUBP dst:F,src:T
Rfix 119mn CndeMacen  RCUND  indx:HW,Dptr MK
R233 <ilp.ldla.”sr> onlylsé
EndM Seqfix onte
R &28
CadeMarnro ESURR mamop:Ma ModRM  indx.botr
REixM @33R ,memon EndM
ModRM  14LB.memop
EndM CodeMacro BOUND indx:RW.hptr MO
Onlyld6
CodeMacro  FSUBR vemop:Ma Segfix bptr
RfixM 100B.memov oB 6?h
ModRM 1@ LB.memap ModRM  indx,botc

EndM EnAM
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CodeMacro ENTER disp:D{0.9FFFFH) .level :D(¥.255)

Onlyl8é

[5):) BC8H

DW diso

OB level
EndM

CodeMacro INS di ptr:EB,port:RW(DX)
OnlylBs
NoSeaqfix ES.di otr
DB 6CH

Fndn

CodeMacro INS di ptr:EW,port:RW{DX)
onlvlgs
NoSeafix ES.di ptr

DB 6DH
EndM
CodeMacyo INSH
Onlvlgs
nB 6CH
EndM
CofdaeMacro  INSW
Onlylae
DA 6DH
EndM
CodeMacro LEAVE
tnlvl18é
R gC 9H
EndM

CadeMacro QUTS port:RW(DX),si_ptr:®B
Onlv186
Seafix si ptr
0B 6EH

EndM

CodeMacro OUTS port:RW{DX).si ptr:

onlyl86
Segfix si_ptr
DB 6FH

EndM

CodeMacro QUTSA
Onlyl86
DR 6EH

EndM

CodeMacro OUTSW

Oonlyl86
OB 6FH
EndmM

CodeMacro POPY

Onivl18é
B 61H
EndM

CodeMacro PUSHA

OnlyJlgé
oB 641
Endm

Picar~ RS3.R323.R233.R4113
Purge REF1,RF2,RF3,RF4.RFS
PO¥rre RE6.RF7,.RVS,RFY
Purge RF1#,Mid3

END

EW



Flag Operations

FLAG REGISTERS

Flags are used to distinguish or denoie certain rcsults of dala maniputation. The
8086 provides the four basic mathematical operations (+, -, *, /) in a number of
different varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic arc provided. Standard (wo's complement representation ol signed
values is used. The addition and subtraction operations serve as both signed and
unsigned operations. In these cases the flag settings allow the distinction between
signed and unsigned operations to be made (see Conditional Transfer instructions in
Chapter 6}.

Adjustment operations are provided to allow arithmetic to be performed directly on
unpacked decimal digits or on packed decimal representations, and the auxiliary flag
(AF) faciliiales these adjustments,

Flags also aid in interpreting certain operations which could destroy one of their
operands. For example, a compare is actually a subtract operation; a vero result in-
dicates thal the operands are equal. Since it is unacceptable for the compare to
destroy either of the operands, the processor includes several work registers reserved
for its own use in such operations. The programmer cannot access these registers.
They are used for internal data transfers and for holding temporary values in
destructive operations, whose results are reflected in the flags.

Your program can (est the setting of live of these flags {carry. sign, zero, averflow,
and parity) using one of the conditional jump instructions. This allows you to alter
the flow of program execution based on the ouicome of a previous operation. the
duxiliary carry flag is reserved for the use of the ASCII and decimal adjust instruc-
tions, as will be explained later in this section,

It is important for you 1o know which flags are set by a particular instruction,
Assume, for example, that your program is to test the parity of an input byte and
then execule one instruction sequence if parity is even, a different instruction se-
quence if parity is odd. Coding a JPE (jump if parity is even) ar JPO (jump if parity
15 odd) instruction immediately following the IN (input) instruction would produce
false results, since the IN insteuction does not affect the condition flags. The jump
conditionally executed by your program would reflect the outcome of some previous
operation unrelated (0 the IN instructions.

For the operation to work correctly, you must tnclude some instruction that alters
the parity flag after the IN instruction, but before the jump instruction. For exam-
ple, you can add zero to the input byte in the accumutator. This sets the parity flag
without aliering the data in the accumulator.

In other cases, you will want (o set a llag though there may be a number of interven-
mg instructions before you test it. In these cascs, you must check the operation of
1he inlervening instructions 10 be sure thal they do not affect the desired flag.

The flags sel by each instruction are detailed in the individual instructions in
Chapter 6 of this manual.

Details of Flag Usage. Six flag registers are set or cicared by most arithmetic
operations (0 reflect certain propertics of the result of the operation. They follow
these rules below, where “‘set”” means set 1o | and “‘clear’” means cler to §. Furiher
discussion of each of thesc flags follows the concise description.
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CF s sct if the operation resulted in a carry out of (from addition) or a borrow
into (from subtraction) the high-order bit of the result; otherwise CF is
cleared.

AF issetif the operation resulted ip a carry out of (lrom addition) or borrow into
{from subtraction) the low-order four bits of the result; otherwise AF is
cleared.

ZF s setif the result of the operation is zero; otherwise ZF is cleared.
SF s set if the high-order bit of the result is set; otherwise SF is cleared.

PF is set if the modulo 2 sum of the low-order eight bits of the result of the
operation is O (even parity); otherwise PF 1 cleared (odd parity).

OF is set if the signed operation resulted in an overflow, i.e,, the operation
resulted in a carry into the high-order bit of the result but not a carry out of the
high-order bit, or vice versa; otherwise QF is cleared.

Carry Flag. As its name implies, the carry flag is commonly used to indicate
whether an addition causes a ““carry’ into the next higher order digit. (However, the
increment and decrement instructions {INC, DEC) do not affect CF.) The carry flag
is also used as a “*borrow’’ flag in subtractions.

The logical AND, OR, and XOR instructions also affect CF. These instructions set
or reset particular bits of their destination (register or memory). See the deseriptions
of the logic instruction in Chapter 8.

The rotate and shift instructions move the contents of the operand (registers or
memaory) one or more positions to the left or right, They treat the carry flag as
though it were an extra bit of the operand. The original value in CF is only preserved
by RCIL. and RCR. Otherwise it is simply replaced with the next bit rotated cut of the
source, i.e., the high-order bit if an RCL is used, the low-order bit if RCR,

Fxanmiple:

Addition ol two one-bytc numbers can produce a carry out of the high-order bit:

Bit Number: 7654 3210

AEH - 1010 11108

+ 74H - 0111 0100B
122H 0010 0010B - 22H :carry flag - 1

An addition that causes a carry out of the high-order bit of the destination sets the
flag to I; an addition that does not cause a carry resets the flag to zero.

Sign Flag. The high-order bit of the result of operations on registers or memory can
be interpreted as a sign. Instructions that affect the sign flag set the {lag equal 1o this
high-order bit. A zero indicates a positive value; a one indicates a negative value,
This value is duplicated in the sign flag so that conditional jump insiructions can test
for positive and negative values. The high order bit for byte value is bit 7; for word
values it is bt 15.
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Zero Flag. Certain instructions set the zero flag to one. This indicates that the iast
operalion to affect ZF resulted in all zeros in the destination (register or memory). If
that resuit was other than zero, then ZF is reset to 0. A result that has a carry and a
zero result sets both flags, as shown below:

10100111

+01011001
00000000 Carry Flag =1
ZeroFlag =1

meaning yes, zera

Parity Flag. Parity is determined by counting the number of one bits set in the low
order § bits of the destination of the last operation to affect PF. lnstructions that
affect the parity flag set the flag to one for even parity and reset the flag to zero to
indicate odd parity.

Auxiliary Carry Flag. The auxiliary carry flag indicates a carry out of bit 3 of the
accumulator. You cannot test this llag directly in your program; it is present (0
enable the Decimal Adjust instructions to perform their function.

The auxiliary carry flag is affected by all add, subtract, increment, decrement, com-
pare, and all logical AND, OR, and XOR instructions.






Reserved Words

DUAL FUNCTION KEYWORD/SYMBOLS

AND NOT OR SHL SHR XOR
SYMBOLS

AAA ENTER FLDENV FXCH JNF PUSH
AAD ES FLDLZ2E FXTRACT JNS PUSHA
AAM ESC FLDL2T FYL2X JNZ PUSHF
AAS F2XM1 FLDLG2 FYL2XP1 Jo RCL
ADC FABS FLDLNZ HLT JP RCR
ADD FADD FLDPI DIV JPE REP
AH FADOP FLDZ IMUL JPO REPE
AL FBLD FMUL IN JS REPNE
AX FBSTP FMULP ING JZ REPNZ
BH FCHS FNCLEX INS LAHF AEPZ
Bt FCLEX FNDISI INSB LDS AET
BOUND FGOM FNENI INSW LEA ROL
8P FCOMP FNINIT INT LEAVE ROR
BX FCOMPP FNOP INTO LES SAHF
CALL FDECSTP FNSAVE IRET LOCK SAL
cBw FDISI FNSTCW JA LODS SAR
CH FDIV FNSTENV JAE LODSB SBB
CL FDIVP FNSTSW JB LODSW SCAS
CLC FDIVR FPATAN JBE LOOP SCASB
CLD FDIVRP FPREM JCe LOOPE SCASW
cu FENI FPTAN JCXZ LOOPNE Sl
CMC FFREE FRNDINT JE LOOPNZ SP
CMP FIADD FRSTOR JG LOOPZ 538
CMPS FICOM FSAVE JGE MOV ST
CMPSB FICOMP FSCALE JL MOVS STC
CMPSW FIDIV FSQRT JLE MOVSEB STD
cs FIDIVR FST JMP MOVSW STI
CWD FILD FSTCW INA MUL STQS
CX FIMUL FSTENV JNAE NEG 8T0S8
DAA FINCSTP FSTP JINB NilL STOSW
DAS FINIT FSTSW JNBE NOP su8
DEC FIST FSUB JNC out TEST
oH FISTP FSuBP JNE QUTS WAIT
ol} FISUB FSUBR JING QuTSB KCHG
DIV FISUBR FSUBRP JNGE QUTSW XLAT
DL FLD FTST JNL POP XLATB
DS FLDA FwaIT JNLE POPA 77SEG
DX FLDCW FXAM JNO POPF

NON-CONFLICTING KEYWORDS

DA INCLUDE NOERRORPRINT NOPR PAGEWIDTH SB

DATE L NOGE NOPRINT PAGING STACK
DEBUG LIST NOGEN NOSH P SYMBOLS
EJ M1 NOLI NOSYMBOLS PL TITLE
EJECT MACRQ NOLIST NOTY PR T

EP MEMORY  NOMACRO NOTYPE PRINT Ty
ERRORPRINT ™MOD188 NOMR NOXR PW TYPE
GEN MR NOOBJECT NQXREF RESTORE WF
GENONLY NODB NQQJ OBJECT RS WORKFILES
GO NQDEBUG NOPAGING oJ SA XR

1C NOEP NOPI PAGELENGTH SAVE XREF
HANDS-OFF KEYWORDS

ABS DWORD GT NE PTR SEG
ASSUME END HIGH NEAR PUBLIC SEGFIX
AT ENDM INPAGE NOSEGFIX PUAGE SEGMENT
BYTE ENDP LABEL NOTHING QWORD SHORT
CODEMACRO ENDS LE QFFSET RECORD SIZE
COMMON EQ LENGTH ONLY186 RELB STRUC
0B EQU LOow ORG RELW TBYTE
0D EVEN LT PAGE RFIX THIS
0Q EXTRN MASK PARA RAFIXM TYPE
oT FAR MOD PREFX RNFIX WIDTH

GE MODRM PROC RNFIXM WORD
DwW GROUP NAME PROCLEN RWFIX ?






~ MPL Built-in Functions

The following is a list of all MPL butlt-in functions.
%' text end-of-line or %' text’
%(balanced-text)
tCi
¢ca (char)
%*DEFINE{macro-name| parameter-iist]) [LOCAL focal-fist] (macro-body)
%n text-n-characters-long
%EQS({arg1.arg?)
%EVAL{expression)
%EXIT
%GES(arg!.arg2)
“GTS{arg1,arg2)
%IF (expression) THEN (bafanced-text1) [ELSE (batanced-text2)] Fl
%IN
“LEN(balanced-text)
YLES(arg1,arg2)
%l TS{argt,arg2)
%MATCH(identifiert delimiter identifier2) (balanced-text)
%METACHAR({bafanced-text)
%NES(argt.arg2)
%OUT{balanced-text)
%REPEAT (expression) (balanced-text)
%SET{macro-id,expression)
%SUBSTR({balanced-text,expressiont,expressionl)

%WHILE (expression) (balanced-text)






Instructions in Hexadecimal Order

DG 00000000
@1 HO00C00T
02 00006010
03 00¢00011
04 0DODO10D
05 00000101
06 0000110
07 00000111
08 00001000
09 00001601
0A 00001010
08 00001011
0C 00001100
0D 00001101
9E 00001110
OF 00001111
10 00010000
11 00010001
12 00010010
13 00010011
14 00010100
15 60010101
16 0001011C
17 QOD10111
18 00011000
19 00019001
1A 00D11010
1B 00011011
1C 00011100
10 00814101
1E 00011110
1F 00011111
20 OD1D0000
21 00100001
22 00190010
23 00100011
24 00100100
25 0010010t
26 00100110
27 00100111
28 00103000
29 00101001
2A 00101010
2B 00101011
2G 00101100
20 09101101
2E 00101119
2F 00101111
30 00110000
31 00110001
32 00110010
33 00110011
34 00110100
35 00110101
36 00110110
37 0011011
38 00111000
39 0011100
3A 00111010
38 0011101
3C 00111100
3000111101
3E 00111110
3F 0011111
40 01000000
41 010DC00Y

MQOD
MOD
MOD
MOCD

MOQD
MGCO
MOD
MQD

MOD
MOD
MQOD
MQOD

MOD
MOD
MOD
MOD

MOD
MOD
MOD
MOD

MOD
MOD
MOD
MQD

MOD
MOD
MO0
MOD

MOD
MOD
MOD
MoD

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

RIM
RIM
RIM
R!'M

R/M
RIM
RIM
RiM

A/M
RiM
R/M
R/M

R/M
RiM
RIM
RiM

R/tA
RiM
R/iM
R!M

R!M
RIM
R/M
RIM

RiM
RM
RiM
RiM

RiM
RIM
RIM
RiM

ADD EA REG
ADD EA REG
ADD REG.EA

ADD REG.EA
ADD AL.DATAS
ADD AX,DATA1G
PUSH ES

POP ES

OR EA REG
ofR EA REG
OR AEG.EA
OR RAEG.EA
OR AL.DATAS
OR AX DATA16E
PUSH cs

tnot used)

ADC EA REG
ADC EA REG
ADC REA.EA
ADC REG,EA
ADC AL.DATAS
ADC AX DATA16
PUSH S8

PO S8

SBB EA_REG
SBB EAREG
SBB REG.EA
SEB REG.EA
588 AL DATA8
SBB AX.DATA1E
PUSH DS

POP DS

AND €A REG
AND EA,REG
AND REG,EA
AND REG,EA
AND AL.DATAB
AND AX.DATAIB
ES

DAA

SUB EA REG
SuUB EA.REG
sus REG.EA
SuB REG.EA
suB AL.DATAB
SuB AX,DATATS
CS:

DAS

XOR EA.REG
XOR EA.REG
XOR REG,EA
XOR REG,EA
XOR AL, DATAS
XOR AX.DATA1B
S8:

AAA

CMP EA REG
CMP EA REG
CMP REG.EA
CMP REG EA
CMP AL OATAS
CMP AX,DATA18

DS:
AAS
INC AX
INC CX

BYTE ADD {REG) TO EA
WORD ADD (REG) TO EA
BYTE ADD(EA) TOREG
WORD ADD (EA) TO REG
BYTE ADD DATA TQ REG AL
WORD ADD DATA TO REG AX
PUSH(ES) ON STACK

POP STACK TO REG ES
BYTE OR{REG) TOEA
WORD QR (REG) TQ EA
BYTE OR{EA)TO REG
WORD OR (EA) TO REG
8YTE OR DATA TOREG AL
WORD OR CATA TO REG AX
PUSH{CS8)}ON STACK

BYTE ADD {REG} W/ CARRY TOEA

WORD ADD |IREG) W/ CARRY TOEA

BYTE ADD (EA) W/ CARRY TO REG

WORD ADD{EA} Wi CARRY TO REG

BYTE ADD DATA W/CARRY TO REG AL
WORD ADD DATA W/ CARRY TO REG AX
PUSH (SS)ON STACK

POP STACK TQO REG 88

BYTE SUB (REG} W/ BORRCW FROM EA
WORD SUB{REG) W/ BORROW FROM EA
BYTE SUB (EA} W/ BORROW FROM REG
WORD SUB (EA) W/ BORROW FROM REG
BYTE SUB DATA W/ BORROW FROM REG AL
WORD SUB DATA Wi BORROW FROM REG AX
PUSH {DS)ON STACK

POP STACK TOREG 0S

BYTE AND |REG) TOEA

WORD AND(REG) TOEA

BYTE AND(EAI TO REG

WORD AND (EA) TQO REG

BYTE AND DATA TO REG AL

WORD AND DATA TO REG AX

SEGMENT OVERIDE w! SEGMENT REG ES
DECIMAL ARDJUST FOR ADD

BYTE SUBTRACT (REG) FROMEA

WORD SUBTRACT (REG) FROM EA

BYTE SUBTRACT (EA) FROM REG

WORD SUBTRACT (EA) FROM REG

BYTE SUBTRACT DATA FROM REG AL
WORD SUBTRACT DATA FROM REG AX
SEGMENT OVERIDE W! SEGMENT REG CS
DECMAL ADJUST FOR SUBTRACT

BYTE XOR (REG) TO EA

WORD XOR(REG) TOEA

BYTE XOR{EA) TO REG

WORD XOR {EA} TO REG

BYTE XOR DATA TO REG AL

WORD XOR DATA TO REG AX

SEGMENT OVERIDE W/ SEGMENT REG SS
ASCI ADJUST FOR ADD

BYTE COMPARE {EA) WITH (REG)

WORD COMPARE (EA} WITH {REG)

B8YTE COMPARE (REG) WITH (EA)

WORD COMPARE (REG} WITH (EA)

BYTE COMPARE DATA WITH (AL}

WORD COMPARE DATA WITH (AX)
SEGMENT OVERIDE Wi SEGMENT REG DS
ASClU ADJUST FOR SUBTRACT
INCREMENT (AX)

INCREMENT (CX)



E-2 asmse

42 01000010 INC DX INCREMENT (DX)

43 01000011 INC DX INCREMENT (BX})

44 01000100 INC sp INCREMENT {SP)

45 01000101 INC BP INCREMENT (BP)

46 01000110 INC Si INCREMENT (Sh

47 01000111 INC DI INCREMENT {DI)

48 01001000 DEC AX DECREMENT [AX)

49 01001001 DEC CX DECREMENT {CX)

4A 01001010 DEC DX DECREMENT (DX)

48 01001011 DEC BX DECREMENT {BX)

4C 01001100 DEC sP DECREMENT (SP)

4D 01001101 DEC 8P DECREMENT {BP)

4E 01001110 DEC S DECREMENT (51}

4F 01001119 DEC DI OECREMENT (D))

50 01010000 PUSH AX PUSH (AX) ON STACK

51 01010001 PUSH CX PUSH (CX) ON STACK

52 01010010 PUSH DX PUSH (DX} ON STACK

53 01010011 PUSH BX PUSH {BX} ON STACK

54 01010100 PUSH SpP PUSH {SP) ON STACK

55 01010101 PUSH BP PUSH (BP) ON STACK

56 01010110 PUSH Sl PUSH (SI) ON STACK

57 01010111 PUSH o] PUSH (DI) ON STACK

58 01011000 POP AX POP STACK TO REG AX

55 01011001 POP CX POP STACK TO REG CX

SA 01011010 POP DX POP STACK TO REG DX

58 01011011 POP BX POP STACK TO REG BX

5C 01011100 POP SP POP STACK TO REG SP

50 01011101 POP 8P POP STAGK TO REG BP

5E 01011110 POP Si POP STACK TO REG S

5F 01011111 POP ol POP STACK TO REG DI

60 01100000 PUSHA PUSH ALL DATA, INDEX. AND POINTER REGISTERS
61 01100001 POPA POP ALL DATA, INDEX, AND POINTER REGISTERS
62 01100010 MOD REG R/M BOUND REG.EA CHECK INDEX IN REG AGAINST BOUNDS AT €A
63 01100011 {not used)

64 01100100 (not used)

65 01100101 {not used}

66 01100110 {not used)

67 01100111 {not used}

68 01101000 PUSH DATA16 PUSH WORD DATA ON STACK

69 01101001 MOD REG R/M IMUL REG.EADATA16 MULTIPLY (EA} BY WORD DATA; SIGNED
BA 01101010 PUSH DATAS PUSH BYTE DATA ON STACK; SIGN-EXTEND
6B 01101011 MOD REG R/M IMUL REG,EA,DATA8 MULTIPLY (EA) BY BYTE DATA; SIGNED
6C 01101100 INS DST8 BYTE INPUT, STRING OP

6D 01101101 INS DST16 WORD INPUT, STRING OP

6E 01101110 ouTS DSTB BYTE OUTPUT, STRING OP

6F 01101111 ouTS DST16 WORD OUTPUT, STAING OF

70 01110000 Jo DI1sP8 JUMP ON OVERFLOW

71 01110001 JNO DISP8 JUMP ON NOT OVERFLOW

72 Q1110010 JC/UBfINAE DISPB JUMP ON BELOW/NOT ABOVE OR EQUAL
73 01110011 JNC/INB/JAE DISP8 JUMP ON NOT BELOW;ABOVE OR EQUAL
74 01110100 JENIZ DISP8 JUMP ON EQUAL/ZERO

75 01110101 JNE/INZ DISP8 JUMP ON NOT EQUAL/NOT ZERO

76 01110110 JBEfINA DISP8 JUMP ON BELOW OR EQUAL/NOT ABOVE
77 01110111 JNBE/JA DISP8 JUMP ON NOT BELOW OR EQUAL/ABOVE
78 01111000 JS DISP8 JUMP ON SIGN

79 01111001 JINS DISP8 JUMP ON NOT SIGN

7A 01111010 JP{JPE DISP8 JUMP ON PARITY/PARITY EVEN

78 01111011 JNP{JPO DISP8 JUMP ON NOT PARITY/{PARITY ODD

7C 01111100 JUAINGE DISPS JUMP ON LESS/NOT GREATER OR EQUAL
PR ORRRRT JINLSJGE DISP8 JUMP ON NOT LESS/GREATER OR EQUAL
7E 011111140 JLESING DISP8 JUMP ON LESS OR EQUAL/NOT GREATER
7F 011111 JNLEJG DISP8 JUMP ON NOT LESS OR EQUAL/GREATER
80 10000000 MOD 000 R{/M ADD EA,DATA8 BYTE ADD DATA TO EA

80 10000000 MOD D01 R/M OR EA.DATA8 BYTE OR DATA TO EA

80 10000000 MOD 10 R/M ADC EA,DATASB BYTE ADD DATA W/CARRY TO EA

80 10000000 MOD 011 RfM SBB EA DATA8 BYTE SUB DATA W/BORROW FROM EA
80 10000000 MOD 100 R/M AND EA,DATA8 BYTE AND DATA TO EA

80 10000000 MOD 101 R/M SUB £A,DATAB BYTE SUBTRACT DATA FROM EA

80 10000000 MOD 110 R/M XOR EADATASB BYTE XOR DATA TO EA

8¢ 1000000¢ MOD t11 R/M CMP EADATAS BYTE COMPARE DATA WITH (EA)

81 10000001 MOD 000 R/M ADD EADATATE WORD ADD DATA TQO EA

81 10000001 MOD 001 R/M OR EA,DATA16 WORD OR DATA TO EA

81 1000000t MOD 010 R{M ADC EADATA16 WORD ADD DATA W/CARRY TO EA



Instructions in Hexadecimal Order E~3

81 10000001
81 10000001
81 100000¢
81 10000001
81 10000001
82 10000010
82 10000010
82 10000010
82 10000010
82 10000010
82 10000010
82 10000010
82 10000010
83 10000011
83 10000011
83 10000011
83 10000011
83 10000011
83 10000011
83 10000011
83 10000011
84 10000100
85 10000101
86 10000110
87 10000111
88 10001000
89 10001001
8A 10001010
8B 10001011
8C 10001100
8C 10001100
8D 1000110
8E 10001110
8E 10001110
8F 100601111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
3F 10001111
8F 10001111
8F 10001111
80 10010000
91 10010001
92 10010010
93 10010011
Q4 10010100
95 10010101
96 10010110
97 10016111
98 10011000
49 10011001
94 10011010
9B 10011011
9C 100111060
9D 10011101
9F 10011110
9F 10011111
A0 10100000
A1 10100001
A2 10400010
A3 10100011
A4 10100100
A5 10100101
A6 10100110
A7 10100111
AB 10101000
A9 10101001
AA10101CH0O
AB10101011
AC10101100
AD10101101
AE101071110

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOO
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOO
MOD
MOD
MOD
MoD
MOD
MOD
MOD
MOD
MOD
MQOD
MOD
MOD
MOD
MOD
MOD
MCD
MOD
MQD

on
100
101
110
m
000
on
010
o1
100
101
Qg
m
000
001
010
on
100
101
10
1
AEG
REG
REG
REG
REG
REG
REG
REG
0SR
1__
REG
0SR
600
001
010
011
100
101
110
M

RiM
Rin
R/M
R/M
RIM
R/M
RIM
RIM
RitA
A/M
RIM
RiM
RIM
RiM
RIM
R/t
A/M
RiM
Rin
RIM
RiM
R/M
R/M
RiIM
RiM
A7
RIM
RIM
RIM
RIM
RIM
RiM
RiM
RiM
R/M
RiM
RIM
R/IM
RIM
RiM
R/M
R/M

sBB
AND
sSuB
XOR
CMP
ADD

{not used)
ADC
SBB

{nol used)
suB

{not used)
CMP
ADD
(notused)
ADC

SBB

{not used)
SUB

{nol used)
CMP
TEST
TEST
XCHG
XCHG
MOV
MOV
MOV
MOV
MOV
{(notused)
LEA
MOV
(notused}
PQP
{nolysed}
{notused}
{not used)
{nol used)
{nat used}
inot used)
{not used)
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
cew
CwD
CALL
WAIT
PUSHF
POPF
SAHF
LAHF
MOV
MOV
MOV
MOV
MOVS
MOVS
CMPS
CMPS
TEST
TEST
STOS
ST0S
LODS
LODS
SCAS

EA DATA16
EA DATA1G
EA.DATA16
EA.DATA16
EA,DATALG
EA DATAS8

EA DATAS
EA DATAR

EA DATAS

EADATAS
EA DATAS

EA DATA8
EA.DATAS

EA.DATAS

EA DATAS
€A REG
EA.REG
REG,EA
REG.EA
EA.REG
EA REG
REG,EA
REG.EA
EA.SR

REG EA
SR.EA

EA

AX.AX
AX,CX
AX,DX
AX.BX
AX.SP
AX.BP
AX S|
AX DI

DISP16.SEG16

AL ADDR1§
AX,ADDR16
ADDR16,AL
ADDR16,AX
DST8,SRCS
DST16,SRC16
SIPTR.DIPTR
SIPTR.DIPTR
AL,DATAS
AX,DATA16
DST8

DST16

SRC3

SRCA6
DIPTRS

WORD SUB DATA W/ BORROW FROM EA
WORD AND DATATOEA

WOQRD SUBTRACT DATA FROMEA
WORD XORDATATOEA

WORD COMPARE DATA WITH (EA)

BYTE ADD DATATO EA

BYTE ADD DATA W/ CARRY TO EA
BYTE SUB DATA W/ BORROW FROM EA

BYTE SUBTRACT DATA FROM EA

BYTE COMPARE DATA WITH (EA)
WORD ADD DATA TO EA

WORD ADD DATAW/ CARRY TOEA
WORD SUB DATA W/ BORROW FROM EA

WORD SUBTRACT DATA FROM EA

WORD COMPARE DATA WITH (EA}

BYTE TEST (EA) WITH (REG)

WORD TEST(EA) WITH (REG)

BYTE EXCHANGE {REG) WITH |EA)
WORD EXCHANGE (REG} WITH (EA)
BYTE MOVE (REG) TO EA

WORD MOVE{REG) TOEA

BYTE MOVE (EA) TO REG

WORD MOVE {EA) TO REG

WORD MOVE (SEGMENT REG SR} TO €A

LOAD EFFECTIVE ADDRESS OF EATO REG
WORD MOVE (EA) TO SEGMENT REG SR

POPSTACK TOEA

EXCHANGE {AX) WITH (AKX}, (NOP)
EXCHANGE {AX) WITH {CX}
EXCHANGE (AX) WITH {DX)
EXCHANGE {(AX) WITH {BX)
EXCHANGE {AX) WITH (SP)
EXCHANGE (AX} WITH {BP)
EXCHANGE {AX) WITH (Sh
EXCHANGE (AX) WITH {DI)

BYTE CONVERT {AL) TC WORD (AX)
WORD CONVERT (AX) YO DOUBLE WORD
DIRECTINTER SEGMENT CALL
WAIT FOR TEST SIGNAL

PUSH FLAGS ON STACK

POP STACK TO FLAGS

STORE (AH) INTO FLAGS

LOAD REG AH WITH FLAGS
BYTE MOVE {ADDR) TO REG AL
WORD MOVE {ADDR) TO REG AX
BYTE MOVE {AL} TO ADDR
WORD MOVE {AX} TO ADDR
BYTE MOVE, STRING OP

WORD MOVE, STRING OP
COMPARE BYTE, STRING OP
COMPARE WORD, STRING QP
BYTE TEST (AL) WITH DATA
WORD TEST {(AX} WITH DATA
BYTE STORE, STRING QP

WORD STORE, STRING OP

BYTE LOAD, STRING QP

WORD LOAD, STRING OP

BYTE SCAN, STRING OP



E-4 Asmse

AFADI01IM
B0 10110000
B1 10110001
B2 10110010
8310110014
B4 10110100
8510110101
B6 10110110
B7 10110111
B8 10111000
B9 10111001
8410111010
BB10111011
BC10111100
BD10111101
BE 10111110
BF 10111111
C0 11000000
CO 11000000
C0 11000000
€0 11000000
CO 11000000
€D 11000000
G0 11000000
C0 11000000
C1 11000001
C1 1100000
C1 11000001
C1 11000001
C1 11000601
111000001
C1 11000001
€1 11000001
2 11000010
€3 11000011
G4 11000100
C5 11000101
C6 11000110
C6 11009110
C6 11000110
C8 11000110
CB 11000110
C6 11000110
C6 11000110
€6 11000110
C7 11000111
C7 11000111
G7 11000111
G7 11000111
C7 11000111
C7 11000111
C7 11000111
C7 11000111
C811001000
C9 1100100
CA11001010
CB11001011
CC11001100
CD1100110
CE 1001110
CF 11001111
00 11010000
DO 11010000
DO 11010000
D0 11010000
DO 11010000
DO 11010000
DO 11010000
D0 11010000
D1 11010001

MOD
MOD
MQD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

MOD
MOD
MQD
MCD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MQD
MOD
MOD

MOD
MOD
MOD
MGD
MOD
MOD
MOD
MOD
MOO

0og
001
010
o1
100
m
110
11
Y
004
010
011
100
1)
110
m

REG
REG
(]¢)]
001
010
011
100
101
140
mn
000
001
010
(A0 ]
100
D)
110
LR

000
00t
010
0
100
101
10
m
000

RIM
R!'M
RiM
RI/M
RIM
RIM
RIM
R/M
Rim
RN
RiM
R/t
R/M
RiM
HiM
RiM

Al
RAtM
RIM
RIM
RiM
R/M
RIM
RIM
RiM
RIM
RIM
RIM
RiM
RIM
Rita
R/M
Rit
RIM

RiM
AtM
R/M
RIM
RIM
RIM
RIM
AIM
RiM

SCAS
MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV

MOV

MOV
MOV
MOV
MOV
MOV
MOV

ROL

ROR

RCL

RCR
SHU/SAL
SHR

{not used}
SAR

ROL

ROR

RCL

ACR
SHL/SAL
SHR

{not used)
SAR

RET

RET

LES

LDS

MOV
[nelused)
tnot used)
tnot used)
tnot used)
{notused)
[(novused)
(not used)
MOV

{not used)
{notused)
{not used)
(not used)
(not used)
(not used)
{nol used)
ENTER
LEAVE
RET

RET

INT

INT

INTO
IRET

ROL

ROR

RCL

RCR

SHL

SHR

(not used)
SAR

AQL

DIPTR16
AL.DATAS
CL.DATAS
DL.DATAS
BL.DATAS
AH,DATAB
CH DATA8
DH.DATAS
BH.DATAS
AX.DATAIB
CX.DATA16
DX.DATA1G
BX.DATAIG
SP.DATAIB
BP.DATAIG
S1.DATA1G
DI.DATA16
EA.DATAS
EA.DATAS
EADATAS
EA DATAS
EA.DATAS
EA,DATAS

EA.DATAB
EA DATAB
EA.DATAS
EA.DATAS
EA DATAS
EA.DATAS
EA.DATASE

EA.DATAS
DATAI1G

REG.EA
REG FA
EA DATAB

EA DATA16

DATA16.DATA8
DATA16

3
TYPE

EA1
EA
EA
EA
EAN
EA 1

EA
EAN

WORD SCAN, STRING QP

BYTE MOVE DATA TO REG AL

BYTE MOVE DATA TO REG CL

BYTE MOVE DATATO REG DL

BYTE MOVE DATA TO REG BL

BYTE MOVE DATA TO REG AH

BYTE MOVE DATA TO REG CH

BYTE MOVE DATA TO REG OM

BYTE MOVE DATA TO REG BH

WORD MOVE DATA TO REG AX

WORD MOVE DATATO REG X

WORD MOVE DATA TQ REG DX

WORD MOVE DATA TQ REG BX

WORD MOVE DATA TO REG SP

WORD MOVE DATA TO REG BP

WORD MOVE DATA TO REG S

WORD MOVE DATA TO REG DI
BYTE ROTATE EA LEFT DATAS BITS
BYTE ROTATE EARIGHT DATABBITS
BYTE ROTATE EA LEFT THRU CARRY DATAS BITS
BYTE ROTATE EARIGHT THRU CARRY DATAS BITS
BYTE SHIFT EA LEFT DATABBITS
BYTE SHIFTEA RIGHT DATAS BITS

BYTE SHIFT SIGNED EA RIGHT DATAS BITS
WORDROTATE EA LEFT DATAS BITS
WORDROTATE EA RIGHT DATAS BITS

WORD ROTATE EA LEFT THRU CARHY DATAS BITS
WORD ROTATE EA RIGHT THRU CARRY DATAS BITS
WORD SHIFT EA LEFT DATASBITS

WORD SHIFT EA RIGHT DATARBITS

WORD SHIFT SIGNED EA RIGHT DATAS BITS
INTRA SEGMENT RETURN, ADD DATA TO REG SP
INTRA SEGMENT RETURN
WORD LOAD REG AND SEGMENT REG ES
WORD LOAD REG AND SEGMENT REG DS
BYTE MOVE DATATOFEA

WORD MOVE DATATOEA

PERFORM ENTER SEQUENCE

PERFORM LEAVE SEQUENCE

INTER SEGMENT RETURN. ADD DATA TC REG SP
INTER SEGMENT RETURN

TYPE 3INTERRUPT

TYPED INTERRUPT

INTERRUPT ON GVERFLOW

RETURN FROM INTERRUPT

BYTE ROTATE EA LEFT 1 BIT

BYTE ROTATE EA RIGHT 1 81T

BYTE ROTATE EALEFT THRU CARRY 1 BIT
BYTE ROTATE EA RIGHT THRU CARRY 1 BIT
BYTE SHIFT EA LEFT 1 BIT

BYTE SHIFT EA RIGHT 1 BIT

BYTE SHIFT SIGNED EA RIGHT 1 BIT
WORDROTATE EALEFT 1 BIT



instructions in Hexadecimal Order E—95

0111010001 MOD 001 R/M ROR EA WORD ROTATE EARIGHT 18IT

01 11010000 MOD 010 A'M RCL EA A WORD ROTATE EALEFT THRU CARRY 1 BIT
D1 11010000 MOD 611 RIM RCR EAN WORD ROTATE EA RIGHT THRU CARRY 1 BIT
0111010001 MOD 106 RIM SHL EA 1 WORD SHIFT EA LEFT18BIT

0111010001 MOD 10° RA!M SHA EAN WORD SHIFT EA RIGHT 1 81T

D1 11010001 MOD 110 R/M (noY used)

0111610001 MOD 111 R!M SAR EA WORD SHIFT SIGNED EA RIGHT 1 BIT

D2 11010010 MOD 000 RI!M ROL EACL BYTE ROTATE EALEFT{CL;BITS
0211010010 MOD 001 RIM ROR EACL BYTE ROTATE EA RIGHT {CL} BITS
021419010 MOD 910 RIM RCL EACL BYTE ROTATE EALEFT THRU CARRY {CL)BITS
Dz 11010010 MO0 011 RIM RCR EaCL BYTE ROTATE EA RIGHT THRU CARRY 1CLIBITS
D2 11010010 MOD 100 RIM SHL EA.CL BYTE SHIFTEA LEFT(CL)BITS

D2 1010010 MOD 101 RiM SHR EA.CL BYTE SKIFTEARIGHT (CL)BITS

D2 11010010 MOD 110 R/M tnoY used)

D2 11010010 MOD 111 RIM SAR EAGL BYTE SHIFT SIGNED EA RIGHT (CL: BITS
D3 11010011 MOD 000 R!M ROL EA.CL WORD ROTATE EALEFT ICLI BITS

D3 1010011 MOD 001 R'/M ROR EA.CL WORD KROTATE EA RIGHT(GL) BITS

D3 11040011 MOD 010 R:M RCL EA.CL WORD ROTATE EA LEFT THRU CARRY (CL) BITS
D3 11010011 MOD 011 R!M RCH EA.CL WORD ROTATE EA RIGHT THRU CARRY (GL) BITS
D3 1i(n0g11 MOD 100 AIM SHL EA.CL WORD SHIFTEALEFT(CLIRITS

D3 1010011 MOD 107 A!M SHA EA.CL WORD SHIFT EARIGHT (CLI BITS

D3 1010011 MOD 110 H!M tnot used)

D2 411010011 MOD 111 RIM SAR EA.CL WORD SHIFT SIGNED EA RIGHT {CL} BITS
04 11070160 20001010 AAM ASCIADGUST FOR MULTIPLY

05 11v0181 90001010 AAD ASCI ADJIUST FOR DIWVIDE

D6 ~1010110 inot used)

D7 110101 XLAT TABLE TRANSLATE USING (B8X)

D8 11611--- MOD --- RipA £SC EA ESCAPE TOEXTERNAL DEVICE

D8 11611000 MOD 0600 RiM FADD Short-rea ADDA-BYTEEATOST

04 11011000 MOD 060t RIM FMUL Short-real MULTIPLY STBY 4-BYTE EA

U8 11011000 MOD 010 R/IM FCOM Short-real COMPARE 4-BYTE EAWITH ST

08 11011000 MOD 011 R/IM FCOMP  Shori-real COMPARE 4-BYTE EA WITH ST ANC PQOP
D& 11011000 ™MOD 100 R/M FSUB Shori-real SUBTRACT 4 BYTE FAFROMST

D8 11011000 MO0 101 RIM FSUBR  Short real SUBTRACT STFROMA-BYTE EA

D§ 11011008 MOD 110 RIM FDIV Short-real DIVICE STBY 4-BYTE EA

DB 11019000 WMOD 111 R/M FDIVR Short-real DIVICE 4-BYTE £EA BY 5T

DAYI011000 1 1 0DO v FADD ST.S1{i) ADUELEMENTTO ST

DE 1401100C 1 1 DO1  (a FMUL ST,5Tw) MULTIPLY ST BY ELEMENT

D& 1011000 1 1 D10 (1) FCOM ST} COMPARE ST) WITH ST

D8 110%1000 1 1 011 1) FCOMP  STii) COMPARE S5T(i) WITH ST AND POP
CeEM0N0R0 1 1 W00 Fsue ST.ST{n SUBTRACT ELEMENT FROM ST
011041000 1 v 301 (i) FSUBR  ST.STii SUBTRACT ST FRCM STACK EVEMENT
D8 11011009 1 1 110 ) FOIY ST, 8Tty DIVIDE ST BY ELEMENT

D8 11011000 1 1 111 i) FOIWVR ST, STt} DIVIDE ST} BY ST

D3 11012091 MOD 000 RIM FLD Short-real PUSH4-BYTEEATO ST

D9 110711001 MOD 001 RIM {nolused}

DS 11011001 MOD 010 RIM FST Short-real STORE 4-BYTE REAL TOEA

D9 11011001 MOD 011 AIM FSTP Shari-real STORE 4-BYTE REAL TO EA AND POP

D% 110110017 MOD 100 RN FLOENY 14 BYTES LOAD 8087 ENVIRONMENT FROM EA

0% 11011001 MOD 101 RIM FLDCW  2-BYTES LOAD CONTROL WORD FROM EA

09 11011631 MOD 110 RIM FSTENYV 14-BYTES STORE 8087 ENVIRONMENT INTO EA

09 11011001 MOD 111 RIM FSTCW  2-BYTES STORE CONTROL WORDINTO EA

DY 1101100% 1 1 000 {1} FLD STii) PUSH STty ONTO 8T

Dg 11011001 1 1 001 {1 FXCH STt EXCHANGE ST AND §T{1)

0911011001 ¢ 1 010 000 FNOP STORE STIN ST

DY 11011001 1 1 010 001 tnot used)

D9 11011001 ¢+ 1 010 01- tnof used)

0911011001 1 1 10 1 inotused)

D3 11011001 ¢ 1 OF1 i) {14

D9 19011001 1 1 100 (00 FCHS CHANGE SIGN OF ST

D8 11011001 1 1 100 001 FABS TAXKE ABSOLUTE VALUE OF 5T

Dg 18011001 1 1 100 01- (nof used)

D§ 11011001 1 1 100 100 FTST TEST ST AGAINSY 0.0

D9 11011091 1 1 100 10 FXAM EXAMINE ST AND REPORT CONDITION CODE
D9 11011001 1 1 100 11- {not used)

09 11011001 1 1 101 000 FLD1 PUSH +1.0 TOST

09 1011061 1 1 101 O] FLDL2T PUSK 109210 TO ST

D9 11011001 1 v 103 010 FLDL2E PUSH logge TO ST

DS 11011001 1 1 101 011 FLDPI PUSHPITO ST

D3 11011001 1 1 101 400 FLDLG2 PUSH log92 TO ST

Dg11011001 1 1 161 181 FLDLNZ PUSH 10ge2 TOST

Dg 11011001 1 1 101 110 FLDZ PUSHZERO TOST
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D9 11011001
0811011001
D% 11011001
D9 11011001
D9 11011001
09 11011001
Dg 1101100
D% 110110601
0% 11011001
D9 11011001
D9 110110H
D9 1101100
039 110110M
D39 11011001
D% 1101100
D3 11011001
DA11011010
DA1:011014
DA11011010
DATt011010
DA11011010
DA11011010
GA11011910
0A11011010
DA 11011010
DB 110101
DB1101191
DB11011011
DB1191101
DB1101I01
DB11011011
DB11911011
DB1104101
DB11011014
DB1101101
DB11011011
0B11011¢1
DB11011011
DB110110N
DB1IO1101
DB11011611
OC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11D11106
oG 11oN100
DC11011100
DC11011100
DC11011100
DC11011100
DC1101110D
0C11011100
DC11011100
DC11011190
LCYID1N1D0
BD11011101
DD110111I)
DD11011101
OD1101110%
CD1101110%
[s]eRRIGRRIY
CO110t 1101
DD110111H
DD 1101101
DB11011101
DD110111H1
DD11011101
0011011101
DE11011110
DE 11011110

m
110
110
10
"o
110
10
1o
110
1
1o
m
11
11
11
111

MOD 000
MOD 001
MOD 010
MOD 011
MOD 100
MOD 161
MOO 110
MOD 111

g S S g ey
B e e D b e -

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

noe
001
010
m
100
101
10
11

100
100
100
100
100
104
11-
Q00
001
019
o1
100
101
10
M
000
001
010
o1
100
1’
110
m
000
001
010

MOD
MOD
MCD
MOD
MOD
MOD
MOD
MOD

[P Y

MOD
MOD
MOD
MOD (11
MQD 100
MOD 101
MOD 110
111
000
1 0N

10

on

1--
D 000
D oot

m
000
001
010
011
100
101
uo
11
000
001
010
01
100
101
1-
RIM
R/M
AlM
AIM
RIM
RIM
AiM
Rt
RIM
R/M
RIM
RIM
RiM
AIM
R
R/M
000
001
010
011
1--

RIM
RIM
RiM
RIM
R!M
RIM
R/M
RiM
{i)
i)
[[}]
tiy
iy
(i
(i
(1)
Rt
R'M
RIM
RiM
R/M
R/M
RiM
RiM
15
(i}
)
0]
RiM
RIM

{nol used)
F2XM1
FYL2X
FPTAN
FPATAN
FXTRACT
{notused)
FDECSTP
FINCSTP
FPREM
FYL2XP1
FSQRT
(notused)
FRNDINT
FSCALE
{not used)
F1ADD
FIMUL
FICOM
FICOMP
FISUB
FISUBR
FIDy
FIDIVR
ot used)
FILD
{nQtused)
FIST
FISTP
{not used}
FLD
Reserved
FSTP
Reserved
FENI
FOISI
FCLEX
FINIT
Reserved
Reserved
Rescrved
FADD
FMUL
FCOM
FCOMP
Fsue
FSUBR
FDIV
FDIVR
FADD
EMUL
‘2

‘3
FSUBR
FSUB
FOIVR
FDIV
FLD
Reserved
FST
FSTP
FRSTOR
Reserved
FSAVE
FSTSW
FFREE
{4y

FST
FSTP
Reserved
FIADD
FIMUL

Short-integer
Shortanteger
Shaortanteger
Shortanteger
Shori-irteger
Short-integer
Short-inleqer
Short-integer

Short-integer

Shortinleger
Shor-integer

Temp-real

Temp-real

Long-real
Lang-real
Long-real
Long-real
Long-real
Long-real
Long-real
Long-real
ST, ST

STy, ST

ST ST
ST} ST
ST(}) 8T
ST, 8T
Long-real

Long-real
Long-real
94-BYTES

94-BYES
2-BYTES
ST

STt
STei)

Word-tnleger
Word-integer

CALCULATE 2% -1

CALCULATE FUNCTION Y*logp X

CALCULATE TAN OF © AS A RATIO

CALCULATE ARCTAN OF &

EXTRACT EXPONENT AND SIGNIFICAND FROM ST VALUE

DECREMENT STACK POINTER IN STATUS WORD
INCREMENT STACK POINTER IN STATUS WORD
MODULO DIVISION OF ST BY ST(1}

CALCULATE VALUE OF Y*logy (X+1)
CALCULATE SQUARE ROOT OF ST

ROUND ST TO INTEGER
ADD ST} TO EXPONENT OF ST

ADD 4-BYTEINTEGEREA TO ST

MULTIPLY STBY 4-BYTE INTEGER EA

CONVERT 4-BYTE INTEGER EA, AND GOMPARE WITH ST
CONVERT 4-BYTE INTEGER EA. COMPARE WITH ST. POP
SUBTRACT 4-BYTE INTEGER EA FROM ST

SUBTRACT ST FROM 4-BYTE INTEGEREA

DIVIDE ST BY 4.BYTE INTEGEREA

OIVIDE 4-BYTE INTEGER EA BY ST

PUSH 4.BYTE INTEGER EA ONTO ST

STORE ROUNDED ST IN 4-BYTE INTEGER EA
STORE ROUNDED ST IN A-BYTE INTEGER EA, POP

PUSH 10-BYTE EA ONTO ST
STORE STINTQ 10-BYTE EA, POP

ENABLE INTERRUPT
DISABLE INTERRUPTS
CLEAR EXCEPTIONS
INITIALIZE PROCESSOR

ADDB-BYTEEATOST

MULTIPLY ST BY 8-BYTE EA

COMPARE ST WITH8-BYTE EA

COMPARE STWITH 8-BYTE EA, POP STACK
SUBTRACT 8-BYTE EAFROM ST
SUBTRACGT STFROM 8-BYTE EA

DIVIDE ST BY 8BYTE EA

DIVIDE B-BYTE EABY ST

ADD STTOELEMENT

MULTIPLY ELEMENT BY ST

SUBTRACT ST FROM ELEMENT
SUBTRACT ELEMENT FROM ST
DIWIDE STy BY ST

DIWVIDE STBY STi)
PUSH8-BYTE EAONTO ST

STORE STINTO8-BYTE EA
STORE STINTO8-BYTE €A, POP
RESTORE 8087 STATE FROM EA

SAVE 8087 STATETO EA
STORE 3087 STATUS WORD TO 2-BYTE EA
SET STACK TAG TO "EMPTY™

STORE STINTQ ST¢i)
STORE STINTO STti), POP

ADD 2-BYTE INTEGER EATO ST
MULTIPLY STBY 2-BYTE INTEGEREA
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DENDIIND
DEND11110
DE 11110
DE11011 110
DE 11011310
DE 1011110
DE 11011110
DE 11011110
DE 11011110
DE11011110
DE11011110
DE1101t110
DLIDIMIMC
DE 11011110
DE 1101111
DE 1011110
DE 11811110
DEI0 111
DF 1081111
DF 11011111
(LU RIUARRR Y
DF 11011114
DF1to19111
DF 11011111
DF 31011111
DF 11014111
D* 11019111
DF 1101111
DF 11914111
DF 11011111
EO 11100000
E1 1110000t
E2 1110010
E3 11100011
£4 11100100
E5 1110001
E6 11100110
E7 1100111
E8 11161300
F9 111231001
EA 11101040
LB 1101710
EC1110101)
e 01010
EE 1101010
EF 111D101
FO 11110000
Fy 1100
F2 11110010
F2 11001
Fd 11110100
FS 1111010
F6 11110110
FG 11110110
F§ 11110110
F§ 11110110
Fg 11110110
F& 11110110
F6 11110110
F6 11110110
F7 11110111
Fr 11110111
F7 11v10111
F7 111910111
F7 1111011
F7 11110110
F7 1111011
F7 1111011
F8 11111000
F9 11111001
FA 11111010
FB 1111101

MQOD
MOD
MOD
MQOD
MOD
MOD

1
1
1
1

MOD
MOD
MO
MGO
MOD
MGCD
QD
MQOD

MQD
MOD
MOD
MOD
MOD
MOD
MOD
MCO
MOD
MQOD
MOD
MO0
MOD
MOD
MOD
MOD

010
DIR|
100
01
110
111
000
0b1
010
o1

011
on
100
m

110
M

000
(D]

[aD]
011

100
101

110
m
000
m
010
o

300
001

a10
on

00
101

10
11
000
001
010
o1
106G
1t
110
m

RiM
RiM
AIM
RiM
RIM
RIM
(1t
{1
000
011
01-
1.
m
{14
0]
|
RM
A:M
R:M
Al M
RiM
AlM
AlM
RiM
{n
i
(1}

FICOM
FICOMP
FISUB
FISUBR
FIDIV
FIDWR
FADDP
FMULP
“(5)
Reserved
003y
Reserved
Reserved
FSUBRP
FSUBP
FDIVRP
FDIVP
FiLD
Reserved
FIST
FISTP
FRLD
FILD
FBSTP
FISTP
“16)

M4

"8}

i3
Aeserved

Word-integer
Word-integer
Word-inteqer
Word-integer
Word-integer
Word-integer
ST(1. ST

ST 8T

FCOMPP

5T, ST
ST(H. ST
ST, ST
S5Tin. ST
Wwarg-inleger

Word-integer
Word-integer
Packed decimal
Long-wnteges
Packed decma:
Long-wieger

LOOPNZ 'LOOPNE DISP8

LOOPZILOOPE  DISPB
LOOP DISP8
JCXZ DISPE

IN AL.PORT
IN AX PORT
ouT PORT AL
ouT PORT AX
CALL DISP16
JMP DISP16
JMP UISP16 SEG1E
JMP OISPE

IN Al DX

IN AX, DX
ouT DX.AL
ouT DX.AX
LOCK

tnot vsed;
REPNZ/REPNE
REPZ/REPE/REP
HLT

CMC

TEST EA DATAS
(notusec)

NOT EA

NEG EA

MUL €A

IMUL EA

Div EA

DIV EA

TEST EA.DATAI
(not used)

NOT EA

NEG EA

MUL EA

IMUL EA

v EA

DIy EA

cLe

S5TC

CLI

s

COMPARE 2-BYTE EAINTEGER WITH ST
COMFPARE 2-BYTE INTEGEA EAWITH ST POP
SUBTRACT 2-BYTE INTEGEREA FROM ST
SUBTRACT ST FROM 2-BYTE INTEGER EA
DIVIDE ST 8Y 2-BYTE INTEGER EA

DVIDE 2-BYTE INTEGER EA BY ST

ADD ST TO ELEMENT, POP

MULTIPLY ST BY ELEMENT, POP

COMPARE ST WITH 8T(1), POP TWICE

SUBTRACT ST FROM ELEMENT, POP
SUBTRACT STi) FROM ST, POP

DIVIDE STACK ELEMENT BY ST, POP

DIVIDE ST BY STACK ELEMENT, POP
CONVERT 2-BYTE EA AND PUSH ONTO STACK

BOUND ST AND STORE IN 2.BYTE INTEGER EA

RCUND ST.STORE IN 2-BYTE INTEGER EA, POP

LOAD BCD TO ST

CONVERT8-BYTEINTEGER EA AND PUSH ONTQ STACK
CONVERT ST. STORE IN10-BYTE BCD EA. POP

ROUND ST.STORE IN 8-BYTE INTEGER EA. POP

LOOP{CX) TIMES WHILE NOT ZERGINOT EQUAL
LOOPICX) TIMES WHILE ZERO/EQUAL
LOOPCX) TIMES

JUMP ON (CX1=0

BYTE INPUT FROM PORT TO RZG AL
WORD INPUT FROM PORT TO REG AX
BYTE OUTPUT ALY TO PORT

WORD CUTPUT (AX) TO PORT

DIRECT INTRA SEGMENT CALL

DIAECT INTRA SEGMENT JUMP

DIRECT INTER SEGMENT JUMP
DIRECTINTRA SEGMEN1 JUWMP

BYTE INPUT FROM PORT i2X1 TO REG AL
WORDINPUT FROM PORT (DX) TO REG AX
BYTE OUTPUT LAL; TG PORT {DX)

WORD OUTPUT {AX) TO PORT (DX}

BUS LOCK PREFIX

REPEAT WHILE {GX)#0 AND (ZF}-0
REPEATWRILEICX)70 AND (ZF)-1
HALT

COMPLEMENT CARRY FLAG
BYTE TEST(EA) WITH DATA

BYTE INVERT EA

BYTE NEGATEEA

SYTE MULTIPLY BY {EA}. UNSIGNED
BYTE MULTIPLY BY (EA}. SIGNED
BYTE DIVIDE BY (EA). UNSIGNED
BYTE OIVIOE BY (EA). SIGNED
WORD TESTHEAIWITH DATA

WORD IMVERTEA

WORDNEGATEEA

WORD MULTIPLY BY (EA), UNSIGNED
WORD MULTIPLY BY (EA}, SIGNED
WORD DIVIDE BY {EA). UNSIGNED
WORD DIVIDE BY {EA), SIGNED
CLEAR CARRY FLAG

SET CARRY FLAG
CLEARINTERRUPT FLAG

SET INTERRUPT FLAG



E-8 asmss

FC 11111100
FD 11311101
FE 11111110
FE 11111410
FE 11111110
FE 19411110
FE1111111Q
FE 11111110
FE111A110
FE11111110
FE11111111
FF11111111
FF 11110911
FF 11111311
FF1111111
FF 11111111
FFE11111111
FE1111110)

MOD
MQD

000
001

MOD 010

MOD

011

MOD 100
MOD 101
MOD 110
MOD 111
MOD 000
MOD 001
MOD 310
MOD 011
MOD 100
MOO 101
MOD 110
MOD 111

RIM
RiM
RIM
Rim
RiM
RiM
Rim
RiM
Him
R/M
A/M
Ritd
RiM
RIiM
RiM
RitA

CLD

STD

INC

DEC

{not used)
(not used)
{not used)
(not used)
{noi used)
(not used)
INC

DEC
CALL
CALL
JMP

JMP
PUSH
(notused)

EA
EA

EA
EA
EA
EA
EA
EA
EA

CLEAR DIRECTION FLAG
SET DIRECTION FLAG
BYTE INCREMENTEA
BYTE DECREMENT EA

WORD INCREMENT EA

WORD DECREMENT EA
INDIRECT INTRA SEGMENT CALL
INDIRECT INTER SEGMENT CALL
INDIRECT INTRA SEGMENT JUMP
INDIRECT INTER SEGMENT JUMP
PUSH{EA) ON STACK

AEG IS ASSIGNED ACCORDING IO THE FOLLOW NG TABLE:

‘B-BIT iW-1

€00
0
010
on
150
101
Rk
1

AX
CX
DX
BX
5p
gr
Sl

Cl

8-BIT (W-0:

300
20!
0
o
100
101
10
‘1

AL
CL
[s1R
8L
AH
CH
DH
ai

o0
01
10
“1

ES
Cs
58
ns

SEGMENTREG

EALSCOMPUTED AS FOLLOWS (DISPS SIGN EXTENDED TO 16 BITS;

00
a0
a0
o0
00
0b
ils}
00
0
0
0t
a1
01
n
01
ai
10
‘D
10
10
10
10
‘0
10
11
11
1
1"
1
n
11
1

00¢
001
010
o1
160
101
10
11
000
cot
010
on
100
101
110
1
200
0o
010
01t
100
101
110
1114
000
00!
010
011
100
101
130
111

(BX} «iSh
{BXy+ (DI
(BP1+iSl}
I1BPY~ (DI}

1Sh
1Dl

DISPIE:DIRECT ADDRESS)

(BX)

{BX)+181 + DISP8
{BX3+{DN+ DISP8
(BP}~ (51} + DISP8
{RP}+ (DI« DISPE
(Sh~DISP8
DI} + DISP8

iBP1+ OISPS
BXy-0ISPE

{BXy= iS5+ 0DISP16
{BX1«(DVi+DiSP16
(BP} - (8]) + DISP1G
{BPj « (D1} » DISP16

151} - DISPYB
1Dl + DISPI6
(BP}~ BISP1G
(BX) .« DISP16
REG AX + AL
REGCX ! CL
REG DX/ DL
REG BX i BL
REG SP ! AH
REG BP { CH

REG SI/ DH
REG DI/ BH

FLAGS AEGISTER CONTAINS:
XXX K QF A DF IR ATFYL.(SF)(ZF Yy XtAF 1 X (PF).X:{CF}

05
ns
S8
88
0s
05
B}
DS
DS
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“The marked encodings are NOT generated by the language translators. IT however,
the 8087 encounters one of these encodings in the instruction stream, il will execute

ita
)
(2)
{3
(4
)]
(6)

s follows:
FSTP ST
FCOM ST()
FCOMP ST(i)
FXCH ST()
FCOMP ST(i)
FFREE ST(i) and pop stack

- 186 only Instrueuon

Ieng e Inigrsegingt
NBMCry

‘eg slel

EA 05 serdnd by
shact nivasegment
segmenl regisie:
mEPU ey

vaiiaple

word operatian

zare

{7} FEXCHST)
{8} FSTPST(i)
(9) ESTP ST()
iAPX 86788/ 186 INSTRUCTION SET MATRIX
Hi| Lo Hi. Lo
[ 1 2 3 a 5 5 ? B8 A [ D E F
] ADD %00 00 ADD ADD ADD [ PySH [ POP | a oR oA OR :
btim wioim telmo owtnin bia wod ES ES Lb frhin | wi 1.'|\\_J hteim
' ADC AQC 4 as3cC ADC ADC | PUSM  POP 1 SRA s8B SBE SBB PUSH L
Giom | whoim wivm wien | w P 5 cbrem [ wheim eim | wiin b Wi Vs D
1 [ anp AND AND | ANO | AND aND | 3:G : 2 suB | SUB | sue | SuB T SUB | suA | SEG
; naa - Py DAS
[ ARTL wlrim plioim whrim [} " ES greim [wloim| GLom | wtelm b W o8
3 ¥OR XOF %GR ACR x08 KOR | SEG | —Mi 1 cMP | CMP | cm® | owme cMP CMP SES ans
[ AN wlem Jhinm wedm e.i wa 5% | clrim w'mm| EBleim | wtrim L. W DS
q INC INC INC ING INC ING NC NG| q JEC | OLC DEC OEC SEC DEC DEC CEC
ax cx ux B SP ap sl cl o ax [ O% BX 5P ep $1 ol
s | PusH pUSH © pUs4 Leusk | use | Bosk pusk | vusH s POP FOP FOP POP 20p POP POP © POP -
ax Cx D % 52, BP | s o] | ax [ [0 8% SP 8P s | o
L= . = 4+ - — o - —
6 T"eounn | | | §  FLSM  WAUC | FLSH | IMLL INS NS 91§ DTS
| FUSHA POPA iorem ' ' . " 1o im 1S figatne ] w ] w
i i Bl ner | .U INE- | JBES JNBE:r- r e T e - oo anT | ader T oumE:
| 0 wo | MRS AL 2 Ny | ana | aA B WNS T e ! wo ez ' JcE | NG .6
s | i s nmed  Ammed | CES] TES™ [XCHG | AOHG | a [(wov T wov | mow MOV MOy ca Qv oCP
[ 151 artm T ‘ Bitm wtim olelm  wliim 2 e wiim I sTram - i titm rmo |
9 THCHG UXCHG | X016 | XCHG RCWG | #CHG s | SALL L
ox ox . op 1 3F 5 o CBw l [stVii} d WAIT | PLSHF | POPE | SAHF LAHF
A MOV ,' 1-10'.'—1 MOVS I-MOVS CuPs | CMPS A TEST  TEST | $708 ! ST0S | (ODS | LODS | sCaS | SCas
Ac—m  Ax—-m 3 w b " 3 vl h w | b w E "
= L Lo R, _ — i - | v — _{
B MOV MOV | MGV 1' MOV LMDV MOV | mOv 8 | Mov ! oMoy | MOV way L MOv MOV MOV Moy !
Cim AL ~Du | v=BL ' i=AH [ 1-CH =DM [ -B- \~AX 1 CK 1 -DX i-BX [ -8 -BP sl Ve D
C sShil §'n'| ner ) o . o M“'u' MOV C ENTER | _i'\‘_l - INT INT =z
b.rim, TW-'-'"\ V)-SR RET | LES LDS booon - winme jwmbe “tAVE { Typeld LAny1 INTO IREL
— =t JRAL - AN - — ¥ el —
G sk, Shr | Shn S ARD KLAT o ESC ESC  ESC | ESG ESC ESC
3 | w b A . | d ] b r
E [LOOPNZI LOOPZ! ) & T w o Tour | oout E e Cour our
woorwe Leoopr | W9OF 1w » d | ex  va va
F - T Lo Gt | G d w1 o | Gz | Gz
LGCK 1 nsﬂ_ : - H nmr;_l?”w A $C | ol sTO Lurm | Wem
where
. . - — — 1 0 nylc operana
, mon_rm GO0 ) 001, @0 ] o e | wm ne n 3 - grect
g ADD | OR | ADC | SHB ANL SUB | XUH | CMP t = nomCPUreg
— — s T _ . = amenediale
Shett aoL | RSA | ACL RCA ' SHL'S&L SHi S1LiSAL| SAR . !
o c—e] —— - - . & inknee 1odczur
Gigl TEST | NOT | NEG MUL iyl o oo 12 = mmediate byte
Gro 2 &C | DEC | CAL. | CALL WME L UMB PUSH g = andirecl
w d ] Lz is = mmed byle sigo et
_— e ==t - - e = mmemate word






Example Macros

This appendix presents some exainple macros. These macros are designed 10 support
the writing of ASMB86 routines that will be linked to other modules for the SMALL
model of computation (see An fntroduction to ASME6). The intent here is not to
show the full power of MPL. Instead, it is to demonstrate a practical use for macros
N 4 COmMMON programming situation,

These macros could be butltinto an include file. I you were developing a [arge st of
ASME6 modules, you could use this include file at the beginning of each of .your
modules to define a common interface between the modules (in this case SMAILL).
Similar sets of macros could be defined to support other models of computation.

A SET OF MACROS TO SUPPORT THE SMALL MODEL OF COMPUTATION
;70 BE USED AS AN INCLUDE FILE

SNOLIST

;THIS MACRO WILL GENERATE A PUBLIC SEGMENT STATEMENT WITH
+A NAME AS A PARAMETER

%*DEFINE (SEG(NAME)) C(ZNAME SEGMENT PUBLIC ‘'ZNAME')

; THESE MACROS ARE USED TO GENERATE THE SEGMENT DIRECTIVES
; FOR THE SMALL MODEL

;CODE SEGMENT

Z*DEFINE (CSEGY (XSEG(CODEY)
X*DEFINE (CEND) (CODE ENDS)
;DATA SEGMENT

4*DEFINE (DSEG) (4SEG(DATA))
A*DEFINE (DEND) (DATA ENDS)
;CONST SEGMENT

4*DEFINE (CONSEG) (%SEG(CONST))
“*OEFINE (COMNEND) (CONST ENDS)
;MEMORY SEGMENT

X*DEFINE (MEMSEG) (MEMORY SEGMENT MEMORY 'MEMORY')
“*DEFINE (MEMEND) (MEWORY ENDS)

;THIS MACRO WILL DEFINE A STACK SEGMENT. THE NUMBER OF
;WORDS TO RESERYE FOR THE STACK IS PASSED AS A PARAMETER.

Z*DEFINE (STACKSEG(LENGTH)) (STACK SEGMENT STACK 'STACK'

DW XZLENGTH DUP (7)
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STACK ENDS)

;THE FOLLOWING MACRO WILL GENERATE THE CODE TO INITIALIZE
+A SEGMENT REGISTER. IT WILL USE THE AX REGISTER.

%*DEFINE (INIT(SEGREG, SEGBASE)) (MOVE AX, XSEGBASE
MOY XSEGREG, AX)

;THE FOLLOWING MACROS GENERATE THE PROLOGS AND EPJLOGS USED
JAT THE BEGINNING AND ENDINGS OF PROCS.

%*DEFINE (PROLOG) <(PUSH BP
MOV BP, SP
)
;NO PARAMETERS
%*DEFINE (EPILOG) (POP BP
RET
}
:PARAMETERS TO 8E POPPED OFF THE STACK
%*DEFINE (EPI(PARMBYTECOUNT)} (PQP BP
RET XPARMBYTECOUNT
)
SLIST
;GROUP DECLARATIONS FOR THE SMALL MODEL
CGROUP GROUP CODE
DGROUP GROUP DATA, CONST, STACK, MEMORY
ASSUME CS:CGROUP, DS:DGROUP, SS:DGROUP, ES:DGROUP

JEND QF INCLUDE FILE

The following is an examplc source file that uses these macros.

;AN EXAMPLE SOURCE FILE USING THE SMALL MODEL MACRO
;INCLUDE FILE

$INCLUDE SMALL.LIB

XDSEG
. ;some data
XDEND
XCONSEG
. ;constant definitions
%CONEND

jreserve 10 words of stack

ASTACKSEG(10)
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%CSEG
APROC PROC NEAR
KPROLOG
: ;code goes here
1EPILOG
APROC ENDP
XPROC PROC NEAR
APROLOG
i ;code goes here
ﬁEPIEé) ;pop & bytes of parameters
XPROC ENDP
%CEND
END

The above source module would expand 10 the following form:

;AN EXAMPLE SOURCE FILE USING THE SMALL MODEL MACRO
;INCLUDE FILE

SINCLUDE SMALL.LIB

;A SET OF MACROS TO SUPPORT THE SMALL MODEL OF COMPUTATION
;70 BE USED AS AN INCLUDE FILE

$NOLIST
1GROUP DECLARATIONS FOR THE SMALL MODEL
CGROUP GROUP CODE
DGROUP GROUP DATA, CONST, STACK, MEMORY
ASSUME CS:{GROUP, DS:DGROUP, SS:DGROUP, ES:DGRQUP
JEND OF INCLUDE FILE
DATA SEGMENT PUBLIC 'DATA'
;some data

DATA ENDS
CONST SEGMENT PUBLIC ‘'CONST’

: ;constant definitions

CONST ENDS
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;reserve 10 words of stack
STACK SEGMENT STACK 'STACK!
b 10 DUP (?)

STACK ENDS

CODE SEGMENT PUBLIC ‘CODE'

APROC PROC NEAR
PUSH BP
M0V BP, SP
l ;code goes here
EUP BP
RET
APROC ENDP
XPROC PROC NEAR
PUSH BP
MOV BP, SP
. ;code goes here
F"OP BP ;pop 6 bytes of parameters
RET 6
XPROC ENDP
CODE ENDS

END
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In this Appendix, several sample programs are presented, cach with several
sotutions.

The first two examples illustrate transferring control o one of eight routines,
depending on which bit of the accumulator has been set to 1 (by earlier instructions,
not shown),

Examples 3, 4, and § discuss additional methods of passing data and parameters 10
procedures, illustrating the use of both the registers and the stack for passing
parameters. Examples 6 and 7 cover multibyte addition and subiraction. Interrupt
procedures and liming loops are described in examples 8 and 9. Examples 10-13
illustrate input/output control.

The 8086 code examples given here are not optimal, and (he presentation is not an
attempt at an exhaustive and complete overview of the language. These examples are
presenled more as a gradual method of butlding familiarity, perhaps suggestive of
further improvements, rather than as ideal, finished models. Some insiruction usage
15 not introduced until the need for it has been suggested by the discussion of priov
code.

Examples 1 and 2

Consider a program that executes one of eight routines depending on which bit of
the accumulator is set:

Jump to routine 11f the accumulator holds 60000001
Jump a routine 2 if the accumulator holds 00000010
Jump o routine 3if the accumulator hotds 00000100
Jump o routine 4 if the accumulator holds 00001000
Jump o rouling 5il the accumulator holds 000410000
Jump to routine 6 il the accumutator holds 00100000
Jump to toutine 7 it the accumulator holds D1000000
Jump to routing 8.f the accumulator holds 10000000

MAIN PROGRAM BRANCH TABLE JUMP
PROGRAM ROUTINES

(normal procedure return sequence not pravided by branch table program}

Example | below is a routine which transfers control 1o onc of the etght possible pro-
cedurcs depending on which bit of the accumulatoris |,

{t moves the low-order bit of the accumulator into a tlag register to find the one
signalling the correct routing, and then transfers hased on that flag. This routine
uses seven instructions, including a tesi to prevent an infinite loop and an indirect
transfler via register BX.

Example 2 achieves the same transfer using a different technigue for selecting the
appropriate address. Lt shifts the high-order bit of Al., and uses register SI as an
index into the branch table.

Each example contains comments, and is followed by a brief explanation.
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Example 1:

BRANCH_ADDRESSES SEGMENT
BRANCH_TABLE 1 DN  ROUTINE_1
DK ROUTINE 2
DN ROUTINE 3
DW ROUTINE 4
DW ROUTINES
OW  ROUTINE 6
DM ROUTINE_7
DM ROUTINE 8

BRANCH ADORESSES ENDS
PROCEDURE_SELECT SEGMENT

ASSUME CS:PROCEQURE_SELECT,

& DS:BRANCH_ADDRESSES
MOV 8X,BRANCH_ADDRESSES
MOV DS,BX ;moves above segment
;base~address into
;segment register OS.
CHP AL,O this test assures that
JE CONTINUE_MAIN LINE ;some bit of AL has been

;s5et by earlyer instructions to specify
;a2 routine (prior insts, not shown).

LEA 8X,BRANCH TABLE 1 ;BX set to location holding
;address of first routine,
L: SHR AL, ;puts least-significant bit
;of AL into the carry flag
sCCR) .
INC NOT YET ;if CF = 0, the ON bit

;in AL has not yet
1been found.

JMP WORD PTR [BX: ;if CF = 1, then control
71s transferred (see
;explanation below).

NOT_YET:ADD BX, TYPE BRANCH_TABLE_1 ;if no transfer, then
sthe bit that is ON has
;not yet been found, so
;BX is set to goint to
;the next entry in the
;address-table, by adding 2.

JMp L sjump to L to shift
;and retest

CONTINUE_MAIN_LINE: ;we reach here only
. ;if no bit was set to
;indicate a desired
;routine
ROUTINE_1:

ROUTINE 2:
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ROUTINE 3:

PROCEDURE_SELECT ENDé

The bine after **L:"", INC NOT YET, reads “‘jump if no carry'’, which means
jump if CF = 0. This will skip over the next line’s transfer if the 17" bit, signalling
the desired procedure, has not yet appeared. If it has been found, CF will be | and
this conditional jump JNC will be skipped. The apptopriate procedure is then
reached by the indirect jump insiruction JMP WORD PTR |[BX|.

A jump s always 10 an address io the code seginent, i.e., relative to CS. The offsel
defining that address in the code segment is not given explicitly here. Insiead, an
indirect JMP is used, with [BX] given as a pointer to the memory location where that
offset is stored.

Register BX as used here within square brackets automaticaliy refers to the contents
of a location in Lthe data segment. The contents of that location are the desired offset
for the jump. In other words, the Instruction Pointer is replaced by the contents of a
location in the data seginent, whosc offset is in BX. The next instruction, ADD BX,
TYPE BRANCH _TABLE .1, adds 2 to BX, thec index into (he branch table. This
causes BX 1o point to the next word of the table. The contents of that word are 1he

offset of the **next’’ routine, again in the code segment.

Example 2:

BRANCH_ADDRESSES SEGMENT

BRANCH_TABLE 1 DW ROUTINE_1
OW ROUTINE 2
DN ROUTINE_3
DW ROUTINE 4
DW ROUTINE_S
OW ROUTINE_6
DN ROUTINE 7
DW ROUTINE 8
BRANCH ADDRESSES ENDS
PROCEDURE_SELECT SEGMENT
ASSUME CS:PROCEPURE_SELECT,
3 DS:BRANCH_ADDRESSES
MOV BX,BRANCH_ADDRESSES ybase-address of
MOV DS,8X ;segment containing
ylists
LEA BX,BRANCH_TABLE_1 ;base~-address of list
;of branch addresses
MO¥ SI,7«TYPE BRANCH_TABLE_1 ;points initially to
ilast such entry
;in List
MOV £x,8 ;loop-counter allowing
;8 shifts maximum
L: SHL AL, 1 ;shifts high-order
;AL bit inta CF
JNC NOT_YET sif CF = 0, routineg
;represented by that
;bit not desired
JMP WORD PTR [BXI[SI] sif CF = 1%, transfer

;to procedure
;represented by most
;recent bit tested
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NOT_YET: SUB SI,TYPE BRANCH_TABLE_1 ;adjust index register
;to point to '‘next'’
;branch-address

LooP L ;decrement CX, if

;LX > 0, transfer to
;L so as to shift

CONTINUE_MAIN_LINE: ;AL and retest

- - L ;we reach here only
;if no bit was set
. 110 indicate a
ROUTINE_1: ;jdesired routine

ROUTINE 2:
ROUTINE 3:

PROCEDURE_SELECT ENDS

In Example 2 several cleinemts have changed, though the net result is the same,
Instead of being incremented, BX stays constant, pointing to the beginning of the
list of branch addresscs. S1is used as an index (subscript) within that list.

The number of shifts is controlled by the count register CX, which the 1.OOP
instruction automatically decrements after each iteration. The accumulator AL is
searched [rom its most-significant-bit using the shift-left instruction (SHL) instead
of SHR. This accounts for (he initialization of S1 to 14, pointing initially to the last
branch-address in the list, 14 byies past the base-address in BX. S1 s subsequently
decremented in cach iteration just as Example 1's BX was incremented.

The insiruetion IMP WQORD PTR [BX][SI] uses the sum of BX and S1 just as Exam-
ple | used BX alone. That is, the sum gives the offset of a word in the data segment,
and the contents of that word replaces the IP. The next insiruction executed s thus
the one whose code-segment offset was s1ored in the branch wable.

[f more than 1 bit were set in Al., these two examples would select different routines
due 1o selecting (he rightmost or leftmost such bit.

Transferring Data to Procedures

The data on which a procedure performs its operations may be made available in
registers or memoryv locations. In many applications, however, reserving regisiers
for this purpose can be inconvenient 1o the sysiem flow of control and uneconomical
in execution ume, requiring frequent register saves and restores.

Reserving memory, on the other hand, ¢can be vneconomical of space, especially if
such data is needed only temporarily. Lt is olien preferable to use and reuse & special
arca called a stack, storing and deleting interim data and parameters as needed.

Regardless of the method used to pass data to procedures, a stack will be necessary
and useful. The CALL instruction uses the stack 10 save the return address. The
RET instruction expects the return address to be on the stack. The stack is also
usually vsed to save the caller’s register values at the beginning of a procedure.
Then, just before the procedure returns to the caller, these values can be restored.
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Lxample 3 shows the use of memory (o pass paramelters. Registers are used for this
in Example 4. Example S uses a stack.

One way 10 use memory to pass data is to place the required elements {called a
parameter list) in some data area. You then pass the first address of this area to the
procedure,

For example, the following procedure, ADSUB, expects the address of a three-byte
parameter list in the S/ regisier. It adds the first and second bytes of the list, and
stores the result in the third byte of the fist.

The first time ADSUB is called, at iabel CALLI, it loads the accumulator from
PLIST, adds the value from the next byte and stores the result in PLIST+2, Return
is then madc to the instruction at RET,

AFTER Tfirst call to ADSUB:

st o5 PLIST
ADSUS:
] PLIST 1
e " PLIST+2

The second time ADSUB is called, at label CALL2, the prior instruction has caused
the S1 regisier o point 10 the parameter list LIST2, The accumulator is loaded with
10, 35 is added, and the sum iy stored at LIST2+ 2. Return is then made to the
instruction at RET2.

Example 3:

PARAMS SEGMENT

PLIST DB

LIST? DB

o
oo
N 00 O
o

PARAMS ENDS

STACK SEGMENT

pw & DOUP (?)
STACK_TOP LABEL WORD
STACK ENDS

ADDING SEGMENT
ASSUME CS:ADOING, DS:PARAMS, SS:STACK

START: MOY AX,PARANS
MOY DS, AX ;initialize 0§
MOV AX,STACK

MOV S§,AX ;initialize S§
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MOV SP,OFFSET STACK_TOP ;initialize S$P
Moy SI,0FFSET PLIST
CALLT: CALL ADSUB
RET1:
LEA SI1,LIST?
CALLZ: CALL ADSUB
RET2:
ADSUB PROC
MOV AL, [ST] ;get 1st parameter
ADD AL, [SI+1] ;add 2nd parameter
MOV [ST+2], 4L ;store result in
RET ;3rd parameter
ADSUB ENDP

ADDING ENDS
END START

The instructions just prior to each CALL load the SI register with the offset of the
first parameter to be added. The MOV statement prior 1o CALLI makes use of the
OFYSET operator (discussed in Chapter 4). 1f 1his operator were omttted, SI would
receive the contents of PLIST instead of its offset. The [LEA insiruction prior 10
CALL2 automatically puts the offset of its source {2nd operand) into the register
destination (1st operand). The MOV statement 1s more efficient, but may only be
used if just the offset is being loaded into the register. IV the address involves an
indexing register {e.g., PLIST [SI + 1]), then the LEA should be used, since this will
add the contents of the SI, 1, and the offset of PLIST, putting the sum in the
destinauion register.

A More General Solution

The approach used in Example 3 has its hmilations, however. As coded, ADSUB
will process a list of iwo and only two numbers (0 be added, and they must be con-
tiguous in memory, Suppose you wanted a subroutine (GENAD) which would add
an array containing an arbitrary number of bytes, located anywhere in memory, and
leave the sum in the accumulatos.

CALL to GENAD:
BX | PAAMI
QENAD:
PARM2
CX=
COUNT
PARMI
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Example 4 below shows how this process can be written in ASM86. GENAD returns
the sum in the accumulator. It receives the address of the array in the BX register,
and the number of array elements in CX.

Example 4:

INITIAL_PARAMETERS SEGMENT
RESULT DB 0

PARM DB 6, 82, 13, 16
INITIAL_PARAMETERS ENDS
GENERAL_PROCEDURES SEGMENT

ASSUME CS:general_procedures DS:initial_parameters

:The procedure is placed fiest, to avoid farward
;referencing the FAR procedure GENAD. Note that the
iprogram ;start address is after the procedure, at label
J"START2.

GENAD PROC FAR
PUSH ST ;save current vatue of SI on the
;stack (discussed below), so that
;this routine tan use this
;register freely, restoring its
;original contents just prior
;t0 returning control to
;calling routine.
INIT: MOV AL, 0 ;initialize AL to receive sum.
KOV SI1, 0 ;initiatize $I to point to first
;array element
MORE?: ADD AL, (BX)[S!] ;add next array element to sum.
;BX points to the start of the
;array, and SI selects an element
;of the array.
INC S ihave S1 index the next
;array element.
LOOP MORE? ;continue Looping until C€X is
;zero (all array elements have
;been added into AL)
POP  SI ;restore original contents of SI.
RET ;transfer to instruction
;immediatety following CALL,
GENAD ENDP

;Program execution starts here (due to the label “start"”
;named on the END directive betow). Point DS to the
;INITIAL_PARAMETERS segment, and call GENAD with the array
iPARM.
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START: MOV  AX, INITIAL_PARAMETERS
MOV DS, AX
MOY CX, SIZE PARM ;number of elements is

;passed in CX
MOY BX, OFFSET PARM ;address of array PARM is
;passed in B8XK.

CALL GENAD

MOY RESULT, AL ;Sum is returned in AL

HLT skrxvxxd end of program rxxswsx
GENERAL_PROCEDURES ENDS

END  START

In GENAD, the first action is 10 save (PUSH) onto the stack the current value of SI
belore using it. Just before the RETurn, this value is restored {via POP). Thus this
procedure dogs not desiroy the status of registers (except AL and CX) possibly relied
upon by the calling routine. Stacks are discussed in Chapuer 4. Further examples
appear below.

The routine does not explicitly save the value of CS because the CALL and RETurn
save CS on the stack and restore it automatcally. The accumultator AL is here
expeciled to be usable without saving its pre-CALL contents. Using AL, the sum is
modulo 256.

The FAR type declaration on the PROC statement tforces the use of “long' CALLs
to and RETurns from this procedure. This means the procedure is not expected to be
in the same segment as all of the CALLs oit. In 2 *'long™ CALL the contents of CS
are PUSHed onto the stack first, then the [P 1s PUSHed onto the stack. {This allows
an eventual returp (o the next sequential instruction.) Control is then transferred to
the procedure by first moving into CS the segment base address for the procedure,
and then replacing the contents of 1P with the offset of the procedure in that sep-
ment. A “long” RETurn reverses this process by POPping the former [P contents
back off the stack into 1P, and then POPping the former CS contents oft the stack
back into CS.

Within the inner body of GENAD, the slatement

MOV AL,D

initializes the sumn to zero. The statement

MOV S§I1,0

mitializes S1 to zero, 10 index (he first element of the passed atray.

The first statement in the loop

ADD AL, [BX) (SI]

adds the array element indexed by Sl into the sum in the accumulator (recall that the
BX register points to the parameter array). In the next statement (INC S}, the array
:ﬂgﬁ;ol; SI is incremented to point to the next array element. The last statement in

LOOP MORE?

executes the loop repeatedly until the count in CX (passed in as a parameter) is
exhausted.
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Using a Stack

Passing parameters on the stack offers different advantages than passing them in
registers. Passing parameters in registers is faster, bul more complicated. The con-
ventons as 1o which parameter should end up in which regisier can be confusing,
especially if there are many procedures.

For parameters passed on the stack, the convention need only specify the order they
should be pushed onto the stack. High level language compilers {e.g., PL/M-86)
generate code which passes parameters on the stack. Therefore, any procedure which
expects its parameters on the stack is callable from PL/M (sec thc¢ ASM86 macro
assembler manual for more details). The 8086 also offers special instructions to facil-
itate using the stack for passing parameters. The RET instruction has an optional
byte count (e.g., RET 4), which says how many bytes should be popped off the stack
in addition to the return address. This makes returning from procedures very casy.
Moreover, since the BP indexing-register uses the SS segment by default, it is very
economical to use BP to reference data near the top of the stack.

Use of stacks may require some further introduction. A stack segment is expected to
be used relative to the contents of the stack-segmeni register SS, just as a code seg-
meunt uses CS and data segments use DS or ES. The siack segment below is defined
for use in this discussion and the examples,

PARAMS PASS SEGMENT STACK

DW 12 DUP (O)
LAST _WORD LABEL WORD
PARAMS PASS ENDS

Four instrections use a stack in predefined ways: PUSH, CALL, POP, and
RETurn. They automatically use the stack pointer SP as an offset to the segment-
buse-address in SS. One of your first actions in a module which will use a stack must
be teinitialize SSand SP.e.p.,

MOV  AX,PARAMS_PASS
MOy S§S,AX
MOY SP, OFFSET LAST_WORD

This use of LAST _WORD is critically important due (o the built-in actions of the
faur instructions named above.

The {irst two, PUSH and CALL, store addilional words on the stack by decrement-
ing SP by 2. Thus the stack “‘grows downward" from the last word in the stack scg-
ment toward lhe segment-base-address lower in memory. Each successive address
used for new data on the stack is a lower number. The location pointed to by SP is
called the Top OF Stack (TOS). When a word is stored on the stack, e.g., by the
instruction

PUSH SOURCE_DATA

SPis decremented by 2 and the source data is moved onto the stack at the new oflset

now in SP. As described above in Example 4, CALL implicitly uses PUSH before
transferring control (o a procedure.

The instruction
POP DESTINATION

takes the word at the '‘top-of-stack’, i.c., pointed at by SP, and moves that word
into the specified destination. POP also then automatically adds 2 to SP. This
causes SP 10 point to the next higher-addressed word in the stack segmen, farther
from the segment’s base-address. The figures accompanying the examples below
show the expansion and contraction of a stack.
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Example S below illustrates the usc of a stack 10 pass the number of byte paramcters
plus the address of the first one. For this example all the parameters are expected in

successive bytes alier that one.

Supplying the Number of Parameters and the First Address,

On the Stack
Example 5:
params_pass SEGMENT STACK

DW 12 pup  (?)
last_word LABEL WORD
params_pass ENDS
data_items SEGMENT
first DB 11, 22, 33, 44, 55, 66
second DB 4, 5, 6
third DB 94, 88
result DX ?
data_items ENDS
stk_usage_xmpl SEGMENT

ASSUME CS: stk_usage_xmpi, DS:

genaddr PROC FAR
PUSH BP
PUSH BP, SP
PUSH BX
PUSH X

MOV cx, [BP + 81

MOV BX, (8P + 101

MOY AX, 0

adder: ADD AL, [BX]
ADC AH, 0

INC BX
LOOP  adder
pQoP CX
PoP BX
poP BP
RET 4

;reserve 12 words of
;stack space
;last_word is the
;offset of top of
istack

data_items, SS:params_r

;save old copy of BP

imove tos to BP (see

;figure 4)

;save BX, so ok to use BX in
;genaddr

;save CX, so ok to use CX in
;genaddr (figure 5)

;get count of number of bytes
;in array

;get address of array of
ibytes

;AX == 0. AX holds running
;sum in adder loop.

;add in the first byte

;3and add any carry into AH.
;point to next byte to be
;added in.

PEX 3= CX - 1;0F CX <> 0 THEN

~

;G0TO ADDER; ~TN

;The registers must be
;restored in the
;reverse arder they were
;pushed.

;return, popping off the 2
sWORD parameters
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genaddr ENDP

stk_usage_xmpl ENDS

caller SEGMENT
ASSUME CS: caller, DS: data_items, SS: params_pass
start: MOY AX, data_items ;paragraph number of
;data segment to AX
Mov DS, AX ;and then to DS.
MOV AX, params_pass ;paragraph number of
;stack segment to AX
MOV $S, AX ;and then to $§

MOV SP, OFFSEY last_word ;offset of the
;stack_top to the SP

MOV AX, OFFSET first ;offset of first to
T AX

PUSH AX ithen onto the stack

MoV AX, SIZE first ynumber of bytes in
;first array to AX

PUSH AX ;then onto the stack

CALL genaddr ;Call the far
;procedure

MOV result,AX

MOV AX, OFFSET second

PUSH AX

MOV AX, SIZE second

PUSH AX ;same as above except

;doing second
CALL genaddr
MOV result, AX

MOV AX, OFFSET third

PUSH AX
MOV AX, SIZE thirg ;same as above except
;doing third
PUSH AX
CALL genaddr
MOV result,AX
HLT
caller ENDS
END start

To indicate why each register was saved, the above code has each PUSH placed just
prior e the first local use of that register. Earlier examples clustered those PLISHes
at the top of the rouline, just as the POPs appear {in reverse order) at the end. This
makes il easy 1o see the proper order of saving and restoring. [n either case you must
consider carcfully where the parameters are relative to the pointer you are using,
e.g., BP. Making your own diagrams can heip.
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Note that the RET instruction of *‘genaddr” is a RET 4; the two parameters are
popped off (he stack as the RETurn is execuled. Without the 4, this 12 word stack
namcd “PARAMS_ PASS™ could only be used three times. The fourth call would
cause two words outside that segment to be clobbered.

This is why: prior to each call the parameter words are pushed onto the stack. Then
each call vses (wo words of the siack to swore the return address. Fach execution of
the procedure pushes three more words onto the stack to preserve register values.
These last five words are popped off by the procedure’s end and return, but those
first two paramcters would remain.

Multibyte Addition and Subtraction

The carry flag and the ADC (add with carry) instructions may be used to add
unsigned data quantities of arbitrary length. Consider the foliowing addition of (wo
three-byte unsigned hexadecimal numbers:

32AF8A
+84BAS0
B76A1A

To pertorm this addition, you can use ADD or ADC to add the low-order byte of
each number. ADD sets the carry flag for use in subseguent instructions, but does
not include the ¢carry flag in the addition.

Step 3 Slep 2 Step 1
32 AF 8A
B4 BA 30
B7 84 1A

carry=1 carry=1

The routing below performs this multibyte addition, making these assumptions:

The pumbers 1o be added arc stored from low-order byte 10 high-order byte begin-
ning at memory locations FIRST and SECOND, respectively.

The result will be stored from low-order byte (o high-order byte beginning at
menory location FIRST, replacing the original contents of these locations.

MEMORY BEFORE MEMORY AFTER
FIRST + SECOND + CF FIRST SECOND
8A  + 90 + 0 - 1A 1A S0
AF  + BA + 1=56A bA BA
32+ 84 + 1=87 87 84

The routine uses an ADC instruction to add the low-order bytes of the operands.
‘I'his could cause the result to be high by one if the carry flag were left set by some
previous instruction. This routine avoids the problem by clearing the carry flag with
the CLC instruction just before LOOPER.

Since none of the instructions in the program loop affect the carry flag except ADC,
the addition with carry will proceed correctly.
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MULTI_TW0 SEGMENT

ASSUME CSIMULTI_TWO,

& DS:ADD DATA_2
START: MOV  AX,ADD DATA 2

MOV DS, AX

;The routine determines whith number is longer and stores

;the result there, The size in bytes of the smaller number
where both numbers do have a byte

;controls LOOPT,

i.e.,

;of data to be added.
;The difference in size controls LOOP2, which is needed if
sthere is a final carry.

MOV
LEA

LEA

CMP
JGE

XCHG

XCHE

XCHG

NUMZ_BIGGER:MOV
suB

MOY
MO¥

cLe

MoV

LOOP1: MOY

AX,
BX,

BP,

AX,

NUMZ
SECOND

FIRSY

NUMT

NUM2_BIGGER

AX,

AX,

BX,

Cx,
cx,

NUMZ,
CX,

§1,

AL,

[BX]

NUM1

NUM2

ap

NUM2
NUM1

CX
NUMT

DS: [BP] [SI)

{s1, AL

;Initially assume NUMZ
;larger, and

;give BX address of
;longer number,

;BP address of shorter
;number.

;Check assumption.
;continue with values
;as they are unless N2
;> N1,

;SWitch NUM2 and NUMT,
;exchanging

;through AL NUMZ now <
NUMT .

;Must also now switch
;addresses referred to,
;so that number of
sbytes still
scorresponds with
;correct number,

;and sum goes

;to longer place.

;NUM2 now gets
;difference

;of sizes. Use smaller
;number of bytes for
;central add.

;Clear carry of
,possible prior
;setting

;Initialize index to
ybytes of addends. Then
;S1=81+1.

;G6et byte of shorter
;number.

+Add it to relevant
ibyte of
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INC SI ilonger number. Then
SI=S141
LOOP LOOPI :
MOV  CX, NUM2 ;Number of bytes yet
junused in longer
;number.
LooP2: JNB DONE ;1f no carry, CF=0,

;then done.

ADC BYTE PTR [BX] (SI]1,0 ;Add carry to remaining
;bytes

INC S1 ;of longer number. Then
181=81+1.

LOOP LOOPZ
DONE: .

MULTI_TWO ENDS
END START

With some additional instructions, this same routine will do arithmetic for packed-
decimal numbers. Packed-decimal means the 8 bits of each byte are imerpreted as 2
decimal digits, e.g., 01100111 B would mean 67 decimal instead of 67 hexadecimal
{103 decimal).

Below is the core of an 8086 routine to do decimal subtraction for packed-decimal
numbers.

Example 7:

MOV SI, 0
MOV  CX, NUMBYTES
tLe

MORE?: MOV AL, FIRST [S1]
$8B AL, SECOND [SI]

DAS

MOY SECOND [SI), AL
INC  §I

LOOP MORE?

Interrupt Procedures

Example 8:

:The following illustrates the use of interrupt procedures
;for the 8086. The code sets up six interrupt procedures
;for a hypothetical 8086 system involved in some type of
;process control application. There are 4 sensing devices
;and two alarm devices, each of which can supply external
sinterrupts to the 8086. The different interrupt-handling
;procedures shown below are arbitrary, that is, the events
;and responses described are not inherent in the 8086 but
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;rather in this hypothetical control application. The
iprocedures merely illustrate the diverse possibilities
i for handling situations of varying importance and
yurgency.

ASSUME CS:INTERRUPT_PROCEDURES, DS:DATA_VAR

DEVICE_1_PORT €Qu 0F0O00H
DEVICE_2 PORT Equ 0F0Q2H
DEVICE_3 PORT EQu 0F004H
DEVICE 4 PORT EQU  OF006H
WARNING LIGHTS EGU OEOQOH
CONTROL_1 EQU  OEQ08H
EXTRN CONVERT_VALUE:FAR
;Positioning this EXTRN here indicates
sthat CONVERT_VALUE is outside of
;all segments in this module,
INTERRUPT _PROC_TABLE SEGMENT BYTE AT 0
ORG O8H

oD ALARM 1 ;non-maskable interrupt
type 2

;0ne 64K area of memory contains pointers to the routines
;that handle interrupts. This area begins at absolute
;address zero. The address for the routine appropriate
;to each interrupt type is expected as the contents of the
;double word whose address is 4 times that type. Thus the
;address for the handler of non-maskable-interrupt type 2
;is stored as the contents of absolute location 8. These
;addresses are also called interrupt vectors since they
;point to the respective procedures.

:The first 32 interrupt types (0-31) are defined or
;reserved by INTEL for present and future uses. {(See the
;8086 User's Manual for more detail.) User-interrupt type
:32 must therefore use location 128 {(=80H) for its
yinterrupt vector.

ORG 08H

bo ALARM 2 ; INTERRUPT TYPE 32
DD DEVYICE_1 ;INTERRUPY TYPE 33
DD DEYICE_2 ;INTERRUPT TYPE 34
oD DEYICE_3 ;INTERRUPT TYPE 39
oD DEVICE_4 ;INTERRUPT TYPE 36

INTERRUPT_PROC_TABLE ENDS

DATA_VAR SEGMENT PUBLIC

EXTRN  INPUT_1_VAL:BYTE, OUTPUT_2_VAL:BYTE,
& INPUT 3_VAL:BYTE, INPUT_&_VAL:BYTE
EXTRN  ALARM_FLAG:BYTE, INPUT_FLAG:BYTE

iThe names above are used by 1 or more of the procedures
:below, but the location or vatue referred to is located
;(defined) in a different module. These EXTeRNal
;references are resolved when the modules are linked
;together, meaning all addresses will then be known.
ibeclaring these EXTRNs here indicates what segment they
are in.

DATA_VAR ENDS
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;The names below are defined later in this module, The
sPUBLIC directive makes their addresses available for
;other modules to use.

PUBLIC ALARM_1, ALARK 2, DEVICE 1, OEVICE 2, DEVICE_3,
& DEVICE_4

INTERRUPT_PROCEDURES SEGMENT
ALARM_1 PROC FAR

;The routine for type 2, '"'ALARM_1'' is the mgst drastic
;because this interrupt is intended to signal disastrous
;conditions such as power failture, It is non-maskable,
;i.e., it cannot be inhibited by the Clear Interrupts
;(CLI) instruction.

MOY DX,  WARNING_LIGHTS
MOV AL, OFFH

ouT DX, AL sturn on all lights
MOV DX, CONTROL_1 H

MOV AL, 38H ;turn of f

ouT DX,AL ;machine

HLT ;stop all processing

ALARM 1 ENOP

ALARM_2 PROC FAR

PUSH DX

PUSH AX

MOY DX, WARNING _LIGHTS

MOV AL, 1 ;turn on warning light #1
ouT DX, AL ;to warn operator of device

MOV ALARM_FLAG, OFFH ;set alarm flag to inhibit

POP AX ;later processes which may
;now be dangerous

POP BX

IRET ;return from interrupt:
sthis restores the flags
;and returns control
;the interrupted
;instruction stream

ALARM_2  ENDP

DEVITCE 1 PROC

PUSH DX

PUSH AX

MOV DX, DEVICE_1_PORT

IN AL, DX ;get input byte from
MOV INPUT 1 VAL, AL ;device_ store value
MOV INPUT_FLAG,?2 ;this may alert another

;routine or device that
;this interrupt and input
roccurred
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poP
PoP
IRET

AX
DX

DEVICE_1  ENDP
DEVICE_2  PROC

PUSH
PUSH

MOY¥
MOV
out
POP
poep
IRET

DX
AX

AL,  QUTPUT_ 2 VAL
DX, DEVICE_2_PORT

DX, AL
AX
DX

DEVICE_2  ENDP
DEVICE_3  PROC

PUSH
PUSH
MOV
IN
AND
MOV
POP

POP
IRET

DX
AX

DX, DEVICE_3_PORT
AL,DX

AL,OFH
INPUT_3_VAL, AL
AX

DX

DEVICE_3  ENDP
DEVICE 4  PROC

PUSH
PUSH
PUSH
MOV

IN
MOV

CaLL
MOY

POP
POP
POP
IRET

DX
[
AX
DX, DEYICE_&_PORT

AL, DX
cL, AL

CONVERT VALUE
INPUT 4 VAL, AL

AX
CX
DX

DEVICE 4 ENDP
INTERRUPT_PROCEDURES ENDS

END

;when this interrupt-type
;occurs, the action necessary
;is to notify device_2_port
;of the event

;get value, to output
;to device 2 port

;when a device_3 interrupt
joccurs only the lower byte
;at the port is of value

;mask o2ff top four bits
rstore value for use
*by later routines

;in another module

;a9 device_4 interrupt
;jorovides a value which
;needs immediate

;conversion by another
;procedurebefore this
;interrupt-handler can allow
;it to be used at input_4_val

jconverts input value in
;CL to new result in AL
;and saves that result in
yinput_4_ val
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Timing Loop

Example 8:

;This example is a procedure for supplying timing loops
;for a program, The amount of time delayed is set by a
;byte parameter passed in the AL register, with the amount
;of time = PARAM * 100 microseconds. This is assuming that
sthe 8086 is running at 8 MHZ.

ASSUME CS:TIMER_SEG

TIMER_SEG SEGMENT

TIME PROC

DELAY_LOOP: MOV (L, 7BH ;shift caunt for supplying
SHR CL,CL ;proper delay via SHR countdown
DEC AL ;decrement timer count

JNZ DELAY_LOOP

RET
TIME ENDP
TIMER_SEG ENDS

END

1/0 Routines

The examples below (10-13) usirate the type of procedures used by the SDK86
Serial I+O Monitor to communicate with the kevboard and display units during
execunon.

The first, SIO_CHAR_RDY. tests whether an ioput character is awailing
processing.

The second SIO_OQUT CHAR, omputs a character unless SIO_CHAR_RDY
reports an input character s there, which is handied first.

The third, SIO_OUT. STRING, puts out an entire string of characters, e.g., a
page heading, using SIO0  OUT CHAR for each output byte,

Example 10:

S10_CHAR_RDY  PROC  NEAR
PUSH BFP ;save old value
MOV BP, SP
MOY DX, OFFF2H ;address of status port to DX
IN AL,DX ;input from status port
TEST AL, 2H ;15 read-data-ready line=1,

;i.e., character pending?

JNZ READY ;if so, return TRUE
MoV AL, O ;if not, return FALSE: AL=D
POP BP ;restore old value

RET ;done, no char waiting



Example Programs G=19

READY:

MOGY AL, OFFH ireturn TRUE: AL=all ones
POP BP irestore old value
RET ;done, char is waiting

SIO_CHAR_RDY  ENDP

Example 11:

The above procedure also appeats in this example, which introduces names for some
of the specific numbers used above, and for some that will be used in later examples.
These names can make it easier to read the procedure and understand what is going
on, or at least what is intended.

The example also uses BX and reorders the code 1o save a few bytes.

TRUE EQU OQFFH
FALSE EQU OH
STATUS_PORT EQU OFFF2H
DATA_PORT EQU OFFFON
ASCI1_MASK EQU 7FH
CONTROL_S EQU 13H
CONTROL_& EQU 17H
CARR_RET EQU ODH

SIO_CHAR_RDYZ PROC NEAR

PUSH BX ;save old BX value

MOV BL, TRUE ;prepare for one result

#ov DX, STATUS PORT ;check the facts

IN AL,DX ichar waiting???

TEST AL, 2H ;if 2nd bit ON, char is

INZ RESULT ;Wwaiting hence skip over

MOV BL, FALSE ;FALSE set-up here if 2nd
;bit was off, hence no
;char waiting

RESULT: MOY AL, BL ;AL receives whichever
POP BX restore old BX vatue
RET ;

STO_CHAR_RDY2  ENDP

Example 12:
S10_OUT_CHAR PROC NEAR
;This routine outputs an input parameter to the USART

soutput port when UART is ready for output transmit
;buffer empty. The input to this routine is on the stack.

PUSH BP

MOV 8p, Sp

CALL SIO_CHAR_RDY .keyboard input pending?

RCR AL, 1 ;put low-byte into CF to test
JNB QUTPUT ;if no input char waiting from

;keyboard, go to output loop
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MOV
IN

AND
MOV
CHP
JNZ

CHECK:

cHp
Jz

CALL
RCR
JNB

MOV

AND
MOV
CMP
JNZ

IMP

OUTPUT:

CONTINUE:
LI
IN
TEST
Iz

MOV
MOV
ouT
POP
RET

S10_OUT_CHAR

Example 13:

DX, DATA_PORT
AL, DX

AL, ASCII_MASK
CHAR, AL
AL, CONTROL S
OUTPUT

CHAR, CONTROL_@Q
ouTPUT

S10_CHAR_RDY
AL, 1
CHECK

DX, DATA_PORT
AL, DX

AL, ASCII_MASK
CHAR, AL

AL, CARR_RET
CHECK

NEXTCOMMAND

DX, STATUS_PORT
AL,DX

AL, 1

ouTPUT

DX, DATA_PORT
AL, [BP) + 4
DX, AL

BP

2

ENDP

SIO_OUT_STRING PROC NEAR

;char waiting: get it

;char to AL from that port
;strip off high bit, leaving
;ASCIL coade

;save char

;1s ¢har control-§?

;if this halt-display signal
;18 not rec'd, continue
soutput at QUTPUT

;if control-§ rec’'d, must
;await its release

;tontrol-Q received?

;if this continvation-signal
;rec'd, to do next output

;keep checking for new keyboard
sinput, looping from CHECK

;to here until input waiting

;get waiting character

;if char=carriage-return,
;skip this instruction, which
;loops to await tontrol-&, ard
1go to NEXTCQOMMAND

;loop until status port
;and transmit tine indicate
;ready to put out character

;output port address to DX
;character from stack to AL
;output character in AL through

;restore original BP value
;repositions SP behind prior
;parameter

;O0utputs a string stored in the ''extra'' segment (uses ES
ras base), the string being pointed to by a 2-word pointer
;on the stack

PUSH BP
MOV BP, SP
MOY SI,0

LES BX, DWORD PTR [BP] + 4
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;load ES with base address and BX with offset of string
;(addresses pushed ontao stack by calling routine}

CHECK:

CHP BYTE PTR ES: [ex} [SI), O
;terminator character
;is ASCII

12 DONE ;netl = all zerges if
;done, exit

MoV AL,BYTE PTR ES: [BX] [SI] ;put next char on

PUSH AX

CALL SIO_OUT_CHAR ;stack for output by
;this called procedure

INC S spoint index to next
;char

JMP CHECK

DOUNE:
POP BP
RET 4 ;after return, resets

:1SP behind former
iparameters

SI0_OUT_STRING  ENDP






186 Instruction Set Summary

FUNCYION

DATA TRANSFER
MOV = Move:

Register to Aegrster‘Memory
Register/memory to register

Immeaiate ta register:mencry

Immegiate to register
Memary to accumulalor

Accumulalor 1o memory

Registersmemory to segment iegister

regisier 10 reg
PUSH = Push:
Memory
Reqister
Segment register
Wnmediate

PUSIRR = Push A

POP = Pop:
Memory

Register

Segmenl segister

POPR < Pop A

XCHG = Exchange:

Register:memory with fegister

Register with accLmulator
IN = Input frem:

Fuxed port

Vanabie por

0UT = Dutpul to:

Fixed part

Vanable por

RLAT = Translate byte 10 AL
LEA = Load FA to rpgister
LDS - Load painter to DS
LES = toad pointef 10 €S
LAHF = Load AH with flags
SAHF = Store AH nlo fags
PUSNF = Push flags

POPF - Pop flags

1

FORMAT

[1 DEIO1DDWJ madreg  #m }

[[o00tot w]| madreg rm |

:

1100011 w][ madd0D v | dala [ danitw=1

1011w rgg data pataitw=1
010000 w] _wbiow | _awigr ]
[fo1 000t w] adorlow [ addemgh |
[fo001 11 0] modliteg vm |

[Peoot 10 0] medoreg rm |

iy o] meat1o wm |
1010 reg
G0meg 110
forso1ds o] data ] dmds=0 ]

iI

01100080

[Fooo 1t 11T meg00o em |

D101 1 reg
000 g1t (reg #01)

110000 %

[feoo001 1t w[ modreg rm |

1001 D reg

H

.

1110010 w] podt

Frroorrw] port

1110111 w

11030111

[fo00 1170 1] modreg rim |
[P1o001v0 1] modree rm |  (mod ¥ 1m

100010 ¢ [ modreg rm fmod = 11}

i

sro1111 0
1001 1§00!
10011101

i

186
Clock
Cycles

212
29
12-13
3-4

2/9
2im

16
10

~ @

<

18
18

N

® W W

Comments

8/16-bit
8/16-bit

Shaded areas indicate instructions not available in tAPX 86, 88 microsystems.
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186 INSTRUCTION SET SUMMARY (Continued)

186
Clock Comments

FUNCTIDN FORMAT Cycles
ARITHMETIC
AOD = Ade:
Reg:memacy with register 10 either [cod000cw] mosreg rm | 310
Immediale to register:memory [TT0000s w[ moa00 rm | fat [ datadsw 01 ] 4/16
Immexiate to accumylator [pcoon dw] daa [ datadw 3/4 8116-bit
AOC = Add with carry:
Jegememony with (egisice fo eher [Poo1and w] modieg em 310
!mmed ate to register:mgmory |1 00000s w I moa010 rm ] dala ] culasw 01 4/16
Immediale to accum ulator [boo 0 ow] data | daatw 34 8/16-bit
NC = tncrement:
Regesiermemory [-1 10111 w| mog00C rm | 315
Reqisier 01900 -eg 3
5UB = Subtracl.
Reg:memory and reg:ster 1o eilhe” 0010190dw| mogreg rm 3110
\mmediate from reqisterwemary || 000005 w ] med'B1 '™ ] data ] dalalsw 01 I 416
Immediate fram accumu 3107 [_U.?O 110 w] datd ¢ald Tw—1 34 8/16-bit
$B8 = Sublract with borsow:
Req/Memory ana req ste« 10 either [000 10¢w] momieg rm | 310
Immediate rom registermemany 000005 w[ mogOiv r~ data datarlsw - 01 4116
Immed ate frgm accumuiatar [Doo-110w] data 1 catadw 1 3/ 8/16-bit
QEC = Decremeni-
Qegistec MEMDEY 11 111 w| med0ot r~ 3/15
Apgusien Nn10071 e 3
CMP = Comparce:
Hegistes: MemORy with 1egister W0 T e w] modreg 1m | 310
Tequster with registesmemory [Co 1100 w] modreg em 310
:mmed ale with registerremory [1 00000s 4| mod*11 1m ] da‘a _] oalatsw=-01 I 310
Imfmediate wila actumLlator [bor 10w da1a 23 de -1 34 8/16-bit
NEG = Change sign o vw] meatin e ! 3
ARR = ASCI| adju st tor add DG 0111 8
DAA = Dec ma adust for add COos0D1 11 4
AAS = ASCII adju st for Sudtract gorit11 7
DAS Decima: adjust tor subtraci |U 0101111 4
YL Multiply unsigned) |1 E1 011 | mad 106G rm
JegisterByte 26-28
Gegister Word 35-37
Mermory-By'e 32-34
hemory-Word 41-43
IMUL  Imeyer multiply (stgned) 1111011 w[ myd Q"' rm
Reqister-Byte 25-28
Reqister Worc 34-37
Merrary-Byte 31-34
Memory-Wurd 40-43
IMAIL = Integer immediate muluply [61106106s 1[ modreg rm | e | ents=0 || 22-25/29~32
{signed) :
DIV - Divide [unsigned) I1 111011 N[ meg) 0 em |
Reqister-dyte 29
Reqister-Ware 38
Memary-Bye 35
Memory-Word 44

Shaded areas indicate instructions nol available iniAPX 86, 88 microsystems.
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186 INSTRUCTION SET SUMMARY (Continued)

186
Comments
FUNCTION FORMAT Clock
Cycles
[~ ARITHMETIC [Continued)
IDIV - Integes divide 1signed’: 1111011 w| mod110 r'm 44-52
Qegisier-Byie
AegisterWord 53-61
Memory-Byte 50-58
Memary-Waorg 59-67
AAM — ASCI1 adjust for mulliply [[1ciotoalogano ¢, 19
AAD - ASCH agjus? lor div de [[torerotJooooi101a 15
CBW - Convest oyte '¢ word 10C¢1 10049 2
CWD - Canvert word io double word 4
LOGIC
Shilt:Rotate lasiructions:
Register;Memory by ° Il 161000 w l mod 11T ¢m 2115
Register:Memory by LL [f1c1001 w][ mod TTTsm | 5+ni17+n
RapisteriMemory by Count [t1ob000w] mod T em | count ) 5+nf17 +a
TTT Insiruction
oo ROL
0o RON
41¢C RCL
D1 ACA
100 SHLSAL
0 SHR
11 SAR
AND =And:
Ripg/memory and regester te eilner [007000dw] mocreg rm | 3110
Immediate 1o reqisier: memuey 1000000 w[ mod' 00 ‘m dala [ daaia1 4/16
Immediate t accumulztar [Potootow] rara [ camiw 1 7 34 16- bit
TEST=And luntlion to llags. no result
Aggrster:memory and seg.ster 100010 wl modreg i 3no
Imwiediate Gata and regislermemary '|1 V1101 wj mod90 rm 1 Aata J dataifw =1 1 410
Immediate data and accumulaton 1010100 w cala daladw=1 3/4 8/16-hit
OA=0r:
Reg‘memary any register (o ¢ ther [_U 00010y w| modreg rm 310
Immediate 10 register:memory [foooo00w] medaor rm | qala [ aatadw=1 | 4/16
Imenediate 10 accumulator f[oooorrow] dala [ _amatw-1 ] a4 8116-bit
XOR = Exclusive or:
Reg'nemoiy and regisier to tiker [Por100dw] mocreg ©m 310
ImMmediale 10 reqgistec's emory [rooo000w] meg1:0 rm dan [ dataw-1 ] 4/18
immediate ta accumufatoe [oor 1010 w] Hata [ aatadw=1 | 3/4 8/16-bit
NOT - lavert reg ster:memary [t 1101 ¢ w] medd 0 ©m | 3
STAING MANIPULATICN:
MOVS = Move byte:word 101001 0w
CHPS - Compare dyte:word
SCAS = Scan byle:word T 01011 1w!
—_—
100§  Load byte:wd 10 AL'AX 1010110 w
STOS - Star byleswdd from ALA
- NS = input byeerved fram DX port D1101 10w
L ——

Shaded areas indicate instructions nol available iniAPX 86, 88 microsyslems.
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186 INSTRUCTION SET SUMMARY (Continued}

186
Clock Comments

FUNCTIDN FORMAT
Cycles

STRING MANIPULATION (Coalinuen):
Repeaied by count n CX _

MOVS  Move string [["ToatTcici1o0tow 8+8n

CMPS  Camgaie string S ra0t: 101001 w 5t122n
SCAS  Scansting [y oo i 0 1w 5+r15n
LODS - Lod siring Crrrooroioin cw 6+11n
STOS - Stere sinng TR IR 6+9n
INS = nput strng (tiito01o0fo110 V10w --
DUTS = Dulput stming rrrooiofertotyiw]

CONTROL TRANSFER

CALL - Call:

Cirect wilhin segmient [ T9rcoo I hsp low ] disp high ] 14
Reqg.sler memory 1121111 ] mog 010 rm 13/19
indirect within segmem

Directintrrsegment hcor.olo [ SRt otlset ] 23

Segmen: sefeclos

Indirgct 1ntersegment [T v mecot cm ] imen -t 38

JMP — Unconditionalf jump.
Short. long [Tvote 7] dsplow | 13

Duect w thin seqment 1T 10 1001 ] “dsplw | aseher | 13
Register memary ndiect wilhin seqment[* 11 11 ) mes 100 rm 1117

Direct 17tersegment R Segment Oser ] 13

SeGMENt Selpctor

ladirect uneisegment [l IR mod 101 1 m Iod ¢ 1) 26

RET = Retum from CALL:

W-tin segment 10000 16

Within $eg adding imsned to SP 1100001 0] data-low | cala-h.gn 18
Infersegment IELEEEER 22
(terseqment acdingimmed.ateto5f 1 100101 0| data low | catahgn | 25

Shaded areas indicale instructions not avaitable in iAPX 86, 88 microsystems.
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186 INSTRUCTION SET SUMMARY (Continued)

BOUMD - Datect vakin 001 of range

[6$18303 8] mosreg o |

[_ 186
FUNCTION FORMAT g::::‘s Comments
CONTROL TRANSFER (Conlinued):
JENZ  Jumg anegaal teia |n 110100 I thsp ] 413 13 if JMP
JLAINGE = Jump aniess nof g eaver e 2quy 01111100 disp 4,13 t‘aken
JLEANG - Dumpondessorequa coqealer [0 11 1 11 0] disp ] 413 n4o;ftih£:n
JBiJNAE = Jumpcr. e nol abave or i 91 [0r1voeor o] disg | 4/13
JBEANA  Jumponbebwoisqua b (0 111011 0] dso | 413
JPAIPE = Jpcngarty party ewen ¢ 11100 aisp 413
W g inoecon [brrrooon] g | 4/13
35 - b sie [iiieae] esw ] 413
INELSNZ = i an nonegus rot i EEEEE R ®isp | 413
INLAIGE = I npunrctless greale 2 egLa: Dy111101 | CISp 413
INLESG - umpanealessor equil giear o] a5p | 4413
JNBIJAE  Jumpannc’ below 2o or equil TEEET R dso | 4113
JNBEJA - Jumzanretbeism crequel abive [ roraq] disg | 413
SHRIIPO = Sy ar “3igar 2r R EN | disp i 413
JNQ - Jumpanrgtnerow [ﬂ 11100401 I cisp ] a3
JNS - Jurpon xesgn gr111001 disp 4113
LOOP - LoopGhmes [h1oo00s o] disp ] 5115
LOUPZAOOPE _oopwileerc equal [1go00 1] o ] 6/16
LOOPKZLOOPNE Logpwhienotzerqual [* 110000 0] dsp | 6;1166 IMP taken?
ICX2 = Jurotn Tt imo [Craonor ] dsp | 5 JMP not taken
ENYER = Toter Procedure [(3001000] dasiow | —osahigh | L ] .
1=0 - 158
L=3 : 25 .
L>1° 22+18in—-1) 1.
PR sy |
INT = lnlecrupy;
Type specilied [Tieorso ] Type 47
Troe3 [Teoiiee a5 if INT. taken/
INTQ — Inteniupt on overllpw 48/4 i INT. not
taken
IRET = Imerrup! retorn 28

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.
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186 INSTRUCTION SET SUMMARY (Continued)

186 |
FUNCTION FORMAT Clock Comments
Cycles \_
PROCESSOR CONTROL -
CLC  Crear carry ' W 3
CMC = Complement carry ml 2
$7C - Sarcarry 2
CLD - C ear direcuon m 2
STD - Set gisgchon [:_1 17161 2
CLI - Clear intereupt EEEEEICEN D 2
STI =Set nterruzt 2
HLT = Hait [1ieran! 2
WAIT - Wait [ooi:o1 v I if Tost - 0
LOCK - Bus otk pret# [T~o0e00 2
€5C  Processoi Etension Escape m‘:ﬁﬂ &
ATTTLLI are sprade to prafessnr extensoni

Shaded areas indicate instruclions nol available miAPX 86, B8 microsystems.

FOOTNOTES

The etfective Address (EA} of the memory operand is
computed according to the mod and r'm fietds:

itmod = 11thenrimis treated as a REG field

if mod = 00then DISP = 0*, disp-low and disp-high
are absent

it mod — 011hen DISP - disp-low sign-extended 10
16-bits, disp-high is absent

i mod - 101hen DISP = disp-high: disp-low

itr’m = 000then EA = (BX) + (SI) + DISP
ifr'm - 001 then EA - (BX} - {Ol} ~ DISP
ifr'm = 010then EA = (BP) + (Slj + DISP
frim — 011 thenEA — (BP) - {DI) - DISP
ifrim — 100then EA - (81) + DISP

ifr'm = 101 thenEA - {Dl) « DISP

ifrim = 110hen EA = (BP) ~ DISP*

itrim = 111 thenEA = (BX) -~ DISP

DISP fellows 2nd byte ol instruclion (belore dala i
required)

‘excepliimed - 00andrm - 11GthenEA  disp-high Jisp low.
SEGMENT OVERRIDE PREFIX

[0 01 reg 110]

reg s assigned according 1o the following:

Segment
reg Register
00 ES
o1 CcS
10 SS

i DS

REG 1s assigned according o the following table:

16-Bit(w = 1}  &-Bit{w = 0)
000 AX 000 AL
001 CX 00t CL
010 OX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 St 110 DR
{1 DI 111 BH

The physical addresses of all operands addressed by
\he BP register are compuled using the SS segment
regisler. The physical addresses of the destination op-
erands ol the siring primitive operations {lhose ad-
dressed by the DI regisier) are computed using the ES
segment. which may nol be overridden



=+, addition operator, 4-12

/. division operator, 4-11

?, indeterminate initialization, 3-6, 3-7, 4-17
%, location counter symbol, 3-18, 4-17

*, multiplication operator, 4-11

SEG, the default segment, 2-5

—, subtraction operator, 4-12

8-bit rcgisters, 1-6

16-bit registers, 1-6

17-bit number, 3-2

186 Clocks, H-1-H-7

186 Instruction Set Summary, H-1-H-7

8086/8087 /8088 Development tools, 1-1,
1-2

8086,/8088 flags, see Flags

8087 Control word, 6-110

8087 Data types, 3-1, 3-2, 6-112

8087 Emulators, 6-116

8087 environment, 6-109

8087 Exception pointers, 6-112

8087 Rounding masks, 6-114

8087 Status word, 6-109

8087 Tag word, 6-111

AAA, ASCII Adjust for Addition, 6-21
AAD, ASCII Adjust for Division, 6-22
AAM, ASCII Adjust for Multiplication,
6-23
AAS, ASCIT Adjust for Subtraction, 6-24
ABS, external type, 5-2
ADC, Add with Carry, 6-23
ADD, 6-26
addition operator, +, 4-12
address expression 3-4, 2-6, 2-7, 4-7, 4-8
addressability of data/fcode, 1-9, 2-5,
4-14-4-15
addressing maodes, 4-3, 6-1
based address, 4-4
based indirect address, 4-4, 4-18
direct address, 4-3
indexed address, 4-4
register indirect address, 4-3, 4-18

Index

align-type, segment atiribute, 2-2
AND, Logical And, 4-13
AND, Logical expression operator, 6-27
anonymous references, 4-5, 6-5
arithmetic operators, 4-10-4-12
Assembly language, 1-1
assembly language statements, 1-5
ASSUME directive, 1-9, 2-5-2-8, 4-5, 4-14,
4-18
AT, Segment combine-type, 2-3, 4-9
attribute operators
attributc overriding operalors, 4-4-4-16
atiribute vajue operators, 4-]17-4-21

base relocatability, 4-9, 4-18
BOUND, check array, 6-28
BYTE
external variable type, 5-2
segment align-type, 2-2
variable type operand, 3-18, 4-16, 4-17

CALL, 6-29

CBW, Convert Byte to word, 6-31
character set, 1-3

CI, console input, 7-19

classname, segment attribute, 2-3
CL.C, Clear Carry Flag, 6-32

CLD, Clear Direction I'lag, 6-33
CLI, Ciear Interrupt Flag, 6-34
CMC, Complement Carry Flag, 6-35
CMP, Compare, 6-36

CMPS, Compare String, 6-99
CMPSB, Compare Byte String, 6-99
CMPSW, Comparc Word String, 6-99
CO, console output, 7-19
CODEMACRO directive, A-1-A-17
codemacro matching, A-14
codemacro modifiers, A-4
codemacro range specifiers, A-4
codemacro specifiers, A-3
codemacros, A-1-A-17

codemacros, list of, A-18—A-33
combine-type, segment attribute, 2-2
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combining logical segments, 2-2, 2-8
COMMON, segment combine-type, 2-2
conditional jump instructions, 4-16, 6-12,
6-13, 6-52
constants, 3-2, 3-5, 4-24
ASCII, 3-3, 3-7, 3-8
binary, 3-3
decimal, 3-3
decimal real, 3-2, 3-3
hexadecimal, 3-3
hexadecimal real, 3-2, 3-3
octal, 3-3
continuation lines, 1-5
CPU hardware, overview, 1-5
Crowley, Aleister, 3-4
CWD, Convert Word to Double Word, 6-37

DAA, Decimal Adjust for Addition, 6-38
DAS, Decimal Adjust for Subtraction, 6-39
data types, 3-1, 3-2
DB, Define byte directive,3-3,"A-7
DD, Define directive, 3-3, A-7
debug information, control of, 3-19
DEC, Dcecrement, 6-40
Delimiters, 1-4, 7-20
DIV, divide, 6-41
division operator, /, 4-11
dot operator, codemacro operator, A-12
DQ, Define word directive, 3-4
DT, Define tbyte directive, 3-4
DUP, repeated data initialization, 3-7, 3-8
DW, Define word directive, 3-3, A-7
DWORD

exiernal variable type, 5-2

variable type operand, 3-18, 4-16, 4-17

END directive, 5-3

ENTER, high level entry, 6-43

EQ, Relational expression operator, 4-12

EQU directive, 4-17, 4-24

ESC, Escape, 6-42

EVEN dircctive, 3-19

expression operands, 4-2, 4-6-4-8
address expressions, 4-7, 4-8
numbers, 4-2, 4-6, 4-25

EXTRN directive, 4-9, 4-10, 5-1

F2XMI, Calculate, 6-123
FABS, absolute value, 6-124
FADD, add real, 6-125
FADDP, Add real and pop, 6-126
FAR
external label type, 5-2
label type operand, 3-18, 4-16, 4-17
PROC type, 3-17
FBLD, Load packed decimal, 6-127
FBSTP, Store packed decimal, 6-128
FCHS, change sign, 6-129
FCLEX, clear exceptions, 6-130
FCOM, Compure real, 6-131
FCOMP, Compare real and pop, 6-133
FCOMPP, Compare real and pop twice,
6-135
FDECSTP, Decrement stack pointer, 6-137
FDISI, Disable interrupts, 6-138
FDIV, Divide real, 6-139
FDIVP, Divide real and pop, 6-140
FDIVR, Reversed divide real, 6-141
FDIVRP, Reversed divide real and pop,
6-142
FENI, Enable interrupts, 6-143
FFREE, Free stack element, 6-144
FIADD, Add integer, 6-145
FICOM, Comparc integer, 6-146
FICOMP, Compare integer and pop, 6-148
FIDIV, Divide integer, 6-150
FIDIVR, Reversed divide integer, 6-151
FILD, Load integer, 6-152
FIMUL, Multiply integer, 6-153
FINCSTP, Increment stack pointer, 6-154
FINIT, Initialize processor, 6-155
FIST, Store integer, 6-156
FISTP, Store integer and pop, 6-157
FISUB, Subtract integer, 6-158
FISUBR, Reversed subtract integer, 6-159
flags, 6-4, 6-8, 6-14, 6-16, B-1-B-3
FLD, Load real, 6-160
FLDCW, Load control word, 6-161
FLDENYV, Load 8087 environment, 6-162
FLDL2E, Load log:e, 6-165
FLDL2T, Load log.10, 6-166
FLDLG?2, Load log,.2, 6-163
FLDLN2, Load log.2, 6-164
FLDPI, Load II, 6-167
FLD1, Load +1.0, 6-169
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FLDZ, Load +0.0, 6-168

floating point stack, 4-2, 6-108

FMUL, Multiply real, 6-170

FMULP, Multiply read and pop, 6-171

FNCLEX, Ciear exceptions with no WAIT,
6-130

FNDISI, Disable interrupts with no WAIT,
6-138

FNENI, Enable interrupts with no WAIT,
6-143

FNINIT, initialize processor with no WAIT,
6-155

FNOP, No operation, 6-172

FNSAVE, Save 8087 state with no WAIT,
6-178

FNSTCW, Store control word with no
WAIT, 6-183

FNSTENY, Store 8087 environment with no
WAIT, 6-184

FNSTSW, Store 8087 status word with no
WAIT, 6-187

forward references, 1-3, 2-7

FPATAN, Partial arctangent, 6-173

FPREM, Partial remainder, 6-174

FPTAN, Partial tangent, 6-175

FRINDINT, Round to integer, 6-176

FRSTOR, Restore 8087 state, 6-177

FSAVE, Savc 8087 statc, 6-178

FSCAILE, Scale, 6-180

FSQRT, Square root, 6-181

FST, Store real, 6-182

FSTCW, Store contro} word, 6-183

FSTENV, Store 8087 environment, 6-184

FSTP, Store real and pop, 6-186

FSTSW, Store 8087 status word, 6-187

FSUB, Subtract real, 6-188

FSUBP, Subtract real and pop, 6-18%

FSUBR, Reversed subtract real, 6-190

FSUBRP, Reversed subtract real and pop,
6-191

FTST, Test, 6-192

FWAIT, CPU WAIT alternate form, 6-193

FXAM, Examine, 6-194

FXCH, Exchange, 6-195

FXTRACT, Extract exponent and
significand, 6-196

FYL2PI, Calculate Y log,(X + 1), 6-199

FYL2X, Calculate Y log.x, 6-198

GE, Relationa!l expression operator, 4-12
general register set, 1-6

GROUP directive, 2-8, 4-9, 4-18

GT, Relational expression operator, 4-12

HIGH operator, 4-10
HLT, Haly, 6-44

identifiers, 1-4
indeterminate initialization of data, 3-6
initializing a2 segment register, 2-6, 2-8, 4-18,
5-3-5-5,F-2
IDIV, Integer Divide, 6-45
IMUL, Integer Multiply, 6-46
IN, Input byte or word, 6-48
INC, Increment, 6-49
INPAGE, segment align-type, 2-2
INS., input 10 address to memory, 6-100
instruction operands, 4-1, 4-2
immediate, 4-2
register, 4-2, 6-3
memory, 4-3, 6-1-6-3
mnstruction statements, 4-1, 6-1
INT, Interrupt, 6-50
integer constants, 3-2
interrupt procedures, G-14
interrupts, 6-13-6-14
INTO, Interrupt on Overflow, 6-50
IRET, [nterrupt Return, 6-51

JA, Jump or Above, 6-52
JAE, Jump or Above or Equal, 6-52
JB, Jump or Below, 6-52
JBE, lump or Below or Equal, 6-52
JC, Jump or Carry Flag, 6-52
Jeond, conditional jump instructions,
see conditional jump instructions
JCXZ, Jump or CX Zero, 6-52
JE, Jump or Equal, 6-52
JG, Jump or Greater, 6-52
JGEL, Jump or Greater or Equal, 6-52
L, Jump or [.ess, 6-52
JLE, Jump or Less or Equal, 6-52
JMP, Jump, 6-54-6-55
JNA, Jump or Not Above, 6-52
JNAE, Jump or Not Above or Equal, 6-52
JNB, Jump or Not Below, 6-52
JNBE, Jump or Not Below or Equal, 6-52
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JNC, Jump on No Carry Flag, 6-52
JNE, Jump or Not Equal, 6-52

JNG, Jump or Not Greatcr, 6-52
JNGE, Jump or Not Greater or Equal, 6-52
JNL, Jump or Not Less, 6-52

JNLE, Jump or Not Less or Equal, 6-52
JNO Jump or Not Overflow Flag, 6-52
JNP, Jump or Not Parity Flag, 6-52
JINS, Jump or Not Sign Flag, 6-52
INZ, Jump or Not Zero Flag, 6-52

JO, Jump or Overflow Flag, 6-52

JP, Jump or Parity Flag, 6-52

JPE, Jump or Parity Even, 6-52

JPO, Jump or Parity Odd, 6-52

JS, Jump or Sign, 6-52

JZ, Jump or Zero Flag, 6-52

label
attributes of, 3-1-3-2
defining, 3-2, 3-15-3-18, 4-1. 4-24
operand of instruction or expression, 4-3
LABEL directive, 3-17-3-18, 4-17
LAHF, Load AH with Fiags, 6-56
LDS, Load Pointer into PS, 6-57
LE, Relational expression operator, 4-12
LEA, Load Effective Address, 6-58
LEAVE, high level exil, 6-59
ILENGTH operator, 4-20
LES, Load pointer into ES, 6-57
location counter ($), 3-18
LOCK, Lock Bus, 6-60
LODS, Load String, 6-100
LODSB, Load bytc string, 6-100
LODSW, Load word string, 6-100
logical segments, se¢ segments
logical operators, 4-13
LOOP, 6-61
LOOPE, Loop while Equal, 6-61
LOOPNE, Loop while Not Equal, 6-61
LOOPNZ, Loop while Not Zero, 6-61
LOOPZ, Loop while Zero, 6-61
1.LOW operator, 4-10
LT, Relational expression operator, 4-12

Macro Processor Language (MPL), 1-5, 7-1
arguments 10 macros, 7-6
arithmetic expressions, 7-11

bracket function, 7-10
call-literally character ( ), 7-6
CI, console input, 7-19
CQ, console output, 7-19
COMMEnts 48 macros, 7-3
conditional assembly, 7-14
console 1/0, 7-19
DEFINE function, 7-2
delimiters
comma, 7-6
identifier, 7-20
literal, 7-21
other, 7-20
EQ, relational operator, 7-11
EQS, string compare function, 7-12
escape lunction, 7-9
EVAL function, 7-12
EXIT function, 7-16
GT, relational operator, 7-11
GTS, string compare function, 7-12
[F ... THEN ... [ELSE ... | F1 function,
7-14 T
IN function, 7-19
LE, relational operator, 7-1]
LEN function, 7-17
LES, string compare function. 7-12
local symbols, 7-7
logical expressions, 7-11, 7-12
MATCH funciion, 7-18
metacharacter (%), 7-11
NE, relational operator, 7-11
NELS, string compare function, 7-12
OUT function, 7-19
paramcters, 7-6
REPEAT function, 7-16
SET, Built-in macro function, 7-11
string compares, 7-12
SUBSTR function, 7-17
values, range of, 7-11
WHILE function, 7-15 —
MASK operator, 4-22
memory segmentation model, 1-8
MEMORY, segment combine-lype, 2-2
mnemonic, 1-1, 4-1, 4-24, 6-1, 6-6, 6-20,
6-122
MOD, expression operator, 4-11
modrm byte, 6-2, 6-16
MODRM, Cedemacro directive, A-6
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module, object, 1-1

module, source, 1-9, 5-1, 5-5
MOV, Move data, 6-62

MOVS, Move string, 6-100
MOVSB, Move byte string, 6-100
MOVSW, Move word string, 6-100
MUL, Multiply, 6-64
multiplication operator, *, 4-11

NAME directive, 5-5
NE, Relational expression operator, 4-12
NEAR
external label type, 5-2
label type operand, 3-18, 4-16, 4-17
PROC type, 3-17
NEG, Ncegate, 6-65
NOP, No opcration, 6-66
NOSEGFIX, Codemacro directive, A-5
NOT, Logical expression operator, 4-13
NOT, Logical Not, 6-67
Notational Conventions, v
NOTHING, Assume operand, 2-5, 2-7
numbers, 4-6, 4-10, 4-24
Numeric Data Processor, see 8087

OFFSET operator, 2-9, 4-15, 4-18
offset relocatability, 4-9, 4-18
offset, variable/label attribute, 1-8, 3-1, 3-4,
3-8, 3-15, 4-8, 4-9
operands
expressions, 4-2, 4-6—4-8
instructions, 4-1  4-3, 6-1, 6-3
operator precedence, 4-23, 7-11
operators, expression
arithmetic, 4-10-4-12
attribute, 4-14-4-21
logical, 4-13
record-specific, 4-21-4-23
relational, 4-12-4-13
OR, Logical expression operator, 4-13
OR, Logical Or, 6-68
ORG directive, 3-18
OUT, Output byte or word, 6-69
OUTS, 6-100

PAGE, segment align-type, 2-2, 4-9
PARA, Segment align-type, 2-2, 4-9

paragraph boundary, 1-8
paragraph number
segment base pointer, 1-8, 2-7
variable/label attribute, 3-1, 4-18
parameter passing, G-4-G-12
physical address, 1-8
physical scgments, see segments
pointer to variable/label, 3-6, 6-7
POP, Pop from stack, 6-70
POPA, Pop All Registers, 6-71
POPF, Pop Flags, 6-72
prefix, instructions, 4-1
PREFX, Codemacro directive, A-2
PROC/ENDP directives, 3-2, 3-15-3-17
PROCLEN, Codemacro directive, A-14
program linkage, 5-1-5-5
program module, 1-4, 5-1, 5-5
PTR operator, 4-15-4-16
PUBLIC directive, 5-1
PUBLIC, segment combine-type, 2-2, 4-9
PURGE directive, 3-19
PUSH, Push onto stack, 6-73
PUSHA, Push All Registers, §-75
PUSHEF, Push Flags, 6-76.

QWORD
cxternal variable type, 5-2
variable type operand, 4-16, 4-17

RCL, Rotate through Carry Left, 6-77
RCR, Rotate through Carry Right, 6-79
real constants, 3-2 -3-3
RECORD directive, 3-8
record field-name, usage as shift count, 4-22
records
allocation and initialization, 3-8, 3-10,
A7
definition, 3-8—3-9
introduction, 3-8
record-specific operators, 4-21-4-23
record-specific operators, 4-21-4-23
register expression, 4-3—4-6, 4-7- 4-8, 4-25
registers, 4-24
base or pointer registers, 1-6, 4-3, 4-4, 4-5,
4-7
general registers, 1-6
implicit use of, 1-7, 4-4-4-6, 4-15, 6-5
segment registers, |-7, 4-4—4-6
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related publications, v

reiational operators, 4-12, 4-13
RELB, Codemacro directive, A-8
rclocatability, 4-9

relocatable expressions, 4-9, 4-12
RELW, Codemacro directive, A-8
REP, Repeat, 6-81

REPE, 6-81

repeated initialization of data, 3-7-3-8
REPNEL, 6-81

REPNZ, 6-81

REPZ, 6-81

reserved words, 6-1

RET, Return, 6-82

RFIX, Codemacro directive, A-10
RFIXM, Codemacro directive, A-10
RNFIX, Codemacro directive, A-1]
RNFIXM, Codemacro dircctive, A-12
ROL, Rotate Left, 6-83

ROR, Rotate Right, 6-85

RWFIX, Codemacro dircctive, A-13

SAHF, Store AH into Flags, 6-87

SAL, Shift Arithmetic left, 6-88

SAR, Shift Arithmetic Right, 6-90

SBB, Subtract with Borrow, 6-32

SCAS, Scan string, 6-100

SCASB, Scan byte string, 6-100

SCASW, Scan word string, 6-100

scope of identifiers, 1-4, 3-15

SEG operator, 2-7, 2-9, 4-18

SEGFIX, Codemacro directive, A-4

segment attribute of variables/labels, 3-1,
3-4, 3-6, 4-8, 4-9

SEGMENT/ENDS directive, 1-9, 2-1—2-5,
4-9

segment override, 4-14, 4-15

Segment Override Prefix, 2-6, 4-14, 4-15,
6-2

segment register, default usage, 4-4-4-6

segments

logical segments, 1-8, 2-1, 4-9
physical segments, 1-8, 2-1, 4-9

separators, 1-4

shift count, record name, 4-22

SHL, expression operator, 4-11

SHL, Shift Left, 6-88

SHORT operator, 4-16
SHR, expression operator, 4-11
SHR, Shift Right, 6-94
S1ZE operator, 4-21
ST, 8087 registers, 4-2
STACK, segment combine-type, 2-2, 4-9
STC, Set Carry Flag, 6-96
STD, Set Direction Flag, 6-97
STI, Set Interrupt Flag, 6-98
storage of 16-bit data in memory
STOS, Store string, 6-100
STOSB, Store byte siring, 6-100
STOSW, Store word string, 6-100
string instructions, 4-5, 6-4-6-6, 6-10--6-12,
6-99
strings, see constants, ASCII
STRUC/ENDS directive, 3-11
structure fields, accessing of, 4-8
structures
allocation and initialization, 3-12-3-14,
4.8
definition, 3-11, 3-12
introduction, 3-10
SUB, subtract, 6-102
subtraction opcrator,
syntax notation, 1-10

-, 412

TBYTE
external variable type, 5-2
variable type operand, 3-18, 4-16, 4-17
TEST, 6-103
THIS operator, 4-17
tokens, 1-4
TYPE operator, 4-19—4-20
typing of operands, 1-3, 4-15, 4-17
type of variable or label, 3-1-3-2, 3-4

variable
attributes of, 3-1, 4-9
defining, 3-3-3-5, 4-24
initializing, 3-4, 3-5-3-8
operand of instruction or expression, 4-3

WAIT, 6-104
WIDTH operator, 4-23
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WORD
external variable type, 5-1

Segment align-type, 2-2
Variable type operand, 3-18, 4-16, 4-17

XCHG, Exchange, 6-105

XLAT, Translate, 6-106

XLATB, Translate, 6-106

XOR, Logical Exclusive Or, 4-13

XOR, Logical expression operator, 6-107
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	Processor Wait

	Processor Escape

	Bus Lock

	Single Step



	instruction Description Formats

	Format Boxes

	instruction Detai) Tabies

	Fiags


	MNEMONIC—Sample 8086/8088 Instruction

	Format

	Operation

	Flags

	Description


	AAA—ASCH Adjust for Addition

	Format

	Operation

	Fiags

	Description


	AAD—ASCH Adjust for Division

	Format

	Operation

	Fiags

	Description


	AAM—ASCH Adjust for Muttiptication

	Format

	Operation

	Flags

	Description


	AAS—ASCH Adjust for Subtraction

	Format

	Operation

	Flags

	Description


	ADC—Integer Add With Carry

	Format

	Operation

	Flags

	Description

	Operation

	Flags

	Description


	AND—Logica) AND

	Format

	Operation

	Description


	BOUND—Check Array Against Bounds [iAPX 186]

	Format

	Operation

	Fiags

	Description



	CALL—Can

	Format

	Flags

	Description


	CALL

	Operation

	Flags

	Description

	CBW—Convert Byte to Word

	Format

	Operation

	Flags

	Description


	CLC—Ctear Carry Dag

	Format

	Operation

	Flags

	Description


	CLD—Clear Direction Flag

	CL!—Clear Interrupt Enable Flag

	Format

	Operation

	Flags

	Description


	CMC—Complement Carry Flag

	Format

	Operation

	Flags

	--------x

	Description


	CMP—Compare Two Operands

	Format

	Operation

	Fiags

	Description


	CWD—Convert Word to Doubteword

	Format

	Operation

	Flags

	Description



	CWD

	Format

	Operation

	Flags

	Description

	DAS—Decima! Adjust for Subtraction

	Format

	Operation

	Flags

	Description


	DEC—Decrement by 1

	Format

	Operation

	Flags

	Description


	D!V—Unsigned Division

	Format

	Operation

	Flags

	Description


	ENTER—High Levei Procedure Entry [iAPX 186]

	Format

	Operation

	Flags

	Description



	ESC—Escape

	Format

	Operation

	Fiags

	Description


	HLT—Hatt

	Format

	Operation

	Flags

	Description

	!D!V—Signed Division

	Format

	Operation

	Flags

	Description


	!MUL—Signed Muitipiication

	Format

	Operation

	Flags



	!MUL

	Description

	!N—!nput Byte, Word

	Format

	Operation

	Fiags

	Description


	!NC—tncrement By 1

	Format

	Operation

	Flags

	Description


	!NT/!NTO—interrupt

	Format

	Operation

	Description


	!RET—Return from tnterrupt

	Format

	Operation

	Flags

	Description


	Jcond—Jump on Condition

	Operation

	Format

	Flags



	Jcond

	Description

	JMP—Jump

	Format

	Flags

	Description



	JMP

	Operation

	Description

	LAHF—Load AH From Hags

	Format

	Operation

	Flags

	Description


	LDS/LES—Load Pointer to DS/ES and Register

	Format

	Operation

	Flags

	Description


	LEA—Load Effective Address

	Format

	Operation

	Flags


	LEAVE—High Levei Procedure Exit [iAPX 186]

	Format

	Operation

	Fiags

	Description


	LOCK—Assert Bus Lock

	Format

	Operation

	Flags

	Description


	LOOP/ LOOPE / LOOPNE /

	LOOPZ/LOOPNZ—Loop Contro)

	Format

	Operation

	Fiags

	Description


	MOV—Move Data

	Format


	MOV

	Operation

	Flags

	Description


	MUL—Unsigned Multiplication

	Format

	Operation

	Flags

	Description


	NEG—Negate an tnteger

	Format

	Operation

	Flags

	Description


	NOP—No Operation

	Format

	Operation

	Flags

	Description


	NOT—Form One's Comptement

	Format

	Operation

	Flags

	Description


	OR—Logical inciusive OR

	Format

	Description


	OUT—Output Byte, Word

	Format

	Operation

	Flags

	Description


	POP—Pop a Word From the Stack

	Format

	Operation

	Flags

	Description


	POPA—Pop AH Registers [iAPX 286]

	Format

	Operation

	Flags

	Description


	POPF—Pop the TOS !nto the Ftags

	Format

	Operation

	Fiags

	Description


	PUSH—Push a Word Onto the Stack

	Format

	Operation



	PUSH

	Flags

	Description

	PUSH A—Push Ah Registers [iAPX 186]

	Format

	Operation

	Flags

	Description


	PUSHF—Push the Hags to the Stack

	Format

	Operation

	Flags

	Description


	RCL—Rotate Left Through Carry

	Format



	RCL

	Flags

	Description

	RCR—Rotate Right Through Carry

	Format

	Operation



	RCR

	Flags

	Description

	REP/REZ/REPE/REPNE/REPNZ—Repeat


	Prefix

	Format

	Operation

	Flags

	Description

	RET—Return From Subroutine

	Format

	Flags

	Description


	ROL—Rotate Left

	Format

	Operation



	ROL

	Flags

	Description

	ROR—Rotate Right

	Format

	Operation


	ROR

	Flags

	Description


	SAL/SHL—Arithmetic/Logica! Left Shift

	Format

	Operation


	SAHF—Store AH in Flags

	Format

	Operation

	Flags

	Description

	Format

	Operation



	SAL/SHL

	SBB—integer Subtraction With Borrow

	Format

	Operation



	SAR

	Flags

	SHR—Logicat Right Shift

	Format

	Operation



	SBB

	Ftags

	Description

	STC—Set Carry Hag

	Format

	Operation



	SHR

	ST!—Set Interrupt Enable Flag

	Format

	Operation

	Flags


	STD—Set Direction Hags

	Format

	Operation

	Flags

	Description



	String

	String—String Operations

	Operation

	Description


	SUB—integer Subtraction

	Format

	Operation

	Flags

	Description



	String

	WA!T—Wait White TEST pin not Asserted

	Format

	Operation

	Fiags

	Description


	TEST—Logical Compare

	Format

	Operation

	Description


	XLAT/XLATB—Tab!e Look-up Translation

	Format

	Operation

	Ftags

	Description


	XCHG—Exchange Memory/Register With Register

	Format

	Operation

	Flags

	Description

	The 8087 Instruction Set

	8087 Architectural Summary

	Fioating-Point Stack

	Operation

	Fiags

	Description

	Control Word


	Environment

	Status Word


	Exception Pointers

	Data Types

	Tag Word



	8087 Operation

	Coprocessing

	Numeric Processing


	8087 Emulators

	Organization of the 8087 instruction Set

	Data Transfer instructions

	Arithmetic instructions

	Constant tnstructions

	Processor Controt tnstructions

	Comparison instructions

	Transcendents! Instructions



	MNEMONtC—Sample 8086/8088 tnstruction

	Format

	Operation

	Exceptions


	FABS—Absolute Value

	Format

	Operation

	Exceptions


	F2XM1-2-1

	Format

	Operation

	Exceptions

	Description


	FADDP/FADD—Add Rea) and Pop

	Format

	Exceptions


	FADD—Add Rea!

	Format

	Operation

	Exceptions


	FBSTP—Packed Decima! (BCD) Store and Pop

	Format

	Operation

	Exceptions

	Note


	FBLD—Packed Decima] (BCD) Load

	Format

	Operation

	Exceptions

	Note


	FCLEX/FNCLEX—Clear Exceptions

	Format

	Operation

	Exceptions

	Description


	FCHS—Change Sign

	Format

	Operation

	Exceptions



	FCOM

	Note

	FCOM—Compare Rea)

	Format

	Operation

	Exceptions

	Description

	Format



	FCOMP

	Description

	FCOMPP—Compare Rea) and Pop Twice

	Format

	Operation

	Exceptions

	Description

	Note



	FCOMPP

	FDECSTP—Decrement Stack Pointer

	Format

	Operation

	Exceptions


	FDISI/FNDIS!—Disable interrupts

	Format

	Operation

	Exceptions

	Description

	Note


	FD!V—Divide Reai

	Format

	Operation

	Exceptions


	FDtVP—Divide Rea! and Pop

	Format

	Operation

	Exceptions


	FDtVR—Divide Reai Reversed

	Format

	Operation

	Exceptions


	FD!VRP-Divide Rea) Reversed and Pop

	Format

	Operation

	Exceptions


	FENl/FNENl—Enable Interrupts

	Format

	Operation

	Exceptions

	Description


	FFREE—Free Register

	Format

	Operation

	Exceptions


	DADD—tnteger Add

	Format

	Operation

	Exceptions


	DCOM—tnteger Compare

	Format

	Operation

	Exceptions

	Description

	Note



	FtCOM

	F!COMP—Integer Compare and Pop

	Format

	Operation

	Exceptions

	Description

	Note



	FtCOMP

	FiDiV-integer Divide

	Format

	Operation

	Exceptions


	FiDiVR-integer Divide Reversed

	Format

	Operation

	Exceptions


	F!LD—Integer Load

	Format

	Operation

	Exceptions


	F!MUL—tnteger Mu!tip!y

	Format

	Operation

	Exceptions


	HNCSTP—tncrement Stack Pointer

	Format

	Operation

	Exceptions


	HN!T/FN!N!T—tnitiatize Processor

	Format

	Operation

	Exceptions

	Note


	F!ST—Integer Store

	Format

	Operation

	Exceptions


	HSTP—tnteger Store and Pop

	Format

	Operation

	Exceptions


	FtSUB—Integer Subtract

	Format

	Operation

	Exceptions


	FtSUBR—Integer Subtract Reversed

	Format

	Operation

	Exceptions


	FLD—Load Rea!

	Format

	Operation

	Exceptions


	FLDCW—Load Controt Word

	Operation

	Exceptions

	Description

	Note


	FLDENV—Load Environment

	Format

	Operation

	Exceptions

	Description

	Note


	FLDLG2—Load Log^

	Format

	Exceptions


	FLDLN2—Load Log.2

	Format

	Operation

	Exceptions


	FLDL2E—Load Logge

	Format

	Operation

	Exceptions


	FLDL2T—Load Log,10

	Format

	Operation

	Exceptions


	FLDP!—Load ?r

	Format

	Operation

	Exceptions


	FLDZ—Load +0.0

	Format

	Operation

	Exceptions


	FLD1—Load +1.0

	Format

	Operation

	Exceptions


	FMUL—Mu!tip!y Rea!

	Format

	Operation

	Exceptions


	FMULP—Muttipty Rea) and Pop

	Format

	Operation

	Exceptions


	FNOP—No operation

	Format

	Operation

	Exceptions


	FPATAN—Partial Arctangent

	Format

	Operation

	Exceptions

	Description


	FPREM—Partial Remainder

	Format

	Operation

	Exceptions

	Description

	Note


	FPTAN—Partial Tangent

	Format

	Exceptions

	Description


	FRNDiNT—Round to integer

	Format

	Operation

	Exceptions

	Description


	FRSTOR—Restore Saved State

	Format

	Operation

	Exceptions

	Note


	FSAVE/FNSAVE—Save State

	Format

	Operation

	Exceptions

	Description



	FSAVE/FNSAVE

	Note

	FSCALE—Scate

	Format

	Operation

	Exceptions

	Description

	Note


	FSQRT—Square Root

	Format

	Operation

	Exceptions


	FST—Store Rea!

	Format

	Operation

	Exceptions

	Note


	FSTCW/FNSTCW—Store Control Word

	Format

	Operation

	Exceptions

	Description


	FSTENV/FNSTENV—Store Environment

	Format

	Operation

	Exceptions

	Description

	Note



	FSTENV/FNSTENV

	FSTP—Store Rea! and Pop

	Format

	Operation

	Exceptions


	FSTSW/FNSTSW—Store Status Word

	Format

	Operation

	Exceptions

	Description

	Note


	FSUB—Subtract Rea!

	Format

	Operation

	Exceptions


	FSUBP—Subtract Rea! and Pop

	Format

	Operation

	Exceptions


	FSUBR—Subtract Rea! Reversed

	Format

	Operation


	FSUBRP—Subtract Rea! Reversed and Pop

	Format

	Operation

	Exceptions


	FTST—Test Stack Top Against +0.0

	Format

	Operation


	FWA!T—(CPU) Wait while 8087 is busy

	Format

	Operation

	Exceptions

	Description

	Note


	FXAM—Examine Stack Top

	Format

	Operation

	Exceptions

	Description


	FXCH—Exchange Registers

	Format

	Operation

	Exceptions

	Description


	FXTRACT—Extract Exponent and Significand

	Format

	Operation

	Exceptions

	Description

	Note

	Example



	FXTRACT

	FYL2X—Y * Log,X

	Format

	Operation

	Exceptions

	Note


	FYL2XP1—Y*Log,(X + 1)

	Format

	Operation

	Exceptions

	Note
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