
Customer
Operation

VERSION 2.0

March 1984

122229-001

ICE-51

AN INTEL 
TECHNICAL 
REPORT

FROM SYSTEM 
SUPPORT 
SERVICES





ICE-51

VERSION 2.0

March 1984

122229-001

An Intel Technical Report
From Software Support Services

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051
Mail Stop SC6-325

Intel Corporation (U.K.) Ltd.
Piper's Way-
Swindon, Wiltshire SN3 1RJ
United Kingdom

Intel Japan K.K.
5-6 Tokodai, Toyosato-machi
Tsukuba-gun
Ibaragi-Pref. 300-26
JapanCopyright 1984 Intel Corporation



Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may 
appear in this document nor does it make a commitment to update the information contained herein,

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

SXP. CREDIT, i, ICE. I^CE. ICS, iDBP, iDIS. iLBX. im. iMMX, 
Insite. INTEL intel. Intelevision, Intellect. inteligent Identifier ”, 
intel0OS. indigent Programming™, Intellink, iOSP. iPOS. 
iRMS, iSBC, iSBX, iSDM, iSXM. Library Manager. MCS. 
Megachassis, Micromainframe, MULTIBUS, Multichannel 
Pfug-A-Bubble. MULTIMOOULE, PROMPT. Ripptemode.
RMX/80, RUPI, System 2000. and UPL and ths combination of 
ICE, iCS, iRMX. iSBC. MCS, or UPS and a numerical suffix.

MOS is an ordering code only and is not used as a product name or trademark. MOS’ is a registered trademark of 
Mohawk Data Sciences Corporation.

• MULTIBUS is a patented Intel bus.



An Intel Technical Report

CONTENTS

Contents
Index to Symptoms in Troubleshooting Guide

OVERVIEW............................... 1
DIFFERENCES BETWEEN ICE-51 VERSION 1.3 AND ICE-51 VERSION 2.01

DEFINE COMMAND. ....................................................................2
EVALUATE COMMAND. ........................................................................ 2
GO/STEP COMMAND 2
HELP COMMAND ........................................................................ 2
LOAD COMMAND. ...........................................................................2
SAVE COMMAND. ..........................................3
SYMBOLS COMMAND ............................................................... 3
NEW COMMANDS .......................................................................... 3

DOMAIN COMMAND 4
MODULES COMMAND ...................................................4
LINES COMMAND  . 4
ENABLE/DISABLE LINES AND ENABLE/DISABLE SYMBOLS .4
REMOVE MODULE COMMAND... .................................................5
CWORD/DWORD/XWORD COMMANDS. ................................ 5

ARTICLES ....................................................................... .7
DEBUGGING WITH THE ICE-51 • .................................. 7
BREAKING EMULATION DURING ASYNCHRONOUS OPERATIONS 9 
ICE-51 CMOS DEBUG LIMITATIONS........ . 11
DIFFERENCES BETWEEN THE 8052 AND 8051 ... ............................13

EMULATING THE 8052 WITH ICE-51...... 13
CONVERTING AN SDK-51 TO AN SDK-52......................... ....16

INTERPRETING TRACE INFORMATION ON THE ICE-51... ...18 
VALUE INFORMATION IN EXTERNAL AND INTERNAL ACCESSES 21 
EXAMPLES OF EXTERNAL AND INTERNAL MEMORY ACCESSES ......22

APPLICATIONS OF COMPLEX TRACE AND BREAKPOINTS ..............25
TRACING 1000 INSTRUCTIONS.. ............................25
BREAKING ON AN INSTRUCTION THAT SETS A PARTICULAR PORT

VALUE ®o®oe®«©»©o©®®e®ocee©®®6eQ®eoeec0®e®®®®«»*®®e®ooe 27
BREAKING ON A MOVX TO A PARTICULAR LOCATION 28

SAVING INTERNAL REGISTERS IN ICE-5 1 .............................................. 30

CONFIGURATIONS AND COMPATIBILITIES.. ........................ .31 

Contents-1



ICE-51

TROUBLESHOOTING GUIDE ©»©« © ©•«• © ® ©©»©©©«© © • ©©© © © ® © o ©©©•©©««©» « ©32

See the Index to Symptoms guide following the Table of 
Contents for a listing of all symptoms described in the 
Troubleshooting Guide©

AVAILABLE PUBLICATIONS©••••••©•©••©©©•©©©©©•©©©©•©••©•©•••©©e©3^

Contents-2



An Intel Technical Report

INDEX TO SYMPTOMS IN TROUBLE SHOOTING GUIDE

1. Bond Out Continuously Failing................... .. ......................  32

2. Error 90: MEMORY OVERFLOW................. .. ..................................  32

3. Match Conditions Set on External Memory Not Breaking
Emulation............ .. .........................  .......33

Contents-3



ICE-51

(this page intentionally left blank)

Contents-4



An Intel Technical Report

OVERVIEW

DIFFERENCES BETWEEN ICE-51 VERSION j^.,3 AND ICE-51 VERSION 2.0

The ICE-51 has undergone major changes to improve the debugging 
of PL/M programs. The major enhancements to the ICE-51 are :

1. High level PL/M debugging by module and line numbers

2. An enhanced loader to load code into user supplied byte wide 
rams

3. New commands for ease of use.

4. Enhanced symbolic entry and isplay to support symbols,lines 
and module names produced by PL/M programs.

The new features extend the capabilities of ICE-51 to debug large 
PL/M 51 applications.

The following commands were changed to implement the new 
features:

-DEFINE 
-EVALUATE 
-GO/STEP 
-HELP 
-LOAD 
-PRINT 
-REGISTERS 
-SAVE 
-SYMBOLS

1



ICE-51

The new changes in each command are covered individually here to 
help distinguish between the old and new ICE-51 software. For 
more detailed information on each command, refer to the latest 
ICE-51 manual. (See manual listings under Available Publications 
in this technical report.)

DEFINE COMMAND

The syntax for the DEFINE command has changed to allow symbols to 
be defined within specific modules. The new syntax is shown 
below

DEFINE [..module name] .symbol-name = expression

The module must already exit since new modules cannot be created.

EVALUATE COMMAND

The EVALUATE command has changed to symbolically display the 
address in the form ..module.symbol if the system can find a 
symbol that is equal or less then the expression. The evaluate 
command will display ..module#line number if LINES are ENABLED.

GO/STEP COMMAND

Execution of the GO and STEP commands, normally prints out the 
following headings:

EMULATION BEGUN (AND EMULATION TERMINATED), PC=XXXXH

The user can type DISABLE HEADINGS to suppress the print out of 
the headings. This provides the user with the ability to write 
custom headings with the use of a WRITE statement within macros.

HELP COMMAND

The help file has changed to add the new commands and incorporate 
the new syntax changes.

2 -



An Intel Technical Report

LOAD COMMAND

The LOAD command now includes an external load option for user 
supplied BYTE WIDE RAMS. The necessary hardware to accomplish 
the load is provided by the user. The syntax for the LOAD 
command is:

LOAD :Fn:filename NOCODE [SELECTING module-name[TO module-name 
NOSYMBOLS
NOLINES
EXTERNAL

The new options allow for selective loading of symbols, lines, or 
external code. The SELECTING option permits the loading of 
symbols and lines for specific modules or ranges of modules.

SAVE COMMAND

The save command has been changed to add a NOLINES option. The 
new syntax for the command is shown below:

SAVE :Fn:filename NOCODE [partition]
NOSYMBOLS
NOLINES

SYMBOLS COMMAND

The SYMBOLS command has changed to accomodate symbols within 
modules. When SYMBOLS command is entered, symbol names are 
displayed under each corresponding module. The SYMBOLS command 
can specify the display of a selective module.

SYMBOLS [..module]

3



ICE-51

NEW COMMANDS

The following commands have been added to help debug PL/M
programs.

-DOMAIN
-MODULES
-LINES
-ENABLE & DISABLE LINES
-ENABLE & DISABLE HEADINGS
-REMOVE MODULE
-CWORD, DWORD, XWORD

DOMAIN COMMAND

The DOMAIN command specifies a default module when referencing 
line number symbols. The syntax of this command is:

DOMAIN [..module-name]

MODULES COMMAND

The MODULES command lists all the module names linked together to 
form the user program.

LINES COMMAND

The LINES command displays the associated address for each line 
number within each module.

LINES [..module]

ENABLE/DISABLE LINES AND ENABLE/DISABLE SYMBOLS

Trace display is affected by the four conditions of enabling and 
disabling of the SYMBOLS and LINES commands. These conditions 
are:

ENABLE SYMBOLS / ENABLE LINES
DISABLE SYMBOLS / ENABLE LINES
ENABLE SYMBOLS / DISABLE LINES
DISABLE SYMBOLS / DISABLE LINES

4 -



An Intel Technical Report

Symbolic labels consist of module name, line number, and symbol 
name, or any combination of these elements.

When symbols and lines are enabled, the symbol table is searched 
for the line number address that is identical to the address of 
the trace instruction. The first line number, module name, and 
matching symbol name found (if any) is displayed on the line 
preceding its corresponding instruction. If no line number is 
found, then no label is displayed. The trace display shows no 
labels for modules with no line numbers defined (such as ASM 
modules).

With symbols disabled and lines enabled, the symbol table is 
searched for the line number address that is identical to the 
address of the trace instruction. Module names, line numbers, 
and matching symbol names (if any) are displayed, but 
instructions are suppressed. If no line numbers are found, then 
no label is displayed.

When symbols are enabled and lines disabled, the symbol table is 
scanned to see which module the instruction address belongs to. 
An instruction address is considerd to belong to a module if the 
address exactly matches any line number, or it is between two 
line numbers of the same module. When an exact line number match 
is found, the first matching symbol within that module is 
displayed. When the address lies between two line numbers of a 
module, the module containing the symbol cannot be determined. 
The first matching symbol from any module is displayed. If line 
numbers are not defined, the first matching symbol name and its 
module name are displayed.

Only code is displayed when symbols and lines are disabled.

REMOVE MODULE COMMAND

The REMOVE command allows the removal of one or more symbols from 
the table. The command can specify individual symbols or delete 
an entire module of symbols and lines. The syntax for the 
command is:

REMOVE SYMBOLS
[..module-name].symbol-name[,[ ..module-name].symbol-name] 
MODULE ..module-name[,module-name] 
MACROS 
smacro-name [,macro-name]

- 5



ICE-51

CWORD/DWORD/XWORD COMMANDS

The CWORD, DWORD, and XWORD commands are similar to the CBYTE, 
DBYTE and XBYTE except the commands operate on words instead of 
bytes.

6



An Intel Technical Report

ARTICLES

DEBUGGING WITH THE ICE-51

Designs utilizing an 8031 and 2732A need to configure the 
External-Access pin active, (EA/=0). This causes all memory 
access from address 0 to 4K to be external. Debugging this 
design with the ICE-51, prior to committing to EPROM, requires 
the user to load the program into ICE-51 memory. Mapping the 
lower 4K bytes of memory to ICE-51 requires EA/=1 (inactive). A 
switch needs to be placed in the prototype to facilitate ICE-51 
debugging memory mapped to ICE and actual operation out of EPROM 
memory.

The bond-out chip on the ICE-51 must be thought of as an actual 
8051 chip when under emulation. With memory mapped to ICE-51, 
memory fetches will be performed using the 16 additional "bond- 
out" lines connected between ICE memory and the bond-out chip.

If EA/=0 (active), the bond-out will also attempt to fetch as the 
8031, through P0 and p2. Therefore, contention occurs and the 
ICE-51 will not operate correctly. If the code is committed to 
EPROM, (memory mapped to user), fetches will occur as they would 
for the 8031 (p0 and p2), not the bond-out lines.

The following steps should be done when debugging an 8031 
prototype design:

1. STRAP EA/=1 (inactive)

2« Map lower 4K bytes = ICE

3. Debug 8031 code

7



ICE-51

Program EPROMs4

Strap EA/=0 (active)5

by:Debug 8031 circuitry6

a) MAP lower 4K
b) Replace 8031

bytes - User and use ICE-51 
in socket

8



An Intel Technical Report

BREAKING EMULATION DURING ASYNCHRONOUS OPERATIONS

The TI bit (SCON.l Transmit Interrupt flag) is set by the 
hardware of the 8051 when a byte has been transmitted by the 
serial port. Breaking emulation when the 805IE is in the process 
of transmitting the byte will result in the TI bit not being set.

Breaking emulation when asynchronous operations are bing 
performed by the processor raises interesting discussions on 
exactly how the emulator should deal with the situation.
Ideally, the process of transmitting a byte should be frozen in 
time; the opeation of the bondout an instant before and after 
emulation is broken would be indestinguishable from the 
noninterrpted operation of the chip. The peripheral would 
receive parts of the byte at different points in time, which is 
an accepted consequence of leaving real time. The user knows 
this and re-enters emulation at a point which recaptures the 
program flow.

An alternate and less desirable solution would be to allow the 
serial port to continue transmitting the byte while program 
execution has stopped at the breakpoint, until the transmission 
is complete.

The present stepping of the bondout is the cause of this 
situation. With this condition in mind, the impact can be 
localized to one specific serial scenario.

The temporary solution that is recommended you use is explained 
followed by a program example of a TI set problem.

If the 8051 is servicing the serial port through the use of 
interrupts, the above situation will not be a problem when 
debugging the port. Breakthroughs can be placed in the service 
routine itself (the TI bit has already been set) and execution is 
not hindered by the break.

When a breakpoint is set to debug another section of code, but 
interrupts the serial transmission poses a problem that is easily 
handled. Since the transmission to the peripheral has been lost, 
the designer will usually go from 0 to re-establish the serial 
activity from the beginning. A potentially significant debugging 
situation occurs if the design calls for a polling testing method 
for serial activity.

9



ICE-51

As the example shows, it becomes very obvious that something is 
awry if your program is testing the TI bit. Knowing about this 
problem, you can easily overcome the situation by resetting the 
bondout and starting from 0. The problem becomes very 
significant and exceedingly hard to deal with when a program 
casually polls the TI bit.

The servicing of the serial port may be a secondary function of 
the 80951 in which polling occurs at large intervals of time. If 
a break had occurred by chance when a bytes was being 
transmitted, the designer has only an indirect way of knowing 
that the TI bit should be set. The next step is to determine the 
elaspsed time a byte would take to be transmitted, and then 
searching backward through trace to determine if SBUP was set 
within that time period. At 110 baud and 10 bits per byte 
transmission, there would be about 100 msec worth of 
transmission. The ICE-51 trace memory would have been flushed 
many times during transmission.

In that situation there is no way of knowing if the serial port 
should be transmitting or not. The bottom line in determining if 
this is the source of a problem is to investigate the polling 
method used in the design and see if the serial problem goes away 
if the chip is reset and emulation is started from 0. Have the 
testing debugger break on the address of the successful jump 
after testing the TI bit.

Example:
Program of TI Set Problem

Initialization of timers and serial modes was omitted.

MOV SBUF,A ; Transmit the byte
LOOP: JNB TI.LOOP ; Poll the TI bit for completed

; transmission
CLR TI ; Clear TI bit

LOCA: MOV A,#41H
MOV SBUF,A

LOCB: LJNP LOOP ; Poll TI

10 -



An Intel Technical.Report

ICE-51 CMOS DEBUG LIMITATIONS

The minor differences between the NMOS 8051 microcomputer and the 
CMOS version, the 8051C, do not prohibit the emulation of 80C51 
with the current version of ICE-51. The specifications of the 
8051 and 80C51 are very similar. Some of the specification 
differences are:

1. The operating voltage, Vcc, for 8051 ranges from 4.5V to 
5.5V, versus 4V to 6V for the 80C51.

2. The 80C51 has specifications for the Input Low Voltage (VIL) 
and the Input High Voltage (VIH) that are Vcc dependent:

VIL = 0.8V for Vcc > 4.5V; 0.5V for Vcc < 4.5V

VIH = 2.5V for Vcc > 5.5V; 2.0V for Vcc < 5.5V

The Output High Voltage (VOH) of the ICE-51 emulation 
processor is not specified at the 80C51 voltage levels 
(0.9Vcc at IOC = lOuA). The emulation processor should have 
no problems reaching 2/3 Vcc at current drain.

3. The Power-Down Voltage (VDP) for the 80C51 is 2.0V to 6.0V, 
versus 4.5V to 5.5V for the 8051. The power-down mechanism 
for the 80C51 is different than that of the 8051. The 80C51 
enters power-down upon the setting of the PD bit in the PCON 
register; VPD is then derived from the Vcc line (pin 40).

4. The power supply current for the 8051 emulation processor is 
160mA, versus24mA for that of the 80C51.

5. There is no mechanism to emulate the idle mode of the 80C51 
component with the 8051-based emulation processor.

6. The TPLIV (PSEN to Valid Instruction IN) for the 80C51 is 
specified as 3TCLCL (the oscillator period) minus 100ns, 
versus 3 TCLCL minus 125ns for the 8051.

These specifications (which are also found in the 8051 and 80C51 
data sheets) are provided for your information, as well as to 
explain the reasons for the following guidelines and limitations 
for emulation of the 8051 and 80C51:

1. Maintain Vcc at 5V + 10%. This ensures that VIL and VIH 
remain within the 8051 specifications and that the voltage 
limitations are not violated.

11



ICE-51

2. The user's power supply must be able to supply at least 
160mA for the emulation processor.

3. The 80C51 CPU idle mode is not supported by the ICE-51 or 
ASM-51. You can use the following workaround to emulate the
idle mode (with only a difference in power useage):

SETB IDLE ; set fake idle bit (where
; idle is user defined bit in 
; bit addressable data memory)

LOOP: JB IDLE, LOOP

O O

; Stay in loop until reset or 
; interrupt occurs.

INTERRUPT: e ® eceos>ece

e c ooeeoeoe

CLR IDLE ; Clear IDLE bit so on return
RETI ; from interrupt, the LOOP will 

; be exited.

4. The power-down mechanism of the 80C51 is not supported by 
ICE-51 emulation processor. The power-down bit location has 
no affect on the chip, and the VPD source is not supported.

The ICE-51 is able to provide CMOS support except for the 
oprating limitations outlined above. The ICE-51 emulates the 
8051 NMOS version, therefore, take a close look at the 8051 and 
80C51 datasheets before you initiate your emulation procedures.

12 -



An Intel Technical Report

DIFFERENCES BETWEEN THE 8052 AND 8051

The 8052 provides three additional features over the 8051:

4K of extra internal code space
128 bytes of indirectly addressable RAM space
1 16 bit timer

The ICE-51 and EMV-51 are based on the 8051 and cannot emulate 
the 16 bit timer or the extra 128 bytes of indirectly addressable 
RAM space in real time. The purpose of this article is to 
provide debug alternatives for 8052 designs.

EMULATING THE 8052 WITH ICE-51

The ICE-51 can debug the extra 4K of code space in the 8052 in 
real time with the help of a currently available command called 
ROM. The ROM command sets the internal code boundary for the 
bond out. For 8051 designs, the boundary is set to 4K. 
Therefore, any code less then 4K will not present address 
information on port 0 and port 2. Code greater than 4k accesses 
external code memory and presents address information on port 0 
and port 2. An 8052 design needs the boundary extended to 8K 
before execution out of external code space. The ROM command can 
extend the boundary to the required 8K of code space. The syntax 
for the command is:

4K
ROM

8K

Typing ROM returns the current setting

The ICE-51 cannot emulate the extra timer or data RAM of the 8052 
in real time. The ICE-51 can emulate the extra data RAM if 
breakpoints are set on any instruction accessing the extra RAM.
The following macro emulates the internal data RAM of the 8052 by 
simulating indirect moves to RAM locations above 07H.

*mac
DEFINE :RAM
brl=opcode is OlllxOllxy ; set breakpoint for execution on a MOV a,@r0,
br0=location is %1 ; MOV a,@rl, mov @r0,a, mov @rl,a or on address
g from %0 til br ; set by the user.
repeat ; repeat macro until break caused by condition
while cause =02h ; other than BRI.

13



ICE-51

tra=fra 
move -4

; set trace to appropriate mode for macro 
; move to instruction causing break

if cbyte frame addr=e6h and rO >7f 
rbyte .acc=cbyte (rO+lfOOh) 
endif
if cbyte frame addr=e7 and rl > 7f 
rbyte .acc=cbyte (rl+lfOOh) 
endif
if cbyte frame addr=f6 and rO > 7f 
cbyte (rO+lfOOh)=rbyte ,acc 
endif
if cbyte frame addr=f7 and rl > 7f 
cbyte (rl+lf00h)=rbyte .acc

then ; if instruction is MOV a,@rO and
; and rO > 7f then simulate
; instruction in saved code space, 

then ; Simulation for mov a,@rl

then ; Simulation for mov @rO,a

then ; Simulation for mov @rl ,a

endif
g from (frame addr)+l til br continue emulation
endr
tra=ins ; return trace to instruction mode
em

Invoke this macro by typing in :RAM start address, end address. 
The first few lines in the macro set the breakpoint conditions to 
break on the instructions(MOV A,@R0, MOV A,@R1, MOV @R0,A, MOV 
@R1,A) and to break on the specified ending address. The rest of 
the macro breaks emulation on these instructions and tests to see 
if the break was caused by the opcode occurence or the ending 
address. If the ending address causes the break (cause =01h for 
brO), then the macro terminates. If one of the opcodes caused 
the break, then the macro determines which instruction caused the 
break and executes a simulation of the appropriate command. For 
locations less than 07FH the macro executes the proper command. 
The macro then skips the execution of the instruction and 
continues emulation. The following example illustrates the use 
of the macro.

; The execution of moving location OBFH in internal data RAM is simulated 
*dasm 100 len 10
0100H = MOV RO,#BFH
0102H = MOV A,@R0
0103H = NOP
*regs
PC ACC B SP DPTR RO Rl PSW
010BH FFH OOH 07H 0000H FFH A2H OOOOOOOOY
*rbyte .acc=00
; Set simulated internal ram location bf=99
*cbyte lfbf=99
*;ram 100,104
EMULATION BEGUN
EMULATION TERMINATED, P00103H
EMULATION BEGUN

14



An Intel Technical Report

EMULATION TERMINATED, PC=0105H
*regs
PC ACC B SP DPTR RO R1 PSW
0105H 99H OOH 07H 0000H BFH A2H 00000000Y
; as can be seen the macro executed the instruction as expected with the
; accumulator being set to the contents of shadow ram location B9.
; The following illustration demonstrates the moving of the accumulator to
; the simulated internal ram
*asm org 102h
0102H
*asm mov @rO,a
0103H
*rbyte ,acc=33
*:ram 100,105
EMULATION BEGUN
EMULATION TERMINATED, PC=0103H
EMULATION BEGUN
EMULATION TERMINATED, PC=0106H
*CBYTE 1FBF
CBYTE 1FBFH = 33H
; The appropriate location OBF has been changed

The macro will simulate the extra data ram although not in real 
time. The major limitation of this process is that 128 bytes of 
code space from If80 to Ifffh must be saved. Another point to 
remember is that the stack should not operate within the internal 
RAM. A POP or PUSH at locations 80 to OFF in RAM does not work. 
The macro is best suited for debugging software in applications 
where real time emulation is not critical. Be aware of the 
following limitations with the macro approach.

The stack cannot extend beyond the 07FH boundary.
The macro only works with code mapped to ICE.
The macro uses up one of two possible match conditions for breakpoints. 
Software using moves to internal RAM does not run in real time. 
The extra timer is not emulated.

NOTE: The macro only works with code mapped to ICE because of 
the setting of the break condition BRI. The breakpoint is set to 
break on internal opcodes. The breaking on external opcode 
fetches require the setting of breakpoints on P0 since the 
opcodes are traced on P0 when executing out of external code 
space. The only problem with this is that low order addresses 
will also cause a matched break condition and improperly simulate 
a data RAM move.

15



ICE-51

The macro requires memory to be saved in the internal ICE-51 
memory. This requires mapping at least 4K to save space for the 
simulated internal RAM. The RAM does not necessarily have to 
reside at 01F80H to 01FFFH. The offset address can be changed to 
an location. The only requirement is the offset + 128 bytes must 
reside in internally mapped ICE-51 memory. Any external code 
using internal data memory fetches cannot be emulated without 
changing the breakpoint match condition and mapping to 
accommodate the simulated shadow RAM.

This is a non-real-time solution for simulating software code 
accessing the extra data RAM of the 8052. By using this 
solution, a majority of an 8052 target system software and 
hardware can be debugged.

CONVERTING AN SDK-51 TO AN SDK-52

The differences between the 8051 and the 8052 allows the easy 
conversion of an SDK-51 to an SDK-52. By substituting the 8052 
for the installed 8051, The current SDK-51 can access the extra 
timer registers and bit locations of the 8052 with the use of 
RBYTE and RBIT commands. However, the current SDK-51 cannot 
access the extra data RAM locations above 07FH available on the 
8052. The SDK-51 flags any attempt to access locations from 80H 
to OFFH with the error message 'ERR 12 ADDR OUT OF RANGE'.

The firmware requires a small change to the monitor routine 
called (I)FETCH/(I)STORE. The previous monitor code uses direct 
addressing of the internal DATA RAM and special function 
registers. The changes required eliminate the generated error 
message and use indirect addressing through R0 or R1 to access 
the extra data RAM. The code patch shown uses indirect 
addressing through R0 to read or write to the extra RAM.

The current monitor code for accessing register and data RAM is:

DBYTE:

CJNE A,#(RBYTE T0KE
MOV A, PNTLOW
JNB ACC.7,ERR
MOV DPL, A
JB F0, XWRITE
JMP XREAD
CJNE A,#(DBYTE_TOKE
MOV A, PNTLOW
JB ACC.7, ERR
MOV DPL, A
JB F0,XWRITE
JMP XREAD

AND 07H),DBYTE ; JUMP IF NOT RBYTE

; ERROR IF ADDRESS BETWEEN 0 AND 07FH

; JUMP TO STORE IF FLAG IS SET
; EXIT FROM FETCH

AND 07H), RBIT ; JUMP IF RBIT SELECTED

; ERROR IF ADDDR IS BETWEEN 80 AND OFFH
; LOAD DPL WITH NEW POINT VALUE
; JUMP TO STORE IF FLAG IS SET
; EXIT FROM FETCH

16



An Intel Technical Report

The modified SDK-52 code is as follows

CJNE A,#(RBYTE TOKE AND 07H, DBYTE ; JUMP IF NOT RBYTE
DIRECT: MOV 

JB
DPL,PNTLOW ; LOAD DPL WITH NEW POINT VALUE
F0, XWRITE ; JUMP TO STORE IF FLAG IS SET

JMP XREAD ; EXIT FORM FETCH
DBYTE: CJNE

MOV
JNB
MOV
JB
MOV
JMP

A,#(DBYTE_TOKE AND 07H), RBIT ; JUMP IF RBIT SELECTED
A, PNTLOW ; JUMP TO DIRECT ACCESS FOR
ACC.7, DIRECT ; DATA RAM < 07FH
R0,A ; STORE POINTER FOR INDIRECT ACCESS
F0,DWRITE ; JUMP IF DATA WRITE
A,@R0 ; MOVE DATA RAM VALUE INTO ACCUMULATOR
FETEND ; JUMP IF END OF FETCH

DWRITE: MOV
MOV
JMP

A,PARAMI ; DATA VALUE TO BE STORED
@R0,A ; STORE VALUE USING INDIRECT ADDRESSING
FETEND ; JUMP TO END OF FETCH

These code changes can be substituted in place of the old monitor 
routine.

Change the monitor PROM on the left of the two PROM monitor set 
by carefully removing and copying the contents to an internal 
buffer on a PROM programmer. To implement the code changes, 
substitute the following code at locations E6AC to E6C9.

B4 ,01,08 ,85,45 ,82,20 ,D5 SE6 ,C1,97 .B4 ,02,15 ,E5 ,45 ,30 ,E7 ,F0 ,F8 ,20 ,D5 ,03 ,E6,
Cl,9D,EA,F6,C1,9D

There is another consideration when making the above changes.
The SDK-52 does a checksum on the two monitor PROMS and generates 
an error message if the generated checksum does not match a 
stored value. To change the checksum make the following code 
substitution at E049H.

8D

After the substitutions have been made, burn the new PROM and 
install it in the old PROM's location.

The replacement of the 8051 with the 8052 converts the old SDK-51 
to an SDK-52. The SDK-52 provides the best way to debug the 
extra timer and extra data R.AM of the 8052. The only limitations 
are those imposed by the SDK-52. The user should consider the 
use of a combination of ICE-51 and SDK-52 when debugging 8052 
designs.

17



ICE-51

INTERPRETING TRACE INFORMATION ON THE ICE-51

The ICE-51 provides detailed frames information for the setting 
of breakpoints and conditional trace. The interpretation of this 
information depends on the instructions executed by the ICE51. 
The ICE-51 monitors two signals, ALE and PSEN/ to latch 8051 
address and data information. Figure 1 illustrates a one cycle 
memory fetch.

Figure 1. ONE CYCLE MEMORY FETCH

On each falling edge of ALE a valid address is latched and on 
each rising edge of PSEN/ a valid opcode, operand or next 
instruction opcode is traced. The 8051 fetches opcodes or 
operands twice a cycle except during a MOVX instruction. Whether 
an opcode, operand or next instruction opcode is fetched depends 
on the length in bytes of the instruction and the cycles it takes 
to execute. The simplest instruction is a one byte, one cycle 
instruction like INC A. The display of trace in frames mode 
shows the tracing of four different types of frames: LOCATION, 
VLOCATION, OPCODE and VALUE. The trace of the instruction at

18 -



An Intel Technical Report

1000H is shown in Figure 2.

FRAME TYPE ADDR DATA INSTRUCTION Pl P2 P0 TOVF
0000: LOC 1000H (04H) (INC A) FFH 10H OOH 0
0001: OPC 04H FEH 10H OOH 0
0002: VLO 1001H FEH 10H 01H 0
0003: VAL 74H FEH 10H OOH 0
0004: LOC 1001H (74H) (MOV A,#-----) FFH 10H 01H 0
0005: OPC 74H FEH 10H OOH 0
0006: VLO 1002H FEH 10H 02H 0
0007: VAL 44H FEH 10H OOH 0

Figure 2. FRAMES INFORMATION FOR. A ONE BYTE, ONE CYCLE INSTRUCTION

FRAME 0 is a LOCATION frame collected on the falling edge of ALE. 
This frame displays the opcode address of the first cycle of an 
instruction. FRAME 1 is an OPCODE frame collected on the rising 
edge of PSEN/ and corresponds to the current instruction opcode. 
LOCATION and OPCODE frames always correspond to the first cyle 
opcode fetch of an instruction. FRAME 2, collected on the 
falling edge of ALE, captures the address of the next 
instruction. Since INC A is a one byte instruction, there are no 
further operands to fetch. Therefore, the frame shows the fetch 
of the next instructions opcode. The 8051 disregards the opcode 
if the current instruction has not completed execution. The 
fetch of 74H is again executed during frames 05 and 06.

FRAMES 5 and 6 display the first cycle opcode fetch of the 
instruction following the INC A instruction.(Notice the opcode 
has been fetched twice) Frames 6 and 7 correspond to the address 
and operand of the instruction MOV A, #44H. VLOCATION frames are 
the address of an opcode or operand. VALUE frames can correspond 
to operands or to the next instruction opcodes depending on the 
length and the cycles required for completion of the instruction 
being executed. The next example is an instruction requiring two 
cycles to execute.

INC DPTR is a one byte, two cycle instruction. In Figure 3, the 
trace in FRAMES mode shows the opcode fetch of the next 
instruction for three consecutive times. This occurs because the 
instruction requires only one cycle to fetch the single opcode. 
This is an illustration of the continuous fetching of the next 
opcode while the 8051 completes the execution of the current 
instruction.

19



ICE-51

FRAMI: TYPE ADDR DATA INSTRUCTION Pl P2 PO TOVF
0000 LOC 1000H (A3H) (INC DPTR) FFH 10H OOH 0
0001 OPC A3H FEH 10H OOH 0
0002 VLO 1001H FEH 10H 01H 0
0003 VAL 74H FEH 10H OOH 0
0004 VLO 1001H FEH 10H 01H 0
0005 VAL 74H FEH 10H OOH 0
0006 VLO 1001H FEH 10H 01H 0
0007 VAL 74H FEH 10H 01H 0
0008 LOC 1001H (74H) (MOV A,#-----) FFH 10H 01H 0
0009 OPC 74H FEH 10H 7FH 0
0010 VLO 1002H FEH, 10H 02H 0
0011 VAL 44H FEH 10H FFH 0

Figure 3. EXAMPLE OF A 1 BYTE, 2CYCLE INSTRUCTION e.g INC DPTR

In the case of a branch instruction, the last operand is fetched 
twice instead of the next opcode. Figure 4 displays the frame 
information for a branch instruction. Frames 04 and 07 show the 
repetitive fetching of the final operand of the next instruction.

Figure 4. EXAMPLE OF A BRANCH INSTRUCTION

FRAME TYPE ADDR DATA INSTRUCTION Pl P2 PO TOVF
0000; LOC 1000H (02H) (LUMP ----- ) FFH 10H OOH 0
0001: OPC 02H FEH 10H OOH 0
0002; VLO 1001H FEH 10H 01H 0
0003: VAL 20H _ FEH 10H OOH 0
0004: VLO 1002H FEH 10H 02H 0
0005: VAL OOH FEH 10H OOH 0
0006: VLO 1002H FEH 10H 02H 0
0007: VAL OOH FEH 10H OOH 0
0008: LOC 2000H (A3H) (INC DPTR) FFH 20H OOH 0
0009: OPC A3H FEH 20H 05H 0
0010; VLO 2001H FEH 20H 01H 0
0011: VAL 91H FEH 20H 05H 0
0012: VLO 2001H FEH 20H 01H 0
0013 : VAL 91H FEH 20H 05H 0
0014: VLO 2001H FEH 20H 01H 0
0015: VAL 91H FEH 20H 35H 0

20



An Intel Technical Report

The MOVX instruction is a little different than most 
instructions. The trace in FRAMES mode shows the fetching of the 
next opcode at frames 2 and 3. However, in frames 4 through 6 
the execution of the MOVX instruction is on ports 0 and 2. The 
trace displays the absence of an ALE during frames 5 and 6. This 
is expected since the 8051 skips an ALE during the second cycle 
of a MOVX instruction. Frame 4 is the ALE which latches the 
valid external data address and the following two frames are 
latched frames because PSEN/ is active while ALE is not active. 
The information latched in the VAL frames is the data on the 
internal ICE memory bus when PSEN/ goes low. The PSEN in the 
target system maintains a constant high on PSEN/ although the ICE 
has a transition.

0000 LOC 1000H (EOH) (MOVX A,@DPTR) FFH 10H OOH 0
0001 OPC EOH FFH 10H FFH 0
0002 VLO 1001H FFH 10H 01H 0
0003 VAL 74H FFH 10H FFH 0
0004 VLO 0088H FFH OOH 88H 0
0005 VAL UH FFH OOH FFH 0
0006 VAL UH FFH OOH FFH 0
0007 LOC 1001H (74H) (MOV A,#--) FFH 10H 01H 0
0008 OPC 74H FFH 10H FFH 0
0009 VLO 1002H FFH 10H 02H 0
0010 VAL 44H FFH 10H FFH 0

Figure 5. EXAMPLE OF A MOVX INSTRUCTION

VALUE INFORMATION IN EXTERNAL AND INTERNAL ACCESSES

The VAL frames on ICE-51 displays different results depending on 
whether an internal ICE or external user memory fetch is being 
executed. The VALUE column in ICE-51 displays the proper 
operands and opcodes when accessing internal ICE memory. 
However, when accessing external code memory, OFF is displayed 
during opcode and value frames. The correct opcode or operand is 
displayed on P0. P0 displays invalid operands and opcodes when 
executing out of code greater than the 4K mapped internally to 
ICE-51 memory. Figures 6-7 show the tracing of instructions 
using different map settings. The value and P0 data are 
different in each case. VALUE and OPCODE frames normally 
correspond to internal ICE memory activity. P0 and P2 correspond 
to external access of user memory or to port values when 
accessing the lower 4K of internal 8051 memory. This is an 
important consideration when setting complex break and trace 
points. To break or trace correctly, take into account the 

21



ICE-51

information being traced.

EXAMPLES OF EXTERNAL AND INTERNAL MEMORY ACCESSES

Figure 6 is an example of an internal ICE memory access of less 
than 4K. The data displayed during OPC and VAL frames represents 
instruction opcode and operands. In this case, the code is 
executing out of internal ICE memory and the trace of the 
activity is displayed in the DATA column.

FRAME TYPE ADDR DATA INSTRUCTION Pl P2 P0 TOVF
0000: LOC 0100H (04H) (INC A) FFH FFH FFH 0
0001: OPC 04H FFH FFH FFH 0
0002: VL0 0101H FFH FFH FFH 0
0003: VAL 74H FFH FFH FFH 0
0004: LOC 0101H (74H) (MOV A,#-----) FFH FFH FFH 0
0005: OPC 74H FFH FFH FFH 0
0006: VLO 0102H FFH FFH FFH 0
0007: VAL 44H FFH FFH FFH 0

Figure 6. EXAMPLE OF INTERNAL ICE MEMORY ACCESS LESS THAN 4K.

Figure 7 is an example of external access of greater than 4k with 
memory mapped to ICE. The DATA displayed during OPC and VAL 
frames represents the instruction opcode and operands. The 
activity on PO is the ICE presenting address information on the 
port since the 8051 is accessing external code memory. The 
opcode and operands are not used because the access is to 
internal ICE memory and traced in the DATA column.

22



An Intel Technical Report

Figure 7. EXAMPLE OF EXTERNAL ACCESS GREATER THAN 4K MAPPED TO ICE

FRAME TYPE ADDR DATA INSTRUCTION Pl P2 P0 TOVF
0000: LOC 1000H (04H) (INC A) FFH 10H OOH 0
0001: OPC 04H FFH 10H FFH 0
0002: VLO 1001H FFH 10H 01H 0
0003: VAL 74H FFH 10H FFH 0
0004: LOC 1001H (74H) (MOV A,#-----) FFH 10H 01H 0
0005: OPC 74H FFH 10H FFH 0
0006: VLO 1002H FFH 10H 02H 0
0007: VAL 44H FFH 10H FFH 0

Figure 8 is an example of an external access of memory mapped to 
USER. The valid opcode and operands are now traced on PO.
OPCODE and VALUE frames display values of OFFh.

Figure 8 EXAMPLE OF EXTERNAL ACCESS WITH ICE MAPPED TO USER

FRAME TYPE ADDR DATA INSTRUCTION Pl P2 P0 TOVF
0000: LOC EOOOH (02H) (LUMP —) FFH EOH OOH 0
0001: OPC FFH (MOV R7,A) FFH EOH 02H 0
0002: VLO E001H FFH EOH 01H 0
0003: VAL FFH FFH EOH E2H 0
0004: VLO E002H FFH EOH 02H 0
0005: VAL FFH FFH EOH 65H 0
0006: VLO E002H FFH EOH 02H 0
0007: VAL FFH FFH EOH 65H 0

The implication of the varying trace information is that 
breakpoints set for certain conditions may not be executed. For 
example, the setting of a breakpoint on the opcode 0A3Hh(INC A) 
does not execute as expected if the opcode resides in externally 
mapped memory. To set a breakpoint on the opcode, specifing a 
break on PO IS 0A3H is needed. In addition, the setting of 
breakpoints or tracepoints on particular frame values may cause 
other frames to meet the match condition. To break on the 
execution of any opcode or operand independent of the memory 
location, specify a match condition on VAL IS 0A3H OR PO IS 0A3H. 
However, the problem is that the port value is not restricted to 
opcodes or operands and matches when executing addresses with a 
lower address of 0A3H. Take into account the frames information 

23



ICE-51

that the ICE is attempting to break or trace on especially when 
using match conditions on OPC and VAL frames. Take a close look 
at the trace of instructions in FRAMES mode prior to setting any 
complex trace or break points. A brief description of the match 
conditions available are shown in Table 1.

Table 1. MATCH CONDITIONS AND FRAME INFORMATION

MATCH
CONDITION CORRESPONDING FRAME INFORMATION

LOCATION 
VLOCATION 
ADDR 
OPCODE

addr of first opcode fetch
addr of subsequent opcode and operand fetches
addr of opcodes and operands for VLOC and LOC frames 
instruction opcodes during internal access(OPCODE =0FFH 
during ext access)

VALUE operands and opcodes during internal access (VALUE=FF 
during ext access)

PO
Pl
P2
XADDR

PO column (See note 1)
Pl column (displays actual Port value)
P2 column (See note 2)
P2 and PO during external access.

Note 1: During internally mapped ICE accesses of less than 
4K, PO displays the the port value. During external 
accesses, PO displays the opcode, operand or lower address. 
During external accesses of ICE mapped memory greater than 
4K, PO displays the current state of the port on OPC and 
VAL frames and displays the lower address on the LOC and 
VLOC frames.

Note 2: During external accesses, P2 displays the upper 
address. P2 displays the port value during internal ICE 
memory accesses.

24



An Intel Technical Report

APPLICATIONS OF COMPLEX TRACE AND BREAKPOINTS

TRACING 1000 INSTRUCTIONS

Information gathering can be optimized by using a combination of 
conditional trace and macros. The following macro optimizes the
number of instructions traced using the ICE-51:

DEFINE :TRACE 
write 'ADDR INSTRUCTION' 
oldest 
move %0 
COUNT (%1-ZO) 
If (frame addr-1) = 03h Then 
write '***external 0 interrupt***' 
ORIF (frame addr-1) = Obh 
write '***timer 0 interrupt***' 
ORIF (frame addr-1) = 13h 
write '***external 1 interrupt***' 
ORIF (frame addr-1) = Ibh 
write '***timer 1 interrupt***'. 
ORIF (frame addr-1) = 23h 
write '***serial interrupt***' 
END IF
DASM (FRAME ADDR-1) 
MOVE 1 
ENDC 
EM
The commands to set up the macro are:

TR=OPCODE IS XXH ; Trace all VLOC frames following an OPC frame
TRA=FRAMES s Set up trace to display only frame information
G 9 Start emulation
:TRACE 100,200 9 Trace frames 100 to 200

The setting up of a match condition on all opcodes traces all 
VLOC frames following an opcode. The traced VLOC frames give the 
address of the first cycle of the instruction +1. The macro 
extracts the address of the instruction executed by subtracting 
one from the VLOC frame being traced. The disassembly of the 
address provides a trace of the instruction executed. The macro 
prints out a message for interrupt addresses to warn that the 
previous instruction traced may not have been executed. During 
an interrupt, the processor fetches the first cycle opcode more 
than once. The trace of an occuring interrupt shows the apparent 
execution of an instruction but the instruction is actually 

25



ICE-51

fetched and not executed. The VLOC frame traced following the 
OPCODE is the actual address of the first cycle of the 
instruction instead of the ADDRESS+1. The trace macro subtracts 
one and disassembles either the opcode or the last operand of the 
previous instruction. Therefore, an unexpected instruction may 
be displayed. The message should warn that the previous 
instruction may not have been executed. The instruction should 
be executed following the RETI instruction at the end of the 
appropriate interrupt service routine. An example using the 
trace macro is shown here. An interrupt is also shown:

*tr=opc is Oxxh
*tra=frames
*g from .start
EMULATION BEGUN
WARN CA:PPC/OPCODE NOT VALID
PROCESSING ABORTED
*:trace 100,120
ADDR INSTRUCTION
0146H = INC RO
0147H = CJNE RO,#5BH,.MIDOUT
.MIDOUT
OUCH = POP .PSW
014EH = SETS .TRI
.ENDOUT
0150H = RETI
0132H = MOV .P2,A
0134H = JNC .LOOP
.LOOP
0130H = ADD A,#01H
0132H = MOV .P2,A
0133H = ORL C./50H
***timer 1 interrupt***
001BH = AJMP .TIMOUT
.TIMOUT
0140H = CLR .TRI
0142H = PUSH .PSW
0144H - MOV .Pl,RO
0146H = INC RO
0147H = CJNE RO,#5BH,.MIDOUT
.MIDOUT
OUCH = POP .PSW
014EH = SETB .TRI
.ENDOUT
0150H = RETI
0134H = JNC .LOOP

26



An Intel Technical Report

NOTE: The ORL C,/50H is the disassembly of AOH. This is 
last operand of the instruction MOV .P2,A. AOH is ORL 
C,/bit. The VLOC address traced in frames mode is 134H 
which corresponds to the address of the JNC .LOOP 
instruction. This instruction is fetched while the 
interrupt is being processed. Subtracting one from the 
address results in 133H. This is the address of the operand 
AOH.

BREAKING ON AN INSTRUCTION THAT SETS A PARTICULAR PORT VALUE

Breaking on the setting of a port value by a particular 
instruction can be done using a complex breakpoint. Consider the 
case of setting a breakpoint on a MOV .P0,A instruction when the 
value latched is 59H. The information in trace shows the match 
condition required.

ADDR INSTRUCTION 
0100H = MOV .P0,A
0102H = INC A
0103H = AJMP OLOOH

*print 15
FRAME TYPE ADDR DATA INSTRUCTION Pl P2 P0 TOVF
0188: LOC 0103H (21H) (AJMP -----) FFH FFH 52H 1
0189: OPC 21H FFH FFH 52H 1
0190: VLO 0104H FFH FFH 52H 1
0191: VAL OOH FFH FFH 52H 1
0192: VLO 0105H FFH FFH 52H 1
0193: VAL 19H FFH FFH 52H 1
0194: VLO 0105H FFH FFH 52H 1
0195: VAL 19H FFH FFH 52H 1
0196: LOC 0100H (F5H) (MOV — ,A) FFH FFH 52H 1
0197: OPC F5H FFH FFH 52H 1
0198: VLO 0101H FFH FFH 52H 1
0199: VAL 80H FFH FFH 52H 1
0200: LOC 0102H (04H) (INC A) FFH FFH 52H 1
0201: OPC 04H FFH FFH 53H 1
0202: VLO 0103H FFH FFH 53H 1

The trace of the instruction shows that the port changes on the 
opcode frame of the next instruction. To set a breakpoint, the 
match condition should be set at OPC IS 04H and PO IS 53H.

*res chi
*g from 100 til opc is 04h and p0 is 53h
EMULATION BEGUN
EMULATION TERMINATED, PC=0103H

27



ICE-51

*print -10
FRAME TYPE ADDR DATA INSTRUCTION Pl P2 P0 TOVF
0990: VLO 0105H FFH FFH 52H 1
0991: VAL 19H FFH FFH 52H 1
0992: LOC 0100H (F5H) (MOV ------,A) FFH FFH 52H 1
0993: OPC F5H FFH FFH 52H 1
0994: VLO 0101H FFH FFH 52H 1
0995: VAL 80H FFH FFH 52H 1
0996: LOC 0102H (04H) (INC A) FFH FFH 52H 1
0997: OPC 04H FFH FFH 53H 1
0998: VLO 0103H FFH FFH 53H 1
0999: VAL 21H FFH FFH 53H 1

The trace shows that the breakpoint was executed as expected. 
This is just one example of setting a complex breakpoint using 
information obtained from trace in FRAMES mode.

BREAKING ON A MOVX TO A PARTICULAR LOCATION

Breaking on a MOVX instruction to a particular address can be 
done using the SYO and SY1 lines. To differentiate between a 
code address and a data address some external circuitry is 
required. This circuitry is shown in Figure 9.

Figure 9= CIRCUITRY TO LATCH DATA MEMORY ADDRESS

28



An Intel Technical Report

The SY1 line indicates that a specific external address is on 
ports PO and Pl. The RD and WR are ORed together to latch the 
external matched by SY1. Therefore, only matches of data memory 
addresses occur. The latched SY1 signal is then used to halt 
emulation through the latched SYO line. To set up the ICE for a 
break on MOVX to a specific address, the following commands and 
conditions need to be initiated:

*ENABLE SY1 OUT
*ENABLE SYO LATCH ’ 
*TR=XADDR IS 1000H 
*G F 0 TILL SYO

The ICE is now set. up to break on a MOVX at external data memory 
location 1000H. The SY1 only traces when location 1000H is on 
ports PO and P2. SYO is driven low when SY1 goes high with a 
corresponding RD or WR signal. Therefore, emulation only breaks 
on a MOVX instruction. To break on a memory read, the WR line 
needs to be tied high. To break on a memory write, the RD line 
needs to be tied high.

29



ICE-51

SAVING INTERNAL REGISTERS IN ICE-51

The ICE-51 does not have any direct means for saving the internal 
data RAM or the special function registers on disk when exiting 
an emulation session. To save the state of the 8051 when exiting 
ICE-51, save the registers using block memory moves to internal 
ICE-51 code space and then save the code on diskette. The steps 
for saving internal data RAM and the special function registers 
are as follows:

*CBYTE 0 to 07FH =DBYTE 0 to 7FH ; SAVES the internal data RAM 
*CBYTE 80 to 0FFH=RBYTE 80 to OFFH ; saves the special function registers 
*SAVE REGSAV 0 to OFFH ; save data in file REGSAV
*EXIT

When entering ICE-51 enter:

*L0AD REGSAV
*DBYTE 0 to 07FH=CBYTE 0 TO 7FH
*RBYTE 80 to OFFH=CBYTE 80 TO OFFH
*; continue emulation

NOTE: Code residing at locations 0 to OFFH is copied over. 
Therefore any saving of code to disk should be done before 
the registers are saved. Likewise, the user program should 
be loaded after the registers are loaded.

30 -



An Intel Technical Report

CONFIGURATIONS AND COMPATIBILITIES

The ICE-51 has two different software versions operating on the 
same hardware configurations. Version 2.0 is an upgrade to 
version 1.3 with additional features for debugging PL/M 51 
programs. Either version can be used to run the ICE-51.
However, version 2.0 includes several syntax changes to commands. 
The latest hardware and software configurations for ICE-51 are 
listed below:

Software Version Number 2.0
Firmware Version Number .1

PWA numbers for the ICE-51

Control Processor 162380-003
Emulator 162249-001

The latest stepping of the emulator processor(bond out) is 8051E(G)

- 31



ICE-51

TROUBLESHOOTING GUIDE

The following Problem List has been compiled to assist you in 
identifying solutions to known product anomalies. To use this 
list, locate the symptom displayed by your software. Then read 
the cause of your problem and implement the solution.

An index to this list appears on the page following the Contents 
page.

If you detect a problem with your software, please submit a 
Software Problem Report (SPR) to Intel Corporation. We ask that 
you do this even if you believe you have encountered a known 
problem. We then can verify your diagnosis and obtain a measure 
of that problem's impact on our customers.

1. SYMPTOM 8051 bond out failure.

CAUSE The majority of the ICE-51 bond out failures can 
be attributed to abuse in handling or to ground 
differentials between the ICE-51 and the target 
system.

SOLUTION Take precautions to prevent static discharge by 
trying not to mishandle the bond out. Care should 
be taken whenever coming in contact with the part. 
In addition, the bond out is susceptible to 
destruction when ground differentials exist 
between the ICE-51 and the target system. The 
user should run a ground strap from the grounding 
pins on the end of the user cable to the target 
system. Any test equipment should also be 
grounded to help prevent presenting a large 
voltage potential on the bond out pins.

32



An Intel Technical Report

2. SYMPTOM

CAUSE

SOLUTION

3. SYMPTOM

CAUSE

SOLUTION

This message appears: ERR 90: MEMORY OVERFLOW

Error 90 occurs when the workspace of ICE-51 has 
overflowed. This is usually caused by too many 
user defined symbols.

When writing large programs, separate tasks into 
individual modules. Writing code in compact 
modules eases the task of debugging and compiling 
large programs. Specific tasks can be debugged at 
the module level and any changes required can be 
compiled quickly. The selective loading of line 
numbers and symbols by module or range of modules 
is designed to optimize the debugging of modular 
programs with ICE-51. Selective loading of 
symbols by module conserves the symbol table space 
available for the ICE-51 and should be used when 
the number of defined symbols exceeds the 
available workspace.

Complex match conditions are not being recognized 
when executing out of external code memory. For 
example, setting a breakpoint for opcode is OOH 
(NOP) does not work when the opcode resides in 
external user code space.

The ICE-51 monitors internal and external program 
memory fetches for gathering trace information and 
comparing match conditions. When accessing 
internally mapped ICE-51 memory, the LOC, VLOC, 
OPC and VAL match conditions work properly. 
However, the operands, opcodes and addresses are 
traced on ports P0 and P2 when accessing external 
code memory. Match conditions like OPC IS do not 
work when executing out of external code space.

The article on trace information in this technical 
report details the setting of complex breakpoints 
in external or internal code memory. To set a 
match condition for an opcode executing out of 
external code space set a match condition for P0 
IS <opcode>.

33



ICE-51

AVAILABLE PUBLICATIONS

The following are the available manuals for the ICE-51 In Circuit 
Emulator.

Manual Listings

o ICE-51/ICE-44 IN CIRCUIT EMULATOR OPERATING INSTRUCTIONS 
(SUPPORTING PL/M 51) FOR ISIS USERS 
Order No.: 164221

This manual describes the operating instructions for the ICE-51 
In-Circuit Emulator.

o ICE-51/ICE-44 IN CIRCUIT EMULATOR (SUPPORTING PL/M 51) COMMAND 
DICTIONARY 
Order No.: 164222

This manual lists all the user commands for the ICE-r51/ICE-44 in 
circuit emulators in alphabetical order. The dictionary provides 
a quick reference of the different commands used by the in circuit 
emulators.

34





• i
i «

SUPPORT SERVICES

f.-
■ >.


