
ETHERNET

COMMUNICATIONS

CONTROLLER PROGRAMMER'S

REFERENCE MANUAL

Order Number: 121769-001

_ Copyright © 1981 Intel Corporation
J Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue

Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR «>
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation. ^

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager Plug-A-Bubble
CREDIT Intel MCS PROMPT
1 Intelevision Megachassis Promware
ICE Intellec Micromainframe RMX/8()

ICS iRMX Micromap System 2000

ini iSBC Multibus UPl
Insite iSBX Muliimodule fiScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

A433/981/7K CP

REV. REVISION HISTORY DATE

-001 Original issue. 8/81

,r\

This manual documents the programmer's interfaces for users of the iSBC 550
Ethernet* Communications Controller and users of the DS/E 675 Ethernet Develop
ment System.

Chapter 1 presents a non-technical overview of the programming aspects of these
products. The rest of the manual, however, assumes that you are familiar with:

1. Data communications concepts and vocabulary.

2. Ethernet specifications.

3. PL/M or some similar high-level programming language, or 8080 or 8086
Assembly Language.

If you have the DS/E 675 Ethernet Development System and are already familiar
with the Intellec Microcomputer Development System, you will be ready to write
Ethernet programs after reading only Chapter 1, the first two sections of Chapter 2,
and Appendix D. If you are not already familiar with program development on the
Intellec Microcomputer Development System, these chapters refer you to informa
tion in other manuals.

If you use one of the iRMX operating systems and intend to use one of the iMMX
800 products to implement the Multibus Interprocessor Protocol (MIP), you need
the information in Chapters 1 through 5 and Appendix A.

Appendix B and Appendix C help you if you wish to implement your own MIP
facility.

Related Publications

For more information related to programming for the Ethernet Communications
Controller and Ethernet Development System, refer to the following manuals:

• The Ethernet—A Local Area Network—Data Link Layer and Physical Layer
Specifications, 121794.

r-i • iSBC 550 Ethernet Communications Controller Hardware Reference Manual,
^ 121746,

• iMMX 800 Software Reference Manual and User's Guide, 143808.

• Intellec Series III Microcomputer Development System Product Overview,
121575.

^ • PL/M-80 Programming Manual, 401100.

• 8080/8085 Assembly Language Programming Manual, 401100.

• MCS-80/85 Utilities User's Guide for 8080/8085-Based Development Systems,
^ 121617.

Notation

Hexadecimal numbers are used frequently throughout this manual. To distinguish
from decimal numbers, the letter 'H' follows all hexadecimal numbers. A leading
zero may be added to a hexadecimal number that does not begin with one of the
digits 0 through 9. For example, the hexadecimal number OFH has the same value as
decimal 15.

• Ethernet is a trademark of the Xerox Corporation.

f.-' ;

■: ■■ ■B. foii-'- -

CHAPTER 1 PAGE
PRODUCT OVERVIEW

iSBC 550 Ethernet Communications Controller 1-1

DS/E 675 Ethernet Development System 1-3
Introduction to Terms and Concepts 1-4

CHAPTER 2

INITIALIZING THE ETHERNET

CONTROLLER
Overview 2-1

Communicating with the Bootstrap Routine 2-1
Configuring the MIP Facility 2-3
Bootstrap Commands 2-6

CHAPTER 3

EXCHANGING MESSAGES
OVER AN ETHERNET NETWORK
Introduction to External Data Link 3-1

CONNECT 3-2

DISCONNECT 3-3

ADDMCID 3-3

DELETEMCID 3-4

TRANSMIT 3-4

SUPPLYBUF 3-5

CHAPTER 4

BASIC NETWORK
MANAGEMENT FUNCTIONS
Data Link Objects 4-1

READ 4-2

READC 4-3

CHAPTER 5 page
EXAMPLE APPLICATION

Overview 5-1

Remote Print Library Module 5-1

Controller Initialization Module 5-4

Remote Print Program 5-6

Print Server Program 5-13

APPENDIX A

CONFIDENCE TEST RESULTS

APPENDIX B

MULTIBUS INTERPROCESSOR
PROTOCOL (MIP)
WhatlsMlP? B-1

Implementing MIP B-2

The MIP Model B-2

Procedural Specification B-10

APPENDIX C

EXAMPLE MIP FACILITIES
PL/M Example C-1

Assembler Example C-8

APPENDIX D

ETHERNET DATA LINK LIBRARY

Overview D-1

Library Procedures D-2

Example Calling Sequences D-8

INDEX

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE

2-1 Controller Wake-Up 1-0 Port Address 2-4
Jumpers 2-2 4-1

2-2 System Compatibility Selection Jumpers .. 2-3 B-1
2-3 System Inter-Device Segment Table 2-6

Interrupt Priority Level Selection 2-11
Data Link Objects 4-2
System Inter-Device Segment Table B-7

FIGURE TITLE PAGE FIGURE TITLE PAGE

1-1

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

3-1

3-2

3-3

3-4

User-Configurable Switch and Jumpers

Example of Inter-Device Memory

1-1 3-5 DELETEMCID Request Block 3-4

2-1 3-6 TRANSMIT Request Block 3-6

2-3 3-7 SUPPLYBUF Request Block 3-7

2-4 4-1 READ Request Block 4-2

2-4 4-2 READC Request Block ^ 3

B-1 A MIP System B-1

2-5 B-2 A Configuration of Ports B-3

2-6 B-3 Data-Flow Structure of the MIP Model ... B-5

2-7 B-4 Format of a Request Queue B-5

2-8 B-5 Conceptual Structure of a Channel B-6

2-9 B-6 Example of Inter-Device Memory
2-11 Segments B-8

3-2 C-1 Example Message Format C-9

3-3 D-1 Transmit Buffer D-5

3-3 D-2 Receive Buffer D-7

3-4

Vlll

CHAPTER 1

PRODUCT OVERVIEW

iSBC 550 Ethernet* Communications Controller

The Ethernet local area network provides a communication facility for high-speed
data exchange among digital devices located within 2.5 kilometers of each other.

The iSBC 550 Ethernet Communications Controller gives you the means to connect
a Multibus system to an Ethernet facility and begin evaluating Ethernet capabilities.
Figure 1-1 illustrates how the Ethernet Controller is used in an Ethernet
configuration.

ETHERNET I

STATION I
STATION
HOSTSBC

TASK TASK

MIP FACILITY

iSBC 550
ETHERNET

CONTROLLER
MIP FACILITY

DATA LINK
LAYER

PHYSICAL
LAYER

ETHERNET COAXIAL CABLE

ETHERNET
STATION

ISBC 550
ETHERNET
CONTROLLER

PHYSICAL
LAYER

DATA LINK
LAYER

MIP FACILITY

MULTIBUS

STATION
HOST SBC

MIP FACILITY

TASK TASK

Figure 1-1. Configuration of an Ethernet Link. 769-1

* Ethernet is a trademark of the Xerox Corporation.

1-1

Overview Ethernet Communications Controller

Each Ethernet station is a multi-computing system consisting (at a minimum) of the
following hardware components:

• An Intel Multibus system bus.

• An iSBC 550 Ethernet Communications Controller.

• One or more station hosts.

A station host is any processor board (such as the iSBC 80/30, iSBC 88/40, or iSBC
86/12A) that runs application tasks that need to access an Ethernet network. The
rate at which station hosts can transfer messages to and from the Ethernet Con- ^
troller is one to two million bits per second. The Ethernet Controller, however, can
transfer to and from the network at 10 million bits per second.

The Ethernet Communications Controller implements the Physical Layer and Data
Link Layer of network architecture as defined in The Ethernet Data Link Layer and
Physical Layer Specifications. The lowest layer, the Physical Layer, is concerned
with the coaxial cable interface. It completely specifies the essential physical
characteristics of the Ethernet network, such as data encoding, timing, and voltage
levels. The Data Link Layer defines a medium-independent, link-level communica
tion facility, built on the medium-dependent physical channel provided by the
Physical Layer. The Data Link Layer supports packet framing, addressing, error
detection, channel allocation, and collision detection.

The next higher level, the Client Layer, consists of the programs that you write using
the Data Link Layer and Physical Layer functions provided by the Ethernet Con-
troller. In addition to providing applications logic, it is the responsibility of the
Client Layer to deal (where necessary) with the following functions:

• Packet aging

• Congestion control

• Processing identification

• Routing messages among processes

• Detection of message loss

• Recovery of lost messages

• Matching message flow among processes with available resources

User tasks running on the station host communicate with the Ethernet Controller by
passing messages through shared memory. The protocol used to ensure reliable and
efficient communication across the bus is the Multibus Interprocessor Protocol
(MIP). Software that implements MIP is known as a MIP facility. The Ethernet
Controller comes equipped with a ROM-resident MIP facility. However, for use at
the station hosts, you have several choices:

• If you are using one of the iRMX operating systems, then Intel offers its iMMX
800 series of MIP facilities. (Refer to the iMMX 800 Software Reference
Manual and User's Guide.)

• If you have purchased a DS/E 675 Ethernet Development System or a DS/E 677
Ethernet Development System Upgrade Kit, then you may use the Ethernet
Data Link Library, which contains a MIP facility for use with the Ethernet
Development System's 8085 processor. (Refer to Appendix D.)

• You may implement a custom version of MIP using the specifications presented
in Appendix B. The example implementations in Appendix C may serve as a
useful starting point.

1-2

Ethernet Communications Controller Overview

Application tasks control the Ethernet Controller by means of a set of messages
known collectively as the External Data Link (EDL). Fixed-format request blocks,
sent to the Ethernet Controller under control of the MIP facilities, instruct it to per
form such functions as:

Transmit a packet.

Receive a packet.

Recognize certain packet types from the network.

Recognize certain multicast addresses from the network.

Read out network parameters.

Read and clear network parameters.

To create an Ethernet application using the Ethernet Controller, you need to become
familiar with some or all of the following programmatic interfaces:

• Calling on the services of the MIP facility that resides at the station host (details
of which depend on which MIP implementation you are using)

• Initializing the Ethernet Controller firmware (discussed in Chapter 2)

• Formatting EDL request blocks for the Ethernet Controller (explained in
Chapters 3 and 4)

DS/E 675 Ethernet Development System

The Development System for Ethernet (DS/E 675) is a complete set of tools to help
develop Ethernet communications software and applications. It combines the power
of the Intellec Series III Microcomputer Development System and an Ethernet Com
munications Controller. All the software development aids of the Intellec Series 111
Microcomputer Development System are available. Refer to the Intellec Series III
Microcomputer Development System Product Overview for a complete list of
features.

In addition to Series 111 software support, the Ethernet Development System
includes a diskette containing:

• The Ethernet Data Link Library

• An example Ethernet application

The Ethernet Data Link Library (file name EDL80.L1B) contains procedures that
enable programs that run on the 8085 processor of the Ethernet Development
System to easily and simply communicate with the network via the Ethernet Com
munications Controller. The procedures of the library hide the details of controller
initialization and MIP facility interface, thereby permitting you to develop Ethernet
software in minimal time. Complete information on the Ethernet Data Link Library
is contained in Appendix D.

The example application on the diskette consists of the source code for the PL/M
example presented in Chapter 5 and Appendix C of this manual. Print or display the
file entitled EXAMPL.HLP for more information on how to use the example files.

1-3

Overview Ethernet Communications Controller

Introduction to Terms and Concepts

The following terms and concepts are used frequently throughout the manual.

Data Link Addresses and Types

Data link addresses are 6 bytes long. A data link address is of one of two types:

1. Physical Address—The unique address associated with a particular station on
the Ethernet network. Each iSBC 550 Ethernet Communications Controller
contains a unique, hardware-determined address selected from the set of
addresses assigned to Intel Corporation by the Ethernet Address Administration
Office of Xerox Corporation.

2. Multicast Address—A multi-destination address associated with one or more
stations on a given Ethernet network. There are two kinds of multicast address:

• Multicast-group address—An address associated by higher-level
convention with a group of logically related stations

• Broadcast address—A distinguished, predefined multicast address that
always denotes the set of all stations on a given Ethernet network

The first transmitted bit of a data link address (the low-order bit of the high-order
byte) distinguishes physical from multicast addresses:

0 — physical address

1 — multicast address

The broadcast address consists of 48 one-bits. To obtain a block of multicast-group
addresses for use by your organization, write to Xerox Corporation at the address
shown below.

When considering the use of multicast addresses, be aware that network throughput
may degrade significantly. While recognition of physical addresses is performed
automatically by hardware, the presence of even one multicast address on the
Ethernet cable causes every iSBC 550 Ethernet Communications Controller on the
network to perform a firmware-level search of its multicast address table to deter
mine whether it should respond to the packet containing that multicast address.

The data link type field is a two-byte item reserved for use by the Client Layer (in
particular, to identify the Client Layer protocol associated with the packet). The
type field is not interpreted by the Physical Layer or Data Link Layer.

The address and type fields are administered by Xerox Corporation. To obtain a
multicast-group address or type field assignment, submit written requests to:

Xerox Corporation
Ethernet Address Administration Office

3333 Coyote Hill Road ^
Palo Alto, CA 94304

A nominal fee to cover administrative costs is charged.

Intel Corporation makes available to users of the iSBC 550 Ethernet Communica
tions Controller one of the type codes assigned to Intel by Xerox, namely 5009H.
You may use this type code without charge for the purposes of developing and
testing systems that use the iSBC 550 Ethernet Communications Controller.
However, for production systems, you must obtain your own unique type codes
from Xerox Corporation.

1-4

Ethernet Communications Controller Overview

MIP Concepts

Within an Ethernet station, MIP facilities aid communication among tasks that
reside on various processor boards attached to a common Multibus system bus. The
set of all such tasks, along with associated processor boards, operating systems, and
MIP facilities, is called a M/Psystem.

^ The term device is used for each processor board in a MIP system. Each device has a
device-ID, which is a number ranging from zero to the number of devices (less one)
communicating in one MIP system. The assignment of device-lD's is up to you. The

^ device-lD's assigned must be used consistently throughout the MIP system.

Communications are delivered to a task at a MIP port, which is a logical delivery
mechanism that enables delivery in 'Tirst-in, first-out" (FIFO) order. (Do not con
fuse MIP ports with hardware I-O ports.) The actual implementation of a port
depends on the operating system and MIP facilities involved. In some operating

^ systems MIP ports are implemented as ̂ 'mailboxes" or ''exchanges." The ports at a
given device are identified by a port-ID, a number which ranges from zero to the
number of ports (less one) at the device. Assign port-ID's for the devices that you
program.

To provide system-wide addressability, a port is also identified by a socket, which is
a pair of items in the form (D,P), where "D" is the device-ID and "P" is the
port-ID.

1-5

CHAPTER 2
INITIALIZING THE ETHERNET

CONTROLLER

Overview

Initialization consists of:

• Sending configuration parameters for the MI? facility that runs on the Ethernet
Controller

• Running the firmware confidence tests and reporting the results

• Determining whether another station on the network is running

A bootstrap routine which runs in ROM on the Ethernet Communications Con
troller performs initialization when the system is powered-up or reset, or when inter
rupted by the station host.

Communicating With the Bootstrap Routine

The host processor communicates with the bootstrap routine by a system of inter
rupts and messages. The station host interrupts the Ethernet Controller by writing to
a specific 1-0 port address known as the wake-up port. Plug-in jumpers on the con
troller determine which 1-0 port address the controller recognizes as a host inter
rupt. The jumper settings are defined in table 2-1 and figure 2-1. 1-0 port addresses
are available in both 8-bit and 16-bit addressing ranges. The address you choose
must not be used for any other function on the Multibus system bus.

itifTnMimimiT
RECONFIGURE RECONFIGURE RECONFIGURE RECONFIGURE RECONFIGURE

E30 E32

o o o o
E31 E33

 OGC> ° o oo

EI2 E14 E16 E18

o o o o

o o o o
Ell EI3 E15 E17

E22 E24 E26 E28

o o o o

o o o o
E23 E25 E27 E29

Figure 2-1. User-Configurable Switch and Jumpers. 769-2

2-1

Initializing Ethernet Communications Controller

Table 2-1. Controller Wake-Up I/O Port Address Jumpers

Port

Address

A4H

ASH

A6H

A7H

8A4H

8A5H

8A6H

8A7H

9A4H

9A5H

9A6H

9A7H

Plug-In Jumpers

E8-E9 E9-E10 E11-E12 E13-E14 E15-E16 E17-E18 E30-E31

IN

IN

IN

IN

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

IN

IN

IN

IN

IN

IN

IN

IN

OUT

OUT

OUT

IN

OUT

OUT

OUT

IN

OUT

OUT

OUT

IN

OUT

OUT

IN

OUT

OUT

OUT

IN

OUT

OUT

OUT

IN

OUT

OUT

IN

OUT

OUT

OUT

IN

OUT

OUT

OUT

IN

OUT

OUT

IN

OUT

OUT

OUT

IN

OUT

OUT

OUT

IN

OUT

OUT

OUT

E32-E33

Jumper may be
Installed in either

E30-E31 or E32-E33

OUT

OUT

OUT

OUT

IN

IN

IN

IN

IN

IN

IN

IN

OUT

OUT

OUT

OUT

The value written to the wake-up port determines the action taken by the firmware
on the Ethernet Controller.

01H — Resets the controller and starts the bootstrap routine.

02H — During initialization, signals that a bootstrap command has been placed
in the command area of memory; after initialization, signals to the MIP
facility that a request for the Ethernet Controller has been placed in one
of its input queues.

04H — After initialization, resets the interrupt level generated by the Ethernet
Controller. (Refer to the Start Command in this chapter for more details
on the use of this interrupt.)

Only interrupt values 01H and 02H are used during initialization. Value 01H should
always be used to start the initialization process, even after power-up or system
reset. After issuing this interrupt, the host processor must wait at least two seconds
before issuing any more interrupts to the Ethernet Controller.

Once started, the bootstrap routine responds to commands issued by the station host
processor. The host places a bootstrap command with the proper parameters at a
fixed location in memory and generates an interrupt with a value of 02H. (A MIP
facility is not used for communication with the bootstrap since one of the functions
of the bootstrap is to start the MIP facility on the controller.) Figure 2-2 illustrates
the general format of a command block. The meanings of the fields in this block are
defined below:

• COMMAND. Fill this item with the identifier of the bootstrap function to be
performed.

• RESPONSE. Fill this item with zero. The bootstrap routine changes
RESPONSE to a non-zero value upon completion of the function.

• PARAMETERS. The contents and length of this area depend upon the
function to be performed. The various commands are described in detail in the
following section.

The location of the communication area depends on the configuration of your
system. In different configurations, the host processor and the Ethernet Controller
share different memory areas. Plug-in jumper settings on the Ethernet Controller
tell which location to use for communication. Refer to table 2-2 and figure 2-1 for
the communication area addresses and plug-in jumper settings to be used with
various system configurations.

2-2

Ethernet Communications Controller Initializing

1 BYTE 1 BYTE

LOW

ADDRESS CGIVrMAND RESPONSE

PARAMETERS VARIABLE
LENGTH

HIGH
ADDRESS

Figure 2-2. Command Block. 769-3

Table 2-2. System Compatibility Selection Jumpers.

Host

System
Communications Area

Starting Address

Plug-In Jumpers

E22-E23* E24-E25 E26-E27 E28-E29

Series 11/800 0F690H OUT IN IN IN

Series 111—8085 0F690H OUT IN IN IN

Series 111—8086 1F000H OUT IN IN OUT

(reserved) to be defined OUT IN OUT IN

User1 1000H OUT IN OUT OUT

User 2 8000H OUT OUT IN IN

User? 10000H OUT OUT IN OUT

User 4 20000H OUT OUT OUT IN

User5 2F000H OUT OUT OUT OUT

* A jumper installed in E22-E23 causes the firmware diagnostic to loop repeatedly on
power-up or reset.

After placing a command in the communication area and writing the value 02H to
the wake-up port, the host waits for the RESPONSE field to become non-zero. The
bootstrap responds within two seconds to all commands. If it does not respond
within that time, it is either not present, misconfigured, or not functioning.

If you are using the Ethernet Data Link Library to facilitate your interface with the
Ethernet Controller, you may wish to skip the rest of this chapter. The Ethernet
Data Link Library automatically handles these initialization functions through its
CQSTRT routine. (Refer to Appendix D for a complete description of the Ethernet
Data Link Library.)

Configuring the MIP Facility

One function of initialization is to tell the MIP facility at the Ethernet Controller
what the configuration of the station is. The MIP facility needs two kinds of
information: •

• Each device attached to the bus

• Memory that can be shared among devices attached to the bus

2-3

Initializing Ethernet Communications Controller

Device Information

The physical communication mechanism between devices at a station is a fixed size,
unidirectional, FIFO queue called a Request Queue. An element in a Request Queue
is known as a Request Queue Entry (RQE). Each Request Queue is managed by a
Request Queue Descriptor (RQD). An RQD and associated RQE's forming one
queue occupy a contiguous block of memory, as illustrated in figure 2-3.

Two-way communication between the Ethernet Controller and another device at the
same station is implemented by a pair ot Request Queues, known together as a chan
nel. Figure 2-4 shows a conceptual diagram of a channel.

To communicate with the MIP facility on a station host, the MIP facility at the
Ethernet Controller must have the starting address of each of the Request Queues of
the channel. This information is sent to the Ethernet Controller via the Start Com

mand, as explained in the ^'Bootstrap Commands" section below. Just how you
obtain the queue addresses depends on what MIP facilities you are using at the host
processors.

8 BYTES

REQUEST QUEUE
DESCRIPTOR

REQUEST QUEUE
ENTRIES

RQD

RQE

1
1

RQE

I
11

RQE

-H—
RQE

16 BYTES

Figure 2-3. Format of a Request Queue.

SOURCE

DEVICE

ENQUEUE

r'
GIVE I

RQD

DEQUEUE

1 TAKE

REQUEST QUEUE

RQE RQE RQE

RQE

TAKE

RQE

I

REQUESTQUEUE

DEVICE

SOURCE

Z

DEQUEUE I I ENQUEUE

Figure 2-4. Conceptual Structure of a Channel. 769-5

2-4

Ethernet Communications Controller Initializing

Memory Configuration

The Ethernet Controller communicates with the station host or hosts via shared

memory. The abilities of the devices to access the memory available on the Multibus
system bus can be used to define a partition of that memory. MIP partitions all of
memory into non-overlapping segments such that, for any segment and any device,
either:

• The segment is continuously addressable within the address space of the device,
or

• The device cannot address any of the segment.

Each segment that can be shared among devices is called an inter-device segment
(IDS) and is identified by an IDS-ID (a number ranging from zero to the number of
IDS's (less one) in the station).

Figure 2-5 presents a hypothetical memory configuration and shows how the address
space is partitioned. Processor A and processor C can communicate through IDS 1.
Processor B and processor C can communicate through IDS's 0, 1, and 3. IDS 3,
however, is a segment of dual-ported memory; it is accessed by processor B using a
different range of addresses than processor C uses. Memory segments A, B, and C
cannot be used for inter-device communication.

Table 2-3 summarizes the memory configuration shown in figure 2-5. The table
shows the lowest address (the base address) by which each device can access each
IDS.

I GLOBAL MEMORY BOARD

'1FFFFH

PROCESSOR BOARD

WITH PRIVATE

MEMORY / 7FFFH

PROG
A

SEGMENT
17FFFH

IDS i:i

DEVICE

FFFFH 7FFFH

PROC PROG SEGMENT28000H

SEGMENT

PROCESSOR BOARD

WITH PRIVATE MEMORYPROCESSOR BOARD WITH DUAL-PORT MEMORY

Figure 2-5. Example of Inter-Device Memory Segments. 769-6

2-5

Initializing Ethernet Communications Controller

Table 2-3. System Inter-Device Segment Table.

IDS Length
Base Addresses

Device 0 Device 1 Device 2

0 8000H
—

18000H 18000H

1 8000H 10000H 10000H 10000H

2 8000H —
8000H 20000H

The Start Command (discussed below) provides the MIP facility at the Ethernet
Controller with the IDS information it needs to communicate with the station host

or hosts.

Bootstrap Commands

The bootstrap routine provides three functions to the host processor:

1. Presence

2. Echo

3. Start

For an example of how these commands are used in a program, refer to Chapter 5.

Presence Command

This must always be the first command executed after resetting the Ethernet Con
troller with an interrupt value of 01H. The Presence Command determines whether
the Ethernet Controller is present. If it is present and functioning, the Presence
Command returns the version number of the firmware and the result of the most

recent execution of the confidence test. (The bootstrap executes the confidence test
as soon as it receives the first command from the station host and before it returns a

response.) Figure 2-6 illustrates the format of the Presence Command.

1. RESPONSE. A value of one is returned within two seconds if the Ethernet

Controller is present and functioning.

2. TEST RESULT. The bootstrap inserts the result of the most recent execution
of the confidence test. Refer to Appendix A for a summary of the possible result
codes.

3. VERSION. The bootstrap routine fills in the version number of the firmware
residing on the Ethernet Controller. The version number has the form X, Y
where X is binary value stored in the high-order four bits and K is a binary value
stored in the low-order four bits.

COMMAND = 01H RESPONSE

TEST RESULT VERSION

Figure 2-6. Presence Command Block.

2-6

Ethernet Communications Controller Initializing

Echo Command

This comrnand causes the bootstrap to transmit an echo request packet to another
station on the network and wait for a reply. The bootstrap routine waits for up to 10
seconds before concluding that no echo has occurred. Refer to figure 2-7 for the for
mat of the Echo Command.

• RESPONSE. Bootstrap returns 01H if an echo is received, 02H if no echo is
received within 10 seconds.

• DESTINATION ADDRESS. Enter the data link address of the station to be

tested.

• SEND DATA. The value you enter in this field is transmitted to the destination
station.

• ECHO DATA. This field is filled from the echo response. If an echo is
received, ECHO DATA should be the same as SEND DATA. If no echo is
returned, the content of this item is not defined.

The Ethernet Controller at the destination address responds to an echo request
packet if it has been initialized. It will also respond when it receives the echo request
packet during initialization, but only if it has already processed a Presence Com
mand from its host.

The format of the echo request packet is illustrated in figure 2-8 to aid users of
telecommunications monitoring equipment.

start Command

This command performs two functions:

• It supplies a description of the system environment for use by the MIP facility
that runs on the Ethernet Controller.

• It starts execution of the MIP facility and other communications firmware on
the controller.

Once the Start Command is successfully executed, the initialization process is over.
A portion of the bootstrap routine becomes part of the running software on the
Ethernet Controller so that it can respond to echo commands from other stations on
the network. However, attempts to execute bootstrap commands from the local sta
tion host are ignored. After initialization, writing a value of 02H to the wake-up
port is interpreted as a signal to the MIP facility that runs on the Ethernet
Controller.

COMMAND = 08H RESPONSE

DESTI^

ADD!

1

lATION
=iESS

1

SEND DATA

1
1

ECHO DATA

Figure 2-7. Echo Command Block. 769-8

2-7

Initializing Ethernet Communications Controller

DESTINATION
ADDRESS

SOURCE
ADDRESS

PADDING
(43 bytes)

COMMAND VALUES:

08H-REQUEST
09H-RESPONSE

1
TYPE 5009H

COMMAND

DATA

1

1

-
FRAME CHECK SEQUENCE

-

Figure 2-8. Echo Packet. 769-9

The Ml? request queue from the Ethernet Controller to the host must already be
initialized before executing the Start Command. Contrary to the Ml? specifications
in Appendix B, the MIP facility on the Ethernet Controller does not initialize its
outgoing request queues.

The Ethernet Controller does no error checking on the values of the fields in the
Start Command block. Incorrect values may cause the controller to malfunction, so
take care to supply proper values.

The format of the Start Command is shown in figure 2-9. The format has three
parts:

• The fixed-length header

• The variable-length IDS section. The number of entries here must correspond to
the value in IDS COUNT.

• The variable-length device section. The number of entries in this section must
correspond to the value in DEVICE COUNT.

The fields of the Start Command are explained below:

• RESPONSE. The bootstrap returns 01H for a successful load and go; OFFH if
an illegal command is entered.

• (RESERVED). These areas are reserved for future expansion.

2-8

Ethernet Communications Controller Initializing

COMMAND = 02H RESPONSE

(RESE
1

RVED)
1

(RESERVED)
1
1

(RESERVED)
1
1

(RESERVED)
1
1

(ZERO)

1

OEOI

1

BEH

DEVICE COUNT IDS COUNT

THIS DEVICE (RESERVED)

IDS BASE IDS LENGTH REPEAT FOR
EACH IDS.

DEVICE ID STATUS

ROD TO CO
~ POIN

1

NTROLLER
ITER ~

1
1

ROD FROM C
POIN

1

ONTROLLER
ITER

TIMEOUT INTERRUPT TYPE

INTERRUP1
1

■ADDRESS
1

REPEAT FOR
EACH DEVICE

Figure 2-9. Start Command Block. 769-10

(ZERO). Fill this item with zeros.

*0E08EH\ This address value must be entered exactly as shown.

DEVICE COUNT. Enter the number of other devices in the MIP system. The
maximum number of devices with which the Ethernet Controller can com
municate is six.

IDS COUNT. Enter the number of IDS's in the MIP system. The maximum
number is eight, the minimum is one.

THIS DEVICE. Enter the device-ID assigned to the Ethernet Controller.
IDS BASE. The starting address of an IDS must be evenly divisible by 4096
(lOOOH). Enter the starting address of the IDS less low-order 12 bits. This
address is multiplied by lOOOH (4096) to arrive at the actual starting address.
For example, if the actual starting address is 3000H, enter 3.
IDS LENGTH. Enter the number of 4096-byte (lOOOH) segments of memory in
this IDS.

DEVICE ID. Enter the device ID of the device to which this entry applies.
Device id's may range from 0 to 7.
STATUS. EnterOFFH.

2-9

Initializing Ethernet Communications Controller

• RQD TO CONTROLLER POINTER. Enter an 8086-style pointer to the RQD
of the MI? queue for passing requests to the Ethernet Controller from this '
device. (The format of an 8086-style pointer is illustrated in figure 2-10.) Queues
must be contained within in the range 800H through EFFFFH (2K to 960K), the
Multibus addressing range of the Ethernet Controller.

• RQD FROM CONTROLLER POINTER. Enter an 8086-style pointer to the
RQD of the MIP queue for passing requests from the Ethernet Controller to this
device. (See figure 2-10.) Queues must be contained within the range 800H %
through EFFFFH (2K to 960K), the Multibus addressing range of the Ethernet
Controller.

• INTERRUPT TYPE. Enter a code for the type of interrupt the MIP facility on ^
the Ethernet Controller should use when signalling the MIP facility on this
device. The valid codes are:

OH — No interrupt; the device polls the RQD. This technique is suitable if a
processor is running only one task.

IH — I-O mapped. Some devices (such as the iSBC 550 Ethernet
Communications Controller) recognize a write to a specific 1-0 port
address as an interrupt. This is a highly reliable technique; it should
be used when available. The I-O port address is specified in the
INTERRUPT ADDRESS field. The value written to this port is 02H.

2H —Memory mapped. Some devices (such as the iSBC 544 Intelligent
Communications Controller) recognize a write to a specific memory
address as an interrupt. This is also a reliable technique. The memory
paragraph to be written is specified in the INTERRUPT ADDRESS
field. The value written to this address is 02H.

3H —Edge level. The Ethernet Controller raises one of the Multibus
interrupt lines after lowering it briefly. The rising edge triggers a pro
cessor interrupt. This technique is available on most current Intel
processor boards, such as the 80/30, 80/24, and 86/12. The Multibus
interrupt line is selectable by the rotary INT LEVEL switch SI on the
Ethernet Controller board as shown in table 2-4 and figure 2-1.

4H —Pure level. The Ethernet Controller asserts one of the Multibus

interrupt lines for 100/iS. If the host processor has interrupts enabled
and is not busy processing other interrupts during this time, an inter
rupt is triggered. The Multibus interrupt line is selectable by the
rotary INT LEVEL switch SI on the Ethernet Controller board as
shown in table 2-4 and figure 2-1. To cause the Ethernet Controller to
drop the interrupt line before 100/iS, the MIP facility at the host must
write a value of 04H to the controller's wake-up port before servicing
the interrupt. To guard against missed interrupts, the MIP facility at
the host should periodically poll the signals in its incoming request
queues.

• TIMEOUT. Enter the time (in 52 millisecond units) that the Ethernet
Controller should wait for a response when signalling this device. If the device
does not respond within this time, the Ethernet Controller assumes that the
device is dead. The value in this field must be greater than zero. A value of
OFFH indicates that the Ethernet Controller should wait forever. The only time
a value of OFFH should be used, however, is when only one device is com- ^
municating with the controller, since a failure of one device prevents the
Ethernet Controller from servicing any other devices.

• INTERRUPT ADDRESS. Enter the interrupt address as specified above for
INTERRUPT TYPE. If INTERRUPT TYPE is 0, 3, or 4, then the INTER
RUPT ADDRESS field is not used.

2-10

Ethernet Communications Controller Initializing

Table 2-4. Interrupt Priority Level Selection.

S1 Switch Position interrupt Level Priority

0 INTO/ Highest

1 INT1/

2 1NT2/

3 INT3/

4 INT4/

5 INT5/

6 INTO/

7 INT7/ Lowest

FORMAT

1 BYTE 1 BYTE

1 1 1 1 1 1 1

° OFFSET-LO
1 1 1 1 1 i 1

1 1 1 1 1 1 1

^ OFFSET-HI
1 1 1 1 1 1 1I I 1 1 I I 1

BASE-LO

1 1 1 1 1 1 1

1 1 1 1 1 1 1
BASE-HI

_l__J 1 1 i l_l_

-HI = HIGH-ORDER BYTE

-LO = LOW-ORDER BYTE

INTERPRETATION

3I 1 1 1 1 1 1
BASE-HI

''' 1 1 1 !

2' ' ' '
BASI

1 1 1

1 1 1 [1
E-LO 1

1 1 1 11 1 1 1
1 OFFS
L_L 1 1 1

1 1 1

ET-HI

I J I 1

1 1 M 1 1 1
OFFSET-LO

1 1 1 1 1 1 1

I I I I I I I I I I I I I I I I I i 1

20-BIT

RESULT

NOTE: Processors that are limited to a 64k byte addressing
range may simply fill the base with zeros.

Figure 2-10. Format of 8086-Style Pointer

2-11

PHAPTFR

EXCHANGING MESSAGES
OVER AN ETHERNET NETWORK

Introduction to External Data Link

^ The External Data Link (EDL), a task that runs on the Ethernet Controller, is pro
vided to enable tasks running on the station host to control some of the Data Link
Layer functions of the Ethernet Communications Controller. A host task makes a

^ request of the Ethernet Controller by transferring a fixed format request block to
EDL through the MIP facilities. EDL receives request blocks at MIP port 01H. EDL
interprets a request block, performs the request, and then returns the request block
to the MIP port specified in the RESPONSE SOCKET field.

Details of how request blocks are transferred from the station host to the Ethernet
Controller depend on which implementation of MIP you are using at the station
host. The MIP facility at the station host must follow two conventions in com
munication with the MIP facility at the Ethernet Controller:

• The MIP facility at the host must initialize the request queue from the controller
to the host before the controller is initialized (contrary to the MIP specifications
in Appendix B).

• The MIP facility at the host must signal any change in queue status (full to not
full, or empty to not empty) by writing a value of 02H to the Ethernet Con
troller's wake-up port.

The general format of a request block is illustrated in figure 3-1. The fields shown in
figure 3-1 are explained below:

• (RESERVED). The first 12 bytes of every request block are reserved for use by
the Ethernet Controller.

• COMMAND. Fill this with the identifier of the function requested of EDL.

• RESULT. Filled by EDL to indicate the outcome of the request. Always be sure
to check this field when the request block is returned.

• RESPONSE SOCKET. Enter the address of the MIP port to which EDL should
return the request block when finished executing the request.

• BODY OF REQUEST. The length and meaning of this area depend on the
contents of the command field.

The EDL requests available are:

1. CONNECT.

2. DISCONNECT.

3. ADDMCID.

4. DELETEMCID.

5. TRANSMIT.

6. SUPPLYBUF.

7. READ.

8. READC.

Before using the network, you must tell the Ethernet Controller which type codes
and multicast addresses to accept. Type codes are not interpreted by the Data Link
Layer; they are used to identify the Client Layer protocols associated with each
frame. A multicast address associates one station with a group of other stations that

3-1

Exchanging Messages Ethernet Communications Controller

1 BYTE

LOW
ADDRESS

(RESERVED)

^ V.

1

PROGESS ID

COMMAND RESULT

RESPONS

1

ESOCKET

1

^ BODY OF REQUEST V.

12 BYTES

VARIABLE
LENGTH

HIGH
ADDRESS

Figure 3-1. General Format of a Request Block. 769-12

have the same multicast adiJress. Type codes are specified by the CONNECT func
tion, and multicast addresses are specified by the ADDMCID function.

The Ethernet Controller has no memory that the host can access; therefore, to
receive packets from the network, you must supply buffer space by using the
SUPPLYBUF function. When a packet is received, EDL returns the buffer contain
ing that packet. The SUPPLYBUF request effectively implements the ReceiveFrame
function of the Ethernet Specifications.

To transmit a packet, send a TRANSMIT request to EDL. The TRANSMIT request
effectively implements the TransmitFrame function of the Ethernet Specifications.

The DISCONNECT and DELETEMCID functions tell EDL to stop accepting cer
tain type codes and multicast addresses.

The READ and READC functions allow you to access and reset certain network
parameters. These two requests are discussed in Chapter 4. The previously men
tioned requests are defined in more detail in the following sections.

CONNECT

The CONNECT request informs EDL which data link packet types to route to the
station host. Note that, when there is more than one host at a station, EDL does not
distinguish between type codes specified in CONNECT requests from different
hosts. Therefore, any host may receive packets containing type codes specified by
any other host at the same station. Up to eight types may be active at one time;
however, EDL uses two type codes, leaving you space for only six. The format of a
CONNECT request is shown in figure 3-2, and the fields in the request are clarified
below:

• RESULT. EDL fills this with a zero if the operation is successful; with a one if
the limit of eight types is exceeded.

• TYPE. Enter the data link type code for which the Data Link Layer should start
looking.

3-2

Ethernet Communications Controller Exchanging Messages

DISCONNECT

The DISCONNECT request causes the Data Link Layer to cease forwarding those
packets identified by a specific type code. See figure 3-3 for the format of the
DISCONNECT request.

• RESULT. This item always returns zero.

• TYPE. Enter the data link type code for which the Data Link Layer should stop
looking.

ADDMCID

The ADDMCID request tells the Data Link Layer which multicast addresses to
recognize. Note that, when a station has more than one host processor, EDL does
not distinguish between multicast addresses specified in ADDMCID requests from
different processors. Therefore, any host may receive packets containing multicast
addresses specified by other hosts at the same station. Up to eight multicast
addresses may be active at one time. Figure 3-4 shows the format of the ADDMCID
request.

• RESULT. EDL fills this with zero if the operation is successful, with one if the
limit of eight multicast addresses is exceeded.

• MULTICAST ADDRESS. Enter the multicast address for which the Data Link
Layer should start looking.

(RESERVED) >12 BYTES

I

PROG!

1

ESS ID

COMMAND = 01H RESULT

RESPONS

1

ESOCKET

1

TYPE

Figure 3-2. CONNECT Request Block. 769-13

(RESERVED) >12 BYTES

PROC!

1

ESS ID

COMMAND = 02H RESULT

RESPONSI

1

ESOCKET

1

TYPE

- i

Figure 3-3. DISCONNECT Request Block.

3-3

Exchanging Messages Ethernet Communications Controller

DELETEMCID

The DELETEMCID request causes the Data Link Layer to stop recognizing a
specific multicast address. Figure 3-5 shows how to format the DELETEMCID
request.

1. RESULT. EDL always returns zero.

2. MULTICAST ADDRESS. Enter the multicast address for which the Data Link
Layer should stop looking.

TRANSMIT

The TRANSMIT request is used to transmit a packet over an Ethernet network. You
have two options in formatting the TRANSMIT request block: either the entire
request block is one contiguous area or a pointer in the request block points to a por
tion of the request block information that is located elsewhere in memory. Any por-

(RESERVED)

PROCESS ID

COMMAND = 03H RESULT

RESPONSE SOCKET

MULTICAST ADDRESS

12 BYTES

Figure 3-4. ADDMCID Request Block. 769-15

(RESERVED)

PROCESS ID

COMMAND = 04H RESULT

RESPONSE SOCKET

\

MULTICAST ADDRESS

12 BYTES

Figure 3-5. DELETEMCID Request Block. 769-16

3-4

Ethernet Communications Controller Exchanging Messages

tion of the request block after the EXTENSION LENGTH field may reside in this
extension area. EDL effectively concatenates the extension area at the end of the
contiguous portion of the request block. See figure 3-6 for details of the format.

• RESULT. EDL returns zero if the packet is transmitted, one if not transmitted.
A packet is not transmitted if the data area contains less than 46 bytes or more
than 1500 bytes.

^ • LENGTH. Enter the length (in bytes) of the contiguous portion of the packet,
counting from the end of the EXTENSION LENGTH field.

• EXTENSION POINTER. Enter a 24-bit IDS pointer to an extension of the
« request block. Note that the high-order 8 bits of this address are stored sepa

rately from the low-order 16 bits. If EXTENSION LENGTH is zero, this
pointer is ignored and the request block must lie in one continuous area of
memory.

• IDS-ID. Enter the identifier of the inter-device segment in which the extension
area is located.

• EXTENSION LENGTH. Enter the length in bytes of the extension or enter zero
if the request block lies in one continuous area of memory.

• DESTINATION ADDRESS. Enter the data link address or multicast address of
the Ethernet station or stations to which you wish to send the packet. Fill this
field before sending the TRANSMIT block to EDL.

• SOURCE ADDRESS. EDL fills this item with the data link address of the
sending station.

• TYPE. Fill with a data link type code before sending the request.

• DATA. Enter 46 to 1500 bytes of user data. To meet Ethernet minimum packet
size requirements, you must pad smaller messages to make them at least 46 bytes
long.

SUPPLYBUF

The SUPPLYBUF request provides a buffer in which to place a packet received
from the Ethernet network. When EDL receives a packet, it copies it into this buffer
and returns the buffer to RESPONSE SOCKET. The data area of the buffer should
be at least 1500 bytes long to ensure that a maximum-length packet does not
overflow the end of the buffer. SUPPLYBUF may be used several times in succes
sion, thereby making several buffers available for receipt of packets. Make sure that
the number of buffers supplied is great enough to receive all the packets that might

^ arrive before more buffers can be supplied. If the Ethernet Controller receives a
packet but does not have a user buffer in which to place it, the packet is discarded.

Note that, when there is more than one host at a station, EDL does not distinguish
between buffers supplied by different hosts. Any buffer may be returned to any
host.

See figure 3-7 for the format of the SUPPLYBUF request.

RESULT. Always zero when a buffer is returned.

LENGTH. The length in bytes of the received packet, counting from the
beginning of the destination address through the end of the data area.

DESTINATION ADDRESS. The physical address of the receiving station or a
multicast address.

SOURCE ADDRESS. The Data Link address from which the packet came.

TYPE. The Data Link type code. This can only be one of the types specified in a
previous CONNECT request.

DATA. Filled with 46 to 1500 bytes of received data.

3-5

Exchanging Messages Ethernet Communications Controller

(RESERVED)

1
PROCI

1
ESS ID

COMMAND = 05H RESULT

RESPONSESOCKET

1

LENGTH

1

EXTENSIOi
(low-ordc

N POINTER
16 bits)

IDS-ID
EXTENSION POINTER
(high-order 8 bits)

EXTENSIC

1

>N LENGTH

1

DESTINATION
ADDRESS

SOURCE
ADDRESS

TYPE

—I—

DATA

12 BYTES

46-1500
BYTES

Figure 3-6. TRANSMIT Request Block. 769-17

3-6

Ethernet Communications Controller Exchanging Messages

(RESERVED)

1
PROG!

1
ESS ID

COMMAND = 06H RESULT

RESPONSIESOCKET

1

LENGTH

1
1

DESTINATION
ADDRESS

SOURCE
ADDRESS

TYPE

—1—

DATA

jj

46-1500
BYTES

Figure 3-7. SUPPLYBUF Request Block. 769-18

3-7

CHAPTER 4
BASIC NETWORK

MANAGEMENT FUNCTIONS

Data Link Objects

In addition to the message exchange functions explained in the previous chapter, the
External Data Link (HDL) provides access to certain items of information about the

^ network that are held by the Data Link Layer. The accessible data link objects are
explained below:

0. TOTAL SENT—the total number of packets sent from this station

1. PRIMARY COLLISIONS—the number of transmit packets that have
encountered at least one collision

2. SECONDARY COLLISIONS—the number of collisions (after the first
/''"S collision) that transmit packets have encountered.

The average number of collisions for packets encountering collisions is given by
the formula:

PRIMARY COLLISIONS + SECONDARY COLLISIONS

PRIMARY COLLISIONS

3. EXCEEDED COLLISIONS—the number of packets that are discarded in
transmission because they encounter more than the maximum number (16) of
collisions

4. TRANSMIT TIMEOUTS—the number of packets that trip the transmit
watchdog timer. Under normal conditions, this counter should register zero.

5. TOTAL RECEIVED—the number of packets forwarded to the station host

6. CRC ERRORS—the number of packets discarded because of failure of the
cyclic redundancy check (CRC)

7. FRAMING ERRORS—the number of incoming packets discarded because they
contain more than 1500 bytes of user data

8. RESOURCE ERRORS—the number of incoming packets discarded because the
Data Link Layer does not have enough space in its internal receive buffers (does
not include packets discarded due to lack of user buffers)

9. HOST ADDRESS—the hardware-defined address of this station. (READC can
read this value but not change it.)

10. LOADING—the moving average of the time the Ethernet cable is carrying
traffic. This item is interpreted as the fractional part of a real number; that is,
the part to the right of the binary point. The value ranges from 0.0 to O.FFFFH.
(READC reads this value, but does not change it.)

Each accessible data link object is identified by a number. Objects that are counters
may be of two types:

• W (wrap-around). These counters, upon reaching their maximum value,
automatically reset to zero and continue counting.

• S C'sticky''). These counters stop when they reach their maximum value.

Table 4-1 shows, for each accessible data link object, its identifying number, type,
and size.

4-1

Network Management Ethernet Communications Controller

Table 4-1. Data Link Objects.

Length
ID Name in Type

Bits

0 Total Sent 32 W

1 Primary CoHisions 16 s

2 Secondary Collisions 16 s

3 Exceeded Collisions 16 s

4 Transmit Timeouts 16 s

5 Total Received 32 w

6 CRC Errors 16 s

7 Framing Errors 16 s

8 Resource Errors 16 s

9 Host Address 48

10 Loading 16

#

READ

The READ request reads the value of an accessible data link object. The format of a
READ request is illustrated in figure 4-1. (Refer to Chapter 3 for the general format
of EDL request blocks.)

• RESULT. This item always returns zero.

• DATA LINK OBJECT. Enter the identifying number of the object to be read.
If the number put in this field is not a valid object identifier, this request has no
effect.

• RETURN VALUE. EDL returns the value of the object here. If the object is
less than six bytes in length, EDL uses only enough of this field to hold the value
(justified left).

(RESERVED)

PROCESS ID

COMMAND = 08H RESULT

RESPONSE SOCKET

1
DATA LINK OBJECT

RETURN

VALUE

12 BYTES

Figure 4-1. READ Request Block. 769-19

4-2

Ethernet Communications Controller Network Management

READC

The READC request reads an accessible data link object and, if the object is a
counter, clears it to zero after it has been read. If the object is not a counter,
READC functions the same as READ. Reading and clearing in a single operation
avoids the ''race" or contention condition that might result if reading and clearing
were done in separate operations. Figure 4-2 shows the format of the READC
request.

• RESULT. This item always returns zero.

• DATA LINK OBJECT. Enter the identifying number of the object to be read
and cleared. If the number you place in here is not a valid object identifier, this
request has no effect.

• RETURN VALUE. EDL returns the former value of the object here. If the
object is less than six bytes in length, EDL uses only enough of this field to hold
the value (justified left).

F (RESERVED)

1

V.

1
1

PROCI

1
ESS ID

COMMAND = 09H RESULT

RESPONSESOCKET

1

DATA LINK OBJECT

1
1

RETURN
VALUE

1

12 BYTES

Figure 4-2. READC Request Block. 769-20

4-3

CHAPTER 5

EXAMPLE APPLICATION

Overview

This chapter presents a simple remote printing utility to illustrate how to use the
Ethernet Controller, EDL, and a MIP facility. The application consists of two pro
grams that enable files located at one station of an Ethernet network to be printed at
another station. The Print Server program (PRINSE) runs continuously at a station
that has a printer. The command tail of the command that starts PRINSE must con
tain the pathname of the device on which to print; for example:

PRINSE :LP:

PRINSE accepts files transmitted over the network and prints them on the specified
device.

The Remote Print program (REPRIN) can be executed at any station to transfer a
file to PRINSE. The command tail of the command that invokes REPRIN must

contain the pathname of the file to be transferred; for example:

REPRIN :F1:MYPROG.LST

When finished transferring the file, REPRIN displays a summary of any com
munications errors that may have occurred during transmission.

The example MIP facility presented in Appendix C (XMX) is used by both programs
to communicate with the Ethernet Controller.

In the interests of simplicity, these programs omit much of the error checking and
error recovery logic that is the responsibility of the Client Level. A real application
of this type should provide (for example) for the possibility that a communications
error causes loss of a packet. This example merely illustrates how to use the Ethernet
Controller.

Remote Print Library Module

This submodule is a library of utility routines used by both PRINSE and REPRIN.

REMOTE$PRINT$LIB: DO;

DECLARE WORD LITERALLY 'ADDRESS

CONNECTION LITERALLY 'WORD

TRUE

FALSE

LITERALLY 'OFFFFH',
LITERALLY 'OOOOH';

5-1

Example Application Ethernet Communications Controller

/* ISIS System Calls */

WRITE I

PROCEDURE (CONN, BUF$P, COUNT, STATUS$P) EXTERNAL;
DECLARE CONN CONNECTION,

COUNT WORD,
(BUF$P, STATUS$P) ADDRESS;

END WRITE;
EXIT:

PROCEDURE EXTERNAL;
END EXIT;

DECLARE ASCII (16) BYTE INITIAL (' 01 23456789ABCDEF ');

DECIMAL: PROCEDURE (BINARY, OUT$P, WIDTH) PUBLIC;

/* Converts a binary word into a right- */
/* justified ASCII decimal representation. */

DECLARE BINARY

OUT$P
WIDTH

WORD,
ADDRESS,
BYTE;

DECLARE CHARSP ADDRESS,
CHAR BASED CHAR$P BYTE;

CHARSP = OUT$P + WIDTH - 1;
DO WHILE OUT$P <= CHARSP;
IF BINARY = 0
THEN CHAR = ' ';
ELSE DO;
CHAR = ASCIKBINARY MOD 10);
BINARY = BINARY / 10;

END /* ELSE */;
CHARSP = CHARSP - 1;

END /* DO */;

CHARSP = OUTSP + WIDTH - 1;
IF CHAR = ' ' THEN CHAR = '0';

/* Input. */

/* Local. */

END DECIMAL;

HEX: PROCEDURE (INSP, INSLENGTH, OUTSP) PUBLIC;

/* Converts a binary byte string of given */
/* length into an ASCII hexadecimal */
/* representation of twice the length. */

DECLARE INSP ADDRESS,
INSBYTE BASED INSP BYTE,
OUTSP ADDRESS,
OUTSCHAR BASED OUTSP BYTE,
INSLENGTH BYTE;

/* Input. */

5-2

Ethernet Communications Controller Example Application

DECLARE STOP$P ADDRESS; /* Local. */

STOP$P = IN$P + INSLENGTH - 1;

DO IN$P = IN$P TO STOP$P;
OUTSCHAR = ASCII (SHR(IN$BYTE, 4));
OUT$P = OUTSP + 1;
OUTSCHAR = ASCII(SHR(SHL(IN$BYTE, 4), 4));
OUTSP = OUTSP + 1;

END /* DO */;

^ END HEX;

/**/

HEXSWORD: PROCEDURE (BINARY, OUTSP) PUBLIC;

/* Converts a binary word to an ASCII hexadecimal */
/* representation (reversing order of bytes). */

DECLARE BINARY WORD, /* Input. */
OUTSP ADDRESS;

CALL HEX (.BINARY + 1, 1, OUTSP);
CALL HEX (.BINARY, 1, OUTSP + 2);

END HEXSWORD;

/**/

COMSERROR: PROCEDURE (MNEMONIC, EDLSSTATUS) PUBLIC;

DECLARE MNEMONIC WORD, /* Input. */
EDLSSTATUS WORD;

DECLARE STATUS WORD, /* Local. */
HEXSSTATUS (4) BYTE,
BACKWORDS (2) BYTE;

CALL WRITE (0, .('COMMUNICATIONS ERROR '), 21, .STATUS);
BACKWORDS (0) = HIGH (MNEMONIC);
BACKWORDS (1) = LOW (MNEMONIC);
CALL WRITE (0, .BACKWORDS, 2, .STATUS);
CALL WRITE (0, .(' '), 1, .STATUS);
CALL HEXSWORD (EDLSSTATUS, .HEXSSTATUS);
CALL WRITE (0, .HEXSSTATUS, 4, .STATUS);
CALL WRITE (0, .('H', ODH, OAH), 3, .STATUS);
CALL EXIT;

END COMSERROR;

5-3

Example Application Ethernet Communications Controller

/**/

EQUAL$ADDRESS: PROCEDURE (NET$ADR1$P,
NET$ADR2$P) WORD PUBLIC;

/* Compares two data link addresses. */

DECLARE NET$ADR1$P ADDRESS, /* Input. */
BYTE1 BASED NET$ADR1$P BYTE,
NET$ADR2$P ADDRESS,
BYTE2 BASED NET$ADR2$P BYTE;

DECLARE STOPSP ADDRESS; /* Local. */

STOP$P = NET$ADR1$P + 5;

DO NET$ADR1$P = NET$ADR1$P TO STOP$P;
IF BYTE1 <> BYTE2

THEN RETURN FALSE;
NET$ADR2$P = NET$ADR2$P + 1;

END /* DO */;

RETURN TRUE;

END EQUALSADDRESS;

END REMOTE$PRINT$LIB;

Controller Initialization Module

This submodule is used by both programs to initialize the Ethernet Controller.

CONTROLLERSINIT: DO;

/* Ethernet Communications Controller */
/* Initialization */

DECLARE WORD LITERALLY 'ADDRESS';

DECLARE WAKEUPPORT LITERALLY '0A4H',
RESETSLOOPS LITERALLY '200', /* 2 seconds. */
COMMANDSLOOPS LITERALLY '200', /* 2 seconds. */
ECHOSLOOPS LITERALLY '1000', /* 10 seconds. */
NULLSPTR LITERALLY '0';

DECLARE OUTSRQD (8) BYTE EXTERNAL,
IN$RQD (8) BYTE EXTERNAL;

DECLARE COMMAND STRUCTURE

(ID BYTE,
RESPONSE BYTE,
BODY (32) BYTE) AT (0F690H);

DECLARE PRESENCE STRUCTURE _
(TESTSRESULT BYTE,
VERSION BYTE) AT (.COMMAND.BODY);

5-4

Ethernet Communications Controller Example Application

DECLARE ECHO STRUCTURE

(DESTINATIONSADDRESS (6) BYTE,
SENDSDATA WORD,
ECHOSDATA WORD) AT (.COMMAND.BODY);

DECLARE START STRUCTURE

(RSRVD (8) BYTE,
^ ZERO WORD,

ADR ADDRESS,
DEVICESCOUNT BYTE,
IDSSCOUNT BYTE,

^ THISSDEVICE BYTE,
RSVRD BYTE,
IDSSBASE BYTE,
IDSSLENGTH BYTE,
DEVICESID BYTE,
STATUS BYTE,
TO$CONT$OFFSET ADDRESS,
TO$CONT$BASE WORD,
FROH$CONT$OFFSET ADDRESS,
FROM$CONT$BASE WORD,
INTRSTYPE BYTE,
TIMEOUT BYTE,
INTRSADDRESS WORD)

INITIAL

(0,0,0,0,0,0,0,0, 0, 0E08EH, /* Fixed. */
1, 1, OOH, 0,
0, 16, /* IDS. */

—Bt. 01H, OFFH, /* Device. */
■ .OUTSRQD, 0, .INSRQD, 0,

0, OFFH, 0);

SENDTOBOOT: PROCEDURE (BOOT$LOOPS, STATUS$P);

DECLARE BOOTSLOOPS WORD; /* Input. */

DECLARE STATUSSP ADDRESS, /* Output. */
STATUS BASED STATUSSP WORD;

DECLARE I WORD; /* Local. */

COMMAND.RESPONSE = 0;
OUTPUT(WAKEUPPORT) = 02H;
DO I = 0 TO BOOTSLOOPS;
CALL TIME (250);
IF COMMAND.RESPONSE <> 0
THEN DO;
STATUS = COMMAND.RESPONSE;
RETURN;

END /* THEN */;
END /* DO */;
STATUS = 80H; /* No response. */

END SENDTOBOOT;

5-5

Example Application Ethernet Communications Controller

/**/

ETHER$INIT: PROCEDURE (ECHO$ADDRESS$P,
TEST$RESULT$P,
STATUSSP) PUBLIC;

DECLARE ECHO$ADDRESS$P ADDRESS, /* Input. */
ECHOSADDRESS BASED ECHO$ADDRESS$P (12) BYTE;

DECLARE TEST$RESULT$P ADDRESS, /* Output. */
TESTSRESULT BASED TEST$RESULT$P BYTE,
STATUSSP ADDRESS, ^
STATUS BASED STATUSSP WORD;

DECLARE I WORD; /* Local. */

OUTPUT (WAKESUPSPORT) = 01H; /* Reset the controller. */
DO I = 1 TO RESETSLOOPS; /* Give the controller */
CALL TIME (250); /* time to reset. */

END;

COMMAND.ID = 01H; /* Presence Command. */
CALL SENDSTOSBOOT (COMMANDSLOOPS, STATUSSP);
IF STATUS > 1 THEN RETURN;
TESTSRESULT = PRESENCE.TESTSRESULT;

IF ECHOSADDRESSSP <> NULLSPTR
THEN DO;
COMMAND.ID = 08H; /* Echo Command. */
CALL MOVE (6, ECHOSADDRESSSP, ^ ^

.ECHO.DESTINATIONSADDRESS);
ECHO.SENDSDATA = OFOFOH;
CALL SENDSTOSBOOT (ECHOSLOOPS, STATUSSP);
IF STATUS = 1

THEN IF ECHO.SENDSDATA <> ECHO. ECHOSDATA
THEN STATUS = 81H;

IF STATUS > 1 THEN RETURN;
END /* THEN */;

COMMAND.ID = 02H; /* Start Command. */
CALL MOVE (32, .START, . COMMAND. BODY);
CALL SENDSTOSBOOT (COMMANDSLOOPS, STATUSSP);
RETURN;

END ETHERSINIT;

END CONTROLLERSINIT;

Remote Print Program

REMOTESPRINT: DO;

I

DECLARE WORD LITERALLY 'ADDRESS'
CONNECTION LITERALLY 'WORD',
TRUE LITERALLY 'OFFFFH',
FALSE LITERALLY 'OOOOH';

5-6

Ethernet Communications Controller Example Application

/**/

/* ISIS System Calls. */

OPEN:

PROCEDURE (CONNSP, PATH$P, ACCESS,
ECHO, STATUSSP) EXTERNAL;

^ DECLARE (CONNSP, PATHSP, STATUSSP) ADDRESS,
ACCESS UORD,
ECHO CONNECTION;

^ END OPEN;

READ:

PROCEDURE (CONN, BUFSP, COUNT,
ACTUALSP, STATUSSP) EXTERNAL;

DECLARE CONN CONNECTION,
COUNT WORD,
(BUFSP, ACTUALSP, STATUSSP) ADDRESS;

END READ;
WRITE:

PROCEDURE (CONN, BUFSP, COUNT, STATUSSP) EXTERNAL;
DECLARE CONN CONNECTION,

COUNT WORD,
(BUFSP, STATUSSP) ADDRESS;

END WRITE;
CLOSE:

PROCEDURE (CONN, STATUSSP) EXTERNAL;
DECLARE CONN CONNECTION,

STATUSSP ADDRESS;
END CLOSE;

EXIT:

PROCEDURE EXTERNAL;
END EXIT;

ERROR I

PROCEDURE (ERRNUM) EXTERNAL;
DECLARE ERRNUM WORD;
END ERROR;

/**/

/* XMX calls. */

XMXSSEND:

PROCEDURE (BUFFERSPTR, BUFFERSLENGTH,
SOCKET, STATUSSP) EXTERNAL;

DECLARE BUFFERSPTR ADDRESS,
BUFFERSLENGTH WORD,
SOCKET WORD;

DECLARE STATUSSP ADDRESS;
END XMXSSEND;

XMXSRECEIVE:

PROCEDURE (STATUSSP) ADDRESS EXTERNAL;
DECLARE STATUSSP ADDRESS;
END XMXSRECEIVE;

ETHERSINIT: PROCEDURE

(ECHOSADDRESSSP, TESTSRESULTSP, STATUSSP) EXTERNAL;
DECLARE ECHOSADDRESSSP ADDRESS;
DECLARE TESTSRESULTSP ADDRESS,

STATUSSP ADDRESS;
END ETHERSINIT;

5-7

Example Application Ethernet Communications Controller

/**/

/* Remote Print Library Calls */

DECIMAL:

PROCEDURE (BINARY, OUT$P, WIDTH)
DECLARE BINARY WORD,

OUT$P ADDRESS,
WIDTH BYTE;

END DECIMAL;
HEX:

PROCEDURE (INP, INLENGTH, OUT$P)

EXTERNAL;

EXTERNAL;
ADDRESS,
ADDRESS,
BYTE;

WORD,
ADDRESS;

DECLARE IN$P
OUT$P
INSLENGTH

END HEX;
HEXSWORD:

PROCEDURE (BINARY, OUT$P)
DECLARE BINARY

OUT$P
END HEXSWORD;

EQUALSADDRESS:
PROCEDURE (NET$ADR1$P, NET$ADR2$P) WORD
DECLARE NET$ADR1$P ADDRESS,

NET$ADR2$P ADDRESS;
END EQUALSADDRESS;

COMSERROR:
PROCEDURE (MNEMONIC, EDLSSTATUS)
DECLARE MNEMONIC WORD,

EDLSSTATUS WORD;
END COM$ERROR;

EXTERNAL;

EXTERNAL;

EXTERNAL;

/**/

/* EDL communication areas. */

DECLARE XMITSHDR STRUCTURE
(RSVRD (14)
COMMAND

RESULT

BYTE,
BYTE,
BYTE,

RESPONSESSOCKET WORD,
WORD,
ADDRESS,
BYTE,
BYTE,
WORD,

HDRSLENGTH
EXT$P
EXTSIDS
EXTSSEGMENT

EXTSLENGTH
DSTSADDRESS (6) BYTE,
SRCSADDRESS (6) BYTE,
TYPE WORD,
PRINTSCOMMAND WORD,
PRINTSLENGTH WORD)

PRINTSDATA
PRINTSEND

CHANGESTYPE

DLSREAD STRUCTURE
(ID WORD,
VALUE WORD,
FILLER (2) WORD)

LLY ''0001H',
LLY ''0002H',
LLY '0003H' ;

BYTE AT (.XM
WORD AT (.XM

/* Commands. */

AT (.XMIT$HDR.HDR$LENGTH);

5-8

Ethernet Communications Controller Example Application

DECLARE RECEIVESBUF STRUCTURE

(RSVRD (14) BYTE,
COMMAND BYTE,
RESULT BYTE,
RESPONSESSOCKET WORD,
BUFSLENGTH WORD,
DSTSADDRESS (6) BYTE,
SRCSADDRESS (6) BYTE,
TYPE WORD,
USERSDATA (1500) BYTE);

PRINTSRESPONSE WORD AT (.RECEIVE$BUF.USER$DATA);

PRINTSOK LITERAL LY '8000H', /* Responses. */
PRINTSQUIT LITERAL LY '8001H';

PRINSESADDRESS (6) BYTE

/* Be sure to update this address when
PRINSE is t0 run at another station. */

INITIAL (OOH, OAAH, OOH, OFFH, OFFH, OFAH),

/* The f0 I Lowi ng type code is assigned to
Intel Corporation. Refer to Chapter 1
for information regarding its use. */

PRINTSTYPE LITERALLY 'OQSOH',

CONF$TEST

RETURNSP

ETHER$SOCKET

THIS$SOCKET

DECLARE EDL$CONNECT

EDL$ADDMCID

EDL$TRANSMIT

EDL$SUPPLYBUF

EDL$READC

BYTE,
ADDRESS,
LITERALLY '0001H'

LITERALLY '0100H'

ITERALLY '01H'

ITERALLY '03H'

ITERALLY '05H'

ITERALLY '06H'

ITERALLY '09H'

/**/

EDLSSEND: PROCEDURE (COMMAND, BUFFER$P,
BUFFERSLN, STATUSSP);

DECLARE COMMAND BYTE,
BUFFERSP ADDRESS,
BUFFERSLN WORD;

/* Input. */

DECLARE STATUS$P ADDRESS, /* Output. */
EDL$STATUS BASED STATUSSP WORD;

DECLARE REQUEST BASED BUFFERSP STRUCTURE /* Local. */

(RSRVD (14) BYTE,
COMMAND BYTE,
RESULT BYTE,
RESPONSESSOCKET WORD);

5-9

Example Application Ethernet Communications Controller

DECLARE XMXSSTATUS WORD,
BAD$STATUS LITERALLY '0001H',
EMPTY LITERALLY 'OFFH';

REQUEST.COMMAND = COMMAND;
REQUEST.RESPONSESSOCKET = THISSSOCKET;
CALL XMXSSEND (BUFFERSP, BUFFER$LN,

ETHERSSOCKET, .XMX$STATUS); »
IF (XMXSSTATUS AND BADSSTATUS) = 0
THEN DO;
XMXSSTATUS = EMPTY; _
DO WHILE XMXSSTATUS = EMPTY; ^
RETURNSP = XHXSRECEIVE (.XMXSSTATUS);

END /* DO */;
END /* THEN */;

IF (XMXSSTATUS AND BADSSTATUS) = 0
THEN EDLSSTATUS = REQUEST.RESULT;
ELSE EDLSSTATUS = XMXSSTATUS;

END EDLSSEND;
/**/

DECLARE OBJECT (11) STRUCTURE
(NAME (20) BYTE)
INITIAL ('TOTAL SENT

•PRIMARY COLLISIONS
'SECONDARY COLLISIONS

'EXCEEDED COLLISIONS
'TRANSMIT TIMEOUTS

'TOTAL RECEIVED

'CRC ERRORS

'FRAME ERRORS
'RESOURCE ERRORS

'HOST ADDRESS

'LOADING ');

SUMMARY: PROCEDURE;

/* Displays a summary of data link errors. */

DECLARE I WORD;

SHOWSOBJECT: PROCEDURE;

CALL MOVE (20, .OBJECT(I).NAME, .BUFFER);
DLSREAD.ID = I;
CALL EDLSSEND (EDLSREADC, .XMITSHDR, 26, .STATUS);
IF STATUS > 0 THEN CALL COMSERROR CRC, STATUS);
CALL DECIMAL (DLSREAD.VALUE, .BUFFER(20), 6);
BUFFER(26) = ODH;
BUFFER(27) = OAH;
CALL WRITE (0, .BUFFER, 28, .STATUS);

END SHOWSOBJECT;

DO I = 1 TO 4;
CALL SHOWSOBJECT;

END /* DO */;
DO I = 6 TO 8;
CALL SHOWSOBJECT;

END /* DO */;

END SUMMARY;

5-10

Ethernet Communications Controller Example Application

/**/

PRINSESSEND: PROCEDURE;

DECLARE BAD$STATUS LITERALLY '0001H',
EMPTY LITERALLY 'OFFH';

js /* Supply a buffer in anticipation of PRINSE's answer. */

RECEIVESBUF.COMMAND = EDLSSUPPLYBUF;
RECEIVE$BUF.RESPONSE$SOCKET = THISSSOCKET;

^ CALL XMXSSEND (.RECEIVE$BUF , 1 532 , ETHERSSOCKET, .STATUS);
IF (STATUS AND BAD$STATUS) <> 0
THEN CALL COM$ERROR ('SB', STATUS);

/* Send a print command to PRINSE. */

CALL EDLSSEND (EDLSTRANSMIT, .XMITSHDR,
' XMIT$HDR.HDR$LENGTH + 26, .STATUS);

IF STATUS > 0 THEN CALL COM$ERROR CTR', STATUS);

/* Now wait for PRINSE's answer. */

STATUS = EMPTY;
DO WHILE STATUS = EMPTY;
RETURNSP = XMX$RECEIVE (.STATUS);

END /* DO */;
IF (STATUS AND BADSSTATUS) <> 0
THEN CALL COMSERROR CCR', STATUS);

IF RECEIVESBUF.RESULT > 0

^ THEN CALL COMSERROR CCR', RECEIVE$BUF . RESULT) ;

END PRINSESSEND;

/**/

/* Fi le Parameters. */

DECLARE INPUT LITERALLY '1',
STATUS WORD,
ACTUALSCOUNT WORD,
BUFFER (1496) BYTE,
DISK CONNECTION;

★ ★ ★ ★**************************** * * *

/* Read console to get path name. */

/* Then open input file. */

CALL READ (1, .BUFFER, 128, .ACTUALSCOUNT, .STATUS);
CALL OPEN (.DISK, .BUFFER, INPUT, 0, .STATUS);
IF STATUS > 0
THEN DO;
CALL ERROR (STATUS);
CALL EXIT;

END /* THEN */;

/* Start up the Ethernet Controller. */

CALL ETHERSINIT (. PR INSESADDRESS, .CONFSTEST, .STATUS)
IF STATUS > 1 THEN CALL COMSERROR CST', STATUS);
IF CONFSTEST > 0 THEN CALL COMSERROR CCT', CONFSTEST)

5-11

Example Application Ethernet Communications Controller

/* Set up type code. */

CHANGESTYPE = PRINT$TYPE;
CALL EDLSSEND (EDLSCONNECT, .XMIT$HDR, 20, .STATUS);
IF STATUS > 0 THEN CALL COMSERROR CCN', STATUS);

/* Initialize transmit header. */

XMIT$HDR.HDR$LENGTH = 18;
XMIT$HDR.EXT$P = .BUFFER;
XMITSHDR.EXTSIDS = 0; «
XMIT$HDR.EXT$SEGMENT = 0;
CALL MOVE (6, . PRINSESADDRESS , . XMIT$HDR.DSTSADDRESS);
XMITSHDR.TYPE = PRINTSTYPE;

/* Connect with the PRINSE program. */

XMIT$HDR.PRINT$COMMAND = PRINTSSTART;
XMIT$HOR.EXT$LENGTH = 42; /* Padding. */
XMIT$HDR.PRINT$LENGTH = 0;
CALL PRINSESSEND;
IF PRINTSRESPONSE <> PRINTSOK
THEN DO;
CALL WRITE (0, .('REMOTE PRINT SERVER IS BUSY.',

ODH, OAH), 30, .STATUS);
CALL SUMMARY;
CALL EXIT;

END /* THEN */;

/* Send the whole disk file. */

XMITSHDR.PRINTSCOHMAND = PRINT$DATA;
ACTUAL$COUNT = 1;

DO WHILE ACTUALSCOUNT <> 0;
CALL READ (DISK, .BUFFER, 1494, . ACTUALSCOUNT, .STATUS);
IF STATUS > 0 THEN CALL ERROR (STATUS);
XMIT$HDR.PRINT$LENGTH = ACTUALSCOUNT;
IF ACTUALSCOUNT > 42
/* Total data length must be >= 46. */
/* Four bytes of data are in XMITSHDR. */
THEN XMIT$HDR.EXT$LENGTH = ACTUAL$COUNT;
ELSE XMIT$HDR.EXT$LENGTH = 42;
CALL PRINSE$SEND;
IF PRINTSRESPONSE <> PRINTSOK
THEN DO;
CALL WRITE (0, .('TRANSMISSION INTERRUPTED.', S

ODH, OAH), 27, .STATUS);
CALL SUMMARY;
CALL EXIT;

END /* THEN */;
END /* DO */;

/* Termination. */

XMIT$HDR.PRINT$COMMAND = PRINT$END;
XMIT$HDR.EXT$LENGTH = 42; /* Padding. */
CALL PRINSESSEND;
CALL WRITE (0, .('FILE TRANSMITTED.',

ODH, OAH), 19, .STATUS);

5-12

n

Ethernet Communications Controller Example Application

CALL SUMMARY;
CALL CLOSE (DISK, .STATUS);
IF STATUS > 0 THEN CALL ERROR (STATUS);
CALL EXIT;

END REMOTESPRINT;

Print Server Program

PRINTSSERVER: DO;

DECLARE WORD LITERALL

CONNECTION LITERALL

TRUE LITERALL

FALSE LITERALL

FOREVER LITERALL

'ADDRESS' ,
'WORD' ,
'OFFFFH' ,
'OOOOH' ,
'WHILE TRUE';

/* ISIS System Calls. */

OPEN:

PROCEDURE (CONN$P, PATH$P, ACCESS,
ECHO, STATUSSP) EXTERNAL;

DECLARE (CONN$P, PATH$P, STATUS$P) ADDRESS,
ACCESS WORD,
ECHO CONNECTION;

END OPEN;

READ:

PROCEDURE (CONN, BUF$P, COUNT,
ACTUALSP, STATUSSP) EXTERNAL;

DECLARE CONN CONNECTION,
COUNT WORD,
(BUF$P, ACTUALSP, STATUSSP) ADDRESS;

END READ;
WRITE:

PROCEDURE (CONN, BUF$P, COUNT, STATUSSP) EXTERNAL;
DECLARE CONN CONNECTION,

COUNT WORD,
(BUF$P, STATUSSP) ADDRESS;

END WRITE;
CLOSE:

PROCEDURE (CONN, STATUS$P) EXTERNAL;
DECLARE CONN CONNECTION,

STATUSSP ADDRESS;
END CLOSE;

EXIT:

PROCEDURE EXTERNAL;
END EXIT;

ERROR:

PROCEDURE (ERRNUM) EXTERNAL;
DECLARE ERRNUM WORD;
END ERROR;

5-13

Example Application Ethernet Communications Controller

/**/

/* XMX calls. */

XMX$SEND:

PROCEDURE (BUFFERSPTR, BUFFER$LENGTH,
SOCKET, STATUSSP) EXTERNAL;

DECLARE BUFFERSPTR ADDRESS,
BUFFERSLENGTH WORD,
SOCKET WORD;

DECLARE STATUSSP ADDRESS;
END XMXSSEND;

XMX$RECEIVE'

PROCEDURE (STATUSSP) ADDRESS EXTERNAL;
DECLARE STATUSSP ADDRESS;
END XMXSRECEIVE;

ETHERSINIT: PROCEDURE
(ECHO$ADDRESS$P, TEST$RESULT$P, STATUSSP) EXTERNAL;

DECLARE ECHOSADDRESSSP ADDRESS;
DECLARE TEST$RESULT$P ADDRESS,

STATUSSP ADDRESS;
END ETHERSINIT;

/**/

/* Remote Print Library Calls */

HEX:

PROCEDURE (INSP, INSLENGTH, OUTSP)
ADDRESS,
BYTE,
ADDRESS;

WORD,
ADDRESS;

DECLARE INSP
INSLENGTH

OUTSP

END HEX;
HEXSWORD:

PROCEDURE (BINARY, OUTSP)
DECLARE BINARY

OUTSP

END HEXSWORD;
EQUALSADDRESS:

PROCEDURE (NETSADR1SP, NETSADR2SP) WORD
DECLARE NETSADR1SP ADDRESS,

NETSADR2SP ADDRESS;
END EQUALSADDRESS;

COM$ERRORI
PROCEDURE (MNEMONIC, EDLSSTATUS)
DECLARE MNEMONIC WORD,

EDLSSTATUS WORD;
END COMSERROR;

EXTERNAL;

EXTERNAL;

EXTERNAL;

EXTERNAL;

5-14

Ethernet Communications Controller Example Application

/**/

/* EDL communication areas. */

DECLARE XMITSBUF STRUCTURE
(RSVRD (U) BYTE,
COMMAND BYTE,
RESULT BYTE,

-S RESPONSESSOCKET WORD,
BUFSLENGTH WORD,
EXT$P ADDRESS,

n EXTSSEGMENT WORD,
EXTSLENGTH WORD,
DSTSADDRESS (6) BYTE,
SRCSADDRESS (6) BYTE,
TYPE WORD,
PRINTSRESPONSE WORD,
PADDING (44) BYTE);

DECLARE PRINTSOK LITERALLY '8000H', /* Responses. */
PRINTSQUIT LITERALLY '8001H';

DECLARE CHANGESADDRESS (6) BYTE AT (. XMIT$BUF . BUF$LENGTH),
CHANGESTYPE WORD AT (. XMITSBUF . BUF$LENGTH);

DECLARE RECEIVESBUF STRUCTURE
(RSVRD (14) BYTE,
COMMAND BYTE,
RESULT BYTE,
RESPONSESSOCKET WORD,
BUFSLENGTH WORD,
DSTSADDRESS (6) BYTE,
SRCSADDRESS (6) BYTE,
TYPE WORD,
PRINTSCOMMAND WORD,
PRINTSLENGTH WORD,
PRINTSTEXT (1496) BYTE);

DECLARE USERSDATA (1500) BYTE
AT (.RECEIVE$BUF.PRINT$COMMAND);

DECLARE PRINTSSTART LITERALLY '0001 H', /* Cortmands. */
PRINTSDATA LITERALLY '0002H',
PRINTSEND LITERALLY '0003H';

DECLARE ATTACHEDSADDRESS (6) BYTE,
ATTACHED WORD INITIAL (FALSE),

/* The following type code is assigned to
^ Intel Corporation. Refer to Chapter 1

for information regarding its use. */

« PRINTSTYPE LITERALLY '0950H',

CONFSTEST BYTE,
RETURNSP ADDRESS,
ETHERSSOCKET LITERALLY '0001H',
THISSSOCKET LITERALLY 'O1O0H';

DECLARE EDLSCONNECT LITERALLY '01H',
EDLSADDMCID LITERALLY '03H',
EDLSTRANSMIT LITERALLY '05H',
EDLSSUPPLYBUF LITERALLY '06H';

5-15

Example Application Ethernet Communications Controller

/**/

EDL$SEND: PROCEDURE (COMHANO, BUFFERSP,
BUFFERSLN, STATUS$P);

DECLARE COMMAND BYTE, /* Input. */
BUFFERSP ADDRESS,
BUFFERSLN UORD; ^

DECLARE STATUSSP ADDRESS, /* Output. */
EDLSSTATUS BASED STATUSSP WORD; ^

DECLARE REQUEST BASED BUFFERSP STRUCTURE /* Local. */
(RSRVD (14) BYTE,
COMMAND BYTE,
RESULT BYTE,
RESPONSESSOCKET WORD),

XMXSSTATUS WORD,
BADSSTATUS LITERALLY '0001H',
EMPTY LITERALLY 'OFFH';

REQUEST.COMMAND = COMMAND;
REQUEST.RESPONSESSOCKET = THISSSOCKET;
CALL XMXSSEND (BUFFERSP, BUFFERSLN,

ETHERSSOCKET, .XMXSSTATUS);
IF (XMXSSTATUS AND BADSSTATUS) = 0

THEN DO;
XMXSSTATUS = EMPTY;
DO WHILE XMXSSTATUS = EMPTY;
RETURNSP = XMXSRECEIVE (.XMXSSTATUS);

END /* DO */;
END /* THEN */;

IF (XMXSSTATUS AND BADSSTATUS) = 0

THEN EDLSSTATUS = REQUEST . RESULT;
ELSE EDLSSTATUS = XMXSSTATUS;

END EDLSSEND;

/ /

REPRINSSUPPLY: PROCEDURE;

DECLARE BADSSTATUS LITERALLY 'OGOIH';

RECEIVESBUF.COMMAND = EDLSSUPPLYBUF;
RECEIVESBUF.RESPONSESSOCKET = THISSSOCKET;
CALL XMXSSEND (.RECEIVESBUF, 1532, ETHERSSOCKET, ^

.STATUS) ;
IF (STATUS AND BADSSTATUS) <> 0

THEN CALL COMSERROR ('SB', STATUS); ^

END REPRINSSUPPLY;

5-16

Ethernet Communications Controller Example Application

/**/

REPRINSRECEIVE: PROCEDURE;

DECLARE BAD$STATUS LITERALLY 'OGOIH',
EMPTY LITERALLY 'OFFH';

/* Check whether previously supplied
buffer has been filled. */

STATUS = EMPTY;
DO WHILE STATUS = EMPTY;
RETURNSP = XMXSRECEIVE (.STATUS);

END /* DO */;
IF (STATUS AND BADSSTATUS) <> 0

THEN CALL COMSERROR CCR', STATUS);
IF RECEIVESBUF.RESULT > 0
THEN CALL COMSERROR CCR', RECE I VE$BUF . RESULT) ;

END REPRINSRECEIVE;

/**/

REPRINSSEND: PROCEDURE;

CALL EDLSSEND (EDLSTRANSMIT, .XMITSBUF,
XMIT$BUF.BUF$LENGTH + 26, .STATUS);

IF STATUS > 0 THEN CALL COMSERROR CTR', STATUS);

END REPRINSSEND;

/**/

/* File Parameters. */

DECLARE OUTPUT LITERALLY '2',
STATUS WORD,
ACTUALSCOUNT WORD,
PRINT CONNECTION,
PRINTSPATH (20) BYTE;

/**/

/* Read console to get pathname. */
/* Then open output file. */

CALL READ (1, .PRINTSPATH, 20, .ACTUALSCOUNT, .STATUS);
CALL WRITE (0, .('ETHERNET PRINT SERVER.',

ODH, OAH), 24, .STATUS);
CALL OPEN (.PRINT, .PRINTSPATH, OUTPUT, 0, .STATUS);
IF STATUS > 0
THEN DO;

^ CALL ERROR (STATUS);
CALL EXIT;

END /* THEN */;

CALL WRITE (PRINT, .(OCH), 1, .STATUS); /* Form Feed */
IF STATUS > 0
THEN DO;
CALL ERROR (STATUS);
CALL EXIT;

END /* THEN */;

5-17

Example Application Ethernet Communications Controller

/* Start up the Ethernet Controller. */

CALL ETHERSINIT (0, .CONFSTEST, .STATUS);
IF STATUS > 1 THEN CALL COM$ERROR CST', STATUS);
IF CONFSTEST > 0 THEN CALL COM$ERROR CCT', CONFSTEST);

/* Set up type code. */

CHANGESTYPE = PRINTSTYPE;
CALL EDLSSEND (EDL$CONNECT, .XMIT$BUF, 20, .STATUS);
IF STATUS > 0 THEN CALL COMSERROR CCN', STATUS);

/* Initialize transmit header. */

XMIT$BUF.BUF$LENGTH = 60;
XHIT$BUF.EXT$LENGTH = 0;
XMITSBUF.TYPE = PRINT$TYPE;

/* Supply a buffer. */

CALL REPRINSSUPPLY;

/* Process loop. */

DO FOREVER;
CALL REPRINSRECEIVE;
IF RECEIVE$BUF.PRINT$COMMAND = PRINT$DATA
THEN DO;
IF ATTACHED AND EQUALSADDRESS (. RECEIVE$BUF.SRCSADDRESS,

.ATTACHEDSADDRESS)

THEN DO;
CALL WRITE (PRINT, . RECEIVE$BUF.PRINT$TEXT,

RECEIVE$BUF.PRINTS LENGTH, .STATUS);
XMIT$BUF.PRINT$RESPONSE = PRINTSOK;

END /* THEN */;
ELSE XHIT$BUF.PRINT$RESPONSE = PRINTSQUIT;

END /* THEN */;

ELSE DO;
IF RECEIVE$BUF.PRINT$COMMAND = PRINTSSTART
THEN DO;
IF NOT ATTACHED

THEN DO;
ATTACHED = TRUE;
CALL MOVE (6, . RECEIVE$BUF . SRCSADDRESS,

.ATTACHEDSADDRESS);
XMIT$BUF.PRINT$RESPONSE = PRINTSOK;

END /* THEN */;
ELSE XMITSBUF.PRINTSRESPONSE = PRINTSQUIT;

END /* THEN */;

5-18

Ethernet Communications Controller Example Application

ELSE DO;
IF RECEIVE$BUF.PRINT$COHMAND = PRINTSEND

THEN DO;
CALL WRITE (PRINT, .(OCH), 1, .STATUS);

/* Form Feed. */
ATTACHED = FALSE;
XMIT$BUF.PRINT$RESPONSE = PRINTSOK;

END /* THEN */;
ELSE XHIT$BUF.PRINT$RESPONSE = PRINTSQUIT;

END /* ELSE */;

^ END /* ELSE */;

/* Get ready for the next print command. */
CALL REPRINSSUPPLY;
/* Send the print response. */
CALL MOVE (6, . RECEIVE$BUF.SRCSADDRESS,

.XMIT$BUF.DST$ADDRESS);
CALL REPRINSSEND;

END /* FOREVER */;

END PRINTSSERVER;

5-19

APPENDIX A
^ CONFIDENCE TEST RESULTS

Results of the confidence tests are returned by the Ethernet Communications Con
troller during initialization. (Refer to Chapter 2 for details of the interface.) The
result code identifies the test that failed, as indicated below:

Processor Board

01H —DRAM data ripple.

02H —DRAM memory march.

03H —SRAM data ripple.

04H —SRAM memory march.

05H -Lower PROM CRC.

06H -Upper PROM CRC.

07H —8255A read-after-write.

08H —8237 read-after-write.

09H —8259 read-after-write.

OAH —8253 counter 0.

OBH—8253 counter 1.

OCH —8253 counter 2.

ODH—DMA channeH.

OEM-DMA channel 2.

OFH —DMA channel 3.

SerDes Board

10H —Ethernet address CRC.

11H —Broadcast packet loopback.

12H —Receive incorrect CRC.

13H —Address recognition: accept.

14H —Address recognition: reject.

15H —Transmit loopback failure: tests 11 through 14.

A-1

APPENDIX B
MULTIBUS INTERPROCESSOR

PROTOCOL (MIP)

What isMIP?

The Multibus Interprocessor Protocol (MI?) is a specification of a set of
mechanisms and protocols that enable reliable and efficient exchange of data among
tasks executing on various single-board computers connected to a common Multibus
system bus. Since MIP is a specification, it only becomes useful to you when it is
implemented. This implementation is known as a MIP facility. The MIP specifica
tion ensures compatibility among MIP facilities. For an example of how MIP
facilities are used in a Multibus configuration of single-board computers, see figure
B-1.

MIP Device

TASK TASK TASK

1 Z N

WHP FAOIHTY

<c

L

NON-MIP
DEVICE

NON-MIP
DEVICE

MULTIBUS

MIP FACILITY

TASK ASK

MIF DEVICE

NON-MIP DEVICE

MIP FACILITY

TASK

MIP DEVICE

Figure B-1. A MIP System. 769-21

B-1

Mip Ethernet Communications Controller

MIP facilities isolate user tasks from the complexities of communicating across the
Multibus system bus. Without MIP facilities, tasks trying to communicate across the
bus would have to solve one or more of the following problems:

The tasks may be running on different kinds of processors.

The tasks may be running under different kinds of operating systems.

Different boards have different Multibus signalling mechanisms.
%

Not all boards share the same memory space.

Boards sometimes share memory but reference it by different addresses.

Tasks sharing areas of memory may interfere with one another if not correctly »
coordinated.

MIP facilities hide these details from user tasks, thereby making it easier to develop
programs for Multibus configurations that include several intelligent boards.

MIP supports communication among intelligent devices such as single-board com-
puters and intelligent device controllers. MIP can be used by any device on which a
MIP facility can be programmed. The design of MIP does not limit the kinds of pro
cessors or operating systems that can execute MIP facilities. MIP can be used by the
MCS-85 or the iAPX-86 families of processors. MIP facilities can run under the
ISIS-II, iRMX-80, iRMX-86, or iRMX-88 operating systems. In addition, you can
implement MIP facilities to run on other processors or under other operating
systems.

Implementing MIP

When using this specification as a guide for implementing MIP, be aware that it
deals only with global concerns; implementational details (for example, initializa
tion or memory management) are not addressed. You may add features that enable
your implementation to better interface with its local environment {e.g., the pro
cessor, the operating system, or application tasks). Be aware also that the specifica
tion assumes a general processing environment. For example, the algorithms in the
specification are designed to work in a multitasking environment. If your environ
ment is simpler, you may streamline your implementation, as long as you retain the
basic protocol needed to communicate with other versions of MIP.

When implementing MIP using the MIP model, follow these guidelines:

If an element or structure is never shared with another MIP facility, then its
function in the model is merely descriptive.

• If an algorithm requires the cooperation of another communicating MIP
facility, then the algorithm is required.

The MIP Model

Basic Components

A software application consists of several functional units called tasks. A task may
be a program, a part of a program, or a system of related programs.

MIP facilities support communication among tasks that are executing on different
processor boards attached to a common Multibus system bus. A MIP facility is a
functioning implementation of MIP. The set of intercommunicating tasks, along
with associated processor boards, operating systems, and MIP facilities, is called a
MIP system. Each processor board in a MIP system runs a MIP facility. Each MIP
facility may be a different implementation of MIP, but adherence to this specifica
tion ensures compatibility among them.

B-2

Ethernet Communications Controller MIP

The term device is used for each processor board in a MIP system. Each device has a
device-ID, a number ranging from zero to the number of devices communicating in
one MIP system (less 1).

#

Any two tasks can communicate with each other by passing data in an area of
memory that is accessible by both of the devices on which the tasks execute. A con
tiguous block of memory through which data is passed under control of MIP
facilities is called a buffer. The content of buffers is not interpreted by MIP
facilities.

Communications are delivered to tasks at ports. A port is a logical delivery
mechanism that enables delivery in 'Tirst-in, first-out" (FIFO) order. In the MIP
model, a port is represented as a queue. In some operating systems, ports are called
''mailboxes" or "exchanges". The ports at a given device are identified by a port-
ID, a number that ranges from zero to the number of ports (less 1) at the device. To
provide system-wide addressability, a port is also identified by a socket, a pair of
items in the form (d,p), where "d" is the device-ID and "p" is the port-ID.

Refer now to figure B-2. Task B on device 0 is receiving communications at port 1,
also known as socket (0,1). Task C is active at socket (1,0). Socket (1,1) is not active
(no task is receiving messages). Socket (2,1) is not defined.

DEVICE 0

TASK
A

TASK

B

PORT
0

PORT

MIP FACILITY

DEVICE 1

TASK

n

TASK

I—1-'°" I—If" I—ly

lC MIP FACILITY].

MULTIBUS

MIP FACILITY

PORT

DEVICE 2

Figure B-2. A Configuration of Ports. 769-22

B-3

j^jp Ethernet Communications Controlle

Each port is also known by a function-name. Function-names are symbolic means of
identifying ports, making tasks that identify ports by their function-names indepen
dent of changes in configuration.

Three-Level Structure

The MIP model is composed of three levels of interface: *

1. The virtual level, by which user tasks interact with the MIP facility

2. The physical level, by which MIP facilities on different devices interact with ^
each other

3. The logical level, that translates between the virtual level and the physical level

An implementation of MIP must rigidly adhere to the functions, structures, and
constants specified here for the physical level. Any implementation that deviates
from this requirement is not compatible with the MIP architecture and may not be
able to communicate with other MIP facilities.

At the logical level, however, the algorithms and data structures specified here
merely impose a logical framework. Implementations need only satisfy the relation
ships between events and actions, but do not need to duplicate either the algorithms
or data structures as defined.

The virtual level of the model simply suggests one way for tasks to view the MIP
system. Any other viewpoint will work as well, so long as the information passed
thru the virtual level interface is sufficient to accomplish the desired results. You
may wish to create an interface that is more consistent with the interfaces to the
operating system you are using.

Figure B-3 illustrates the three-level structure. Refer to this figure during the follow
ing discussion.

Physical Level

The physical communication mechanism between devices is a fixed size, unidirec
tional, FIFO queue called a Request Queue. An element in a request queue is known
as a Request Queue Entry (RQE). An RQE is added to a Request Queue at the
''give'' end of the queue and removed from the "take" end. Each Request Queue is
managed by a Request Queue Descriptor (RQD). An RQD and associated RQE's
forming one queue occupy a contiguous block of memory, as illustrated in figure
B-4. The RQD keeps track of the give and take locations as well as other
information about the queue.

Each Request Queue contains at least two RQEs, and each queue is accessed at the
give end by only one device and at the take end by only one device. This helps to
avoid memory contention between devices using the same queue.

Two-way communication between two devices is implemented by a pair of Request #
Queues, known collectively as a channel. The device that uses the give end of a
request queue is the owner of the queue. The owner is responsible for initializing the
queue. See figure B-5 for a conceptual diagram of a channel.

Logical Level

The logical level of the MIP model uses Request Queues to transfer requests between
source and destination MIP facilities. A request is either a command or a response,
A command is an order sent from a source MIP facility to a destination facility. A

B-4

Ethernet Communications Controller MIP

VIRTUAL LEVEL LOGICAL LEVEL

INTERFACE
PROCEDURES

ACTIVATE

 RESUSATK

RECEIVING RECEIVE

DEACTIVATE

FIND

SENDING

TRANSFER

PHYSICAL LEVEL

DEVICE 0

INCOMING
REQUEST
QUEUES

PORT
QUEUE

TASK

RESPONSE
TURNAROUND

QUEUE

RESPONSE

QUEUE

I OUTGOING
REQUEST
QUEUES

I COMMAND
READY

QUEUE

DEVICE 1

DEVICE N

DEVICE 0

DEVICE 1

DEVICE N

Figure B-3. Data-FIow Structure of the MIP Model. 769-23

REQUEST QUEUE
DESCRIPTOR

REQUEST QUEUE
ENTRIES

8 BYTES

RQD

RQE

1
1

RQE

1
11

RQE

—h-
RQE

16 BYTES

Figure B-4. Format of a Request Queue. 769-4

B-5

MIP Ethernet Communications Controller

DEQUEUEENQUEUE

I TAKEGIVE I

REQUEST QUEUE

REQUEST QUEUE

RQE RQE RQE RQE

TAKE GIVE

RQD

DEQUEUE ENQUEUE

RQD

RQE RQERQE RQE

SOURCE

(OWNER)

DEVICE

(OWNER)

DEVICE

SOURCE

Figure B-5. Conceptual Structure of a Channel. 769-24

response is returned from the destination facility to the source facility and indicates
the results of an attempt to deliver a command. The Request Queues carry these
requests and their associated parameters between MIP facilities.

The primary procedures of the logical level are INSTASK and OUTSTASK. In the
MIP model these are viewed as asynchronous tasks, thereby giving the flexibility
needed to service several user tasks simultaneously in a multi-tasking environment.
Since they are asynchronous, all communication with INSTASK and OUTSTASK is
through queues. There is one Port Queue for each destination task and one
Response Queue for each source task. For each channel there is one Command
Ready Queue, one Response Turnaround Queue, and one incoming and one out
going Request Queue. (See figure B-3.)

In the MIP model, the Port Queue may contain entire buffers for reasons discussed
below under ''Buffer Movement." The other queues contain only buffer descrip
tors, thereby minimizing movement of data in memory.

INSTASK is driven by its incoming Request Queues. Requests in these queues may
be either commands or responses. Commands are routed to the Port Queue of the
destination port; a response is generated and queued in the Response Turnaround
Queue to be sent back to the source MIP facility by OUTSTASK. Responses from
the incoming Request Queues are routed to the Response Queue of the originating
task.

OUTSTASK is driven by the Command Ready Queues and Response Turnaround
Queues. When OUTSTASK finds a command in one of its Command Ready
Queues, it routes it to the destination device's Request Queue. (When a destination
device is not functioning, OUTSTASK sends a response directly back to the sending
task's Response Queue.) When OUTSTASK finds a response in one of the Response
Turnaround Queues, it routes it to the Request Queue of the source task's device.

B-6

Ethernet Communications Controller MIP

0

Virtual Level

User tasks interact with the MIP facility by use of five procedures:

• For sending buffers:

1. FIND—locates a port, given its function-name

2. TRANSFER—initiates transfer of a buffer to a given port by placing a
command in the destination device's Command Ready Queue. TRANSFER
then waits for a response before allowing the sending task to continue.

• For receiving buffers:

3. ACTIVATE—attaches a task to a port and enables reception of messages at
that port

4. RECEIVE—completes transfer of a buffer by taking a command from the
task's Port Queue

5. DEACTIVATE—disconnects a task from its port and terminates reception
of commands at that port

Memory Management

Devices in a MIP system communicate via shared memory. The abilities of the
devices to access the memory available on the Multibus system bus can be used to
define a partition of that memory. The MIP model partitions all of memory into
non-overlapping segments such that, for any segment and any device, either

• The segment is continuously addressable within the address space of the device,
or

• The device cannot address any of the segment.

Each segment that can be shared among devices is called an inter-device segment
(IDS) and is identified by an IDS-ID (a number ranging from zero to the number of
IDS's (less 1) in the MIP system).

Figure B-6 presents a hypothetical memory configuration and shows how the
address space is partitioned. Processor A and processor C can communicate through
IDS 1. Processor B and processor C can communicate through IDS's 0, 1, and 3.
IDS 3, however, is a segment of dual-ported memory and is accessed by processor B
using a different range of addresses than processor C uses. Memory segments A,B,
and C cannot be used for inter-device communication.

Table B-1 summarizes the memory configuration shown in figure B-6. The table
shows the lowest address (the base address) by which each device can access each
IDS.

Table B-1. System Inter-Device Segment Table.

IDS Length
Base Addresses

Device 0 Device 1 Device 2

0 8000H 18000H 18000H

1 8000H 10000H 10000H 10000H

2 8000H 8000H 20000H

B-7

MIP Ethernet Communications Controller

I GLOBAL MEMORY BOARD I PROCESSOR BOARD
WITH PRIVATE

MEMORY / 7FFFH

SEGMENT

17FFFH

IDS

DEVICE

U
2FFFFH 7FFFH

SEGMENTPROGPROG

SEGMENTS

PROCESSOR BOARD

PROCESSOR BOARD WITH DUAL-PORT MEMORY I I WITH PRIVATE MEMORY |

Figure B-6. Example of Inter-Device Memory Segments. 769-6

The MIP model contains special features for handling the '*alias" problem posed by
dual-port memory. Dual-port memory may be addressed differently from the
Multibus system bus than from its local processor. The only case of a shared
memory address in a MIP system is the buffer pointer in the RQE. This pointer is
stored in a special format, called an IDS pointer, that is independent of the
addressing peculiarities of the different devices in a MIP system. The MIP pointer is
32 bits wide, permitting an addressing range of 4 gigabytes. The high-order word (16
bits) of the pointer stores the low-order word of the address, and the low-order word
of the pointer stores the high-order word of the address. Within each word, the low-
order byte is stored before the high-order byte.

When a buffer is transferred, the sending MIP facility converts the local buffer
pointer to the MIP pointer format and normalizes it by subtracting the IDS base
address of the sending device. Upon receiving the RQE, the receiving MIP facility
adds the IDS base address of the receiving device and converts to the format
required by the receiving device's processor. In this way, user tasks are not con
cerned with these addressing problems.

Buffer Movement

Generally, buffers are not physically moved from one memory location to another
any more often than necessary. Instead, buffers are referenced by descriptors in the
RQEs. However, the MIP model provides for operating systems whose memory
management policies forbid introduction of new objects (buffers) into their memory
spaces. When delivering a buffer, the MIP model copies the buffer from the space
managed by the sending operating system into the space managed by the receiving
operating system. In such a case, a special status code is returned, so that the sender
can know when the buffer is available for reuse.

B-8

Ethernet Communications Controller MIP

Signalling

MIP uses a signalling mechanism for efficient utilization of the inter-device request
queues. The mechanism is a software handshake using flags in the signal bytes of the
RQDs. This mechanism permits MIP facilities to decrease their activity when queue
activity decreases.

^ INSTASK does not examine incoming request queues that are known to be empty.
When the OUTSTASK of a sending facility puts a request in an outgoing queue that
was previously empty, it also sets a flag to signal the INSTASK of the receiving

^ facility that the queue is no longer empty.

Similarly, OUTSTASK does not examine outgoing request queues that are known to
be full. When the INSTASK of a receiving facility removes a request from an incom
ing queue that was previously full, it also sets a flag to signal the OUTSTASK of the
sending facility that the queue is no longer full.

When a MIP facility sets a signal flag it may generate an interrupt for the destination
processor. A MIP facility designed to respond to interrupts does not need to
examine its signal flags until it receives an interrupt. Reception of an interrupt
signifies either that a previously empty input queue now has at least one entry or that
a previously full output queue now has at least one empty space. By scanning the
signal flags of all devices, the MIP facility can determine which device generated the
interrupt.

There are several techniques available for generating interrupts. Which of the
following methods you use depends both on the capabilities of the devices involved
and on the requirements of the processing environment.

• No interrupt; the device polls the RQD. This technique is suitable if a processor
is running only one task or if there is some way of guaranteeing that the RQDs
are examined reqularly.

• I-O mapped. Some devices (such as the iSBC 550 Ethernet Communications
Controller) recognize a write to a specific I-O port address as an interrupt. This
is a highly reliable technique; it should be used when available.

• Memory mapped. Some devices (such as the iSBC 544 Intelligent
Communications Controller) recognize a write to a specific memory address as
an interrupt. This is also a reliable technique.

• Edge level. The sending device raises one of the Multibus interrupt lines after
lowering it briefly. The rising edge triggers a processor interrupt. This technique
is available on most current Intel processor boards, such as the 80/30, 80/24,
and 86/12A.

• Pure level. The sending device asserts one of the Multibus interrupt lines. (If the
interrupt line is shared by several devices, the sending device must drop the line
after a limited time to avoid continually re-interrupting all the devices.) If the
receiving processor has interrupts enabled and is not busy processing other
interrupts during this time, an interrupt is triggered. You must implement some
kind of signal (such as another interrupt) that enables the receiving device to
cause the sending device to drop the interrupt line before the receiving device
services the interrupt. To guard against missed interrupts, the receiving MIP
facility should periodically poll the signal flags in its incoming request queues.

Error Handling

The MIP architecture provides for device failure. A device is assumed to have failed
if it does not return a response to a command within a certain time. The timeout
period is implementation-dependent.

B-9

MIP Ethernet Communications Controller

When a MIP facility determines that a destination device has failed, it takes three
actions:

1. It sets flags to prevent any further activity on the channel.

2. It discards any responses destined for the dead device.

3. It returns all commands for the dead device to the tasks that invoked them

(along with an appropriate error indication).

Any further recovery actions are application dependent.

Procedural Specification

Data Types

The following data types are used in the algorithmic specification of MIP:

BYTE: Standard 8-bit variable

WORD: Two-BYTE variable

IDENTIFIER: BYTE variable generally used as an index into an array

STATE: BYTE variable restricted to state constants

POINTER: Device-dependent address reference

IDSSPTR: Two-WORD, device-independent address reference

Processor-Dependent Subroutines '

All machine-dependent logic in the algorithmic specification is isolated in the
following procedures. In addition to these procedures, the value NULLSPTR is used
for some unique pointer value that can serve to indicate a null value. For example:

DECLARE NULLSPTR LITERALLY 'OOOOH';

PtrSadd

Any implementation of MIP must handle pointer arithmetic according to the
requirements of the processor that executes that implementation. Pointer arithmetic
is used to calculate the addresses of request queue elements.

PTRSADD: PROCEDURE (PTR,
SCALAR) POINTER;

DECLARE PTR POINTER, /* Input. */
SCALAR BYTE;

DECLARE NEMSPTR POINTER; /* Local. */

/*

Using knowledge of processor-dependent POINTER
implementation, add PTR to SCALAR giving NEWSPTR.

*/

RETURN NEWSPTR;

END PTRSADD;

B-10

Ethernet Communications Controller MIP

Convert$local$adr

This routine converts from an address pointer in the local address space to an IDS-
relative pointer in the IDSSPTR format. Details of this conversion depend on the
pointer format dictated by the local processor.

CONVERT$LOCAL$ADR: PROCEDURE (IDS$ID,
BUFFER$PTR,

<f MIP$PTR);

DECLARE IDS$ID IDENTIFIER, /* Input. */
A BUFFER$PTR POINTER;

DECLARE HIP$PTR IDSSPTR; /* Output. */

/*

Get base address for IDSSID from IDST.

Subtract from BUFFERSPTR.
* / ;

END CONVERTSLOCALSADR;

Convert$system$adr

This routine converts from an IDS-relative pointer in the IDSSPTR format to an
address pointer in the local address space. Details of this conversion depend on the
pointer format dictated by the local processor.

CONVERTSSYSTEMSADR: PROCEDURE (IDSSID,
MIPSPTR,
BUFFERSPTR);

DECLARE IDSSID IDENTIFIER, /* Input. */
MIPSPTR IDSSPTR;

DECLARE BUFFERSPTR POINTER; /* Output. */

/*

Get base address for IDSSID from IDST.

Add to BUFFERSPTR.

*/ ;

END CONVERTSSYSTEMSADR;

Time$wait

A destination device is assumed to be dead if it does not respond to a command
within a reasonable period of time. Just how you detect a timeout, however,
depends on the timing features of the local processor.

TIMESWAIT: PROCEDURE (TIMESOUT, RQLSID);

DECLARE TIHESOUT WORD, /* Input. */
RQLSID IDENTIFIER;

/ *

Wait for TIMESOUT period or until something is
placed in the response queue identified by RQLSID.

*/

END TIMESWAIT;

B-Il

MIP Ethernet Communications Controller

Generates Interrupt

This routine generates an interrupt to signal another device of a change in queue
status (from full to not full, of from empty to not empty).

GENERATE$INTERRUPT: PROCEDURE (DEVICE$INDEX);

DECLARE DEVICE$INDEX IDENTIFIER; /* Input */

/ *

Using interrupt information in the DCM, generate an
interrupt for the device specified by DEVICE$INDEX. «

*/ ;

END GENERATESINTERRUPT;

Clears Interrupt

This routine is used by INSTASK and OUTSTASK to clear the interrupt that
invokes them.

CLEARSINTERRUPT: PROCEDURE;

/* Acknowledge and clear interrupt, if necessary. */ ;

END CLEARSINTERRUPT;

Physical Level

Request Queue Descriptor

A Request Queue Descriptor controls a request queue. It is physically located before
and adjacent to the associated request queue entries.

DECLARE RQDSSTRUCTURE LITERALLY 'STRUCTURE

(EMPTYSSIGNAL STATE,
FULLSSIGNAL STATE,
RQSSIZE BYTE,
RQESLENGTH BYTE,
GIVESINDEX BYTE,
GIVESSTATE STATE, _
TAKESINDEX BYTE,
TAKESSTATE STATE)';

EMPTYSSIGNAL and FULLSSIGNAL are used by the two devices sharing a chan
nel to signal each other when there has been some activity on the channel. Signals are
written in the RQD of the outgoing queue and read from the RQD of the incoming
queue. The signal values are defined below. Unused bits are reserved for future
expansion.

DECLARE FULLNOLONGER LITERALLY '80H',
EMPTYNOLONGER LITERALLY '01H',
NOSCHANGE LITERALLY 'OOH';

RQSSIZE defines the number of elements in the request queue. RQSSIZE must be a
power of 2 and must have a value of 2 or greater.

RQESLENGTH defines the number of bytes in a request queue element (RQE). The
number of elements is 2 to the power of RQESLENGTH. For all queues shared be
tween MIP facilities, RQESLENGTH is 4 {i.e., each entry is 16 bytes long).

B-12

Ethernet Communications Controller MIP

GIVESINDEX identifies the request queue element available for enqueuing data.

TAKES INDEX identifies the request queue element available for dequeuing data.

GIVESSTATE and TAKESSTATE contain the booleans defined below. Unused bits

are reserved for future expansion.

DECLARE GIVESHALT LITERALLY '40H',
^ GIVESFACTOR LITERALLY '80H';

DECLARE TAKESHALT LITERALLY '40H',
TAKESFACTOR LITERALLY '80H';

GIVESFACTOR and TAKESFACTOR together distinguish between the full state
and the empty state when GIVESINDEX and TAKESINDEX are equal.

GIVESHALT and TAKESHALT prevent further activity in the queue when a device
failure is detected.

Request Queue Entry

A Request Queue Entry is an element of a request queue.

DECLARE RQESSTRUCTURE LITERALLY 'STRUCTURE

(REQUEST STATE,
SRCREQID IDENTIFIER,
DESTDEVID IDENTIFIER,
DEST$PORT$ID IDENTIFIER,
SRCDEVID IDENTIFIER,
DATASPTR IDSSPTR,
DATASLENGTH WORD,
IDSSID IDENTIFIER,
OUNERDEVID IDENTIFIER,
RSRVD (3) BYTE)';

REQUEST identifies the RQE as a command or a response, using one of the follow
ing values:

DECLARE SENDSCOMMAND LITERALL

MSG$DELIVERED$NO$COPY LITERALL

HSG$DELIVERED$COPY LITERALL

SYSTEM$MEMORY$NAK LITERALL

DEADSDEVICE LITERALL

'70H' ,
'80H',
'82H' ,
'85H' ,
'89H' ;

SRCSREQSID identifies the sending task so that responses can be returned. The
meaning of this identifier is defined by the local MIP implementation.

DESTSDEVSID is the device identifier part of the destination socket.

DEST$PORT$ID is the port identifier part of the destination socket.

SRCDEVID identifies the device from which a request is issued.

DATASPTR contains the IDS-relative address of a buffer to be delivered or return

ed by a MIP facility.

DATASLENGTH specifies the number of bytes in a buffer.

IDSSID tells which inter-device segment contains the buffer.

B-13

MIP Ethernet Communications Controller

OWNER$DEVICE$ID identifies the device that manages or "owns" the buffer.

RSVRD is undefined space reserved for future expansion.

Queue Procedure Returns

The following constants are used to return the results of procedures associated with ^
the request queues.

READY LITERALLY 'OOH

FULL LITERALLY 'OFFH

EMPTY LITERALLY •OFFH

FIRSTSGIVE LITERALLY '20H

FIRSTSTAKE LITERALLY '20H

HALTED LITERALLY '40H

I ̂

Init$request$queue

This procedure enters a request queue descriptor in memory, thereby initializing a
request queue.

INIT$REQUEST$QUEUE: PROCEDURE (RQD$PTR,
RQ$LEN);

DECLARE RQ$LEN BYTE, /* Input. */
RQD$PTR POINTER,
RQD BASED RQD$PTR RQDSSTRUCTURE;

RQD.EMPTYSSIGNAL = NOSCHANGE;
RQD.FULLSSIGNAL = NOSCHANGE;
RQD.RQSSIZE = RQ$LEN;
RQD.RQESLENGTH = 4;
RQD.GIVESINDEX = 0

RQD.TAKESINDEX = 0
RQD.GIVESSTATE = 0

RQD.TAKESSTATE = 0

END INIT$REQUEST$QUEUE;

T erm$request$queue

This procedure sets the request queue flags to prevent subsequent activity on a
channel.

TERM$REQUEST$QUEUE: PROCEDURE (RQDINPTR,
RQDOUTPTR) ;

DECLARE RQDINPTR POINTER, /* Input */
RQDOUTPTR POINTER,
IN$RQD BASED RQD$IN$PTR RQDSSTRUCTURE,
OUTSRQD BASED RQDOUTPTR RQDSSTRUCTURE;

INSRQD.TAKESSTATE = INSRQD.TAKESSTATE OR TAKESHALT;
OUTSRQD.GIVESSTATE = OUTSRQD.GIVESSTATE OR GIVESHALT;

END TERMSREQUESTSQUEUE;

a,

B-14

Ethernet Communications Controller MIP

Queue$give$status

This procedure returns the status of a request queue without affecting the queue.

QUEUE$6IVE$STATUS: PROCEDURE (RQD$PTR,
STATUS);

DECLARE RQDSPTR POINTER, /* Input. */
ROD BASED RQDSPTR RQDSSTRUCTURE;

DECLARE STATUS BYTE; /* Output. */
*

IF (RQD.TAKESSTATE AND TAKESHALT) = TAKESHALT

THEN DO;
RQD.GIVESSTATE = RQD . GIVE$STATE OR GIVE$DISABLED;
STATUS = HALTED;

END /* THEN */;
ELSE IF (RQD.GIVESINDEX = RQD. TAKESINDEX) AND

((RQD.GIVESSTATE AND GIVE$FACTOR) <>
(RQD.TAKESSTATE AND TAKESFACTOR))

THEN STATUS = FULL;
ELSE STATUS = READY;

RETURN;

END QUEUE$GIVE$STATUS;

Requests giveSpointer

This algorithm returns the address of a request queue element (if one is not in use)
from the "send" or "give" side of the queue.

REQUEST$GIVE$POINTER: PROCEDURE (RQDSPTR,
RQESPTR,
STATUS) ;

DECLARE RQDSPTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;

DECLARE RQESPTR POINTER, /* Output. */
STATUS BYTE;

IF (RQD.TAKE$STATE AND TAKE$HALT) = TAKE$HALT

THEN DO;
RQD.GIVESSTATE = GIVE$DISABLED;
STATUS = HALTED;
RETURN;

END /* THEN */;
IF (RQD.GIVESINDEX = RQD .TAKE$INDEX) AND

((RQD.GIVE$STATE AND GIVE$FACTOR) <>

(RQD.TAKESSTATE AND TAKESFACTOR))

THEN DO;
STATUS = FULL;
RETURN;

END /* THEN */;
STATUS = READY;
RQESPTR = PTR$ADD(RQD$PTR,

SHL(RQD.GIVE$INDEX, RQD.RQE$LENGTH) + 8);
RETURN;

END REQUEST$GIVE$POINTER;

B-15

MIP Ethernet Communications Controller

Release$give$pointer

This algorithm is always executed after a successful REQUEST$GIVE$POINTER.
It actually enters the element in the request queue, making it available for taking.

RELEASE$GIVE$POINTER: PROCEDURE (RQD$PTR,
STATUS);

DECLARE RQD$PTR POINTER, /* Input. */ «
ROD BASED RQD$PTR RQD$STRUCTURE;

DECLARE STATUS BYTE; /* Output. */

IF (RQD.TAKE$INDEX = ((ROD . GIVE$INDEX + 1)
AND (RQD.RQSSIZE - 1)))

THEN /* GIVE$FACTOR bit = NOT TAKE$FACTOR bit. */
RQD.GIVE$STATE = (ROD . GIVE$STATE OR GIVE$FACTOR)

AND (RQD.TAKESSTATE AND TAKESFACTOR);

RQD.GIVE$INDEX =

((RQD.GIVE$INDEX + 1) AND (RQD.RQ$SIZE - 1));

IF RQD.GIVE$INDEX =
((RQD.TAKE$INDEX + 1) AND (RQD.RQ$SIZE - D)
THEN STATUS = FIRST$GIVE; /* Gave to an empty queue. */
ELSE STATUS = READY;
RETURN;

END RELEASE$GIVE$POINTER;

Request$take$pointer

This algorithm returns the address of a request queue element (if one is available)
from the "receive" or "take" side of a request queue.

REQUEST$TAKE$POINTER: PROCEDURE (RQD$PTR,
RQE$PTR,
STATUS);

DECLARE RQDSPTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;

DECLARE RQE$PTR POINTER, /* Output. */
STATUS BYTE;

IF (RQD.GIVE$STATE AND GIVE$HALT) = GIVE$HALT

THEN DO;
RQD.TAKE$STATE = TAKESDISABLED;
STATUS = HALTED;
RETURN;

END /* THEN */;
IF (RQD.GIVESINDEX = RQD.TAKES I NDEX) AND

((RQD.GIVESSTATE AND GIVESFACTOR) =

(RQD.TAKESSTATE AND TAKESFACTOR))

THEN DO;
STATUS = EMPTY;
RETURN;

END /* THEN */;
STATUS = READY;
RQESPTR = PTRSADD(RQDSPTR,

SHLCRQD.TAKESINDEX, RQD.RQESLENGTH) + 8);
RETURN;

END REQUESTSTAKESPOINTER;

B-16

Ethernet Communications Controller MIP

Release$take$pointer

This algorithm is always executed after a successful REQUEST$TAKE$POINTER.
It actually purges the element from the request queue, making the space available
for a subsequent "give" operation.

RELEASE$TAKE$POINTER: PROCEDURE (RQDSPTR,
_ STATUS);

DECLARE RQDSPTR POINTER, /* Input. */
RQD BASED RQDSPTR RQDSSTRUCTURE;

DECLARE STATUS BYTE; /* Output. */

IF (RQD.GIVESINDEX = ((RQD.TAKES INDEX + 1) AND

(RQD.RQSSIZE - D))
THEN /* TAKESFACTOR bit = GIVESFACTOR bit. */

RQD.TAKESSTATE = (RQD . TAKESST ATE AND NOT TAKESFACTOR)
OR (RQD.GIVESSTATE AND GIVESFACTOR);

RQD.TAKESINDEX =

((RQD.TAKESINDEX + 1) AND (RQD.RQSSIZE - D);

IF RQD.TAKESINDEX =

((RQD.GIVESINDEX + 1) AND (RQD.RQSSIZE - D)
THEN STATUS = FIRSTSTAKE; /* Took from a full queue. ♦/
ELSE STATUS = READY;
RETURN;

END RELEASESTAKESPOINTER;

Logical Level Database

Configuration Constants

The following constants define the system configuration. In place of the descriptions
printed in lower case, substitute the numbers that apply to your configuration.

DECLARE DEVICES LITERALLY ' the number of devices In the MIP

system • ,

SOCKETS LITERALLY ^ the number of destination ports ̂ ,

PORTS LITERALLY *the number of local ports',

^ HOMESDEVICE LITERALLY ' the Identifier of this device' ,

TIME$DELAY LITERALLY ' maximum time to wait for a response
before a destination device Is

considered dead* ,

IDS$S LITERALLY ' the number of entries In the IDS
table' ,

RQL$S LITERALLY ' the number of local response
queues';

B-17

\IIP Ethernet Communications Controller

Destination Socket Descriptor Table (DSDT)

The DSDT contains information for locating sockets in a MIP system. Each entry
associates a socket with a unique function-name. The MIP facility on each device
has a DSDT containing entries for all sockets to which tasks on that device send
messages.

DECLARE DSDT (SOCKETS) STRUCTURE ^
(FUNCTIONSNAME WORD,
DESTDEVID IDENTIFIER,
DEST$PORT$ID IDENTIFIER); ^

FUNCTIONSNAME is a system-wide name for identifying the socket.

DESTDEVID is the device identifier of the device on which the socket resides.

DEST$PORT$ID is the local port identifier for the socket on the destination device.
For the purposes of this algorithmic specification, DESTSPORTSID is the index of
the port in the Local Port Table on the destination device.

Local Port Table (LPT)

The Local Port Table is the list of ports and their parameters that are managed by a
device. For the purposes of this algorithmic specification, the index of a port in the
LPT is the port's identifier.

DECLARE LPT (PORTS) STRUCTURE
(FUNCTIONSNAME WORD,
PORTSQUEUESPTR POINTER,
PORTSSTATE STATE);

FUNCTIONSNAME is the system-wide name for identifying the port.

PORTSQUEUESPTR is the address of the queue in which messages addressed to
this port are delivered.

PORTSSTATE tells whether a task is receiving messages at this port. Messages sent
to the port are accepted if the port is active, rejected (returned) if the port is inactive.
Values associated with this item are:

DECLARE INACTIVE LITERALLY 'OOH',
ACTIVE LITERALLY '01H';

Device to Channel Map (DCM)

The DCM table is used to route messages among inter-task and inter-device request
queues and to manage the flow of messages into and out of the queues. Each MIP
facility has one entry in its DCM for every device in the MIP system, including the
device on which the MIP facility resides. The device identifier of a device is its index
into the DCM. Each entry in a DCM represents a possible link between the home
device and the device associated with that entry. If no such link exists,
CHANNELSSTATE contains IDLE.

B-18

Ethernet Communications Controller MIP

DECLARE DCM (DEVICES) STRUCTURE

(CHANNELSSTATE STATE,
RQDSOUTSPTR POINTER,
RQDSOUTSSIZE BYTE,
RQDSINSPTR POINTER,
RQDSINSSIZE BYTE,
COMSRDYSQUEUESPTR POINTER,
RSPSTRNRNDSQUEUESPTR POINTER,
INTERRUPTSTYPE BYTE,
INTERRUPTSADDRESS WORD);

LITERALLY '80H' t

LITERALLY •7FH' 1

LITERALLY '01H' f

LITERALLY 'OFEH' i

LITERALLY '04H' 1

LITERALLY '08H' 1

CHANNELSSTATE is a local management variable in which the run-time state of a
channel is maintained. This variable contains the booleans defined below.

DECLARE SEND$ACTIVE

SEND$FULL

RECEIVE$ACTIVE

RECEIVE$EMPTY

DYING

IDLE

RQDOUTPTR is the local address of the RQD of the interprocessor queue
through which commands and responses are sent to the associated device.

RQDOUTSIZE is the number of entries in this queue.

RQDINPTR is the local address of the RQD of the interprocessor request queue
through which commands and responses are received from the associated device.

COMRDYQUEUE$PTR is the address of the local queue of commands waiting
to be sent to the associated device.

RSP$TRNRND$QUEUE$PTR is the address of the local queue of responses
waiting to be sent to the associated device.

INTERRUPTSTYPE tells which kind of interrupt the device recognizes as indica
tion of a change of queue state.

INTERRUPTSADDRESS may contain an 1-0 port address, a memory address, or
an interrupt level, depending on INTERRUPTSTYPE.

Inter-Device Segment Table (IDST)

The IDST defines the attributes of Inter-Device Segments (IDS's). There is one entry
for each IDS in the MIP system. The entries are indexed by the IDS identifier.

DECLARE IDST (IDS$S) STRUCTURE

(LO$PART WORD,
HI$PART WORD);

Note that the low-order portion of the IDS base address is stored first, followed by
the high-order portion.

Response Queue List (RQL)

The RQL is a table of pointers to the request queues used to return the results of a
buffer delivery attempt. Each entry is assigned to a task for use with the
TRANSFER function. The entries are indexed by RQLSID.

DECLARE RQL (RQL$S) STRUCTURE

(RSP$QUEUE$PTR POINTER) ;

B-19

j^jp Ethernet Communications Controller

Logical Level Algorithms

Dying$channel

OUTSTASK invokes this subroutine when a device failure is detected. The routine
disposes of any commands that may be waiting to be sent to the dead device.

DYING$CHANNEL: PROCEDURE (DEVICE$INDEX);

DECLARE DEVICE$INDEX BYTE; /* Input. */

DECLARE STATUS BYTE, /♦ Local. */
RQECOMPTR POINTER,
COMSRQE BASED RQECOHPTR RQESSTRUCTURE,
RQERSPPTR POINTER,
RSPSRQE BASED RQERSPPTR RQESSTRUCTURE;

CALL REQUEST$TAKE$POINTER
(DCM(DEVICES INDEX).COMRDYQUEUE$PTR,
RQECOMPTR,
STATUS) ;

IF STATUS <> EMPTY

THEN DO; /* Send back DEADSDEVICE response. */
CALL REQUEST$GIVE$POINTER

(RQL(COM$RQE.SRC$REQ$ID).RSP$QUEUE$PTR,
RQERSPPTR,
STATUS);

CALL MOVE (16, RQECOMPTR, RQERSPPTR); _
RSPSRQE.REQUEST = DEADSDEVICE; < ^
CALL RELEASE$GIVE$POINTER

(RQL(COM$RQE.SRC$REQ$ID) .RSP$QUEUE$PTR,
STATUS) ;

CALL RELEASE$TAKE$POINTER
(DCMCDEVICES INDEX) . COMSRDYSQUEUESPTR,
STATUS);

END /* THEN */;
ELSE /* No more outstanding cormiands. */ DO;
DCM(DEVICESINDEX).CHANNELSSTATE = IDLE;

CALL TERMSREQUESTSQUEUE
(DCM(DEVICESINDEX) .RQDSINSPTR,
DCM(DEVICESINDEX).RQDSOUTSPTR);

END /* ELSE */;
RETURN;

END DYINGSCHANNEL;

Serve$turnaround$queue

This subroutine of OUTSTASK transfers a response from the Response Turnaround
Queue to the output queue of the sending device.

SERVESTURNAROUNDSQUEUE: PROCEDURE (DEVICESINDEX,
STATUS) ;

DECLARE DEVICESINDEX BYTE; /* Input. */

DECLARE STATUS BYTE; /* Output. */

B-20

Ethernet Communications Controller MIP

DECLARE RQDSPTR POINTER, /* Local. */
ROD BASED RQDSPTR RQDSSTRUCTURE,
RQETRNPTR POINTER,
TRNSRQE BASED RQETRNPTR RQESSTRUCTURE,
RQEOUTPTR POINTER,
OUTSRQE BASED RQEOUTPTR RQESSTRUCTURE;

CALL REQUEST$TAKE$POINTER
(DCM(DEVICES INDEX) .RSP$TRNRND$QUEUE$PTR,
RQESTRNSPTR,

^ STATUS);
IF STATUS = READY

THEN DO;
RQDSPTR = DCM(DEVICESINDEX) .RQDSOUTSPTR;
CALL REQUESTSGIVESPOINTER (RQDSPTR,

RQESOUTSPTR,
STATUS) ;

CALL MOVE (16, RQESTRNSPTR, RQESOUTSPTR);
CALL RELEASESGIVESPOINTER (RQDSPTR,

STATUS) ;
IF STATUS = FIRSTSGIVE

THEN DO; /* Gave to an empty queue, so... */
RQD.EMPTYSSIGNAL = EMPTYSNOSLONGER;
CALL GENERATESINTERRUPT (DEVICESINDEX);

END /* THEN */;
CALL RELEASESTAKESPOINTER

(DCM(DEVICES INDEX) .RSPSTRNRNDSQUEUESPTR,
STATUS) ;

END /* THEN */;
RETURN;

END SERVESTURNAROUNDSQUEUE;

Serve$command$queue

This subroutine of OUTSTASK transfers a command from the Command Wait

Queue to the output queue of the destination device.

SERVESCOMMANDSQUEUE: PROCEDURE (DEVICESINDEX,
STATUS);

DECLARE DEVICESINDEX BYTE; /* Input. */

DECLARE STATUS BYTE; /* Output. */

DECLARE RQDSPTR POINTER, /* Local. */
RQD BASED RQDSPTR RQDSSTRUCTURE,
RQESCOMSPTR POINTER,
COMSRQE BASED RQESCOMSPTR RQESSTRUCTURE,
RQESOUTSPTR POINTER,
OUTSRQE BASED RQESOUTSPTR RQESSTRUCTURE;

CALL REQUESTSTAKESPOINTER

(DCM(DEVICESINDEX) . COMSRDYSQUEUESPTR,
RQESCOMSPTR,
STATUS) ;

B-21

MIP Ethernet Communications Controller

IF STATUS = READY

THEN DO;
RQDSPTR = DCH(DEVICE$INDEX).RQD$OUT$PTR;
CALL REQUEST$GIVE$POINTER (RQD$PTR,

RQEOUTPTR,
STATUS);

CALL MOVE (16, RQECOMPTR, RQEOUTPTR);
CALL RELEASE$GIVE$POINTER (RQDSPTR, #

STATUS);
IF STATUS = FIRSTSGIVE

THEN DO; /* Gave to an empty queue, so... */ «
RQD.EMPTYSSIGNAL = EMPTYNOLONGER;
CALL GENERATESINTERRUPT (DEVICE$INDEX);

END /* THEN */;
CALL RELEASE$GIVE$POINTER

(DCM(DEVICES INDEX).COMRDYQUEUE$PTR,
STATUS) ;

END /* THEN */;
RETURN;

END SERVE$COMMAND$QUEUE;

Out$task

This algorithm manages activity in the output request queues.

OUTSTASK: PROCEDURE;

DECLARE DEVICESINDEX BYTE, /* Local. */
STATUS BYTE,
RQDSPTR POINTER,
ROD BASED RQDSPTR RQDSSTRUCTURE;

/* Initialization. */

DO DEVICESINDEX = 0 TO DEVICES - 1;
IF DCM(DEVICESINDEX).CHANNELSSTATE <> IDLE

THEN DO;
CALL INITSREQUESTSQUEUE(DCM(DEVICESINDEX).RQDSOUTSPTR,

DCM(DEVICESINDEX) .RQDSOUTSSIZE);
DCM(DEVICESINDEX).CHANNELSSTATE =

SENDSACTIVE; ' ̂
END /* THEN */;

END /* DO */;

/* Transfer request loop. */

DO FOREVER;
DO DEVICESINDEX = 0 TO DEVICES - 1;
RQDSPTR = DCM(DEVICESINDEX) .RQDSINSPTR;
/* Read signal from in-RQD. */
IF RQD.FULLSSIGNAL = FULLSNOSLONGER
THEN DO;
DCM(DEVICESINDEX) .CHANNELSSTATE =
DCH(DEVICESINDEX).CHANNELSSTATE OR RQD.FULLSSIGNAL;

CALL CLEARSINTERRUPT;
RQD.FULLSSIGNAL = NOSCHANGE;

END /* THEN */;
IF (DCH(DEVICESINDEX).CHANNELSSTATE AND DYING) <> 0
THEN CALL DYINGSCHANNEL (DEVICESINDEX);

B-22

Ethernet Communications Controller MIP

ELSE DO;
IF DCM(DEVICE$INDEX) .CHANNELSSTATE

AND SENDSACTIVE <> 0

THEN DO; /* Look more closely at this channel. */
RQDSPTR = DCM(DEVICE$INDEX).RQD$OUT$PTR;
CALL QUEUE$GIVE$STATUS(RQD$PTR,

STATUS) ;
us IF STATUS = HALTED

THEN DCM(DEVICE$INDEX).CHANNELSSTATE = DYING;
IF STATUS = FULL

^ THEN DCM(DEVICE$INDEX).CHANNELSSTATE =
DCM(DEVICE$INDEX).CHANNELSSTATE AND SENDSFULL
/* Don't bother with trying to send on this

channel until it is no longer full. */;

IF STATUS = READY

THEN DO;
CALL SERVE$TURNAROUND$QUEUE (DEVICESINDEX,

STATUS);
IF STATUS = EMPTY

THEN CALL SERVE$COMMAND$QUEUE

(DEVICESINDEX, STATUS);
END /* THEN */;

END /♦ THEN */;
END /* ELSE */;

END /* DO */;
END /* FOREVER */;

END OUTSTASK;

ReceiveScommand

This subroutine of INSTASK transfers a command from an incoming request queue
to the port queue associated with the socket specified in the command, first checking
to make sure that the port is active. The routine then generates an appropriate
response and enters it in the Response Turnaround Queue associated with the
sending device.

RECEIVESCOMMAND: PROCEDURE (RQEINPTR);

DECLARE RQEINPTR POINTER, /* Input. */
INSRQE BASED RQEINPTR RQESSTRUCTURE;

DECLARE RQEMSGPTR POINTER, /* Local. */
MSGSRQE BASED RQEMSGPTR RQESSTRUCTURE,

^ LOCAL$DATA$PTR POINTER,
STATUS BYTE;

IF LPT (IN$RQE.DEST$PORT$ID).PORTSSTATE <> ACTIVE
THEN INSRQE.REQUEST = SYSTEM$PORT$INACTIVE;
ELSE DO; /* Deliver cormiand. */
CALL REQUEST$GIVE$POINTER

(LPT(IN$RQE.DEST$PORT$ID) .PORT$QUEUE$PTR,
RQEMSGPTR,
STATUS);

B-23

MIP Ethernet Communications Controller

IF STATUS = FULL

THEN INSRQE.REQUEST = SYSTEM$HEMORY$NAK;
ELSE DO;
CALL CONVERT$SYSTEM$ADR (IN$RQE . IDS$ ID,

INSRQE.DATASPTR,
LOCAL$DATA$PTR) ;

CALL HOVE (INSRQE.DATASLENGTH, /* Copies whole */
RQESMSGSPTR, /* buffer into */ »
LOCALSDATASPTR); /* port queue. */

CALL RELEASESGIVESPOINTER
(LPT(INSRQE.DESTSPORTSID) .PORTSQUEUESPTR, ^
STATUS);

INSRQE.REQUEST = MSGSDELIVEREDSCOPY;

/* NOTE

Instead of copying the whole buffer, you may copy
only INSRQE. DATASPTR, INSRQE .DATASLENGTH,
INSRQE.IDSSID, and INSRQE.OUNERSDEVSID. In this
case, INSRQE.REQUEST is set to MSGSDELI VEREDSNOSCOPY .
*1

END /* ELSE */;
END /* ELSE */;

/* Create response. */
CALL REQUESTSGIVESPOINTER

(DCM(INSRQE.SRCSDEVSID).RSPSTRNRNDSQUEUESPTR,
RQESHSGSPTR,
STATUS);

CALL MOVE (16, RQESINSPTR, RQESMSGSPTR); ^

/* NOTE

If INSRQE.REQUEST is set to MSGSDELIVEREDSNOSCOPY,
the only fields that must be returned are
INSRQD.REQUEST and INSRQD.SRCSREQSID.

*/

MSGSRQE.DESTSDEVSID = INSRQE.SRCSDEVSID;
MSGSRQE.SRCSDEVSID = INSRQE . DESTSDEVSID;
CALL RELEASESGIVESPOINTER

(DCM(INSRQE.SRCSDEVSID).RSPSTRNRNDSQUEUESPTR,
STATUS) ;

RETURN;

END RECEIVESCOMMAND;

Receive$response

This subroutine of INSTASK transfers a response from an incoming request queue ^
to the response queue of the initiating task.

RECEIVESRESPONSE: PROCEDURE (RQESINSPTR);

DECLARE RQESINSPTR POINTER, /* Input. */
INSRQE BASED RQESINSPTR RQESSTRUCTURE;

DECLARE RQESRSPSPTR POINTER, /* Local. */
STATUS BYTE;

B-24

Ethernet Communications Controller MIP

CALL REQUEST$GIVE$POINTER

(RQL(IN$RQE.SRC$REQ$IO) .RSP$QUEUE$PTR,
RQERSPPTR,
STATUS) ;

CALL MOVE (16, RQEINPTR, RQERSPPTR);
CALL RELEASE$GIVE$POINTER

(RQL(IN$RQE.SRC$REQ$IO) .RSP$QUEUE$PTR,
STATUS);

RETURN;

END RECEIVESRESPONSE;

In$task

This algorithm manages activity in the incoming request queues.

INSTASK: PROCEDURE;

DECLARE DEVICESINDEX BYTE, /* Local. */
RQDSPTR POINTER,
ROD BASED RQDSPTR RQDSSTRUCTURE,
RQEINPTR POINTER,
IN$RQE BASED RQE$IN$PTR RQESSTRUCTURE,
STATUS BYTE;

DO FOREVER;
DO DEVICESINDEX = 0 TO DEVICES - 1;
RQDSPTR = DCM(DEVICE$INDEX).RQD$IN$PTR;
IF RQD.EMPTYSSIGNAL = EMPTYNOLONGER

THEN DO;
DCM(DEVICE$INDEX).CHANNELSSTATE =

DCM(DEVICE$INDEX).CHANNELSSTATE OR ROD.EMPTY$SIGNAL;
CALL CLEARSINTERRUPT;
RQD.EMPTYSSIGNAL = NOSCHANGE;

END /* THEN */;
IF (DCM(DEVICE$INDEX).CHANNELSSTATE AND

(DYING OR IDLE) = 0)

AND (DCM(DEVICE$INDEX).CHANNELSSTATE AND

RECEIVESACTIVE <> 0)

THEN DO; /* serve the input request queue. */
CALL REQUEST$TAKE$POINTER

(DCM(DEVICE$INDEX).RQD$IN$PTR,
RQEINPTR,
STATUS) ;

IF STATUS = HALTED

THEN DCM(DEVICE$INDEX).CHANNELSSTATE = DYING;
IF STATUS = EMPTY

^ THEN DCM(DEVICE$INDEX).CHANNELSSTATE =
DCM(DEVICE$INDEX).CHANNELSSTATE AND RECEIVESEMPTY

/* Don't bother with looking for input on this
channel unti l it becomes active again. */;

IF STATUS = READY

THEN DO;
IF IN$RQE.REQUEST = SEND$COMMAND

THEN CALL RECEIVESCOMMAND (RQEINPTR) ;
ELSE CALL RECEIVESRESPONSE (RQEINPTR);

B-25

MIP Ethernet Communications Controller

CALL RELEASE$TAKE$POINTER
(DCM(DEVICE$INDEX).RQD$IN$PTR, "
STATUS);

IF STATUS = FIRSTSTAKE

THEN /* Took from a full queue, so... */ DO;
RQDSPTR = DCM(DEVICE$INDEX) .RQD$OUT$PTR;
/* Post signal in out-RQD. */
RQD.FULLSSIGNAL - FULLNOLONGER; _

END /* THEN */;
END /* THEN */;

END /* THEN */;
END /* DO */; ^

END /* FOREVER */;

END INSTASK;

Virtual Level

Status Constants

The following values, along with values associated with RQESREQUEST, are
returned by the virtual level procedures to indicate the results of the procedures.

DECLARE SYSTEM$PORT$AVAILABLE LITERALLY '84H',
SYSTEM$PORT$UNKNOWN LITERALLY '81H',
SYSTEM$PORT$ACTIVE LITERALLY '83H',
SYSTEM$PORT$INACTIVE LITERALLY '87H';

Find$system$port

This function provides you with the means to locate a socket by its function-name.

FIND$SYSTEM$PORT: PROCEDURE (FUNCTION$NAME,
SOCKETSDEVICE,
SOCKETSPORT,
STATUS);

/* Input. */FUNCTIONSNAME WORD; /* Input. */

SOCKETSDEVICE IDENTIFIER, /* Output. */
SOCKETSPORT IDENTIFIER,
STATUS BYTE;

SOCKETSINDEX BYTE; /* Local. */

KETSINDEX = 0 TO SOCKETS - 1;DO :

IF (FUNCTIONSNAME = DSDT (SOCKET$ INDEX) . FUNCTION$NAME)

THEN DO;
STATUS = SYSTEM$PORT$AVAILABLE;
SOCKETSDEVICE = DSDT(SOCKET$INDEX).DESTSDEV$ID;
SOCKETSPORT = DSDT(SOCKET$INDEX).DEST$PORT$ID;
RETURN;

END /* THEN */;
END /* DO */;
STATUS = SYSTEM$PORT$UNKNOWN;
RETURN;

END FIND$SYSTEM$PORT;

B-26

Ethernet Communications Controller MIP

Transfer$buffer

This function causes generation of a command to transfer a buffer to a destination
device and port. The command is queued in the Command Wait Queue of the
destination device. The procedure waits for a reply before relinquishing control.

TRANSFERSBUFFER: PROCEDURE

DECLARE BUFFERSPTR

BUFFERSLENGTH

IDS$ID

SOCKET$DEVICE

SOCKETSPORT

RQL$ID

DECLARE STATUS

DECLARE RQESPTR

RQE BASED RQE$PTR

CALL$STATUS

(BUFFERSPTR,
BUFFERSLENGTH,
IDSSID,
SOCKETSDEVICE,
SOCKETSPORT,
RQLSID,
STATUS);

POINTER,
WORD,
IDENTIFIER,
IDENTIFIER,
IDENTIFIER,
IDENTIFIER;

BYTE;

POINTER,
RQESSTRUCTURE,
BYTE;

/* Input. */

/* Output. */

/* Local. */

CALL REQUESTSGIVESPOINTER

(DCM(SOCKET$DEVICE).COMSRDYSQUEUESPTR,
RQESPTR,
CALLSSTATUS) ;

RQE.REQUEST = SENDSCOMMAND;
RQE.SRCSREQSID = RQLSID;
RQE.DESTSDEVSID = SOCKETSDEVICE;
RQE.DESTSPORTSID = SOCKETSPORT;
RQE.SRCSDEVSID = HOMESDEVICE;
RQE.IDSSID = IDSSID;
RQE.OWNERSDEVSID = HOMESDEVICE;
CALL CONVERTSLOCALSADR (IDSSID,

BUFFERSPTR,
RQE.DATASPTR);

RQE.DATASLENGTH = BUFFERSLENGTH;
CALL RELEASESGIVESPOINTER

(DCM(SOCKETSDEVICE).COMSRDYSQUEUESPTR,
CALLSSTATUS);

CALL TIMESWAIT (TIMESDELAY, RQLSID);

CALL REQUESTSTAKESPOINTER (RQL(RQLSID).RSPSQUEUESPTR,
RQESPTR,
CALLSSTATUS);

IF CALLSSTATUS = EMPTY

/* No response came back within TIMESDELAY period. */
THEN DO;
DCM(SOCKETSDEVICE).CHANNELSSTATE = DYING;
STATUS = DEADSDEVICE;

END /* THEN */;

B-27

MIP Ethernet Communications Controller

ELSE 00;
STATUS = RQE.REQUEST; ^
CALL RELEASE$TAKE$POINTER (RQL(RQL$ID).RSP$QUEUE$PTR,

CALLSSTATUS);
END /* ELSE */;

RETURN;

END TRANSFERSBUFFER;
#

Activates systemSport

This function enables receipt of messages at a local port. If the port is not currently
active, the address of the port queue is returned.

ACTIVATE$SYSTEM$PORT: PROCEDURE (FUNCTIONSNAME,
PORT$QUEUE$PTR, _
STATUS);

DECLARE FUNCTIONSNAME WORD, /* Input. */
PORT$QUEUE$PTR POINTER;

DECLARE STATUS BYTE; /* Output. */

DECLARE PORTSINDEX BYTE; /♦ Local. */

DO PORTSINDEX = 0 TO PORTS - 1;
IF FUNCTIONSNAME = LPT(PORTSINDEX).FUNCTlONSNAME

THEN IF LPT(PORT$INDEX) .PORTSSTATE = ACTIVE

THEN DO;
STATUS = SYSTEM$PORT$ACTIVE;
RETURN;

END /* THEN */;
ELSE DO;
STATUS = SYSTEM$PORT$AVAILABLE;
PORT$QUEUE$PTR = LPT(PORTS INDEX).PORT$QUEUE$PTR;
LPT(PORT$INDEX).PORTSSTATE = ACTIVE;
RETURN;

END /* ELSE */;
END /* DO */;
STATUS = SYSTEMSPORTSUNKNOWN;
RETURN;

END ACTIVATESSYSTEMSPORT;

DeactivateSsystemSport

This function terminates reception of messages at a port.

DEACTIVATESSYSTEMSPORT: PROCEDURE (FUNCTIONSNAME,
STATUS);

DECLARE FUNCTIONSNAME WORD; /* Input. */

DECLARE STATUS BYTE; /* Output. */

DECLARE PORTSINDEX BYTE;

B-28

Ethernet Communications Controller MIP

DO PORTSINDEX = 0 TO PORTS - 1;
IF FUNCTIONSNAME = LPT(PORTS INDEX).FUNCTION$NAME

THEN IF LPT(PORT$INDEX) .PORTSSTATE = INACTIVE

THEN DO;
STATUS = SYSTEM$PORT$INACTIVE;
RETURN;

END /* THEN */;
- ELSE DO;

STATUS = SYSTEM$PORT$AVAILABLE;
LPT(PORT$INDEX) .PORTSSTATE = INACTIVE;
RETURN;

^ END /* ELSE */;
END /* DO */;
STATUS = SYSTEM$PORT$UNKNOWN;
RETURN;

END DEACTIVATE$SYSTEM$PORT;

ReceiveSbuffer

This function retrieves a buffer from a port queue if there is a buffer in the queue.

RECEIVESBUFFER: PROCEDURE (PORTSQUEUESPTR,
USERSBUFFERSPTR,
STATUS);

DECLARE PORTSQUEUESPTR POINTER, /* Input. */
ROD BASED PORTSQUEUESPTR RQDSSTRUCTURE;

DECLARE USERSBUFFERSPTR POINTER, /* Output. */
STATUS BYTE;

DECLARE RQESPTR POINTER; /* Local. */

CALL REQUESTSTAKESPOINTER (PORTSQUEUESPTR,
RQESPTR,
STATUS);

IF STATUS = READY

THEN DO;
CALL MOVE (RQD.RQESLENGTH,

RQESPTR,
IKPQl^RIIPEPPtDTP^ ■

CALL RELEASESTAKESPOINTER (PORTSQUEUESPTR,
STATUS);

END /* THEN */;

RETURN;

END RECEIVESBUFFER;

B-29

APPENDIX C

EXAMPLE MIP FACILITIES

Two implementations of MIP are presented here: the first one written in PL/M-80,
and the second in ASM-86.

PL/M Example

The first example, called XMX, is intended for a two-device system consisting of an
8085 host processor and an iSBC 550 Ethernet Communications Controller installed
in an Intellec Series II or III Microcomputer Development System running under the
ISIS-II operating system. The following assumptions govern the implementation:

• All memory is contained in one IDS.

• The configuration is static, so there is no need for function names or
parameterized initialization procedures.

• Only one task executes on the host processor; therefore, there is no need for
port addressing or response ID's.

• The entire XMX module is linked to the main host module and executes

synchronously with it; therefore, there is no need for inter-task queues. Inter
face to XMX is through the procedures XMXSSEND and XMX$RECEIVE.

• The host task always waits for a response before issuing another command.

• The Ethernet Controller issues a command only in response to a command from
the host task. The host never receives an unsolicited command.

• The Ethernet Controller must be interrupted for it to poll its request queues. An
interrupt is caused by writing the value 02H to I-O port 0A4H.

• XMX does not respond to interrupts. Instead, it polls the signal bytes of its
request queues.

Refer to Chapter 5 for an example of an application that uses XMX.

XMX: DO /* Example Message Exc

DECLARE UORD LITERALLY ' ADDR

IDENTIFIER LITERALLY 'BYTE

STATE LITERALLY •BYTE

NULLSPTR LITERALLY 'GOOD

/ * Configuratio n const

DECLARE TIMESLOOPS LITERALLY '1 000' ,
HOMESDEVICE LITERALLY •01H';

*/

DECLARE RQD$STRUCTURE

(EMPTY$SIGNAL STATE,
FULL$SIGNAL STATE,
RQ$SIZE BYTE,
RQE$LENGTH BYTE,
GIVESINDEX BYTE,
GIVESSTATE STATE,
TAKE$INDEX BYTE,
TAKE$STATE STATE) ' ;

LITERALLY 'STRUCTURE

C-1

Example MIP Facilities Ethernet Communications Controller

/* Signal constants. */

DECLARE FULLSNOSLONGER LITERALLY '80H

EMPTYSNOSLONGER LITERALLY '01H

NOSCHANGE LITERALLY 'OGH

DECLARE WAKESUPSPORT LITERALLY '0A4H

/* RQD state constants. */

DECLARE GIVESHALT LITERALLY '40H

TAKESHALT LITERALLY '40H

GIVESFACTOR LITERALLY '80H

TAKESFACTOR LITERALLY '80H

%

DECLARE RQE$F0RMAT$1 LITERALLY
•REQUEST STATE,
SRCREQID IDENTIFIER,
DESTDEVID IDENTIFIER,
DEST$PORT$ID IDENTIFIER,
SRCDEVID IDENTIFIER',

RQE$F0RMAT$2 LITERALLY

'DATAPTRLO WORD,
DATAPTRHI WORD,
DATASLENGTH WORD,
IDS$ID IDENTIFIER,
OWNERDEVID IDENTIFIER,
RSRVD (3) BYTE';

DECLARE RQESFORMAT LITERALLY 'RQE$F0RMAT$1, RQE$F0RMAT$2
DECLARE RQESSTRUCTURE LITERALLY 'STRUCTURE (RQESFORMAT) ' ,

/* Request constants. */

DECLARE SEND$COMMAND
MSG$DELIVERED$NO$COPY
MSG$DELIVERED$COPY

SYSTEM$MEMORY$NAK

DEAD$DEVICE

LITERALLY

LITERALLY

LITERALLY

LITERALLY

LITERALLY

'70H'

'80H'

'82H'

'85H'

'89H'

/*

DECLARE QUEUESENTRIES

Actual Request Queues.

LITERALLY '2';

*!

DECLARE INSRQD RQD$STRUCTURE
INITIAL (NO$CHANGE,

NOSCHANGE,
QUEUESENTRIES,
4, 0, 0, 0, 0),

IN$RQE (QUEUESENTRIES) RQESSTRUCTURE;

DECLARE OUTSRQD RQDSSTRUCTURE
INITIAL (NOSCHANGE,

NOSCHANGE,
QUEUESENTRIES,
4, 0, 0, 0, 0),

OUTSRQE (QUEUESENTRIES) RQESSTRUCTURE;

PUBLIC

PUBLIC

C-2

Ethernet Communications Controller Example MIP Facilities

t* Request function returns. */

DECLARE READY LITERALLY
FULL LITERALLY
EMPTY LITERALLY
FIRSTSGIVE LITERALLY
FIRSTSTAKE LITERALLY
HALTED LITERALLY

'OOH' ,
'OFFH' ,
•OFFH' ,
'20H' ,
'20H' ,
•40H';

/**/

S
/* Channel activity. */
/* One channel. */

DECLARE ACTIVE LITERALLY
IDLE LITERALLY

•OOH' ,
'OFFH';

DECLARE CHANNELSSTATE STATE INITIAL (ACTIVE),
RECEIVESSTATE STATE INITIAL (EMPTY);

/**/

REQUEST$GIVE$POINTER: PROCEDURE (RQD$PTR,
STATUSSP) ADDRESS;

DECLARE RQDSPTR ADDRESS, /* Input. */
ROD BASED RQDSPTR RQDSSTRUCTURE;

DECLARE STATUSSP ADDRESS, /* Output. */
STATUS BASED STATUSSP WORD;

IF (RQD.TAKESSTATE AND TAKESHALT) = TAKESHALT
THEN DO;
STATUS = HALTED;
RETURN NULLSPTR;

END /* THEN */;
IF (RQD.6IVESINDEX = RQD.TAKESINDEX) AND

((RQD.GIVESSTATE AND GIVESFACTOR) <>
(RQD.TAKESSTATE AND TAKESFACTOR))

THEN DO;
STATUS = FULL;
RETURN NULLSPTR;

END /* THEN */;
STATUS = READY;
RETURN RQDSPTR + SHL(RQD . G IVESINDEX , RQD.RQESLENGTH) +8;

END REQUESTSGIVESPOINTER;

RELEASESGIVESPOINTER; PROCEDURE (RQDSPTR,
STATUSSP);

DECLARE RQDSPTR ADDRESS, /* Input. */
RQD BASED RQDSPTR RQDSSTRUCTURE;

C-3

Example MIP Facilities Ethernet Communications Controller

DECLARE STATUSSP ADDRESS, /* Output. */
STATUS BASED STATUSSP WORD;

IF (RQD.TAKESINDEX = ((RQD . GIVESINDEX + 1)
AND (RQD.RQSSIZE - D))

THEN /* GIVESFACTOR bit = NOT TAKESFACTOR bit. */
RQD.GIVESSTATE = (RQD.GIVESSTATE OR GIVESFACTOR)

AND (NOT (RQD.TAKESSTATE AND TAKESFACTOR)); #

RQD.GIVESINDEX =

((RQD.GIVESINDEX + 1) AND (RQD.RQSSIZE - D); ,

IF RQD.GIVESINDEX =
((RQD.TAKESINDEX + 1) AND (RQD.RQSSIZE - D)
THEN STATUS = FIRSTSGIVE; /* Gave to an empty queue. */
ELSE STATUS = READY;
RETURN;

END RELEASESGIVESPOINTER;

/**/

REQUESTSTAKESPOINTER: PROCEDURE (RQDSPTR,
STATUSSP) ADDRESS;

DECLARE RQDSPTR ADDRESS, /* Input. */
RQD BASED RQDSPTR RQDSSTRUCTURE;

DECLARE STATUSSP ADDRESS, /* Output. */
STATUS BASED STATUSSP WORD; ' ^

IF (RQD.GIVESSTATE AND GIVESHALT) = GIVESHALT
THEN DO;
STATUS = HALTED;
RETURN NULLSPTR;

END /* THEN */;
IF (RQD.GIVESINDEX = RQD.TAKESINDEX) AND

((RQD.GIVESSTATE AND GIVESFACTOR) =
(RQD.TAKESSTATE AND TAKESFACTOR))

THEN DO;
STATUS = EMPTY;
RETURN NULLSPTR;

END /* THEN */;
STATUS = READY■
RETURN RQDSPTr'+ SHL(RQD.TAKES I NDEX , RQD.RQESLENGTH) +8;

END REQUESTSTAKESPOINTER;

/**/
*.

RELEASESTAKESPOINTER: PROCEDURE (RQDSPTR,
STATUSSP);

DECLARE RQDSPTR ADDRESS, /* Input. */
RQD BASED RQDSPTR RQDSSTRUCTURE;

C-4

Ethernet Communications Controller Example MIP Facilities

DECLARE STATUS$P ADDRESS, /* Output. */
STATUS BASED STATUSSP WORD;

IF (RQD.GIVESINDEX = ((ROD . TAKES INDEX + 1) AND
(RQD.RQSSIZE - D))

THEN /* TAKESFACTOR bit = GIVESFACTOR bit. */
RQD.TAKESSTATE = (RQD. TAKESSTATE AND NOT TAKESFACTOR)

^ OR (RQD.GIVESSTATE AND GIVESFACTOR);

RQD.TAKESINDEX =
® ((RQD.TAKESINDEX + 1) AND (RQD.RQSSIZE - D);

IF RQD.TAKESINDEX =

((RQD.GIVESINDEX + 1) AND (RQD.RQSSIZE - D)
THEN STATUS = FIRSTSTAKE; /* Took from a full queue. */
ELSE STATUS = READY;
RETURN;

END RELEASESTAKESPOINTER;

DYINGSCHANNEL: PROCEDURE ;

CHANNELSSTATE = IDLE;
INSRQD.TAKESSTATE = INSRQD . TAKESSTATE OR TAKESHALT;
OUTSRQD.GIVESSTATE = OUTSRQD . GIVESSTATE OR GIVESHALT;

END DYINGSCHANNEL;

XMXSSEND: PROCEDURE (BUFFERSPTR,
BUFFERSLENGTH,
SOCKET,
STATUSSP) PUBLIC;

DECLARE BUFFERSPTR ADDRESS, /* Input. */
BUFFERSLENGTH WORD,
SOCKET WORD;

DECLARE STATUSSP ADDRESS, /* Output. */
STATUS BASED STATUSSP WORD;

DECLARE RQESPTR ADDRESS, /* Local. */
RQE BASED RQESPTR RQESSTRUCTURE,
LOCSSTATUS WORD,
TIMER WORD;

IF CHANNELSSTATE = IDLE

THEN DO;
STATUS = DEADSDEVICE;
RETURN;

END /* THEN */;

RQESPTR = REQUESTSGIVESPOINTER (.OUTSRQD, .LOCSSTATUS);

C-5

Example MIP Facilities Ethernet Communications Controller

IF LOC$STATUS = READY

THEN DO;
RQE.REQUEST = SENDSCOMMAND;
RQE.SRCREQID = 0;
RQE.DESTDEVID = HIGH (SOCKET);
RQE.DEST$PORT$ID = LOW (SOCKET);
RQE.SRCDEVID = HOMESDEVICE;
RQE.IDSSID =0; ^
RQE.OWNERDEVID = HOME$DEVICE;
RQE.DATAPTRLO = BUFFER$PTR;
RQE.DATAPTRHI = 0; *
RQE.DATASLENGTH = BUFFER$LENGTH;
CALL RELEASE$GIVE$POINTER (.OUTSRQD, .LOCSSTATUS) ;
/* Since this program is the only sender, it

always gives to an empty queue, so ... */
OUT$RQD.EMPTY$SIGNAL = EMPTYNOLONGER;
OUTPUT (WAKEUPPORT) = 2;

END /* THEN */;

ELSE /* either FULL or HALTED */ DO;
/* Since only one corranand is outstanding at

one time, the queue should never be full. */
CALL DYINGSCHANNEL;
STATUS = DEADSDEVICE;
RETURN;

END /* ELSE */;

DO TIMER = 0 TO TIMELOOPS; /* Wait for a response. */
IF IN$RQD.EMPTY$SIGNAL = EMPTYNOLONGER
THEN DO;
RECEIVESSTATE = ACTIVE;
IN$RQD.EMPTY$SIGNAL = NOSCHANGE;

END /* THEN */;
IF RECEIVESSTATE = ACTIVE

THEN DO;
RQESPTR = REQUEST$TAKE$POINTER (.IN$RQD, .LOCSSTATUS) ;
IF LOCSSTATUS = READY

THEN DO;
STATUS = RQE.REQUEST;
CALL RELEASE$TAKE$POINTER (.IN$RQD, .LOCSSTATUS);
IF LOCSSTATUS = FIRSTSTAKE
THEN DO;
OUTSRQD.FULLSSIGNAL = FULLSNOSLONGER;
OUTPUT (WAKESUPSPORT) = 2;

END /* THEN */;
RETURN;

END /* THEN */;
IF LOCSSTATUS = EMPTY

THEN RECEIVESSTATE = EMPTY;
ELSE CALL DYINGSCHANNEL; «

END /* THEN */;
ELSE CALL TIME (250);

END /* DO */;

/* No response came back within a reasonable time. */
CALL DYINGSCHANNEL;
STATUS = DEADSDEVICE;

END XMXSSEND;

C-6

Ethernet Communications Controller Example MIP Facilities

/lilclililtliliitlc***-!!***/

XMXSRECEIVE: PROCEDURE (STATUS$P) ADDRESS PUBLIC;

DECLARE STATUS$P ADDRESS, /* Output. */
STATUS BASED STATUS$P WORD,
.USER$BUFFER$PTR ADDRESS;

A DECLARE INRQEPTR ADDRESS, /* Local. */
INSRQE BASED INRQEPTR RQESSTRUCTURE,
OUTRQEPTR ADDRESS,
OUTSRQE BASED OUTRQEPTR RQE$STRUCTURE,

^ LOCSSTATUS WORD;

IF IN$RQD.EMPTY$SIGNAL = EMPTY$N0$L0N6ER
THEN DO;
RECEIVESSTATE = ACTIVE;
IN$RQD.EMPTY$SIGNAL = NO$CHANGE;

END /* THEN */;
IF (CHANNELSSTATE <> IDLE) AND (RECEIVESSTATE = ACTIVE)
THEN DO;
INRQEPTR = REQUEST$TAKE$POINTER (.IN$RQD, .LOCSSTATUS);
IF LOCSSTATUS = READY

THEN DO;
STATUS = IN$RQE.REQUEST;
USER$BUFFER$PTR = INSRQE.DATAPTRLO;
/* It can only be a cormiand, so return response. */
OUTRQEPTR =

REQUEST$GIVE$POINTER (.OUTSRQD, .LOCSSTATUS);
IF LOCSSTATUS = READY

THEN DO;
CALL MOVE (16, INSRQESPTR, OUTSRQESPTR)
OUTSRQE.REQUEST = MSGSDELIVEREDSNOSCOPY

OUTSRQE.SRCSDEVSID = INSRQE.DESTSDEVSID
OUTSRQE.DESTSDEVSID = INSRQE.SRCSDEVSID;
CALL RELEASESGIVESPOINTER (.OUTSRQD, .LOCSSTATUS);
/* The output queue must have been empty,

so si gna I. */
OUTSRQD.EMPTYSSIGNAL = EMPTYSNOSLONGER;
OUTPUT (WAKESUPSPORT) = 2;

END /* THEN */;

CALL RELEASESTAKESPOINTER (.INSRQD, .LOCSSTATUS);
IF LOCSSTATUS = FIRSTSTAKE

THEN DO;
OUTSRQD.FULLSSIGNAL = FULLSNOSLONGER;
OUTPUT (WAKESUPSPORT) = 2;

END /* THEN */;
RETURN USERSBUFFERSPTR;

END /* THEN */;

IF LOCSSTATUS = EMPTY

THEN RECEIVESSTATE = EMPTY;
ELSE CALL DY INGSCHANNEL;

END /* THEN */;
STATUS = EMPTY;
RETURN NULLSPTR;

END XMXSRECEIVE;

^ ̂ /**/

END XMX;

C-7

Example MIP Facilities Ethernet Communications Controller

Assembler Example

This second example of a MIP facility is intended for use in a multitasking environ
ment. It can support an arbitrary number of devices, but in this example it is con
figured to communicate with two devices other than the 8086 processor on which it
uns. One of these is the Ethernet Communications Controller; the other may be any
processor board. The following assumptions govern this implementation of MIP:

All memory is contained in one IDS.

Only one request is outstanding at one time.

The operating system supports mailboxes, semaphores, and a timer.

The operating system uses a priority task scheduling mechanism. A higher
priority task may pre-empt a lower priority one.

Messages begin at addresses that are evenly divisible by 16. Messages contain
length, owner device-ID, and IDS-ID fields as illustrated in figure C-1.

P

Six modules constitute this MIP facility:

• MIPDEF—defines the data structures

• RQPROC—contains the request queue procedures

• MIPINIT—initializes the operating system interfaces

• MIPCON—called by user tasks to associate a MIP port with an operating
system mailbox

• MIPSND—called by user tasks to send a message

• INT ASK—services incoming messages

MIPSND is reentrant and may be executed by several tasks at once. It contains a
critical region, however, that may be executed by only one task at a time. Access to
the critical region is controlled by the semaphore MIPUSEPERMIT.

INT ASK is an asynchronous task driven by interrupts communicated to it by the
operating system through the semaphore INTERRUPTSEMAPHORE.

MIPSND and INTASK communicate with each other through the shared variables
SENDSTATE, SENDRESULT and SENDDEVICE, and also by passing the dum
my message SENDMSG through the mailbox MIPSENDWTMBX.

This example makes several calls on operating system functions. These are explained
below:

ALLOCATE—gets space for SENDMSG,

ENABLEINTERRUPT—tells the operating system to begin posting the
interrupt associated with a specific semaphore. When the operating system
recogizes the interrupt, it increments the semaphore.

SENDUNIT—increments the specified semaphore.

RECEIVEUNIT—decrements the specified semaphore. If the semaphore is
zero, the calling task is made to wait until another task calls on SENDUN IT.

ENQUEUE—places an item in the specified mailbox.

DEQUEUE—removes an item from a specific mailbox. If no item is in the
mailbox, the task waits for the specified number of time units or until some
other task calls on ENQUEUE to place an item in the mailbox.

C-8

Ethernet Communications Controller Example MIP Facilities

(RESERVED)

1

LEN

1

GTH

IDS ID OWNER DEVICE ID

-

DATA L

Figure C-1. Example Message Format.

STITLECMIP DATA STRUCTURES')

NAME MIPDEF

769-25

DGROUP GROUP DATA

DATA SEGMENT PUBLIC 'DATA'

PUBLIC MIPDEVCNT, THISDEVICE

NUMBER OF DEVICES KNOWNMIPDEVCNT DB 2

THISDEVICE DB 1

; DEFINE REQUEST QUEUES FOR USE WITH CONTROLLER

TO THIS DEVICE

DEV ID OF THIS DEVICE

FROMCONTROLLER DB 0,0,2,4,0,0,0,0
DB 32 DUP (0)

TOCONTROLLER DB 0,0,2,4,0,0,0,0
DB 32 DUP (0)

; DEFINE REQUEST QUEUES FOR USE WITH THE PROCESSOR

FROMPROCESSOR

TOPROCESSOR

DB 0,0,2,4,0,0,0,0
DB 32 DUP (0)

DB 0,0,2,4,0,0,0,0
DB 32 DUP (0)

SET DEVICE INFO UP FOR TWO OTHER DEVICES:

THE ETHERNET CONTROLLER AND

ANOTHER PROCESSOR BOARD.

PUBLIC MIPDEVICEINFO

DECLARE MIP$DEVICE$INFO(MAXNODEVICES)
STRUCTURE (

DEV$ID BYTE,
STATUS BYTE,
RQD$IN POINTER,
RQDSOUT POINTER,
INTSTYPE BYTE,
TIMETOWAIT BYTE,
INTSADR WORD) PUBLIC

FIRST FOR THE CONTROLLER

C-9

Example MIP Facilities

MIPDEVICEINFO DB 0,0FFH

Ethernet Communications Controller

DO FROMCONTROLLER

DO TOCONTROLLER

DB 1 ,0,OA4H,0

; NOW FOR THE PROCESSOR

DB 4,OH

DD FROMPROCESSOR

DD TOPROCESSOR

DB 0,0,0,0

DEVID, STATUS
(INIT READY)

RQD IN

ROD OUT

INT TYPE,
TIME TO WAIT,
INT ADDR.

DEVID, STATUS
(INIT NOT READY)

RQD IN

RQD OUT

INT TYPE,
TIME TO WAIT,
INT ADDR.

PUBLIC MIPDEVTOENTRY

INDEX TABLE INTO MIPDEVICEINFO.

USES DEVICE ID AS A KEY.

MIPDEVTOENTRY DB 0,0,0,0,1,0,0,0

PUBLIC PORTTOMAILBOX

TABLE TO CONVERT PORT ID INTO MAILBOX NUMBER.

USER TASKS PLACE ENTRIES IN THIS TABLE BY MEANS

OF THE MIPCONNECT PROCEDURE.

PORTTOMAILBOX DB 16 DUP (0)

PUBLIC SENDMSG,SENDRESULT
PUBLIC SENDSTATE,SENDDEVICE

ADDRESS TOKEN FOR

DUMMY MESSAGE.

; COMMUNICATION AREAS BETWEEN

SENDMSG DW 1 DUP (0) ;

SENDRESULT DB 0
!

SENDSTATE DB 0

SENDDEVICE DB 0

DATA ENDS

END

STITLECMIP REQUEST QUEUE ROUT

NAME RQPROC

; DEFINE RQD RESULTS

GERROR EQU 1H

GBUSY EQU 4H

FIRSTG EQU 8H

GDISAB EQU 10H

GFULL EQU 20H

C-10

Ethernet Communications Controller Example MIP Facilities

DISABT EQU 40H

FULLF EQU 80H
TERROR EQU 1H

TBUSY EQU 4H

FIRSTT EQU 8H

TDISAB EQU 10H

TEMPTY EQU 20H

DISABG EQU 40H

EMPTYF EQU 80H

DEFINE MIP COMMANDS AND RESPONSES

CSEND EQU 70H

SENTOK EQU 80H

UNKNP EQU 81H

ACTIVP EQU 83H

INSUFM EQU 85H
INACTP EQU 87H

DEADP EQU 89H

CGROUP GROUP CODE

CODE SEGMENT PUBLIC 'CODE

ASSUME CSiCGROUP

REQUEST POINTER ROUTINES

PUBLIC REQUESTGIVEPTR,REQUESTTAKEPTR

BECAUSE OF SYMMETRY OF LOGIC, REQUESTSGIVE
AND REQUESTSTAKE ROUTINES ARE COMBINED.

REQUESTGIVEPTR:

MOV DH,0 FLAG AS GIVE PTR

MOV BX,5
JMP SHORT LI

REQUESTTAKEPTR:

MOV DH,80H ; FLAG AS TAKE PTR

MOV BX,1

; NOW LOAD THE REGISTERS

L1: CALL LOADREG

; CHECK IF DISABLED

MOV DL,AH ; GIVESTATE

OR DL,BH TAKESTATE

AND DL,DISABG OR GDISAB

JZ L4

MOV AL,GDISAB OR GERROR ; IS DISABLED

RET # ZERO FLAG IS RESET

; WAS NOT DISABLED, SEE IF FULL/EMPTY

C-ll

Example MIP Facilities Ethernet Communications Controller

L4:

L6;

CMP AL,BL ; COMPARE INDEXES

JNE L6

MOV DL,AH CHECK FULL/EMPTY FACTOR

XOR DL,BH
AND DL,FULLF
CMP DH,DL
JE L6 ; NOT FULL/EMPTY

MOV AL,GFULL OR GERROR ; IS FULL/EMPTY
RET I ZERO FLAG IS RESET

ENTRY, CALCULATE ADDRESS OF IT

MOV CL,CH GET RQESIZE

MOV AH,0
SHL AX,CL
MOV CX,ES MOVE BASE OF RQDPTR

ADD AL,8 ; ADD RQD AREA

ADD AX, SI ADD ENTRY OFFSET

XCHG BX,AX
JNC L8
ADD CX,1000H ; HAD OVERFLOW IN OFFSET;

; ADD TO BASE.

; ALL DONE, RETURN ENTRY TO USER

L8: MOV ES,CX
XOR AX,AX ; ZERO FLAG IS SET
RET

; RELEASE POINTER ROUTINES

PUBLIC RELEASEGIVEPTR,RELEASETAKEPTR

; BECAUSE OF SYMMETRY OF LOGIC, RELEASESGIVE
; AND RELEASESTAKE ROUTINES ARE COMBINED.

RELEASEGIVEPTR:

MOV DH,OH
MOV BX,5
JMP SHORT Ml

RELEASETAKEPTR:

MOV DH,80H
MOV BX,1

; NOW LOAD REGISTERS

M1: CALL LOADREG

C-12

Ethetnet Communications Controller Example MIP Facilities

; BUMP POINTERS AND UPDATE STATUS/INDEX

DEC CL; GET MASK FOR MODULO ARITHMETIC
INC AL

AND AL,CL ; DO MODULO
CMP AL,BL
JNE M6 ; JMP IF INDEXES ARE NOT EQUAL
AND AH,NOT FULLF; SET FULL/EMPTY FACTR
MOV CH,BH
OR DH,DH
JNZ M5

NOT CH

M5: AND CH,EMPTYF
OR AH,CH

; STORE INDEX,STATE

M6: CALL STOREREG

; SEE IF FIRST TAKE/GIVE

INC BL

AND BL,CL
CMP BL,AL
MOV AL,0
JNZ H20 ; NOT FIRST GIVE/TAKE
OR DH,DH
JNZ SHORT M10

MOV BYTE PTR ES:[SI],1H ; FIRST GIVE
JMP SHORT M12

M10: LES SI,DWORD PTR [DI+5]
MOV BYTE PTR ES:[SI+1],80H; FIRST TAKE

; NOU GENERATE INTERRUPT

M12: MOV CL,BYTE PTRIDI+9H] ; INT TYPE
MOV DX,[DI+OBH] ; INT ADDRESS
MOV AL,2
CMP CL,1 ; I-O MAPPED?
JNE M20 ; IF NOT, GENERATE NO SIGNAL
OUT DX,AL ; 1-0 INTERRUPT

M20: XOR AX, AX
RET

; COMMON ROUTINE FOR LOADING REGISTERS

LOADREG;

LES SI,DWORD PTR [DI+BX]
MOV CX,ES:tSI+2] ; RQ SIZE, RQE LENGTH
MOV AX,ES:tSI+4] ; GIVE INDEX, STATE
MOV BX,ES:tSI+6] ; TAKE INDEX, STATE
OR DH,DH
JZ LR1

XCHG AX,BX ; SWITCHED FOR TAKE PTR
LR1 : RET

C-13

Example MIP Facilities Ethernet Communications Controller

COMMON ROUTINE FOR STORING REGISTERS

STOREREG:

OR DH,DH
JZ SR1

MOV ES: [SI+6],AX
RET

SR1 : MOV ES: [SI+4],AX
RET

CODE ENDS

END

$TITLE('MIP INITIALIZATION ROUTINE')

NAME MIPINIT

DGROUP GROUP DATA

DATA SEGMENT PUBLIC 'DATA'

EXTRN MIPUSEPERMIT:NEAR, SENDMSG:NEAR
EXTRN INTERRUPTSEMAPHORE:NEAR

I DW 0

DATA ENDS

CGROUP GROUP CODE

CODE SEGMENT PUBLIC 'CODE'

ASSUME CS:CGROUP,DS:DGROUP
PUBLIC MIPINIT

EXTRN ENABLEINTERRUPT:NEAR

EXTRN SENDUNIT:NEAR

EXTRN ALLOCATE:NEAR

MIPINIT PROC NEAR

; SENDMSG = ALLOCATEd ,81) ;
: ASK OS FOR ADDRESS OF A MESSAGE AREA TO BE

: USED FOR COMMUNICATION BETWEEN INTASK AND

; MIPSEND.

MOV AL,1
PUSH AX

PUSH DS

MOV AX,OFFSET DGROUP:I
PUSH AX

CALL ALLOCATE ; GET MSG SPACE FROM OS
MOV WORD PTR SENDMSG,AX ; SAVE ADDRESS

; CALL SENDUNIT(MIPUSEPERMIT);

PUSH WORD PTR DGROUP:MIPUSEPERMIT

CALL SENDUNIT

C-14

Ethernet Communications Controller Example MIP Facilities

m

; CALL ENABLEINTERRUPT(INTERRUPTSEMAPHORE);
; PERMIT INTERRUPTS TO BE SEEN.

PUSH

CALL

RET

MIPINIT ENDP

CODE ENDS

END

WORD PTR INTERRUPTSEHAPHORE

ENABLEINTERRUPT

$TITLE ('CONNECT FUNCTION')

NAME MIPCON

DGROUP GROUP DATA

DATA SEGMENT PUBLIC 'DATA'

EXTRN

DATA ENDS

PORTTOMAILBOX:NEAR

CGROUP GROUP CODE

CODE SEGMENT PUBLIC 'CODE'

ASSUME CS:CGROUP,DS:DGROUP

PUBLIC MIPCONNECT

; ASSOCIATES A SYSTEM MAILBOX WITH A MIP PORT.

MIPCONNECT PROC NEAR

POP DI i RETURN ADDRESS

POP AX i MAILBOX POINTER

POP BX f PORT

PUSH DI t SAVE RETURN ADDRESS

CMP BL,10H t MAX PORT ID IS 15
JB OKPORT 1 JUMP IF WITHIN LIMIT

MOV AL,1H t BAD PORT. RETURN ERROR.
RET

OKPORT: MOV BH,0 ! ISOLATE PORT BYTE.

f PLACE MAILBOX IN TABLE.

MOV BYTE PTR PORTTOMAILBOXCBX],AL
XOR AX, AX RETURN ZERO

RET

MIPCONNECT ENDP

CODE ENDS

END

C-15

Example MIP Facilities Ethernet Communications Controller

$TITLE CMIP SEND')

NAME MIPSEND

; DEFIN E RQD RESULTS

GERROR EQU 1H

GBUSY EQU 4H

FIRSTG EQU 8H

GDISAB EQU 10H

GFULL EQU 20H

DISABT EQU 40H

FULLF EQU 80H

TERROR EQU 1H

TBUSY EQU 4H

FIRSTT EQU 8H

TDISAB EQU 10H

TEMPTY EQU 20H

DISABG EQU 40 H

EMPTYF EQU 80H

; DEFIN E MIP COMMANDS AND RESPONSES

CSEND EQU 70H

SENTOK EQU 80H

UNKNP EQU 81H

ACTIVP EQU 83H

INSUFM EQU 85H

INACTP EQU 87 H

DEADP EQU 89H

DGROUP GROUP DATA

DATA SEGMENT PUBLIC 'DATA'

EXTRN MIPDEVICEINFOtNEAR

EXTRN THISDEVICErBYTE

EXTRN MIPSENDWTMBX:NEAR, SENDRESULT:BYTE
EXTRN SENDSTATErBYTE, SENDDEVICE:BYTE
EXTRN MIPUSEPERMIT:NEAR

EXTRN PORTTOMAILBOX:NEAR

EXTRN MIPDEVCNT:BYTE, MIPDEVTOENTRY:NEAR
DATA ENDS

CGROUP GROUP CODE

CODE SEGMENT PUBLIC 'CODE'

ASSUME CS:CGROUP,DS:DGROUP

PUBLIC MIPSEND, CALCDEVPTR
EXTRN REQUESTGIVEPTR:NEAR

EXTRN RELEASEGIVEPTR:NEAR

EXTRN DEQUEUE:NEAR, ENQUEUE:NEAR
EXTRN SENDUNIT:NEAR, RECEIVEUNIT:NEAR

MIPSEND PROC NEAR

POP DI ; RETURN ADDRESS
POP SI ; MSGPTR (ON 16-BYTE BOUNDARY)
POP AX ; DESTINATION SOCKET
PUSH DI

C-16

Ethernet Communications Controller Example MIP Facilities

; IF DESTINATION IS FOR A LOCAL PORT,
; CALL THE OS SEND ROUTINE.

CMP AH.THISDEVICE
JNE REMOTE

MOV AH,0 ; ISOLATE LOCAL PORT ID
% MOV BX.AX ; GET MAILBOX

MOV AL.BYTE PTR PORTTOMAILBOX[BX]
OR AL,AL ; IS IT ZERO?
JZ INACTIVE ; ZERO MEANS INACTIVE.

PUSH AX

PUSH SI

CALL ENQUEUE

MOV AL,OH
RET

MAILBOX

MESSAGE POINTER

PUT POINTER IN MAILBOX

RETURN STATUS = SENTOK

INACTIVE:

MOV AL,7H ; RETURN STATUS = INACTP
RET

; PROCEED IF NOT BUSY, ELSE BLOCK.

REMOTE:

PUSH SI

XCHG AL,AH
PUSH AX

SAVE MSGPTR.

FOR SIMPLICITY LATER.

SAVE SOCKET.

SECURE PERMISSION TO PROCEED. ONLY ONE CALLER
AT A TIME MAY PROCEED BEYOND THIS POINT.

PUSH WORD PTR DGROUP:MIPUSEPERMIT

CALL RECEIVEUNIT

f GET THE DEVICE INFO FOR THE DESTINATION DEVICE.

POP BX ; GET SOCKET
PUSH BX

MOV BH,0 ; MASK OUT PORT; LEAVE DEVICE
; LOOK UP INDEX INTO DEV INFO

MOV AL,BYTE PTR MIPDEVTOENTRY[BX]
CALL CALCDEVPTR ; GET PTR TO DEV INFO
JNE DEAD ; IF NOT EQUAL, DEVICE DEAD
INC BX ; SET DEV PTR TO STATUS BYTE

•

1 LOOP UNTIL WE HAVE PUT ITEM INTO THE REQUEST

f QUEUE, OR UNTIL A FATAL ERROR OCCURS.

TOP: PUSH BX ; SAVE DEV PTR
CLI ; DISABLE INTERRUPTS TO PREVENT

; INTERFERENCE FROM INTASK.
MOV DI,BX ; DEV PTR
CALL REQUESTGIVEPTR

JNZ NOGIVE ; NOT ZERO MEANS ERROR

C-17

Example MIP Facilities Ethernet Communications Controller

THERE IS A FREE RQE. FILL IT IN.
ES:[BX] POINTS TO THE RQE.

MOV BYTE PTR ES: [BX],CSEND
POP CX ; DEVINFO
POP AX ; SOCKET
POP SI ; MSGPTR
PUSH SI

PUSH AX

PUSH CX

MOV WORD PTR ES:[BX+2H],AX
MOV CL,THISDEVICE
MOV BYTE PTR ES:[BX+4H],CL

SOCKET

CONVERT ADDRESS TOKEN TO IDS POINTER.
ASSUME NO ALIASING IN THIS SYSTEM.

MOV CL,4
MOV DI,SI ; MAKE COPY OF HSGPTR
MOV DX,SI ; ANOTHER COPY
SHL DX,CL ; GIVES LOWER 16 BITS

AND SI,OFOOOH
ROR SI,CL ; GIVES UPPER 16 BITS

MOV ES:[BX+5],SI
HOV ES:[BX+7],DX ; PUT INTO RQE

LENGTH, IDS-ID, AND OWNDEV INTO RQE FROM MSG

PUSH ES ; SAVE RQE BASE
MOV ES,DI
MOV AX,ES:[DI+2] ; LENGTH
MOV CX,ES:[DI+4] ; IDS/OWNDEV
POP ES

MOV ES:[BX+9],AX ; PUT LENGTH AWAY
MOV ES:[BX+OBH] ,CX ; OWNDEV AND IDS

INTASK WHAT WE ARE WAITING FOR.

MOV SENDDEVICE,AL ; DEST DEVICE
MOV SENDRESULT,0
MOV SENDSTATE,2H ; WAITING FOR REPLY

POP DI ; DEV PTR
PUSH DI

CALL RELEASEGIVEPTR

JMP WAITR

NOGIVE:

UAITR:

TEST

STI

JZ

MOV

STI ;

AL,GFULL IS QUEUE FULL?

DEAD ; IF NOT FULL, DEAD
SENDSTATE,1H; WAITING TIL NOT FULL

ENABLE INTERRUPTS SO INTASK CAN RUN

C-18

Ethernet Communications Controller Example MIP Facilities

WAIT UNTIL INTASK GETS A RESPONSE OR A
NOT FULL TRANSITION, OR UNTIL TIMEOUT,

FULL TO

DEAD:

PUSH WORD PTR DGROUP:MIPSENDWTMBX
MOV AX,200 ; TIME UNITS
PUSH AX

CALL DEQUEUE

CMP SENDRESU LT,OH ; IF ZERO, TIMEOUT
POP BX ; DEVICE POINTER
JNZ REPLY

POP DX ; DISCARD SOCKET
POP DX ; DISCARD MSG PTR
MOV BYTE PTR [BX],OH ; DEV STATUS DEAD
MOV AL,DEADP ; RET STATUS DEAD
JMP EXIT

SOMETHING IS IN THE MAILBOX. IF WAITING FOR
REPLY THEN IT IS THE REPLY, ELSE IT IS THE
FULL TO NOT FULL TRANSITION.

REPLY: CMP SENDSTATE,2H ; WAITING FOR REPLY
JE DOREPL

JMP TOP ; IF NOT, PROCESS TRANSITION

DOREPL: POP DX ; SOCKET
POP DX ; MESSAGE POINTER
MOV AL,SENDR ESULT ; RETURN VALUE

EXIT: MOV SEN DSTATE,OH ; NOT WAITING
PUSH AX ; SAVE STATUS
PUSH WORD PTR DGROUP:MIPUSEPERMIT

; LET OTHER CALLERS GO
CALL SENDUNIT ; RETURN PERMIT TO OS
POP AX ; RECALL STATUS
AND AL,7FH ; RESET HIGH BIT
RET ; RETURN TO CALLER

MIPSEND ENDP

THIS ROUTINE CALCULATES DEVICE POINTER, WHICH
POINTS TO DEVICE INFO FOR DESTINATION DEVICE.
IT ASSUMES THE DEVICE ID IS IN AL.

IT USES AX, BX, AND CX.

CALCDEVPTR:

CODE

MOV CL,OEH
MUL CL

MOV BX,AX
LEA BX,WORD
CMP BYTE PTR

RET

ENDS

END

PTR MIPDEVICEINFOCBX]

[BX+1],0FFH ; ACTIVE?

C-19

Example MIP Facilities Ethernet Communications Controller

$TITLE('MIP INPUT TASK')
NAME INTASK

DEFINE RQD RESULTS

GERROR EQU 1H

GBUSY EQU 4H

FIRSTG EQU 8H

GDISAB EQU 10H

GFULL EQU 20H

DISABT EQU 40H

FULLF EQU 80H

TERROR EQU 1H

TBUSY EQU 4H

FIRSTT EQU 8H

TDISAB EQU 10H

TEMPTY EQU 20H

DISABG EQU 40H

EMPTYF EQU 80H

; DEFINE MIP COMMANDS AND RESPONSES

CSEND EQU 70H

SENTOK EQU 80H

UNKNP EQU 81H

ACTIVP EQU 83H

INSUFM EQU 85H

INACTP EQU 87H

DEADP EQU 89H

DGROUP GROUP DATA

DATA SEGMENT PUBLIC 'DATA'

EXTRN MIPDEVICEINFO:NEAR

EXTRN SENDSTATE:BYTE, SENDDEVICE:BYTE
EXTRN MIPSENDUTMBX:NEAR

EXTRN SENDMSG:NEAR, SENDRESULT:BYTE
EXTRN PORTTOMAILBOXiNEAR, MIPDEVCNTtBYTE
EXTRN INTERRUPTSEMAPHORE:NEAR

TRESULT DB 0

SREQID DB 0 ; MUST FOLLOW TRESULT

DATA ENDS

CGROUP GROUP CODE

CODE SEGMENT PUBLIC 'CODE'

ASSUME CS:CGROUP,DS:DGROUP

EXTRN REQUESTGIVEPTR:NEAR

EXTRN REQUESTTAKEPTR:NEAR

EXTRN RELEASEGIVEPTR:NEAR

EXTRN RELEASETAKEPTR:NEAR

EXTRN CALCDEVPTRiNEAR

EXTRN ENABLEINTERRUPT:NEAR

EXTRN ENQUEUE:NEAR

EXTRN SENDUNIT:NEAR, RECEIVEUNIT:NEAR

PUBLIC MIPINTASK

C-20

Ethernet Communications Controller Example MIP Facilities

MIPINTASK PROC NEAR

THIS IS THE BASIC SERVICE ROUTINE. WAIT FOR AN
INTERRUPT AT THE INTERRUPT SEMAPHORE. THEN LOOK
INTO THE REQUEST QUEUES.

SLEEP: PUSH WORD PTR DGROUP: INTERRUPTSEMAPHORE
CALL RECEIVEUNIT

; LOOK AT ALL KNOWN DEVICES.

MOV DL.OFFH ; START COUNTER AT -1
PUSH DX

NEXT: ; LOOK AT NEXT DEVICE
POP DX ; GET DEVICE COUNTER
INC DL

CMP DL,MIPDEVCNT ; END OF DEVICES?
JE SLEEP ; IF SO, THEN LEAVE.

; LOOK AT RQ FOR EACH DEVICE.

PUSH DX f SAVE DEVICE COUNTER
MOV AL,DL
CALL CALCDEVPTR; GET PTR TO DEV INFO
JNE NEXT t JUMP IF DEVICE IS DEAD

INC BX
f POINT TO DEVICE STATUS

LES SI,DWORD PTR [BX+1H]; PTR TO INRQD

; TEST SIGNALS

XOR AX, AX WILL CLEAR SIGNALS
XCHG AX,ES:[sn ; GET FULL & EMPTY SGNL
OR AX, AX ARE BOTH ZERO?
JZ NEXT JMP IF BOTH ARE ZERO

PUSH BX SAVE DEV PTR
JNS TAKE ; TEST FULL SIGNAL (SIGN BIT)

PUSH AX SAVE SIGNALS

; WE HAVE A FULL TO NOT FULL TRANSITION.
; SEE IF ANYONE WAS WAITING.

CMP SENDSTATE,1H ; WAITING FOR CHANGE?
JNZ EMPTYT ; JUMP IF NOT.

CMP DL,SENDDEVICE; FOR THIS DEVICE?
JNZ EMPTYT ; JUMP IF NOT.

MOV SENDRESULT,1 ; TELL MIPSND
PUSH WORD PTR DGROUP:MIPSENDWTMBX
PUSH WORD PTR DGROUP:SENDMSG
CALL ENQUEUE

C-21

Example MIP Facilities Ethernet Communications Controller

; NOW LOOK FOR AN EMPTY TO NOT-EMPTY TRANSITION.

EMPTYT: POP AX ; GET SIGNALS BACK
TEST AL,1 ; EMPTY SIGNAL SET?
JNZ TAKE ; JMP IF SET

POP BX ; NO SUCH TRANSITION
JMP SHORT NEXT ; NEXT DEVICE

NOW TAKE ALL THINGS FROM THIS RQ UNTIL AN ERROR
OCCURS. THE MOST LIKELY ERROR IS THAT THE
QUEUE IS EMPTY.

TAKE: POP DI ; DEV PTR
PUSH DI

CALL REQUESTTAKEPTR

JZ OKTAKE

; THE TAKE RETURNED WITH AN ERROR. THAT MAY MEAN:
(1) IT WAS EMPTY, OR (2) IT WAS DISABLED.

TEST AL.IOH
POP SI

JZ NEXT

DISABLED?

DEVICE POINTER

IF ZERO, THEN WAS EMPTY

DISABLED:

MOV BYTE PTR tSI],0 ; DEV STATUS DEAD
JMP SHORT NEXT ; NEXT DEVICE

; THERE IS SOMETHING IN THE QUEUE. TAKE IT.
; ES:[BX] POINTS TO RQE.

OKTAKE: MOV AX,WORD PTR ES:[BX] ; GET REQUEST
; AND SRCREQID

MOV SREQID,AH ; SAVE SRCREQID
CMP AL,CSEND ; IS IT A COMMAND?
JNE RECRSP ; NO? MUST BE RESPONSE.

; SEE IF SOCKET IS OPEN.

MOV AL,ES:[BX+3H] ; GET PORT
MOV AH,OH
MOV DI,AX ; CONVERT TO MAILBOX
MOV AL,BYTE PTR PORTTOMAILBOX [DI]
OR AL,AL ; IS MAILBOX ZERO?
JZ INACTV

PUSH AX ; SAVE MAILBOX FOR LATER USE

; THE SOCKET IS OPEN.

MOV TRESULT,SENTOK

C-22

Ethernet Communications Controller Example MIP Facilities

GET IDS POINTER FROM RQE AND

CONVERT TO ADDRESS TOKEN.

&

MOV AX,ES:[BX+5]
HOV DX,ES:[BX+7H]
AND AX.OFFFOH ; GET RID OF LOW 4 BITS
AND DX.OFH
OR AX,DX ; FORM TOKEN
MOV CL,4
ROR AL,CL ; REVERSE LOWER 4, UPPER 12
PUSH AX ; MAILBOX ALREADY ON STACK

NOW SAVE LENGTH, IDS-ID, AND OWNDEV

MOV

MOV

MOV

XOR

MOV

MOV

CX,ES:[BX+9]
DX,ES:[BX+OBH]
ES,AX
DI,DI

LENGTH

IDS-ID/OWN-DEV

TOKEN FOR MSG

CLEAR

ES:[DI+2],CX ; PUT LENGTH INTO MSG
ES:[01+4],DX ; PUT IDS AND OWN DEV

SEND IT TO USER.

CALL ENQUEUE ; PARAMS ALREADY ON STACK
JMP SHORT GENRSP

INACTV: MOV TRESULT,INACTP ; PORT NOT ACTIVE
JMP SHORT GENRSP ; RETURN RESPONSE

; THE RECEIVED ITEM IS A RESPONSE.
; LET MIPSND KNOW ABOUT IT.

RECRSP: MOV

CMP

JNE

SENDRESULT,AL
SENDSTATE,2H
ENDRSP

REQUEST CODE

WAITING FOR REPLY?

NO? DISCARD IT.

PUSH

PUSH

CALL

ENDRSP: JMP

WORD PTR DGROUP:MIPSENDWTMBX

WORD PTR SENDMSG

ENQUEUE

SHORT RELTAKE ; RESPONSE DONE

GENERATE A RESPONSE TO A RECEIVED COMMAND.

GENRSP: XOR CX,CX ZERO COUNTER

TRYINGTOGIVEi

POP

PUSH

INC

JZ

PUSH

CALL

POP

JNZ

DI ; GET DEVICE PTR
DI

CX

DEAD ; IF ZERO THEN TIMEOUT
CX

REQUESTGIVEPTR

CX

NOGIVE ; NOT ZERO MEANS ERROR.

C-23

Example MIP Facilities Ethernet Communications Controller

; THERE IS SPACE; IN THE RQ.

MOV AX,WORD PTR TRESULT ; GET BOTH

t TRESULT AND SREQID

MOV ES: [BX],AX
POP DI 1

RETRIEVE DEV PTR

PUSH DI

CALL RELEASEGIVEPTR

JMP SHORT RELTAKE

NOGIVE: ; EITHER FULL OR DISABLED

TEST AL.GDISAB f DISABLED?

JZ TRYINGTOGIVE ! NO? KEEP TRYING.

DEAD: JMP DISABLED 1
GIVE UP.

RELTAKE

POP DI 1 DEV PTR

PUSH DI

CALL RELEASETAKEPTR

JMP TAKE

HIPINTASK ENDP

CODE ENDS

END

C-2tf

/—N

APPENDIX D

^ "IIL^ J ETHERNET DATA LINK LIBRARY

Overview
9

The Ethernet Data Link Library (EDL80.LIB) provides a set of procedures that
^ simplify the interface between the iSBC 550 Ethernet Communications Controller

and users of the Ethernet Development System. The routines in the library are
designed to run on the 8080 or 8085 processor of a Series II or Series III Microcom
puter Development System under the ISIS operating system.

The Ethernet Data Link Library offers an easy way to use an Ethernet network. The
library routines embody a MIP facility. They help to communicate with the External
Data Link (EDL) of the Ethernet Controller without concern for details such as how
to initialize the Ethernet Controller or how to use the MIP facility.

The Ethernet Data Link Library contains these routines:

1. CQSTRT

2. CQCONN

3. CQDISC

4. CQAMID

5. CQDMID

6. CQXMIT

7. CQCKTX

8. CQSBUF

9. CQCKRX

10. CQREAD

11. CQRDCL

CQSTRT configures the MIP facility and starts it and other communications soft
ware that run on the Ethernet Controller.

Before using the network, you must tell the Data Link Layer on the Ethernet Com
munications Controller which type codes and multicast addresses to accept. Type
codes are not interpreted by the Data Link Layer; they are used to identify the Client
Layer protocols associated with each frame. A multicast address associates one sta
tion with a group of other stations that have the same multicast address. The
CQCONN routine specifies type codes; the CQAMID routine specifies multicast

^ addresses. CQDISC and CQDMID tell the Data Link Layer to cease accepting cer
tain type codes and multicast addresses.

Q The Ethernet Controller has no memory that the station host can access; therefore,
to receive packets from the network, you must supply buffer space using the
CQSBUF routine. When a packet is received, EDL returns the buffer containing
that packet. The CQSBUF function effectively implements the ReceiveFrame func
tion of the Ethernet Specifications.

CQXMIT passes a buffer to EDL to send over the network. This function effectively
implements the TransmitFrame function of the Ethernet Specifications.

Packet transmission and reception are asynchronous operations. A buffer passed to
the Data Link Layer may be held for an arbitrarily long time. For this reason, the

D-1

Data Link Library Ethernet Communications Controller

CQSBUF and CQXMIT calls do not wait for the buffers to be returned; instead,
you must use CQCKRX and CQCKTX to check whether the system is done with
these buffers.

The Library Procedures

This section explains each of the library routines and shows the form with which to ^
declare them in a PL/M-80 program. The data type WORD refers to a two-byte item
that is not used as an address. In PL/M-80, WORD may be defined thus:

DECLARE WORD LITERALLY 'ADDRESS'; *

The routines of EDL80.LIB are bound to your program by using the LINK com
mand. For example, suppose the name of your program is MYPROG.OBJ. Suppose
also that all files are on disk drive :F1:. To link the EDL80.LIB routines to your pro
gram, enter:

LINK :F1:MYPROG.OBJ, :F1:EDL80.LIB, : F1:PLM80.LIB
TO :F1 :MYPROG.LNK

In all of the library routines, STATUSSP is a pointer to a WORD variable that
indicates the results of calling the routine. Always be sure to check this field after
calling the routine. The values that may be returned in this word are defined in the
description of each routine, but one set of values is common to all of the routines
(except CQSTRT). This is the set of values in the range 81H through 89H that
indicate an error detected by one of the MIP facilities involved in the communica
tion with the Ethernet Controller. These values are defined below:

81H— Unknown destination port or device

83H — Port on destination device is already active

85H — Destination device has insufficient resources to receive message

87H — Port on destination device is not active

89H — Destination device does not respond

CQSTRT

This procedure initializes the MIP facility on the Ethernet Controller and starts
execution of the communications software. CQSTRT must be executed before any xass^
other EDL80.L1B routine.

CQSTRT: PROCEDURE (STATUS$P) EXTERNAL;

DECLARE STATUS$P ADDRESS; /* Output. */

END CQSTRT;

The possible status returns are:

0 — Operation complete

1 — No response from the Ethernet Controller

COCONN

A call on this procedure instructs the Data Link Layer to receive packets containing
a specific data link type code. Note that, when there is more than one host at a sta
tion, EDL does not distinguish between type codes specified in CQCONN requests

D-2

Ethernet Communications Controller Data Link Library

from different hosts. Therefore, any host may receive packets containing type codes
specified by any other host at the same station. Up to eight types may be active at
any time; however, the Ethernet Controller uses two type codes, leaving space for
only six types.

CQCONN: PROCEDURE (TYPE, STATUS$P) EXTERNAL;

DECLARE TYPE WORD, /* Input. */
STATUS$P ADDRESS; /* Output. */

END CQCONN;

TYPE is a 16-bit Ethernet data link type code for which the Ethernet Controller
should start looking.

The possible status returns are:

0 — Operation complete

1 — Exceeded limit of eight type codes

81H through 89H — MIP facility error (as defined above)

CQDISC

This procedure causes the Data Link Layer to cease forwarding those packets that
contain a specific data link type code.

CQDISC: PROCEDURE (TYPE, STATUSSP) EXTERNAL;

DECLARE TYPE WORD, /* Input. */
STATUS$P ADDRESS; /* Output. */

END CQDISC;

TYPE is the 16-bit Ethernet data link type code for which the Ethernet Controller
should stop looking.

The possible status returns are:

— 0 — Operation complete

81H through 89H — MIP facility error

CQAMID
o

This procedure instructs the Data Link Layer to recognize packets containing a
specific multicast address. Note that, when a station has more than one host pro-
cessor, EDL does not distinguish between multicast addresses specified in CQAMID
requests from different processors. Therefore, any host may receive packets con
taining multicast addresses specified by other hosts at the same station. Up to eight
multicast addresses may be active at one time.

CQAMID: PROCEDURE (MCID$P, STATUSSP) EXTERNAL;

DECLARE MCID$P ADDRESS, /* Input. */
STATUSSP ADDRESS; /* Output. */

END CQAMID;

D-3

Data Link Library Ethernet Communications Controller

MCIDSP contains the address of a six-byte multicast address for which the Ethernet
Controller should start looking.

The possible status returns are:

0 — Operation complete

1 — Exceeded limit of eight multicast addresses

81H through 89H — MIP facility error ^

CQDMID

This procedure causes the Data Link Layer to cease recognizing a specific multicast
address.

CQDHID: PROCEDURE (MCIDSP, STATUSSP) EXTERNAL;

DECLARE MCIDSP ADDRESS, /★ Input. */
STATUSSP ADDRESS; /* Output. */

END CQDMID;

MCIDSP contains the address of the six-byte multicast address for which the
Ethernet Controller should stop looking. If this address is not active, the routine has
no effect.

The possible status returns are:

0 — Operation complete

81H through 89H — MIP facility error

CQXMIT

This procedure queues up a packet to be transmitted. Figure D-1 shows the format
of the transmit buffer. The items in the buffer are described below:

• (RESERVED). The first 18 bytes of the buffer are reserved for use by
EDL80.LIB and the Ethernet Controller.

• LENGTH. Enter the length (in bytes) of the contiguous portion of the packet,
counting from the end of the EXTENSION LENGTH field.

• EXTENSION POINTER. Enter a 24-bit IDS pointer to an extension to the
buffer. Note that the high-order eight bits of this address are stored separately
from the high-order 16 bits. If EXTENSION LENGTH is zero, this pointer is
ignored.

• IDS-ID. Enter the identifier of the inter-device segment in which the extension
area is located.

• EXTENSION LENGTH. Enter the length (in bytes) of the extension; enter zero
if the buffer lies in one continuous area of memory. ®

• DESTINATION ADDRESS. Enter the data link address or multicast address of
the Ethernet station or stations to which you wish to send this packet.

• SOURCE ADDRESS. The Data Link Layer fills this field with the hardware
address of the sending station.

• TYPE. Fill in the data link type code.

• DATA. Enter 46 to 1500 bytes of user data. To meet network minimum packet
size requirements, you must pad smaller messages to make them at least 46 bytes
long.

D-4

Ethernet Communications Controller Data Link Library

vj-v

«-r>

(RESERVED)

1
LENGTH

1

EXTENSIOI
(low-orde

^ POINTER
|r 16 bits)

IDS-ID
EXTENSION POINTER
(high-order 8 bits)

EXTENSION LENGTH

1

DESTINATION
ADDRESS

SOURCE
ADDRESS

TYPE

—4—

DATA

18 BYTES

L

46-1500
BYTES

Figure D-1. Transmit Buffer.

DECLARE BUFFER$P ADDRESS,
STATUS$P ADDRESS;

/* Input. */
/* Output. */

769-26

The interface to CQXMIT is described below:

CQXMIT: PROCEDURE (BUFFER$P, STATUS$P) EXTERNAL;

END CQXMIT;

BUFFERSP contains the address of the buffer area described in figure D-1.

The possible status returns are:

0 — Operation complete

81H through 89H — MIP facility error

COCKTX

This function retrieves transmit buffers that have been passed to EDL via the CQX
MIT procedure.

CQCKTX: PROCEDURE (STATUS$P) ADDRESS EXTERNAL;

DECLARE STATUS$P ADDRESS; /* Output. */

END CQCKTX;

D-5

Data Link Library Ethernet Communications Controller

This is a typed procedure that returns a value of type ADDRESS. If EDL is finished
with a previously submitted transmit buffer, CQCKTX returns the address of the
buffer and sets the status word to reflect the status of the buffer. If the buffer is still

in use, CQCKTX returns a zero address and sets the status to zero.

The possible status returns are:

0 — No errors

1 — The transmit request was rejected because the DATA field was shorter than
46 bytes or longer than 1500 bytes

81H through 89H — MIP facility error

CQSBUF

This procedure provides a buffer in which to place a packet from the network. When
EDL receives a packet, it copies it into this buffer and returns the buffer to the
CQCKRX procedure. The data area of the buffer should be at least 1500 bytes long
to ensure that a maximum-length packet does not overflow the end of the buffer.
You may call CQSBUF several times in succession, thereby making several buffers
available for receipt of packets. Make sure that the number of buffers supplied is
great enough to receive all the packets that might arrive before more buffers can be
supplied. If the Ethernet Controller receives a packet but does not have a user buffer
in which to place it, the packet is discarded.

Figure D-2 illustrates the format of a receive buffer. The fields are filled by the
Ethernet Controller as explained below:

• (RESERVED). First 18 bytes are reserved for use by EDL80.LIB and the
Ethernet Controller

• LENGTH. The length in bytes of the received packet, counting from the
beginning of the destination address through the end of the data area

• DESTINATION ADDRESS. The physical address of the receiving station or a
multicast address

• SOURCE ADDRESS. The data link address of the station from which the
packet came

• TYPE. The data link type code. This can only contain one of the types specified
in a previous CQCONN call

• DATA. Filled with 46 to 1500 bytes of received data. If this area is not long
enough to contain a packet received from the network, data beyond the end of
the buffer is overwritten.

The interface to CQSBUF is described below:

CQSBUF: PROCEDURE (BUFFER$P, STATUS$P) EXTERNALS-

DECLARE BUFFER$P ADDRESS, /★ Input. */ .
STATUS$P ADDRESS; /* Output. */

END CQSBUF;

BUFFERSP contains the address of the receive buffer area.

The possible status returns are:

0 — Operation complete

81H through 89H — MIP facility error

D-6

Ethernet Communications Controller Data Link Library

(RESERVED)

1

1

LENGTH

1

-

I

DESTINATION
ADDRESS

1

-

-

1

SOURCE
ADDRESS

1

-

TYPE

1

DATA

>18 BYTES

L

46-1500
BYTES

Figure D-2. Receive Buffer. 769-27

CQCKRX

This function determines whether any packets have been received.

CQCKRX: PROCEDURE (STATUS$P) ADDRESS EXTERNAL;

DECLA-RE STATUSSP ADDRESS; /* Output. */

END CQCKRX;

This is a typed procedure that returns a value of type ADDRESS. If any packets
have been received, CQCKRX returns the address of the oldest one. If no packets
have been received, CQCKRX returns an address of zero.

The possible status returns are:

0 — Operation complete

81H through 89H — MIF facility error

CQREAD

This procedure accesses certain items of information held by the Data Link Layer.
Refer to Chapter 4 for a definition of the accessible data link objects.

CQREAD: PROCEDURE (OBJECT, RETURN$P, STATUS$P) EXTERNAL;

DECLARE OBJECT WORD;

DECLARE RETURN$P ADDRESS,
STATUSSP ADDRESS;

END CQREAD;

/* Input. */

/* Output. */

D-7

Data Link Library Ethernet Communications Controller

OBJECT contains the identifying number of the data link object to be read.

RETURNS? contains the address of a six-byte area in which to place the value of the
object. If the object is less than six bytes long, CQREAD fills the lowest-address
bytes of the area; the content of the remaining bytes is undefined. If OBJECT is not
a valid identifier of a data link object, the content of the return area is undefined.

The possible status returns are:

0 — Operation complete

81H through 89H — MIP facility error

CQRDCL

This procedure reads an accessible data link object, and, if the object is a counter,
clears it after it has been read. If the object is not a counter, CQRDCL functions the
same as CQREAD.

CQRDCL: PROCEDURE (OBJECT, RETURNSP, STATUS$P) EXTERNAL;

DECLARE OBJECT WORD; /* Input. */

DECLARE RETURNSP ADDRESS, /* Output. */
STATUSSP ADDRESS;

END CQRDCL;

OBJECT contains the identifying number of an accessible data link object.

RETURNSP contains the address of a six-byte area in which to place the value of the
object. If the object is less than six bytes long, CQRDCL fills the lowest-address
bytes; the content of the remaining bytes is undefined. If OBJECT is not a valid
identifier of a data link object, the content of the return area is undefined.

The possible status returns are:

0 — Operation complete

81H through 89H — MIP facility error

Example Calling Sequences ^
CALL CQSTRT (.STATUS);

LXI B,STATUS
CALL CQSTRT

CALL CQCONN (OURSTYPE, .STATUS);

LHLD OURTYPE

MOV B,H ®
HOV C,L
LXI D,STATUS
CALL CQCONN

CALL CQDISC (5009H, .STATUS);

LXI D,STATUS
LXI B,5009H ^ ^
CALL CQDISC

D-8

Ethernet Communications Controller Data Link Library

CALL CQAMID (.BROADCAST, .STATUS);

LXI D,STATUS
LXI 8,BROADCAST
CALL CQAMID

CALL CQDMID (. PROJECTSGROUP, .STATUS);

LXI D,STATUS
LXI B,PROJECTGROUP

5 CALL CQDMID

CALL CQXMIT (. OUT$BUFPER , .STATUS);

LXI D,STATUS
LXI B.OUTBUFFER
CALL CQXMIT

DO WHILE (RETURNSP := CQCKTX (.STATUS)) = 0;

CT: LXI B,STATUS
CALL CQCKTX

SHLD RETURNPTR

MOV A,H
ORA L

JZ CT

END;

CALL CQSBUF (.INSBUFFER, .STATUS);

LXI D,STATUS
LXI B.INBUFFER
CALL CQSBUF

DO WHILE (RETURNSPTR := CQCKRX (.STATUS)) = 0;

CR: LXI B,STATUS
CALL CQCKRX

SHLD RETURNPTR

MOV A,H
ORA L

JZ CR

END;

CALL CQREAD (OBJSID, .OBJ$VALUE, .STATUS);

LHLD OBJID

PUSH H

LXI D,STATUS
LXI B,OBJVALUE
CALL CQREAD

CALL CQRDCL (09H, .OBJSVALUE, .STATUS);

LXI B,9H
PUSH B

LXI D,STATUS
LXI B.OBJVALUE
CALL CQRDCL

D-9

80/30, 80/24, 80/12A, 2-10, B-9
8080, 8085, 1-2, C-1, D-1
8086, C-8

ACTIVATE, B-7, B-28
ADDMCID, 3-1,3-2, 3-3,3-4
address, 2-5,

range of Ethernet Controller, 2-10 (See also broadcast
address, data link address, 1-0 port address,
IDS base-address, memory address, multicast
address, multicast-group address, physical address,
request queue address)

alias, B-8

bootstrap, 2-1 thru 2-3, 2-6 thru 2-8
command, 2-2, 2-4, 2-6 thru 2-11

broadcast address, 1-4
buffer, 3-2, 3-5, B-3, B-6 thru B-8, B-13, B-27, B-29, D-1,

D-2, D-4 thru D-6

channel, 2-4, B-4, B-6, B-10, B-12, B-14, B-18, B-19
Client Layer, 1-2, 1-4, 3-1, 5-1, D-1
collision, 4-1,4-2
command, B-4, B-6, B-7, B-9, B-10, B-19, B-21, B-23,

B-27,C-1
confidence test, 2-1, 2-6, A-1
configuration, 2-1 thru 2-3, 2-5, B-4, B-7, B-17, C-1
CONNECT, 3-1 thru 3-3, 3-5
CQAMID, D-1, D-3, D-9
CQCKRX, D-1, D-2, D-6, D-7, D-9
CQCKTX, D-1, D-2, D-5, D-6, D-9
CQCONN, D-1 thru D-3, D-8
CQDISC, D-1, D-3, D-8
CQDMID, D-1, D-4, D-9
CQRDCL, D-1, D-8, D-9
CQREAD, D-1, D-7 thru D-9
CQSBUF, D-1, D-2, D-6, D-9
CQSTRT,2-3, D-1, D-2, D-8
CQXMIT, D-1, D-2, D-4, D-5, D-9

data link address, 1-4, 2-7, 3-5, D-4, D-6
Data Link Layer, 1-2, 1-4, 3-1 thru 3-4, 4-1, D-1 thru

D-4, D-7

data link objects, 4-1, 4-2, D-7, D-8
data link type, 1-4, 3-1, 3-2, 3-5, D-1, D-3, D-4, D-6
DEACTIVATE, B-7, B-28
dead device, 2-10, B-9, B-11, B-13, B-17, B-20
DELETEMCID, 3-1, 3-2, 3-4
device, 1-5, 2-3 thru 2-5, 2-8, 2-9, 2-10, B-3, B-18,

B-27, D-2

ID, 1-5, 2-9, B-3, B-18, C-8 (See also dead device)
discarding packets, 4-1, 5-1, D-6
DISCONNECT, 3-1 thru 3-3

Echo Command, 2-7
echo packet, 2-7
EDL (External Data Link), 1-3, Chapter 3, Chapter 4, 5-1,

D-1, D-5, D-6

EDL80.L1B (See Ethernet Data Link Library)
error handling, 5-1, B-9
Ethernet Data Link Library (EDL80.L1B), 1-2, 1-3, 2-3
EXAMPL.HLP, 1-3

example programs, 1-3, 2-6, Chapter 5, Appendix C
exchange, 1-5, B-3
External Data Link (See EDL)

FIND, B-7, B-26
function name, B-4, B-7, B-18, B-26, C-1

host (See station host)

1-0 port, 1-5
address, 2-1, 2-10, B-9, B-19, C-1

iAPX-86, B-2
identifier, B-10
IDS (Inter-Device Segment), 2-5, 2-6, 2-8, 2-9, B-7, B-13,

B-19, C-1, C-8
IDS-ID, 2-5, 3-5, B-7, B-11, B-13, C-8, D-4
base-address, 2-5, 2-9, B-7, B-8, B-19 (Seealso pointer)

iMMX 800 Multibus Message Exchange, 1-2
initialization. Chapter 2, 3-1, A-1, C-1, D-1, D-2 (See also

request queue)
Intellec Microcomputer Development System, 1-3,

C-1, D-1
Inter-Device Segment (See IDS)
interrupt, 2-1,2-6, 2-10, B-9, B-12, B-19, C-1, C-8
iRMX operating systems, 1-2, B-2
iSBC 544 Intelligent Communications Controller, 2-10, B-9
ISIS Operating System, B-2, C-1, D-1

jumper, 2-1 thru 2-3

LINK, C-1, D-2

mailbox, 1-5, B-3, C-8
MCS-85, B-2
memory, 1-2, 2-2 thru 2-5, 3-2, B-2, D-1

address, 2-2, 2-10, B-8, B-9, B-19, C-8, D-6 thru D-8
dual-port, B-7, B-8
management, B-2, B-7, B-8
location (See memory address)

MIP (Multibus Interprocessor Protocol), 1-2, 2-5, 2-8
facility, 1-2, 1-3, 1-5, 2-1 thru 2-5, 2-7, 2-8, 2-10,

3-1, 5-1, B-2, Appendix C, D-1, D-2
pointer (See pointer, IDS)
specification. Appendix B
system, 1-5, 2-9, B-1, B-2

Multibus Interprocessor Protocol (5ee MIP)
multicast address, 1-3, 1-4, 3-1 thru 3-5, D-1, D-3, D-4
multicast-group address, 1-4
multitasking, B-2, B-6, C-8

network management. Chapter 4
NULLSPTR, B-10

operating systems, B-2, B-8, C-8 (See also iRMX, ISIS)

Index-i

Index Ethernet Communications Controller

owner, B-4, B-14, C-8

padding, 3-5, D-4
physical address, 1-4, 3-5, 4-1, D-6
Physical Layer, 1-2, 1-4
pointer, B-10, B-11

8086-style, 2-10
arithmetic, B-10
IDS, 3-4, 3-5, B-8, B-10, B-11, D-4

polling, 2-10, B-9, C-1
port (MIP), 1-5, 3-1, B-3, B-4, B-7, B-17, B-18, B-23, B-27

thru B-29, C-1, C-8, D-2 {See also I-O port, wake-up
port)

port-ID, B-3, B-18
power-up, 2-1, 2-2
Presence Command, 2-6, 2-7
priority, C-8

queue, B-3, B19, C-1 {See also Request Queue)

READ, 3-1,3-2, 4-2
READC, 3-1,3-2,4-3
RECEIVE, B-7, B-29
ReceiveFrame, 3-2, D-1
recovery, 1-2, 5-1, B-10
reply {See response)
request, B-4, B-9, C-8
request block, 1-3, Chapter 3, Chapter 4
request queue, 2-2, 2-4, 2-10, B-4 thru B-6, B-9, B-12, B-14

thru B-19, B-22 thru B-25, C-8
address, 2-4, 2-10

initialization, 2-8, 3-1, B-4, B-14
Request Queue Descriptor {See RQD)
Request Queue Entry (5ee RQE)
reset, 2-1, 2-2, 2-6
response, B-4, B-6, B-7, B-9, B-10, B-19, B-20, B-23, B-24,

B-27, C-1
RQD (Request Queue Descriptor), 2-4, 2-10, B-4, B-5, B-12

thru B-14, B-19
RQE (Request Queue Entry), 2-4, B-4, B-5, B-8, B-10,

B-12, B-13,B-15thru B-17

semaphores, C-8
signal, 2-10, 3-1, B-2, B-9, B-12
socket, 1-5, 3-1, 3-5, B-3, B-17, B-18, B-23, B-26
Start Command, 2-2, 2-4, 2-5, 2-7, 2-8
state, B-10
station host, 1-2
SUPPLYBUF, 3-1, 3-2, 3-5, 3-7

task, B-2

timeout, 4-1, 4-2, B-9, B-11, B-17
TRANSFER, B-7, B-19, B-27
TRANSMIT, 3-1, 3-2, 3-4 thru 3-6
TransmitFrame, 3-2, D-1
type {See data link type)

version number, 2-6

wake-up port, 2-1 thru 2-3, 2-7, 2-10, 3-1

Xerox Corporation, 1-4

Index-2

Notes

	2021_12_14_15_36_33
	2021_12_14_15_38_11

