
PL/M-86 USER'S GUIDE

Order Number: 121636-002

Copyright © 1980,1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 L

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation.
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager Plug-A-Bubble
CREDIT intel MCS PROMPT
i Intelevision Megachassis RMX/SO
ICE InteUec Micromainframe System 2000
iCS iRMX Micromap UPI
im iSBC Multibus
Insite iSBX Multimodule

I A486/1181/ 75K Dol

REV. REVISION HISTORY DATE

-001 Original issue. 11/80

-002 Added information on DWORD and SELECTOR 11/81
data types, new built-in functions, and segmentation
control extensions.

iii

HOW TO USE THIS MANUAL I

This manual gives instructions for programming in PL/M-86 and for using the
PL/M-86 compiler to prepare programs for iAPX 86 and iAPX 88 microcomputer
systems. It is primarily a reference manual for use when you are writing or compiling
PL/M-86 programs; however, it also contains some introductory information to
help you familiarize yourself with PL/M-86 as you start to use it.

The manual assumes you are familiar with basic programming concepts, including
structured programming. This manual, however, does define the language com
pletely, assuming no prior knowledge of PL/M-86.

Following the description of the language, this manual provides instructions for
compiling your PL/M-86 programs, linking and locating the compiled code, and
executing the final program. It explains how to interpret compiler output, including
error messages.

Finally, appendixes provide quick reference information, plus supplementary
instructions for interfacing PL/M-86 modules to modules in other languages and to
your own operating system software.

Manual Organization

This manual contains four kinds of information:

• Introductory and general reference information, including installation
instructions

• Language information, for use when you are programming in PL/M-86

• Operating instructions for the compiler and descriptions of compiler controls

• Interfacing information you need if you supply some of your own systems
software in place of that supplied by Intel (e.g., a non-Intel operating system or
your own real arithmetic error handler), or if you are interfacing PL/M-86
modules to modules written in other languages such as 8086/8087/8088 Macro
Assembly Language or Pascal-86

If you are a manager evaluating PL/M-86 to determine whether it fits your needs,
you will find most of the information you need in Chapter 1, which is an overview of
the product.

To get started with PL/M-86, first read this Preface (How to Use this Manual) and
Chapter 1. (If you are' familiar with assembly languages but not with high-level
languages, see section 1.2 for a discussion of the advantages of a high-level language
such as PL/M.) Then install the compiler (see instructions in specific host-system
appendix) and try compiling, linking, locating, and running the sample program at
the end of Chapter 1 to verify that the software operates correctly.

After that, if PL/M is a new language for you, study and run the sample programs
in Chapters 8 and 16. Finally, skim through the manual from Chapter 2 to the e-nd,
and try writing and running a few programs of your own. Once you have become
familiar with PL/M-86, you will find this manual useful as a complete reference.
For quick reference, see the PL/M-86 Pocket Reference (order no. 121622).

v

vi

If you wish to transport existing PL/M programs to your iAPX 86 or iAPX 88
application system, refer to Appendix E for a list of the differences between
PL/M-80 and PL/M-86. This appendix indicates the areas of your programs that
may require modification.

Once you have coded your programs, you are ready to compile, link, locate, and run
them. Refer to Chapter 15 for the use of compiler controls and to your specific host
system appendix for compiler operating instructions. Chapter 18 helps you interpret
error messages you may receive when compiling or running your programs. For a
detailed explanation of the linking and locating process, refer to the iAPX 86, 88
Family Utilities User's Guide (order no. 121616).

If you are coding some of your application software in another language such as
8086/8087/8088 Macro Assembly Language or Pascal-86, refer to Appendix H for
the information you need. If you are interfacing to your own operating system or
providing your own filel device drivers, refer to Appendix I for instructions.

Notational Conventions

Section Numbers

All chapters and appendixes are section-numbered for easy cross-referencing: for
instance, the heading number 5.3 denotes Chapter 5, section 3. When the text of one
section refers to another section, the reference is made by number, e.g., "as
described in 7.1." Figures and tables are also numbered to aid in cross-referencing
e.g., "in table 3-1," "see figure 14-1."

Syntax Notation

In the syntax notation for this manual, the following conventions apply:

• Keywords, letter symbols, and punctuation symbols that you use verbatim in
your programs-the terminal symbols of the language-are represented in
monospace type, in which every character has the same width, just as they do in
output media such as CRT console displays and printouts. All letters in terminal
symbols are shown in upper case in the notation; however, you may use either
upper case or lower case for these symbols in your programs. For example:

E
(
..-

WHILE
TO
DO

are all terminal symbols.

PROCEDURE
LITERALLY
END

• Terms standing for language elements or constructs that are defined elsewhere
in this notation-in other words, nonterminal symbols-are represented in
italicized lower-case letters in non-monospace type, in which the width of a
character varies. For example:

digits variable
sign
binary-digit

expression
statement

are all nonterminal symbols.

• When two adjacent items must be concatenated, they appear with no space
between them. A blank space between two items indicates that the two items
may be separated by one or more logical-blanks. For example:

• digits[E[sign]digits]

specifies that the first set of digits, the . symbol, and the second set of digits
must be concatenated, with no blanks between them. Likewise, the E symbol,
the sign if included, and the third set of digits must be concatenated. Blanks are
permitted only between the second set of digits and the E symbol.

• Optional constructs are enclosed in square brackets. For example, in the
construct .represented by

digits. digits[E [sign]digits]

the first and second sets of digits and the. symbol are required, and the entire
part following the second set of digits is optional. If this optional part is
included, the sign may still be omitted.

• Optional constructs that can be repeated a number of times are marked by a
three-dot ellipsis following the closing square bracket. For example:

binary-digit[binary-digit] ... B

stands for a concatenated sequence of one or more binary-digits followed
immediately by a B symbol.

• Alternative constructs are represented as vertically adjacent items separated by
extra vertical spacing and enclosed between curly braces that are taller than a
single line of type. When these braces appear, choose anyone of the constructs
enclosed between the braces. For example:

digits

binary-digit[binary-digit] ... B

octal-digit[octal-digit] .. . Q

hex-digit[hex-digit] ... H

indicates that the construct described may have anyone of the four forms listed
between the large braces.

• Text enclosed between the character sequence 1* and the sequence *1, when
these symbols are in light, non-monospace type, is a prose definition of the
given construct. Such definitions are used when symbolic definitions would be
more cumbersome. For example:

1* any upper-case or lower-case letter of the alphabet * I
is used to avoid listing 52 separate characters vertically between braces.

• The start of a new line in the notation does not mean you must start a new line at
that point in your program; however, you may do so for readability. For exam
ple, when you use the construct:

DO variable= expression TO expression;
END statement list

you need not include a carriage return after the se~ond expression, but in many
programs doing so makes the statement more readable.

(See Appendix A for the BNF notation for the PL/M-86 language.)

vii

CHAPTER 1
OVERVIEW

PAGE

Product Definition 1-1
The PL/M-86 Language 1-1

Using a High-Level Language 1-1
Why PL/M? 1-2

Categories of PL/M-86 Statements. 1-3
The Structure of a PL/M-86 Program 1-3

Block Nesting and Scope of Variables:
An Introduction 1-4

Executable Statements 1-5
Assignment Statement 1-6
IF Statement 1-6
DO and END Statements 1-7
Built-in Procedures and Variables 1-8
Expressions 1-8
Input and Output 1-8

The Program Development Process 1-9
Sample Program 1-9

CHAPTER 2
BASIC CONSTITUENTS OF A
PL/M-86 PROGRAM
PL/M-86 Character Set 2-1
Identifiers and Reserved Words 2-2
Tokens, Separators, and the Use of Blanks 2-3
Constants 2-3

Whole-Number Constants 2-3
Floating-Point Constants 2-4
Character Strings 2-5

Comments 2-5

CHAPTER 3
DATA DECLARATIONS
Variable Declaration Statements 3-1

Types 3-2
Examples 3-3
Results 3-3

Initializations 3-4
The Implicit Dimension Specifier 3-6
Names for Execution Constants:

The Use of DATA 3-6
Compilation Constants (Text Substitution):

The Use of LITERALLY. 3-7
Declarations of Names for Labels 3-8

Results 3-9
Combining DECLARE Statements 3-9
Declarations for Procedures 3-10

CHAPTER 4
DATA TYPES AND BASED VARIABLES
BYTE, WORD, and DWORD Variables:

Unsigned Arithmetic 4-1
INTEGER Variables: Signed Arithmetic 4-1

CONTENTS

PAGE

REAL Variables: Floating-Point Arithmetic 4-2
POINTER Variables and Location References 4-2

The @ Operator 4-3
Storing Strings and Constants via Location

References 4-4
The" DOT" Operator 4-4

SELECTOR Variables 4-4
Based Variables 4-5

Location References and Based Variables 4-6
Contiguity of Storage 4-6
The AT Attribute 4-7

CHAPTER 5
EXPRESSIONS AND ASSIGNMENTS
Operands 5-1

Constants 5-1
Variable and Location References 5-2
Subexpressions 5-2
Compound Operands 5-2

Arithmetic Operators 5-3
The +, -, *, and / Operators 5-3
Ihe MOD Operator 5-4

RelationalOperators 5-4
LogicalOperators 5-5
Expression Evaluation 5-6

Precedence of Operators: Analyzing an
Expression 5-6

Compound Operands Have Types 5-8
Relational Operators Are Restricted 5-8
Order of Evaluation of Operands 5-9

Choice of Arithmetic: Summary of Rules 5-9
Special Case: Constant Expressions 5-10

Assignment Statements 5-12
Implicit Type Conversions 5-12
Constant Expression 5-13
Multiple Assignment 5-14
Embedded Assignments 5-14

CHAPTER 6
STRUCTURES AND ARRAYS
Arrays 6-1

Subscripted Variables 6-1
Structures 6-2

Arrays of Structures 6-3
Arrays Within Structures 6-3
Arrays of Structures with Arrays Inside the

Structures 6-3
References to Arrays and Structures 6-4

Fully Qualified Variable References 6-4
Unqualified and Partially Qualified Variable

References 6-4

ix

CHAPTER 7 PAGE
FLOW CONTROL STATEMENTS
DO and END Statements: DO Blocks 0 0 0 0 0 0 0 0 0 0 0 0 0

Simple DO Blocks 0

DO CASE Blocks 0

DO WHILE Blocks 0

Iterative DO Blocks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0

The IF Statement 0 0 0 0 •• 0 •• 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nested IF Statements 0 0 • 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0

Sequential IF Statements 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GOTO Statements 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0

The HALT Statement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0

The CAUSE$INTERRUPT Statement 000000000000

The CALL and RETURN Statements 0 0 • 0 0 0 0 0 0 0 0 0

CHAPTER 8
SAMPLE PROGRAM 1
Insertion Sort Algorithm

CHAPTER 9
BLOCK STRUCTURE AND SCOPE

7-1
7-2
7-3
7-4
7-5
7-7
7-8

7-10
7-11
7-11
7-11
7-12

8-1

Names Recognized Within Blocks 0000000000000000 9-1
Restrictions on Multiple Declarations 0.00000.000 9-3

Extended Scope: The PUBLIC and EXTERNAL
Attributes ... 0 •• 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-4

Scope of Labels and Restriction on GOTOs 0 0 0 0 0 0 0 0 9-6

CHAPTER 10
PROCEDURES
Procedure Declarations 0000.00.000000000000000 10-1

Parameters 0 0 0 0 0 0 ••• 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10-2
Typed Versus Untyped Procedures 000000000000 10-3

Activating a Procedure-Function References and
CALL Statements 000000.0.000000000000000 10-4

Indirect Procedure Activation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10-5
Exit from a Procedure: The RETURN Statement 0 0 10-5
The Procedure Body . 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 10-6
The Attributes: PUBLIC and EXTERNAL,

INTERRUPT, REENTRANT 0000000000000 10-7
Interrupts and the INTERRUPT Attribute 00000 10-8
Activating an Interrupt Procedure with a CALL

Statement 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10-9
Reentrancy and the REENTRANT Attribute 10-10

CHAPTER 11
BUILT-IN PROCEDURES, FUNCTIONS
AND VARIABLES '
Obtaining Information About Variables 000000000 11-1

The LENGTH Function .00000000000000000000 11-1
The LAST Function 0 0 0 0 •• 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 11-2
The SIZE Function .. 0 •• 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11-2

Explicit Type and Value Conversions 0 0 0 0 0 0 0 • 0 0 0 0 11-2
The LOW, HIGH, and DOUBLE Functions 0000 11-4
The FLOAT Function 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11-4

x

CONTENTS (Cont'd.) I

The FIX Function 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The INT Function 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 • 0

The SIGNED Function 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 • 0 • 0 0 • 0

The UNSIGN Function 0 0 0 ••• 0 • 0 • 0 0 0 • 0 0 0 0 0 • 0

The ABS and lABS Functions . 0 0 •••••••• 0 • 0 ••

Shift and Rotate Functions 0 0 • 0 • 0 • 0 • 0 0 • 0 0 0 •••••

Rotation Functions, ROL and ROR 0 0 0 •• 0 0 o. 0 0

Logical-Shift Functions, SHL and SHR o. 0 0 0 0 • 0

Algebraic-Shift Functions, SAL and SAR 0 0 • 0 0 0

Input and Output 0 0 0 • 0 0 0 • 0 •• 0 • 0 •• 0 0 0 • 0 • 0 0 0 0 • 0

The INPUT and INWORD Functions .. 0 0 0 0 • 0 0

The OUTPUT and OUTWORD Arrays 0 •••• 0 0 •

String Manipulation Procedures . 0 •••• 0 0 0 0 0 0 • 0 0 0

The MOVB and MOVW Procedures 0 0 •• 0 • 0 0 0 0

The MOVRB and MOVRW Procedures .. 000 •• 0

The CMPB and CMPW Functions . 0 0 0 ••• 0 0 0 • 0

The FINDB/FINDW and FINDRB/FINDRW

PAGE

11-4
11-5
11-5
11-6
11-6
11-6
11-7
11-7
11-8
11-8
11-8
11-8
11-9
11-9

11-10
11-10

Functions . 0 0 0 0 0 0 ••• 0 • 0 0 0 •• 0 0 0 0 0 • 0 • 0 0 • 0 II-II
The SKIPB/SKIPW and SKIPRB/SKIPRW

Functions 0 0 • 0 0 • 0 0 0 • 0 •• 0 0 • 0 0 0 • 0 0 • 0 0 • 0 o. II-II
TheXLAT Procedure 00 ••• 0000000. 0.0.00.000 11-12
The SETB and SETW Procedures . 0 0 0 0 0 • 0 0 • 0 • 0 11-12

Miscellaneous Built-Ins 00 •• 0 •• 0 0 0 0 0 0 0 0 .00000.. 11-12
The MOVE Procedure 0 •• 0.0. 0 • 0 00 •••• 000 ••• 11-1.2
The TIME Procedure 0 0 0 • 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 •• 0 0 11-13
The MEMORY Array 00.0 •• 0000.0 •• 000000.0. 11-13
STACKPTRandSTACKBASE .. 0.000000.0 •• 11-14
The LOCKSET Function 00.000 •• 0.0.0.0.00 •• 11-14

Interrupt-Related Procedures .0000000000.00000. II-IS
The SET$INTERRUPT Procedure 00000000000. 11-15
The INTERRUPT$PTR Function 00000.000000 11-15

Pointer and Selector-Related Functions 000.00000. 11-16
The BUILD$PTR Function 00000.00000.0000 •• 11-16
The SELECTOR$OF Function 0.000000000.00. 11-16
The OFFSET$OF Function . 0 0 0 •• 0 0 0 0 • 0 0 0 0 0 o. 11-16

CHAPTER 12
PL/M-86 FEATURES INVOLVING
mPX86HARDWAREFLAGS
Optimization and the iAPX 86 Hardware Flags 12-1
The PLUS and MINUS Operators .. 00000. 0 0000 •• 12-1
Carry-Rotation Built-in Procedures 00000000000... 12-2
The DEC Function . 0 0 0 0 • 0 0 0 • 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12-2
CARRY, SIGN, ZERO, and PARITY Built-in

Procedures 0.000000.0.000 •• 000 ••• 00000 •• 12-2

CHAPTER 13
FLOATING-POINT ARITHMETIC:
THE REAL MATH FACILITY
Representation of REAL Values 0" 0 0 • 0 • • • • • • • • • B-1
REAL-Parameter Passing and Stack

Conventions 00000000000 ••••• 0..... 13-3

The REAL Math Facility
Exception Conditions in REAL Arithmetic

Invalid Operation Exception
Denormal Operand Exception
Zero Divide Exception
Overflow Exception
Underflow Exception
Precision Exception

The INIT$REAL$MA TH$UNIT Procedure
TheSET$REAL$MODE Procedure
The GET$REAL$ERROR Function
Saving and Restoring REAL Status "

The SA VE$REAL$ST A TUS Procedure
Writing a Procedure to Handle REAL Interrupts ..
Floating-Point Linkage

CHAPTER 14
SUPPORT LIBRARY: PLM86.LIB

CHAPTER 15
COMPILER CONTROLS
Introduction to Compiler Controls
The WORKFILES Control
The LEFTMARGIN Control
Object File Controls

INTVECTOR/NOINTVECTOR
OVERFLOW/NOOVERFLOW
OPTIMIZE

OPTIMIZE(O)
OPTIMIZE(l)
OPTIMIZE(2)
OPTIMIZE(3)

OBJECT/NOOBJECT
DEBUG/NODEBUG
TYPE/NOTYPE
Program Size Controls

SMALL
COMPACT
MEDIUM
LARGE

RAM/ROM Control
Listing Selection and Content Controls

PRINT INOPRINT
LIST /NOLIST
CODE/NOCODE
XREF /NOXREF
SYMBOLS/NOSYMBOLS

Listing Format Controls
PAGING/NOPAGING
PAGELENGTH
PAGEWIDTH
TITLE '"

PAGE

13-3
13-5
13-6
13-7
13-7
13-7
13-7
13-S
13-S
13-9
13-9
13-9

13-10
13-10
13-13

15-1
15-3
15-3
15-4
15-4
15-4
15-5
15-5
15-5
15-6
15-S

15-14
15-14
15-14
15-15
15-15
15-15
15-15
15-16
15-16
15-16
15-17
15-17
15-17
15-IS
15-1S
15-1S
15-1S
15-19
15-19
15-19

CONTENTS (Cont'd.) I

SUBTITLE
EJECT
Sample Program Listing
Symbol and Cross-Reference Listing
Compilation Summary

Source Inclusion Controls
INCLUDE
SAVE/RESTORE

Conditional Compilation Controls
IF/ELSE/ELSEIF/ENDIF
SET/RESET
COND/NOCOND

CHAPTER 16
SAMPLE PROGRAM 2

CHAPTER 17
OBJECT MODULE SECTIONS AND
PROGRAM SIZE CONTROL

PAGE

15-19
15-20
15-20
15-21
15-22
15-23
15-23
15-24
15-24
15-24
15-26
15-27

iAPX S6 Memory Concepts 17-1
Object Module Sections 17-2

Code Section 17-2
Constant Section 17-2
Data Section 17-2
Stack Section 17-2
Memory Section 17-3

The SMALL Case 17 -3
PL/M-SO Compatibility 17-4

The COMPACT Case 17-4
Programming Restrictions in the

COMPACT Case 17-5
The MEDIUM Case 17-5

Programming Restrictions in the MEDIUM
Case 17-6

The LARGE Case 17-7
Programming Restrictions in the LARGE Case 17-7

CHAPTER 18
ERROR MESSAGES
Source PL/M-86 Errors IS-1
Fatal Command Tail and Control Errors IS-19
Fatal Input/Output Errors 18-19
Fatal Insufficient Memory Errors 18-19
Fatal Compiler Failure Errors '18-19

APPENDIX A
GRAMMAR OF THE PL/M-86
LANGUAGE .
Lexical Elements :............ A-I
Modules and the Main Program A-3
Declarations A-3
Units .. A-5
Expressions A-8

xi

APPENDIXB
PROGRAM CONSTRAINTS

APPENDIXC
PL/M-86 RESERVED WORDS

APPENDIXD
PL/M-86 PREDECLARED IDENTIFIERS

APPENDIXE
PL/M-80 AND PL/M-86

APPENDIXF
ASCII CODES

APPENDIXG
PL/M-86 ADVANCED SEGMENTATION
Basic Controls 0-1
Long Calls and Far References 0-1
Subsystems 0-2

TABLE TITLE PAGE

2-1 PL/M-86 Special Characters 2-1
3-1 Declaration Elements 3-1
5-1 Operators Precedence 5-6
5-2 Summary of Expression Rules 5-10
11-1 Explicit Type and Value Conversion 11-3

xii

CONTENTS (Cont'd.) I

APPENDIXH
RUN~IMEPROCEDUREAND
ASSEMBL Y LANGUAGE LINKAGE
Calling Sequence H-l
Procedure Prologue H-2
Procedure Epilogue H-3
Value Returned from Typed Procedure H-4

APPENDIX I
RUN-TIME INTERRUPT PROCESSING
General I-I
The Interrupt Vector 1-1
Interrupt Procedure Preface 1-2
Writing Interrupt Vectors Separately 1-4

APPENDIXJ
COMPILER INVOCATION AND
ADDITIONAL INFORMATION FOR
SERIES III USERS
Compiler Invocation 1-1
FileUsage J-2
Linking to Floating-Point with the Series III J-3
Series III-Specific Compiler Controls J-3
Related Publications J-4

TABLESI

TABLE TITLE PAOE

13-1 Exception and Response Summary 13-8

13-2 Linkage Choices for REAL-Math Usage .. 13-14

15-1 Compiler Controls 15-2

15-2 Controls by Categories 15-2

FIGURE TITLE PAGE

1-1
9-1
9-2
9-3

9-4
13-1
13-2
13-3
14-1

14-2

15-1

15-2

15-3

15-4

Sample Program 1-9
Inclusive Extent of Blocks 9-2
Outer Level of Block SORT 9-3
Sample Program Modules Illustrating

Valid GOTO Usage 9-7
Valid GOTO Transfers 9-9
The REAL Error Byte 13-3
The REAL Mode Word 13-5
Memory Layout of REAL Save Area 13-12
Listing of PLM86.LIB Multiplication

Routine 14-1
Listing of PLM86.LIB Division/Mod

Arithmetic Routine 14-2
Sample Program Showing the

OPTIMIZE(O) Control 15-10
Sample Program Showing the

OPTIMIZE(1) Control 15-11
Sample Program Showing the

OPTIMIZE(2) Control 15-12
Sample Program Showing the

OPTIMIZE(3) Control 15-13

ILLUSTRATIONS

FIGURE TITLE PAGE

15-5
15-6
15-7
15-8

15-9

H-l

H-2

1-1

1-2

1-3

J-l

Program Listing 15-20
Cross-Reference Listing 15-22
Compilation Summary 15-23
Sample Program Showing the

SET(DEBUG=) Control. 15-26

Sample Program Showing the NOCOND
Control 15-28

Stack Layout at Point Where a
Non-Interrupt Procedure is Activated H-2

Stack Layout During Execution of
Non-Interrupt Procedure Body H-3

Stack Layout at Point Where an Interrupt
Procedure Gains Control 1-2

Stack Layout After Interrupt Procedure
Preface and Before Procedure
Prologue 1-3

Stack Layout During Execution of
Interrupt Procedure Body 1-3

Interactive Compilation Sequence J-2

xiii

CHAPTER 1
OVERVIEW

This chapter introduces the PL/M-86 language and explains the process of develop
ing software for your iAPX 86 and iAPX 88 application system using PL/M-86.

1.1 Product Definition

PL/M is a high-level language for programming various families of
microprocessors. It was designed by Intel Corporation to meet the software require
ments of computers in a wide variety of systems and applications work.

The PL/M-86 compiler is a software tool that translates your PL/M-86 source pro
grams into relocatable iAPX 86 object modules. You can then link these to other
modules coded in PL/M, assembly, or other high-level languages. The compiler pro
vides a listing output, error messages, and a number of compiler controls to aid in
program development and debugging. The compiler runs on an Intel microcomputer
development system.

To perform the steps following compilation, use the iAPX 86-based software
development utilities-LINK86, LIB86, CREF86, LOC86, and OH86. Debug your
programs using an applications debugger and the ICE-86 or ICE-88 In-Circuit
Emulator. For firmware systems, you then use the Universal Prom Programmer
(UPP) with its Universal Prom Mapper (UPM) software to transfer your programs
to PROM.

1.2 The PL/M-86 Language

Using a High-Level Language

High-level languages more closely model the human thought process than lower
level languages such as assembly language. They therefore are easier and faster to
write, since one fewer translation step is required from concept to code. High-level
language programs are also more likely to be correct, since there is less occasion to
introduce error.

Programs in a high-level language are easier to read and understand, and thus easier
to modify. As a result, you can develop high-level language programs in a much
shorter period of time, and they are easier to maintain throughout the life of the pro
duct. Thus, high-level languages result in lower costs for both development and
maintenance of programs.

In addition, programs in a high-level language are easily transferred from one pro
cessor to another. Programs that can be transferred between processors without
modification are said to be portable.

If PL/M-86 is your first high-level language, you probably want to know how pro
gramming in a high-level language differs from assembly-language programming.
When you use a high-level language:

• You do not need to know the instruction set of the processor you are using.

• You need not be concerned with the details of the target processor, such as
register allocation or assigning the proper number of bytes for each data item
the compiler takes care of these things automatically.

1-1

Overview PL/M-86 User's Guide

1-2

• You use keywords and phrases that are closer to natural English.

• You can combine many operations (including arithmetic and Boolean
operations) into expressions; thus you can perform a whole sequence of opera
tions with one statement.

• You can use data types and data structures that are closer to your actual
problem; for instance, in PL/M-86 you can program in terms of Boolean
variables, characters, and data structures rather than bytes and words.

The introductory example at the end of this chapter (section 1.7) illustrates these
points. Compare this PL/M program with an assembly-language program you
might write to solve the same problem.

Coding programs in a high-level language involves thinking differently from coding
in assembly language. This level is actually closer to the level of thinking you use
when you are planning your overall system design.

Why PL/M?

Many high-level programming languages are available today; some of them have
been around far longer than PL/M. So once you have decided to use a high-level
language, you might ask: How does PL/M differ from other high-level languages? .
What advantages does it have? When is it the right language to use?

Here are some of the characteristics of PL/M:

• It has a block structure and control constructs that aid-in fact, encourage and
enforce-structured programming.

• It includes facilities for such data structures as structured arrays and
pointer-based dynamic variables.

• It is a typed language-that is, the compiler does data type compatibility
checking and range checking to help you detect logic errors in your programs at
compile time.

• Its data structuring facilities and control statements are designed in a logically
consistent way. Thus, PL/M is a good language for expressing algorithms for
systems programming.

• Its control constructs make program correctness relatively easy to verify.

• It is a standard language used on Intel microcomputers, so PL/M programs are
portable across Intel's processors.

For iAPX 86 and 88 systems, Intel offers several languages besides PL/M, such as
Pascal and Fortran. Your choice among these should depend on your implementa
tion. PL/M-86 allows you to program at a level closer to your microprocessor hard
ware. Thus, it is generally more suitable for systems programming.

PL/M was designed for programmers (generally systems programmers) who need
access to the microprocessor's features, such as indirect addressing and direct 110
for optimum use of all system resources.

What about the differences between PL/M and older, more established languages
like FORTRAN, BASIC, AND COBOL? PL/M has many more features than
BASIC and is a more general-purpose language than either FORTRAN (best suited
for scientific applications) or COBOL (tailored for business data processing). Addi
tionally, PL/M differs from these other languages in its typing and block structure.

PL/M-86 User's Guide

1.3 Categories of PL/M-86 Statements

There are two types of statements in PL/M-86: declarations and executable instruc
tions. A simple example of a declare statement is:

DECLARE WIDTH BYTE;

This introduces the identifier WIDTH and associates it with the contents of one byte
(8 bits) of memory. The programmer need not know the location of the byte, i.e., its
actual address in memory. He will simply refer to the contents of this byte by using
the name WIDTH.

An example of an executable statement is:

CLEARANCE = WIDTH + 2;

Here, we have two identifiers, CLEARANCE and WIDTH. Both must be declared
prior to this executable statement, which produces machine code to retrieve the
WIDTH value from memory, add 2 to it, and store the sum in the memory location
for CLEARANCE.

For most purposes, the PL/M-86 programmer need not think in terms of memory
locations. CLEARANCE and WIDTH are variables, and the assignment statement
assigns the value of the expression WIDTH + 2 to the variable CLEARANCE. The
compiler automatically generates all the machine code necessary to retrieve data
from memory, evaluate the expression, and store the result in the proper location.

A group of statements intended to perform a function, i.e., a subprogram or
subroutine, can be given a name by declaring it to be a procedure:

ADDER_UPPER: PROCEDURE (BETA);

The statements that define the procedure then follow. This block of PL/M-86
statements is invoked from other points in the program and may involve passing
parameters to it and returning a value. When a procedure has finished executing,
control is returned immediately to the main program. This capability is the major
feature permitting modular program construction.

1.4 The Structure of a PL/M-86 Program

PL/M-86 is a block-structured language: every statement in a program is part of at
least one block, i.e., a well-defined group of statements that begins with a DO state
ment or a procedure declaration and ends with an END statement.

A module is a labeled simple DO-block; that is, a module must begin with a labeled
DO statement and end with an END statement. Between those end points, i.e.,
within that DO-block, other statements provide the definitions of data and processes
that make up the program. These statements are said to be part of the block, or con
tained within the block, or nested within the block. A module can contain other
blocks but is never itself contained within another block.,

(The reason for saying "simple" DO-block is that there are three other varieties of
DO-blocks, explained in later chapters.)

Every PL/M-86 program consists of one or more modules, separately compiled,
each consisting of one or more blocks. There are two kinds of blocks: DO-blocks
and procedure definition blocks.

Overview

1-3

Overview

1-4

PL/M-86 User's Guide

A procedure definition block is a set of statements 4>eginning with a procedure
declaration (as shown above) and ending with an END statement. Other declara
tions and executable statements can go between these endpoints, to be used later
when the procedure is actually invoked or called into execution. The definition block
is really a further declaration of everything the procedure will use and do. Since it is
only executed later, the definition block is considered simply another form of
declaration rather than being viewed as immediately executable.

Block Nesting and Scope of Variables: An Introduction

Some blocks contain other blocks entirely, as in the following examples:

Example 1

start: DO;
DECLARE (A,B,C,D,E,F,G,H,L) BYTE;
A = 17;
C = B + D;

middLe: DO;
DECLARE (J,K) BYTE;
E = F + G;
H = J + K + Ai

END middLe;

Last: L = H + C;

END start

Example 2

start: DO;
DECLARE (A,B,C,D,E,F,G) BYTE;
A = 17;
C = B + D;

middle: DO;
DECLARE(H,J,K,L)BYTE;
E = F + G;
H = J + K + A;

END middLe;

last: B = H + C; I*H undecLared at outer level *1
END start;.

(Multiple names of the same type can be declared in one statement, as above, mean
ing all the names within the parentheses are of the same type.)

The block called middle is completely contained inside the block labeled start:
middle is said to be nested within the start block.

The start block is called an outer block. The phrase outer level is used to refer to
statements that are in start but not in middle. For example, the statements beginning
with A=, C=, B= are allin at the outer level in the blocks shown above.

PL/M-86 permits each block to be independent of other blocks, in that any names
declared at an outer level can be redeclared, with new meanings and values, inside a
nested block. If they are not redeclared, they keep their original locations and pres
ent contents.

PL/M-86 User's Guide

Thus A will still be 17 inside middle unless we added a new declaration to make it
have anew, local meaning there. Variables that are declared inside a nested block
have only that local meaning while statements in that block are being executed. They
lose that local meaning as soon as execution passes to statements outside that block.

Therefore, if H is declared only inside middle, as it is in example 2, its value will be
unknown in the statement labeled "last"; the statement will be invalid and the com
piler will say so. If H is declared also in start, then the value used in "last" will be
the outer level meaning, unrelated to the one created in middle because that H is
unique. They will only be the same if the sole declaration is in start and not in mid
dle, as in example 1.

The effect of these rules is that, when writing a block and declaring objects solely for
use inside that block, you need not worry about whether the same identifier has
already been used in another block. Even if the same name is used elsewhere, it
refers to a different object. This subject is dealt with in detail in Chapter 9.

This notion of nested blocks, inner and outer levels, is central and basic to successful
PL/M-86 programming. For example, the modules of a program must conform to a
rule that only one module may have executable statements at the outermost level.
That module is called the main module (or sometimes, the main program). The
outermost level of all other modules must contain only procedure definition blocks
and other declarations, as discussed in the sections following.

Most of the rules discussed in this book, including the above, relate to creating and
preserving unambiguous meanings, addresses, and values for each name you use.
This uniqueness must be true in every block and in communicating values between
blocks.

1.5 Executable Statements

The following is a list of all PL/M-86 executable statements and the chapters in
which they are fully discussed:

Assignment Statement
GOTO Statement
IF Statement
Simple DO Statement
Iterative DO Statement
DO WHILE Statement
DO CASE Statement
END Statement
CALL Statement
RETURN Statement
HALT Statement
ENABLE Statement
DISABLE Statement
Null Statement
CAUSE$INTERRUPT Statement

Chapter 5
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 7
Chapter 10
Chapter 10
Chapter 7
Chapter 10
Chapter 10
Chapter 7
Chapter 7

The following sections give simple descriptions of some of the executable state
ments, in order to provide a further feeling for PL/M-86 before going on to the full
descriptions in later chapters.

Overview

1-5

Overview

1-6

PL/M-86 User's Guide

Assignment Statement

The assignment statement has already been introduced. It is fundamental to
PL/M-86 programming, and although its form is quite simple, the expression in an
assignment statement may be quite complex and result in a considerable amount of
computation, as will be seen in Chapter 5.

The simplest form of the assignment statement is:
identifier = expression;

where the identifier represents a variable. The expression is evaluated, and the
resulting value becomes the value of the variable. Variations of this form are given
in Chapter 5.

I F Statement

The following is an example of an IF statement:

IF WEIGHT < MINWT THEN
COUNT = COUNT + 1;

ELSE
COUNT = 0;

Notice how this has been broken into four lines, with indentations, to make it more
readable. As explained in Chapter 2, blanks (spaces, tabs, carriage returns, and line
feeds) may be freely inserted between the elements of a statement without changing
the meaning.

WEIGHT, MINWT, and COUNT are assumed to be previously declared variables.
This IF statement has three parts:

• An "IF part" consisting of the reserved word IF and a condition, WEIGHT <
MINWT

• A "THEN part" consisting of the reserved word THEN and a statement,
COUNT = COUNT + 1

• An "ELSE part" consisting of the reserved word ELSE and another statement,
COUNT=O

The meaning of the IF statement is that if the condition in the IF part is "true," then
the statement in the THEN part will be executed. Otherwise, the statement in the
ELSE part will be executed.

In this particular case, if the value of WEIGHT is less than the value of MINWT,
then the value of COUNT will be incremented by 1. Otherwise, the value 0 will be
assigned to COUNT.

The ELSE part of an IF statement is optional. Chapter 7 contains a full description
of IF statements.

PL/M -86 User's Guide

DO and END Statements

DO and END statements are used to construct "DO blocks." A DO block begins
with a DO statement and ends with a matching END statement.

There are four kinds of DO statements, used to construct four kinds of DO blocks.

A simple DO block begins with a simple DO statement and has the property (like all
DO blocks) that it may be used wherever a single statement can be used. The follow
ing is an example of a simple DO block used in place of a single statement in the
THEN part of an IF statement:

IF TMP >=4 THEN
DO;

END;
E LS E

INCR - INCR*2;
COUNT = COUNT + INCR;

COUNT = 0;

This allows two or more executable statements to be executed if the condition is
"true. "

An iterative DO statement introduces an iterative DO block and causes the
executable statements within the block to be executed repeatedly. The following is
an example:

DO J = 0 TO 9;
VECTOR(J) = 0;

END;

where J is a previously declared BYTE, WORD, or INTEGER variable (these types
are discussed in detail in Chapters 3, 4, and 5.) VECTOR must be a previously
declared array having at least 10 elements (a list, as discussed in Chapters 2 and 6).
The assignment statement is executed 10 times, with values of J starting at 0 and
increasing by 1 each time around until all of the integers from 0 through 9 have been
used. Since J is used as a subscript for specifying which element of VECTOR is
referenced in the assignment statement, the effect of this iterative DO block is to
assign the value 0 to all elements of VECTOR from element 0 through element 9.

The DO WHILE statement contains a condition (like the condition in the IF part of
an IF statement), and causes the executable statements in the block to be executed
repeatedly as long as the condition is "true."

In the following example, a DO WHILE block is used to step through the elements
of an array called TABLE until an element is found that is not greater than the value·
of a scalar variable called LEVEL:

I = 0;
DO WHILE TABLE(I) > LEVEL;

I = 1+1;
END;

Here TABLE is a previously declared array, and LEVEL and I are previously
declared variables. I is first assigned a value of 0, then used as a subscript for
T ABLE. It is incremented after each execution of the DO WHILE block, so each
time the DO WHILE statement is executed, a different element of TABLE is com
pared with LEVEL. When an element is found that is not greater than LEVEL, the
condition in the DO WHILE statement is no longer true. and the block is not

Overview

1-7

Overview

1-8

PL/M-86 User's Guide

repeated again-control passes to the next statement after the END statement. At
this point the value of I is the subscript of the first element of TABLE that was not
greater than LEVEL.

Finally, there is the DO CASE block, introduced by a DO CASE statement, which
uses the value of the given expression to select a statement to be executed. In the
following example, assume that the expression TST - 1 in the DO CASE statement
can have any value from 0 to 3:

DO CASE 1ST - 1;
RED = 0;
BLUE = 0;
GREEN = 0;
GREY = 0;

END;

If the value of the expression is 0, then only the first assignment statement will be
executed, and the value 0 will be assigned to RED. If the value of the expression is 1,
then only the second assignment statement will be executed, and the value 0 will be
assigned to BLUE. Expression values of 2 or 3 will cause GREEN or GREY, respec
tively, to be assigned the value O.

Built-in Procedures and Variables

PL/M-86 provides a large repertoire of built-in procedures and variables. These
procedures provide such functions as shifts and rotations, data type conversions,
and string manipulation. The built-in procedures and variables are described in
Chapter 11.

Expressions

We have already seen simple expressions. A PL/M-86 expression is made up of
operands and operators, and resembles a conventional algebraic expression.

Operands include numeric constants (such as 3.78 or 105) and variables (as well as
other types discussed in Chapters 4 and 5). The operators include + and - for addi
tion and subtraction, * and / for multiplication and division, and MOD for modulo
arithmetic.

As in an algebraic expression, elements of a PL/M-86 expression may be grouped
with parentheses.

An expression is evaluated using unsigned integer arithmetic, signed integer
arithmetic, and/or floating-point arithmetic, depending on the types of operands in
the expression (see Chapters 4 and 5 for details).

Input and Output

PL/M-86 does not provide formatted I/O capabilities like those of FORTRAN,
BASIC, or COBOL. PL/M-86 does provide built-in functions for direct 110 that do
not require operating system run-time support. These I/O functions are INPUT,
INWORD, OUTPUT, and OUTWORD.

INPUT causes the program to read the 8-bit quantity found in one of the 64K input
ports of the iAPX 86. A reference to OUTPUT causes the program to place an 8-bit
quantity into one of the 64K output ports of the iAPX 86.

PL/M-86 User's Guide

INWORD and OUTWORD have the same effects as INPUT and OUTPUT, except
that they handle 16-bit (WORD) quantities instead of 8-bit (BYTE) quantities. (For
more information, see Chapter 11.)

1.6 The Program Development Process

The PL/M-86 compiler and run-time libraries are part of an integrated set of tools
that make up the total iAPX 86 or iAPX 88 development solution for your micro
computer system.

The steps in the software development processes are as follows:

1. Define the problem completely.

2. Outline the proposed solution in terms of hardware plus software. Once this
step is done, you may begin designing your hardware.

3. Design the software for your system. This important step may consist of several
sub-steps, including breaking down the task into modules, choosing the pro
gramming language, and selecting the algorithms to be used.

4. Code your programs and prepare them for translation using a text editor, such
as the CRT-based text editor, CREDIT.

S. Translate your PL/M program code using the PL/M-86 compiler.

6. Using the text editor, correct any compile-time errors; then recompile.

7. Using iAPX 86-based LINK86 (and LOC86 if needed), link the resulting
relocatable object module to the necessary support libraries supplied with
PL/M-86, and locate your object code. The use of LINK86 and LOC86 depends
on your application; for detailed instructions, see the iAPX 86,88 Family
Utilities User's Guide.

1.7 Sample Program

Figure 1-1 shows a sample PL/M-86 program divided into two modules. This pro
gram contains many undefined words and constructs that will be explained in the
coming chapters. It is here only to show what a small PL/M-86 program looks like
separated into two modules for ease of comprehension.

The main program, to be compiled as a module named "M," does little but
define some data and then call the procedure named SORTPROC. This
procedure is defined in the other module, which is to be compiled with the name
SORTMODULE.

SORTMODULE:DO;I*Beginning of module*1
SORTPROC:PROCEDURE(PTR,COUNT,RECSIZE,KEYINDEX)PUBLIC;

DECLARE PTR POINTER,(COUNT,RECSIZE,KEYINDEX)WORD;

I*Parameters:
PTR is pointer to first record
COUNT is number of records to be sorted.

Overview

RECSIZE is number of bytes in each record-maximum is 128.
KEYINDEX is byte position within each record of a BYTE-scalar to
be used as sort key.*1

Figure 1-1. Sample Program

1-9

Overview PL/M-86 User's Guide

DECLARE RECORD BASED PTR(1) BYTE,
CURRENT (128) BYTE,
(I,J)WORD;

SORT: DO J = 1 TO COUNT-1;
CAL L M 0 V B (@ R E COR 0 (J * R E C S I Z E)., @ CUR R E NT, R E C S I Z E) ;
1= J ;
FIND: DO WHILE 1>0 AND

RECORD«I-1)*RECSIZE + KEYINDEX»
CURRENT(KEYINDEX);

CALL MOVB(@RECORD«I-1)*RECSIZE),
@RECORD(I*RECSIZE), RECSIZE)i

I = I -1 ;
END FIND;

CALL MOVB(@CURRENT,@RECORD(I*RECSIZE),RECSIZE);
END SORTi

END SORTPROC;

END SORTMODULE; I*End of Module*1

This module is compiled and can then be kept available for use by any program that is linked to it. The main
program module follows.

M: DO; I*Beginning of module*1

I*Program to sort two sets of records, using SORTPROC*I
SORTPROC: PROCEDURE (PTR,COUNT,RECSIZE, KEYINDEX)EXTERNAL;

DECLARE PTR POINTER,(COUNT,RECSIZE,KEYINDEX)WORDi
END SORTPROCi I*End of usage declaration*1

DECLARE SET1 (50) STRUCTURE(ALPHA WORD,
BETA(12) BYTE,
GAMMA INTEGER,
DELTA REAL,
EPSILON BYTE);

I*Key of Nth record in SET1 is SET1(N).BETA(0), the 3rd byte ion the
record.*1

DECLARE SET2(500)STRUCTURE(ITEMS(21)INTEGER,
KEY BYTE)-;

I*Key of Nth record in SET2 is SET2(N).KEY, the 43rd byte in the record.*1

I*Data is read in to initialize the records.*1

CALL SORTPROC(@SET1,LENGTH(SET1),SIZE(SET1(1»,2)i
CALL SORTPROC(@SET2,LENGTH(SET2),SIZE(SET2(1»,42)i

I*Data is written out from the reco~ds.*1

END Mi I*End of module*1

Figure 1-1. Sample Program (Cont'd.)

1-10

CHAPTER 2
BASIC CONSTITUENTS

OF A PL/M-86 PROG RAM

PL/M-86 programs are written free-form, meaning there is no significance to where
a statement is placed on an input line, and blanks can be freely inserted between the
elements of the program.

2.1 PL/M-86 Character Set

The character set used in PL/M-86 is a subset of the ASCII character set, as follows:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789

along with the special characters

=./O+-'*,<>:;@$-

and the blank or space; plus the tab, carriage-return, and line-feed characters.

The rules in this section apply to everything in a PL/M-86 program except character
string constants, discussed in section 2.4, and comments, discussed in section 2.5.

If a PL/M-86 program contains any character that is not in the set above, the com
piler treats it as an error (or, in some cases, a warning only: see Chapter 18).

Upper- and lower-case letters are not distinguished from each other except in string
constants. For example, xyz and XYZ are interchangeable. In this manual, all
PL/M-86 code is in upper-case letters to help distinguish it from explanatory text.

Blanks are not distinguished from each other except in string constants. The com
piler treats any unbroken sequence of blanks as a single blank.

Special characters and combinations of them have particular meanings in a
PL/M-86 program, as described in the remainder of this manual.

Here is a concise glossary of special characters and combinations:

Table 2-1. PL/M -86 Special Characters

Symbol Name Use

= equal sign Two distinct uses:
(1) assignment operator
(2) relational test operator

- assign embedded assignment operator

@ at-sign location reference operator

dot Three distinct uses:
(1) decimal point
(2) structure member qualification
(3) address operator

/ slash division operator

/* beginning-of-comment delimiter

2-1

Basic Constituents of a PL/M-86 Program PL/M-86 User's Guide

2-2

Table 2-1. PL/M-86 Special Characters (Cont'd.)

Symbol Name Use ., end-of-comment delimiter

(left paren left delimiter of lists, subscripts, and some expressions

) right paren right delimiter of lists, subscripts, and some expressions

+ plus addition operator or unary plus operator
- minus subtraction or unary minus operator
,

apostrophe string delimiter . asterisk multiplication operator, impliCit dimension specifier

< less than relational test operator

> greater than relational test operator

<= less or equal relational test operator

>= greater or equal relational test operator

= equal relational test operator

<> not equal relational test operator

colon label delimiter

, semicolon statement delimiter

, comma list element delimiter

- underscore significant character in identifier

$ dollar sign non-significant character in numbers or identifiers

2.2 Identifiers and Reserved Words

Identifiers are used to name variables, procedures, symbolic constants, and state
ment labels. Identifiers may be up to 31 characters in length. The first character
must be alphabetic, and the remainder may be either alphabetic, numeric, or the
underscore (_).

Embedded dollar signs are totally ignored by the compiler, and may be used freely to
improve the readability of an identifier or constant (although the $ may not be the
first character). An identifier or constant containing a dollar sign is exactly
equivalent to the same identifier with the dollar sign deleted.

Examples of valid identifiers are:

INPUT_COUNT
X
GAMM
LONGIDENTIFIERWITHNUMBER3
LONG$$$IDENTIFIER$$$NUMBER$$$3
INPUT$COUNT
INPUTCOUNT

The long identifiers are identical (to the compiler). The last two examples are inter
changeable, but are different from the first.

Certain reserved words must not be used as identifiers because they are actually part
of the PL/M-86 language. These are listed in Appendix C.

There is also a set of predeclared identifiers naming built-in procedures and
variables. You are permitted to declare these names for your own purposes, but
when you do so the built-in value or procedure becomes inaccessible. Appendix D
lists these identifiers.

PL/M-86 User's Guide Basic Constituents of a PL/M-86 Program

2.3 Tokens, Separators, and the Use of Blanks

Just as an English sentence is made up of words-the smallest meaningful units of
English-so a PL/M-86 statement is made up of tokens. Every token belongs to one
of the following classes:

• Identifiers

• Reserved words
• Simple delimiters (All of the special characters, except the dollar sign, are simple

delimiters.)

• Compound delimiters-these combinations of two special characters:
< > <= >= := 1* *1

• Numeric constants (discussed below)

• Character string constants (discussed below)

For the most part, it is obvious where one token ends and the next one begins. For
example, in the assignment statement:

EXACT=APPROX*<OFFSET-3)/SCALE;

EXACT, APPROX, OFFSET, and SCALE are identifiers, 3 is a numeric constant,
and all the other characters are simple delimiters.

Sometimes a simple or compound delimiter does not occur between two identifiers,
reserved words, or numeric constants, e.g., DECLAREABYTE. In these cases a
blank must be placed between them as a separator. (Instead of a single blank, any
unbroken sequence of blank characters may be used.)

Also, a comment (see section 2.5) may be used as a separator.

Blanks may also be inserted freely around any token, without changing the meaning
of the PL/M-86 statement. Thus the assignment statement:

EXACT = APPROX * < OFFSET - 3) / SCALE;

is equivalent to:

EXACT=APPROX*<OFFSET-3)/SCALE;

2.4 Constants

A constant is a value that does not change during your program's execution. There
are three types of constants, all discussed in this chapter.

Whole-Number Constants

Whole-number constants can be binary, octal, decimal, or hexadecimal. The com
piler recognizes these by a suffix of B, 0 (or Q), D, or H, respectively. Numbers
without a suffix are considered decimal. If a constant contains characters invalid in
the designated number base, it will be flagged as an error.

For example, the maximum whole-number word constant is:

216_1 = 1111$1111$1111$1111 = 177777Q = 65535D = OFFFFH

2-3

Basic Constituents of a PL/M-86 Program PL/M-86 User's Guide

2-4

The first character of a hexadecimal number must be a numeric digit to avoid look
ing like an identifier. For example, the hexadecimal representation for 163 must be
written OA3H rather than A3H, which would be taken as an identifier.

Examples of valid whole-number constants:

12AH 2 33Q 1010B 55D OBF3H 65535 7770 3EACH OF76C05H

Examples of invalid whole-number constants:

12AF

12AD

llA2B

2ADGH

Hexadecimal digits used without an H suffix, hence invalid in the
default decimal interpretation.

Here the final D could be a suffix but the A is not a decimal digit.
If hexadecimal is intended, a final H is needed.

'A' and '2' are not valid binary digits. If hexadecimal is intended,
a final H is necessary.

'G' is not a valid hexadecimal digit.

A whole-number constant can be a BYTE, WORD, DWORD, INTEGER,
POINTER, or SELECTOR value depending on its size and context, as explained in
Chapters 3 and 4. POINTER context means the three restricted cases that allow an
actual numeric address; the maximum value for these is 1048575 (see section 4.4).
INTEGER context means a signed value from -32768 to +32767.

Note that a minus sign in front of a constant is not part of the constant. An
INTEGER value may be n.egative, but the range of whole-number constants is:
non-negative.

Floating-Point Constants

The presence of a decimal point in a decimal constant creates a floating-point con
stant, i.e., a number of type REAL. Only decimal REALs are allowed.

At least one decimal digit (e.g., 0) must precede the decimal point. A fractional part
is optional after the decimal point, as is the base-ten exponent, indicated by the letter
E. This exponent must have at least one digit. Note that no fractional exponents are
possible. The largest REAL constant value is 3.37 X 10+38

, and the smallest REAL is
1.17 x 10-38

•

You should read Chapter 13 before using REAL arithmetic or assignments.

Examples of valid real constants:

5.3
53.0E-l

176.0 1.88
1.760E2 0.188El

3.14159
314159E-5

0.15
1.5E-l

16.
1.6E+l

222.2
2.222E+2

The exponents in the third and sixth examples are the same; plus signs don't change
the meaning.

Examples of invalid REAL constants:

6
1.3AH
10.011B
7.52Q
4.8EIAH/2

No decimal point
Hexadecimal not allowed in REALs,
nor binary,
nor octal
Only decimal constants in exponents-no hexadecimal, no
expressions, no fractions

PL/M-86 User's Guide Basic Constituents of a PL/M-86 Program

Character Strings

Character strings are denoted by printable ASCII characters enclosed within
apostrophes. To include an apostrophe in a string, write it as two apostrophes; e.g.,
the string '''Q' comprises 2 characters, an apostrophe followed by a Q. Spaces are
allowed but line-feeds are not. The compiler represents character strings in memory
as ASCII codes, one 7-bit character code to each 8-bit byte, with a high-order zero
bit. Strings of length 1 translate to single-byte values. Strings of length 2 translate to
double-byte values, and those of length 3 or 4 translate to double-word values. For
example:

'A' is equivalent to 41H
'AG' is equivalent to 4147H
'AGR' is equivalent to 414752H
'AGRX' is equivalent to 41475258H

(See ASCII code table in Appendix F.)

Therefore, character strings can be used only as BYTE, WORD, or DWORD values,
since strings longer than 4 characters would exceed the 32-bit capacity of a DWORD
value. As constants, however, longer character strings are stored as a sequence of
bytes and can be used in a PL/M-86 program (see sections 3.1,3.2,3.3 and 4.4).

The maximum length of a string constant is 255 characters. It can be used only as an
initialization for an array or as part of a location reference pointing to where that
string constant is stored. See references above.

2.5 Comments

Explanatory comments may be interleaved with PL/M-86 program text, to improve
readability and provide program documention. A PL/M-86 comment is a sequence
of characters delimited on the left by the character pair 1* and on the right by the
character pair * I. These delimiters instruct the compiler to ignore any text between
them, and not to consider such text part of the program proper.

A comment may contain any printable ASCII character and may also include space,
carriage-return, line-feed, and tab characters.

A comment may not be embedded inside a character string constant, i.e., it will
become part of the string and the compiler won't recognize it. Apart from this, it
may appear anywhere that a blank character may appear-that is, anywhere except
embedded within a token. Thus comments may be freely distributed throughout a
PL/M-86 program. .

Here is a sample PL/M-86 comment:

/*This procedure copies one structure to another. * I

In this manual, comments are presented in upper and lower case, to help distinguish
them visually from program code, which is always presented in upper case.

2-5

CHAPTER 3
DATA DECLARATIONS

There are four types of objects that can be declared to have symbolic names:
variables, constants, labels, and procedures. There must be exactly one declaration
available for each name used in a block, no more, no less. This declaration may
appear at the beginning of the block, or in an outer block. Multiple declarations of
the same name in the same block are invalid.

Only after being declared and defined can names for the four elements above be
used in executable statements. For variables, constants, and labels, such usage is in
essence an operational definition. For a procedure, the set of statements between its
declaration and its end statement constitutes its definition, in fact, its full
declaration.

In addition to the item's name, a declaration tells its type, attributes, and/or loca
tion. These terms will be clarified in the course of this chapter.

Table 3-1 shows the general appearance of declarations, e.g., what elements are
required or optional.

Table 3-1. Declaration Elements

Declaration
Statements Must Use Can Use

For

Variable type: linkage attributes:
Names BYTE, WORD, DWORD, PUBLIC or EXTERNAL

INTEGER, POINTER,
SELECTOR, REAL, or
STRUCTURE

location attributes:
AT (location reference)

variable initialization attribute:
INITIAL (value-list)

Execution type, as above, and
Constant constant initialization
Names attribute: OAT A (value-list)

Label Names LABEL linkage attributes as above

Compilation LITERALLY 'string'
Constant
Names

3.1 Variable Declaration Statements

Simple DECLARE statements have appeared in Chapter 1. A DECLARE statement
is a non-executable statement that introduces some object or collection of objects,
associates names (and sometimes values) with them and allocates storage if
necessary. The most important use of DECLARE is for declaring variables.

3-1

Data Declarations PL/M-86 User's Guide

3-2

A variable may be a scalar-that is, a single quantity-or an array, or astructure.

A scalar variable is a single object whose value is not necessarily known at compile
time and may change during the execution of the program. You therefore refer to it
by declaring a name to be used in the program: an identifier.

The term "variable" has a more general meaning: a variable may be a scalar
variable, or it may be a list of scalars referred to by a single identifier.

An array is such a list of scalars all named by the same identifier, differentiated from
each other by the use of subscripts, e.g., A(O), A(l), A(l23), etc.

A structure is a list of scalars and/or arrays which all use the same main identifier
and can be differentiated from each other by their own member-identifiers (field
names). For example, EMPLOYEES. NAME could refer to the NAME field within
the structure EMPLOYEES.

Such variables ("arrays" and "structures") are discussed in greater detail in
Chapter 6.

Examples of each of these categories appear below, after a brief introduction to the
meaning of types.

Types

A scalar always has a type: BYTE, WORD, DWORD, INTEGER, REAL,
POINTER, or SELECTOR.

• A BYTE scalar is an 8-bit quantity occupying one byte of memory (two bytes
when passed as a parameter on the stack, discussed in Appendix I). The value of
a BYTE scalar is an unsigned whole number that ranges from 0 to 255.

• A WORD scalar is a 16-bit quantity occupying two contiguous bytes of
memory, with the least significant 8 bits stored in the first byte (lower address).
The value of a WORD scalar is an unsigned whole number that ranges from 0 to
65535.

• A DWORD scalar is a 32-bit quantity occupying two contiguous words of
memory, with the least significant 16 bits stored in the first word (lower
address). The value of a DWORD scalar is an unsigned whole number that
ranges from 0 to 4,294,967,295.

• An INTEGER scalar is a 16-bit quantity occupying two contiguous bytes of
memory, with the least significant 8 bits stored in the first byte (lower address).
The value of an INTEGER scalar is a signed whole number that ranges from
-32768 to +32767.

• A REAL scalar is a 32-bit quantity occupying two contiguous words of
memory, with the least sigificant 16 bits stored in the first word (lower address).
The value of a REAL scalar is a signed floating-point number whose specific
features are discussed fully in Chapter 13.

• A POINTER scalar is a location address in the iAPX 86 memory that is made
up of a base portion and an offset portion. POINTER scalars are usually four
byte quantities, but may be two bytes depending on the program size control
specified for compilation. (This is discussed further in Chapter 17 and Appendix
H.) In the four-byte representation, the offset portion occupies the first word
(lower address). The two-byte representation is offset only.

• A SELECTOR scalar is a 16-bit quantity that is equivalent to the base portion
of a POINTER. The value of a SELECTOR scalar is an unsigned whole number
that ranges from 0 to 65535 and represents a paragraph number on the
iAPX 86.

PL/M-86 User's Guide Data Declarations

The concept of data types applies not only to variables but to every value processed
by a PL/M-86 program. This includes values returned by procedures and values
calculated by processing expressions.

Arithmetic and other expressions using the different types are discussed in detail in
Chapter 5.

Examples
The following statements declare scalars:

DECLARE APPROX REAL;
DECLARE (OLD, NEW) BYTE;
DECLARE POINT WORD, VAL12 BYTE;

The first example above declares a single scalar variable of type REAL, with the
identifier (name) APPROX.

The second example declares two scalars, OLD and NEW, both of type BYTE. This
kind of statement is called a "factored declaration." It is equivalent to the sequence:

DECLARE OLD BYTE;
DECLARE NEW BYTE;

except that the factored declaration guarantees the bytes will be contiguous.
Separated declaration statements do not.

The third declares two scalars of different types: POINT is of type WORD, and
VALI2 is of type BYTE.

The following statements declare arrays:

DECLARE DOMAIN (128) BYTE;
DECLARE GAMMA (19) DWORD;

The first statement declares the array DOMAIN, with 128 scalar elements, each of
type BYTE. These elements are distinguishable by subscripting the name DOMAIN,
using the range 0 to 127 for the subscripts. For example, the third element of
DOMAIN can be referred to as DOMAIN(2). The first element of every array has
subscript O.

The second statement declares the array GAMMA, with 19 scalar elements of type
DWORD. The subscripts for this array can range from 0 to 18.

The next statement declares a structure with two scalar-members:

DECLARE RECORD STRUCTURE (KEY BYTE, INFO WORD);

The two members are a BYTE scalar that can be referred to as RECORD.KEY and a
WORD scalar that can be referred to as RECORD.INFO. The word named by
RECORD.INFO is the second and third bytes of this structure.

Further discussion of structures appears in sections 4.4,4.8, and Chapter 6.

Results

The two results of a valid variable declaration are:

I. The name is given a unique address.

2. It is considered to have the attributes declared.

3-3

Data Declarations PL/M-86 User's Guide

3-4

This means all subsequent uses of the variable in this block will refer to the same
address (except for based variables, discussed in section 4.6).

It also requires all references to the variable to conform to the rules for the current
attributes, i.e., those having priority in the current block. This allows the compiler
to flag a large variety of errors of inconsistency, Le., incompatibility of declarations
with later usage (at this level of the block).

3.2 Initializations
Initialization is necessary for every constant and variable name that is used (read)
before it is filled (written) during execution, since there are no default initial values.
Either kind of name can, of course, be initialized by an assignment statement such
as:

PI = 3.1415927; I*PI must first be declared REAL.*I
VAR13 = 10; I*VAR13 must be declared earlier, not real.*1

However, the PL/M-86 language provides a means for having the compiler set up
these values during the compilation rather than using both instruction space and exe
cution time in your program to do so.

There are two kinds of compile-time initilizations: INITIAL, used with variables,
and DATA, used for constants. (DATA is explained in greater detail later in this sec
tion.) In each case the initialization attribute is placed after the type in the declara
tion, for example:

DECLARE FAMILY WORD INITIAL (2);

INITIAL causes initialization to occur during program loading, for variables that
have storage allocated for them. Such variables can subsequently be changed during
execution, like any other variable. (They will not be reinitialized on a program
restart.)

The following rules apply to both INITIAL and DATA:

• INITIAL and DATA may not be used together in the same declaration.

• INITIAL may only appear in declarations at the outer level of a module.
DATA, however, may appear in declarations at any level.

• No initializations are permitted with based variables (discussed in section 4.6) or
with the EXTERNAL attribute (discussed in section 9.2).

• Either initialization may follow use of the AT attribute discussed in section 4.8,
but if this causes multiple initializations, the result cannot be predicted.

The general form of the INITIAL attribute is:

I NIT I A L (value-list)

where value-list is a sequence of values separated by commas.

Values are taken one at a time from the value list and used to initialize the individual
scalars being declared. The initialization is performed in the same manrier as an
assignment. Initial values for members of an array or structure must be specified
explicitly. (See also section 11.5 for built-in procedures you can use to initialize
BYTE and WORD strings at run-time.)

Each value may be a string of up to four characters (e.g., 'A', 'NO') or a restricted
expression as explained below. (Byte arrays can accommodate longer strings since
each element can represent one character.)

PL/M-86 User's Guide Data Declarations

A restricted expression is one of the following three possibilities:

• For REAL variables only: a single floating-point constant, with no operator of
any kind, to be used only to initialize a REAL scalar.

• For POINTER variables only: a location reference formed with the @ operator,
which must refer to a variable that has already been declared. (Location
references are discussed in Chapter 4.)

• For all other types: a constant expression containing no operators except + or -.
A constant expression has only whole number constants as operands, e.g.,
2048-256+5, as explained in Chapter 5. It is evaluated as if being assigned to
the scalar being initialized, using the rules of that chapter.

NOTE

For compatibility with programs written in PL/M-80, PL/M-86
allows the restricted expression to be an expression containing
a location reference formed with the "dot" operator. See
Appendix E.

The declaration:

DECLARE THRESHOLD BYTE INITIAL (48);

declares the BYTE scalar THRESHOLD in the usual way, and also initializes it to a
value of 48.

The declaration:

DECLARE (COUNTER, LIMIT, INCR) INTEGER INITIAL (1024,0,-2);

declares the INTEGER scalars COUNTER, LIMIT, and INCR, and initializes
COUNTER to a value of 1024, LIMIT to a value of 0, and INCR to a value of -2.

The declaration:

DECLARE EVEN (5) BYTE INITIAL (2,4,6,8,10);

declares the BYTE array EVEN and initializes its five scalar elements to 2, 4, 6, 8,
and 10, respectively.

The declaration:

DECLARE COORD STRUCTURE (HIGH$BOUND WORD,
VALUE (3) BYTE,
LOW$BOUND BYTE) INITIAL (302,3,6,12,0);

declares the structure COORD and initializes it as follows:

COORD.HIGH$BOUND to 302
COORD. V ALUE(O) to 3
COORD.VALUE(l) to 6
COORD. V ALUE(2) to 12
COORD.LOW$BOUND to O.

If a string appears in the value list, it is taken apart from left to right and the pieces
are stored in the scalars being initialized. One character is stored in each BYTE
scalar, and two in each WORD scalar, and four in each DWORD scalar. For
example:

DECLARE GREETING (5) BYTE AT (1600) INITIAL ('HELLO');

3-5

Data Declarations PL/M-86 User's Guide

3-6

causes GREETING(O) to be initialized with the ASCII code for H, GREETING(l)
with the ASCII code for E, and so forth.

So far, all the examples have shown value lists that match up one-for-one with the
scalars being declared. It is permissible for the value list to have fewer elements than
are being declared. Thus:

DECLARE DATUM (100) BYTE INITIAL (3,5,7,8);

is permissible. The first four elements of the array DATUM are initialized with the
four elements in the value list, and the remainder of the array is left un initialized .
However, the value list may not have more elements than are being declared.

The Implicit Dimension Specifier

Often, when you initialize an array, you want the array to have the same number of
elements as the value list. This can be done conveniently by using the implicit dimen
sion specifier in place of an ordinary dimension specifier (a parenthesized constant)
and has the form

(*)

This may also be used to define an external array whose precise number of elements
is either unknown or insignificant. Thus the declaration:

DECLARE FAREWELL (*) BYTE PUBLIC INITIAL ('GOODBYE, NOW');

declares a public BYTE array, FAREWELL, with enough elements to contain the
string 'GOODBYE, NOW' (namely 12), and initializes the array elements with the
characters of the string. To reference this array in another program module, you can
declare it as follows:

DECLARE FAREWELL (*) BYTE EXTERNAL;

(Se€ Chapter 9 for more information about PUBLIC and EXTERNAL attributes.)
Note that the INITIAL and DATA lists must not be present when the implicit
dimension specifier is used with an external array; otherwise, these lists are required.
Also, the LENGTH, LAST, and SIZE built-ins (see section 11.1) may not be used
on an external array that was declared with the implicit dimension specifier.

The implicit dimension specifier may not be used in the following cases:

• After the parenthesized list of identifiers in a factored declaration

• To specify an array whose elements are structures

• To specify an array that is a member of a structure

The implicit dimension specifier may be used with any value list-it is not restricted
to strings.

Names f<:lr Execution Constants: The Use of DATA

As discussed above, a variable is the name of a single data item intended to be used
and altered by your program. If it isn't altered during execution, it's a constant.

For example, the formula for circumference of a circle as the product of radius and
two pi could be written in PL/M-86 as:

C = R * 2.0 * 3.14159;

PL/M-86 User's Guide Data Declarations

in which C and R would be variables. Their declarations would of course have to
precede the above executable statement, and could appear as:

DECLARE (C,R) REALi

If pi were used often enough, you might wish to simplify the writing of statements
using it by declaring a symbolic name with that value:

DECLARE PI REAL DATA (3.1415927);

An array of constants would require a list of values, for example:

DECLARE FIBONACCI(9) BYTE DATA (0,1,1,2,3,5,8,13,21);

The form and use of the OAT A initialization is identical to that of INITIAL except
for these four facts:

• DATA .causes storage to be allocated in the program's constant data segment.
The content and meaning of the name cannot be changed during execution. The
name should never appear on the left-hand side of an assignment statement.
(This is not the case with INITIAL.)

• Data initializations can be used in declarations at any block level in the
program. (INITIAL can only appear at the module level, that is, inside the
DO-block which is the module itself, but outside any sub-blocks that the module
may contain.)

• If the keyword DATA is used in a PUBLIC declaration when compiling with the
ROM option (see section 15.4), DATA must also be used in the EXTERNAL
declaration of program modules that reference it. However, no value list is then
permitted, since the data is defined elsewhere. (INITIAL cannot be combined
with EXTERNAL.)

• Use of the AT attribute, as explained in Chapter 4. This forces a name to be
associated with a specific memory location, which can defeat the purpose of the
DATA initialization (not so with INITIAL unless you explicitly redefine your
own variables and location using multiple AT's).

3.3 Compilation Constants (Text Substitution):
The Use of LITERALLY

If your program were large enough to have many declarations, you might choose to
declare a compilation constant to save time at the keyboard:

DECLARE DC LITERALLY 'DECLARE';

Thereafter, during compilation, every time DC appears alone (not as part of a
word), the full string DECLARE will be substituted by the compiler. Subsequent
declarations can thus be written:

DC AREA REAL;
DC SIZE WORD;

A declaration using the reserved word LITERALLY defines a parameterless
"macro" for expansion at compile-time. You declare an identifier to represent a
character string, which will then be substituted for each occurrence of the identifier
in subsequent text. This expansion will not take place in strings or constants. The
form of the declaration is:

DEC LA R E identifier LIT ERA L L Y 'string I ;

3-7

Data Declarations PL/M-86 User's Guide

3-8

where identifier is any valid PL/M-86 identifier, and string is a sequence of
arbitrary characters from the PL/M-86 set, not exceeding 255 in length. The follow
ing example illustrates another use of this facility:

DECLARE TRUE LITERALLY 'OFFH', FALSE LITERALLY '0';

DECLARE ROUGH BYTE;
DECLARE (X,Y,DELTA, FINAL) REAL;

ROUGH = TRUE;
DO WHILE ROUGH;

END;

X = SMOOTH (X,Y,DELTA);
I*SMOOTH is a procedure declared elsewhere.*1
IF (X-FINAL) < DELTA THEN ROUGH = FALSE;

This example of a LITERALLY declaration defines the boolean values TRUE and
FALSE in a manner consistent with the way PL/M-86 handles relational operators
(see section 5.3). This kind of literal substitution for fixed values often makes a pro
gram more readable.

Another use of LITERALLY declaration is the declaration of quantities that are
fixed for one compilation, but may change from one compilation to the next. Con
sider the example below:

DECLARE BUFFERSSIZE LITERALLY '32';
DECLARE PRINTSBUFFER(.BUFFER$SIZE) WORD;

PRINTSBUFFER(BUFFERSSIZE - 10) = 'G';

A future change to BUFFER$SIZE can be made in one place, at the first declara
tion, and the compiler will propagate it throughout the program during compilation.
Thus the programmer is saved the tedious and error-prone process of searching the
program for the occurrences of "32" that are buffersize references and not some
other 32's.

3.4 Declarations of Names for Labels

A label marks the location of an instruction as opposed to a data item. Labels are
permitted only on executable statements, not on declarations.

There are two ways of declaring a name to be a label. The explicit kind of label
declaration is used mainly to allow for module-to-module references, which are
discussed in detail in Chapter 9. The three possible forms for explicit label declara
tions look like this:

DECLARE PART3 LABEL;
DECLARE START1 LABEL PUBLIC; I*for intermoduLe reference *1
DECLARE PHASE2 LABEL EXTERNAL; I*for intermoduLe reference *1

The rules for the latter two are discussed in Chapter 9.

The more common kind of label declaration is termed implicit and is even simpler:
the name is placed at the very beginning of the executable statement it is supposed to
point to, for example:

START2: ALPHA = 127;

PL/M-86 User's Guide Data Declarations

This statement defines the label ST ART2 as pointing to the location of the PL/M-86
instruction shown. If this block has no explicit declaration of START2, i.e., no
statement like:

DECLARE START2 LABEL;

then the compiler takes the definition above as an implicit declaration as well as a
definition. It is as if the declaration had occurred at the start of the last simple DO or
procedure statement. (If there is an explicit declaration, then the actual placement of
the label remains simply a definition.)

Labels are used to indicate significant instructions or the starting point of instruc
tion sequences. They can be useful reference points for understanding the parts of a
program, or as targets for the transfer of control during execution (as discussed
under GOTO and CALL in Chapters 9 and 10).

Results

The results of a valid label declaration are:

I. The declared name can be used to point to an executable instruction.

2. The use of that name as a variable in this block is disallowed.

3. If the label is also defined in this block, by appearing on an executable
statement, then the address of that statement is assigned as the value of the
label.

3.5 Combining DECLARE Statements

A separate DECLARE statement is not required for each and every declaration.
Instead of writing the two DECLARE statements:

DECLARE CHR BYTE INITIAL ('A');
DECLARE COUNT INTEGER;

we may write both declarations in a single DECLARE statement, as follows:

DECLARE CHR BYTE INITIAL ('A'), COUNT INTEGER;

This DECLARE statement contains two "declaration elements," separated by the
comma. Every DECLARE statement contains at least one declaration element. If it
contains more than one, they are separated by commas.

Previously, most examples have shown only one declaration element in each
DECLARE statement. A declaration element is the text for declaring one identifier
(or one factored list of identifiers). In the example above, the text CHR BYTE
INITIAL ('A') is one declaration element, and the text COUNT INTEGER is
another.

Another way of combining declaration elements is called a factored declaration. For
example:

DECLARE A BYTE, B BYTE;
DECLARE C WORD, D WORD;
DECLARE EDWaRD, F DWORD;

can be combined as:'

DECLARE (A,B)BYTE,(C,D) WORD, (E,Fi DWORD;

3-9

Data Declarations PL/M-86 User's Guide

3-10

[n each factored declaration, the allocated locations will be contiguous. Elements
declared in a non-factored declaration statement may not be.

Subscripted variables are not allowed in factored declarations.

The declaration elements appearing in a single DECLARE statement are completely
independent of each other, as if they were declared in separate DECLARE
statements.

3.6 Declarations for Procedures

As illustrated earlier, the declaration of a procedure begins by giving its name, with
a statement of the form:

name: PRO CEO U R E

followed optionally by parameters, type, and/or attributes. The definition of the
procedure then follows, i.e., the set of statements declaring items used in the pro
cedure (including any parameters) and the executable statements of the procedure
itself. The definition ends with an END statement, optionally including the pro
cedure name from the declaration.

The complete declaration of a procedure includes all the statements from the
PROCEDURE statements through the END statement. This whole definition/
declaration must appear before the procedure name is used in an executable state
ment, just as variable and constant names must be declared before their use.

The only exceptions arise when the full definition appears in another module where
it is declared PUBLIC or when a procedure has been declared REENTRANT. In the
first case, if a separate module intends to make use of that public definition, the
using module is required to:

1. Declare the procedure as having the attribute EXTERNAL (so LINK86 will
search for it.

2. Declare each formal parameter the procedure uses, so the compiler can verify
correct usage when this module invokes the procedure.

3. End this local declaration with an END statement.

Example

SUMMER: PROCEDURE (A,B) EXTERNAL;
DECLARE A WORD, B BYTE;

END SUMMER;

The full details for intermodule references appear in Chapter 9, and the discussion
of procedure definition and usage appears in Chapter 10.

CHAPTER 4
DATA TYPES AND BASED VARIABLES-

PL/M-86 performs calculations using three different kinds of arithmetic: unsigned,
signed, or floating-point, depending on the data types involved.

4.1 BYTE, WORD, and DWORD Variables:
Unsigned Arithmetic

The value of a BYTE variable is an 8-bit binary number ranging from 0 to 255 and
occupying one byte of iAPX 86 memory. The value of a WORD variable is a 16-bit
binary number ranging from 0 to 65535 and occupying two contiguous bytes of
iAPX 86 memory. The value of a DWORD variable is a 32-bit binary number rang
ing from 0 to 4,294,967,295 and occupying two contiguous words of iAPX 86
memory. Values of DWORD, WORD, and BYTE variables are treated as unsigned
binary integers.

NOTE

Support for DWORD is located in the PLM86.LIB (see Chapter 14). You
must link to this library if you use the DWORD data type in *, I, or MOD
operations.

Unsigned integer arithmetic is used in performing any arithmetic operation upon
DWORD, WORD, and BYTE variables. All of the PL/M-86 operators may be used
with them (see Chapter 5). Arithmetic and logical operations on such variables yield
a result of type BYTE, WORD, or DWORD, depending on the operation and the
operands. Relational operations always yield a "true" or "false" result of type
BYTE.

With unsigned arithmetic, if a large value is subtracted from a smaller one, the result
is the two's complement of the absolute difference between the two values. For
example, if a BYTE value of 1 (00000001 binary) is subtracted from a BYTE value
of 0 (00000000 binary), the result is a BYTE value of 255 (11111111 binary).

Also, the result of a division operation is always truncated (rounded down) to a
whole number. For example, if a WORD value of 7 (0000000000000111 binary) is
divided by a BYTE value of 2 (00000010 binary), the result is a word value of 3
(0000000000000011 binary).

When declaring a variable that may be used to hold or produce a negative result, it is
advisable to make it either INT.EGER or REAL. If it is supposed to hold or produce
a non-integer, it must be REAL. This will avoid unexpected incorrect results from
arithmetic operations (see Chapters 5 and 13).

4.2 INTEGER Variables: Signed Arithmetic

INTEGER variables represent signed integers ranging from -32768 to 32767. Inter
nally, an INTEGER value is represented in two's-complement notation.

Arithmetic operations on INTEGER variables use signed integer arithmetic to yield
an INTEGER result. Thus addition and subtraction always produce mathematically
correct results if overflow does not occur. (See also the OVERFLOW control in sec
tion 15.4.) Relational operations are signed arithmetic comparisons to yield a
"true" or "false" result of type BYTE.

4-1

Data Types and Based Variables PL/M-86 User's Guide

4-2

However, as with BYTE, WORD, and DWORD operands, division produces only
an integer result. The result is rounded toward zero, i.e., down if it is positive, up if
it is negative.

Only the arithmetic and relational operators may be used with INTEGER operands.
Logical operators are not allowed. See Chapter 5.

4.3 REAL Variables: Floating-Point Arithmetic

The value of a REAL variable is a signed floating-point number whose size
limits and other properties are discussed in Chapter 13. A REAL value may be
any floating-point number (within the limits of precision allowed by the
implementation) .

Operations on REAL operands use signed floating-point arithmetic to yield a result
of type REAL. The implementation guarantees that the result of each operation is
the closest possible floating-point number to the exact mathematical real-number
result (if overflow or underflow does not occur). The relational operators and the
arithmetic operators +, -, *, and / may be used with REAL operands-the MOD
operator and the logical operators are not allowed. Arithmetic operations yield a
result of type REAL, and relational operations yield a "true" or "false" result of
type BYTE. Further discussion appears in Chapters 5 and 13; the latter also
describes the binary representations of REAL values and error handling in floating
point arithmetic.

4.4 POINTER Variables and Location References

The value of a POINTER variable is the address of an iAPX 86 storage location and
is made up of a base portion and an offset portion. Among other uses, POINTER
variables are important as bases for based variables (see section 4.6).

Only the relational operators may be used with POINTER operands, yielding a
"true" or "false" result of type BYTE. No arithmetic or logical operations are
allowed. See Chapter 5, and the OPTIMIZE(3) discussion in section 15.4.

There are only a few ways to create or change the value of a POINTER variable,
that is, the address that the variable point-s to:

1. The variable can be initialized when declared, using INITIAL or DATA with a
whole-number constant as described in section 3.2.

2. It can be assigned a whole-number constant as described in section 5.6.

3. It can be initialized to or assigned an address created via the @ operator
described below. This is the safest and most used method.

4. It can be assigned a value generated by the BUILD$PTR function described in
section 11.8.

5. It can be assigned the value of a POINTER variable or function.

A POINTER variable may be placed at a specific address using the AT clause
. described in section 4.8. The address may be a whole-number constant or a location

reference formed via the @ operator and a variable name. .

PL/M-86 User's Guide Data Types and Based Variables

The @ Operator

A "location reference" is formed by using the @ operator. A location reference has
a value of type POINTER-that is, a location address. An important use of location
references is to supply values for POINTER variables.

The basic form of a location reference is:

m variable-ref

where variable-ref is the name of some variable. The value of this location reference
is the actual location at run time of the variable.

Variable-ref may also refer to an unqualified array or structure name. The pointer
value is the location of the first element or member of the array or structure.

For example, suppose that we have the following declarations:

DECLARE RESULT REAL;
DECLARE XNUM(100) BYTE;
DECLARE RECORD STRUCTURE (KEY BYTE,

INFO(25) BYTE,
HEAD POINTER);

DECLARE LIST (128) STRUCTURE (KEY BYTE,
INFO (25) BYTE,
HEAD POINTER);

The @RESULT is the location of the REAL scalar RESULT, while @XNUM{S) is
the location of the 6th element of the array XNUM. @XNUM is the location of the
beginning of the array, that is, the location of the first element (element.O).

The RECORD structure declares a byte called KEY followed by 25 bytes called
INFO{O), INFO(1), etc. After these comes the POINTER variable named HEAD.
Since these are all declared part of the RECORD structure, their contents must be
referred to as RECORD. KEY, RECORD.INFO(0), ... ,RECORD.lNFO{24), and
RECORD.HEAD.

Their addresses can be referred to using the @ operator. @RECORD.HEAD is the
location of the POINTER scalar RECORD.HEAD, while @RECORD is the loca
tion of the structure, which is the same as that of the BYTE scalar RECORD.KEY.
@RECORD.INFO is the location of the first element of the 2S-BYTE array
RECORD.INFO, whereas @RECORD.lNFO(7) is the location of the 8th element
of the same array.

LIST is an array of structures. The location reference @LIST(S).KEY is the location
of the scalar LIST(S).KEY. Note that @LIST.KEY is illegal, since it does not iden
tify a unique location, i.e., the KEY of which LIST.

The location reference @ LIST(O).INFO(6) is the location of the scalar
LIST(O).INFO(6). Also, @LIST(O).INFO is the location of the first element of the
same array, i.e., the location of the array itself.

A special case exists when the identifier used as "variable-ref" is the name of a pro
cedure. The procedure must be declared at the outer level of the program module.
No actual parameters may be given (even if the procedure declaration includes for
mal parameters). The value of the location reference in this case is the location of the
entry point of the procedure. (Further discussion appears in Chapter 10, and Appen
dixes H and I.

4-3

Data Types and Based Variables PL/M-86 User's Guide

4-4

Storing Strings and Constants via Location References

Another form of location reference is:

@(constant list)

where constant list is a sequence of one or more constants separated by commas,
arid enclosed in parentheses. When this type of location reference is made, space is
allocated for the constants, the constants are stored in this space (contiguously, in
the order given by the list), and the value of the location reference is the location of
the first constant.

Strings may be included in the list. For example, if the operand:

@('NEXT VALUE')

appears in an expression, it causes the string 'NEXT VALUE' to be stored in
memory (one character per byte, thus occupying 10 contiguous bytes of storage).
The value of the operand is the location of the first of these bytes-in other words, a
pointer to the string.

The "DOT" Operator

For compatibility with PL/M-80 programs, a "dot" operator is provided. The dot
operator (.) is similar to the @ operator, but produces an address of type WORD
that represents an offset to the current data segment (for variables) or the current
code segment (for procedures). This address should be used with caution, since it
will not always produce correct results in a PL/M-86 program that contains more
than one data segment or more than one code segment. See section 4.6 for indirect
variable references and section 10.2 for indirect procedure calling. See also
Appendix E.

4.5 SELECTOR Variables

The value of a SELECTOR variable is an iAPX 86 paragraph number and, as such,
is the complete address of an iAPX 86 storage location. It is equivalent to the base
portion of a PO INTER and may also be used as the base of a based variable (see sec
tion 4.6).

Only the relational operators may be used with SELECTOR operands, yielding a
"true" or "false" result of type BYTE. No arithmetic or logical operations are
allowed (see Chapter 5).

There are only three ways to create or change the value of a SELECTOR variable:

1. The variable can be initialized when declared, using INITIAL or DATA with a
whole-number constant as described in section 3.2.

2. It can be assigned a whole-number constant as described in section 5.6.

3. It can be assigned a SELECTOR variable or function, or the built-in function
SELECTOR$OF (see section 11.8).

The results of the @ and dot operators may not be assigned to SELECTOR
variables directly. They must first be converted to SELECTOR type with the built-in
function SELECTOR$OF (see section 11.8).

PL/M-86 User's Guide Data Types and Based Variables

4.6 Based Variables

Sometimes a direct reference to a PL/M-86 data element is either impossible or
inconvenient. This happens, for example, when the location of a data element must
remain unknown until it is computed at run-time. In such cases it may be necessary
to write PL/M-86 code to manipulate the locations of data elements. Since the loca
tions "point to" the data, you can later access the data elements themselves.

To permit this type of manipulation, PL/M-86 uses "based variables." A based
variable is one that is pointed to by another variable, called its "base." This means
the base contains the address of the desired (based) variable. We saw its declaration
charted at the end of Chapter 3.

A based variable is not allocated storage by the compiler. At different times during
the program run it may actually refer to different places in memory, since its base
may be changed by the program.

A based variable is declared by first declaring its base, which must be of type
POINTER, SELECTOR, or WORD, and then declaring the based variable itself:

DEC.LARE ITEM$PTR POINTER;
DECLARE ITEM BASED ITEM$PTR BYTE;

Given these declarations, a reference to ITEM is, in effect, a reference to whatever
BYTE value is pointed to by the current value of ITEM$PTR. This means that the
sequence:

ITEM$PTR = 34AH;
ITEM = 77H;

will load the BYTE value 77 (hex) into the memory location 34A (hex).

A variable is made BASED by inserting in its declaration the word BASED and the
identifier of the base (which must already have been declared).

The following restrictions apply to bases:

• The base must be of type POINTER, SELECTOR, or WORD. However, use a
base of type WORD with caution, since it does not contain a full iAPX 86
address. WORD-based variables are addressed relative to the current DS
register (see Chapter 17).

• The base may not be subscripted-that is, it may not be an array element.

• The base may not itself be a based variable.

The word BASED must immediately follow the name of the based variable in its
declaration, as in the following examples:

DECLARE(AGE$PTR, INCOME$PTR, RATING$PTR, CATEGORY$PTR) POINTER;
DECLARE AGE BASED AGE$PTR BYTE;
DECLARE (INCOME BASED INCOME$PTR, RATING BASED RATING$PTR) WORD;
DECLARE (CATEGORY BASED CATEGORY$PTR)(100) WORD;

In the first DECLARE statement, the POINTER variables AGE$PTR,
INCOME$PTR, RATING$PTR, and CATEGORY$PTR are declared. They are
used as bases in the next three DECLARE statements.

In the second DECLARE statement, a BYTE variable called AGE is declared. The
declaration implies that whenever AGE is referenced by the running program, its
value will be found at the location given by the value of the POINTER variable
AGE$PTR at the same time.

4-5

Data Types and Based Variables PL/M-86 User's Guide

4-6

The third DECLARE statement declares two based variables, both of type WORD.

The fourth DECLARE statement defines a loo-element WORD array called
CATEGORY, based at CATEGORY$PTR. This means that when any element of
CATEGORY is referenced at run time, the value of CATEGORY$YPTR at that
same time is the location of the array CATEGORY, i.e., its first element.

The other elements follow contiguously. The parentheses around the tokens
CATEGORY BASED CATEGORY$PTR are optional. They help to make the
statement more readable, but may be omitted.

Location References and Based Variables

An important use of location references is to supply values for bases. Thus the @
operator, together with the based variable concept, gives PL/M-86 a very powerful
facility for manipulating pointers.

For example, suppose that we have three different REAL variables:
NORTH$ERROR, EAST$ERROR, and HEIGHT$ERROR. We want to be able to
refer to them at different times by means of the single identifier ERROR. This can
be done as follows:

DECLARE (NORTHSERROR, EAST$ERROR, HEIGHT$ERROR) REAL;
DECLARE ERROR$PTR POINTER;
DECLARE ERROR BASED ERRORSPTR REAL;

ERRORSPTR = @NORTHSERROR;

At this point, the value of ERROR$PTR is the location of NORTH$ERROR. A
reference to ERROR will be, in effect, a reference to NORTH$ERROR. Later in the
program, we can write:

ERRORSPTR = @HEIGHTSERRORi

Nowa reference to ERROR will be, in effect, a reference to HEIGHT$ERROR. In
the same way, we can cause the value of the pointer to be the location of
EAST$ERROR, and a reference to ERROR will be a reference to EAST$ERROR.

This kind of technique is useful for manipulating complicated data structures
and for passing locations to procedures as parameters. Examples are given in
Chapter 10.

4.7 Contiguity of Storage
PL/M-86 only guarantees that variables will be stored in contiguous memory loca
tions in certain situations:

• The elements of an array are stored contiguously, with the Oth element in the
lowest location and the last element in the highest location. (No storage is
allocated for a based array, but the elements are considered to be contiguous in
memory.) .

• The members of a structure are stored contiguously, in the order in which they
are specified. (No storage is allocated for a based structure, but the members are
considered to be contiguous in memory.)

• Non-based variables declared in a "factored" declaration-that is, variables
within a parenthesized list-are stored contiguously, in the order specified. (If a
based variable occurs in a parenthesized list, it is ignored in allocating storage.)

These are the only guarantees.

PL/M-86 User's Guide Data Types and Based Variables

4.8 The AT Attribute

The AT attribute has the form:

A T (location)

where location may be either a location reference formed with the @ operator, or a
single whole-number constant in the range 0 to 1048575.

If it is a location reference, it must refer to a non-based variable that has already
been declared. If there is a subscript expression, it must be a constant expression
containing no operators except + and -.

If the location is a whole number constant, it represents an absolute iAPX 86 storage
location.

The following are examples of valid AT attributes:

AT (4096)
AT (@BUFFER)
AT (@BUFFER(128»
AT (@NAMES(INDEX + 1 »

In the last example, INDEX represents a whole-number constant that has been
previously declared with a "LITERALLY" declaration. The compiler replaces this
name with the declared whole-number constant, thus satisfying the restrictions given
above.

NOTE

For compatibility with programs written in PL/M-80, PL/M-86 allows the
location in an AT attribute to be an expression containing a location
reference formed with the "dot" operator. See Appendix E.

The effect of an AT attribute is to cause the addess of a variable to be the location
specified by the location. The first scalar in the declaration will refer to the location.
Other scalars in the same declaration will, in sequence, refer to successive locations
thereafter.

For example, the declaration:

DECLARE (CHARSA, CHARSB, CHARSC) BYTE AT (@BUFFER);

causes the BYTE variable CHAR$A to refer to the location of the array BUFFER.
The variables CHAR$B and CHAR$C are located in the next two bytes after
CHAR$A.

The declaration:

DECLARE T (10) STRUCTURE (X(3) BYTE,
Y(3) BYTE,
Z (3) BY T E) A T (@ D-A T AS B U F FER) ;

sets up structure references to 90 bytes. They are organized such that each of the ten
members of T refers to 9 bytes, the first three using the name X, the second three Y,
the last three Z. The following diagram may help you visualize this structure. It
shows the names for successive byte references.

4-7

Data Types and Based Variables PL/M-86 User's Guide

4-8

T(O).X(O)
T(O).X(1)

T(O).X(2)
T(O).Y(O)

T(O).Y(1)
T(O).Y(2)

T(O).Z(O)
T(O).Z(1)

T(O).Z(2)
T(1).X(O)

T(1).X{1)
T(1).X(2)

T(1).Y(O)
T(1).Y(1)

ANDSOON 121636-29

The declaration above, using the AT attribute, causes the beginning of the structure
T -namely the scalar T(O).X(O)-to be located at the same location as a previously
declared variable called DATA$BUFFER. The other scalars making up the structure
will follow this location in logical order: T(O).X(l), T(O).X(2), and so on up to
T(9).Z(2), the last scalar, which is located in the 89th byte after the location of
DATA$BUFFER.

However, no memory locations for these 90 scalars are allocated by this declaration.
It is up to the programmer to know what else, if anything, will be stored in the
memory space starting at @ DA T A$BUFFER.

The following rules apply at the AT attribute:

• The AT attribute cannot be used with based variables.

• It can be used with the PUBLIC attribute, in which case it must immediately
follow the word PUBLIC. However, the location in this case may not be a loca
tion reference to a variable which is EXTERNAL.

• It cannot be used with the EXTERNAL attribute.

The AT attribute can be used to make variables "equivalent," providing more than
one way of referring to the same information. For example:

DECLARE DATUM WORD;
DECLARE ITEM BYTE AT (@DATUM)i

causes ITEM to be declared a BYTE variable at the same location that has just been
allocated for the WORD variable DATUM. The result is that any reference to ITEM
is in effect a reference to the low-order byte of DATUM (because WORD values are
stored with the low-order 8 bits preceding the high-order 8 bits).

The following is another example:

DECLARE .VECTOR (6) BYTEi
DECLARE SHORT$VECTOR STRUCTURE (FIRST (3) BYTE,

SECOND (3) BYTE)
AT (@ VECTOR);

Here we first declare a six-element BYTE array, VECTOR. Then we declare a
structure of two three-BYTE arrays, SHORT$VECTOR.FIRST and
SHORT$VECTOR.SECOND. The first scalar of this structure
SHORT$VECTOR.FIRST(O)-is located at the same location as the first element of
the array VECTOR.

Thus we have two different ways of referring to the same six bytes. For example, the
fifth byte in the group can be referenced as either VECTOR(4) or SHORT$
VECTOR.SECOND(1).

PL/M-86 User's Guide Data Types and Based Variables

When a variable is declared with the AT attribute, the PL/M-86 Compiler does not
optimize the machine code generated for accesses to that variable. This is useful in
connection with memory-mapped 110.

This optimization may interfere with the operation of memory-mapped
110. (If you pass one byte of memory as a parameter, two bytes may be
accessed when the parameter is pushed on the stack.)

If a variable is located in memory by means of the AT attribute (see section 4.8),
access to that variable is optimized only at the OPTIMIZE(3) level.

4-9

CHAPTER 5
EXPRESSIONS AND ASSIGNMENTS

A PL/M-86 expression consists of operands (values) combined by means of the
various arithmetic, logical, and relational operators. Examples are:

A+B
A+B-C
A*B+ C/O
A*(B + C) - (D - E)/F

where +, -, * , and / are arithmetic operators for addition, subtraction,
multiplication, and division, and A, B, C, D, E, and F represent operands. The
parentheses serve to group operands and operators, as in ordinary algebra.

This chapter presents a complete discussion of the rules governing PL/M-86 ex
pressions. Although these rules may appear complex, bear in mind that most of
the expressions used in actual programs are simple and easy to understand. In
particular, when the operands of arithmetic and relational operators are all of the
same type, the resulting expression is easy to understand.

5.1 Operands
Operands are the building blocks of expressions. An operand is something that
has a value at run time, which can be operated upon by an operator. Thus in the
examples above, A, B, C, etc., might be the identifiers of scalar variables which
have values at run time.

Numeric constants and fully qualified variable references may appear as operands
in expressions. The following sections describe all of the types of operands that
are permitted.

Constants

Any numeric constant may be used as an operand in an expression. Its type must be
appropriate, as discussed below.

A numeric constant that contains a decimal point is of type REAL. A numeric con
stant that does not contain a decimal point is called a whole-number constant.

A whole-number constant may be found in either signed context or unsigned context
(see section 5.6). In signed context a whole-number constant is treated as an
INTEGER value.

In unsigned context a whole-number constant is treated as a BYTE value if it is equal
to or less than 255, as a WORD value if it is greater than 255 and equal to or less
than 65,535, and as a OWORO value if it is greater than 65,535 and equal to or less
than 4,294,967,295. A single whole-number constant may also be treated as a
POINTER value (three special cases are discussed in sections 3.1, 4.8, and 5.7) or a
SELECTOR value (see section 4.5).

A string constant containing not more than four characters may also be used as an
operand. If it has only one character, it is treated as a BYTE constant whose value is
the eight-bit ASCII code for the character. If it is a two-character string, it is treated

5-1

Expressions and Assignments PL/M-86 User's Guide

5-2

as a WORD constant whose value is formed by stringing together the ASCII codes
for the two characters, with the code for the first character forming the most signifi
cant eight bits of the sixteen-bit number.

If it is a three- or four-character string, it is treated as a DWORD constant whose
value is formed by stringing together the ASCII codes for all of the characters. In a
three-character string, the most significant 16 bits of the 32-bit number are formed
of 8 high-order zeroes, then the code for the first character. In a four-string
character, the code for the first two characters forms the most significant 16 bits of
the number.

Strings of more than four characters are called string constants. They are illegal as
operands in expressions, and may appear only in two contexts: as initialization
values for an array (see Chapter 3) or as part of a location reference pointing to
where that string constant is stored (see Chapter 4).

Variable and Location References
As we have seen, a fully qualified variable reference refers unambiguously to a single
scalar value. (Partially qualified references, discussed in Chapter 6, have very
restricted uses). Any fully qualified variable reference may be used as an operand in
an expression. When the expression is evaluated, the reference is replaced by the
value of the scalar.

In addition to the kinds of variable reference described previously, there is another
kind called a "function reference."

A function reference is the name of a "typed procedure" that has previously been
declared, along with any parameters required by the procedure declaration. The
value of a function reference is the value returned by the procedure.

For example, in the statement:

I = J + ABS(L);

the absolute value of L will be returned by the function ABS and then added to
the value of J before being stored in I. If L is -27, the result is exactly as if you
had written:

I = J + 27;

For a complete discussion of procedures and function references, see Chapter 10.

Location references have already been described in Chapter 4.

Subexpressions
A subexpression is simply an expression enclosed in parentheses. A subexpression
may be used as an operand in an expre_ssion. This is the same as saying that paren
theses may be used to group portions of an expression together, just as in ordinary
algebraic notation.

Compound Operands
All the operand types described above are primary operands. An operand may also
be a value calculated by evaluating some portion of the total expression. For
example, in the expression

A+B*C

PL/M-86 User's Guide Expressions and Assignments

(where A, B, and C are variable references), the operands of the * operator are B
and C. The operands of the + operator are A and the compound operand B * C-or
more precisely, the value obtained by evaluating B * C. Notice that this expression is
evaluated as if it had been written

A + (B * C)

This analysis of an expression to determine which operands belong to which
operators, and which groups of operators and operands form compound operands,
is discussed in section 5.5

5.2 Arithmetic Operators

There are five principal arithmetic operators in PL/M-86 (two others are described
in Chapter 12). The five principal operators are

+- * I MOD

All of these operators are used as in ordinary algebra to combine two operands.
Each operand may have a BYTE, WORD, DWORD, INTEGER, or REAL value
(except that REAL operands are not allowed with the MOD operator). Arithmetic
operations on POINTER and SELECTOR variables are not allowed.

The +, -, *, and I Operators

The operators +, -, *, and I perform addition, subtraction, multiplication, and
division on operands of any type except POINTER and SELECTOR. The following
rules govern these operations (see also table 5-2).

1. If both operands are of the same type, the result is of the same type as the
operands, with only one exception: if both operands are of type BYTE, the
* and I operations produce results of type WORD. The type of arithmetic
depends on the type of operands, as discussed in Chapter 4.

2. Only three combinations of mixed operand types are allowed. A BYTE operand
can be combined with a WORD operand, a BYTE operand can be combined
with a DWORD operand, and a WORD operand can be combined with a
DWORD operand. In the first two cases, the BYTE operand is extended by 8
high-order zero bits to produce a WORD value, or by 24 high-order zero bits to
produce a DWORD value. Similarly, a WORD operand is extended by 16 high
order zero bits to produce a DWORD value. Then the operation is performed as
though both operands are of the same type.

3. If one operand is a whole-number constant, and the other is a DWORD,
WORD, or BYTE operand, the whole-number constant is treated as a BYTE
value if it is equal to or less than 255, a WORD value if it is greater than 255 and
equal to or less. than 65,535, and a DWORD value if it is greater than 65,535.
Then the operation is performed under rule 1 or rule 2 above. If the whole
number constant exceeds 4,294,967,295, the operation is invalid.

4. If one operand is a whole-number constant and the other is an INTEGER
operand, the whole-number constant is treated as a positive integer value. Then
the operation is performed as if both operands were INTEGER operands. If the
whole-number constant exceeds 32,767, the operation is invalid.

5. If one operand is a whole-'number constant and the other is of type REAL,
POINTER, or SELECTOR, the operation is invalid.

6. If both operands are whole-number constants, the operation depends on the
context in which it occurs, as explained in section 5.6.

5-3

Expressions and Assignments PL/M-86 User's Guide

5-4

The result of division by 0 is undefined, except for REAL values-see Chapter 13.

A unary "-" operator is also defined in PL/M-86. It takes a single operand, to
which it is prefixed. In other words, a minus sign that has no operand to the left of it
is taken to be a unary minus.

Its effect is that (-A) is equivalent to (O-A), where A is any operand. The 0 is a
BYTE value if A is of type BYTE, WORD, or DWORD, an INTEGER value if A is
of type INTEGER, or a REAL value if A is of type REAL. If A is a whole-number
constant, its type and the unary "-" operation depend on the context as explained
in section 5.6.

Finally, a unary "+" operator is defined for the sake of completeness. As in
ordinary algebra, a unary "+" has no effect, and (+A) is exactly equivalent to (A).

The MOD Operator

MOD performs exactly the same as /, except as follows:

• REAL operands are not allowed-only BYTE, WORD, DWORD, and
INTEGER operands can be used.

• The result is not the quotient, but the remainder left after integer division. The
result has the same sign as the operand on the left side of the MOD operator.

For example, if A and B are INTEGER variables with values of 35 and 16 respec
tively, then A MOD B yields an INTEGER result of 3, and -A MOD B yields -3.

Unlike the / operator, the MOD operator must be separated from surrounding let
ters and digits by blanks or other separators.

5.3 Relational Operators

Relational operators are used to compare operands of the same type. They work
with all types. They are

< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> not equal to

equal

Relational operators are always binary operators, taking two operands, to yield a
BYTE result, as follows:

If both operands are of the same type, unsigned arithmetic is used to compare two
BYTE values, two WORD values, or two DWORD values; signed arithmetic is used
to compare two INTEGER values or two REAL values; and POINTER or
SELECTOR values are compared according to the ordering of iAPX 86 locations
(see OPTIMIZE(3) in section 14.4).

As with the arithmetic operators, the only legal mixed combinations of operand
types are BYTE/WORD, BYTE/DWORD, and WORD/DWORD. Whole-number
operands are treated as BYTE, WORD, DWORD, or INTEGER values as explained
in the rules of section 5.2.

PL/M-86 User's Guide Expressions and Assignments

If the specified relation between the operands is "true," a BYTE value of OFFH (or
1111$1111B) results. Otherwise, the result is a BYTE value of ooH (or oooo$OooOB).
Thus in all cases the result is of type BYTE, with all 8 bits set to 1 for a "true" con
dition, or to 0 for a "false" condition. For example:

(6) 5) result is OFFH ("true")
(6 <=4) result is OOH ("false")

Values of "true" and "false" resulting from relational operations are useful in con
junction with DO WHILE statements and IF statements, as will be seen in Chapter
7. (In the context of a DO WHILE statement or IF statement, only the least signifi
cant bit of a "true" or "false" value is used.)

5.4 Logical Operators

There are 4 logical (boolean) operators in PL/M-86. These are

NOT AND OR XOR

These operators are used with BYTE, WORD, DWORD, or whole-number constant
operands only, to perform logical operations on 8, 16, or 32 bits in parallel.

NOT is a unary operator, taking one operand only. It produces a result of the same
type as its operand: each bit of the result is the ones complement of the corre
sponding bit of the original value.

The remaining operators each take 2 operands, and perform bitwise "and," "or,"
and "exclusive or," respectively. The bits of an AND result are 0 only where the
corresponding bit in each operand is 1. The bits of an OR result are 1 where the
corresponding bit of either operand was ai, and 0 only where both operands have a
O. The bits of an XOR result are 0 only where the corresponding bits of the operand
are the same, i.e., both 1 or both 0; the result has a 1 wherever one operand has a 1
and the corresponding bit of the other operand is o.

If both operands are of the same type, the result is the same type as the operands.

As with the arithmetic and relational operators, the only legal mixed combinations
of operand types are BYTE/WORD, BYTE/DWORD, and WORD/DWORD (see
rule 2 under section 5.2). Whole-number operands are treated as BYTE, WORD, or
DWORD values as explained in rule 3 of section 5.2.

Examples are:

NOT ll00II00B
10101010B AND l1001100B
10101010B OR ll001100B
10101010B XOR ll00II00B

result is 0011ool1B
result is lOOOIOOOB
result is 11101110B
result is 01100110B

Also, notice that "true" and "false" values resulting from relational operations can
be combined meaningfully by means of logical operators

NOT(6)5)
(6)5) AND (1 >2)
(6)5) OR (1)2)
(LIM = Y)XOR(Z<2)

result is OOH (' 'false' ')
result is OOH ("false")
result is OFFH ("true")
result is OFFH ("true") if LIM = Y or if Z
< 2, but result is OOH ("false") if both
relations are "true" or both "false."

5-5

Expressions and Assignments PL/M-86 User's Guide

5-6

5.5 Expression Evaluation

Precedence of Operators: Analyzing an Expression

Operators in PL/M-86 have an implied order (stated below) which determines how
operands and operators are grouped and analyzed during compilation.

The PL/M operators are listed in table 5-1 from highest to lowest precedence, mean
ing those which take effect first are listed first. Operators in the same line are of
equal precedence and are evaluated as encountered in a left to right reading of an
expression.

The order of evaluation in an expression is controlled first by parentheses, then by
operator precedence, and finally by left to right order.

The compiler first evaluates operands and operators enclosed in paired parentheses
as subexpressions, working from innermost to outermost pairs of parentheses. The
value of the subexpression is then used as operand in the remainder of the expression
as a whole.

(Parentheses are also used around both subscripts and the parameters of function or
procedure references. These are not subexpressions~ but they too must be evaluated
before the remainder of the expressions or references can be evaluated at a higher
level.)

When you have more than one operator in an expression, you can evaluate the
results by beginning with the one having the highest precedence. If the operators are
of equal precedence, evaluate them left to right.

EXAMPLE

(A + B)*C is not the same as
A+B*C

A + B * C means the same as
A + (B*C)

A/B*C means the same as
(A/B)*C

REASON

Parentheses form subexpressions

Operator precedence

Left to right, equal precedence

Table 5-1. Operators' Precedence

Operator
Class

Precedence

Unary

Arithmetic

Relational

Logical

Operator

()

+,-

*,I,MOD

+,-

<,<=,<>,=,>=,>

NOT
AND
OR,XOR

Interpretation

Controls order of evaluation: expressions
within parentheses are evaluated before the
action of any outside operator on the paren
thesized items

Single positive operator, single negative
operator

Multiplication, division, modulo (remainder)
division
Addition, subtraction

Less than, less than or equal to, not equal to,
equals, greater than or equal to, greater than

Logical negation
Logical conjunction
Logical inclusion disjunction,
Logical exclusive disjunction

PL/M-86 User's Guide Expressions and Assignments

The application of the precedence ranking can also be seen in the following
examples:

A+B*C
A+B-C*D
A+B+C+D
A/B*C/D
A>B AND NOT B<C-I

is equivalent to
is equivalent to
is equivalent to
is equivalent to
is equivalent to

A + (B * C)
(A + B) - (C * D)
«A + B) + C) + D
«A 1 B) * C) 1 D
(A>B) AND(NOT(B«C-l))

In the last four examples above, we see the application of the "left-to-right" rule for
operators with the same precedence. In the second, third, and fifth examples, the
left-to-right rule for operators of equal precedence makes no difference in the value
of the expression. But in the fourth example, the left-to-right rule is critical.

A further example will show the action of the rules of precedence on a longer
expression

(-B + SQRT (B*B - 4,0 * A * C »/(2.0 * A)

We will assume A, B, and C are variables of type REAL, and SQRT is a procedure
of type REAL which returns the square root of the value passed to it as a parameter.

In this case, the parameter is the expression B*B-4.0* A *C. Floating point constants
(4.0; 2.0) are used rather than whole-number constants (4;2) because it is invalid to
combine whole-number constants with REAL variables.

As the full expression is analyzed below, association of operands with operators is
indicated by brackets drawn over each operator and its operand(s).

The compiler analyzes first the portions of the expressions within the innermost
parentheses: the procedure parameter above and the sub expression 2.0 * A, also
called a compound operand since its result is used in evaluating the whole
expression.

.--, ~ r--"'I
(-B + SQRT(B*B - 4.0 * A * C»I 2.0 * A

In a left to right scan, the two operands of the first * operator are both equal to the
value of B. The operands of the second * operator are 4.0 and the value of A. The
operands of the third * operator are the results of the second evaluation (i.e., the
compound operand 4.0* A) and the value of C. The operands of the fourth *
operator are 2.0 and the value of A.

The subexpression 2.0* A is now completely analyzed, but the parameter expression
still contains a minus (-) operator that has not been analyzed. The operands of this
operator are the result of evaluating B*B and the result of evaluating 4.0* A *C. Once
this is done, the parameter expression is analyzed and its value can be calculated.

This value does not become an operand in the overall expression. It is passed to the
procedure SQRT, which returns the square root of the parameter. This returned
value then becomes an operand in the remainder of the full original expression

(-B + "returned value") 12.0 * A

Now that the innermost subexpressions have been analyzed and evaluated, what
remains is a division whose left operand must be evaluated further. This outer
subexpression is -B + the returned square root: there are two operators. The first is
a unary minus (-) and its operand is the value of B. The second is the binary plus (+)
operator, with two operands: the value of - B and the value of
SQRT(B*B-4.0*A*C). -B has the same meaning as O-B, which is to be added to

5-7

Expressions and Assignments PL/M-86 User's Guide

5-8

the now-known value of the square root indicated. The final operator is division (I),
whose two operands are fully known: the value of (-B+SQRT(B*B-4.0*A*C» and
the value of (2.0* A).

Three important points must be emphasized about expression evaluation, as dis-
cussed in the next three sections. .

Compound Operands Have Types

The first point is that compound operands (as shown between brackets above) have
types just as primary operands do. All of the primary operands used in the example
above were of type REAL, causing the resulting compound operands to be of type
REAL also. It is always valid for all the operands in an arithmetic expression to be
of the same type, and the result is of that type. (The only exception is that combining
BYTE values can validly create a WORD value.)

But in an expression containing mixed data types, most combinations are not
allowed. Again the only exception involved BYTE, WORD, and DWORD values;
these may be mixed as operands in expressions, whether constants or variables.

Mixing any other types in arithmetic, logical, or relational expressions is invalid. For
example, if F and G are INTEGER variables and Hand K are REAL variables, then
the expressions F > K, H + G are invalid.

Due to operator precedence, some combinations can validly occur in the same
instruction without being directly combined. In the following logical expression

F>G AND H < K

the subexpression F > G yields a byte value, as does the subexpression H < K. Then
the byte values are ANDed together. This expression is legal despite an apparent
mixing of types, as follows:

G and H could not be the operands for two reasons:

1. The relational operators are of higher precedence than the AND operator.

2. Only BYTE, WORD, or DWORD operands are legal with logical operators .
.....r:: ~
F>GANDH < K

Relational Operators Are Restricted

The second point is: in the absence of parentheses denoting a subexpression, the
result of a relational operation (comparison) is not allowed to become an operand in
another relational operation.

The algebraic meaning of A ~ X ~ B is well-defined on paper, but in PL/M -86
the expression

A<=X<=B

is invalid because the second <= operator would have to use the result of the first <=
operator as one of its operands.

The valid PL/M-86 way to achieve the desired meaning is

A<=XANDX<= B

PL/M-86 User's Guide Expressions and Assignments

Parentheses could have created a valid expression; for example:

(A<=X)<=B

but the result does not have the desired meaning: A <= X becomes a byte of value 0
if A is greater than X, OFFH if not. Thus if A is 0, X is 1, and B is 2

(0<= 1)<=2
becomes (OFFH) <= 2
yields FALSE, contrary to the original intention

Order of Evaluation of Operands

The third point to be made from the analytical example is that the binding of
operators and operands is not the same thing as the order in which operands are
evaluated.

As we have just seen, the rules of analysis completely and unambiguously specify
which operands are bound to each operator. In the expression

A+B*C

we know that Band C are the operands of the * operator, while A and the value of
B*C are the operands of the + operator. Obviously Band C must be evaluated
before the * operation can be carried out. Also, the compound operand B*C must be
evaluated before the + is carried out.

But it is not obvious whether B will be evaluated before C or vice versa. Indeed, A
could be evaluated before either B or C, and its value stored until the + operation is
performed.

The rules of PL/M-86 do not specify the order in which subexpressions or operands
are evaluated in each statement. This flexibility allows the compiler to optimize the
object code it produces, as discussed in Chapter 15. In most cases the order of
evaluation makes no difference.

However, certain embedded assignments (section 5.7) or function references (section
10.2) have the side effect of changing the value of an operand in the same expres
sion. Due to the variability of evaluation order, this side effect can lead to undesired
results. You should avoid such usage. (See the sections mentioned above.)

5.6 Choice of Arithmetic: Summary of Rules

As discussed in Chapter 4, PL/M-86 uses three distinct kinds of arithmetic:
unsigned, signed, and floating-point. Whenever an arithmetic or relational opera
tion is carried out, PL/M-86 uses one of these types of arithmetic, depending on the
types of the operands.

Table 5-2 is a summary of the rules for which type of arithmetic is used in each case.
The table also shows the type of the result in each case (for arithmetic operations).
The notes following the table give additional information.

5-9

Expressions and Assignments PL/M-86 User's Guide

Table 5-2. Summary of Expression Rules

Variable Type Kind of Operand Type Arithmetic Result Notes
Arithmetic Operation

DWORD, WORD, Unsigned BYTE wI BYTE + or- BYTE range: 0-255
WORD and BYTE * or lor MOD range: 0-65535

BYTE wI WORD any WORD A byte operand is first extended
becomes with 8 high-order zeroes to a word
WORDwl WORD value.

BYTE wI DWORD any DWORD A byte operand is first extended
becomes with 24 high-order zeroes to a
DWORD wI DWORD dword value.

WORD wI DWORD any DWORD A word operand is first extended
becomes with 16 high-order zeroes to a
DWORD wI DWORD dword value.

BYTE wI + or- BYTE Constant treated as byte.
whole-number
constant < 256 * or lor MOD WORD Constant treated as word.

BYTE orWORD wI any WORD Constant treated as word.
whole-number
constant < 65,536

BYTE orWORD wI any DWORD Constant treated as dword.
whole-number
constant> 65,535

DWORDwl any DWORD Constant treated as dword.
whole-number
constant<4,294,967,295

INTEGER Signed INTEGER wI INTEGER any INTEGER range: -32768 to + 32767

INTEGER wI whole any INTEGER Constant treated as a positive
number constant INTEGER value.
becomes INTEGER wI Note: unary minus may be applied
INTEGER wI to this positive INTEGER value.
positive INTEGER

REAL Floating REALwl REAL + or - or * REAL -
Point orl

POINTER and SELECTOR variables can appear only in relational expressions, e.g., PTR11 < PTR22, which result in a BYTE
value of 0 for FALSE or OFFH for TRUE. POINTER values are compared as full iAPX 86 addresses except under the OPTIMIZE
(3) control, discussed in Chapter 15. SELECTOR values are compared as 16-bit paragraph numbers.

NOTE: The above are the only permitted combinations of operations and operands. All other combinations are invalid; for
example, INTEGER with BYTE, REAL with WORD, and so forth. However, explicit conversions may be coded in-line
using the built-in PL/ M-86 functions described in Chapter 11.

5-10

Special Case: Constant Expressions

The rules already given explain expressions like

A+3 * B

where we have a single whole-number constant. However, if we have an expression
like

3 -5 + A

we must consider which kind of arithmetic will be used to evaluate 3 - 5, since both
operands are whole-number constants.

The answer, in this case, depends on the type of operand A. If A is of type BYTE,
WORD, or DWORD, we say that 3 - 5 is in "unsigned context." Unsigned
arithmetic is used to evaluate 3 - 5, giving a BYTE result of 254. Then unsigned
arithmetic is used to add this to A.

PL/M-86 User's Guide Expressions and Assignments

If A is of type INTEGER, we say that 3 - 5 is in "signed context." Signed
arithmetic is used to evaluate 3 - 5, giving an INTEGER result of -2. Then signed
arithmetic is used to add this to A.

If A is of type REAL, POINTER, or SELECTOR, the expression is illegal.

Any compound operand, subexpression, or expression that contains only whole
number constants as primary operands is called a constant expression. Note that this
applies only to whole-number constants less than 65,536 (all DWORD arithmetic is
performed at run-time). Floating-point constants are of type REAL and are treated
exactly like the values of REAL variables.

In this expression

3 - 5 + 500 + A

3 - 5 is a constant expression that forms part of the larger constant expression
3 - 5 + 500.

If the constant expression is not the entire expression, then its value is an operand in
the expression. The context is created by the other operand of the same operator.

If the other operand is of type BYTE, WORD, or DWORD, then each whole
number constant is treated as a BYTE value if it is equal to or less than 255, as a
WORD value if it is greater than 255 and equal to or less than 65,535, and as a
DWORD value if it is greater than 65,535. If the constant exceeds 4,294,967,295 it is
illegal. Unsigned arithmetic is used. In the example above, suppose the operand A
has a BYTE value. Then the constant expression 3 - 5 + 500 is in unsigned context.
The constants 3 and 5 are treated as BYTE values, and 500 is treated as a WORD
value. The operation 3 - 5 gives a BYTE result of 254, and this js extended to a
WORD value of 254 before adding 500, resulting in a WORD value of 754. It is
exactly as if the expression had been written as

754+A

Now suppose that A has an INTEGER value. In this case, the constant expression
3 - 5 + 500 is in signed context, and all three constants are treated as INTEGER
values~ This time, signed arithmetic is used for the operation 3 - 5, for an
INTEGER value of -2. Then 500 is added, and the INTEGER result is 498. It is as if
the expression had been written as

498+A

To summarize, if the context is created by a BYTE, WORD, or DWORD operand,
the constant expression is in unsigned context. If the context is created by an
INTEGER operand, the constant expression is in signed context. Note that if the
context is created by a REAL, POINTER, or SELECTOR operand, the constant
expression is iIlegal.

If the constant expression is the entire expression, then it is one of the following:

• Constant expression as right-hand part of an assignment statement: context is
created by the variable to which the expression is being assigned. Rules are given
below in section 5.7.

• Constant expression as subscript of an array variable: evaluated as if being
assigned to a WORD variable (see section 5.7).

• Constant expression in the IF part of an IF statement: evaluated as if being
assigned to a BYTE variable (see sections 7.2 and 5.7).

• Constant expression in a DO WHILE statement: evaluated as if being assigned
to a BYTE variable (see sections 7.1 and 5.7).

5-11

Expressions and Assignments PL/M-86 User's Guide

5-12

• Constant expression as "start," "step," or "limit" expression in an iterative
DO statement: evaluated as if being assigned to a variable of the same type as
the index variable in the same iterative DO statement (see sections 7.1 and 5.7).

• Constant expression in a DO CASE statement: evaluated as if being assigned to
a WORD variable (see sections 7.1 and 5.7).

• Constant expression as an actual parameter in a CALL statement or function
reference: evaluated as if being assigned to the corresponding formal parameter
in the procedure declaration (see sections 10.2 and 5.7).

• Constant expression in a RETURN statement: evaluated as if being assigned to
a variable of the same type as the (typed) procedure that contains the RETURN
statement (see section 5.7).

5.7 Assignment Statements

Results of computations can be stored as values of scalar variables. At any given
moment, a scalar variable has only one value-but this value may change with pro
gram execution. The PL/M-86 assignment statement changes the value of a
variable. Its simplest form is

variable = expression;

where expression is any PL/M-86 expression, as described in the preceding sec
tions. This expression is evaluated, and the resulting value is assigned to (that is,
stored in) variable. This variable may be any fully qualified variable reference except
a function reference. The old value of the variable is lost.

For example, following execution of the statement:

RESULT = A + B;

the variable RESULT will have a new value, calculated by evaluating the expression
A+·B.

Implicit Type Conversions

In an assignment statement, if the type of the value of the right-hand expression is
not the same as the type of the variable on the left side of the equal sign, then either
the assignment is illegal or an implicit type conversion occurs. Except for constant
expressions, only byte, word, or dword values are converted automatically. Chapter
11 presents eight built-in functions you can invoke to perform explicit conversions
for use in expressions or assignments. The following paragraphs spell out the rules
for the implicit conversions:

Expression with a BYTE value. WORD variable on the left: the BYTE value is
extended by 8 high-order zero bits to convert it to a WORD value. DWORD variable
on the left: the BYTE value is extended by 24 high-order zero bits to convert it to a
DWORD value.

If the variable on the left is of any type except BYTE, WORD, or DWORD, the
assignment is illegal.

Expression with aWo.RD value. BYTE variable on the left: The 8 high-order bits of
the WORD value are dropped to convert it to a BYTE value. DWORD variable on
the left: the WORD value is extended by 16 high-order zero bits to convert it to a
DWORD value.

PL/M-86 User's Guide Expressions and Assignments

If the variable on the left is of any type except BYTE, WORD, or DWORD, the
assignment is illegal.

Expression with a DWORD value. BYTE variable on the left: the 24 high-order bits
of the DWORD value are dropped to convert it to a BYTE value. WORD variable
on the left: the 16 high-order bits of the DWORD value are dropped to convert it to
a WORD value.

If the variable on the left is of any type except BYTE, WORD, or DWORD, the
assignment is illegal.

Expression with an INTEGER value. No implicit conversions are performed. If the
variable on the left is of any type except INTEGER, the assignment is illegal.

Expression with a REAL value. No implicit conversions are performed. If the
variable on the left is of any type except REAL, the assignment is illegal.

Expression with a POINTER value. No implicit conversions are performed. If the
variable on the left is of any type except POINTER, the assignment is illegal.

Expression with a SELECTOR value. No implicit conversions are performed. If the
variable on the left is of any type except SELECTOR, the assignment is illegal.

Constant Expression

BYTE variable on the left: The constant expression is evaluated.in unsigned context.
If the resulting value is less than or equal to 255, it is treated as a BYTE value and no
conversion is necessary. If the resulting value is greater than 255, it is converted to
type BYTE by dropping all except its 8 low-order bits.

WORD variable on the left: The constant expression is evaluated in unsigned con
text. If the resulting value is equal to or less than 65,535, it is treated as a WORD
value, and no conversion is necessary. If the resulting value is greater than 65,535, it
is converted to type WORD by dropping all except its 16 low-order bits.

DWORD variable on the left: The constant expression is evaluated in unsigned con
text. No conversion is necessary.

INTEGER variable on the left: The constant expression is evaluated in signed con
text to yield an INTEGER value. No conversion is necessary.

POINTER variable on the left: If the constant expression consists of nothing but a
single whole-number constant, the constant is treated as a POINTER value. The
whole-number constant must not be greater than 1,048,575. If the constant expres
sion consists of anything more than a single whole-number constant, the assignment
is illegal. This is one of the three cases in which a whole-number constant can be
treated as a POINTER value. The other two cases are described in sections 3.1
and 4.8.

SELECTOR variable on the left: If the constant expression consists of nothing but a
single whole-number constant, it is treated. as a SELECTOR value. The whole
number constant must not exceed 65,535. If the constant expression consists of
anything more than a single whole-number, the assignment is illegal. This is one of
two cases where a whole-number constant can be treated as a SELECTOR value.
The other case is described in section 3.1.

REAL variable on the left: The assignment 1s illegal unless all values on the right are
REAL. However, the FLOAT function described in section 11.2 can be used to con
vert the constant expression to a REAL value which can be assigned to that variable.

5-13

Expressions and Assignments PL/M-86 User's Guide

5-14

Multiple Assignment

It is often convenient to assign the same value to several variables at the same time.
This is accomplished in PL/M-86 by listing all the variables to the left of the equals
sign, separated by commas. The variables LEFT, CENTER, and RIGHT can all be
set to the value of the expression INIT + CORR with the single assignment
statement:

LEFT, CENTER, RIGHT = INIT + CORR;

The variables on the left-hand side of a multiple assignment must be all of the same
type, with one exception: variables of types BYTE, WORD, and DWORD may be
mixed. When this is done, the conversion rules given above are applied separately to
each assignment.

The order in which the assignments are performed is not predictable.
Therefore, if a variable on the left side of a multiple assignment also
appears in the expression on the right side, the results are undefined.

Embedded Assignments

A special form of assignment can be used within PL/M-86 expressions. The form of
this "embedded assignment" is:

variable := expression

and may appear anywhere an expression is allowed. The expression (everything to
the right of the := assignment symbol) is evaluated and stored into the variable on
the left. Parentheses are strongly recommended, therefore, to specify the limits of an
embedded assignment within an assignment statement. The value of the embedded
assignment is the same as that of its right half. For example, the expression:

ALT + (CORR := TCORR + PCORR) - (ELEV := HT/SCALE)

results in exactly the same value as:

ALT + (TCORR + PCORR) - (HT/SCALE)

The only difference is the side-effect of storing the intermediate results TCORR +
PCORR and HT/SCALE into CORR and ELEV, respectively. These names for
intermediate results can then be used at a later point in the program without
calculating their values. The names must have beep declared earlier.

The rules of PL/M-86 do not specify the order in which subexpres
sions or operands are evaluated. When an embedded assignment changes
the value of a variable that also appears elsewhere in the same expression,
the results cannot be predicted: they depend on too many factors, e.g., the
optimization level you specify to the compiler (as discussed in Chapter 15).

As an example of this ambiguity, if you write:

A =(X:=X+4) + Y*Y + X;

PL/M-86 User's Guide Expressions and Assignments

you could mean either of the following interpretations:

A1 = (X+4) + Y*Y + (X+4);
A2 = (X+4) + Y*Y + X;

You should avoid this ambiguity by removing the embedded assignment
from the expression and using a separate assignment statement to achieve
the desired effect. For example, each of the above is unambiguously
achieved by the following:

(1) X = X + 4;
A1 = X + Y*Y + X;

(2) X = X + 4;
A2 = X + Y*Y + X - 4;

NOTE

Before using floating-point (REAL) arithmetic or assignments, you should
study Chapter 13, which explains many features and restrictions affecting
your results.

5-15

CHAPTER 6
STRUCTURES AND ARRAYS

6.1 Arrays

As mentioned briefly in Chapter 3, it is often desirable to use a single identifier to
refer to a whole group of scalars, and distinguish the individual scalars by means of
a "subscript," i.e., a value enclosed in parentheses. The scalars are all the same
type. Such a list is called an array.

It is declared by using a "dimension specifier." The dimension specifier is a non
zero whole-number constant enclosed in parentheses. The value of the constant
specifies the number of array elements (individual scalar variables) making up the
array. For example:

DECLARE ITEMS (100) BYTE;

causes the identifier ITEMS to be associated with 100 array elements, each of type
BYTE. One byte of storage is allocated for each of these scalars.

The declaration:

DECLARE (WIDTH, LENGTH, HEIGHT) (100) REAL;

is equivalent to the following sequence:

DECLARE WIDTH (100) REAL;
DECLARE LENGTH (100) REAL;
DECLARE HEIGHT (100) REAL;

(except that contiguous storage is guaranteed for variables declared in a single
parenthesized list, while variables declared in consecutive declarations are not
necessarily stored contiguously).

This causes the 3 identifiers WIDTH, LENGTH, and HEIGHT each to be
associated with 100 array elements of type REAL, so that 300 elements of type
REAL have been declared.in all. For each of these scalars, four contiguous bytes of
storage are "allocated.

Subscripted Variables

To refer to a single element of a previously declared array, you use the array name
followed by a subscript enclosed in parentheses. This construct is called a
"subscripted variable."

For example, given the DECLARE statement:

DECLARE ITEMS (100) BYTE;

you can refer to each byte as an individual item using ITEMS(O), ITEMS(1),
ITEMS(2), and so on up to ITEMS(99).

Notice that the first element of an array has subscript O-not 1. Thus the subscript
of the last element is 1 less than the dimension specifier.

6-1

Structures and Arrays PL/M-86 User's Guide

6-2

If we want to add the third element of the array ITEMS to the fourth, and store the
result in the fifth, we can write the PL/M-86 assignment statement:

ITEMS(4) = ITEMS(2) + ITEMS(3);

Much of the power of a subscripted variable lies in the fact that the subscript need
not be a whole-number constant, but can be another variable, or in fact any
PL/M-86 expression that yields a BYTE, WORD, or INTEGER value. Thus the
construction:

VECTOR(ITEMS(3) + 2)

refers to some element of the array VECTOR. Which element it is depends on the
expression ITEMS(3) + 2. This value in turn depends on the value stored in
ITEMS(3), the fourth element of array ITEMS, at the time when the reference is
processed by the running program.

If ITEMS(2) contains the value 5, then ITEMS(3) + 2 is equal to 7 and the reference
is to VECTOR(7), the eighth element of the array VECTOR.

The following sequence of statements will sum the elements of the 10-element
array NUMBERS by using an "index variable" named I, which takes on values
from Oto 9:

DECLARE SUM BYTE;
DECLARE NUMBERS(10) BYTE;
DECLARE I BYTE;

SUM = 0;
DO I = 0 TO 9;

SUM = SUM + NUMBERS(I);
EN 0;

Subscripted array variables are permitted anywhere PL/M-86 permits an expression.
They may also appear on the left side of an assignment statement.

6.2 Structures

Just as an array allows one identifier to refer to a collection of elements of the same
type, a structure allows one identifier to refer to a collection of structure members
which may have different types. Each member of a structure has a member
identifier.

The following is an example of a structure declaration:

DECLARE AIRPLANE STRUCTURE (SPEED REAL, ALTITUDE REAL);

This declares two REAL scalars, both associated with the identifier AIRPLANE.
Once this declaration has been made, the first scalar can be referred to as
AIRPLANE.SPEED and the second as AIRPLANE.AL TITUDE. These names are
also called the "members" of this structure.

A structure may have up to 64 members.

Individual structure members may not be based and may not have any attributes, as
discussed in Chapters 4 and 3, respectively.

PL/M-86 User's Guide Structures and Arrays

Arrays of Structures

We have already seen arrays of scalars. PL/M-86 also allows arrays of structures.
The following DECLARE statement creates an array of structures which can be
used to store SPEED and ALTITUDE (as in the previous example) for twenty
AIRPLANEs instead of one:

DECLARE AIRPLANE (20) STRUCTURE (SPEED REAL, ALTITUDE
REAL) ;

This declares twenty structures associated with the array identifier AIRPLANE,
each distinguished by subscripts from 0 to 19. Each of these structures consists of
two REAL scalar members. Thus storage is allocated for 40 REAL scalars.

To refer to the ALTITUDE of AIRPLANE number 17, one would write
AIRPLANE(17).AL TITUDE.

"' ..
Arrays Within Structures

An array may be used as a member of a structure, as in the following DECLARE
statement:

DECLARE PAYCHECK STRUCTURE (LAST$NAME(15)BYTE,
FIRST$NAME(15)BYTE,
MI BYTE,
AMOUNT REAL);

This structure consists of the following members: two 15-element BYTE arrays,
PAYCHECK.LAST$NAME and PAYCHECK.FIRST$NAME; the BYTE scalar
PAYCHECK.MI; and the REAL scalar PAYCHECK.AMOUNT.

To refer to the fourth element of the array PA YCHECK.LASTNAME, we would
write PAYCHECK.LASTNAME(3).

Arrays of Structures with Arrays Inside the Structures

Given that an array can be made up of structures, and a structure can have arrays as
members, we can combine the two constructions to write:

DECLARE FLOOR (30) STRUCTURE (OFFICE (55) BYTE);

The identifier FLOOR refers to an array of 30 structures, each of which contains
one array of 55 BYTE scalars. This could be thought of as a 30-by-55 matrix of
BYTE scalars. To reference a particular scalar value-say element 46 of structure
25-we would write FLOOR(25).OFFICE(46). Note that the scalar elements of each
OFFICE array are stored contiguously, and the OFFICE arrays themselves are
elements of the FLOOR array and are stored contiguously.

We can alter the PAYCHECK' structure declaration above to make it an array of
structures, as follows:

DECLARE PAYROLL (100) STRUCTURE(LAST$NAME(15)BYTE,
FIRST$NAME(15) BYTE,
MI BYTE,
AMOUNT REAL);

6-3

Structures and Arrays PL/M-86 User's Guide

6-4

Now we have an array of 100 structures, each of which can be used during program
execution to store the last name, first name, middle initial, and amount for one
employee. LAST$NAME and FIRST$NAME in each structure are I5-BYTE arrays
for storing the names as character strings. To refer to the Kth character of the first
name of the Nth employee, we would write:

PAYROLL(N-1).FIRST$NAME(K-1)

where Nand K are previously declared variables to which we have assigned appro
priate values. This might be convenient in a routine for printing out payroll
information.

6.3 References to Arrays and Structures

In the preceding sections, we have seen numerous examples of variable references. A
variable reference is simply the use, in program text, of the identifier of a variable
that has been declared.

A variable reference may be "fully qualified," "partially qualified, "or
"unqualified. "

Fully Qualified Variable References

A fully qualified variable reference is one that uniquely specifies a single scalar. For
example, if we have the declarations:

DECLARE AVERAGE REAL;
DECLARE ITEMS (100) BYTE;
DECLARE RECORD STRUCTURE (KEY BYTE, INFO WORD);
DECLARE NODE (25) STRUCTURE (SUBLIST (100) BYTE, RANK BYTE);

then AVERAGE, ITEMS(5), RECORD. INFO, AND NODE(21).SUBLIST(32) are
all fully qualified variable references: each refers unambiguously to a single scalar.

It should be noted that qualification may only be applied to variables that have been
appropriately declared. A subscript may only be applied to an identifier that has
been declared with a dimension specifier. A member-identifier may only be applied
to an identifier declared as a structure identifier. The compiler flags violations of
these rules as errors.

Unqualified and Partially Qualified Variable References

Unqualified and partially qualified variable references are allowed only in location
references, as discussed in Chapter 4, and in the built-in pro.cedures LENGTH,
LAST, and SIZE, as discussed in Chapter 11.

An unqualified variable reference is the identifier of a structure or array, without
any member-identifier or subscript. For example, with the above declarations,
ITEMS and RECORD are unqualified variable references. An unqualified variable
reference is a reference to the entire array or structure. @ ITEMS is the location of
the entire array ITEMS-that is, the location of its first byte. Similarly, @RECORD
is the location of the first byte of the structure RECORD.

A partially qualifiec;l variable reference fails to refer uniquely to a single scalar even
using a subscript and/or member-identifier with an identifier. For example,
NODE(15) and NODE(l2).SUBLIST are partially qualified variable references,
given the above declarations.

PUM-86 User's Guide Structures and Arrays

When used with the @ operator, such references are taken to mean the first byte that
could fit the description. Thus @NODE(15) is the location of the first byte of the
structure NODE(15), which is itself an element of the array NODE. Similarly,
@NODE(12).SUBLIST is the location of the first byte of the array
NODE(12).SUBLIST, which is itself a member of the structure NODE(12), which in
turn is an element of the array NODE.

Note that @NODE.SUBLIST is not permitted because it is completely ambiguous:
in a location reference referring to an array made up of structures, a subscript must
be given before a member-identifier can be added to the reference. The rule is dif
ferent for partially qualified variable references in connection with the built-in pro
cedures LENGTH, LAST, and SIZE, as explained in Chapter II.

6-5

CHAPTER 7
FLOW CONTROL STATEMENTS

This chapter describes statements that alter the sequence of execution of PL/M-86
statements, and the group statements into blocks.

7.1 DO and END Statements: DO Blocks

Procedures and DO blocks are the basic building units of modular programming in
PL/M-86. (Procedures are discussed in Chapter 10.)

The present chapter discusses all four kinds of DO-blocks. Each begins with a DO
statement and includes all subsequent statements through the closing END state
ment. The four kinds are

• The simple DO block; for example:

DO; /* all statements executed, each in order */
statement-O;
statement-1 ;
statement-2 ;

END;

• The DO CASE block; for example:

DOC A S E select_expression;
case-O-statement; / * e x act l yon est a t erne n t ex e cut e d - * /
case-1-statement; / * s e l e c ted by the ex pre s s ion I s val u e * /

END;

• The DO WHILE block; for example:

DOW H I L E expression_ true;
statement-O i 1 * all e x e cut e d i f ex pre s s ion i s t rue, * /
statement-1; 1 * non e i f ex pre s s ion fa l s e. * 1

END;

• The iterative DO block; for example:

DO counter = start-expr TO limit-expr BY step-expr;
statement-O i / * a II s tat erne n t sex e cut e dan umb e r * /
statement-1i /* of times depending on comparison */

1* of counter with limit_expr. */

END;

The last two blocks are also referred to as DO-loops because the executable
statements within them may be executed repeatedly (in sequence) depending on the
expressions in the DO statement.

7-1

Flow Control Statements PL/M-86 User's Guide

7-2

As discussed with earlier charts, any DO statement may have multiple labels on it,
and the last (only) of these may appear. between the word END and the next
semicolon. For example:

A: B: C: 0: EM: DO;

END EM 1* indicates end of block EM; *1
1* A, B, C, 0 also end here. *1

As mentioned in Chapters 1 and 3, the placement of declarations is restricted.
Except for use in procedures, declarations are permitted only at the top of a simple
DO block, before any executable statements of the block. (This DO can, of course,
be nested within other DOs or procedures. Chapter 9 discusses the scope of declared
names.)

Each DO block can contain any sequence of executable statements, including other
DO blocks. Each block is considered by the compiler as a unit, as if it were a single
executable statement. This fact is particularly useful in the DO CASE block and the
IF statement, both discussed in this chapter.

The discussions that follow describe the normal flow of control within each kind of
DO block. The normal exit from the block passes through the END statement to the
statement immediately following. These discussions assume that none of the
statements in the block causes control to bypass that process. A GOTO statement
with the target outside the block would be one such bypass. (GOTOs are discussed
later in this chapter.)

Simple DO Blocks

A simple DO block merely groups, as a unit, a set of statements that will be executed
sequentially (except for the effect of GOTOs or CALLs):

DO;
statement-O;
statement-1 ;

statement-n ;
END;

For example:

DO;

END;

NEW$VALUE = OLD$VALUE + TEMP;
COUNT = COUNT + 1

This simple DO block adds the value of TEMP to the value of OLD$V ALUE and
stores it in NEW$VALUE. It then increments the value of COUNT by one.

PL/M-86 User's Guide Flow Control Statements

DO blocks may be nested within each other as shown in the following example:

abLe: DO;
statement-D ;
statement-1 ;

baker: DO;
statement-a;
statement-b;
statement-c ;

END baker;
statement-2;
statement-3 ;

END abLe;

The first DO statement and the second END statement bracket one simple DO
block. The second DO statement and the first END statement bracket a different
DO block inside the first one. Notice how indentation (using tabs or spaces) can be
used to make the sequence readable, so that it can be seen at a glance that one DO
block is nested inside another. It is recommended that this practice be followed in
writing PL/M-86 programs. Nesting is permitted up to 18 levels.

A simple DO block can delimit the scope of variables, as discussed in Chapter 9.

DO CASE Blocks

A DO CASE block begins with a DO CASE statement, and selectively executes one
of the statements in the block. The statement is selected by the value of an expres
sion. The maximum number of cases is 255. The form of the DO CASE block is

DOC A S E selecLexpression;
statement-D ;
statement-1 ;

statement-n;
END;

In the DO CASE statement, expression must yield a BYTE, WORD, or INTEGER
value. If it is a constant expression, it is evaluated as if it were being assigned to a
WORD variable. The value of expression must lie between 0 and n (call this value
K). K is used to select one of the statements in the DO CASE block, which is then
executed. The first case (statement-O) corresponds to K = 0, the second (statement-I)
corresponds to K = 1, and so forth. Only one statement from the block is selected-.
This statement is then executed only once. Control then passes to the statement
following the END statement of the. DO CASE block.

If the run-time value of the expression in the DO CASE statement is less
than 0 or greater than n (where n+ 1 is the number of statements in the DO
CASE block), then the effect of the DO CASE statement is undefined. This
may have disastrous effects on program execution. Therefore if there is any
possibility that this out-of-range condition may occur, the DO CASE block
should be contained within an IF statement that tests the expression to make
sure that it has a value that will produce meaningful results.

7-3

Flow Control Statements PL/M-86 User's Guide

7-4

An example of a DO CASE block is:

DO CASE SCORE;
; 1* case 0 *1
CONVERSIONS=CONVERSIONS+1; 1* case 1 *1
SAFETIES = SAFETIES + 1; 1* case 2 *1
FIELDGOALS = FIELDGOALS + 1; 1* case 3 *1

1* case 4 *1
; 1* case 5 *1
TOUCHDOWNS=TOUCHDOWNS+1; 1* case 6 *1

EN 0;

When execution of this CASE statement begins, the variable SCORE must be in the
range 0-6. If SCORE is 0, 4, or 5 then a null statement (consisting of only a
semicolon, and having no effect) is executed; otherwise the appropriate statement is
executed, causing the corresponding variable to be incremented.

A more complex DO CASE block is the following:

SELECT = COUNT-5;
IF SELECT <=2 AND SELECT >=0 THEN

DO CASE SELECT;

x = X + 1 ;

DO;
X = Y + 10;
y = y + 1 . ,

END;

DO I = LAST$HI+1 TO TOP-6
Z (I) = X*Y+1
W (I) = Z(I)*Z(I)
V (I) = W(I)-Z(I)

1*

1*

1*

;
END; 1*

Case 0 *1

Begin Case 1 *1

End Case 1 *1

1* Begin Case 2 *1

End Case 2 *1

END; 1* End DO CASE block *1
ELSE CALL ERROR;

If we assume SELECT and COUNT are INTEGER variables, negative values could
occur. The DO CASE block is placed within an IF statement to guarantee that if the
value of SELECT is less than 0 or greater than 2, execution of the DO CASE block
will not be attempted. Instead, a procedure called ERROR (declared previously) will
be activated. IF statements are discussed in section 7.2.

This example illustrates the use of a simple DO block as a single PL/M -86 state
ment. The DO CASE statement can select Case 1 or Case 2 and cause mUltiple
statements to be executed. This is only possible because they are grouped as a simple
DO block, which acts as a single statement.

DO WHILE Blocks

DO WHILE and IF statements examine only the least significant bit of the value of
the expression. If the expression is relational, e.g., A<B, the result will have a value
of OOH or OFFH, but this is incidental; it may have any BYTE or WORD value. If
the value is an odd number (least significant bit = 1) it will be considered "true." If
it is even (least significant bit = 0) it will be considered "false."

PL/M-86 User's Guide Flow Control Statements

A DO WHILE block begins with a DO WHILE statement, and has the form:

DOW H I L E expression; 1 * e x pre s s ion mu sty i e l d * 1
1* BYTE or WORD value*1

statement-O;
statement-1 ;

statement-n;
END;

The effect of this statement is as follows:

1. First the BYTE or WORD expression following the reserved word WHILE is
evaluated. If the rightmost bit of result is I, then the sequence of statements up
to the END is executed.

2. When the END is reached, expression is evaluated again, and again the
sequence of statements is executed only if the value of the expression has a
rightmost bit of 1.

3. The block is executed over and over until expression has a value whose
rightmost bit is O. Execution then skips the statements in the block and passes to
the statements following the END statement.

Consider the following example:

AMOUNT = 1;
DO WHILE AMOUNT <= 3;

AMOUNT = AMOUNT + 1;
EN 0;

The statement AMOUNT = AMOUNT + 1 is executed exactly 3 times. The value of
AMOUNT when program control passes out of the block is 4.

Iterative DO Blocks

An iterative DO block begins with an iteration statement and executes each state
ment in order in the block, repeating the entire sequence as described in this section.
The form of the iterative DO block is:

DO counter = start-expr TO limit-expr BY step-expr ;
statement-O
statement-1

END

The BY step-expr phrase is optional; if omitted, a step of 1 is used.

The counter must be a non-subscripted variable of type BYTE, WORD, or
INTEGER. The start-expr, limit-expr, and step-expr may be any valid PL/M-86
expressions also of these types. However, if counter or any of these expressions has
type INTEGER, then all must be INTEGER, as explained in Chapter 5.

An example of an iterative DO block is:

DO I = 1 TO 10;
CALL BELL;

END;

where BELL is the name of a procedure that causes a bell to be rung. The bell is rung
ten times.

7-5

Flow Control Statements PL/M-86 User's Guide

7-6

Another example shows how the index-variable can be used within the block:

AMOUNT = 0;
DO I = 1 TO 10;

AMOUNT = AMOUNT + I;
END;

The assignment statement is executed 10 times, each time with a new value for I. The
result is to sum the numbers from 1 to 10 (inclusive) and leave the sum (namely 55)
as the value of AMOUNT.

The next example uses step-expr:

I*Compute the product of the first N odd integers*1
PROD = 1;
DO I = 1 TO (2*N-1) BY 2;

PROD = PROD*I;
END;

The type of counter affects two important factors in the execution flow of iterative
DOs:

a. When step-expr is evaluated

b. What causes execution to exit the DO block.

The following steps constitute the general execution sequence of an iterative DO
block, with BYTE, WORD, or INTEGER variables and expressions in the DO
itself. Type is mentioned only for steps where it matters, i.e., where the actions or
consequences are different for different types. Where the INTEGER case is dif
ferent' it is described in parentheses. The discussion following this description sum
marizes all the rules and their results.

1. The start-expr is evaluated and assigned to counter.

2. The limit-expr is evaluated and compared with counter. (If these are INTEGER
type, then step-expr is also newly evaluated at this time.)

a. If counter is greater than limit-expr, execution exits the DO and passes to
the statement following the next END (unless step-expr is a negative
INTEGER: if so, the exit occurs only if counter is less than limit-expr.)

b. Otherwise, the statements within the DO block are executed in order until
the END statement is reached.

c. At the END, a step-expr of type BYTE or WORD is newly evaluated.

3. The counter is incremented by the value of step-expr. For BYTE or WORD
counters, if the new value is less than the old value (due to modulo arithmetic as
explained below), the loop is exited immediately.

Otherwise control returns to step 2 above.

(An 8-bit byte can represent numbers no larger than 11l1l1l1B (255 decimal). The
largest number a 16-bit word can represent is 1111111111111111B, which is 65535
decimal. If you add 1 to these values, you get O. Thus the new counter can be less
than the old.)

These rules and their consequences can be summarized in two broad cases:

A. If you start with a non-negative step-expr, then the loop is exited as soon as any
one of the following becomes true:

1. The new counter is greater than the new limit-expr.

2. An INTEGER step-expr becomes negative AND the new counter is still less
than the new limit-expr.

PL/M-86 User's Guide Flow Control Statements

3. A BYTE or WORD step-expr causes a lower counter than the one just
used.

B. If you start with a negative INTEGER step-expr, then the loop is exited as soon
as either of the following two conditions occurs:

1. The new counter is less than the new limit-expr.

2. The new step-expr becomes non-negative AND the new counter is greater
than the new limit-expr.

Upon exit from the iterative DO block:

In all cases step-expr has been reevaluated.

In all but one case limit-expr has been reevaluated: when a non-INTEGER counter
has just "gone over" and become smaller, limit-expr is unchanged from its value
during the last loop.

In all cases counter has been changed, but the step value that was added to it varies:
if INTEGER, counter has been incremented by the former step value, before it was
reevaluated. For BYTE or WORD counters, the newer step has been used.

The following distinctions can be important:

• In every case, start-expr is evaluated only once and Iimit-expr is evaluated before
anyexecution.

• An INTEGER step-expr is evaluated in step 2; other step-exprs are evaluated in
step 3.

• With a counter of BYTE or WORD, there is no such thing as a negative step.
For example, if step-expr is -5, 251 is used. Furthermore, stepping down to a
limit-expr that is less than start-expr is not possible because the loop will be
exited immediately.

7.2 The IF Statement

The IF statement provides conditional execution of statements. It takes the form:

I F expression THE N statement-a;
ELSE smtemen~b; l*optionaL*1

The reserved word THEN and the statement following it are required and are called
the "THEN part." The reserved word ELSE and the statement following it are
optional, and are called the "ELSE part. "

The IF statement has the following effect: first expression is evaluated as if it were
being assigned to a variable of type BYTE. If the result is "true" (rightmost bit lj
then statement-a is executed. If the result is "false" (rightmost bit 0), then
statement-b is executed. Following execution of the chosen alternative, control
passes to the next statement following the IF statement. Thus of the two statements
(statement-a and statement-b) one and only one is executed.

Consider the following program fragment:

IF NEW> OLD THEN RESULT = NEW;
ELSE RESULT = OLD;

Here RESULT is assigned the value of NEW or the value of OLD, whichever is
greater. This code causes exactly one of the two assignment statements to be exe
cuted. RESULT always gets assigned some v~lue, but only one assignment to
RESUL T is executed.

7-7

Flow Control Statements PL/M-86 User's Guide

7-8

In the event that statement-b is not needed, the ELSE part may be omitted entirely.
Such an IF statement takes the form:

I F expression THE N statement-a;

Here statement-a is executed if the value of expression has a rightmost bit of 1.
Otherwise nothing happens, and control immediately passes on to the next statement
following the IF statement.

For example, the following sequence of PL/M-86 statements will assign to INDEX
either the number 5, or the value of THRESHOLD, whichever is larger. The value
of INIT will change during execution of the IF statement only if THRESHOLD is
greater than 5. The final value of INIT is copied to INDEX in any case:

INIT = 5;
IF THRESHOLD> IN IT THEN INIT = THRESHOLD;
INDEX = INIT;

The power of the IF statement is enhanced by using DO blocks in the THEN and
ELSE parts. Since a DO block is allowed wherever a single statement is allowed,
each of the two statements in an IF statement may be a DO block. For example:

IF A = B THEN
DO;

END;
ELSE

DO;

END;

EQUAL$EVENTS = EQUAL$EVENTS + 1;
PAIR$VALUE = A;
BOTTOM = B;

UNEQUAL$EVENTS = UNEQUAL$EVENTS + 1;
TOP = A;
BOTTOM = B;

DO blocks nested within an IF statement can contain further nested DO blocks, IF
statements, variable and procedure declarations, and so on.

Nested I F Statements

Any IF statement (including the ELSE part, if any) may be considered a single
PL/M-86 statement (although it is not a block). Thus the statement to be executed in
a THEN or an ELSE clause may in fact be another IF statement.

An IF statement inside a THEN clause is called a "nested" IF. Nesting may be car
ried to several levels, without needing to enclose any of the nested IF statements in
DO blocks, as in the following construction:

I F expression-1 THE N
I F expression-2 THE N

I F expression-3 THE N statement-a;

Here we have three levels of nesting. Note that statement-a will be executed only if
the values of all three expressions are "true." Thus the above is equivalent to:

I F (expression-1) AND (expression-2) AND (expression-3)
THE N statement-a;

PL/M-86 User's Guide Flow Control Statements

Notice that the above example of nesting does not have an ELSE part. When using
nested IF statements, it is important to understand the following important rule of
PL/M-86:

A set of nested IF statements may only have one ELSE part, and it belongs to
the innermost (that is, the last) of the nested IF statements.

This rule could also be restated as:

When an IF statement is nested within the THEN part of an outer IF statement,
the outer IF statement may not have an ELSE part.

In other words, the construction:

I F expression-1 THE N
I F expression-2 THE N statement-a
E L S E statement-b;

is legal and means that if the values of both expression-1 and expression-2 are
"true," then statement-a will be executed. If the value of expression-1 is "true"
and the value of expression-2 is "false," then statement-b will be executed. If the
value of expression-1 is "false," neither statement-a nor statement-b will be
executed, regardless of the value of expression-2.

The construction above is equivalent to:

I F expression-1 THE N
DO:

END;

IF expression-2 THE N statement-a;
E L S E statement-b;

This construction is much more readable and offers less opportunity for error.

If the intention is for the ELSE part to belong to the outer IF statement, then the
nesting must be done by means of a DO block:

I F expression-1 THE N
DO;

EN D;

I F expression-2 THE N
statement-a;

E L S E statement-b;

Note that the meaning of this construction differs completely from the previous one.

Finally, consider the following:

I F expression-1 THE N
I F expression-2 THE N

I F expression.:.3 THE N statement-a;
E L S E statement-b;

E L S E statement-c; 1* ; l leg a l s t a feme n t * I
E L S E statement-d; 1* ; l L.e gal s tat eme n t * I

7-9

Flow Control Statements PL/M-86 User's Guide

7-10

This construction is illegal, because only one ELSE part is allowed. If the intention
is for the ELSE parts to match the IF parts as indicated by the indenting, the nesting
must be done with DO blocks, as follows:

I F expression-1 THE N
DO;

END;

I F expression-2 T HE N
DO;

EN D;
E L S E statement-c;

I F expression-3 THE N statement-a;
E L S E statement-b;

E L 5 E statement-d;

Sequential IF Statements

Consider the following example. An ASCII-coded character is stored in a BYTE
variable named CHAR. If the character is an A, we want to execute statement-a. If
the character is a B, we want to execute statement-b. If the character is a C, we want
to execute statement-c. If the 'character is neither A, B, nor C, we want to execute
statement-x. The code for doing this could be written as follows, using IF statements
that are completely independ~nt of one another:

I F C H A R = I A' THE N statement-a;
I F C H A R = I B' THE N statement-b;
I F C H A R = I C' THE N statement-c;
I F CHAR <> I A' AND CHAR <> I B I and CHAR <> I C I THEN statement-xi

This sequence is inefficient because all four IF statements (six tests in all) will be car
ried out in every case, which is wasteful when one of the earlier tests succeeds.

We need to test for 'A' in all cases. But we need to testJor 'B' only if the test for 'A'
fails and we need to test for 'C' only if both previous tests fail. Finally, if the tests
for 'A', 'B', and 'C' all fail, no further tests are needed-we must execute
statement-x. To improve the code, we rewrite it as follows:

I F C H A R = 'A I THE N statement-a;
E L S ElF C H A R = I B' THE N statement-b;
E L S ElF C H A R = 'C' THE N statement-c;
E L S E statement-x;

Notice that this sequence is not a case of "nested IF statements" as described in the
preceding section. IF statements are said to be nested only when one IF statement is
inside the THEN part of another. Here we have IF statements inside the ELSE parts
of other IF statements. This construction is called "sequential IF statements." It is
equivalent to the following:

I F C H A R = I A I THE N statement-a;
ELSE DO;

END;

I F C H A R = I BIT HEN statement-b;
ELSE DO;

EKD.;

I F C H A R = 'C' THE N statement-c;
E L 5 E statement-x;

PL/M-86 User's Guide Flow Control Statements

Sequential IF statements are useful whenever a set of tests is to be made, but you
want to skip the remaining tests whenever one of the tests succeeds. This construc
tion works in such cases because all the remaining tests are in the ELSE part of the
current test.

7.3 GOTO Statements

A GOTO statement alters the sequential order of program execution by transferring
control directly to a labeled statement. Sequential execution then resumes, beginning
with the "target" statement. The GOTO statement has the following form:

GOIO label;

For example:

GOIO ABORT;

The appearance of label in a GOTO statement is not a "label definition" -it is a
label reference.

The reserved word OOTO can also be written GO TO, with an embedded blank.

For reasons discussed in Chapter 9, GOTO statements are restricted. The only possi
ble OOTO transfers are the following:

• From a GOTO statement in the outer level of some block to a labeled statement
in the outer level of the same block.

• From a GOTO statement in an inner hlock to a labeled statement in the outer
level of an enclosing block (not necessarily the smallest enclosing block).
However, if the inner block is a procedure block, the transfer may only be to a
statement in the outer level of the main program module.

• From any point in one program module to a labeled statement in the outer level
of the main program module. To jump to such a label, you must declare. the
label to have "extended scope," i.e., declare it PUBLIC in the main module and
EXTERNAL in the module containing the OOTO.

The use of GOTOs is necessary in some situations. However, in most situations
where control transfers are desired, the use of an jterative DO, DO WHILE, DO
CASE, IF, or a procedure activation (see Chapter 10) is preferable. Indiscriminate
use of GOTOs will result in a program that is difficult to understand, correct, and
maintain.

7.4 The HALT Statement

The HALT statement has the form:

HALl;

It generates an STI instruction followed by a HL T, causing the iAPX 86 to come to
a halt with interrupts enabled (see section 10.2).

7.5 The CAUSE$INTERRUPT Statement

The CAUSE$INTERRUPT statement causes a software interrupt to be generated. It
takes the form:

CAUSE$INTERRUPT (cons~nt);

7-11

Flow Control Statements PL/M-86 User's Guide

7-12

where constant is a whole-number constant in the range 0 to 255. It generates an
INT instruction with the CONstant as the interrupt type, causing the iAPX 86
to transfer control to the appropriate interrupt vector. (See section 10.5 and
Appendix I.)

7.6 The CALL and RETURN Statements

The CALL and RETURN statements are mentioned here only for completeness,
since they do control the flow of a program. However, they are not discussed in
detail until Chapter 10.

The CALL statement is used to activate an untyped procedure (one that does not
return a value).

The RETURN statement is used within a procedure body to cause a return of con
trol from the procedure to the point from which it was activated.

CHAPTER 8
SAMPLE PROGRAM 1

At this point, we have examined all of the constructions available in PL/M-86
except procedures, and we can now consider a complete PL/M-86 program.

8.1 Insertion Sort Algorithm

The following sample program implements a straight insertion sort algorithm based
on Knuth's "Algorithm S" in The Art of Computer Programming, Vol. 3, page 81.
Readers who look up Knuth's algorithm should note the following differences:

• The algorithm has been adapted to PL/M-86 usage by using an array of
structures to represent the records to be sorted. The sort key for each record is a
member of the structure for that record.

• The algorithm has been modified by using a DO WHILE block to achieve the
same logical effect as the GOTOs implied in steps S3 and S4 of Knuth's
algorithm.

• The index I is used in a slightly different manner (it is initialized to J instead
of J-l).

The effect of the algorithm is to arrange 128 records in order according to the values
of their keys, with the smallest key at the beginning (lowest location) and the largest
key at the end (highest location).

The sorting method is as follows. Assume that the records are all in memory, stored
as an array of structures~ The key for each record is a member of the structure.

Now we go through the array from the second record (record number 1) upwards.
When we reach any given record (the "current" record), we will already have sorted
the preceding records. (The first time through, when we look at record number 1,
record' number 0 is the only preceding record.)

We take the current record, store it temporarily in a buffer, and look backwards
through the preceding records until we find one whose key is not greater than that of
the current record. Then we put the current record just after this record.

The sample program and a detailed explanation follow. Please study the program
and the explanation until you understand how the program works (especially the DO
WHILE block, which is controlled by a more complex condition expression than we
have seen up to this point).

M: DO; I*Beginning of moduLe*1

DECLARE RECORD (128) STRUCTURE (KEY BYTE, INFO WORD);

DECLARE CURRENT STRUCTURE (KEY BYTE, INFO WORD);

DECLARE (J,I) WORD;

1 * 0 a t a i s rea din t 0 i nit i aLi z e the r e cor d s • *-1

8-1

Sample Program 1 PL/M-86 User's Guide

8-2

SORT: DO J = 1 TO 127i
CURRENT.KEY = RECORD(J).KEYi
CURRENT.INFO = RECORD(J).INFOi
I = J i

FIND: DO WHILE I> 0 AND RECORD(I-1).KEY > CURRENT.KEYi
RECORD(I).KEY = RECORD(I-1).KEYi
RECORD(I).INFO = RECORD(I-1).INFOi
I = I-1i

END FINDi

RECORD(I).KEY = CURRENT.KEYi
RECORD(I).INFO = CURRENT.INFOi

END SORTi

I*Data is written out from the records.*1

END Mi I*End of module*1

Let us now consider the text of this program. First we declare the following
variables:

• RECORD, an array of 128 structures to hold the 128 records. Each structure
has a BYTE member which is the sort key, and a WORD member which could
contain anything (in a working program, this would be the data content of the
record).

• CURRENT, a structure used as a buffer to hold the current record while we
look back through the records already sorted. Its members are like those of one
structure element of RECORD.

• J, which will be used as an index variable in an iterative DO statement. J is
always the subscript of the current record. When J becomes greater than 127,
the sort is done.

• I, which will be used like an index variable in controlling a DO WHILE block.
I -1 is always the subscript of a previously sorted record.

A working program would include code at this point to read data into the array
RECORD. At the end of the program, there would be code to write out the data
from RECORD. In this example, we omit this code because it would make the exam
ple too lengthy and because the method used for I/O would depend on the particular
system used to execute the program. Comments have been inserted in place of this
code.

The executable part of the program is organized as two DO blocks, one nested
within the other. The outer block (labeled SORT) is an iterative DO block which
goes through the records one at a time. The record selected by the index variable J
each time through this block is the "current record." (Notice that J is never
O-because of the way the algorithm is defined, we must have a preceding element to
look back at, and so we start with the second element of the array and look back at
the first.)

The first two assignment statements in the block transfer the current record into
CURRENT. The next statement sets the initial value for I, which will be used to con
trol the inner block.

The inner block (labeled FIND) is the one that looks back through previously sorted
records to find the right place to put the current record. The way this block is con
trolled is worth examining. The variable I is used like an index variable in an
iterative DO, but it is changed explicitly inside the block, instead of automatically as

PL/M-86 User's Guide Sample Program 1

in an iterative DO statement. The DO WHILE construction is used instead of an
iterative DO because it allows two or more tests to be combined-in this case, by·
means of an AND operator.

I is set to J before the first time through the DO WHILE block, and decremented
each time through. As long as I remains greater than 0, the first half of the DO
WHILE condition is satisfied.

The value I-I is the subscript of the record being' 'looked back at." The second half
of the DO WHILE condition is that the key of this record must be greater than the
key of the current record.

We are looking for a previously sorted record whose key is not greater than the key
of the current record. Thus the condition in the DO WHILE statement will cause the
DO WHILE block to be repeatedly executed until such a record is found, or until I
reaches 0 (meaning that all previously sorted records have been examined).

Each time the DO WHILE block is executed, it moves the I-1st record "up" into
the Ith position, and then decrements I.

When the condition in the DO WHILE statement is not met, one of the following is
true:

• I = 0, because we have looked through all the previously sorted records without
finding one whose key is not greater than that of the current record. All of the
previously sorted records have been moved "up" by one.

• I-I is the subscript of a record whose key is not greater than the key of the
current record. All of the previously sorted records whose keys are greater than
that of the current record have been moved "up" by one.

In either case, the failure of the DO WHILE condition means that the current record
(being held in CURRENT) belongs in the Ith position. It is transferred into this posi
tion by the two assignment statements that form the remainder of the outer DO
block.

Now the outer DO block repeats with an incremented value of J, to consider the next
unsorted record.

Notice that the entire program is contained within a simple DO block labeled M.
This makes it a "module," as described in Chapter 1.

8-3

CHAPTER 9
BLOCK STRUCTURE AND SCOPE

This chapter is intended to clarify the meaning of outer level and the concept of
scope, including the use of the linkage attributes, PUBLIC and EXTERNAL.

The outer level of a block means statements (or labels) contained in the block but
not contained in any nested blocks. The term "exclusive extent" also has this mean
ing. The inner level, or "inclusive extent," includes this outer level and all nested
blocks as well.

A block "at the same level" as another block means both are contained by exactly
the same outer blocks.

The scope of an object means those parts of a program where its name, type, a:nd
attributes are recognized, i.e., handled according to a given declaration. An object
means a variable, label, procedure, or symbolic (named) constant (i.e., a compila
tion constant or execution constant as discussed in Chapter 3). A program is the
complete set of modules that are ultimately linked together and located as a unit.

These definitions are explained further by the text and examples that follow:

9.1 Names Recognized Within Blocks
Throughout this manual we have seen that PL/M-86 is a block-structured language,
enabling you to implement your design for solving a problem, processing data, or
controlling hardware.

You create blocks of code containing declarations followed by executable
statements. You order and nest the blocks in such a way as to simplify and clarify
the flow of data and control. (The maximum nest is 18 blocks deep.) A collection of
these blocks that performs a single function, or a small set of related functions, is
usually compiled as one module, as discussed in Chapter 1.

Beyond the advantages of modularity, simplicity, and clarity, the nesting of blocks
serves another very basic purpose: names declared at an outer level are known to all
statements of all nested blocks as well.

You can always declare a new meaning for any such name within a nested simple
DO or procedure block, thereby cutting off its earlier meaning for this block. But if
you don't choose this option, its meaning is established by a single declaration at an
outer level. (The only objects that don't require declarations prior to use are labels
and reentrant procedures.)

In figure 9-1, everything inside the solid line constitutes the inclusive extent of block
MMM (in this case, module MMM). KK is known throughout this block, including
within all nested blocks.

Everything inside the dashed line constitutes the inclusive extent of block SORT.
JJ and II are known throughout this block, but not outside it, that is, not before the
label SORT or after the END SORT statement.

Everything inside the dotted line constitutes the inclusive extent of block FIND.
Since this is not a simple-DO or procedure block, declarations are not allowed. All
prior declarations shown are available for use within FIND.

See also figure 9-2.

Block Structure and Scope PL/M-86 User's Guide

9-2

MMM: DO; I*Beginning of module*1
DECLARE RECORD (128) STRUCTURE

(KEY BYTE,
INFO WORD);

DECLARE CURRENT STRUCTURE
(KEY BYTE,
INFO WORD);

DECLARE KK BYTE:
KK = 127;
I*Instructions here would read in data.*1
SORT: roo; ------------------------,

DECLARE (JJ,II) INTEGER;
DO JJ = 1 TO 127;

CURRENT.KEY = RECORO(JJ).KEY;
CURRENT.INFO = RECORO(JJ).INFO;
II = JJ;

FIN 0: :" "0"0" "w"Ii"i L"E"" i"i" ":>"" 0" "AND""""""·"·"""""""""""""""""""":
: RECORD(II-1).KEY> CURRENT.KEY; :
: RECORD(II).KEY = RECOROCII-1).KEYi :
: RECORD(II).INFO = RECORO(II-1).INFO;:
: II = 11-1; :
: END FIND; :

R E COR 0 (i"i)" :"K"e'{"::" "CU R"R"EN"t": R"E"V;""""""··"·"·"··"···"""··"··
RECORD(II).INFO = CURRENT.INFO;
END;

LEND SORT;
-----------~-------------~

I*Instructions here wouLd write out
data from the records.*1

END M M M ; I I * End 0 f mo d u l e * I

Figure 9-1. Inclusive Extent of Blocks

PL/M-86 User's Guide Block Structure and Scope

MMM: DO; I*Beginning of moduLe*1
DECLARE RECORD (128) STRUCTURE

(KEY BYTE,
INFO WORD);

DECLARE CURRENT STRUCTURE
(KEY BYTE,
INFO WORD);

DECLARE KK BYTE:
KK = 127;
I*Instructions here would read in data.*1

SORT:

I*Instructions here would write out
data from the records.*1

END MMM; I*End of moduLe*1

Figure 9-2. Outer Level of Block SORT

The shaded area is the exclusive extent (the outer level) of block SORT. The
unshaded area within SORT is the exclusive (and inclusive) extent of block FIND.
To the instructions within the FIND block, SORT's exclusive extent is an outer level.
The outermost level (or module level) is the area outside the solid lines enclosing the
SORT block.

Restrictions on Mu·ltiple Declarations

In any given block, a known name cannot be redeclared at the same level as its
original declaration. A new declaration is permitted inside a nested simple-DO or
procedure block, where it automatically identifies a new object despite the existence
of the same name at a higher level. The new object will be the only one known by
this ·name within its block, and it will be unknown outside its block, where the prior
name maintains its meaning. These observations also apply when a name is
redeclared in another block at the same level as the block containing the original
declaration.

When a name is declared only in a separate block at the same level, there is no way
to access it except in that block where it is declared. The definition is not at an outer
level to the block in which you are now programming. Any local declaration you
supply will establish a new separate object, whose values bear no relation to those of
the other.

9-3

Block Structure and Scope PL/M-86 User's Guide

9-4

The reason for these rules, as for many in programming, is that there must be no
ambiguity about what address/location is meant by each name in the program. The
declaration rules above give you freedom to choose whatever names seem
appropriate within a given block, without interfering with exterior uses of them. But
when you redeclare a name, its outer-level meaning is inaccessible until execution
exits the block containing the new declaration. For example:

A: DO;
DECLARE X, Y, Z BYTE;

L1: X=2i
Y=Xi
Z=Xi

B: DO;
DECLARE X, Y BYTE;
X=3;
Y=Xi

L2: Z=X;

END Bi

L3: I*At this point, X=2, Y=2, Z=3, because the value
of the redeclared X was used to fill Z*I

I*If statement L2 were outside the loop labeled B,
then Z would be 2 because the outer X value would
be used.*1

9.2 Extended Scope: The PUBLIC and EXTERNAL
Attributes

These attributes permit you to extend the scope of names for all objects except
modules; a module name may not be declared with either attribute.

By "extend the scope," we mean make the names available for use in modules other
than the one where they are defined. (The names are already available to nested
blocks in this module.) To be specific, this includes names for variables, labels, pro
cedures, and execution constants.

For example, the statement:

DECLARE FLAG BYTE PUBLIC;

causes a byte to be allocated, named FLAG, and its address made known to any
other module where the following declaration occurs:

DECLARE FLAG BYTE EXTERNAL;

Similarly, if one module has a procedure declaration block that begins:

SUMMER: PROCEDURE (A,B) WORD PUBLIC;
DECLARE (A,B) BYTE;
. I*other declarations can go here*1
. I*executable statements go here,

defining the procedure*1

END SUMMERi

PL/M-86 User's Guide Block Structure and Scope

then any other module may invoke SUMMER if it first declares:

SUMMER: PROCEDURE (A,B) WORD EXTERNAL;
I*A,B can be any names*1

DECLARE (A,B) BYTE;
I*but these names must match them,*1

I*and each type must match its public definition*1
END SUMMER;

Since no ambiguity of location or definition is permissible, the use of PUBLIC and
EXTERNAL must follow a strict set of rules, as follows:

1. These attributes may only be used in a declaration at the outermost level of a
module, i.e., never in a nested block.

2. Only one may appear on any declaration, and only once. Thus:

DECLARE ZETA BYTE PUBLIC EXTERNAL; l*error*1
DECLARE RHO WORD PUBLIC PUBLIC; l*error*1

and similar constructs are all invalid.

3. Names may be declared PUBLIC at most once. The PUBLIC declaration is the
defining declaration: the address it creates is used in each procedure or module
where the same name is declared EXTERNAL. Clearly you must not create
more than one PUBLIC address for any name.

4. Names may only be declared EXTERNAL if they are also declared PUBLIC in
a different module of the program. The EXTERNAL attribute is essentially a
request to use a PUBLIC address. An EXTERNAL without a PUBLIC is a
dead letter. Lack of a definition elsewhere will result in a link -time error.

5. Where the name is declared EXTERNAL, it must be given the same type as
where it is declared PUBLIC. Any contradiction of type would violate the inten
tion to use the location(s) and content(s) defined elsewhere.

6. Similarly, names declared EXTERNAL must not be given a location, i.e., with
the AT phrase, or an initialization, i.e., using DATA or INITIAL value. Such
usage would again contradict the fact of being defined in another module.

However, in that other module, where this name is declared PUBLIC, the use of
AT, DATA, or INITIAL is allowed with it.

7. Neither PUBLIC nor EXTERNAL may be applied to a name that is based. For
example:

DECLARE PTR1 POINTER;
DECLARE V1 BAS6D PTR1 PUBLICi

is invalid. The reason: by definition, VI has no home of its own; its location is
always determined by PTRI. Thus to declare VI PUBLIC or EXTERNAL does
not permit the correct assignment of addresses. PTRl, on the other hand,
always contains the current address of VI. Declaring the base, PTRI in this
case, to be PUBLIC and EXTERNAL is always permissible, since it permits
valid results.

(Four additional restrictions on the use of PUBLIC and EXTERNAL procedures
appear in Chapter 10.)

Following these rules will permit consistent and reliable execution of programs using
names with extended scope. A PUBLIC definition occurring in one module will then

9-5

Block Structure and Scope PL/M-86 User's Guide

MOD1 :

9-6

be used by all related references to that name in separate modules, that is, references
which declare the name EXTERNAL. The diagram below illustrates this:

DO
DECLARE V1 BYTE PUBLIC;

END MOD1;

MOD2: DO;
DECLARE V1 BYTE EXTERNAL;
QQ4: PROCEDURE PUBLIC;

END QQ4i
END MOD2;

Both references to V 1 will use the same definition (location) for VI, namely that in
module MODI. Similarly, if any module needed to call procedure QQ4, it would
first need a declaration like

QQ4: PROCEDURE EXTERNAL;
END QQ4 ;

so that a subsequent CALL QQ4 would correctly pass control to that procedure in
module MOD2.

9.3 Scope of Labels and Restriction on GOTOs

Labels are subject to exactly the same rules of scope discussed above.

One consequence is that a label is unknown outside the block where it is declared. As
discussed in Chapter 1, a label is either declared ~xplicitly at the beginning of a
simple-DO or procedure block, or the compiler considers it to be declared there as
soon as it is defined by use anywhere in the block. Therefore the discussion of what
names are known in which blocks applies directly to labels as well as other names.

The label on a block is not part of the block it names. For example, the name on the
DO enclosing the module itself is not part of that DO; it merely names it. For nested
blocks, a label is again not part of the block it names, but belongs instead to the
outer level, as part of that first enclosing block.

If a name used as a label on a block is defined inside that block, it will name a new
thing, be it label, variable, or constant. There will be no confusion with the outer
label name. This fact leads to important restictions on use of the GOTO statement:

1. It is impossible for a GOTO to transfer control from an outer block to a labeled
statement inside a nested block.

2. Moreover, a GOTO can transfer control from one block to another in the same
module only if the target block encloses the one containing the GOTO (and only
if the name of that target label is not declared in the nested block.)

Furthermore, a label with the PUBLIC attribute is permitted only in the main
module. (This has the interesting consequence of forcing all other transfers of con
trol, that is, not involving a return to the main module, to use procedure calls. This
favors the development of orderly, modularized, traceable programs.)

PL/M-86 User's Guide Block Structure and Scope

In fact, only three GOTO transfers are possible, as follows:

1. From one point in the outer level of a block to another statement also in the
outer level of that block

2. From an inner, nested DO-block (not a nested procedure) to a statement in the
outer level of any enclosing block

3. To a main-program label that is declared PUBLIC, from any point in any
module that declares that label EXTERNAL

(Recall that only labels at the outer level of a main program may be declared
PUBLIC.)

Given the program structure and declarations shown in figure 9-3, the only valid
GOTO transfers are shown in figure 9-4. A single-headed arrow means the transfer
is valid only in the direction shown. A double-headed arrow means both directions
are valid, i.e., a GOTO may be used from either label to the other label.

MAIN: DOi
DECLARE (LAB33, LAB77) LABEL PUBLIC;
DECLARE IT BYTE;

LAB33: . ,
DO;

END;

.
LAB7?:

DO WHILE IT > 0;

END;

END MAINi

Figure 9-3. Sample Program Modules Illustrating Valid OOTO Usage

9-7

Block Structure and Scope PL/M-86 User's Guide

9-8

MOD1: DO;
P1: PROCEDURE;

DECLARE (LAB33,LAB77) LABEL EXTERNAL;
L 1: • • • ,

L3: • .

END MOD1;

MOD2: DO;

.
P4: PROCEDURE;

DO
DECLARE KO BYTEi
P2: PROCEDURE

. ,

END P1i

.
L2: . ,

END P2;

DECLARE (LAB33,LAB77) LABEL EXTERNAL;

L4:

L5:

.
L7:

END P4;
L8: . . . ,

END MOD2;

. . ,
DO;

L6 :

END

Figure 9-3. Sample Program Modules Illustrating Valid GOTO Usage (Cont'd.)

PL/M-86 User's Guide Block Structure and Scope

Figure 9-4 illustrates legal GOTO transfers, in fact, the only transfers permitted
among the given labels in figure 9-3.

LAB33

OR

LAB77

Figure 9-4. Valid GOTO Transfers 121636-1

9-9

CHAPTER 10
PROCEDURES

A procedure is a section of PL/M-86 code which is declared without being executed,
and then activated from other parts of the program. A function reference or CALL
statement activates the procedure, causing the procedure code to be executed (even
if it is physically located elsewhere): program control is transferred from the point of
activation to the beginning of the procedure code, the code is executed, and upon
exit from the procedure code, program control is passed back to the statement
immediately after the point of activation.

The use of procedures forms the basis of modular programming. It facilitates mak
ing and using program libraries, eases programming and documentation, and
reduces the amount of object code generated by a program. The following sections
review how to declare procedures, and tell how to activate procedures:

10.1 Procedure Declarations

You must declare procedures, just as you must declare variables. Thereafter, any
reference to a procedure must occur within the scope defined by the procedure
declaration. Also, a procedure may not be used (called, or invoked in an expression)
until after the END statement of the procedure declaration (unless reentrant-see
section 10.5).

A procedure declaration consists of three parts: a PROCEDURE statement, a
sequence of statements forming the "procedure body," and an END statement.

The following is a simple example:

DOOR$CHECK:PROCEDUREi
IF FRONT$DOOR$lOCKED AND SIDE$DOOR$lOCKED THEN

CALL POWER$ONi
ELSE CAll DOOR$AlARMi

END DOOR$CHECKi

where POWER$ON and DOOR$ALARM are procedures declared elsewhere in the
same program.

NOTE

The name in a PROCEDURE statement has the same appearance as a label
definition-but it is not considered a label definition, and a procedure name
is not a label. PROCEDURE statements may not be labeled.

The name is a PL/M-86 identifier, which is associated with this procedure. The
scope of a procedure is governed by the placement of its declaration in the program
text, just as the scope of a variable is governed by the placement of its DECLARE
statement (see Chapter 9 for a detailed description). Within this scope, the pro
cedure can be activated by the name used in the PROCEDURE statement.

A procedure declaration, like a DO block, controls the scope of variables as
described in Chapter 9. Also, like a simple DO block, a procedure declaration may
contain DECLARE statements, and they must precede the first executable statement
in the procedure body.

As in a DO block, the identifier in the END statement has no effect on the program,
but helps legibility and debugging. If used, it must be the same as the procedure
name.

10-1

Procedures

10-2

PL/M-86 User's Guide

The parameter list and the type are discussed in the following two sections.

Parameters

Formal parameters are non-based scalar variables declared within a procedure
declaration, whose identifiers appear in the parameter list in the PROCEDURE
statement. The identifiers in the list are separated by commas and the list is enclosed
in parentheses. No subscripts or member-identifiers are allowed in the parameter
list.

If the procedure has no formal parameters, the parameter list (including the paren
theses) is omitted from the PROCEDURE statement.

Each formal parameter must be declared as a non-based scalar variable in a
DECLARE statement preceding the first executable statement in the procedure
body. However, procedure parameters are not stored according to the same rules as
other declared variables. In particular, do not assume that a parameter is stored con
tiguously with other variables declared in the same factored variable declaration.

When a procedure that has formal parameters is activated, the CALL statement or
function reference contains a list of actual parameters. Each actual parameter is an
expression whose value is assigned to the corresponding formal parameter in the
procedure, before the procedure begins to execute.

For example, the following procedure takes four parameters, called PTR, N,
LOWER, and UPPER. It examines N contiguously stored BYTE variables. The
parameter PTR is the location of the first of these variables. If any of these variables
is less than the parameter LOWER or greater than the parameter UPPER, the
ERRORSET procedure (declared elsewhere in the program) is activated:

RANGE$CHECK: PROCEDURE(PTR,N,LOWER,UPPER);
DECLARE PTR POINTER;
DECLARE (N, LOWER,UPPER, I) BYTE;
DECLARE ITEM BASED PTR(1)BYTEi

DO I = 0 TO N-1;
IF (ITEM(I) < LOWER) OR (ITEM(I) > UPPER)
THEN CALL ERRORSET;

I*ERRORSET is a procedure declared elsewhere*1

EN 0 i
END RANGE$CHECK;

Notice that the array ITEM is declared to have only one element. Since it is a based
array, a reference to any element of ITEM is really a reference to some location
relative to the location represented by PTR. In writing the procedure
RANGE$CHECK, we must supply a dimension specifier above zero for ITEM so
that references to ITEM can be subscripted. But it does not matter what the dimen
sion specifier is. We arbitrarily use 1 here.

Having made this declaration, suppose that we have 25 variables stored contiguously
in an array called QUANTS. We want to check that all of these variables have values
within the range defined by the values of two other BYTE variables, LOW and
HIGH.

We write:

CALL RANGE$CHECK (@QUANTS, 25, LOW, HIGH);

PLIM-86 User's Guide

When this call statement is processed, the following sequence occurs:

• The four actual parameters in the CALL statement-@QUANTS, 25, LOW,
and HIGH-are assigned to the formal parameters PTR, N, LOWER, and
UPPER, which were declared within the procedure RANGE$CHECK. Since
ITEM is based on PTR and the value of PTR is @QUANTS, every reference to
an element of ITEM becomes a reference to the corresponding element of
QUANTS.

• The executable statements of the procedure RANGE$CHECK are executed,
and if any of the values are less than the value of LOW or greater than the value
of HIGH, the procedure ERRORSET is activated.

• Finally, control returns to the statement following the CALL statement.

Notice how the use of a based variable, with the base passed as a parameter, allows
the procedure to have its own unchanging name (ITEM) for a set of variables which
may be a different set each time the procedure is activated.

When a procedure has more than one parameter, PL/M-86 does not
guarantee the order in which actual parameters will be evaluated when the
procedure is activated. If one actual parameter changes another actual
parameter, the results are undefined. This can occur if an expression used as
an actual parameter contains an embedded assignment or function
reference which changes another actual parameter for the same procedure.
See also the caution below.

Typed Versus Untyped Procedures

The procedure shown above is an untyped procedure. No type is given in the PRO
CEDURE statement, and it does not return a value. An untyped procedure is acti
vated by using its name in a CALL statement, as shown above and as explained in
section 10.2.

A typed procedure, also called a function, has a type in its PROCEDURE state
ment: BYTE, WORD, DWORD, INTEGER, REAL, POINTER, or SELECTOR.
Such a procedure returns a value of this type, to be used in an expression or stored as
the value of a variable. The procedure is activated by using its name as an operand in
an expression,as a special kind of variable reference called a "function reference."

When the expression is processed at run time, the function reference causes the pro
cedure to be executed.· The function reference itself is then replaced by the value
returned by the procedure. The expression containing the function reference is then
evaluated, and program execution continues in normal sequence.

Like an untyped procedure, a typed procedure may have parameters. They are
handled as described above.

Procedures

10-3

Procedures

10-4

PL/M-86 User's Guide

The body of a typed procedure must always contain a RETURN statement with an
expression, as explained later in this chapter.

The body of a typed procedure may contain code (such as an assignment
statement) that changes the value of some variable declared outside the pro
cedure. This is called a "side effect."

Recall that PL/M-86 does not guarantee the order in which operands in an
expression are evaluated. Therefore, if a-function used in an expression has
the side effect of changing the value of another variable in the same expres
sion, the value of the expression depends on whether the function reference
or the variable is evaluated first. -

If the analysis of the expression does not force one of these operands to be
evaluated before the other, then the value of the expression is undefined.

This situation can be avoided by using parentheses to segregate any typed
procedure that has a side effect, or using it in an assignment statement first
to create an unambiguous sequence.

10.2 Activating a Procedure--Function References
and CALL Statements

There are two forms of procedure activation, depending on whether the procedure is
typed or untyped. An untyped procedure is activated by means of a CALL state
ment, which has the form:

CA LL name;

or:

CAL L name (parameter list) ;

An example is the following:

CALL REORDER (@RANKSTABLE,3);

(An alternate form of the CALL statement is discussed later.)

A typed procedure is activated by means of a function reference, which is an
operand in an expression and has the form

name

or

name(parameter list)

This occurs as an operand in an expression, as in the following example:

TOTAL = SUBTOTAL + SUMSARRAY (@ITEMS,COUNT);

where SUM$ARRA Y is a previously declared typed procedure. The value added to
SUBTOTAL will be the value returned by SUM$ARRA Y using the actual
parameters (@ITEMS, COUNT). See the cautionary note in section 10.1.

PL/M-86 User's Guide

In both forms of procedure activation, the elements of the parameter list are called
"actual parameters," to distinguish them from the "formal parameters" of the pro
cedure declaration. At the time of activation, each actual parameter is evaluated and
the result assigned to the corresponding formal parameter in the procedure declara
tion. Then the procedure body is executed. Any PL/M-86 expression may be an
actual parameter if its type is the same as that of the corresponding formal
parameter.

The actual parameter list in a procedure activation must also match the formal
parameter list in the procedure declaration-that is, it must contain the same
number of parameters of the same type in the same order. If the procedure is
declared without a formal parameter list, then no actual parameter list can be used
in the activation.

As in expression evaluation and assignment statements (see Chapter 5), a few type
conversions are performed automatically when necessary in activating and returning
from a procedure. The built-in explicit type conversion procedures of Chapter II
can also be used to force the value of an expression to a desired type.

Indirect Procedure Activation

The CALL statement, in the form shown above, activates an untyped procedure by
its name. It is also possible to activate an untyped procedure by its location. This is
done by means of a CALL statement with the form:

CAL L identifier [.member-identifier] [(parameter list)];

The identifier may not be subscripted, though it may be a structure reference. It
must be a fully Qualified POINTER or WORD type variable reference, and its value
is assumed to be the location of the entrypoint of the procedure being activated.

NOTE

Calls through 32-bit POINTERs will be translated into "long" calls while
those through 16-bit WORDs or POINTERs (in the SMALL case) will be
translated into "short" calls (relative to the current code segment). The
compiler will issue a warning if the wrong addressing type is used to gain a
procedure address for later indirect calls.

A normal CALL uses the name of the procedure, and the compiler checks to make
sure that the correct number of parameters is supplied, and performs automatic type
conversion on the actual parameters.

When the CALL statement uses a location, the compiler does not check the number
of parameters or perform type conversion. If the number of parameters is wrong or
if an actual parameter is not of the same type as the corresponding formal
parameter, the results are unpredictable.

10.3 Exit from a Procedure: The RETURN Statement

The execution of a procedure is terminated in one of three ways:

• By execution of a RETURN statement within the procedure body. A typed
procedure must contain a RETURN statement with an expression.

• By reaching the END statement that terminates the procedure declaration.

• By executing a OOTO to a statement outside the procedure body. The target of
the OOTO must be at the outer level of the main program (see Chapter 9).

Procedures

10-5

Procedures

10-6

PL/M-86 User's Guide

The RETURN statement takes one of two forms:

RETURN;

or

RET URN expression;

The first form is used in an untyped procedure. The second form is used in a typed
procedure. The value of expression becomes the value returned by the procedure. It
is evaluated as if it were being assigned to a variable of the same type as used on the
PROCEDURE statement.

10.4 The Procedure Body

The statements within the procedure body may be any valid PL/M-86 statements,
including CALL statements and nested procedure declarations:

Example 1

The following is a typed procedure declaration:

AVG: PROCEDURE (X,Y) REAL;
DECLARE (X,Y) REAL;
RETURN (X + Y)/2.0;

END AVG;

This procedure could be used as follows:

LOW = 3.0;
HIGH = 4.0;
MEAN = AVG (LOW, HIGH);

The effect would be to assign the value 3.5 to MEAN.

Example 2

The following is an untyped procedure:

AOUT: PROCEDURE (ITEM);
DECLARE ITEM WORD;

END AOUT;

IF ITEM = OFFH THEN COUNTER = COUNTER + 1;
RETURN;

Here COUNTER is some variable declared outside the procedure, i.e., it is a
"global" variable. This procedure could be activated as follows:

CALL AOUT (UNKNOWN);

If the value of the variable UNKNOWN is greater than or equal to OFFH, the value
of COUNTER will be incremented.

PL/M-86 User's Guide

Example 3

This example demonstrates an important use of based variables:

SUMSARRAY: PROCEDURE (PTR,N) BYTE;
DECLARE PTR POINTER,

SUM=Oi

ARRAY BASED PTR(1) BYTE,
(N, SUM, I) BYTEi

DO I = 0 TO N;
SUM = SUM + ARRAY(I);

END;
RETURN SUM;

END SUMSARRAY;

This procedure returns the sum of the first N + 1 elements (from the Oth to the Nth)
of a BYTE array pointed to by PTR. Notice that ARRAY is declared to have i ele
ment. Since it is a based variable, no space is allocated for it. It must be declared as
an array (with a non-zero dimension) so that it can be subscripted in the iterative DO
block. The choice of 1 as the constant in the dimension specifier is arbitrary, and
does not restrict the value of N that may be supplied when the procedure is
activated.

The procedure could be used as follows to sum the elements of a 100-element BYTE
array named PRICE, and assign the sum to the variable TOTAL:

TOTAL = SUM$ARRAY(@PRICE,99);

10.5 The Attributes: PUBLIC and EXTERNAL,
INTERRUPT, REENTRANT-

The PUBLIC and EXTERNAL attributes can be included in PROCEDURE
statements to give procedures extended scope. Extended scope is discussed in
Chapter 9.

A procedure declaration with the PUBLIC attribute is called a "defining declara
tion." A procedure declaration with the EXTERNAL attribute is called a "usage
declaration." Most of the rules for PUBLIC and EXTERNAL appeared in Chapter
9. The following additional rules apply to the use of the EXTERNAL attribute in a
procedure ~eclaration:

1. The EXTERNAL attribute may not be used in the same PROCEDURE
statement as a PUBLIC or REENTRANT attribute (see below). Note, however,
that the defining declaration of a procedure may have the REENTRANT
attribute.

2. A usage (EXTERNAL) declaration of a procedure should have the same
number of parameters as the defining (PUBLIC) declaration. Variable types
and dimension specifiers should match up in the same sequence in both dec
larations. The names of the parameters need not be the same. Note that a
discrepancy between the parameter lists in the defining declaration and a usage
declaration will not be automatically detected. (See Chapter 15 for a description
of the TYPE control to detect such an error at module linkage time.)

3. The procedure body of a usage declaration may not contain anything except the
declarations of the formal parameters. The formal parameters must be declared
with the same types as in the defining declaration.

4. No labels may appear in a usage declaration.

Procedures

10-7

Procedures

10-8

PL/M-86 User's Guide

For example, we can alter the procedure A VG (from Example 1 above) by giving it
the PUBLIC attribute:

AVG: PROCEDURE (X,V) REAL PUBLIC;
DECLARE (X,V) REAL;
RETURN (X + V)/2.0;

END AVG;

In another module, we can have a usage declaration:

AVG: PROCEDURE <X,V) REAL EXTERNAL;
DECLARE <X,V) REAL;

END AVG;

Now, in the module with the usage declaration, we can reference AVa in an exe
cutable statement:

MIDDLE = AVG (FIRST, LATEST);

thereby activating the procedure A va as declared in the first module.

Interrupts and the INTERRUPT Attribute

The INTERRUPT attribute allows you to define a procedure to handle some condi
tion signaled by an iAPX 86 interrupt, e.g., from a peripheral device. A procedure
with this attribute is activated when the corresponding interrupt signal is received in
the iAPX 86 based system. The PL/M-86 statement CAUSE$INTERRUPT (con
stant) can also be used to initiate an interrupt signal.

The INTERRUPT attribute can be used only in declaring an untyped procedure with
no parameters, at the outermost level of a program module. It may be declared
PUBLIC, EXTERNAL, and/or REENTRANT. The form is:

INTERRUPT n

where n is any decimal number from 0 to 255. Each number can only be used once in
a program. Each such procedure is then referred to as an interrupt procedure. Such
a procedure is necessary if you wish to provide non-default handling of exception
conditions arising in floating-point arithmetic (see Chapter 13).

How they work is clarified in the following discussion of the iAPX 86 interrupt
mechanism and the PL/M-86 instructions ENABLE and DISABLE.

The iAPX 86 interrupt mechanism has two states: enabled or disabled. The
ENABLE statement permits interrupts to take effect and the DISABLE prevents
them from having any effect. The HALT statement also enables interrupts. (The
iAPX 86 CPU always starts with interrupts disabled, but the compiler enables them
in the code it inserts at the beginning of the main program, the "prologue.")

When some peripheral device sends an interrupt to the iAPX 86 CPU, it is ignored if
the interrupt mechanism is disabled. If interrupts are enabled, the interrupt is pro
cessed as follows:

1. The CPU completes any instruction currently in execution.

2. The CPU sends an "acknowledge interrupt" signal and then the interrupting
device sends its interrupt number.

·3. The interrupt mechanism is disabled. This prevents any other device from
interfering.

PL/M-86 User's Guide

4. Control passes to the interrupt procedure whose number matches the number
sent by the peripheral device. If no such procedure has been established, the
results are undefined, since the vector which transfers control remains
unini tialized.

5. When the procedure is through (by executing a RETURN or reaching the END
of the procedure), the interrupt mechanism is enabled so other devices may be
serviced, and control returns to the point where the interrupt occurred.

It is possible (as with other untyped procedures) for the procedure to terminate
by executing a GOTO with a target outside the procedure, in the outer level of
the main program module. In this case, control will never be returned to the
point where the program was interrupted, and interrupts will not be
automatically enabled.

The following is an example of an interrupt procedure for a hypothetical system
where a peripheral device initiates an "interrupt 45" whenever the temperature of a
device exceeds a certain threshold. The interrupt procedure turns on an annunciator
light, updates a status word, and returns control to the program:

HITEMP: PROCEDURE INTERRUPT 45;
CALL ANNUNCIATOR(1);

I*This will ~esuLt in an output from
the 8086 to turn on annunciator Light
number 1, the high-temperature
warning.*1

ALERT = ALERT OR 000000108;

END HITEMP

I*This puts a 1 in one of the bit posi
tions of ALERT, which contains a bit
pattern representing current alerts.*1

Activating an Interrupt Procedure with a CALL Statement

A procedure with the INTERRUPT attribute may also be activated by means of a
CALL statement, like any other untyped procedure. However, when this is done,
the programmer must bear in mind that interrupts are not automatically disabled
upon activation of the procedure. If interrupts are enabled when the CALL is exe
cuted, then unless the procedure has a DISABLE as its first executable statement, it
will run with interrupts enabled and should have the REENTRANT attribute (see
next section).

In every other respect, an interrupt procedure activated by a CALL statement is like
any other procedure so activated.

NOTE
Unlike PL/M-80, PL/M-86 interrupt routines activated with a CALL state
ment do not alter the interrupt enable status. This means that termination
of the procedure by means qf a RETURN statement or the END statement
will not automatically enable interrupts.

Section 7 of Chapter 11 discusses the built-in function INTERRUPT$PTR, which
returns the interrupt entry point, given an interrupt procedure name, and also the
built-in procedure SET$INTERRUPT, which sets an interrupt vector given the
interrupt procedure name and number.

Procedures

lO-9

Procedures

10-10

PL/M-86 User's Guide

The CAUSE$INTERRUPT statement causes a software interrupt to the vector
specified in the statement:

CAUS E$ IN T E R RU PT(constant);

where constant is in the range 0 to 255.

Reentrancy and the REENTRANT Attribute

The REENTRANT attribute allows a procedure to suspend execution temporarily,
restart with new parameters, and then later complete the original execution suc
cessfully as if there had been no interruption.

This ability is desirable in two circumstances: (1) if your procedure (PROCl) acti
vates itself (called direct recursion), or (2) activates another procedure PROC2 that
will reactivate PROCI before PROCI has finished its original processing (called
indirect recursion).

Without the REENTRANT attribute, storage for procedure variables is allocated
statically, in fixed locations within the Data Segment of the object module.
Re-entering such a procedure would write over the earlier contents of such locations,
making it impossible to complete the original, suspended execution.

When you use the attribute REENTRANT in declaring a procedure, its variables are
stored in the Stack Segment of the object module, separately from all earlier
variables. Thus preserved, each set can be used independently by each invocation of
the procedure.

Multiple sets of variables may therefore need storage on the stack during recursive
use of such procedures. You must be sure to specify (at relocation and link time) a
stack size large enough for all such storage needed by all multiple invocations that
may be active at one time.

A procedure with the REENTRANT attribute may be activated before it is declared.

This permits direct recursion, where the procedure activates itself, and indirect
recursion, where the procedure activates a second procedure and the second pro
cedure activates the first-or activates a third procedure, which activates a fourth,
etc., with the result that the first procedure is activated before it terminates.

The following rules summarize the use of the REENTRANT attribute:

• Any procedure that may be interrupted and is also activated from within an
interrupt procedure should have the REENTRANT attribute.

Note that this may apply to an interrupt procedure that runs with interrupts
enabled, either because it contains an ENABLE statement or because it is acti
vated by means of a CALL statement. If there is any possibility that it will be
interrupted by its own interrupt, it should have the REENTRANT attribute.
This situation is equivalent to recursion.

• Any procedure that is directly recursive (activates itself) should have the
REENTRANT attribute.

• Any procedure that is indirectly recursive (activates another procedure and is
activated itself as a result) should have the REENTRANT attribute.

• Any procedure that is activated by a reentrant procedure should also have the
REENTRANT attribute.

PL/M-86 User's Guide

In other words: If there is any possibility that a procedure can be activated while it is
already running, it should be reentrant.

• The REENTRANT attribute cannot be used in the same declaration as the
EXTERNAL attribute. (It may be used with the PUBLIC attribute.)

• The REENTRANT attribute may only be used in a PROCEDURE statement at
the outer level of a module (discussed in Chapter 9).

• A procedure declaration with the REENTRANT attribute may not have another
procedure declaration nested inside it.

Procedures

10-11

CHAPTER 11
BUILT-IN PROCEDURES,

FUNCTIONS, AND VARIABLES

Built-in procedures, functions, and variables act as if they were declared in an all
encompassing global block invisible to the programmer.

These identifiers are subject to the rules of scope. This means the name of a built-in
procedure or variable can be declared to have a local meaning within the program.
Within the scope of such a declaration, the built-in is unavailable. This distinguishes
these identifiers from reserved words, listed in Appendix C, which cannot be used as
identifiers in declarations.

No built-in procedure may be used within a location reference. No built-in variable
may be used within a location reference, except as specifically noted in the following
sections.

11.1 Obtaining Information About Variables
PL/M-86 has three built-in procedures that take variable names as actual
parameters and return information based on the declarations of the variables:
LENGTH, LAST, and SIZE.

The LENGTH Function
LENGTH is a WORD function that returns the number of elements in an array. It is
activated by a function reference, with the form:

lEN G T H (variable-ref)

where variable-ref must be a non-subscripted reference to an array.

The array may be a member of a structure; it may not be the MEMORY array,
discussed in section 11.6, or an EXTERNAL array using the implicit dimension
specifier (see section 3.2).

The WORD value returned is the number of elements in the array-that is, it is equal
to the dimension specifier in the array declaration.

If the array is not a structure member, then the reference must be an unqualified
variable reference. If the array is a structure member, then the reference is a partially
qualified variable reference (see section 6.3). For example, given the declaration:

DECLARE RECORD STRUCTURE (KEY BYTE,
INFO(3) WORD);

then LENGTH(RECORD.INFO) is a valid function reference and returns a WORD
value of 3.

If the array is a member of a structure, and the structure is an element of an array, a
special case arises. Given the declaration:

DECLARE LIST (4) STRUCTURE (KEY BYTE,
INFO (3) WORD);

then all of the following function references are correct and return the value 3:

LENGTH(LIST(O).INFO)
LENGTH(LIST(1).INFO)
LENGTH(LIST(2).INFO)
LENGTH(LIST(3).INFO)

In other words, the subscript for the array LIST is irrelevant when a member
identifier is supplied, since the arrays within the structures are all the same length.

11-1

Built-In Procedures, Functions, and Variables PL/M-86 User's Guide

11-2

PL/M-86 allows a "shorthand" form of partially qualified variable reference in the
LENGTH, LAST, and SIZE function refer~nces. For example:

lENGTH(lIST.INFO)

is a valid function reference and returns the value 3.

The LAST Function
LAST is a WORD function that returns the subscript of the last element in an array.
It is activated by a function reference, with the form:

lAS T (variable-ref)

where variable-ref must be a non-subscripted reference to an array.

The array may be a member of a structure; it may not be the MEMORY array (see
section 11.6), or an EXTERNAL array using the implicit dimension specifier (see
section 3.2).

The WORD value returned is the subscript of the last element of the array-note
that for a given array, LAST will always be one less than LENGTH.

As in the LENGTH function, a "shorthand" form of partially qualified variable
reference is allowed in the case where the array is a member of a structure and the
structure is an array element.

The SIZE Function

SIZE is a WORD function that returns the number of bytes occupied by an array or
structure. It is activated by a function reference, with the form:

S I Z E (variable-ref)

where variable-ref is a fully qualified, partially qualified, or unqualified reference to
any scalar, array, or structure except the MEMORY array (see section 11.6). It may
not be an EXTERNAL declaration that uses the implicit dimension specifier (see
section 3.2).

The WORD value returned is the number of bytes required by the object referenced.

If the reference is fully qualified, it refers to a scalar and the value is the number of
bytes required for the scalar. If the reference is unqualified, it refers to an entire
structure or array, and the value is the total number of bytes required for the struc
ture or array.

If the reference is partially qualified, it refers either to a structure member that is an
array, or to an array element that is a structure. The value is the number of bytes
required for the array or structure.

As in the LENGTH function, a "shorthand" form of partially qualified variable
reference is allowed in the case where the array or scalar is a member of a structure
and the structure is an array element.

11.2 Explicit Type and Value Conversions

The ten functions in this section provide explicit conversion from one type to
another and from signed values to or from absolute magnitudes.

PL/M-86 User's Guide Built-In Procedures, Functions, and Variables

Explicit type-conversion functions are invoked

function .. name (expression)

where the function has a type and the expression a value.

In table 11-1, each function name is followed by its type, the expression type
expected, the purpose of the function, and the nature of the value it returns to the
expression that invoked it.

Proced.ure

Table 11-1. Explicit Type and Value Conversion

Parameter
Expression

Name Type Type Function Result Returned

LOW BYTE
BYTE Converts WORD value to
WORD BYTE value

BYTE value unchanged
Low-order byte of WORD

WORD DWORD Converts DWORD value Low-order word of DWORD
to WORD value

HIGH BYTE
BYTE
WORD

Converts WORD value to 0 (zero)
BYTE value High-order byte of WORD

DOUBLE WORD DWORD Converts DWORD value High-order word of DWORD

FLOAT

FIX

INT

SIGNED

UNSIGN

ABS

lABS

WORD BYTE

DWORD WORD

DWORD

to WORD value

Converts BYTE value to
WORD value

Converts WORD value to
DWORDvalue

WORD value, by appending
8 high-order zero bits

DWORD value, by appending 16
high-order zero bits

DWORD value unchanged

REAL INTEGER Converts INTEGER value Same value of type REAL
to REAL value

INTEGER REAL

INTEGER BYTE
WORD

INTEGER BYTE
WORD

Converts REAL value to INTEGER value modulo 32768,
INTEGER value i.e., within range ±32767
(rounds toward zero)

Converts BYTE or WORD Corresponding INTEGER value
to INTEGER; interprets within range 0 to 32767
parameter as positive

Converts a WORD value
to an INTEGER value

BYTE value is extended with 8
high-order zeros; WORD value
unchanged.

WORD INTEGER Converts an INTEGER
value to a WORD value

The bit pattern is unchanged but
can now be used in WORD
expressions.

REAL REAL

INTEGER INTEGER

Converts negative value
to positive

Converts negative value
to positive

Absolute value of expression
supplied. If positive, returned
unchanged; if negative,
-(expression) is returned.

Absolute value of expression
supplied. If positive, returned
unchanged; if negative,
-(expression) is returned.

11-3

Built-In Procedures, Functions, and Variables PL/M-86 User's Guide

11-4

The LOW, HIGH, and DOUBLE Functions

LOW and HIGH are BYTE functions that convert WORD values to BYTE values,
or WORD functions that convert DWORD values to WORD values. They are
activated by function references with the forms:

LOW (expression)
H I G H (expression)

where expression has a DWORD, WORD, or BYTE value.

If expression has a DWORD value, LOW returns the value of the low-order (least
significant) word of the expression value, whereas HIGH returns the value of the
high-order (most significant) word of the expression value.

If expression has a WORD value, LOW returns the value of the low-order (least
significant) byte of the expression value, whereas HIGH returns the value of the
high-order (most significant) byte of the expression value.

If expression has a BYTE value, then LOW will return this value unchanged.
However, HIGH will return O.

DOUBLE is a WORD function that converts a BYTE value to a WORD value or a
DWORD function that converts a word value to a DWORD value. It is activated by
a function reference with the form:

DO U B L E (expression)

where expression has a BYTE, WORD, or DWORD value.

If expression has a BYTE value, the function appends 8 high-order O-bits to convert
it to a WORD value and returns this WORD value. If expression has a WORD
value, the function appends 16 high-order zero bits to convert it to a DWORD value
and returns this value. If expression has a DWORD value, the function returns it
unchanged.

The FLOAT Function

FLOAT is a REAL function that converts an INTEGER value to a REAL value. It
is activated by a function reference, with the form:

FLO A T (expression)

where expression has an INTEGER value.

FLOA T converts the INTEGER value to the corresponding REAL value and returns
this REAL value.

The FIX Function

FIX is an INTEGER function that converts a REAL value to an INTEGER value. It
is activated by a function reference, with the form:

F I X (expression)

where expression has a REAL value.

PL/M-86 User's Guide Built-In Procedures, Functions, and Variables

FIX rounds the REAL value to the nearest INTEGER. If both INTEGERs are
equally near, FIX rounds to the even one. The resulting INTEGER value is then
returned. Thus FIX(1.4) would result in the INTEGER value 1, FIX(-1.8) in -2,
FIX(3.5) in 4, and FIX(6.5) in 6.

If the result calculated by FIX is not within the implemented range of INTEGER
values, the result is undefined.

NOTE

FIX is affected by your choice of rounding mode-see Chapter 13. the
above examples assume the default mode, which is "round to nearest or
even."

The I NT Fun"ction

INT is an INTEGER function that converts a BYTE or WORD value to an
INTEGER value. It is activated by a function reference, with the form:

IN T (expression)

where expression has a BYTE or WORD value.

INT interprets the BYTE or WORD value as a positive number and returns the
corresponding INTEGER value.

If the result calculated by INT is not within the implemented range of INTEGER
values, the result is undefined.

The SIGNED Function

SIGNED is an INTEGER function that converts a BYTE or WORD value to an
INTEGER value. It is activated by a function reference, with the form:

S I G NED expression)

where expression has a WORD or BYTE value. If it has a BYTE value, it will be
extended by 8 high-order O-bits to produce a WORD value.

SIGNED interprets the WORD value as a 16-bit two's-complement number and
returns the corresponding integer value.

This means that if the highest-order (most significant) bit of the WORD valued is a
0, SIGNED interprets the WORD value as a positive number and returns the
corresponding INTEGER value. For example:

SIGNED (OOOO$0000$0000$0100B)

returns an INTEGER value of 4.

But if the highest-order bit of the WORD value is aI, SIGNED returns a negative
INTEGER value whose absolute magnitude is the twos complement of the WORD
value. For example:

SIGNED(1111$1111$1111$1100B)

returns an INTEGER value of -4.

11-5

Built-In Procedures, Functions, and Variables PL/M-86 User's Guide

11-6

The UNSIGN Function

UNSIGN is a WORD function that converts an INTEGER value to a WORD value.
It is activated by a function reference, with the form:

UN S I G N (expression)

where expression has an INTEGER value.

UNSIGN converts the INTEGER value to a WORD value.

If the INTEGER value is positive, then the WORD value will be numerically the
same as the INTEGER value. But if the INTEGER value is negative, then the
WORD value will be the two's complement of the absolute magnitude of the
INTEGER value. For example:

UNSIGN(-4)

returns a WORD value of

1111$1111$1111$11008

The ABS and lABS Functions

ABS is a REAL function that returns the absolute value of a REAL value. It is
activated by a function reference with the form:

A B S (expression)

where expression has a REAL value.

If the value of expression is positive, ABS returns it unchanged. If the value of
expression is negative, ABS returns -(expression).

lABS is an INTEGER function that returns the absolute value of an INTEGER
value. It is activated by a function reference with the form:

I A 8 S (expression)

where expression has an INTEGER value.

If the value of expression is positive, lABS returns it unchanged. If the value of
expression is negative, lABS returns -(expression).

11.3 Shift and Rotate Functions

In shift and rotate operations, a value is handled as a pattern of 8 bits (for a BYTE
value), 16 bits (for a WORD or INTEGER value), or 32 bits (for a DWORD value).
The pattern is moved to the right or left by a specified number of bits called the "bit
count."

In a shift, bits moved off one end of the pattern are lost, and O-bits move into the
pattern from the other end (except in the case of SAR-see below). In a rotate, bits
moved off one end move onto the other end.

Built-tn Ptocedures; Functions, and Variables

Rotation Functions, ROL and ROA

Rot and ROR are functions whose type depends on the type of the expressioll given
as an actual parametet. They are activated by function references, with the forms:

R 0 L (pattern, count)
R 0 R (pattern; count)

where pattern and Couht are expressions with BYTE, WORD, or DWORIJ values.
If count has a WORD or DWORD value, all but the 8 low-order bits will be dropped
to produce a BYTE value. If the value of count is O~ no shift occurs.

The vaiue of pattern is handled as an 8 .. bit, 16-bit, or 32-bit binary quantity that is
rotated to the left (by ROL) or to the right (by ROR). The type of pattern determines
whether a byte; word, or dword rotate is performed. The number of bit positions by
which it is rotated is specified by count.

The following are examples of the acti()fl of these procedures!

ROR (10011101 B, 1) returns a value of 110011108.
ROl (10011101 B; 2) . returns avalue of 01110110B.
R 0 R(1101011010011010 B i 9) returns a value of 0100110101101011B.

Logical-Shift Functions, SHL and SHR

SHL and SHR are functions whose type depends on the type of the expression given
as an actual patarlleter. They are activated by function references, with the forms:

S H l (pattern, count)
S HR (pattern, count)

where pattern and count are expressions with BYTE, WORD, or DWORD valueS.
If count has aWORD or DWORD vaiue, all but the 8 low-order bits will be dropped
to produce a BYTE value. If the value of count is 0, no rotation Occurs.

the value of pattern may be either a BYTE; WORD, or DWORD value and will not
be converted. If it is a BYTE value, the function will return a BYTE value. If pattern
is a WORD value, the function WIll returll a WORD value; if it is a DWORf) valtie,
the function wiil return a DWORD value.

The value of pattern is shifted left (by SHL) or right (by SHR), with the bit count
given by count.

A shift operation can force a I-bit out of the pattern. For example:

SHl(1000$0001B,1)

becomes 0000$0010, losing the former high-order bit" and:

SHR(1000S00018,1)

becomes 0100$0000, losing the former low-order bit.

If the specified pattern and COtuit do not cause such a "lost information" shift, then
a shift of one bit position has the effect of multiplication by 2 for a left shift, or divi
sion by 2 for a right shift. For example, suppose that V AR is a BYTE variable with a
value of 8. This is represented as 0000$1000. SHL(VAR;l) will return 0001$0000,
which represents 16, while SHR(VAR,l) will return 0000$0100, which represents 4.

11-7

Built-In Procedures, Functions, and Variables PL/M-86 User's Guide

11-8

Algebraic-Shift Functions, SAL and SAR

SAL and SAR are INTEGER functions. They are activated by function references;
with the forms:

SAL (pattern, count)
SA R (pattern, count)

where pattern is an expression with an INTEGER value, and count is an expression
with a BYTE, WORD, or DWORD value. If count has a WORD or DWORD value,
all but the 8 low-order bits will be dropped to produce a BYTE value. If the value of
count is 0, no shift occurs.

SAL and SAR treat the INTEGER value of pattern as a bit pattern. This pattern is
shifted to the left or to the right.

In a left shift (SAL), O-bits move into the pattern from the right (as in SHL
andSHR).

In a right shift (SAR), either O-bits or I-bits move into the pattern from the left. If
the original value of pattern is positive, the sign bit (leftmost bit) is a 0, and O-bits
move in from the left. If the original value is negative, the sign bit is a I, and I-bits
move in from the left.

This means in some instances, that just as with the logical shifts, an algebraic shift of
one bit position can have the effect of multiplication by 2 for a left shift or division
by 2 for a right shift. For example, suppose that VAL is an INTEGER variable with
a value of -8. This value is represented as 1111$1111$1111$1000B. SAL(VAL, 1) will
return 1l1l$1111$1l1l$OOOOB, which represents -16, while SAR(VAL,l) will return
1111$1111$1111$1100B, which represents -4.

11.4 Input and Output

Byte or word input is performed as a function invocation in an expression on the
right-hand side of an assignment statement. Byte or word output is achieved by fill-,
ing the appropriate element of the output array corresponding to the desired output
port of the iAPX 86 CPU.

The INPUT and INWORD Functions

INPUT is a BYTE function and INWORD is a WORD function. They are activated
by function references, with the forms:

IN PUT (expression)
I N W 0 R D (expression)

where expression has a BYTE or WORD value.

The value of expression specifies one of the input ports of the iAPX 86 CPU. The
value returned by INPUT is the BYTE quantity found in the specified input port.
The value returned by INWORD is the WORD quantity found in the specified input
port.

The OUTPUT and OUTWORD Arrays

The built-in variables OUTPUT and OUTWORD are arrays, each with 65536
elements. Each element corresponds to one of the output ports of the iAPX 86 CPU.

PL/M-86 User's Guide Built-In Procedures, Functions, and Variables

OUTPUT is a BYTE array, and OUTWORD is a WORD array.

A reference to OUTPUT or OUTWORD may only appear as the left part of an
assignment statement or embedded assignment; anywhere else it is illegal. The right
hand side of the assignment must have a BYTE or WORD value.

The effect of an assignment to an element of OUTPUT is to place the BYTE value
of the expression on the right side of the assignment into the corresponding output
port. (Since OUTPUT is a BYTE array, the value of the expression will be
automatically converted to a type BYTE if necessary.)

The effect of an assignment to an element of OUTWORD is to place the WORD
value of the expression on the right side of the assignment into the corresponding
output port.

11.5 String Manipulation Procedures

The term "string" is used here in a broader sense than previously. The "character
strings" mentioned in sections 2.4, 3.1, and 4.4 are BYTE strings.

Considered more broadly, a string is any contiguously stored set of BYTE values or
WORD values. We can regard a string as if it were a BYTE or WORD array, and
refer to the BYTE or WORD values as "elements."

We will use the word "index" to refer to the position of a given element within a
string. The index is like the subscript of an array reference. Thus the index of the
first element of a string is 0, the index of the second element is 1, etc.

In the following descriptions, the "location" of a string always means the location
of its first element. In each string-manipulation procedure, the location of a string is
specified by a parameter called "source" or "destination," which is an expression
with a POINTER value. Thus the source points to the lowest element. For MOVB
and MOVW, this is the first element to be processed. For MOVRB and MOVRW, it
is the last element to be processed,as discussed below.

The "length" of a string is the number of elements it contains. In each string
manipUlation procedure, the number of elements to be processed is specified by a
parameter called "count," which is an expression with a WORD or BYTE value.

NOTE

If the source or destination string address is in SELECTOR or WORD
form, the built-in function BUILD$PTR can be used to construct the
pointer-parameter for the string built-in.

The string-manipulation procedures (with the exception of XLA n are available in
pairs. One of each pair is for BYTE strings and the other is for WORD strings.

The MOVB and MOVW Procedures

MOVB is an untyped procedure that copies a BYTE string from one location to
another. It is activated by a CALL statement with the form:

CAL L MO V B (source, destination, count);

where source and destination are expressions with POINTER values, and count is
an expression with a BYTE or WORD value.

11-9

Built-In Procedures, Functions, and Variables PL/M-86 User's Guide

11-10

The string elements are copi~d in ascending order-that is, element 0 is copied first,
then element 1, ~tc. This is significant if the source string and the destination string
overlap. U the value of destination is higher than the value of source, and the two
strings overlap, elements in the overlap area will be overwritten before they are
copied. This can be avoided by using MOVRB instead of MOVB.

MOVW is the same as MOVB except that it copies a WORD string instead of a
BYTE string.

The MOVRB and MOVRW Procedures

MOVRB is the same as MOVB, except that the elements in the source string are
copied to the destination string in descending order. This is significant when the two
strings overlap. If the value of "destination" is higher than the value of "source,"
and there is overlap, elements in the overlap area will not be overwritten until after
they have been copied. However, if the value of "source" is higher than the value of
"destination," then elements in the overlap area will be overwritten before they are
copied.

MOVRW is the same as MOVRB except that it copies a WORD string instead of a
BYTE string.

NOTE

If two strings overlap, a procedure such as the following can be used to
make the correct choice between MOVB and MOVRB elements in the
overlap area will not be overwritten until after they have been copied.

MOVBYTES: PROCEDURE (SRC, DST, CNT);
DECLARE (SRC, DST) POINTER, CNT WORD;
IF SRC > DST THEN CALL MOVB (SRC, DST, CNT);
ELSE CALL MOVRB (SRC, DST, CNT);

END MOVBYTES;

This procedure can be activated without the need to consider whether overlap may
occur or whether source or destination is higher.

The CMPB and CMPW Functions

CMPB is a WORD function that compares two BYTE strings. It is activated by a
function reference with the form:

CMPB (sourcet, source2, count)

where sourcet and source2 are expressions with POINTER values, and count is an
expression with a BYTE or WORD value.

CMPB compares two BYTE strings of length count, whose locations are sourcet
and source2.

If every element in the string at sourcet is equal to the corresponding element in the
string at source2, CMPB returns a WORD value of OFFFFH. Otherwise, it returns
the index (position within the strings) of the first pair of elements found to be
unequal.

CMPW is the same as CMPB except that it compares two WORD strings instead of
two BYTE strings.

PL/M-86 User·s Guide Built-In Procedures, Functions, and Variables

The FINDB/FINDW and FINDRB/FINDRW Functions

FIN DB is a WORD function that searches a BYTE string to find an element that has
a specified value. It is activated by a function reference of the form:

FIN DB (source, target, count)

where

source is an expression with a POINTER value.

target is an expression with a BYTE or WORD value. If target has a WORD value,
the 8 high-order bits will be dropped to produce a BYTE value.

count is an expression with a BYTE or WORD value.

FINDB examines each element of the source string (in ascending order) until it finds
an element whose value is equal to the BYTE value of target-or until count
elements have been searched without any of them matching target. If the search is
successful, FINDB returns the index of the first element of the string that matches
target. If the search is unsuccessful, FINDB returns a WORD value of OFFFFH.

FINDW is the same as FINDB except that it searches a WORD string instead of a
BYTE string. If the target parameter has a BYTE value, it is extended by 8 high
order O-bits to produce a WORD value.

FINDRB is the same as FINDB, except that it searches the source string in descend
ing order. Thus if the search is successful, FINDRB returns the index of the last
(highest subscript) element that matches the BYTE value of target.

FINDRW is the same as FINDRB, except that it searches a WORD string instead of
a BYTE string (in descending order).

The SKIPB/SKIPW and SKIPRB/SKIPRW Functions

SKIPB is a "converse" of FINDB (see above). Instead of searching for the first ele
ment in the BYTE source string that matches the BYTE value of target, SKIPB
searches for the first element that does not match.

In every other respect, the operation is exactly the same as FINDB.

SKIPW is a "converse" of FINDW (see above). Instead of searching for the first
element in the WORD source string that matches the WORD value of target,
SKIPW searches for the first element that does not match.

In every other respect, the operation is exactly the same as FINDW.

SKIPRB is a "converse" of FINDRB (see above). Instead of searching for the last
element in the BYTE source string that matches the BYTE value of target, SKIPRB
searches for the last element that does not match.

In every other respect, the operation is exactly the same as FINDRB.

SKIPRW is a "converse" of FINDRW (see above). Instead of searching for the last
element in the WORD source string that matches the WORD value of target,
SKIPRW searches for the last element that does not match.

In every other respect, the operation is exactly the same as FINDR W .

11-11

Built-In Procedures, Functions, and Variables PL/M-86 User's Guide

11-12

The XLAT Procedure

XLAT is an untyped procedure that '''translates'' a BYTE string to produce another
BYTE string, using a translation table. It is activated by a CALL statement of the
form:

CAL L X LA T (source, destination, count, table);

where source, destination, and table are expressions with POINTER values, and
count is an expression with a BYTE or WORD value.

XLAT "translates" the BYTE elements in the source string, placing the translated
elements in the destination string. The value of table is assumed to be the location of
a BYTE string of up to 256 elements. This string is used as a translation table.

The value of an element in the source string is used as an index for the translation
table. The index selects one element from the translation table, and this element is
then copied into the destination string.

For example, if the fifth element in the source string is 202, then 202 is used as an
index for the translation table. The 203rd element of the table is copied into the fifth
position in the destination string.

The elements of the source string are translated into the destination string in ascend
ing order.

The SETB and SETW Procedures

SETB is an untyped procedure that sets each element of a BYTE string to a single
specified value. It is activated by a CALL statement with the form:

CAL L SET B (newvalue, destination, count) ;

where

newvalue is an expression with a BYTE or WORD value. If it has a WORD value,
the 8 high-order bits are dropped to produce a BYTE value.

destination is an expression with a POINTER value.

count is an expression with a BYTE or WORD value.

SETB assigns the BYTE value of newvalue to each element of a WORD string
instead of a BYTE string.

SETW is the same as SETB, except that it assigns a single WORD value to each ele
ment of a WORD string instead of a BYTE string.

If newvalue has a BYTE value, it will be extended by 8 high-order O-bits to produce
a WORD value.

11.6 Miscellaneous Built-Ins

The MOVE Procedure

MOVE is an untyped procedure that is provided for compatibility with PL/M-80
programs. It is activated by a CALL statement with the form:

CAL l M 0 V E (count, source, destination);

PL/M-86 User's Guide Built-In Procedures, Functions, and Variables

where count, source, and destination are expressions with WORD or BYTE values.
If any of these parameters has a BYTE value, it will be extended by 8 high-order
O-bits to produce a WORD value.

The values of source and destination are assumed to be the WORD-type addresses
of the source string and the destination string. The operation differs from MOVB as
follows:

• All three parameters must have either BYTE or WORD values, and will be
converted to WORD values if they are BYTE values. POINTER values for
source and destination are not allowed and therefore the values cannot be sup
plied by means of the @ operator. Thus MOVE can only handle strings whose
locations can be expressed as WORD addresses.

• Note that the parameters are in a different order than the one used by the other
built-in string functions.

• If the source and destination strings overlap, the results are always undefined.

The TIME Procedure

The untyped procedure TIME causes a time delay specified by its actual parameter.
It is activated by a CALL statement with the form:

CAll TIM E (expression);

where the expression is converted, if necessary, to a WORD quantity. The length of
time measured by the procedure is a multiple of 100 microseconds: if the actual
parameter evaluates to n, then the delay caused by the procedure is lOOn
microseconds. For example, the statement:

CAll TIME (45);

causes a delay of 4.5 milliseconds. Since the maximum delay offered by the pro
cedure is about 6.55 seconds, longer delays must be obtained by repeated activa
tions .. The following block takes one second to execute:

DO I = 1 TO 40;
CAll TIME (250);

END;

The TIME procedure is based on iAPX 86 CPU cycle times, and assumes that the
system is running at 5 MHz without interruptions.

The MEMORY Array

MEMORY is a BYTE array of unspecified length which represents an uninitialized
(free) segment of iAPX 86 storage. References to MEMORY may be subscripted.
The maximum subscript allowed depends on both the system environment and the
program. References to MEMORY, either subscripted or unqualified, may be used
in location references. For example, @MEMORY is the location of the beginning of
free .memory space, i.e., byte 0 of the memory segment.

A reference to MEMORY may not be used as an actual parameter for the
LENGTH, LAST, and SIZE procedures. However, some systems provide service
routines you can use to learn the size of free memory.

11-13

Built-In Procedures, Functions, and Variables PL/M-86 User's Guide

11-14

STACKPTRandSTACKBASE

STACKPTR and ST ACKBASE are built-in WORD variables that provide access to
the iAPX 86 hardware stack pointer and stack base registers, i.e., SP and SSe

Care must be exercised in setting these registers (that is, using STACKPTR or
STACK BASE on the left side of an assignment). To do so takes control of the stack
away from the compiler and can invalidate the compile-time checks on stack
overflow and the compiler's assumptions about the run-time status of the stack.

The LOCKSET Function

The LOCKSET function permits a programmer to implement a simple software
lock. It is a BYTE procedure called by a function reference with the form:

L 0 C K SET (Iockptr, newvalue)

where

lockptr is an expression with a POINTER value.

newvalue is an expression with a BYTE or WORD value. If newvalue has a WORD
value, the 8 high-order bits will be dropped to produce a BYTE value.

The action of LOCKSET is as follows: the lockptr parameter is used as a pointer to a
BYTE variable. The value of newvalue is assigned to this variable, and LOCKSET
returns the original value of the variable. During this transaction, a hardware lock is
set on the memory bus to prevent any interference from another processor.
However, the hardware lock is released before LOCKSET returns.

To see how this facility can be used, consider a system having more than one iAPX
86 processor using the same memory, and consider a program in one of these pro
cessors. Suppose that this program uses memory locations that are also used by
other processors in the system.

Within certain "critical" regions of our program, we want to ensure that no other
processor will access the shared memory locations. To achieve this, we declare a
BYTE variable called LOCK and establish a convention that if LOCK =0, any pro
cessor in the system may access the shared memory locations. But if LOCK=l, no
processor may access the shared memory locations unless it was the one that set
LOCK to 1.

Now if we write the function reference LOCKSET(@LOCK,l), the value 1 is
assigned to LOCK. Furthermore, if the value returned by LOCKSET is 0, then
LOCK was not already set and so this processor is the one that set it. Weare now
allowed, by convention, to enter the critical region of our program and access the
shared memory locations. At the end of the critical region, we must release the lock
by writing LOCK=O.

But if LOCKSET returns a value of 1, then LOCK was already set and this processor
was not the one that set it. By convention, we must wait until a
LOCKSET(@LOCK, 1) function reference returns a value of 0 before assessing the
shared memory locations.

Thus our program could contain the following construction:

. I*Begin critical region*1
DO WHILE LOCKSET{@LOCK,1);

1*00 nothing but repeat unti l LOCKSET returns 0*1
END;

PL/M-86 User's Guide Built-In Procedures, Functions, and Variables

'*Now LOCX has been set to 1 by this processor*'

'*Critical region of program, where
shared memory locations are accessed*'

LOCK=O;
'*End critical region*'

In the simplest case just described, only one software lock is used. It is represented
by the variable LOCK. But if more than one set of memory locations needed protec
tion at different times, we could establish as many different software locks as
necessary, each using a different BYTE variable.

Also, note that a software lock can be used for other purposes than protecting
memory locations. LOCKSET provides a mechanism that can be used to implement
various types of synchronization in a multiprocessor system.

11.7 Interrupt-Related Procedures

The two capabilities described in this section permit programs to set interrupt vec
tors and learn the entry point of an interrupt-handling procedure.

The SET$INTERRUPT Procedure

This procedure permits a program in execution to set an interrupt vector to point to
the interrupt entry point of a separately compiled interrupt handling routine, or to
alter such vectors dynamically. See also section 10.3 and Appendix J.

The procedure is invoked by a CALL of the form:

CA L L S E T$ I N T ERR U PT (constant,name)

where name is the interrupt procedure name, and constant is an interrupt number,
i.e., a whole-number constant between 0 and 255.

The INTERRUPT$PTRFunction

This built-in function returns the interrupt entry point. Its form is:

INT ERR U PT$ PT R (name)

It is typically used in an assignment statement, for example:

INT$ARRAY(4) = INTERRUPT$PTR (HANDLER PROC 4)

The interrupt entry point is not accessible without using this function, since the @
operator refers to the procedure entry point instead. These differences are discussed
in greater detail in Appendix J.

11-15

Built-In Procedures, Functions, and Variables PL/M-86 User's Guide

11-16

11.8 Pointer and Selector-Related Functions

The following built-in functions permit programs to manipulate POINTER and
SELECTOR values that serve as location addresses in iAPX 86 memory. (For more
information on POINTER and SELECTOR, see sections 4.4 and 4.5.)

The BUILD$PTR Function

BUILD$PTR is a POINTER function that takes a SELECTOR value (the base por
tion) and a WORD value (the offset portion), and returns a POINTER. It is
activated by a function reference with the form:

BU I lO$PTR (base, offset)

where base has a SELECTOR value and offset has a WORD value.

The SELECTOR$OF Function

SELECTOR$OF is a SELECTOR function that returns the SELECTOR portion of
a POINTER. It is activated by a function reference with the form:

S E lEe TOR $ 0 F (pointer)

where pOinter has a POINTER value.

The OFFSET$OF Function

OFFSET$OF is a WORD function that returns the offset portion of a POINTER. It
is activated by a function reference with the form:

OFF SET $ 0 F (pointer)

where pointer has a POINTER value.

CHAPTER 12
PL/M-86 FEATURES

INVOLVING iAPX 86 HARDWARE FLAGS

The PL/M-86 features described in this chapter make use, directly or indirectly, of
the 8086 hardware flags or "toggles" - CARRY, ZERO, SIGN, and PARITY. As
explained in the following section, these features cannot be guaranteed to produce
correct results and the programmer should use them only with caution.

Instead of using these features, it may be more convenient to link the PL/M-86 pro
gram to modules containing code to perform the same functions, but written in
assembly language.

12.1 Optimization and the iAPX 86 Hardware Flags

In order to produce an efficient machine-code program from a PL/M-86 source, the
PL/M-86 Compiler performs extensive optimization of the machine code. This
means that the exact sequence of machine code produced to implement a given
sequence of PL/M -86 source statements cannot be predicted.

Consequently, the state of the iAPX 86 hardware flags cannot be predicted for any
given point in the program. For example, suppose that a source program contains
the following fragment:

SUM = SUM + 250;

where SUM is a BYTE variable. Now, if the value of SUM before this assignment
statement is greater than 5, the addition will cause an overflow and the hardware
CARR Y flag will be set.

If there were no optimization of the machine code, one could follow this assignment
statement with one of the PL/M-86 features described in the following sections, and
be sure that the feature would operate in a certain fashion depending on whether or
not the addition caused the CARRY flag to be set. However, because of optimiza
tion, some machine code instructions may occur immediately after the addition, and
change the CARRY flag. One cannot safely predict whether this will happen or not.

Accordingly, any PL/M-86 feature that is dependent on the CARRY flag (or any of
the other hardware flags) may cause the program to run incorrectly. These features
must therefore be used with caution, and any program that uses them must be
checked carefully to make sure that it operates correctly.

12.2 The PLUS and MINUS Operators

In addition to the arithmetic operators described in section 5.2, there are two more:
PLUS and MINUS.

PLUS and MINUS perform similarly to + and -, and have the same precedence.
However, they take account of the current setting of th~ iAPX 86 CPU hardware
CARRY flag in performing the operation.

12-1

PL/M-86 Features Involving iAPX 86 Hardware Flags PL/M-86 User's Guide

12-2

12.3 Carry-Rotation Built-in Functions

SCt and SCR are built-in rotation functions whose type depends on the type of the
value of an expression given as an actual parameter. They are activated by function
references with the forms:

S C L (pattern, count) ;
S C R (pattern, count) ;

where pattern and count are both expressions.

The value of count will be converted, if necessary, to a BYTE quantity. If count is 0,
no rotation occurs.

The value of pattern may be either a BYTE value or a WORD value and will not be
converted. If it is a BYTE value, then the function will return a BYTE value. If it is a
WORD value, then the function will return a WORD value.

The value of pattern is rotated left (by SCt) or right (by SCR), with the bit count
given by count, just as with the ROt and ROR functions described in Chapter 11.
But with SCt and SCR, the rotation includes the CARRY flag: the bit rotated off
one end of pattern is rotated into CARRY, and the old value of CARRY is rotated
into the other end of pattern. In effect, SCt and SCR perform 9-bit rotations on 8-
bit values, and 17-bit rotations on I6-bit values.

12.4 The DEC Function

DEC is a built-in BYTE function which U5es the value of the hardware CARRY flag
internally. It is activated by a function reference, with the form:

DEC (expression);

where the value of expression will be converted, if necessary, to a BYTE value. The
procedure performs a decimal adjust operation on the actual parameter value and
returns the result of this operation.

12.5 CARRY, SIGN, ZERO, and PARITY
Built-in Functions

There are four built-in BYTE functions that return the logical values of the iAPX 86
hardware flags. These functions take no parameters, and are activated by function
references with the following forms:

CARRY
ZERO
SIGN
PARITY

An occurrence of one of these activations (in an expression) generates a test of the
corresponding condition flag. If the flag is set (= 1), a value of OFFH is returned. If
the flag is clear (= 0), a value of 0 is returned.

CHAPTER 13
FLOATING-POINT ARITHMETIC:

THE REAL MATH FACILITY

This chapter covers the general aspects of the design of the REAL math facility used
to support REAL arithmetic in PL/M-86, plus REAL error control and the use of
REALs by interrupting programs. This facility operates as described herein, whether
implemented by the Intel 8087 chip or Intel 8087 emulators. The discussions
therefore make no distinction as to that environment, except where noted. All math
conforms to the proposed IEEE Standard for Floating Point Arithmetic (Intel's
REALMA TH standard).

NOTE

If your program performs ANY floating-point arithmetic or assignments, it
must first inifialize the REAL math facility by calling the procedures
INIT$REAL$MATH$UNIT (section 13.5) or SA VE$REAL$STA TUS,
(section 13.8), and optionally, SET$REAL$MODE (section 13.8).
However, it must be noted that PL/M-86 programs using REAL
assignments and arithmetic cannot be accommodated on an SDK-86 board.

The use of REAL functions within REAL expressions can lead to stack
overflow because PL/M-86 does not clear the stack before the function call.
The recommended practice is to use an assignment statement first to store
the function value in a REAL variable, and then use that variable in the
longer expression.

13.1 Representation of REAL Values

This section describes the standard single-precision format for floating-point arith
metic. All PL/M-86 REAL values use this format.

A REAL value occupies four contiguous memory bytes, which may be viewed as 32
contiguous bits. The bits are divided into fields as follows:

sign exponent fraction
(1 bit) (8 bits) (23 bits)

where

the byte with the lowest address contains the least significant 8 bits of the fraction
field, and the byte with the highest address contains the sign bit and the most signifi
cant 7 bits of the exponent field.

the sign bit is 0 if the REAL value is positive or zero, or 1 if the REAL value is
negative.

the exponent field contains a value "offset" by 127-in other words, the actual
exponent can be obtained from the exponent field value by subtracting 127. This
field is all O's if the REAL value is zero.

the fraction field contains the binary digits of the fractional part of the REAL value, .
when it is represented in "binary scientific" notation (see below). This field is all O's
if the REAL value is zero.

The following examples illustrate these concepts.

13-1

Floating-Point Arithmetic: The Real Math Facility PL/M-86 User's Guide

13-2

Consider the following binary number (which is equivalent to the decimal value
10.25):

1010.01B

The"." in this number is a binary point. The same number can be represented as

1.01oo1B * 23

This is "binary scientific" notation, with the binary point immediately to the right
of the most significant digit. The digits 01001 are the fractional part, and 3 is the
exponent. This value would be represented as follows:

• The sign bit would be 0, since the value is positive.

• The exponent field would contain the binary equivalent of 127 + 3=130.

• The leftmost digits of the fraction field would be 01001, and the remainder of
this field would be all O's.

The complete 32-bit representation would be

o 100000 I 0 01001000000000000000000

and the contents of the four contiguous memory bytes would be as follows:

highest address:

lowest address:

01000001
00100100
00000000
00000000

Note that the most significant digit is not actually represented, since by definition it
is a "1" unless the REAL value is zero. If the REAL value is zero, the entire 32-bit
representation is all O's.

For a second example, consider the fraction 1/16, or 0.0625. In binary, this is

O.OOOIB

In "binary scientific" we would have

1.0000B * 2-4

The actual exponent, -4, would be represented as 123 (127-4), and the fraction field
would contain all O's.

The largest possible value for a valid exponent field is 254, which corresponds to an
actual exponent of 127. The largest possible absolute value for a positive or negative
REAL value is therefore

l.1l1l1l1111111111111I11IB * 2127

or approximately 3.37* 1038
•

The lowest permissible exponent field value for a non-zero REAL value is 1, which
corresponds to an actual exponent of -126. The smallest possible absolute value for
a positive or negative REAL value is therefore

l.OB * 2- 126

or approximately 1.17* 10-38
•

PL/M-86 User's Guide Floating-Point Arithmetic: The Real Math Facility

The utility of the REAL data type is extended by the PL/M-86 compiler's practice of
holding intermediate results in the 8087's temporary-real format, preserving 64 bits
of precision and the futl range of representable num-bers. The exponent in this for
mat is 15 bits instead of 11 or 8 in the long- and short-real formats, respectively.

This greater range of exponent greatly reduces the likelihood of underflow and
overflow, and-eliminates roundoff as a source of error until the final assignment of
the result is performed. These advantages arise because underflow, overflow, and
roundoff errors are more probable for intermediate computations than for the final
result. For example, an intermediate underflow result might later be multiplied by a
very large factor, providing a final result of acceptable magnitude.

13.2 REAL-Parameter Passing and
Stack Conventions

The first seven REAL parameters of a procedure or function are passed by value,
pushed onto the 8087 stack in the order in which they are specified in the CALL.
(Thus the seventh is on top.) The values of any remaining parameters after the
seventh, plus all non-REAL parameters, are pushed onto the iAPX 86 stack, last on
top.

The 8087 stack is organized and used with top-relative addressing and operations,
permitting different routines to call a common subroutine without observing a con
vention for passing parameters in dedicated registers. Only the order, type, and
number of the parameters need be consistent. Results from procedures typed REAL
are returned on the top of the REAL stack.

13.3 The REAL Math Facility

From the program's point of view, the facility consists of the following:

• The REAL stack, used to hold operands and results during REAL operations

• The REAL Error Byte (see figure 13-1), consisting of 7 exception flags
initialized to all O's. (The reserved bit is set to 1 by the 8087.)

The first six bits in this byte correspond to the possible errors that can arise
during REAL operations (see section li4). When an error occurs, the
facility sets the corresponding bit to 1. There is a built-in procedure
described in section 13.7 that a program can invoke to read and clear the
REAL Error Byte.

The exception/ error categories are discussed in section 13.4

7 0

IIR I I PEl UE I OE I ZE I DE liE I III L EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)
INVALID OPERATION

DENORMALIZED OPERAND

ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

1...-________ (RESERVED)

L...-_________ INTERRUPT REQUEST

Figure 13-1. The REAL Error Byte 121636-2

13-3

Floating-Point Arithmetic: The Real Math Facility PL/M-86 User's Guide

13-4

• The REAL mode word (see figure 13-2), consisting of 16 bits initialized to
03FFH

1. Bits 0-7 determine whether the corresponding error condition is to be
handled by using the default recovery described below or by using the
programmer-supplied exception procedure. (See secton 13.9 for details on
writing these.) When the bit is I, the default is used. When it is 0, the user
routine is used. In either case the facility records the error by setting the cor
responding bit of the REAL Error Byte. For most uses, the default recovery
is appropriate and less work.

This mode word is often called a mask; i.e., it lets some signals through (to
interrupt processing) and not others. If one of the bits 0-5 is a 0; the
corresponding error is said to be unmasked. (See section 13.6 on how to set
the mode word.)

If the interrupt is enabled (lEM = 0), one of the masked bits is 0, and the
corresponding error occurs during floating point processing, the REAL
math facility interrupts the host CPU. The SOS7 Emulator executes an inter
rupt 16; the SOS7 interrupt is dependent on the internal configuration. The
exception condition is thus reported and control passed, to the user-written
error handling routine. This situation is called an unmasked error. Sections
10.2, 11.6, and Appendix J discuss aspects of interrupt procedures.

Conversely, a "masked error" means the mode bit corresponding to that
error is 1. Masked errors do not cause an interrupt, but are handled as
described in section 13.4, Exception Conditions.

Bits 13, 14, 15 are reserved and not for PL/M-S6 use.

Bits 8-12 provide options for controlling precision, rounding, and infinity
representation. (See figure 13-2.)

2. All intermediate results are held in an internal format of 64-bit precision.
The most-significant 24 bits of the final result are returned (plus sign and 7-
bit exponent) as the PL/M-S6 answer, rounded if needed according to the
user-specified control. The default precision setting preserves extended
precision and operates slightly faster than the other.

3. Rounding introduces an error of less than one unit in the last place to which
the. result is rounded. The default provides the statistically most accurate
and unbiased estimate of the "true result," i.e., the 64-bit result. In all
rounding modes except "round down," subtracting a number from itself
yields +0; round down yields -0.

4.

-00 + +00
o

AFFINE CLOSURE

o
PROJECTIVE CLOSURE

The full extent of the SOS7's numeric and operational capabilities are discussed in
the 8086 Family User's Manual Supplement for the 8087 Numeric Data Processor.

PL/M-86 User's Guide Floating-Point Arithmetic: The Real Math Facility

15

I I
IIC I RC

I I
-.-- -.--

7 0

~

(1) Interrupt-Enable Mask:
o = Interrupts Enabled

EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT-ENABLE MASK(1) (IEM)

PRECISION CONTROl(2)

ROUNDING CONTROl(3)

INFINITY CONTROl(4)

(RESERVED)

1 = Interrupts Disabled (Masked)

(2) Precision Control:
00 = 24 bits
01 = (reserved)
10 = 53 bits
11 = 64 bits

(3) Rounding Control:
00 = Round to Nearest or Even
01 = Round Down (toward -(0)
10 = Round Up (toward -(0)
11 = Chop (Truncate Toward Zero)

(4) Infinity Control:
o = Projective
1 = Affine

Figure 13-2. The REAL Mode Word 121636-3

13.4 Exception Conditions In REAL Arithmetic

As indicated in figure 13-1, there are six exception conditions that apply to normal
numeric operations:

• Invalid operation

• Denormalized operand

• Zero divide

• Overflow

• Underflow

• Precision

These are discussed in order below. In each case, only a few of the possible causes
are described, because most are not likely in common PL/M-86 usage. Sophisticated
numeric processing of extreme precision and flexibility may be performed. For full
information at that level, see the 8086 Family User's Manual Supplement for the
8087 Numeric Data Processor.

13-5

Floating-Point Arithmetic: The Real Math Facility PL/M-86 User's Guide

13-6

As the sections following indicate, the masked, default response to most exceptions
will provide the least abrupt, most appropriate action for most PL/M-86 applica
tions. Infrequency of exception conditions is almost guaranteed by the extreme
range of the temporary-real format (64-bit precision) used to hold intermediate
results. The "soft" recovery of gradual underflow, described under the denormal
exception, also extends the range of permissible execution rather than reporting a
hard-failure condition.

Programmers who use the recommended setting of the REAL Mode Word (see
section 13.6) need to handle only the invalid-exception. Study of the information
from the end of the next section up to section 13.5 is advised in that it provides a
general overview of the meaning of the other exception conditions. Section 13.9
describes writing the exception handler.

Invalid Operation Exception

This exception generally indicates a program error. It could be caused by referencing
an uninitialized REAL variable or a location that does not contain a REAL value (as
might occur with an out-of-range subscript for a REAL array). Attempting to take
the square root of a negative number or to store a number too large for integer for
mat would also generate this exception.

Another interpretation of this exception is stack error. This may be caused by failing
to restore the math unit status before returning from an interrupt routine that had
saved the status. Another cause is the generation of more than 8 intermediate results
during REAL arithmetic, which can arise if REAL procedure function calls are
nested too deeply. The compiler ensures that no single procedure does this, but
cannot check what may occur only at run time. This exception can also occur when
REAL functions (typed procedures) are used as operands within longer REAL
expressions. For example:

DELTA$1 = ALPHA * (BETA/GAMMA) + CHI (PSI, RHO, PI)

where all these names are typed REAL and CHI is some previously declared REAL
function of three parameters.

The following is less likely to cause an exception condition:

EPS = CHI (PSI, RHO, PI)
DELTA$1 = ALPHA * (BETA/GAMMA) + EPS

This is because all REAL arithmetic is performed using the 8087 stack (actual or
emulated), which has eight registers. The first seven REAL parameters supplied in
procedure calls are placed on this stack. If the procedure is typed, that is, invoked as
a function, it can be imbedded as one operand within a longer REAL expression.

Since the evaluation of such an expression also involves the use of this stack for
prior and subsequent arithmetic op~rations, stack overflow can occur. This
overflow amounts to unpredictable destruction of original parameters or
intermediate results. It becomes more likely as you increase the complexity of REAL
expressions containing REAL functions. Thus you are safer using an assignment
statement first, to store the function's value in a real variable, and using that
variable in the larger expression.

If stack error might apply to your program, modify the code for the affected
procedures to call the built-in procedures SA VE$REAL$STATUS and
RESTORE$REAL$STATUS as their first and last operations, respectively.

PL/M-86 User's Guide Floating-Point Arithmetic: The Real Math Facility

The masked (default) response is to set the result to one of the special bit patterns
called Not-A-Number (NANs), usually the indefinite value, the smallest NAN
representable in the specified precision. It also sets Bit 0 of the REAL Error Byte.

If Bits 0 and 6 of the REAL Mode Word are 0 (invalid-exception unmasked), an
interrupt occurs, transferring control to the user-written interrupt handler.

Denormal Operand Exception

This condition arises when numeric operations have resulted in a number whose
exponent is literally zero and whose significand is non-zero, or a number whose
significand does not begin with a 1. Denormals usually arise in response to masked
underflow. Gradual underflow is the masked, default response to underflow. A
small denormal added to a large normal REAL number can give an acceptable,
in-range answer if the denormal exception is masked. In practice, since intermediate
results are kept in temporary real format (lS-bit exponent), denormals are very rare.

This condition causes Bit 1 of the REAL Error Byte to be set to 1. If Bit 1 of the
REAL Mode Word is 1, the response described above occurs; if Bits 1 and 6 are 0,
an interrupt occurs, transferring control to the user-written interrupt handler.

Zero 0 ivide Exception

This condition arises when, in the course of some REAL computation, a divisor
turns out to be zero. The masked response, when Bit 2 of the REAL Mode Word is
1, is to return infinity, appropriately signed if need be. If Bits 1 and 6 are 0, an inter
rupt occurs, giving control to the user-written interrupt handler. In either case, Bit 2
of the REAL Error Byte is set to 1.

Overflow Exception

This error occurs when a real result is too large for the format in use, i.e., for REAL
assignment, greater than about 3.37 x 1038

, or for intermediate REAL computations
using the extended format, greater than about 104932

• It can arise during assignment,
addition, subtraction, multiplication, division, or conversion to integer.

The masked, default response (Bit 3 of REAL Mode Word = 1) is to return infinity
(signed if Affine) and set Bit 3 of the REAL Error Byte to 1. Unmasked overflow
must go through a user-written interrupt 16 handler.

Underflow Exception

This exception is caused by an exp.onent too small for the format in use, i.e., for
REAL assignments, less than -127, and for intermediate results, less than -16383.
Underflow can.be caused by the same type of REAL operations as overflow.

The masked, default response (Bit 4 of REAL Mode Word = 1) is to use the denor
mal number created by adjusting the very small result. It adjusts the significand,
moving significant digits off to the right and raising the exponent until the latter
becomes non-zero. For example, a 24-bit significand of .01 with an exponent of zero
implies the number 1 x 2-129, since a zero exponent in this format means -127. If the
denormal exception is masked, this would be adjusted into a significand of .001 with
an exponent of 1, i.e., 0.001 x 2- 126 prior to the operation. Then this number would
be available for use in subsequent REAL operations, which might well yield valid
results. Zero is returned if that is the rounded result. Bit 4 of the REAL Error Byte is
set to 1. Unmasked underflow must go through a user-written Interrupt 16 handler.

13-7

Floating-Point Arithmetic: The Real Math Facility PL/M-86 User's Guide

13-8

Precision Exception

This error occurs when the result of an operation is inexact, i.e., rounded, and as a
result of an overflow exception. No special action is performed by a masked
response (Bit 5 of REAL Mode Word = 1) other than setting Bit 5 of the REAL
Error Byte. Unmasked response is as chosen by the user.

Exception

Invalid
Operation

Zerodivide

Denormalized

Overflow

Underflow

Precision

Table 13-1. Exception and Response Summary

Masked Response

If one operand is NAN, return
it; if both are NANs, return NAN
with larger absolute value; if
neither is NAN, return
indefinite NAN.

Return 00 signed with
"exclusive or" of operand
signs.

Memory operand: proceed as
usual.
Register operand: convert to
valid unnormal, then re
evaluate for exceptions.

Return properly signed 00.

Denormalize result.

Return rounded result.

Unmasked Response

Request interrupt. (8087 stack
unchanged.)

Request interrupt. (8087 stack
unchanged.)

Request interrupt. (8087 stack
unchanged.)

Register destination: adjust
exponent, * store result,
request interrupt.
Memory destination: request
interrupt.

Register destination: adjust
exponent, * store result,
request interrupt.
Memory destination: request
interrupt.

Return rounded result, request
interrupt.

13.5 The INIT$REAL$MATH$UNIT Procedure

INIT$REAL$MATH$UNIT is a built-in untyped procedure activated by a CALL
statement, as follows:

CAll INIT$REAl$MATH$UNITi

This call is required as the first access to the REAL math facility, irrespective of
whether the 8087 chip or its software emulator will be used. That decision can be
deferred until link time, and the proper controls are described in Section 13.10.

The effect of this call is to initialize the REAL math unit for subsequent operation.
This includes setting a default value into the control word, namely 03FFH or
0000001111111111 in binary. The effect of this setting is to mask all exceptions and
interrupts, set precision to 64 bits, and cause rounding to even (as described in
section 11.6). This means no interrupts will occur from the REAL Math Facility
regardless of what errors are detected. See also section 13.6 below.

Procedures that are activated after this call has taken effect do not need to do such
initialization. See also section 13.8.

PL/M-86 User's Guide Floating-Point Arithmetic: The Real Math Facility

13.6 The SET$REAL$MODE Procedure

This procedure should only be invoked if you wish to change the default mode word,
as for example to unmask the invalid exception.

SET$REAL$MODE is a built-in untyped procedure, activated by a CALL state
ment with the following form:

CAL L SET $ REA L $ MOD E (modeword);

where mode word is an expression with a WORD value.

The value of modeword becomes the new contents of the REAL mode word. The
suggested value for modeword is 033EH, that is, 0000001100111110 in binary. This
value provides maximum precision, default rounding, and masked handling of all
exception conditions except invalid, which can alert you to errors of initialization or
stack usage. See Section 13.9 for facts and references on writing an interrupt
handling procedure.

13.7 The GET$REAL$ERROR Function

GET$REAL$ERROR is a built-in BYTE function activated by a function reference
with the following form:

GET$REAL$ERROR

The BYTE value returned is the current contents of the REAL error byte. This func
tion also clears the error byte in the REAL math facility.

13.8 Saving and Restoring REAL Status

If any interrupt procedure performs any floating point operation, it will change the
REAL status. If such an interrupt procedure is activated during a floating point
operation, the program will be unable to continue the interrupted operation cor
rectly after return from the interrupt procedure. Therefore, it is necessary for any
interrupt procedure that performs a floating-point operation to first save the REAL
status and subsequently restore it before returning. The built-in procedures
SA VE$REAL$ST ATUS and RESTORE$REAL$STATUS make this possible.
SA VE$REAL$ST A TUS initializes the 8087.

These procedures can also be used in a multi-tasking environment, where a running
task using the 8087 may be preempted by another task that also uses the 8087. The
preempting task must call SA VE$REAL$ST ATUS before it executes any statements
that affect the 8087. This means before calling SET$REAL$MODE, and before any
arithmetic or assignment of REALs (other than GET$REAL$ERROR, if needed).

NOTE

The 8087 Emulator is not supported by some multitasking systems, such as
the iRMX 86 Real-Time Operating System, due to the requirement for
dynamic storage allocation (i.e., memory reallocation during execution) in
such an environment.

New vectors will be required for the interrupt handlers appropriate to each new task,
e.g., to handle unmasked exception conditions. These vectors can be placed in the
correct locations via the SET$INTERRUPT procedure described in section 1 I .6.
Multitasking must be disabled during this operation.

13-9

Floating-Point Arithmetic: The Real Math Facility PL/M-86 User's Guide

13-10

After its processing is complete and the preempting task is ready to terminate, it
must call RESTORE$REAL$ST A TUS to reload the state information that applied
at the time the former running task was preempted. This enables that task to resume
execution from the point where it relinquished control.

NOTE

REAL functions without REAL parameters should not call
GET$REAL$ERRORS or SA VE$REAL$STATUS before executing at
least one floating point instruction. To do so may result in loss of processor
synchronization.

The SAVE$REAL$STATUS Procedure

SA VE$REAL$STATUS is a built-in untyped procedure activated by a CALL state
ment with the form:

CAL l S A V E $ REA L $ S TAT U S (location);

where location is a pointer to a memory area of 94 bytes where the REAL status
information will be saved.

The REAL status is saved at the specified location, and the REAL stack and error
byte are reinitialized.

If the state of the REAL math· unit is unknown to this procedure when it is called, as
in the case mentioned above f.or preempting tasks, then you don't want to do an ini
tialization because that will destroy existing error flags, masks, and control settings.
The action appropriate to. these circumstances (except for error-recovery routines,
discussed later) is to issue:

CALL SAVE$REAL$STATUS (@location_1)

before any REAL math usage and, prior to the procedure's return, a CALL
RESTORE$REAL$STATUS (@locatioIL-l), as described below. The save auto
matically reinitializes the math unit and the error byte.

This protects the status of preempted tasks or prior procedures and establishes a
known initialization state for the current procedure's actions. iAPX 86 interrupts
are disabled during the save.

EffiEI
The iAPX 86 processor must be able to acknowledge 8087 interrupts or loss
of synchronization will occur.

13.9 Writing a Procedure to Handle REAL Interrupts

This section partially summarizes advice, notes, and warnings from Chapters 10, 11,
and 13 pertaining to interrupts, floating-point usage, and procedures.

(It does not duplicate all of the information to be found there as to additional
capabilities which may be permitted or disallowed, e.g., the attributes PUBLIC or
REENTRANT may be applied to an interrupt procedure, but the attribute EXTER
NAL may not. INTERRUPT may only be used in an untyped PROCEDURE state
ment at the outer level of a program module, and may nothave any parameters.)

PL/M-86 User's Guide Floating-Point Arithmetic: The Real Math Facility

The procedure must begin by declaring its name and nature. For example, if you
were using the 8087 emulator, it would begin:

HANDLER: PROCEDURE INTERRUPT 16;

This alerts the compiler to create a code prologue appropriate to a routine that will,
in general, be invoked by interrupts. It also provides the number of the interrupt,
used during linkage and locating to create the correct vector to this routine's
absolute location during execution.

If HANDLER will do any REAL arithmetic or assignments, its first executable
statements should be of the form:

ERRSINFO = GETSREALSERROR; 1* must earlier declare ERRSINFO BYTE *1

or:

CALL SAVESREALSSTATUS (@local_save_area)i 1* also declare earlier *1

Each procedure clears the error byte. The latter procedure also clears out the REAL
stack. Thus, after either procedure is used, the REAL Error Byte no longer contains
the flagged cause of the exception condition that invoked HANDLER.

(U sing SA VE$REAL$ST A TUS is a way of avoiding possible stack errors from
cumulative usage. This permits errors in HANDLER to be detected independently
of the originating exception condition, and allows HANDLER to restore the state of
the interrupted procedure despite HANDLER's own use of the REAL facility.
SA VE$REAL$ST A TUS also makes available all the information as to the state of
the 8087 exceptions, stack and operations, as shown below.)

Thus the beginning of a typical routine to handle REAL exception conditions could
look like this:

HANDLER: PROCEDURE INTERRUPT 16;

DECLARE ERRSINFO BYTE;
DECLARE LOCAL_SAVE_AREA (94) BYTE;

ERRS INFO = GETSREALSERROR;

or like this:

HANDLER: PROCEDURE INTERRUPT 16;

DECLARE ERRSINFO BYTE;
DECLARE LOCAL SAVE_AREA (94) BYTE;

CALL SAVESREALSSTATUS (@LOCAL_SAVE_AREA);

ERRSINFO = SAVE_AREA.STATUS(O);
I*(see structure defined below)*1

(If you used GET$REAL$ERROR prior to the above call, e.g., the sequence:

ERRSINFO = GETSREALSERROR ;
CALL SAVESREALSSTATUS (@LOCAL_SAVE_AREA);

the error byte of the status word saved in this local area would not reflect the excep
tions that invoked HANDLER, because the byte would have been zeroed by the
prior use of GET$REAL$ERROR. The actual exceptions would be in ERR$INFO.)

13-11

Floating-Point Arithmetic: The Real Math Facility PL/M-86 User's Guide

13-12

If you won't need the extra information gained by the SAVE, i.e., if you need only
the exceptions, use the GET$REAL$ERROR beginning shown first.

Conversely, if you use the SAVE, GET$REAL$ERROR is unnecessary because the
SA VE supplies the exceptions as part of the 8087 status (see figure 13-4).

The rest of HANDLER can perform any actions deemed appropriate. This is an
application-dependent decision. Among the possibilities:

• Incrementing an exception counter for later display

• Printing diagnostic data, e.g., the contents of local_save_area

• Aborting further execution of the calculation causing exception

• Aborting all further execution

The format of the local_save_area as it is filled by the save procedure is shown in
figure 13-3.

INSTRUCTION {
POINTER

OPERAND {
POINTER

TOPSTACK 1 ELEMENT:ST

NEXTSTACK 1 ELEMENT:ST(!)

LASTSTACK 1 ELEMENT:ST(7)

NOTES:
S = Sign

INCREASING ADDRESSES

15

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

IPl5-0 +6

IP19-16 101 OPCODE +8

OP15-O +10

OP19-161 ° +12.

SIGNIFICAND 15-0 +14

SIGNIFICAND 31-16 +16

SIGNIFICAND 47-32 +18

SIGNIFICAND 63-48 +20
.t.

51 EXPONENT 14-0 +22

SIGNIFICAND 15-0 +24

SIGNIFICAND 31-16 +26

SIGNIFICAND 47-32 +28

SIGNIFICAND 63-48 +30

sl EXPONENT 14-0 +32

~
SIGNIFICAND 15-0 +84

SIGNIFICAND 31-16 +86

SIGNIFICAND 47-32 +88

~
SIGNIFICAND 63-48 +90

sJ EXPONENT 14-0 +92

Bit ° of each field is rightmost, least significant bit of corresponding
register field.
Bit 63 of significand is integer bit (assumed binary point is immediately
to the right).

Figure 13-3. Memory Layout of REAL Save Area 121636-5

PL/M-86 User's Guide Floating-Point Arithmetic: The Real Math Facility

If you might later perform more extensive manipulations on that area, you could
declare a structure permitting you to access its component parts by name and/or
byte:

DECLARE SAVE AREA STRUCTURE
(CONTROL(2) BYTE,
STATUS(2) BYTE,

TAG WORD,
INSTR PTR WORD,

IP OPCODE WORD,
OPERAND PTR(2) WORD,

STACK-TOP(S) WORD,
STACK-ONE(S) WORD,
STACK-TWO(S) WORD,
STACK-3 (S) WORD,
STACK-4 (S) WORD,
STACK-S (S) WORD,
STACK-6 (S) WORD,
STACK-7 (S) WORD
) AT(@LOCAL_SAVE_AREA)i

NOTE

To make use of the words from TAG through IP _OPCODE, you
must employ masks and shifts to access the individual fields shown in
figure 13-4.

The final action prior to returning (if desired) to the interrupted procedure is to
restore the status of the REAL math unit:

CALL RESTORE$REAL$STATUS (@LOCAL_SAVE_AREA)i

However, if you did not use GET$REAL$ERROR prior to the
SA VE$REAL$ST A TUS call, the local save area will contain the original contents of
the error byte. Under these circumstances, you must first clear the lower byte of the
saved status word before the above RESTORE so.as to avoid retriggering the same
exception that invoked HANDLER to begin with.

To do so, you can use a command of the form:

LOCAL_SAVE AREA (2) = Oi 1* should precede restore *1

or:

SAVE_AREA. STATUS (0) = 0i

13.10 Floating-Point Linkage

This section deals with the issues of choosing the linkage specifications appropriate
to your use of the REAL math facility: no use, PL/M-86 use only, or use of routines
not written in PL/M-86. What is appropriate also depends on whether execution will
use an actual 8087 chip or an emulator.

These linkage specifications make available to your program the libraries of
floating-point functions. The circumstances determining which library is appro
priate are given in table 13-2. The libraries themselves are discussed briefly below the
table.

13-13

Floating-Point Arithmetic: The Real Math Facility PL/M-86 User's Guide

13-14

Table 13-2. Linkage Choices for REAL-Math Usage

Link-List Should Include the
Use of Emulator or Specifications Below (Not

REAL Math Facility Actual Chip Used Necessarily in the Order
Shown) After Object Modules

NONE NEITHER (none)

All Floating Point EMULATOR E8087.LlB, PE808?
in PLlM-860NLY

With Some Modules EMULATOR E8087.LlB, E8087
That use Floating Point
NOT in PLlM-86

ANY ACTUAL 8087 CHIP 8087. LIB

The interface libraries do the following:

• SOS7.LIB resolves external references inserted by the translator of an iAPX S6
program so that floating-point instructions will correctly invoke the SOS7 chip.
SOS7.LIB is the library of floating-point functions written for the chip itself
rather than for the Emulator.

• ESOS7.LIB resolves such references to invoke the Emulator software instead of
the actual 8087 chip.

Emulation is performed by E8087 or PESOS7.

• ESOS7 is the actual library of emulation routines, which provide every function
and feature of an actual SOS7 chip except speed. Emulation is invoked
automatically as needed, using interrupts 20 through 31. The full Emulator
occupies about 16K bytes of code space.

• PESOS7 is a subset of ESOS7. The REAL arithmetic performed by PL/M-S6
programs does not require the complete set of routines in the full Emulator. The
full Emulator occupies about SK bytes of code space.

NOTE
The SOS7 Emulator processes exceptions exactly as the SOS7 does. However,
if your iAPX 86/S0S7 implementation includes some external interrupt
masking device such as an S259A, the effect of this external device cannot
be simulated by the S087 Emulator. With the Emulator, an Interrupt 16 will
occur after the execution of any instruction when the (emulated) interrupt is
active and the iAPX 86 interrupt is enabled, even if the 8259A is disabled.

(For examples of how to link interface libraries with your program, see specific host
system appendix.)

To locate the 8087 Emulator at a specified memory location:

• Locate the read-only code by referring to class "AQMCODE" in the LOCS6
invocation.

• Locate the read-write data area by referring to class" AQ MDA T A."

NOTE
The 80S7 Emulator uses iAPX 86 interrupts 20 through 31. Therefore if
your program uses any REAL variables, absolute memory locations 50H
through 7FH in the iAPX 86 final located module will contain the necessary
code for these interrupts in the iAPX 86 interrupt vector. These memory
locations should not be used for any other purpose.

CHAPTER 14
SUPPORT LIBRARY: PLM86.LIB

The PLM86.LIB library supports *, /, and MOD operations on the DWORD data
type. You must link to this support library (using LINK86) before executing any
program that performs these operations on DWORD types.

NOTE

The DWORD routines in this library form only one segment; a code seg
ment called LQ_PLM86_LIB_CODE. Since it is read-only code, it may
be burned into ROM.

8086/80&7/8088 ~ACPO ASSEMBLER PLfoI86.UB 32-BIT "ULTTPLY ARITHMF:TIC ROUTINE 08/t5/81 PAGE

Sr.RItS-IlI 80116/8087/8088 MACRO AssrMALFR Vl.O A-5SEIIBLY OF MODlILE LO..DWORD_MUL
OBJECT IoIOOl1l.F PLACFD IN : F5 :LODW~L .09J
NO INVOCATION LINE Cb~TPOLS

LINF

1 +1
2
3
4
5
6
7
R
9

10
11
12
t3
14
15
16
17
18
'9
20
2t
22
23
24
25
26
21
28
29
30
31
32
31
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5'5
56
51
59
59
60

SOUPCE

$TITLEC' PLM86.LIB 32-BIT MULTIPLY ARITHMETIC ROUTINE
NAIIE LO_DWORD_MUL

PL/M-86 32-BIT ~ULTIPLY ARITHMF.TIC ROUTINE

:
ASStJME CS:LQ~~L,",86';'LIB_CODE
LO_PLM96_LIR_COO~ SE(;MF!"T ~UBLIC -CODE'

J
J , , ,

PUP-LIC LO_DWORD_MUL

O>C:AX => OPEPAND j

DI:CX => OPERAND 2
DX:AX => RESULT

THE ALGORITHM IS VERY SIMPLE, IT COWYERTS

1) CHIGH(OPt) + LOW(OPt» * (HIGH(OP2) + LOW(OP2» z

2) CHIGHCOPl) * (HIGH(OP2»+(HIGH(OP~)*LO'(OP2» +
CLOW(DPl) * (HIGH(OP2» + (LOW(OPt) * LD~(OP2» =

3) (HIGH(OPl). LOW(OP2» + CLO'(OPt) • HIGH(OP2» + (LOW(OPL)*LOW(OP2»
SINCE HIGH(OPt) * HIGHCOP2) YIELDS A RESULT THAT IS TOO.LARGE TO FIT
IN 32 BITS. IT CAN BE IGNORED

4) HIGH(RrSULT) = LOW(CHIGHCOPt) * LOW(OP2») +
LOW((LOwtOPt) * HIGH(OP2») +
HIGH((LONCOP1) • LOW(OP2»)

LOWCRrSULT) = LOW(CLOW(O;t) * LOW(OP2»)

IT SHOULD BE NOTED FURTHER THA~ ~HE HIGH RESUL~ FROM INY MULTIPLICATION
INVOLVING THE HIGH PART OF AN OPERAND CAN BE IGNORED SINCE IT WILL ALSO
EXCEED THE 32 BITS THAT ARE AVAILABLE FO~ THE RESULT

LO_DiIIORD_MUL PROC FAR
MOY BX,AX
MOV AX.DX
NUL ex
MOvu,n
'10'1. AX.DI
,",UI, BX
ADD SI,AX

MOV AX,CX
MUL fllf

ADD DX,SI

RET
E"DP

LO_PLM86_LIR_CODE ENDS
END

I SAVE LOW WORD OF OP1
I SET UP TO MULTIPLY HIGH(OP1) * LOW(OP2)

~HIGH PART OF RESULT IS MEANINGLESS. SAVE LON PART AS
, FIRST COMPONENT OF HIGHCRESULT)
, SET UP TO MULTIPLY HIGHCOP2) • LONCOPt)

AS BEFORE, HIGH PART IS MEANINGLESS. ADD LOW PART .S
A COMPONENT OF HIGH(RESULT)
SET UP FOR LOW(OP1) • LOW(OP2)
LOW PART OF THIS RESULT IS THE SOLE COMPONENT or THE
LOW WORO OF THE RESULT
THE OTHER COMPONENTS OF HIGH(RESULT) ARE ADDED TO THIS
COMPONENT OF HIGHCRESULT)
RETURN TO INTERFACE ROUTINE

ASSr.~BLY COMPLF.TE, NO FRRORS FOUND

Figure 14-1, Listing of PLM86.LIB Multiplication Routine

14-1

Support Library: PLM86.LIB PL/M-86 User's Guide

14-2

8086/808118098 MACPO A5SE~8LF.R PLM86.LT8 32-8IT DIVISIONIMOD ARITHMETIC ROUTINE 08/15/81 PAGE

SERIES-III 8086/808118088 MACRO ASSEMHLFR Vl.0 ASSEMBLY OF MODULE
OBJECT MODULE PLACED IN :F5:LOowDV.OBJ
NO INVOCATION LI~E CONTROLS

LIN!'"

1 +1
2
1
4
5
6
7
8
9

to
11
12
13
14
15
16
11
t8
19
20
2t
27.
23
'4
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
41
48
49
SO
51
52
53
54
55
56
57
58
5'1
60
61
62
63
64
65
66
67
68
69
70
71
72
73
14
75
76
77
78
79
90
81
82
83

SOUF~CF

$TITloE(' PLM86.LIB 12-8IT DIVISIONIMOD ARITNMETIC ROUTINE
NA~E LO_DWORD_DIV

PL/M-~6 32-8IT DIVTSTON/MOD ARITHMETIC ROUTINE

ASSUME CS:LO_PL~86_LIB_CODF.
LO~PLM86_LIB~CODE SEGMENT PUBLIC 'CODE'

PUELIC LO_DWORD_DIV

DX:AX => NUMERATOR AND RESULT
DI:CX => DENOMINATOR
SI:Dt => REMAINDER

DX:AX PAIR IS USED TO HOLD TWO VALUES,
THE NUIIERATOP AND THE PARTUL RESUt.T (SHIFTED 1M 1 BIT AT _ TIME).

: TWO SPECIAL CASES APE TESTED FOR (TO REDUCE TIME SPEMT IN THIS ROUTINE)
1) 01 = 0 AND CX > OX IN THIS CASE, THE RESULT WILL BE < 65536 SO

WTLL FIT IN AX AND NOT CAUSE OVERFLOW
2) 01 = 0 AND CX <= OX DIVISION OF THE HIGH(NUMERATOR) BY ex YIELDS THE

COMPONENT OF THE HIGH(RESULT) AND A REMAIMDEP IN
DX THAT OBEYS THE RULES FOR CASE .1 ABOYE, ALLOWING
US TO DIVIDE FOR THE LOW(RESULT)

DWOPD_WORD_LONG:

DWORD_DWORO_DIV:

PROC FAR
OR 01.01 : TEST FOR HIGH OF DENOMINATOR = 0
JNZ DWORD_DWORO_DIV
C~P Cx,OX ~ IF BX > DX THEN CAN DO SIMPLE DIVIDE
JBE ~WORD_WORD_LONG
DIV CX RESULT FITS IN A WORD SO CAN DO SIMPLE DIY
XOR SI,SI SET UP STANDARD RESULT/REMAINDER REGS
MOV DI.DX REMAINDER IN SI:DI
XOP DX.OX RESULT IN DX:AX
RET

MOV DI.AX
MOV AX.OX
XOP DX.OX
DIV CX

XCJlG DJ.AX

DIV CX
XCHG DX.DI
XOP 51,51
RET

PUSH ep
~OV EP,CX
MOV BX.DI
XOP 51.51
MOV 01.51
MOV CX, 32

SHL [II, 1

KNOW 01 • 0 SO USE DI AS A TEMP
, §ET UP TO DIVIDE HIGH PART

DIVIDE RIGH PART BY LOW OF DENOMINATOR
(HIGH PART KNOWN TO BE 0)
SAVE RESULT AND MOVE LOW OF NUMERATOR INTO AX
OX STILL CONTAINS REMAINDER OF PREVIOUS DIV SO
IS AloRFADY SET UP FOR THIS NEXT OIV
DIVIDE (REMAINDER OF HIGH) + LOW
SET UP PESULT AND REMAINDER REGS

BP USED AS A GENERAL REG

INITIALIZE REMAINDER TO 0

, INITIALIZE COUNTER

PCL 51. 1 PEMAINDER'2
SilL AX, 1
PCL OX, 1 : NlJMERATOR'2
ADC DI, 0 ADD IN ANY CARRY FROM THE SHIFT
SUB 01, BP SUBTRACT DENOM FROM REMAINDER
SEe 51, BX
JNC AX : TURN ON RESULT BIT FOR NOW

: INC DOESN'T AFFECT CAPRY FLAG
JNC TNC_REMAINDER

: CAN'T SUBTRACT THE DFNOMINATOR FROM THE REMAINDER, ADD IT BACK

INC_REMAINDER:

ADD 01, BP
ADC 51, BX
DEC AX : TURN RESULT BIT OFF

LOOP
POP
PET
ENDP

DIY_MOO_LOOP
BP : RESTORE BP

, RETURJI TO INTERFACE POUTINE

LO_PLM86_LIB_CODE ENDS
FND

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 14-2. Listing of PLM86.LIB Division/Mod Arithmetic Routine

CHAPTER 15
COMPILER CONTROLS

15.1 Introduction to Compiler Controls
The exact operation of the compiler may be controlled by a number of controls that
specify options such as the type of listing to be produced and the destination of the
object file. Controls may be specified as part of the command invoking the com
piler, or as control lines appearing as part of the source input file.

A control line is a source line containing a dollar sign ($) in the left margin. Nor
mally, the left margin is set at column one, but this may be changed with the LEFT
MARGIN control. Control lines are introduced into the source to allow selective
control over sections of the program. For example, it may be desirable to suppress
the listing for certain sections of the program, or to cause page ejects at certain
places.

A line is considered a control line by the compiler if there is a dollar sign in the left
margin, even if it appears to be part of a PL/M -86 comment or character string
constant.

On a control line, the dollar sign is followed by zero or more blanks and then by a
sequence of controls. The controls must be separated from each other by one or
more blanks.

Examples of control lines

$NOCODE XREF
$ EJECT CODE

There are two types of controls: primary and general. Primary controls must occur
either in the invocation command or in a control line which precedes the first non
control line of the source file. Primary controls may not be changed within a
module. General controls may occur either in the invocation command or on a con
trol line located anywhere in the source input, and may be changed freely within a
module.

There are a large number of available controls, but you may only need to specify a
few of them for most compilations, because a set of defaults is built into the com
piler. The controls are summarized in alphabetic order in table 15-1.

A control consists of a control-name which, depending on the particular control,
may be followed by a parenthesized-eontrol parameter. .

Examples of controls

LIST
NOXREF
OBJECT(PROG2.0JB)

Table 15-2 lists the controls in the order they are discussed in this chapter. This is
approximately in order of importance or usage. Primary controls have an asterisk
attached. Examples of system-dependent controls are included on fold-out pages in
your specific host-system appendix.

15-1

Compiler Controls PL/M-86 User's Guide

Table 15-1. Compiler Controls

Primary Control Names Abbreviation Default Discussed
in Section

DEBUG/NODEBUG DB NODEBUG 15.4
INTVECTOR / NOINTVECTOR IV INTVECTOR 15.4
OBJECT /NOOBJECT OB OBJECT(source-file.OBJ) 15.4
OPTIMIZE OT OPTIMIZE(1) 15.4
PAGING/NOPAGING PI PAGING 15.6
PAGELENGTH PL PAGELENGTH(60) 15.6
PAGEWIDTH PW PAGEWIDTH(120) 15.6
PRINT / NOPRINT PR PRINT(source-file .LST) 15.5
RAM/ROM none RAM 15.4
SMALLICOMPACT/MEDIUM/LARGE SM/CP/MD/LA SMALL 15.4
SYMBOLS/NOSYMBOLS SB NOSYMBOLS 15.5
TITLE IT module name 15.6
TYPE/NOTYPE TY TYPE 15.4
WORKFILES WF WORKFILES(:WORK:,:WORK:) 15.2
XREF/NOXREF XR NOXREF 15.5

General Control Names Abbreviation Default Discussed
in Section

COOE/NOCODE CO NOCODE 15.5
COND/NOCONO none COND 15.8
EJECT EJ - 15.6
IF/ELSEIF/ELSE/ENDIF none - 15.8
INCLUDE IC - 15.7
LEFTMARGIN LM LEFTMARGIN(1) 15.3
L1ST/NOLIST LI LIST 15.5
OVERFLOW / NOOVERFLOW OV NOOVERFLOW 15.4
SAVE/RESTORE SAiRS - 15.7
SET/RESET none RESET (0) 15.8
SUBTITLE ST no subtitle 15.6

Table 15-2. Controls by Categories

Section

15.2 Compiler Resources *WORKFILES

15.3 Input Format LEFTMARGIN

15.4 Object File * INTVECTOR INOINTVECTOR
OVERFLOW INOOVERFLOW

*OPTIMIZE
*OBJECT/NOOBJECT
*OEBUG/NODEBUG
*TYPE/NOTYPE
*SMALLICOMPACT/MEDIUM/LARGE
*ROM/RAM

15.5 Listing Content * PRINT I NOPRINT
LlST/NOLlST
CODE/NOCODE

*XREF/NOXREF
*SYMBOLS/NOSYMBOLS

15.6 Listing Format *PAGING/NOPAGING
* PAGELENGTH
*PAGEWIDTH
*TITLE
SUBTITLE
EJECT

• Denotes primary control.

15-2

PL/M-86 User's Guide Compiler Controls

Table 15-2. Controls by Categories (Cont'd.)

Section

15.7 Source Inclusion and
Control Status INCLUDE

SAVE/RESTORE

15.8 Conditional Compilation IF/ElSEIF/ElSE/ENDIF
SET/RESET
COND

• denotes primary control.

15.2 The WORKFILES Control

The WORKFILES control is a primary control, with the form:

W 0 R K F I L E S (directory-name, [directory-name])
Default: W 0 R K F I L E S (: W 0 R K : , : W 0 R K :)

Each directory-name represents a direct access device such as a disk drive.

During compilation, the compiler creates work files that are deleted at the end of
compilation. If the WORKFILES control is not used, these files will be the system
default. The WORKFILES control allows you to specify any two devices for storage
of these files. (See examples in specific host-system appendix.)

As a rule of thumb, the space required for work files on each device is roughly equal
to the total space required for the PL/M-86 source (including "included" source
files-see section 15.7). If only one device is used for work files, it should have twice
this amount of space available.

15.3 The LEFTMARGIN Control

This is the only control for specifying the format of the source input. It is a general
control with the form:

LE FTMAR GIN (column)
Default: l EFT MAR GIN (1)

where column is a non-zero, unsigned integer specifying the left margin of the
source input. All characters to the left of this position on subsequent input lines are
not processed by the compiler (but do appear on the listing).

The new setting of the left margin takes effect on the next input line. It remains in
effeCt for all input from the source file and any INCLUDE files until it is reset by
another LEFTMARGIN control.

Note that a control line is one that contains a dollar sign in the column specified by
the most recent LEFTMARGIN control.

15-3

Compiler Controls PL/M-86 User's Guide

15-4

15.4 Object File Controls

These controls determine what type of object file is to be produced and on which
device it is to appear. The controls are discussed in the following order:

INTVECTOR/NOINTVECTOR
OVERFLOW INOOVERFLOW
OPTIMIZE
OBJECT /NOOBJECT
DEBUG/NODEBUG
TYPE/NOTYPE
Program Size Controls
RAM/ROM

INTVECTOR/NOINTVECTOR

These are primary controls. They have the form

INTVECTOR
NOINTVECTOR
Default: INTVECTOR

Under the INTVECTOR control, the compiler creates an interrupt vector consisting
of a 4-byte entry for each interrupt procedure in the module. For Interrupt n t the
interrupt vector entry is located at absolute location 4*n. See Chapter 10 and Appen
dix I for further discussion.

Alternatively, it may be desirable to create the interrupt vector independently, using
either PL/M-86 or assembly language. In this case, the NOINTVECTOR control is
used and the compiler does not generate any interrupt vector. The implications of
this are discussed in Appendix I.

OVERFLOW INOOVERFLOW

These are general controls. They have the form:

OVERFLOW
NOOVERFlOW
Default: NOOVERFlOW

These controls specify whether overflow is to be detected in performing signed
(INTEGER) arithmetic. If the NOOVERFLOW control is specified, no overflow
detection is implemented in the compiled module and the results of overflow in
signed arithmetic are undefined. If the OVERFLOW control is specified, overflow
in signed arithmetic results in a nonmaskable Interrupt 4, and it is the programmer's
responsibility to provide an interrupt procedure to handle the interrupt. Failure to
provide such a procedure may result in unpredictable program behavior when
overflow occurs.

If this control is nested within a program statement, overflow detection will begin
when the next complete statement is evaluated.

Note that the use of the OVERFLOW control results in some expansion of the
object code.

PL/M-86 User's Guide Compiler Controls

OPTIMIZE

This is a primary control. It has the form:

OPTIMIZE(n}
Default: OPTIMIZE (1)

where n may be 0, 1, 2, or 3.

This control governs the kinds of optimization to be performed in generating object
code.

OPTIMIZE(O)

OPTIMIZE(O) specifies only "folding" of constant expressions.

Folding means recognizing, during compilation, operations that are superfluous or
combinable, and removing or combining them so as to save memory space or execu
tion time. Examples include addition with a zero operand, multiplication by one,
and logical expressions with ~'true" or "false" constants. Also, in the statement:

A = 6 + 3 + A;

the compiler will add 6 and 3, producing code to add 9 to A.

OPTIMIZE(l)

OPTIMIZE(1) specifies strength reduction, elimination of common subexpressions,
and short-circuit evaluation of some Boolean expressions, in addition to the above
optimizations of level (0).

Strength reduction means substituting quick operations in place of longer opera
tions, e.g., shifting left by 1 instead of multiplying by 2. This requires less space for
the instruction as well as executing faster. The addition of identical subexpressions
may also result in generation of left shift instructions.

Elimination of common subexpressions means that if an expression reappears in the
same block, its value is re-used rather than being recomputed. The compiler also
recognizes commutative forms of subexpressions, e.g., A+B and B+A are seen to be
the same. Intermediate results during expression evaluation are saved in registers
and/ or on the stack for later use, for example:

A = B + C*0/3;
C = E + D*C/3;

The value of C*D/3 will not be recomputed for the second statement.

Optimizing the evaluation of Boolean expressions uses the fact that in certain cases
some of the terms are not needed to determine the value of the expression. For
example, in the expression:

(A > B AND > J)

15-5

Compiler Controls PL/M-86 User's Guide

15-6

if the first term (A > B) is false, the entire expression is false, and it is not necessary
to evaluate the second term. The use of PL/M-86 built-in procedures does not
change this optimization. However, if a user-function or an embedded assignment is
part of the expression, this short evaluation is not done. For example:

(A > B AND (UFUN (A) > J »

is evaluated in full.

OPTIMIZE(2)

OPTIMIZE(2) specifies all of the above, plus the following:

• Machine code optimizations (e.g., short jumps, moves)

• Elimination of superfluous branches

• Re-use of duplicate code

• Removal of unreachable code and reversal of branch-condition

Optimizing machine code means using shorter forms for identical machine instruc
tions, to save space. This is possible because the iAPX 86 has multiple forms for
some of its instructions. For example:

MOV RESLT1, AX; 1* move accumuLator value to Location RESLT1 *1

can be generated in 3 bytes as A30800, or in 4 bytes as B9060800. The former choice
saves a byte of storage for the program. Similarly, jumps that the compiler can
recognize as within the same segment or even closer, within 127 bytes, permit the use
of fewer-byte instructions.

Elimination of superfluous branches means optImIzmg consecutive or multiple
branches into a single branch example. For example:

LA B 1 :

LAB2 :

JZ
JMP

LAB1;
LAB2;

will be transformed into:

JNZ LAB2;
LA B 1 :

LAB2:

1* Jump on zero to LAB1 *1
1* unconditional jump to LAB2 *1

1* Jump on non-zero to LAB2 *1

Similarly, multiple branches like the following are eliminated:

LABO: JMP LAB1

LAB 1 : JMP LAB2

LAB2:

PL/M-86 User's Guide Compiler Controls

and transformed into:

LABO: JMP LAB2

LAB1 : JMP LAB2

LAB2:

Reuse of duplicate code can refer to identical code at the end of two converging
paths. In such a case the code is inserted in only one path, and a jump to that path is
inserted in the other path, for example:

DECLARE A BYTE, SPOT POINTER;
DECLARE S BASED SPOT STRUCTURE (B BYTE, C BYTE);
IF A = 1 THEN

ELSE

6) 1 :

6)2:

S.C = INPUT (OF7H) AND 07FH;

S.C = INPUT (OF9H) and 07FHi

CMP
JZ
JMP
IN
AND
MOV
MOV
JMP
IN
AND
MOV
MOY

Before

A,1H
6)+5H
6)1
OF7H
AL, 7FH
BX, SPOT
S [BX+1 Hl, AL
6)2
OF9H 6)1:
AL, 7FH 6)2:
BX, SPOT
S [BX+1 H], AL

CMP
JNZ

IN
JMP

IN
AND
MOV
MOV

After

A,1H
6)1

OF7H
iil2

OF9H
AL, 7FH
BX, SPOT
S [BX+1 H], AL

Reuse of duplicate code can also refer to machine instructions immediately
preceding a loop being identical to those ending the loop. A branch can be generated
to re-use the code generated at the beginning of the loop, for example:

Before After

ADD AX I BX LABO: ADD AX, BX
MOY ANS, AX MOY ANS, AX

LABO: MOY AL, DUM1 MOY AL, DUM1
CMP AL, DUM2 CMP AL,DUM2
JNZ LAB1 JNZ LAB1

ADD AX, BX JMP LABO
MOY ANS, AX LAB 1 :
JMP LABO

LAB1 :

This is safe so long as LABO is not the target of a jump instruction. The compiler
normally handles a whole procedure at a time, and is thus aware of such a condition.
The optimization cannot be safely applied to labels in the outer level of the main
program module. This optimization will not change your program and will save
code space.

15-7

Compiler Controls PL/M-86 User's Guide

15-8

The optimization that removes unreachable code takes a second look at the
generated object code, finding areas which can never be reached due to the control
structures created earlier . .

For example, if the following code were generated before optimization:

MOV AX, A
RCR A L, 1
JB @1
JMP @2

@1 : MOV AX, OFFFFH
OUTW OF6H
JMP @2
MOV AX, B
ADD A, AX
JMP @3

@2:

@3:

then the removal of unreachable code would produce:

MOV AX, A
RCR A L, 1
JB @1
JMP @2

@1 : MOV AX, OFFFFH
OUTW OF6H
JMP @2

@2:

@3:

This can be further optimized by reversing the branch condition in the third instruc
tion and removing the unnecessary JMP @2:

MOV AX, A
RCR AL, 1
JNB @2

@1 : MOV AX, OFFFFH
OUTW OF6H

@2:

@3:

OPTIMIZE(3)

OPTIMIZE(3) includes all of the above optimizations. It also optimizes indeter
'minate storage operations (e.g., those using based variables or variables declared
with the AT attribute) and pointer comparisons. The two assumptions validating
,these new optimizations are that based variables (or AT variables) are not overlaying
other user-declared variables, and that segments are not overlapped.

PL/M-86 User's Guide Compiler Controls

On this optimization level, all Boolean expressions are short-circuited except those
containing embedded assignments. (For a description of how this optimization
occurs, see OPTIMIZE(l).)

The benefits of this optimization level include more efficient use of code space
because the user guarantees he has not caused an overlay of needed values. Faster
execution of pointer comparisons is a consequence of the user guaranteeing there are
no overlapped segments.

The first guarantee is a consequence of user caution in variable-declaration and
usage. For example, the sequence:

DECLARE (I,J) WORD;
DECLARE THETA (19) AT (@I);
DECLARE A BASED J (10)

STRUCTURE (F1 BYTE,F2 WORD);

J = . I;

A(I).F1 = 7;
A(I).F2 = 99;
THETA(I) = 31;

violates this caution and guarantee because it causes the values being used as
pointers and subscripts to be overlaid. The compiler normally takes steps to avoid
the difficulties implied here, but in OPTIMIZE(3) these steps are omitted due to the
implicit user guarantee that such situations have been avoided.

OPTIMIZE(3) also changes the way POINTER values are compared. The normal
case in comparing PTR_l and PTR_2 is this: for each pointer, the segment word
is effectively multiplied by 16 and the offset word is added, giving a full 20-bit
address. The two 20-bit addresses are compared and the correct result is returned.

These manipulations are not needed under this level of optimization due to the
implicit guarantee that no segments overlap. Thus it is sufficient to compare the seg
ment parts bit for bit in order to determine which is a lower number. Only if the seg
ment parts are equal is it necessary to compare the offset parts. Pointer comparisons
are therefore faster under this level of optimization.

The second guarantee mentioned above required no special action unless the AT
attribute and the segment-locating controls of LINK86 and LOC86 are invoked.
Users exercising these controls must consider carefully their full effects. If segments
are overlapped and pointer comparison is used in the program, this optimization
level must not be used.

Figures 15-1 through 15-4 illustrate the levels of optimization described above.

15-9

Compiler Controls

15-10

8Y8te_-ld eL/M-~6 Y2.0 COMPILATION OF MODUL~ EIAMPLES_OF_OPTIMIZATIONS
08~ECT MODULE PLACED IN :f1:EIMPLE.08J
COMPILER INVOKED 8l: :F1:PLM86.86 :F1:EIMPLE.SRC NOPAGING COMPACT CODE

OPTlMIZE(O)

3 1
II 2
6 3
7 3
I! 3
9 3

10 2
11 2
12 1

EXAMPLES_Of_OPTIMIZATIONS: DO;
DECLARE (A,8,C) WORD, 0(100) WORD, (PT~1, PT~2) POINTER,

ABASED BASED PT~1 (10) VORD;
DO WHILE D(A+B) < D(A+B+l);

If PT~1 " PT~2 THEN DO;
A • A • 2;
A81SED(A) " AB1SED(B);
AB1SED(B) .. lB1SED(C);
END;

ELSE A .. A + 1;
EIjD;

END EIAMPLES_Of_OPTIMIZATIONS;

0000 8BEC
0002 FB

Itl:
0003 881EOOOO
0007 031E0200
OOOB 01E3
0000 8B360000
0011 03360200
0015 D1E6
0017 88870600
001B 38840800
001f 7203
0021 E97700

00211 cII06CEOO
0028 06
0029 CII16D200
0020 8CC7
002f 5E
0030 Bl011
0032 8BD8
00311 D3EB
0036 03F3
0038 8BDA
003A 03EB
003C 03FB
003E 3BF:f
00110 7507
00112 2110F
001111 80E29F
00117 3AC2
00119 71103
00118 1911100

DOllE 88060000
0052 D1EO
00511 89060000

0056 88360200
005C 01E6
005E 883EOOOO
0062 D1E7
00611 ClilECEOO
0068 268BOO
0068 ClilECEOO
006F 268901

0072 883601100
0076 01E6
0078 883E0200
007C D1E7
007E ClllECEOO
0082 2611BOO
0085 ClilECEOO
0089 268901

ooac E90900
'3:

008f 88060000
0093 110
00911 89060000

.,,:
0098 E968Ff

.2:

MOY
STI

MOY
ADD
SBL
MOY
ADD
S8L
MOY
CMP
JB
JMP

LES
PUSH
LES
MO'
POP
MOY
MOY
SBI
ADD
MOY
SBR
ADD
CMP
JIIE
AIID
AIID
CMf
JZ
~MP

MOY
S8L
MOY

MOY
SBL
MOY
SBL
LES
MOY
LES
MOY

MOY
SBL
MOY
SBL
LES
MOY
LES
MOY

~MP

MOY
IIIC
MOY

JMP

STATEMENT , 3

BP,SP

BX,A
BX,B
BX,1
SI,A
SI,B
SI,1
U,O[U]
AX,O[SI+28]
$+58
@2

, STATEMENT , II
AX,PT~'
ES ;
OX,PT~2

DI,ES
SI
CL,II8
BX,AI
BX,CL
SI,BI
BX,DI
BX,CL
DI,BI
SI,DI
$+98
AL,OFB
DL,OFB
AL,DL
$+58
@3

AX,A
AI,1
A,AX

SI,B
SI,1
DI,A
01,1

STATEMENT' 6

STATEMENT , 7

BX,PT~1
AX,ES:[BI).A8ASiO[SI]
BX·,PT~1
ES:[8X].A8ASEO[OI],AI

; STATEMENT , 8
SI,C
SI,1
OI,B
01,1
8X,PT~1
AX,ES:[8I).A8ASEO[SIJ
BX,PT~1
ES:(8I).A8ASEO[OI),AI

AX,A
AX
A,AX

@1

; STATEMENT , 10

STATEMENT , 11

STATEMENT' 13

MODULE INFORMATION:

CODE AREA SIZE 009B8 155D
CONSTANT AREA SIZE = 00008 00
YARIABLE AREA SIZE • 00D68 21110
MAIIMUM STACK SIZE " 00028 2D
12 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

EtiD Of !'L/M-1!6 COMP ILATION

PL/M-86 User's Guide

Figure IS-I. Sample Program Showing the OPTIMIZE(O) Control

PL/M-86 User's Guide

sJstea-ld PL/M-86 '2.0 COMPILATION OF MODULE EXAMPLES_OF_OPTIMIZATIONS
OBJECT MODULE PLACED IN :Fl:EXMPLE.OBJ
COMPILER INVOKED Bl: :Fl:PLH86.86 :Fl:ElMPLE.SRC NOPAGING COMPACT CODE

OP TlMIZE (1)

EIAMPLES_OF_OPTIMIZATIOBS: DO; 1
2 DECLARE (A,B,C) WORD, 0(100) ~ORD, (PTR_l, PTR_2) POINTER,

ABASED BASED PT~l (10) VORD;
3 1
II 2
6 3
7 3
IS 3
9 3

10 2
11 2
12 1

DO VHILE D(A+B) (D(A+8+1);
IF PT~l = PT~ THEN DO;

A = A • 2;
A8ASED(A) = ABASED(8);
ABASID(8) a ABASED(C);
EIID;

ELSE A = A + 1;
£MD;

END EUMPLES_OF_OPTIMIZATIONS;

0000 ISBEC MOY 8P ,SP
0002 FB STl

@1:
0003 8B1EOOOO MOY 81,A
0007 8B060200 MOY Al,8
OOOB 0308 ADD 81,Al
0000 D1E3 SHL Bl,l
OOOF 8B8F0600 MOY Cl,D[Bl]

STATEMENT I 3

0013 3B8F0800 CMP Cl,D[81+2H)
0017 7203 JB $+5H
0019 E96800 JMP @2

; STATEMEIIT I II
001C CII06CEOO LES Al,PTR_1
0020 06 PUSB ES ; 1
0021 CII16D200 LES DI,PtR_2
0025 8CC7 HOY DI,ES
0027 5E POf SI
0028 Bl011 MOY CL,II8
002& 8BD8 MOY Bl,AI
002C D3EB S8R BI,CL
002E 03F3 ADD SI,81
0030 88DA MOY 81,DI
0032 D3EB SBR 81,CL
00311 03FB ADD DI,BI
0036 3BF7 CMf SIiDI
0038 7507 JIE $+9H
003A 2110F All 0 AL,OFH
003C 80120F All 0 DL,OFH
003' 3AC2 CMf AL,DL
00111 71103 JZ $+58
00113 E93700 JMP @3

STATEMENT I 6
00116 8B060000 MOY AI,A
OOIiA DlEO SHL AI,l
OOIlC 89060000 MOY A,AX

STATEMENT I 7
0050 88360200 MOY SI,B
00511 D116 SHL SI,l
0056 D1EO SBL Al,l
0058 CII1ECEOO LIS BX,PTR_'
005C 268B08 MOY CI,ES:[BI).ABASID[SI]
005F 89C6 MOY SI,AI
0061 268908 MOY ES:[BX].ABASID[SI],CI

; STATEMBIIT ,
00611 883601100 MOV SI,C
0068 D116 SHL 51,1
0061 88310200 MOY DI,B
006£ D1E1 SHL DI,l
0070 ClllECEOO LES BX,PT~1
00711 268BOO MOY AX,ES:[8X).ABASED[SI]
0077 268901 MOY ES:[81).ABASED[DI),AI

; STATEMEIIT , 10
007& E901l00 JMf flli

@3:
0070 FF060000 IIC A

STATEMENT , 11
@II:

0081 E97FFF JMP 11
@2:

STATEMENT , 13

MODULE INFORMATION:

CODE AREA SIZE = 008"8 1320
CONSTAIIT ARIA SIZE.: OOOOH OD
VARIABLE AREA SIZE z 00068 21110
MAIIMUM STACK SIZE 0002B 2D
12 LINES READ ° PROGRAM VARNINGS
o PROGRAM ERRORS

END OF PL/M-66 COMPILATION

Figure 15-2. Sample Program Showing the OPTIMIZE(1) Control

Compiler Controls

15-11

Compiler Controls

15-12

system-id PL/M-86 V2.0 COMPILATION OF MOLULE EXAMPLES_OF_OPTIMIZATIONS
OBJECT MODULE PLACED IN :Fl:EXMPLE.OBJ
COMPILER INVOKED BY: :Fl:PLM86.86 :Fl:EXMPLE.SRC NOPAGING COMPACT CODE

OPTIMIZE(3)

1
2

3 1
II 2
6 3
7 3
8 3
9 3

EXAMPLES_OF_OPTIMIZATIONS: DO;
DECLARE (A,B,C) WORD, D(100) WORD, (PTR_', PTR_2) POINTER,

ABASED BASED PTR_' (10) WORD;
DO WHILE D(A+B) < D(A+B+1);

IF PTR_l ; PTR_2 THEN DO;
A ; A • 2;
ABASED(A) = ABASED(B);
ABASED(B) = ABASED(C);
ENDi

10 2
11 2
12 1

ELSE A = A + 1;
END;

END EUMPLES_OF_OPTIMIZATIONS;
STATEMENT' 3

0000 8BEC MOV BP,SP
0002 FB STI

@1:
0003 8B1EOOOO MOY BX,A
0007 A 10200 MOY AI,B
OOOA 0308 ADD BI,AX
OOOC D1E3 SHL Bl,l
OOOE 8B8,0600 MOY CX,D[BI]
0012 3B8F0800 CMf CX,D[BI+2H]
0016 73113 JNB '2

; STATEMENT , II
0018 c406CEOO LES AX,PTILl
001C 06 PUSH ES ; 1
0010 CII16D200 1-ES DX,PTIL2
0021 8CC7 MOY DI,ES
0023 5E POP SI ; 1
00211 3BF7 CMP SI,DI
0026 7502 JU $+IIH
0028 3BC2 CMf AX,DX
002A 7529 JIIZ '3

STATEMENT , 6
002C 110000 MOY AX,A
002F DlEO SHL AX,l
0031 A30000 MOY A,AX

STATEMENT , 7
00311 8B3£0200 MOY DI,B
0038 D1E7 SHL 01,1
003A OlEO SHL AX,l
003C ClilECEOO LES BX ,PTILl
00110 268B09 MOY CX,ES:[BI].ABASED[DI]
00113 96 ICHG AX,SI
001", 268908 MOY ES:[BI).ABASED[SI],CX

; STUEMEIIT I
0047 883601100 MOY SI,C
OOIiB D1I6 SHL SI,l
00110 268B08 MOV CX,ES:[BI).ABASED[SI)
0050 268909 MOV ES:[BX).ABASED[DI),CX

STATEMENT I 10
0053 Eau: JMP 11

13:
0055 FF060000 IIiC

STATEMENT I 11
0059 EaAB JMP @1

@2:
STATEMENT I 13

MODULE INFORMATION:

CODE AREA SIZE 0058H 91D
CONSTANT AREA SIZE OOOOH 00
VARIABLE AREA SIZE 00D6H 2111D
MAXIMUM STACK SIZE 0002H 2D
12 LINES RUD
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

PL/M-86 User's Guide

Figure 15-3. Sample Program Showing the OPTIMIZE(2) Control

PL/M-86 Userts Guide

system-id Pl./~;-1S6 V2.0 COMPILATION 010' NODULE EXAMPLES_O~'_Oi'TIMIZATIONS
ObJeCT MOUUl.E PLACED IN :F1:EXki'LE.OBJ
COkI'Il.£R INVOK~O BY: :Fl:PLMob.lSb :Fl:EXMPl.E.SRC NOPAGING COMPACT CODE

OPTIMIZE(3)

EXAMPLES_OF_OPTIMIZATIONS: DO;
DECLARE (A,B,C) WORD, O(100) WORD, (PTR_l, PTR_2) POIttTER,

AbASED 8ASEO PTR_l (10) WORD;
3 1
II 2
6 3
7 3
IS 3
9 3

.;) 2
11 2
12 1

DO WHILE O(A+B) < 0(A+8+1);
IF PTR_l = PTR_2 THEN DO;

A = A • 2;
ABASEO(A) = ABASEO(8);
ABASED(B) = ABASEO(C);
EIIO;

ELSE A = A + 1;
END;

EIIO EXAMPl.ES_OF_OPTIMIZATIONS;
STATEMENT , 3

0000 88EC
0002 F8

0003 881EOOOO
0001 A 10200
OOOA 0308
OOOC 01E3
OOOE 881SF0600
0012 3B8FOt!00
0016 1343

0011) C406CEOO
001C 06
0010 CII160200
0021 8CC1
0023 5E
00211 3BF1
0026 1502
0028 3BC2
002A 1529

002C Al0000
002F OlEO
0031 A30000

00311 883E0200
0031S 01E7
003A OlEO
003C C41ECEOO
00110 268B09
00113 96
00411 268908

00111 883601100
0048 01E6
00110 268BOl)
0050 2611909

0053 EBAE

0055 FF060000

0059 EbAt!

MODUl.E INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABl.E AREA SIZE
HAXIMUM STACK SIZE
12 l.INES READ
o PROGRAH WARNINGS
o PROGRAM ERRORS

Ill:

@3:

112:

005BH
OOOOH
0006H
0002H

END OF PI./H-86 COHPILATIO~

HOV
STl

HOV
MOV
ADD
SHL
MOV
CMP
JN8

LES
PUSH
l.ES
HOV
POP
CMP
JIIE
CMP
JNZ

MOV
SHl.
HOV

HOV
SHl.
SRl.
l.ES
MOV
XCHG
HOV

MOV
SRl.
HOV
HOV

JMP

INC

JMP

910
OD

2111D
20

BP ,SP

8X ,A
AX ,B
BX,AX
BX,l
CX,O[BX]
CX,0[BX+2H]
@2

STATEMENT , 4
AX ,PTR_1
ES ; 1
OX ,PT R_2
OI,ES
SI ; 1
SI,OI
$+IIH
AX,DX
@3

STATEMENT' 6
AX,A
AX ,1
A,AX

STATEHENT , 7
01,B
01,1
AX,l
BX,PTR_l
CX,ES:(BX].ABASEO(OI]
AX,SI
ES:(BX].ABASEO[SI],CX

; STATEHENT I
SI,C
Sl,l
CX,ES:[BX].ABASEO[SI]
ES:[BX].ABASEO[OI],CX

; STATEHENT I 10
@1

STATEHENT I 11
@1

STATEHENT # 13

Figure 15-4. Sample Program Showing the OPTIMIZE(3) Control

Compiler Controls

15-l3

Compiler Controls PL/M-86 User's Guide

15-14

OBJECT INOOBJECT

These are primary controls. They have the form:

OBJECT
OBJ ECT <pathname)
NOOBJECT
Default: 0 B J E C T (source-file. 0 B J)

The OBJECT control specifies that an object module is to be created during the
compilation. The pathname is a standard operating system path name that specifies
the file to receive the object module. If the control is absent or if an OBJECT con
trol appears without a pathname, the object module is directed to the same file name
as used for source input, but with the extension OBJ. (See example in specific host
system appendix.)

The NOOBJECT control specifies that an object module is not to be produced.

DEBUG/NODEBUG

These are primary controls. They have the form:

DEBUG
NODEBUG
Default: NOD E BU G

The DEBUG control specifies that the object module is to contain the statement
number and relative address of each source program statement, information about
each local symbol including based symbols and procedure parameters, and block
information for each procedure. This information may be used later for symbolic
debugging by an ICE-86 or ICE-88 emulator.

The NODEBUG control specifies that this information is not to be placed in the
object module.

TYPE/NOTYPE

These are primary controls. They have the form:

TYPE
NOTYPE
Default: T Y P E

The TYPE control specifies that the object module is to contain information on the
types of the variables output in symbols records. This information may be used later
for type checking by LINK86, or an ICE-86 and ICE-88 emulator.

The NOTYPE control specifies that such type definitions are not to be placed in the
object module.

PL/M-86 User's Guide Compiler Controls

Program Size Controls

These controls specify the memory size requirements of the program that is to con
tain the module being compiled. They affect the operation of the compiler in various
ways and impose certain constraints on the source module being compiled, as
explained in detail in Chapter 17.

Note that for maximum efficiency of the object code, the smallest usable size should
be used for any given program. Also note that all modules of a program must be
compiled with the same size control. These are primary controls. They have the
form:

SMALL
COMPACT
MEDIUM
LARGE
Default: SMA LL

See Chapter 17 for discussions of the output of the compiler and of programming
restrictions under each size control. Extensions to these controls are discussed in
Appendix G.

SMALL

The SMALL control provides for programs with the following space requirements:

• Not more than 64K bytes total for code sections from all modules

• Not more than 64K bytes total for constant, data, stack, and memory sections
from all modules.

See Chapter 17 for details.

Note that the SMALL size is the most likely choice for compiling modules originally
written in PL/M-80. .

COMPACT

The COMPACT control provides for programs with the following space
requirements:

• Not more than 64K bytes total for code sections from all modules

• Not more than 64K bytes total for data and constant sections for all modules

• Not more than 64K bytes total for stack sections from all modules

• Not more than 64K bytes total for memory sections from all modules

See Chapter 17 for details.

MEDIUM

The MEDIUM control provides for programs with the following space
requirements:

• Not more than one megabyte total for code sections from all modules

• Not more than 64K bytes total for constant, data, stack, and memory sections
from all modules.

Note that no one code section (compiled from one module) may exceed 64K bytes.
See Chapter 17 for details.

15-15

Compiler Controls PL/M-86 User's Guide

15-16

LARGE

The LARGE control provides for programs with the following space requirements:

• Not more than one megabyte total for code sections from all modules

• Not more than one megabyte total for data sections from all modules

• Not more than 64K bytes total for stack sections from all modules

• Not more than 64K bytes total for memory sections from all modules

In the LARGE case, no constant section is produced. Instead, the program con
stants are placed in the code section of each module.

Note that no one code or data section may exceed 64K bytes.

See Chapter 17 for details.

RAM/ROM Control

This primary control directs the object-module placement of all constants, both
user-defined and compiler-generated. Its form is:

RAM
ROM
Default: RAM

The default setting places the CONSTANT section within the DATA segment in all
segmentation models (sizes) except LARGE, in which constants are placed in the
CODE segment instead.

The ROM setting places constants in the CODE segment. Under this setting, the
INITIAL attribute on a variable produces a warning message. The dot operator is
not advised for variable references under the ROM option, since constants and
variables will be relative to different segment registers. If SMALL is also specified,
then pointers will be four bytes instead of two. (See also Appendix H.)

If the keyword DATA is used in a PUBLIC declaration when compiling with the
ROM control, DATA must also be used in the EXTERNAL declaration of program
modules that reference it. However, no value list is then permitted, since the data is
defined elsewhere.

15.5 Listing Selection and Content Controls

These controls determine what types of listings are to be produced and on which
device they are to appear. The controls are discussed in the following order:

PRINT INOPRINT
LIST INOLIST
CODE/NOCODE
XREF/NOXREF
IXREF/NOIXREF
SYMBOLS/NOSYMBOLS

A sample listing is discussed at the end of this section.

PL/M-86 User's Guide Compiler Controls

PRINT INOPRINT

These are primary controls. They have the form:

PRINT
PRINT (pathname)
NOPRINT
Default: P R I NT (source-file. L S T)

The PRINT control specifies that printed output is to be produced. Pathname is a
standard operating system pathname that specifies the file to receive the printed out
put. Any output-type device, including a disk file, may also be given. If the control
is absent, or if a PRINT control appears without a pathname, printed output is sent
to a file that has the same name as the source file but with the extension LST. (See
example in specific host-system appendix.)

The NOPRINT control specifies that no printed output is to be produced, even if
implied by other listing controls such as LIST and CODE.

liST INOllST

These are general controls. They have the form:

LIST
NOLIST
Default: lIS T

The LIST control specifies that listing of the source program is to resume with the
next source line read.

The NOLIST control specifies that listing of the source program is to be suppressed
until the next occurrence, if any, of a LIST control.

When LIST is in effect, all input lines (from the source file or from an INCLUDE
file), including control lines, are listed. When NOLIST is in effect, only source lines
associated with error messages are listed.

Note that the LIST control cannot override a NOPRINT control. If NOPRINT is in
effect, no listing whatsoever is produced.

CODE/NOCODE

These are general controls. They have the form:

CODE
NOCOOE
Default: NOCOOE

The CODE control specifies that listing of the generated object code in standard
assembly language format is to begin. This listing is placed at the end of the program
listing on the listing file.

The NOCODE control specifies that listing of the generated object code is to be sup
pressed until the next occurrence, if any, of a CODE control.

Note that the CODE control cannot override a NOPRINT control.

15-17

Compiler Controls PL/M-86 User's Guide

15-18

XREF/NOXREF

These are primary controls. They have the form:

XREF
NOXREF
Default: NOX REF

The XREF control specifies that a cross-reference listing of source program iden
tifiers is to be produced on the listing file.

The NOXREF control suppresses the cross-reference listing.

Note that the XREF control cannot override a NOPRINT control.

SYMBOLS/NOSYMBOLS

These are primary controls. They have the form:

SYMBOLS
NOSYMBOlS
Default: NOS Y M B 0 l S

The SYMBOLS control specifies that a listing of all identifiers in the PL/M-86
source program and their attributes is to be produced on the listing file.

The NOSYMBOLS control suppresses such a listing.

Note that the SYMBOLS control cannot override a NOPRINT control.

15.6 Listing Format Controls

. Format controls determine the format of the listing output of the compiler. The con
trols are discussed in the following order:

PAGING/NOPAGING
PAGELENGTH
PAGEWIDTH
TITLE
SUBTITLE EJECT

PAGING/NOPAGING

These are primary controls. They have the form:

PAGING
NOPAGING
Default: PAG I NG

The PAGING control specifies that the listed output is to be formatted onto pages.
Each page carries a heading identifying the compiler and a page number, and
possibly a user specified title.

The NOP AGING control specifies that page ejecting, page heading, and page
numbering are not to be performed. Thus, the listing appears on one long "page" as
would be suitable for a slow serial output device. If NOPAGING is specified, a page
eject is not generated if an EJECT control is encountered.

PL/M-86 User's Guide Compiler Controls

PAGELENGTH

This is a primary control. It has the form:

P AGE LEN G T H (length)
Default: PAGELENGTH(60)

where length is a non-zero, unsigned integer specifying the maximum number of
lines to be printed per page of listing output. This number is taken to include the
page headings appearing on the page.

The minimum value for length is 5.

PAGEWIDTH

This is a primary control. It has the form:

P AGE WID T H (width)
Default: PAGEWI DTH (120)

where width is a non-zero, unsigned integer specifying the maximum line width, in
characters, to be used for listing output.

The minimum value for width is 60; the maximum value is 132.

TITLE

This is a primary control. It has the form:

TIT L E (I title 1)

Default: module name

where title is a sequence of printable ASCII characters that are enclosed in quotes.

The sequence, truncated on the right if necessary to fit, is placed in the title line of
each page of listed output.

The maximum length allowed for title is 60 characters, but a narrow pagewidth may
restrict this number further, for example:

TITLE('TEST PROGRAM 41)

SUBTITLE

This is a general control. It has the form:

SUB TIT L E (1 subtitle 1)

Default: no subtitle

where subtitle is a sequence of printable ASCII characters that are enclosed in
quotes.

The sequence, truncated on the right if necessary to fit, is placed in the subtitle line
of each page of listed output.

The maximum length allowed for subtitle is 60 characters, but a narrow pagewidth
may restrict this number further, for example:

15-19

Compiler Controls PL/M-86 User's Guide

15-20

SUBTITlE('TEST PROGRAM 4')

When a SUBTITLE control appears before the first noncontrol line in the source
file, it causes the specified subtitle to appear on the first page and all subsequent
pages until another SUBTITLE control appears.

A subsequent SUBTITLE control causes a page eject, and the new subtitle appears
on the next page and all subsequent pages until the next SUBTITLE control.

EJECT

This is a general control. It has the form:

EJECT

It causes printing of the current page to terminate and a new page to be started. The
control line containing the EJECT control is the first printed (following the page
heading) on the new page.

Sample Program Listing
During the compilation process a listing of the source input is produced. Each page
of the listing carries a numbered page-header that identifies the compiler, prints a
time and date as designated by the host operating system, and optionally gives a title
and a subtitle, and/or a date (see figure 15-5).

systea-id PL/M-86 Y2.0 COMPILATION OF MODULE STACK
OBJECT MODULE PLACED IN :Fl:STACK.OBJ
COMPILER INVOKED BI: :Fl:PLM86.86 :Fl:STACK.SRC NOPAGING CODE XREF

TITLE(STACK MODULE)

STACK: DO;
I- This module implements a BITE stack with push and pop el

2 DECLARE S(100) BITE, I*Stack Storage-I
T BITE PUBLIC INITIAL(-l); I-Stack Index-'

3 PUSH: PROCEDURE (B) PUBLIC; I-Pushes B onto the stack*1
4 DECLARE B BITE;
5 S(T:=T+l) = B; I-Increment T and store Bel
6 END PUSH;

7 POP: .PROCEDURE BITE PUBLI-C; I-Returns value popped from atack-I
8 RETURN S«T:=T-1)+1); I-Decre.ent T, return S(T+l)-'
9 END POP;

10 END STACK; I*Module ends here-I
; STATEMEIT , 3

PUSH PROC NEAR
0000 55 PUSH BP
0001 8BEC MOY BP ,SP

STATEMENT' 5
0003 8A066400 MOY AL,T
0007 FECO INC AL
OOOg BIIOO MOY AH,OH
OOOB 880661100 MOY T,AL
OOOF 89C3 MOY BI,AI
0011 8AU04 MOY CL,[BP).B
0014 888FOOOO MOY S[BX),CL

; STATEMENT , 6
0018 50 POP BP
0019 C20200 RET 2H

PUSH ENDP
STATEMENT , 7

POP PROC NEAR
001C 55 PUSH BP
001D 8BEC MOY BP ,SP

STATEMENT , 8
001F 8A066400 MOY AL,T
0023 FEC8 DEC AL
0025 BIIOO MOY AH,OH
0027 88066400 MOY T,AL
002B 89C3 MOV BI,AI
002D 8A870100 MOY AL,S[BI+1H]
0031 5D POP BP
0032 C3 RET

STATEMENT' 9
POP ENDP

STATEMENT' 11

Figure 15-5. Program Listing

PL/M-86 User's Guide Compiler Controls

The first part of the listing contains a summary of the compilation, beginning with
the compiler identification and the name of the source module being compiled. The
next line names the file receiving the object code. Then the command line used to
invoke the compiler is reproduced. The listing of the program itself is shown in
figure 15-5.

The listing contains a copy of the source input plus additional information. To the
left of the source image appear two columns of numbers. The first column provides
a sequential numbering of PL/M-86 statements. Error messages, if any, refer to
these statement numbers. The second column gives the block nesting depth of the
current statement.

Lines included with the INCLUDE control are marked with = just to the left of the
source image. If the included file contains another INCLUDE control, lines
included by this nested INCLUDE are marked with =1. For yet another level of
nesting, =2 is used to mark each line, and so forth up to the compiler's limit of five
levels of nesting. These markings make it easy to see where included text begins and
ends.

Should a source line be too long to fit on the page in one line it will be continued on
the following line. Such continuation lines are marked with "-" just to the left of the
source image.

The CODE control may be used to obtain the iAPX 86 assembly code produced in
the translation of each PL/M-86 statement. This code listing appears interspersed in
the source text in six columns of information in a pseudo-assembly language format:

1. Location counter (hexadecimal notation)

2. Resultant binary code (hexadecimal notation)

3. Label field

4. Opcode mnemonic

5. Symbolic arguments

6. Comment field

Not all six of these columns will appear on anyone line of the code listing. Compiler
generated labels (e.g., those which mark the beginning and ending of a DO WHILE
loop) are preceded by @. The comments appearing on PUSH and POP instructions
indicate the stack depth associated with the stack instruction.

Symbol and Cross-Reference Listing

If specified by the XREF or SYMBOLS control, a summary of all identifier usage
appears following the program listing.

Depending on whether the SYMBOLS or XREF control was used to request the
identifier usage summary, six or seven types of information are provided in the sym
bol or cross-reference listing. These are as follows:

1. Statement number where identifier was defined

2. Relative address associated with identifier

3. Size of object identified (in bytes)

4. The identifier

5. Attributes of the identifier (including expansion for LITERALLYs and scoping
information for local variables and parameters)

15-21

Compiler Controls PL/M-86 User's Guide

15-22

6. Statement numbers where identifier was referenced (XREF control only)

7. Statement numbers where identifier was assigned a value (XREF control only)

Notice that a single identifier may be declared more than once in a source module
(i.e., an identifier defined twice in different blocks). Each such unique object, even
though named by the same identifier, appears as a separate entry in the listing.

The address given for each object is the location of that object relative to the start of
its associated section. Which section is applicable depends upon the attributes of the
object.

Identifiers in the SYMBOLS or XREF listing are given in alphabetical order with the
following exception: members of structures are listed, in order of declaration,
immediately following the entry for the structure itself. Indentation is used to dif
ferentiate between these entries.

The XREF listing differentiates between items 6 and 7 by adding the * character to
statement numbers where a value is assigned. For example, if statement 17 read:

I = I + 1;

the list of statement numbers would include 17 and 17*, indicating a reference and
an assignment in statement 17.

The AUTOMATIC attribute indicates that the identifier was declared ~s a
parameter or as a local variable in a REENTRANT procedure, and therefore is
allocated dynamically on the stack.

Figure 15-6 is an example of the cross-reference listing.

PL/M-66 COMPILER STACK MODULE
CROSS-REFERENCE LISTIhG

09/28/81

DEFh ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES

II OOOIiH

1 001CH
3 OOOOH
2 OOOOH

OOOOH
2 006118

1 B •••

23 POP ••
28 PUSH.

100 S •••
STACI.

1 T •••

BYTE IN PROC (PUSH) PARAMITER AUTOMA
-TIC II 5

PROCEDURE BYTE PUBLIC STACl.0002H
PROCEDURE PUBLIC STACl.OOO_R
BYTE ARRAY (100) 5- 8
PROCEDURE STACK.OOOOR
BYTE PUBLIC INITIAL 8-

8

Figure 15-6. Cross-Reference Listing

Compilation Summary

Following the listing (or appearing alone if NOLIST is in effect) is a compilation
summary. Seven pieces of information are provided:

• Code area size gives the size in bytes of the code section of the output module.

• Constant area size gives the size in bytes of the constant section of the output
module.

• Variable area size gives the size in bytes of the data section of the output
module.

• Maximum stack size gives the size in bytes of the stack section allocated for the
output module.

• Lines read gives the number of source lines processed during compilation.

PL/M-86 User's Guide Compiler Controls

• Dictionary required gives the amount of dictionary space (if any) that was
spilled to disk (see Appendix B).

• Program warnings give the number of warning messages issued during
compilation.

• Program errors gives the number of error messages issued during compilation.

Figure 15-7 is an example of the compilation summary. Refer to Chapter 17 for an
explanation of the various object module sections.

MODULI IM'ORM1TI05:

CODI ARIA SIZI • 0033H 51D
COMS!1M! ARIA SIZB • OOOOH OD
VARIABLI ARBA SIZB • 0065H 101D
MAIIMUM STACK SIZI • 0004H 4D
14 LINBS RIAD
o PROGRAM WARHIMGS
o PROGRAM IRRORS

iHD OF PL/M-86 COMPIl • .ATION

Figure 15-7. Compilation Summary

15.7 Source Inclusion Controls

These controls allow the input source to be changed to a different file. The controls
are:

INCLUDE
SA VE/RESTORE

INCLUDE

INCLUDE is a general control, with the form:

INC l U 0 E (path name)

where pathname is a standard operating system pathname specifying a file. (See
example in specific host-system appendix.)

An INCLUDE control must be the rightmost control in a control line or in the
invocation command.

The INCLUDE control causes subsequent source lines to be input from the specified
file. Input will continue from this file until an end-of-file is detected. At that time,
input will be resumed from the file which was being processed when the INCLUDE
control was encountered.

An included file may itself contain INCLUDE controls. Note that such nesting of
included files may not exceed a depth of five.

15-23

Compiler Controls PL/M-86 User's Guide

15-24

SAVE/RESTORE

These are general controls. They have the form:

SAVE
RESTORE

These controls allow the settings of certain general controls to be saved on a stack
before an INCLUDE control switches the input source to another file, and then
restored after the end of the included file. However, SAVE and RESTORE can be
used for other purposes as well. The controls whose settings are saved and restored
are:

LIST INOLIST
CODE/NOCODE
OVERFLOW INOOVERFLOW
LEFTMARGIN
COND/NOCOND

The SAVE control saves all of these settings on a stack. This stack has a maximum
capacity of five sets of control settings, which corresponds to the maximum nesting
depth of five for the INCLUDE control.

The RESTORE control restores the most recently saved set of control settings from
the stack.

15.8 Conditional Compilation Controls

These controls allow selected portions of the source file to be skipped by the com
piler if specified conditions are not met. Figure 15-8 shows an example program
using the conditional compilation controls, while figure 15-9 shows the same exam
ple with NOCOND being used.

The controls are:

IF IELSEIF IELSE/ENDIF
SET/RESET
COND/NOCOND

IF / ELSE / ELSEIF / ENDIF

These controls provide the actual conditional capability, using conditions which are
based on the values of switches.

These controls cannot be used in the invocation of the compiler, and each must be
the only control on its control line.

An IF control and an ENDIF control are used to delimit an "IF element," which
can have several different forms. The simplest form of IF element is:

$ I F condition
text
$ENDIF

PL/M -86 User's Guide Compiler Controls

where

• condition is a limited form of PL/M expression, in which the only operators
allowed are OR, XOR, NOT, AND, <, <=, =, >=, and >, and the only
operands allowed are switches and whole-number constants in the range 0 to
255. If the switch did not appear in a set control, a value of "false" (0) is
assumed. Parenthesized subexpressions are not allowed. Within these restric
tions, condition is evaluated according to the PL/M-86 rules for expression
evaluation. Note that condition ends with a carriage return.

• text is text which will be processed normally by the compiler if the least
significant bit of the value of condition is a l, or skipped if the bit is a O. Note
that text may contain any mixture of PL/M-86 source and compiler controls. If
the text is skipped, any controls within it are not processed.

The second form of IF element contains an ELSE element:

$ I F condition
text 1
$ELSE
text 2
$ENDIF

In this construction, text 1 will be processed normally if the least significant bit of
the value of condition is a l, while text 2 will be skipped. If the bit is a 0, text 1 will
be skipped and text 2 will be processed normally.

Note that only one ELSE element is allowed within an IF element.

The most general form of IF element allows one or more ELSEIF elements to be
introduced before the ELSE element (if any):

$ I F condition 1
text 1
$ E L S ElF condition 2
text 2
$ E L S ElF condition 3
text 3

$ E L S ElF condition n
text n
$ELSE
text n+ 1
$ENDIF

where any of the ELSEIF elements may be omitted, as may the ELSE element.

The conditions are tested in sequence. As soon as one of them yields a value with a-l
as its least significant bit, the associated text is processed normally. All other text in
the IF element is skipped. If none of the conditions yields a least significant bit of 1,
the text in the ELSE element (if any) is processed normally and all other text in the
IF element is skipped.

15-25

Compiler Controls PL/M-86 User's Guide

15-26

SET/RESET

These are general controls. The SET control has the general form:

SET (switch assignmentlisf)

where switch assignment list consists of one or more switch assignments separated
by commas. A switch assignment has the form:

SWITCH

or:

SWITCH = VALUE

where

• switch is a name which is formed according to the PL/M-86 rules for
identifiers. Note that a switch name exists only at the compiler control level, and
therefore you may have a switch with the same name as an identifier in the pro
gram; no conflict is possible. However, note that a PL/M-86 reserved word may
not be used as a switch name.

• value is a whole-number constant in the range 0 to 255. This value is assigned to
the switch. If the value and the = sign are omitted from the switch assignment,

. the default value OFFH ("true") is assigned to the switch.

The following is an example of a SET control line:

$SETCTEST,ITERATION=3)

This example sets the switch TEST to "true" (OFFH) and the switch ITERATION
to 3. Note that switches do not need to be declared.

Figure 15-8 is an example of a program that was compiled using the SET control.

PL/M-86 COMP ILER EXAMPLE

s1stea-1d PL/M-86 V2.0 COMPILATION OP MODULI EXAMPLE
OBJECT MODULE PLACED IN :P1:CEX.OBJ
COMPILER INVOKED BY: :F1:PLM86.86 :P1:CIX.SIC SET(DIBUG .. 3)

EXAMP LE: DO;

DECLARE BOOLEAN LITERALLI 'BITE', TIUE LITEaALLI 'OFPS',
FALSE LITERALLY '0';

1 PRINT.DIAGNOSTICS: PROCIDUIE (SWITCHIS, TABLIS) EITERNAL;
2 DECLARE (SWITCHES, TABLIS) BOOLBAI;
2 END PRINT.DIAGNOSTICS;

2 DISPLAUPROMPT: PBOCIDURB IXUIIAL; UD DISPLAUPIOMPT;

2 AWAIT.CR: PROCEDURE EITERIIL; 110 AWAIT.CI;

$IF DEBUG • 1
CILL PRIIT.DIAGNOSTICS (TIUI. PALSI);

• RESET (TUP)
.ELSEI' DEBUG • 2

CALL PRIIT.DIAGIOSTICS (TIUB. TaUB);
• IIESET (TRAP)
.ELSEI' DEBUT .. 3

CALL PIIIIT.DIAGNOSTICS (TIUB. TaUE);
CALL PRIIT$DUGNOSTICS (TIUB. TlUI);

• SET (T,IAP)
UIIDIF

$IF TIIAP
CALL DISP LU$P ROMPT;
CALL AWAIT.CR;

UIIDIF

10 END EXAMPLE;

Figure 15-8. Sample Program Showing the SET(DEBUG=) Control

PL/M-86 User's Guide Compiler Controls

MODULI IlIrO.IlATIOII:

CODE AIEA SIZB z 00008 OD
coaSTUT AIU SIZB = 00008 OD
YAIIABLI AliA SIZI = 00008 OD
MAXIMUM STACK SIZE = 00008 OD
30 LIlliS IUD _
o PlOOIAK VAl. laGS
o PlOOIAM EIIOIS

IMD or PL/M-86 COKPILATIO.

Figure 15-8. Sample Program Showing
the SET(DEBUG=) Control (Cont'd.)

The RESET control has the form:

RES E T (switch list)

where switch list consists of one or more switch names that have already occurred in
SET controls.

Each switch in the switch list is set to "false" (0).

COND/NOCOND

These controls determine whether text within an IF element will appear in the listing
if it is skipped. They are general controls with the form:

COND
NOCOND
Default: CON D

The COND control specifies that any text that is skipped is to be listed (without
statement or level numbers). Note that a COND control cannot override a NOLIST
or NOPRINT control, and that a COND control will not be processed if it is within
text which is skipped.

The NOCOND control specifies that text within an IF element which is skipped is
not to be listed. However, the controls that delimit the skipped text will be listed,
providing an indication that something has been skipped. Note that a NOCOND
control will not be processed if it is within text that is skipped.

Figure 15-9 is an example of a program that was compiled using the NOCOND
control.

15-27

Compiler Controls

15-28

!'LIM-lib COMPILER EXAMPLE

system-id PL/M-86 V2.0 COMPILATION OF MODULE EXAMPLB
OBJECT MODULE PLACED IN :Fl:CEX.OBJ
COMPILER INVOKED BY: :Fl:PLM86.b6 :Fl:CEX.SRC SET(DEBUG=3) NOCOND

10

EXAMPLE: DO;

DECLARE BOOLEAN LITERALLY 'BYTE', TRUE LITERALLY 'OFFH',
FALSE LITERALLY '0';

PRINT$DIAGNOSTICS: PROCEDURE (SWITCHES, TABLES) EXTERNAL;
DECLARE (SWITCHES, TABLES) BOOLEAN;
END PRINT$DIAGNOSTICS;

DISPLAY$PROMPT: PROCEDURE EXTERNAL; END DISPLAY$PROMPT;

AWAIT$CR: PROCEDURE EXTERNAL; END AWAIT$CR;

$lF DEBUG = 1
UNDIF

$IF TRAP
$ENDIF

END EXAMP LE;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
30 LINES READ
o P ROGRAK WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

OOOOH
OOOOH
OOOOH
OOOOH

OD
OD
00
OD

Figure 15-9. Sample Program Showing the NOCOND Control

PL/M-86 User's Guide

CHAPTER 16
SAMPLE PROGRAM 2

The sample program of Chapter 8 is very limited in its application. It always sorts
128 records. Each record consists of a structure with one BYTE element and one
WORD element, and the BYTE element of each record is used as the sort key. To
sort records structured in any other way, or to sort a different number of records,
you would have to rewrite the program.

U sing the techniques discussed in the previous chapters, we can rewrite the sort pro
gram as a procedure. By using parameters to control the operation of the procedure,
we can sort any number of records, and we can use it on different kinds of records.
The procedure can be used any number of times within a single program.

In the following sample program, we first declare a procedure called SORTPROC,
which implements the same sorting method used in the sample program of Chapter
8. This procedure makes only the following assumptions about the records it is to
sort:

• Each record occupies a contiguous set of storage locations. Therefore, by using
based variables each record can be handled as a sequence of bytes, even though
the parts of a record are not necessarily BYTE scalars.

• The records themselves are also stored contiguously, so the entire set of records
can be regarded as a single sequence -of bytes. The location of the first byte of
the first record is specified by the POINTER parameter PTR.

• All records are the same size; that is, each occupies the same number of bytes.
This size is specified by the WORD parameter RECSIZE and may not exceed
128.

• In each record, the value of one byte is used as the sort key. Within each record,
this byte is always in the same relative position, that is, the first byte in the
record, or the third, etc. This relative position (or offset) is specified by the
WORD parameter KEYINDEX, which resembles an array subscript; that is, it
is 0 if the key is the first byte in the record, 1 if the key is the second byte, etc.

• The number of records is specified by the WORD parameter COUNT.

The program is followed by a detailed explanation.

SORT$MODULE: DO; 1* Beginning of module. *1

SORTPROC: PROCEDURE (PTR, COUNT, RECSIZE, KEYINDEX);
DECLARE PTR POINTER, (COUN1, RECSIZE, KEYINDEX) WORD;

I*Parameters:
PTR is pointer to first record.
COUNT is number of records to be sorted.
RECSIZE is number of bytes in each record, max is 128.
KEYINDEX is byte position within each record of a BYTE

scalar to be used as sort key.*1

DECLARE RECORD BASED PTR (1) BYTE,
CURRENT (128) BYTE,
(I, J) WORD;

16-1

Sample Program 2 PL/M-86 User's Guide

16-2

SORT:
DO J = 1 TO COUNT-1;

CALL MOVB (@RECORD(J*RECSIZE), @CURRENT, RECSIZE);
I=J;
DO WHILE I > 0

AND (RECORD«I-1)*RECSIZE+KEYINDEX) >
CURRENT(KEYINDEX»;

CALL MOVB (@RECORD«I-1)*RECSIZE),
@RECORD(I*RECSIZE), RECSIZE);

I = 1-1;
END;
CALL MOVB (@CURRENT, @RECORD(I*RECSIZE), RECSIZE);

END SORT;
END SORTPROC;

1* Program to sort two sets of records, using SORTPROC. *1

DECLARE SET1 (50) STRUCTURE
ALPHA WORD,
BETA (12) BYTE,
GAMMA INTEGER,
DELTA REAL,
EPSILON BYTE);

DECLARE SET2 (500) STRUCTURE
ITEMS(21) INTEGER,
VOLTS REAL,
KEY BYTE);

1* Data is read in to initiaLize the records. *1

CALL SORTPROC (@SET1, LENGTH(SET1), SIZE(SET1(0»,
SIZE(SET1 (0) .ALPHA»;

CALL SORTPROC (@SET2, LENGTH(SET2), SIZE(SET2(0»,
.SET2(0).KEY - .SET2(0»;

1* Data is written out from the records. *1

END SORTSMODULE; 1* End of module. *1

After the PROCEDURE statement and the declaration of the parameters, we
declare a based BYTE array called RECORD. This array is based on the parameter
PTR, which points to the beginning of the first record to be sorted. Therefore, a
reference to a scalar element of RECORD will be a reference to some byte within the
set of records to be sorted, as long as the subscript used with RECORD is less than
the total number of bytes in all the records (i.e., the subscript must be less than
COUNT * RECSIZE).

Note that a dimension specifier of 1 is used in declaring RECORD. We need to use a
nonzero dimension specifier here, in order to use subscripts later in the procedure.
However, the value of the dimension specifier is unimportant because RECORD is a
based array and does not have any actual storage allocated to it. The value 1 is
chosen arbitrarily.

Next we declare CURRENT, an array of 128 BYTE elements. Like the structure
CURRENT in sample program 1, the array CURRENT will be used to store the
"current" record. Note that the dimension (size) of the array CURRENT is what
establishes the maximum size of the records that this procedure can handle. We have
chosen 128 here, but in principle any dimension could be specified.

PL/M-86 User's Guide Sample Program 2

As in sample program 1, the WORD variables I and J are used to control the DO
WHILE and iterative DO loops. They have the same meaning as before. However,
here they are also used to calculate subscripts for the based array RECORD.

In the statement following the iterative DO, we used the built-in procedure, MOVB
to copy a sequence of byte values from one storage location to another. (See Chapter
11 for details.)

In the first activation of MOVB, the parameter @RECORD(J*RECSIZE) is the
location of the beginning of the Jth record, and @ CURRENT is the location of the
beginning of the array CURRENT. Thus the effect of this CALL statement is to
copy the Jth record into the array CURRENT.

To understand the DO WHILE statement, consider that RECORD«I-I)*RECSIZE)
would be the first byte of the (I-1)st record, so RECORD«I-I)*RECSIZE +
KEYINDEX) is the byte that is to be used as the sort key of the (I-1)st record.
Similarly, CURRENT (KEYINDEX) is the sort key of the "current" record.
Therefore, this DO WHILE is logically equivalent to the corresponding DO WHILE
in sample program I.

The second CALL statement activates MOVB to copy the (I-1)st record into the
position of the Ith record, and the third CALL on MOVB copies the "current"
record into the position of the Ith record.

Thus the sorting method of this procedure is identical to that of sample program I.
To illustrate the way this procedure can be used, it is set in a program that declares
two sets of records, SETI and SET2, and sorts them. As in the previous sample pro
gram, comments are inserted in place of the code that would be used in a working
program to read data into the records and write it out after they are sorted.

SETI is a set of 50 structures, each of which represents one record. Each structure
contains a WORD scalar, an array of 12 BYTE scalars, an INTEGER scalar, a
REAL scalar, and another BYTE scalar. We want to sort the records using the first
element of the 12-byte array as the sort key. Since the key is the second element
within the structure, its offset is just the number of bytes occupied by the first ele
ment of the structure. Therefore we will use the built-in function SIZE to calculate
the offset of the key and use that as the value of the parameter KEYINDEX.

SET2 is a set of 500 structures, each containing an array of 21 INTEGER scalars, a
REAL scalar, and a BYTE scalar that is to be used as the key. This time, the key is
deep within the structure. We can calculate the offset of the key manually, but this is
both error prone and inflexible. If the elements within the structure are changed,
then we must remember to recalculate the offset of the key. A better method is to let
the compiler calculate the offset for us. This can be accomplished by subtracting the
location of the key element from the location of the start of the record. The result of
this subtraction is the offset of the key, which becomes the value of the parameter
KEYINDEX.

In the two CALL statements used to activate SORTPROC, we used the built-in
function LENGTH to determine the number of records that are to be sorted, and we
used the built-in function SIZE to calculate the number of bytes occupied by each
record. These two values are used for the COUNT and RECSIZE parameters for an
activation of SORTPROC. See Chapter 11 for complete details on built-in
functions.

16-3

CHAPTER 17
OBJECT MODULE SECTIONS AND

PROGRAM SIZE CONTROL

The allocation and arrangement of runtime program memory (via relocation and
linkage) depend on the size-control (SMALL, COMPACT, MEDIUM, or LARGE)
that you specified when compiling the modules of the program. All modules of a
program must be compiled with the same controls.

These controls also influence how locations are referenced in the compiled program,
which leads to certain programming restrictions for each size-control.

A PL/M-86 programmer need not normally be concerned about memory addressing
concepts on the iAPX 86, as the size-controls transparently handle the mechanics of
program segmentation. The simple rules are

• For programs with less than 64K bytes of code and less than 64K bytes of data
(for a maximum program size of 128K bytes), use either the default (SMALL) or
CaMP ACT, and observe the restrictions given in sections 17.3 and 17.4, respec
tively. (SMALL is recommended as a migration path from PL/M-80.)

• If your code exceeds 64K bytes, but all your data fits in 64K bytes, use
MEDIUM and observe the restrictions in section 17.5.

• If you also need more than 64K bytes of data, use the LARGE control and
observe the restrictions in section 17.6.

The material in this chapter explains some underlying concepts and restrictions that
pertain to these guidelines. (See also Appendix H.)

17.1 iAPX 86 Memory Concepts

iAPX 86 memory space has an extent of one megabyte, but a 16-bit word can only
address 64K locations. A complete physical address requires 20 bits. Therefore, two
separate words are used in a special way to form this 20-bit address, as follows:

A segment is defined as contiguous memory locations, beginning at a 16-byte
boundary, up to 64K bytes in length. The 20-bit address for the beginning of every
segment thus ends in 0, e.g., OOOOOH, 00010H, ... 12340H, This definition
permits a 16-bit word to represent any segment starting address since the extra four
bits not included are always O. A 16-bit word used in this way is called a segment
address (and corresponds to the values taken on by SELECTOR variables). Four
CPU registers (CS, DS, SS, and ES) are used automatically to hold segment
addresses.

The second word used in forming the full 20-bit address identifies the specific loca
tion within the segment, i.e., which of the 64K bytes starting at the segment address.
This 16-bit quantity is called the offset.

The offset is often manipulated in PL/M-86 programs using WORD variables.
References through these offset (WORD) values are relative to the current CS for
indirect calls or the current DS for indirect (based) variable references.

To form a 20-bit address, the iAPX 86 CPU shifts a segment address left four bits
and adds an offset to it.

17-1

Object Module Sections and Program Size Control PL/M-86 User's Guide

17-2

17.2 Object Module Sections

The output of the compiler is an object file containing the compiled module. This
object module may be linked with other object modules and located using LINK86
and LOC86. A knowledge of the makeup of an object module is not necessary for
PL/M-86 programming, but it can aid you in understanding the controls for pro
gram size, linkage, and location.

The object module output by the compiler contains five sections.

• Code Section
• Constant Section (absent in LARGE case and in ROM-see below)

• Data Section

• Stack Section

• Memory Section

As explained later in this chapter, these sections can be combined in various ways
into "memory segments" for execution, depending on the size of the program
(SMALL, COMPACT, MEDIUM, or LARGE).

Code Section

This section contains the object code generated by the source program. If either the
LARGE control or the ROM control is used, this section also contains the informa
tion that would otherwise be in the constant section.

In addition, the code section for the main program module contains a "main pro
gram prologue" generated by the compiler. This code precedes the code compiled
from the source program, and sets the CPU up for program execution by initializing
various registers and enabling interrupts.

Constant Section

This section contains all variables initialized with the DATA attribute, as well as all
REAL constants and all constant lists. If the LARGE or ROM controls are used,
this information is placed in the code section and no constant section is produced.

Data Section

All variables are allocated space in this section except parameters, based variables,
and variables that are located with an AT attribute, initialized with the DATA
attribute, or local to a REENTRANT procedure.

Further, if a nested procedure refers to any parameter of an enclosing procedure,
then during execution all parameters of the enclosing procedure will be placed in the
data segment. The compiler reserves enough space during compilation to prepare for
this.

Stack Section

The stack section is used in executing procedures, as explained in Appendixes Hand
I. It is also used for any temporary storage used by the program but not explicitly
declared in the source module (such as temporary variables generated by the
compiler).

PL/M-86 User's Guide Object Module Sections and Program Size Controi

The exact size of the stack is automatically determined by the compiler except for
possible multiple incarnations of reentrant procedures. The user can override this
computation of stack size and explicitly state the stack requirement during the
relocation process.

NOTE

When using reentrant procedures or interrupt procedures the user must be
careful to allocate a stack section large enough to accommodate all possible
storage required by multiple incarnations of such procedures. The stack size
can be explicitly specified during the relocation and linkage process.

The stack space requirement of each procedure is shown in the listing produced by
the SYMBOLS or XREF control. This information can be used to compute the addi
tional stack space required for reentrant or interrupt procedures.

Memory Section

This is the area of memory referenced by the built-in PL/M-86 identifier
MEMORY. Its maximum allowable size depends on the size control used in com
pilation (SMALL, COMPACT, MEDIUM, or LARGE) as explained below.

The compiler generates a memory section of length zero, and it is your responsibility
to specify the actual (run-time) space required during the linkage and relocation pro
cess. TheiAPX 86,88 Family Utilities User's Guide can assist you in this.

17.3 The SMALL Case
When modules compiled with the SMALL control are linked, the code sections from
all modules are combined and are allocated space within one segment. The segment
address for this segment is kept in the CS register. The constant, data, stack, and
memory sections from all modules are allocated space within a second segment. The
segment address for this second segment is kept in the DS register, with an identical
copy in the SS register.

Therefore, the SMALL control may be used if the total size of all code sections does
not exceed 64K, and the total size of all constant, data, stack, and memory sections
does not exceed 64K.

Since there is only one segment for code, the segment address for this segment (CS
register) is never updated during program execution. Likewise, since there is only
one segment for constants, data, stack, and memory sections, the segment address
for this segment (DS and SS registers) is never updated (except when an interrupt
occurs, as explained in Appendix I). Therefore, when any location is referenced,
only a 16-bit offset is calculated and then used in conjunction with the appropriate
segment address. POINTER values are therefore 16-bit values in the SMALL case,
and this leads to the following restrictions.
1. POINTER variables may not be initialized with, or assigned, whole-number

constants, for example:

DECLARE RR POINTER l~ITIAL (2277); I*invalid under SMALL*'
DECLARE SS POINTER;
SS = 100; l*invaLid under SMALL*'

2. The @ operator must not be used with a variable that was located at an absolute
address that was specified by a whole-number constant, for example:

DECLARE JO BYTE AT (100), PO POINTER;
PO = mJO; l*invaLid under SMALL*'

17-3

Object Module Sections and Program Size Control PL/M-86 User's Guide

17-4

This restriction does not apply if the absolute address in the declaration is
created by the @ operator with a variable, for example:

DECLARE UKE BYTE, NAGE POINTER;
DECLARE SKI BYTE AT (@UKE);
NAGE = @SKI; l*valid*1

3. The PUBLIC attribute must not be used with a variable located at an absolute
address specified by a whole-number constant. As above, this restriction does
not apply when @ is used:

DECLARE SHOMEN BYTE PUBLIC AT (100); l*invalid*1

DECLARE IKYO BYTE;
DECLARE SANKYO BYTE PUBLIC AT (@IKYO); l*valid*1

This restriction arises because external variables are assumed to be in the DATA
segment.

4. Restrictions 1 and 2 apply also to WORD variables when used as offset pointers
and to the use of the dot operator.

5. The @ and dot operators may not be used with variables based on SELECTOR,
for example:

DECLARE SEL SELECTOR;
DECLARE R BASED SEL BYTE;
DECLARE PO POINTER;
PO = @R /* invalid under SMALL */

6. If the built-in function SELECTOR$OF is used, it will always return the value
of the DS register. If BUILD$PTR is used, it will ignore the SELECTOR
expression (see section II.S).

PL/M-80 Compatibility

The SMALL control is the most likely choice when compiling a program written in
PL/M-SO. The compiler produces error messages to flag violations of any of the
restrictions or to flag the use of the new reserved keyboards (DWORD, INTEGER,
REAL, POINTER, SELECTOR, and CAUSEINTERRUPT) as programmer
defined identifiers. Otherwise, complete upwards compatibility is provided by
PL/M-S6.

NOTE

Care must be used with the dot operator under conditions other than
SMALL and RAM.

17.4 The COMPACT Case

A program compiled with the COMPACT control has four segments: code, data,
stack, and memory. Each of these is the result of combining the same-type sections
from all modules, and each has a maximum size of 64K bytes. The constant sections
from all modules are grouped with the data segment unless the ROM control is used,
which causes all constant sections to be merged into the CODE segment instead.
Since the code, data, and stack segments are fully defined by the time the program is
loaded, the segment base addresses in the CS and SS registers are never changed.
(The DS register may change when an interrupt occurs, as explained in Appendix
H.)

PL/M-86 User's Guide Object Module Sections and Program Size Control

All code and a few prologue constants are addressed relative to CS. All data except
absolute data (declared with the AT (constant) attribute) are addressed relative to
DS. The stack is addressed relative to SS. ES is not initialized and can change during
execution. References to any location require only a 16-bit offset address against
these segment base addresses.

The sole programming restriction in the COMPACT case is that PUBLIC variables
may not be declared AT an absolute location, for example:

DECLARE ANVIL BYTE PUBLIC AT (100);

is not allowed. This restriction does not apply when the "location" within the AT
attribute is formed with the @ operator, i.e., DECLARE ANVIL BYTE PUBLIC
AT (@HAMR); is valid. However, the phrases "@ MEMORY" and ".MEMORY"
are not allowed in defining a PUBLIC variable.

Programming Restrictions in the COMPACT Case

The following restrictions must be observed:

1. When an exported procedure is indirectly activated, a POINTER variable must
be used in the CALL statement, for example:

$COMPACT(SUBSYS HAS MOD1, MOD2, MOD3; EXPORTS PROC)
MOD1: DO

DECLARE P POINTER, W WORD;
PROC: PROCEDURE PUBLICi

END PROC;
P=@PROCi CALL P; 1* POINTER must be used *1
W=.PROC; CALL W; 1* not allowed *1

END MOD1;

2. When a procedure that is not exported is indirectly activated, a WORD variable
must be used. Note that WORD variables do not range over the entire iAPX 86
address space but are restricted to offsets within the current code segment, for
example:

DECLARE P POINTER, W WORD;
LPROC: PROCEDURE; 1* local *1

END LPROC;
P=@LPROC; CA.LL P; 1* not allowed *1
W=.LPROC; CALL W; 1* WORD must be used *1

17.5 The MEDIUM Case

In a program compiled with the MEDIUM control, a separate segment is used for
the code section of each compiled module. Therefore, the total space required for
code may exceed 64K, although the maximum size of anyone code section is still
limited to 64K.

17-5

Object Module Sections and Program Size Control PL/M-86 User's Guide

17-6

The constant, data, stack, and memory sections of all modules are combined and are
allocated space within a single segment.

At any moment during program execution, one segment of code is the "current"
segment, and its segment address is kept in the CS register. This segment address is
updated whenever a PUBLIC or EXTERNAL procedure is activated, since this may
involve a new code segment.

The segment address for the segment containing constants, data, stack, and memory
sections is kept in the DS register (with an identical copy in the SS register) and is
never changed (except when an interrupt occurs, as explained in Appendix I).

With the MEDIUM option, a POINTER value is a four-byte quantity containing a
segment address and an offset. Therefore, the first three restrictions of the SMALL
case do not apply. However, the MEDIUM case introduces two minor restrictions
on indirect procedure activation.

Programming Restrictions in the MEDIUM Case

The following restrictions must be observed:

1. When a PUBLIC or EXTERNAL procedure is indirectly activated, a
POINTER variable must be used in the CALL statement, for example:

DECLARE P POINTER, W WORDi
PROC: PROCEDURE PUBLICi

END PROCi

P=@PROC; CALL P; I*recommended where an indirect
call must be used*1

W=.PROC; CALL Wi I*not allowed*1

2. When a procedure that is not PUBLIC or EXTERNAL is indirectly activated, a
WORD variable must be used. This is consistent with PL/M-80, and is not
recommended in PL/M-86 programs because WORD variables do not range
over the entire iAPX 86 address space (but are restricted to offsets within an
assumed segment), for example:

DECLARE P POINTER, W WORD;
LPROC: PROCEDURE; l*local*1

END LPROC;
P=@LPROCi CALL Pi

W=.LPROCi CALL Wi

I*not allowed*1

I*not recommended, but aLlowed*1

3. A variable that is absolutely located (by using the AT attribute with a numeric
constant) may not have the PUBLIC attribute. For example:

DECLARE B BYTE PUBLIC AT(100)i

is not allowed.

PL/M-86 User's Guide Object Module Sections and Program Size Control

Restrictions 1 and 2 arise from the fact that the code segment address may
change during program execution. Restriction 3 is the same as Restriction 3 in
the SMALL case, and arises for the same reason.

17.6 The LARGE Case

In a program compiled with the LARGE control, a separate segment is used for the
code section (with constants) from each compiled module. Thus the total space
required for code and constants may exceed 64K, but the total for the code section
(with constants) from anyone module is limited to 64K.

A separate segment is used for the data section from each compiled module. Thus
the total space required for data sections may exceed 64K, although the size of any
one data section is limited to 64K.

The stack sections from all modules are combined in one segment, and the memory
sections for all modules are combined in another segment. Thus the total space
required for stack is limited to 64K, and the total space required for memory is also
limited to 64K.

At any moment during program execution, one code segment and one data segment
are "current." Code and data segments are paired, so that the current code and data
segments are always from the same module. The compiler implements this pairing
by placing the segment address for the data segment in a reserved location in the
code section. During program execution, the segment addresses for the current code
and data segments are kept in the CS and DS registers, respectively, and are updated
whenever a PUBLIC or EXTERNAL procedure is activated, as this may involve
new code and data segments.

The stack segment address is kept in the SS register.

Programming Restrictions in the LARG E Case

These first two are the same as Restrictions 1 and 2 in the MEDIUM case, and arise
for the same reason.

1. When a PUBLIC or EXTERNAL procedure is indirectly activated, a
POINTER variable must be used in the CALL statement, for example:

DECLARE P POINTER, W WORD;
PROC: PROCEDURE PUBLIC;

END PROC;

P = Q) PRO C; CAL L P; 1* r e c orrme n de d w her e ani n d ire c t
call must be made*1

W=.PROC; CALL W; I*not allowed*1

17-7

Object Module Sections and Program Size Control PL/M -86 User's Guide

17-8

2. When a procedure that is not PUBLIC or EXTERNAL is indirectly activated, a
WORD variable must be used. This is consistent with PL/M-80, and is not
recommended in PL/M-86 programs because WORD variables do not range
over the entire iAPX 86 address space (but are restricted to offsets within an
assumed segment), for example:

DECLARE P POINTER, W WORD;
LPROC: PROCEDUREi l*local*1

END LPROC;

P=@LPROC; CALL Pi I*not allowed*1

W=.LPROC; CALL Wi I*not recommended, but allowed*1

CHAPTER 181
ERROR MESSAGES

The compiler may issue five varieties of error messages:

• Source PL/M-86 errors

• Fatal command tail and control errors

• Fatal input! output errors

• Fatal insufficient memory errors

• Fatal compiler failure errors

The source errors are reported in the program listing; the fatal errors are reported on
the console device.

18.1 Source PL/M-86 Errors

Nearly all of the source PL/M-86 errors are interspersed in the listing at the point of
error and follow the general format:

* * * ERR 0 R #rmm, S TAT E MEN T # n n n, N EAR "a a a ' " me 5 5 age

or:

* * * WAR N IN G #rmm, S TAT E MEN T # n n n, N EAR "a a a ' " me 5 sag e

where

• mmm is the error number from the list below.

• nnn is the source statement number where the error occurs.

• aaa is the source text near where the error is detected.

• message is the error explanation from the list below.

A prefix of W means the message is a warning only, and object code was not sup
pressed. Errors not so prefixed prevent object code generation.

Source error message list:

1. INVALID CONTROL

See Chapter 15. Example:

SNXCODE; I*probably intended NOCODE*I

2. ILLEGAL USE OF PRIMARY CONTROL AFTER NON-CONTROL LINE

Primary controls may appear as control lines in your source program, but
they must come first. No other statements may precede them. See Chapter
15.

3. MISSING CONTROL PARAMETER

Certain controls, e.g., INCLUDE, require you to specify a parameter.
See Chapter 15.

18-1

Error Messages PL/M-86 User's Guide

18-2

4. INVALID CONTROL PARAMETER

One example is an illegal pathname for a control like OBJECT. See
Chapter 15.

5. INVALID CONTROL FORMAT

See Chapter 15 for correct formatting of control lines. An example that
could cause this error is:

SLIST (MYPROG.LST);

because no pathname is expected on this control. It could also be caused if
an INCLUDE was followed by another control on the same line.

(W) 6. ILL EGA L P R I NT CON T R 0 l, I G NOR E D

PRINT (:CI:) would be an example, since you cannot print to the console
input device. See Chapter 15.

7. INVALID PATHNAME

See the operating instructions for your specific host system.

(W) 8. ILL EGA L P AGE L f N G T H, I G NOR E D

See section 15.6.

(W) 9. ILL EGA L P AGE WID T H, I G NOR E D

See section 15.6.

(W) 10. RES P E C I FIE D P RIM A R Y CON T R 0 L , I G NOR E D

See section 15.1.

11. MISPLACED ELSE OR ELSEIF CONTROL

See section 15.8.

12. MISPLACED ENDIF CONTROL

See section 15.8.

13. MISSING ENDIF CONTROL

See section 15.8.

PL/M-86 User's Guide

14. SWITCHNAME TOO LONG (31), TRUNCATED·

See section 15.8.

15. MISSING OPERATOR

See section 15.8.

(W) 16. INVALID CONSTANT, ZERO ASSUMED

See section 15.8.

17. INVALID OPERAND

See section 15.8.

19. LIMIT EXCEEDED: SAVE NESTING (5)

See section 15.8.

20. LIM I T E X C E E D ED: I N t L U DEN EST I N G (5)

For example, if you include a file named A, which includes a file named B,
and so on; this error will arise when the limit is exceeded.

21. MISPLACED RESTORE CONTROL

RESTORE can only work if there has been a prior SAVE. See section
15.7.

22. UN E X P E C TED END 0 F CON T R 0 L
A segmentation control was expecting a continuation line or a')' .

23. S Y M B 0 LEX 1ST SIN M 0 RET HAN 0 N E HAS LIS T

A module name may occur in only one HAS list.

24. SUB S Y S T EM A L REA D Y DE FIN E D

The subsystem name has already been defined.

25. HAS 0 REX P 0 R T L I 'S T RES PEe I FIE 0

You cannot have more than one of each in a sub-system control.

26. I LL EGA L P LIM IDE N T I FIE R

Identifier does not meet the rules for PL/M identifiers. See section 2.2.

Error Messages

18-3

Error Messages PL/M-86 User's Guide

18-4

(W) 28 . I N V A LID P L M 8 6 C H A R ACT E R, I G NOR E D

Look near the text flagged for an invalid character, or one that is inappro
priate in context. Edit it out or retype the statement.

(W) 29. UN P R I N TAB L E C H A R ACT E R, I G NOR E D

Retype the line in question using valid characters.

30. N AM E 0 R S T R I N G TOO LON G, T RUN CAT E D

Match your intended variable type with the length of the flagged item. For
the correct maximum lengths, see Chapters 2 and 13.

31. ILLEGAL CONSTANT TYPE

This might reflect missing operators, e.g., A=4T instead of 4 + T. For the
list of valid types, see Chapter 2.

32. INVALID CHARACTER IN CONSTANT

For example, 107B and OABCD will cause this error because neither can be
valid in any PL/M-86 interpretation: 7 is not a binary numeral, B may not
occur in decimal or octal, and neither string ends in H. See Chapter 2.

33. RECURSIVE MACRO EXPANSION

Here is an example causing this error:

DECLARE A LITERALLY 'B';
DECLARE B LITERALLY 'A';

B=4; 1* error discovered here *1

No type can be assigned to variables declared circularly, i.e., solely in
terms of each other.

34. LIM I T EX C E E 0 ED: MAC RON EST I N G (5)

This error occurs when too many DECLARE statements refer back
through each other to the oile that actually supplies a type, for example:

DECLARE A LITERALLY I B ' ;
DECLARE B LITERALLY I C ' ;

DECLARE Y LITERALLY , Z ' ;
DECLARE Z BYTE INTITIAL (77);

A=7; 1* error discovered here *1

PL/M-86 User's Guide

35. LIM I T EX C E E 0 ED: SOU R C ELI N E LEN G T H (1 28)

A source line longer than 128 characters was read.

36. CONSTANT TOO LARGE FOR TYPE

DECLARE A BYTE INTITIAL (259) would be an example, because the
maximum byte constant is 255.

37. INVALID REAL CONSTANT

Examples: 1.7F or 1.7. See Chapter 13.

(W) 38. REA L CON S TAN TUN 0 E R FLO W

An underflow occurred when conversion into floating-point was
attempted.

(W) 39. REA L CON S TAN T 0 V E R FLO W

An overflow occurred when conversion into floating-point was attempted.

40. NUL L S T R I N G NOT ALL 0 WED

Strings of length zero (e.g.," ") are not supported.

41. DELETED: "<tokens>"

The compiler deleted the following tokens while attempting to recover
from a syntax error.

42. INSERTED: "<tokens>"

The compiler inserted the following tokens while attempting to recover
from a syntax error.

43. S TAT E MEN T S F 0 L LOW MOD U LEE NO

Information follows logical end-of-module.

(W) 45. MIS MAT C HE D B L 0 C KID E N T I FIE R

See section 7.1. If a lal1el is supplied in an END statement, the label must
match that of a prior DO statement, in fact the first unmatched DO above
the END. Sometimes the error involves a confusion of module name with
procedure name. See also Chapters 1 and 9.

Error Messages

18-5

Error Messages

18-6

PL/M-86 User's Guide

46. D U P L I CAT E PRO C E D U R E N A ME

Procedure names must be unique. See section 10.1.

47. LIMIT EXCEEDED: PROCEDURES (253)

Too many procedures in this module. Break it into smaller modules.

48. D U P L I CAT EPA RAM E T ERN AM E

A parameter must be declared exactly once. This message indicates that
the flagged parameter already has a definition at this block level, as in:

YAR: PROCEDURE (YAR77, YAR78);
DECLARE YAR77 BYTE;
DECLARE YAR77 BYTE;

Perhaps a different spelling was intended.

49. NOT AT MOD U L E LEV E L

The flagged attribute or initialization can only be valid at the module level,
not in a procedure. See Chapters I, 3, 9, and 10.

50. D UP L I CAT EAT T RIB UTE

Attributes should be specified at most once. This message means the com
piler has found a declaration like:

DECLARE B BYTE EXTERNAL EXTERNAL;

51. ILLEGAL INTERRUPT VALUE

Interrupt numbers must be whole-number constants between 0 and 255.
Thus -7 or 272 would be invalid. See section 10.5.

52. INTERRUPT WITH PARAMETERS

No parameters are allowed in interrupt procedures. See section 10.5.

53. INTERRUPT WITH TYPED PROCEDURE

Interrupt procedures must be untyped. See section 10.5.

54. INVALID DIMENSION

See section 6.1.

PL/M-86 User's Guide Error Messages

55. STAR DIMENSION WITH STRUCTURE

Star dimensions(*) are for initialization. See section 3.2.

56. S TAR DIM ENS ION WIT H S T R U C T U REM E M B E R

Star dimension(*) must not be used with structures. See section 3.2.

57. CON F L I C T WIT H PAR A MET E R

Attributes may not be used with parameters.

58. DUPLICATE DECLARATION

The flagged item already has a definition declared at this block level.

59. I LLEGAL PARAMETER TYPE

Parameters may not be declared of type structure or array. See section
10.1.

60. DUPLICATE LABEL

Each label must be unique within its block or scope. Otherwise GOTOs
and CALLs would have ambiguous targets. See sections 7.3 and 10.2.

61. DUPLICATE MEMBER NAME

For example, in the case:

DECLARE AIR STRUCTURE CF4 BYTE, F4 BYTE);

subsequent references to AIR.F4 would be ambiguous. See sections 6.2,
6.3.

62. UN DEC LA RED PAR AM E T E R

A parameter named in the procedure statement did not get defined in the
body of the procedure. See sections 10.1 and 10.2.

63. CON F L I C TIN GAT T RIB UT E S

Certain attributes are not allowed when declaring a parameter, e.g.
PUBLIC, EXTERNAL, DATA, INITIAL, AT, or BASED.

64. LIMIT EXCEEDED: DO BLOCKS

See Appendix B for correct limit.

18-7

Error Messages

18-8

PL/M-86 User's Guide

65. ILLEGAL PARAMETER ATTRIBUTE

Certain attributes are not allowed when declaring a parameter, e.g.
PUBLIC, EXTERNAL, DATA, INITIAL, AT, or BASED.

66. U N D E FIN E DBA S E

A variable was declared BASED using an undeclared identifier.

67. I N V A LID AT T RIB UTE FOR BAS E

A base must be a non-subscripted scalar of type POINTER, WORD, or
SELECTOR. It is not permitted to have the attribute BASED. See sectio.n
4.5.

68. MIS P LAC E D DEC L A RAT ION

You can intersperse declarations and procedures, but not declarations and
executable statements. See Chapter 1.

69. INVALID BASE WITH LABEL OR MACRO

BASED may not be used with LABEL or LITERALLY types.

70. I N V A LID DIM ENS ION WIT H LAB E LOR MAC R 0

LABEL or LITERALLY may not be dimensioned.

71. INITIALIZATION LIST REQUIRED

A list of initial values is required if the INITIAL attribute is used, if the
non-external * dimension form is used, or if the non-external DATA
attribute is used.

72. BAS ED CON F L I C T S WIT HAT T RIB UTE S

Examples of attributes conflicting with base include AT, DATA,
INITIAL, PUBLIC, and EXTERNAL. See section 4.6.

73. EX E CUT A B L EST ATE MEN T SIN EXT ERN A L

An EXTERNAL procedure, being defined elsewhere, may not contain
executable statements. See Chapter 9 and section 10.5.

74. MISSING RETURN FOR TYPED PROCEDURE

A typed procedure must return a value, so its RETURN statement must
specify one.

PL/M-86 User's Guide Error Messages

75. INVALID NESTED REENTRANT PROCEDURE

Reentrant procedures may not contain nested procedures. See section
10.5.

76. LIMIT EXCEEDED: FACTORED LIST (64)

Too many variables were named in a factored declaration. Break it into
several declarations.

77. L 1M I T EX C E ED ED: S T RUe T U R EEL EM E N T S (64)

Too many elements were declared in a structure.

78. MIS SING PRO C ED U R E N AM E

Every procedure must have a name. See section 10.1.

79. M U L TIP L E PRO C E D U REt ABE L S

Procedures must have exactly one name; no more, no less. See section
10.1.

80. DEC LA RAT I ON SMA Y NOT BEL ABE LED

Labels may not be used on declaration statements.

81. STAR DIM WITH FACTORED LIST NOT ALLOWED

Star dimensions (*) are for initializations. See section 3.2.

82. SIZE EXCEEDS 64K BYTES

Storage for the declared item exceeds 64K bytes.

(W) 83. PROCEDURE CONTAINS NO EXECUTABLE STATEMENTS

88. LIM I T EX C E E D ED: PRO GRAM TOO COM P LEX

The program has too many complex expressions, cases, etc. Break it into
smaller procedures.

89. CaMP I lER ERROR : BAD ERROR RECOVERY

An unrecoverable error occurred. Trying a different copy of the compiler
on a different drive might reveal that the first copy had been damaged or
gone bad. Contact InteL

18-9

Error Messages

18-10

PL/M-86 User's Guide

91. PROGRAM TOO COMPLEX

The program has too many complex expressions, cases, etc. Break it into
smaller procedures.

93. LIMIT EXCEEDED: PROGRAM TOO COMPLEX

The program has too many complex expressions, cases, and procedures.
Break it into smaller modules.

95. COMPILER ERROR: PARSE BUFFER OVERFLOW

See 89.

96. LIM I T EX C E E DE D: B L 0 C K N EST I N G (18)

The program has too many nested DO blocks. Break it into smaller
procedures.

97. COM P I L ERE R R 0 R: S T A C K UN D E R FLO W

See 89.

98. LIM I T EX C E E DE D: S TAT EM EN T TOO COM P LEX

The statement is too large for the compiler. Break it into several smaller
statements.

99. COM P I L ERE R R 0 R: S EM ANT I C UN D E R FLO W

See 89.

100. S T R I N G CON S TAN T TOO LON G

String constants may have a maximum of 4 characters.

101. UNSUBSCRIPTED ARRAY

In the context of the flagged statement, the array reference requires a
subscript. See sections 4.4, 10.2, and Chapter 6.

102. U N QUA L I FIE D S T RUe T U R E

This statement was ambiguous as to which structure or member was
intended. See sections 4.4, 10.2, and Chapter 6.

103. NOT AN AR RA Y

Subscripts are permitted only on identifiers declared as arrays. Check
spelling consistency. See Chapter 6.

PL/M-86 User9 s Guide Error Messages

104. MULTIPLE SUBSCRIPTS

For any array TING, references of the form TING(2,4) or TING(3 9 7,9,6)
are invalid because of multiple subscripts. Only references of one subscript
are valid 9 e.g., TING(5). See section 6.1.

105. NOT A STRUCTURE

For example, a reference of the form GNU.Fl where GNU was not
declared a structure. See Chapter 6.

106. UNDEFINED IDENTIFIER

Every identifer must be declared. See Chapter 3.

107. UN D E FIN E D ME M B E R

For example, KAPI.HORN where KAPI is a valid, declared structure but
HORN was never declared. See Chapter 6.

108. ILLEGAL INDEX TYPE.

Only BYTE, WORD, and INTEGER can be used. See section 6.1.

109. NOT A LAB E L

The identifier following GOTO must be a label; the flagged item was
declared otherwise.

110. MISSING RETURN VALUE

A typed procedure must return a value, so its RETURN statement must
specify one. See section 10.3.

111. INVALID RETURN WITH UNTYPED PROCEDURE

An untyped procedure does not return a value, so its RETURN statement
may not specify one. See section 10.3.

112. INVALID INDIRECT TYPE

Only WORD or POINTER scalars can be used for indirect calls. This
excludes WORD or POINTER expressions, BYTE or REAL scalars, all
structures, and all arrays. See section 10.2.

113. INVALID PARAMETER COUNT

The number of actual parameters supplied in a CALL must be equal to the
number of formal parameters declared in the procedure. See section 10.2.
(See also Chapter 11 for the requirements of built-ins.)

18-11

Error Messages

18-12

PL/M-86 User's Guide

114. QUALIFIED PROCEDURE MAME

Procedure names may not be qualified.

115. INVALID FUNCTION REFERENCE

Typed procedures are validly invoked only by use in an expression, not by
a CALL. See sections 10.1 and 10.2.

116. INVALID CASE EXPRESSION TYPE

Case expressions must be of type BYTE, WORD, or INTEGER.

117. LIMIT EXCEEDED: CASES

See Appendix B for correct limit.

118. TYPE CONFLICT

See section 5.6.

119. INVALID BUILT-IN REFERENCE

Built-in reference was qualified with a member name, or OUTPUT /
OUTWaRD did not appear on the left side of an assignment.

120. I N V A LID PRO C E D U R ERE FER E N C E

Untyped procedures must be invoked by a CALL statement; references to
such procedures are not permitted in expressions. See sections 10.1 and
10.2.

121. INVALID LEFT-HAND SIDE OF ASSIGMMENT

An example is PROCEDURE=4 or INWORD(7)=9. See sections 3.2 and
5.7.

122. I N V A LID REF ERE N C E

Invalid label reference

123. Not used

124. PRO C E D U R E NAME R E QUI R ED

Procedure name is required for SET$INTERRUPT and
INTERRUPT$PTR built-ins.

PL/M-86 User's Guide Error Messages

125. PRO C E DU R E N AM EON L Y

Parameters are not allowed on the procedure name in SET$INTERRUPT
and INTERRUPT$PTR.

126. BAD I NT ERR U P T N. U M B E R

Interrupt numbers must be whole-number constants between 0 and 255.
Thus, -7 and 272 would be invalid. See section 10.5.

127. CON S TAN TON L Y

In this instance, a constant is required.

128. A R RAY R E QUI RED

Some built-ins need an array name. See section 11.1.

129. I N T ERR U P T PRO C E D U R ERE QUI RED

Procedure names for SET$INTERRUPT and INTERRUPT$PTR must
have the INTERRUPT attribute.

130. I N V A LID RES T RIC TED 0 PER AND

For example, PL/M-86 reserved words and predeclared identifiers would
be invalid. See Appendixes C, D, and section 11.1.

131. INVALID RESTRICTED OPERATOR

Only + and - may be used in restricted expressions.

132. REAL CONSTANT EXPRESSION

A constant expression with REALs is not allowed.

133. REFERENCE REQUIRED

A variable reference is required for LENGTH, LAST, and SIZE.

134. VARIABLE REQUIRED

The operand to LENGTH, LAST, and SIZE must be a variable.

135. VALUE TOO LARGE

A value is too large for its contextually determined type.

18-13

Error Messages

18-14

PL/M-86 User's Guide

136. ABSOLUTE POINTER WITH SHORT POINTERS

An absolute pointer was used in the SMALL case.

137. INVALID RESTRICTED EXPRESSION

Only addresses or constant types are allowed in restricted expressions.

138. PUB L I C AT EXT ERN A L

See sections 3.2, 9.2, for example:

DECLARE DARTH BYTE EXTERNAL;
DECLARE VADER BYTE PUBLIC AT {.DARTH)i

139. PUB L I C AT A B SOL UTE

Absolute locations for PUBLICs are supported only under the LARGE
option. See Chapter 17.

140. PUBLIC AT MEMORY

PUBLIC AT (@MEMORY)isnotsupported by SMALL.

141. AT BASED VARIABLE

Based variables cannot be used in AT clauses. See section 4.8.

142. I LLEGAL FORWARD REFERENCE

An AT expression cannot have a forward reference.

143. VARIABLE TYPE REQUIRED IN AN AT EXPRESSION

The expression must be AT a variable.

144. LIMIT EXCEEDED: DATA OR STACK SEGMENT TOO LARGE

See Appendix B for correct limit.

145. LIMIT EXCEEDED: CODE OR CONST SEGMENT TOO LARGE

See Appendix B for correct limit.

146. LIM I T EX C E E D ED: TOO MAN Y EXT ERN A L S

See Appendix B for correct limit.

PL/M-86 User's Guide Error Messages

147. LABEL NOT AT LOCAL OR MODULE LEVEL

See sections 7.3 and 9.3.

148. A B SOL UTE ADD RES S REF ERE N C E INS MAL L

See section 15.4.

149. ILLEGAL MODULE NAME REFERENCE

Module names cannot be referenced.

(W) 150. USE 0 F "." WIT H FAR PRO C E D U R E

A subsequent indirect call made through the respective address/pointer
generates the wrong type of call.

(W) 151. USE 0 F .. Ii .. WIT H S H 0 R T PRO C E D U R E

See 150.

152. INVALID "." OR "0)" OPERAND

Must be used with a variable, procedure, or constant list.

153. INVALID RETURN IN MAIN PROGRAM

A main program must have no returns. See section 10.3.

154. S TAR DIM ENS ION E D EXT ERN A L WIT H LEN G T H, LAS T, 0 r S I Z E

The LENGTH, LAST, and SIZE built-in functions cannot be used with variables
declared with * and the EXTERNAL attribute.

155. PUBLIC SYMBOL EXPORTED FROM ANOTHER SUBSYSTEM

A PUBLIC symbol in this module is also exported by another subsystem.
See Appendix G.

156. LONG POINTER REQUIRED FOR THIS CONSTRUCT

A model with long pointers is required.

157. MEMORY MAY NOT BE USED WITH LENGTH, LAST, OR SIZE

Memory has no compile-time determinable dimension.

18-15

Error Messages

18-16

PL/M-86 User's Guide

162. LIM I TE X C E E DE D: PROG R AMt OMP LE X I T Y

Too many complex expressions, cases, etc. Break it into smaller
procedures.

163. C OMP I LE R ERROR: S EMANT IC UNDERF LOW

See 89.

164. COM PILE RE RR 0 R: IN V A LID NODE

See 89.

165. COMPILER ERROR: INVALID OPERATOR

See 89.

166.C OM P I L E R ERROR: I N VA LID TREE

See 89.

167. C OMP I LE RE RROR:S COPE STACK UNO ER FLOW

See 89.

168. LIMIT EXCEEDED: PROGRAM COMPLEXITY

Too many complex expressions, cases, etc. Break it into smaller
procedures.

169. COM P I L ERE R RO R: I N V A LID R E COR D

See 89.

170 . INVALID DOC AS E BLOCK, AT LEAST ONE CASE REQUIRED

See section 7.1.

171. LIMIT EXCEEDED: NUMBER OF ACTIVE CASES

See Appendix B for correct limit.

172. LIMIT EXCEEDED: NESTING OF TYPED PROCEDURE CALLS

See Appendix B for correct limit.

PL/M-86 User's Guide Error Messages

173. LIMIT EXCEEDED: NUMBER OF ACTIVE PROCEDURES OR DO
CASE GROUPS

See Appendix B for correct limit.

174. ILL EGA L N EST IN G 0 F B L 0 C K S, END S NOT B A LA N CEO

For every DO, an END is needed. See section 7.1.

175. COMPILER ERROR: INVALID OPERATION

See 89.

176. LIMIT EXCEEDED: REAL EXPRESSION COMPLEXITY

The REAL stack has eight registers. Heavily nested use of REAL func
tions with REAL expressions as parameters could get excessively complex.
See Chapter 13.

177. COM P I L ERE R R 0 R: REA L S T A C K UNO E R FLO W

See 89 and 176.

178. LIMIT EXCEEDED: BASIC BLOCK COMPLEXITY

You have a very long list of statements without labels, CASEs, IFs,
GOTOs, RETURNs, etc. Either break the procedure into several smaller
procedures, or add labels to some of your statements.

179. LIM I T E X C E E D ED: S TAT EM E N T S I Z E

The statement is too large for the compiler. Break it into several smaller
statements.

199. LIMIT EXCEEDED: PROCEDURE COMPLEXITY OF OPTIMIZE(2)
(terminal error)

The combined complexity of expressions, user labels, and compiler
generated labels is too great. Simplify as much as possible, perhaps break
ing the procedure into several smaller procedures.

200. ILLEGAL INITIALIZATION OF MORE SPACE THAN DECLARED

The number of intitialization values exceeds the number of declared
elements. See section 3.2.

201. I N V A LID LAB E L: U N D E FIN E D

No definition for this label was found. See sections 3.4 and 7.3.

18-17

Error Messages

18-18

PL/M-86 User's Guide

202. LIM I T EX C E E D ED: N U M B E R 0 F EXT ERN A LIT EMS

See Appendix B for correct limit.

203. COM P I L ERE R R 0 R: BAD LAB E LAD D RES S

See 89.

204. LIM I T E X C E E DE 0: COD ESE G MEN T S I Z E

See Appendix B for correct limit.

205. COM P I L ERE R R 0 R: BAD COD E G ENE RAT E 0

See 89.

251. COM P I L E R ERROR: I N V A LID 0 B J E C T

See 89.

252. COMPILER ERROR: SELF NAME LINK

$ee 89.

253. COM P I L ERE R R 0 R: S ELF AT T R LIN K

See 89.

254. LIMIT EXCEEDED: PROGRAM COMPLEXITY

The program has too many complex expressions, cases, and procedures.
Break it into smaller modules.

255. LIM I T E X C E E D ED: S Y M B 0 L S

See Appendix B for correct limit.

NOTE
If a terminal error is encountered, program text beyond
the point of error is not compiled. A terminal error
message will appear at the beginning of the program
listing and at the point of error in the program listing.

PL/M-86 User's Guide Error Messages

18.2 Fatal Command Tail and Control Errors

Fatal command tail errors are caused by an improperly specified compiler invoca
tion command or an improper control. The errors that may occur here are as
follows:

ILLEGAL COMMAND TAIL SYNTAX OR VALUE
UNRECOGNIZED CONTROL IN COMMAND TAIL
INCLUDE FILE IS NOT A DIRECT ACCESS FILE
INVOCATION COMMAND DOES NOT END WITH <cr><LF>
INCORRECT DEVICE SPECIFICATION
SOURCE FILE NOT A DIRECT ACCESS FILE
SOURCE FILE NAME INCORRECT
SOURCE FILE EXTENSION INCORRECT
ILLEGAL COMMAND TAIL SYNTAX
MISPLACED CONTROL: WORKFILES ALREADY OPENED

18.3 Fatallnput/Output Errors

Fatal input/output errors occur when the user incorrectly specifies a pathname for
compiler input or output. These err~r messages are of the form:

PL/M-86 ERROR -
FILE:
NAME:
ERROR:
COMPILATION TERMINATED

18.4 Fatal Insufficient Memory Errors

The fatal insufficient memory errors are caused by a system configuration with not
enough RAM memory to support the compiler. .

The errors that may occur due to insufficient memory are as follows:

NOT ENOUGH MEMORY FOR COMPILATION
DYNAMIC STORAGE OVERFLOW
NOT ENOUGH MEMORY

18.5 Fatal Compiler Failure Errors

The fatal compiler failure errors are internal errors that should never occur. If you
encounter such an error, please report it to Intel Corporation, 3065 Bowers Avenue,
Santa Clara, California 95051, Attn: Software Marketing Department. The errors
falling into this class are as follows:

89. COM P I L ERE R R 0 R: BAD ERR 0 R R E C 0 V E R Y
95. COM PI L ERE R R 0 R: PAR S E B U F FER 0 V E R FLO W
97. COM P I L ERE R R 0 R: S T A C K U N D E R FLO W

18-19

Error Messages

18-20

99. COM P I L ERE R R 0 R: S E MAN TIC UNO E R FLO W
163. COM P I L ERE R R 0 R: S EM ANT I C UNO E R FLO W
164. C OM P I L ERE R R 0 R: I N V A LID N ODE
165. COM PI L ERE R R 0 R: I N V A LID 0 PER A TOR
166. C OM P I L ERE R R 0 R: I N V A LID T R E E
167. COM PI L ERE R R 0 R: S COP EST A C K UNO E R FLO IrJ
169. COM P I L ERE R R 0 R: I N V A LID R E CO R 0
175. COMPILER ERROR: INVALID OPERATION
177. COM P I L ERE R R 0 R: REA L S T A C K UNO E R FLO IrJ
203. COM P I L ERE R R 0 R: BAD LAB E LAD 0 RES S
205. COMPILER ERROR: BAD CODE GENERATED
251. COM P I L ERE R R 0 R: I N V A LID 0 B J E C T
252. COMPILER ERROR: SELF NAME LINK
253. COMPILER ERROR: SELF ATTR LINK

PL/M-86 User's Guide

· ~
APPENDIX A

GRAMMAR OF THE
PL/M-86 LANGUAGE

n

This appendix lists the entire BNF syntax of the PL/M-86 language. Since the
semantic rules are not included here, this syntax permits certain constructions that
are not actually allowed. Also, the terminology used in this BNF syntax has been
designed for convenience in constructing concise and rigorous definitions. Its
appearance differs substantially from the main body of the manual.

The notation used here is slightly extended from standard BNF. A sequence of three
periods (...) is used to indicate that the preceding syntactic element may be repeated
any number of times. Curly brackets are used to indicate that exactly one of the
items stacked vertically between them is to be used. Square brackets indicate that
whatever is between them may be omitted. When items are stacked vertically
between square brackets, only one of them may be used.

Following the syntax, the nonterminals in the syntax are listed in alphabetical order.
Each nonterminal is tagged with the section number (within this appendix) where its
primary definition can be looked up.

A.1 Lexical Elements

A.1.1 Character Sets

<character>::= <apostrophe>
I <non-quote character>

<non-quote character>::= <letter>
I <decimal digit>
I $
I <special character>
I blank

<Ietter>::= <upper case letter>
I <lower case letter>

<upper case letter>::= AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRI SITIUIVIWIXI YIZ
<lower case letter>::= alblcidielflglhliljlklllminiolplqlrlsitlulvlwixlylz
<decimal digit>::= 0111213141516171819
<special ch~racter>::= + I-I*III<I>I=I:I;I.I,I(I)I@'_
<apostrophe>::= '

A.1.2 Tokens

<token>::= <delimiter>
I <identifier>
I <reserved word>
I <numeric constant>
I <string>

A-I

Grammar of the PL/M-86 Language PL/M-86 User's Guide

A-2

A.1.3 Delimiters

<delimiter>::= <simple delimiter>
I <compound delimiter>

<simple delimiter>::= + 1-1*1I1<1>1=1:1;1.I,1(I)I@
<compound delimiter>::= <>

I <=
I >=
I :=

A.1.4 Identifiers and Reserved Words

<identifier>::= <letter> [<letter>] ...
<decimal digit>

$

<reserved word> see list, Appendix C

A.1.S Numeric Constants

<numeric constant>::= <binary number>
. I <octal number>

I <decimal number>
I <hexadecimal number>
I <floating point number>

<binary number>::= <binary digit> [<binary tgit>]

<octal number>::=<octal digit> [<octal$di9it>]

... B

<decimal number>::= <decimal digit> [<decimalS digit>] [DJ

<hexadecimal number>::= <decimal digit> [<hexadec~mal digit>] '" H

<floating point number>::= <digit string> <fractional part> [<exponent part>]
<fractional part>::=. [<digit string>]
<exponent part>::= E [+ 1-] <digit string>
<digit string>::= <decimal digit> [<decima~ digit>]

<binary digit>::= 011
<octal digit>::= <binary digit> 121314151617
<decimal digit>::= <octal digit> 1819
<hexadecimal digit>::= <decimal digit>IAIBICIDIEIF

A.1.6 Strings

<string>::= ' <string body element>
<string body element>::= <non-quote character>

1 "

PL/M-86 User's Guide Grammar of the PL/M-86 Language

A.1.7 PL/M Text Structure: Tokens, Blanks, and Comments

<pl/m text>::= [<token>]
<separator>

<separator>::= blank
I <comment>

<comment>::= 1* [<character>] ... * I

A.2 Modules and the Main Program

<compilation>::= <module> [EOF]
<module>::= <module name> : <simple do block>:
<module name>::= <identifier>

A.3 Declarations

<declaration>::= <declare statement>
I <procedure definition>

A.3.1 DECLARE Statement

<declare statement>::= DECLARE <declare element list>;
<declare element list>::= <declare element>[,<declare element>] ...
<declare element>::= <factored element>

I <unfactored element>

<unfactored element>::= <variable element>
I <literal element>
I <label element>

<factored element>::= <factored variable element>
I <factored label element>

A.3.2 Variable Elements

<variable element>::= <variable name specifier>
[<array specifier>] <variable type>
[<variable attri butes>]

<variable name specifier>::= <non-based name>
I <based name> BASED <base specifier>

<non-based name>::= <variable name>
<based name>::= <variable name>
<variable name>::= <identifier>
<base specifier>::= <identifier> [.<identifier>]

<variable attributes>::= [PUBLIC] [<Iocator>][<initialization>]
I [EXTERNAL][<constant attribute>]

<Iocator>::= AT «expression»

A-3

Grammar of the PL/M-86 Language PL/M-86 User's Guide

A-4

<constant attribute>::= DATA

<array specifier>::= <explicit dimension>
I <implicit dimension>

<explicit dimension>::= «numeric constant»
<implicit dimension>::= (*)

<variable type>::= <basic type>
I <structure type>

<basic type>::= INTEGER
I REAL
I POINTER
I SELECTOR
I BYTE
I WORD
I DWORD

A.3.3 Label Element

<label element>::= <identifier> LABEL [PUBLIC]
EXTERNAL

A.3.4 Literal Elements

<literal element>::= <identifier> LITERALLY <string>

A.3.S Factored Variable Element

<factored variable element>::= (<variable name specifier>
[,<variable name specifier>] ...)
[<explicit dimension>] <variable type>
[<variable attributes>]

A.3.6 Factored Label Elements

<factored label element>::= «identifier> [,<identifier>] ...) LABEL [PUBLIC]
EXTERNAL

A.3.7 The Structure Type

<structure type>::= STRUCTURE «member element> [,<member element>] ...)
<member element>::= <member name> [<explicit dimension>] <basic type>
<member name>::= <identifier>

I«identifier>[, <identifier>] ..)

A.3.8 Procedure Definition

<procedure definition>::= <procedure statement>
[<declaration> ...][~unit> ...] <ending>

<procedure statement>::= <procedure name> : PROCEDURE
[<formal parameter list>][<procedure type>]
[<procedure attributes>] ;

PL/M-86 User's Guide Grammar of the PL/M-86 Language

<procedure name>::= <identifier>
<procedure type>::= <basic type>
<basic type>::= INTEGER

I REAL
I POINTER
I SELECTOR
I BYTE
I WORD
I DWORD

<formal parameter list>::= «formal parameter> [,<formal parameter>] ...)
<formal parameter>::= <identifier>

<procedure attributes>::= EXTERNAL
{

<interrupt> }

{

<interrupt> }
PUBLIC
REENTRANT

A.3.9 Attributes

A.3.9.1 AT

<Iocator>::= AT (<expression>)

A.3.9.2 INTERRUPT

<interrupt>::= INTERRUPT <numeric constant>

A.3.9.3 Initialization

<initialization>::= IINITIALJ
DATA

(<initial value> [,<initial value>] ...)

<initial value>::= <expression>
I <string>

A.4 Units

<unit>::= <conditional clause>
I <do block>
I <basic statement>
I <label definition> <unit>

<basic statement>::= <assignment statement>
I <call statement>
I <goto statement>
I <null statement>
I <return statement>
I <iAPX 86 dependent statement>

<scoping statement>::= <simple do statement>
I <do-case statement>
I <do-while statement>
I <iterative do statement>
I <end statement>
I <procedure statement>

<label definition> ::= <identifier>:

A-5

Grammar of the PL/M-86 Language

A-6

A.4.1 Basic Statements

A.4.1.1 Assignment Statement

<assignment statement>::= <left part> = <expression> ;
<left part>::= <variable reference> [, <variable reference>]

A.4.1.2 CALL Statement

<call statement>::= CALL <simple variable> [<parameter list>];
<parameter list>::= «expression> [, <expression>] ...)
<simple variable>::= <identifier>

I <identifier>. <identifier>

A.4.1.3 GOTO Statement

<goto statement>::=
{
GOTO}
GOTO

A.4.1.4 Null Statement

<null statement>::= ;

A.4.1.S RETURN Statement

<identifier> ;

<return statement>::= <typed return>
I <untyped return>

<typed return>::= RETURN <expression> ;
<untyped return>::= RETURN;

A.4.1.6 iAPX 86 Dependent Statements

<iAPX 86 dependent statement>::= <disable statement>
I <enable statement>
I <halt statement>
I <cause interrupt statement>

<disable statement>::= DISABLE;
<enable statement>::= ENABLE;
<halt statement>::= HALT;
<cause interrupt statement>::= CAUSE$INTERRUPT (numeric constant);

A.4.2 Scoping Statements

A.4.2.1 Simple DO Statement

<simple do statement>::= DO ;

A.4.2.2 DO-CASE Statement

<do-case statement>::= DO CASE <expression> ;

PL/M-86 User's Guide

PL/M-86 User's Guide Grammar of the PL/M-86 Language

A.4.2.3 DO-WHILE Statement

<do-while statement>::= DO WHILE <expression> ;

A.4.2.4 Iterative DO Statement

<iterative do statement>::= DO <index part> <to part> [<by part>] ;
<index part>::= <index variable> = <start expression>
<to part>::= TO <bound expression>
<by part>::= BY <step expression>
<index variable>::= <simple variable>
<start expression>::= <expression>
<bound expression>::= <expression>
<step expression>::= <expression>

A.4.2.S END Statement

<end statement>::= END [<identifier>] ;

A.4.2.6 Procedure Statement

<procedure statement>::= <procedure name>: PROCEDURE
[<formal parameter list>][<procedure type>]
[<procedure attributes>] ;

A.4.3 Conditional Clause

<conditional clause>::= <if condition> <true unit>
I <if condition> <true element> ELSE <false element>

<if condition>::= IF <expression> THEN
<true element>::= [<label definition> ...] <do block>

I [<label definition> ... J <basic statement>

<false element>::= <unit>
<true unit>::= <unit>

A.4.4 DO Blocks

<do block>::= <simple do block>
I <do-case block>
I <do-while block>
I <iterative do block>

A.4.4.1 Simple DO Blocks

<simple do block>::= <simple do statement>[<declaration> ...][<unit> ...]<ending>
<ending>::=[<Iabel definition> ...]<end statement>

A.4.4.2 DO-CASE Blocks

<do-case block>::= <do-case statement> {<unit> ... } <ending>

A.4.4.3 DO-WHILE Blocks

<do-while block>::= <do-while statement> [<unit> ...] <ending>

A.4.4.4 Iterative DO Blocks

<iterative do block>::=<iterative do statement> [<unit> ...] <ending>

A-7

Grammar of the PL/M -86 Language

A-8

A.5 Expressions

A.S.1 Primaries

<primary>::= <constant>
I <variable reference>
I <location reference>
I <subexpression>

<subexpression>::= «expression»

A.5.1.1 Constants

<constant>::= <numeric constant>
I <string>

A.5.I.2 Variable References

<variable reference>::= <data reference>
I <function reference>

<data reference>::= <name>[<subscript>][<member specifier>]
<subScript>::= «expression»
<member specifier>::= .<member name>[<subscript>]
<function reference>::= <name>[<actual parameters>]
<actual parameters>::= «expression>[,<expression>] ...)
<member name>::= <identifier>
<name>::= <identifier>

A.5.I.3 Location References

<location reference>::= <constant list>

{ @ I <variable reference>

<constant list>::= «constant>[,<constant>] ...)

A.S.2 Operators

<operator>::::::: <logical operator>
I <relational operator>
I <arithmetic operator>

<logical operator>::= AND
I OR
I NOT
I XOR

<relational operator>::= < I > I <= I >= I <> I =
<arithmetic operator>::= + I-I PLUS I MINUS I * III MOD

A.S.3 Structure of Expressions

<expression>::= <logical expression>
I <embedded assignment>

PL/M-86 User's Guide

PL/M-86 User's Guide Grammar of the PL/M-86 Language

<embedded assignment>::= <variable reference> := <logical expression>
<logical expression>::= <logical factor>

I <logical expression> <or operator> <logical factor>

<or operator>::= OR
I XOR

<logical factor>::= <logical secondary>
I <logical factor> <and operator> <logical se'tondary>

<and operator>::= AND
<logical secondary>::= [<not operator>] <logical primary>
<not operator>::= NOT
<logical primary>::= <arithmetic expression>

[<relational operator> <arithmetic expression>]

<relational operator>::= < I > I <= I >= I <> I =

<arithmetic expression>::= <term>
I <arithmetic expression> <adding operator> <term>

<adding operator>::= + I-I PLUS I MINUS
<term>::= <secondary>

I <term> <multiplying operator> <secondary>

<multiplying operator>::= * III MOD
<secondary>: :=[<unary minus>] <primary>

<unary plus> J

<unary minus>::=
<unary plus>::= +

NONTERMINALS SECTION

<actual parameters> A.5.1.2
<adding operator> A.5.3
<and operator> .. A.5.3
<apostrophe> A.I.I
<arithmetic expression> A.5.3
<arithmetic operator> A.5.2
<array specifier> A.3.2
<assignment statement> A.4.1.1
<base specifier> A.3.2
<based name> A.3.2
<basic statement> A.4
<basic type> A.3.2
<binary digit> ... A.I.5
<binary number> A.I.5
<bound expression> A.4.2.4
<by part> A.4.2.4
<call statement> A.4.1.2
<character> A.I.I
<comment> ... A.I.7
<compilation> A.2
<compound delimiter> A.I.3
<conditional clause> A.4.3
<constant list> .. A.5.1.3
<constant> A.5.1.1
<data reference> A.5.1.2

A-9

Grammar of the PL/M-86 Language PL/M-86 User's Guide

<decimal digit> A.1.5
<decimal number> A.I.5
<declaration> A.3
<declare element list> A.3.1
<declare element> A.3.1
<declare statement> A.3.1
<delimiter> A.I.3
<digit string> .. A.1.5
<disable statement> A.4.1.6
<do block> .. A.4.4
<do-case block> A.4.4.2
<do-case statement> A.4.2.2
<do-while block> A.4.4.3
<do-while statement> A.4.2.3
<embedded assignment> A.5.3
<enable statement> A.4.1.6
<end statement> A.4.2.5
<ending> ... A.4.4.1
<explicit dimension> A.3.2
<exponent part> A.l.5
<expression> A.5.3
<factored element> A.3.1
<factored label element> A.3.6
<factored member> A.3. 7
<factored variable element> A.3.5
<false element> A.4.3
<floating point number> A.I.5
<formal parameter list> A.3.8
<formal parameter> A.3.8
<fractional part> A.I.5
<function reference> A.5.l.2
<goto statement> A.4.l.3
<halt statement> A.4.1.6
<hexadecimal digit> A.I.5
<hexadecimal number> A.I.5
<identifier> ... A.I.4
<if condition> A.4.3
<implicit dimension> A.3.2
<index part> A.4.2.4
<index variable> A.4.2.4
<initial value> A.3.9.3
<initialization> .. A.3.9.3
<interrupt> A.3.9.2
<iterative do block> A.4.4.4
<iterative do statement> A.4.2.4
<label definition> A.4
<label element> A.3.3
<left part> .. A.4.1.1
<letter> A.I.I
<linkage> ... A.3.8
<literal element> A.3.4
<location reference> A.5.l.3
<locator> A.3.9.1
<logical expression> A.5.3
<logical factor> A.5.3
<logical operator> A.5.2
<logical primary> A.5.3
<logical secondary> A.5.3
<lower case letter> A.I.I
<member element> A.3. 7

A-tO

PL/M-86 User's Guide Grammar of the PL/M-86 Language

<member name> A.3.7
<member specifier> A.5.I.2
<module name> A.2
<module> ... A.2
<multiplying operator> A.5.3
<name> ... A.5 .1.2
<non-based name> A.3.2
<non-quote character> A.I.l
<not operator> A.5.3
<null statement> A.4.1.4
<numeric constant> A.l.5
<octal digit> ... A.l.5
<octal number> A.l.5
<operator> .. A.5.2
<or operator> A.5.3
<parameter list> A.4.1.2
<pl/m text> A.I.7
<primary> ... A.5.1
<procedure attributes> A.3.8
<procedure definition> A.3.8
<procedure name> A.3.8
<procedure statement> A.3.8
<procedure type> A.3.8
<relational operator> A.5.2
<reserved word> A.l.4
<return statement> A.4.1.5
<scoping statement> A.4
<secondary> .. A.5.3
<separator> A.l.7
<simple delimiter> A.I.3
<simple do block> A.4.4.1
<simple do statement> AA.2.1
<simple variable> A.4.1.2
<special character> A.l.l
<start expression> A.4.2.4
<step expression> A.4.2.4
<string body element> A.l.6
<string> .. A.l.6
<structure type> A.3.7
<subexpression> A.5.1
<subscript> A.5.I.2
<term> .. A.5.3
<to part> A.4.2.4
<token> ... A.l.2
<true element> A.4.3
<true unit> .. A.4.3
<typed return> A.4.I.5
<unary minus> .. A.5.3
<unary plus> A.5.3
<unfactored element> A.3.1
<unfactored member> A.3.7
<unit> ... A.4
<untyped return> A.4.I.5
<upper case letter> A.l.l
<variable attributes> A.3.2
<variable element> A.3.2
<variable name specifier> A.3.2
<variable name> A.3.2
<variable reference> A.5.1.2
<variable type> .. A.3.2

A-ll

APPENDIX B I
PROGRAM CONSTRAINTS

Certain fixed size tables within the compiler constrain various features of a user pro
gram to certain maximums. Theselimits are summarized below:

MAXIMUM:

Nesting of LITERALLY invocations
Nesting of INCLUDE controls
Number of nested procedures and DO cases

5
5
7

Number of labels on a statement
Nesting of blocks
Number of nested typed procedures
Number of elements in a factored list
Number of members in a structure

unlimited
18
20
32
64

Structure size

Numbers of characters in a line
Length of a string constant
Number of DO blocks in a procedure
Number of cases in a DO CASE block
Number of active cases
Number of EXTERNAL items
Number of procedures in a module
Segment Size

NOTE
The PL/M-86 compiler has a symbol capacity of approximately
5000 symbols. Of these, 800 are held in memory when the compiler
has a partition size of 96K. Any symbols over this amount will spill
onto the work files disk, causing performance degradation. If
another 64K of memory is added to the compiler's partition (either
by adding more memory to the system or by increasing its share of
available memory), a total of 2300 symbols will then be held in
memory. For large programs or programs with a lot of symbols,
providing the compiler with more memory to work in will improve
its performance.

64K

128
255
255
255
255
255
253
64K

B-1

APPENDIX C I
PL/M-86 RESERVED WORDS

These are the reserved words of PL/M-86. They may not be used as identifiers.

ADDRESS
AND
AT
BASED
BY
BYTE
CALL
CASE
CAUSEINTERRUPT
DATA
DECLARE
DISABLE
DO
DWORD
ELSE
ENABLE
END
EOF
EXTERNAL
GO
GOTO
HALT
IF

INITIAL
INTEGER
INTERRUPT
LABEL
LITERALLY
MINUS
MOD
NOT
OR
PLUS
POINTER
PROCEDURE
PUBLIC
REAL
REENTRANT
RETURN
SELECTOR
STRUCTURE
THEN
TO
WHILE
WORD
XOR

C-l

I . " APPENDIX D
PL/M-86 PREDECLARED IDENTIFIERS n

These are the identifiers for the builtin procedures and predeclared variables. If one
of these identifiers is declared in a DECLARE statement, the corresponding built-in
procedure or predeclared variable becomes unavailable within the scope of the
declaration.

ABS
BUILDPTR
CARRY
CMPB
CMPW
DEC
DOUBLE
FINDB
FINDRB
FINDRW
FINDW
FIX
FLOAT
HIGH
lABS
INPUT
INT
INTERRUPTPTR
INWORD
LAST
LOCKSET
LENGTH
LOW
MEMORY
MOVB
MOVE
MOVRB
MOVRW
MOVW

OFFSETOF
OUTPUT
OUTWORD
PARITY
ROL
ROR
SAL
SAR
SCL
SCR
SELECTOROF
SETB
SETINTERRUPT
SETW
SHL
SHR
SIGNED
SIZE
SKIPB
SKIPRB
SKIPRW
SKIPW
STACKBASE
STACKPTR
TIME
UNSIGN
XLAT
ZERO

D-1

APPENDIX E
PL/M-80 AN 0 PL/M-86

E.1 General Comparison

PL/M-86 may be regarded as an extension of the PL/M-80 language, described in
Intel document 9800268. PL/M-86 differs from PL/M-80 in three principal
respects:

• Floating-point arithmetic and signed integer arithmetic are provided. These are
supported by two new data types, REAL and INTEGER.

• The extended addressing capability of the iAPX 86 is supported by two new
data types, POINTER and SELECTOR, for storage of iAPX 86 locations, and
a new location reference operator, @.

• The set of built-in procedures is greatly expanded.

In addition, the PL/M-80 reserved word ADDRESS is replaced by the PL/M-86
reserved word WORD. Thus where PL/M-80 has only the two data types, BYTE
and ADDRESS, PL/M-86 has seven: BYTE, WORD, DWORD, INTEGER,
REAL, POINTER, and SELECTOR.

The PL/M-86 rules for expression evaluation are more complete than those of
PL/M-80, to make proper use of the extended capabilities. There are also various
other differences which stem from the ones noted here. In particular, an iterative
DO block operates differently if its index variable is an INTEGER variable.

E.2 Compatibility of PL/M-80 Programs and the
PL/M-86 Compiler

PL/M-80 programs that operate correctly on an 8080 can be recompiled with the
PL/M-86 compiler to produce code that will run on an iAPX 86. The PL/M-80
source code must first be edited as follows:

• All identifiers in the PL/M-80 source code must be examined and changed if
they are PL/M-86 reserved words. The PL/M-86 reserved words that might
occur as identifiers in a PL/M-80 source program are WORD, DWORD,
INTEGER, REAL, POINTER, SELECTOR, andCAUSEINTERRUPT (since
these are not reserved words in PL/M-80).

• It is not necessary to change ADDRESS to WORD; ADDRESS is a PL/M-86
reserved word with the same meaning as WORD.

Note that where PL/M-86 programs would normally have POINTER variables and
location references formed with the @ operator, PL/M-80 programs have
ADDRESS (WORD) variables and location references formed with the "dot"
operator. PL/M-80 usage is therefore slightly less restricted than normal PL/M-86
usage, since arithmetic operations are allowed on WORD values. To provide
upward compatibility, the PL/M-86 compiler in general supports PL/M-80 usage.
However, some restrictions are imposed, affecting the types of expressions allowed
in the AT attribute, the INITIAL and DATA· initializations, and location
references. See also the discussions of size controls and the dot and @ operators in
this manual.

(In fact, all of these constructions are formally permitted by the PL/M-86 language,
but their use in PL/M-86 programs is not recommended for most purposes, since
they will not always produce correct results in a program where POINTER values
also appear.)

E-I

ASCII HEX PL/M-86
CHARACTER CHARACTER?

NUL 00 no
SOH 01 no
STX 02 no
ETX 03 no
EaT 04 no
ENO 05 no
ACK 06 no
8EL 07 no
8S 08 no
HT 09 no
LF OA no
VT OB no
FF OC no
CR 00 no
SO OE no
SI OF no
OLE 10 no
DCI 11 no
OC2 12 no
OC3 13 no
OC4 14 no
NAK 15 no
SYN 16 no
ETB 17 no
CAN 18 no
EM 19 no
SUB 1A no
ESC 18 no
FS 1C no
GS 10 no
RS 1E no
US 1F no
space 20 yes
! 21 no
" 22 no
23 no
$ 24 yes
% 25 no
& 26 no , 27 yes
(28 yes
) 29 yes
* 2A yes
+ 2B yes
, 2C yes
- 20 yes

2E yes
I 2F yes
0 30 yes
1 31 yes
2 32 yes
3 33 yes
4 34 yes
5 35 yes
6 36 yes
7 37 yes
8 38 yes
9 39 yes

3A yes
, 3B yes
< 3C yes
= 3D yes
> 3E yes
? 3F no

ASCII
CHARACTER

@
A
8
C
0
E
F
G
H
I
J
K
L
M
N
a
P
0
R
S
T
U
V
W
X
Y
Z
[
\
]

t\(t)
-,
a
b
c
d
~
f
9
h
i
j
k
I

m
n
0
p
q
r
s
t
u
v
w
x
y
z
{

I
}
~

DEL

APPENDIX FI
ASCII CODES

HEX PL/M-86
CHARACTER?

40 yes
41 yes
42 yes
43 yes
44 yes
45 yes
46 yes
47 yes
48 yes
49 yes
4A yes
4B yes
4C yes
40 yes
4E yes
4F yes
50 yes
51 yes
52 yes
53 yes
54 yes
55 yes
56 yes
57 yes
58 yes
59 yes
5A yes
58 no
5C no
50 no
5E no
5F yes
60 no
61 yes
62 yes
63 yes
64 yes
65 yes
66 yes
67 yes
68 yes
69 yes
6A yes
6B yes
6C yes
60 yes
6E yes
6F yes
70 yes
71 yes
72 yes
73 yes
74 yes
75 yes
76 yes
77 yes
78 yes
79 yes
7A yes
7B no
7C no
70 no
7E no
7F no

F-l

APPENDIX G
PL/M-86 ADVANCED SEGMENTATION

G.1 Basic Controls

The simplest way to compile PL/M-86 code is to use the segmentation controls
outlined in Chapter 17. However, these controls may severely restrict some applica
tions, since MEDIUM and LARGE programs may produce non-optimal code, and
COMP ACT and SMALL program modules are unable to call procedures or
reference variables outside their 64K code and data areas.

This appendix describes segmentation control extensions you can use to gain more
optimal code. Optimization is obtained by breaking large applications (greater than
64K of code, data, or both) into loosely-coupled subsystems (less than 64K each of
code and data) whose variable and procedure references are largely self-contained.
Each subsystem is a collection of tightly coupled, logically related modules that obey
one of the specified models of segmentation. (Subsystems within a single program
can use different segmentation models if appropriate.)

Segmentation control extensions are best used to break LARGE and MEDIUM pro
grams into separate subsystems that have few references between them. In SMALL
and COMPACT programs, these extensions are used to specify that a procedure or
variable is outside the current module, requiring a "far" reference. (Use of these
extensions also allows easier access to the one megabyte address space.)

G.2 Long Calls and Far References

Occasionally programs compiled under SMALL or COMPACT must access data or
procedures outside their limited address space. They do so using an EXPORTS list,
which indicates that a "far" reference must be made to this data or procedure.

A symbol included in a subsystem's EXPORTS list must be a public symbol defined
in one of the modules belonging to that subsystem. It is called an exported symbol
and may be referenced by modules in other subsystems. (A public symbol defined
within a subsystem, but not listed in its EXPORTS list, is called a domestic symbol.
It may be referenced only by modules within the same subsystem.

Using the EXPORTS list, you can interract with operating systems or call shared
routines that were loaded outside your program's 64K code space. It provides a
means for generating long calls to procedures and simple far references to variables
outside your 64K code or data address space. However, data references are assumed
to be in separate segments, so segment register loading is not optimized. (If such
optimization is required, see section G.3.)

This ability to generate long calls also means that .operating systems and libraries
need only supply one interface model-LARGE. To interface with these routines,
you must provide the cOlIl:piler with the information it needs to generate long calls.

The far extension takes the form:

$ LARGE(subsystem name EXPORTS interface iist)

where

subsystem name is the name of the library or other subsystem being referenced.

0-1

PL/M-86 Advanced Segmentation PL/M-86 User's Guide

0-2

interface list is the list of code entry points or data items, separated by commas,
which are accessible to other modules via far references.

This control may be used with any of the simple segmentation schemes described in
Chapter 17 and has the following characteristics:

• All references to variables in the interface list are long.

• All references to procedures in the interface list are long calls.

• Because the named subsystem is LARGE, optimization of segment register
loading cannot take place, since two given variables may not be contained in the
same segment. (If this optimization is required, see section G.3.)

• The EXPORTS list can be kept small by tailoring it to the requirements of each
referencing module. It can also be constructed as an INCLUDE file and made
available to all modules.

• Only those items that are referenced within this module need to be named in the
EXPORTS list. Those that are referenced must be declared and have the same
syntax as an EXTERNAL declaration (see section 9.2). Those items that are
named in the EXPORTS list but are not referenced need not be declared.

Exam'pIe

$LARGE(dq$work EXPORTS dq$attach,dq$open,dq$read,dq$cLose)

If this were included in a compilation that had used the SMALL control, all calls
would be short except those to the exported routines (dq$attach, dq$open, etc.),
which would be long.

Note that the segmentation control extensions may be continued over more than one
control line. To do this, simply begin each line with a $ in the first column. (The con
trollines must be contiguous.)

The follow restrictions apply when using far references in the SMALL case:

1. POINTER functions and POINTER variables may not be exported to a
SMALL module.

2. The location addresses of variables or procedures exported to a SMALL module
may not be obtained using the @ or dot operators.

3. POINTER actual 'parameters passed to far procedures will always use the
current contents of the DS register as the base portion of the long pointer.

G.3 Subsystems

By carefully constructing subsystems, you can mInImIZe references to outside
resources (code and data) and, in return, receive highly optimized code for all inter
nal resource references. This section describes how to create these subsystems.

A subsystem control takes the form:

$model (subsystem name [submodelJ [H A Sid-list;] [exports list])

where

model specifies the model of segmentation that the subsystem will follow.
(COMP ACT and LARGE are allowed, but only COMPACT subsystems pro
vide optimized code.) This may be modified by the sub model specification.

PL/M-86 User's Guide PL/M-86 Advanced Segmentation

subsystem name specifies a unique name for each subsystem and is any valid
PL/M-86 identifier.

sLlbmodel specifies the placement of constants. It can be either:

-CONST IN CODE-
-CONST IN DATA-

provides for burning code and constants into ROM)
(the default case)

HAS id-list describes the mapping of module names to subsystems. This is
optional for all subsystems except the one that includes the module currently
being compiled. It takes the form:

HAS module name [, module name] . . .

exports list is the list of procedures and variables exported by this subsystem.
Any procedure or variable not named in this list will be local to its subsystem.
This takes the form:

E X PO R T S id [, id] ...

Examples

1. Consider the following system definition:

$COMPACT(Par -CONST IN CODE- HAS A1, A2, A3)
$COMPACT(Quad HAS Q1, Q2, Q3, Q4; EXPORTS Middle)
$LARGE(Name EXPORTS Number, Store)

The sample program consists of three subsystems named Par, Quad, and Name.
Par and Quad use the COMPACT model of segmentation, while Name uses the
LARGE model. Constants are stored with the code in the Par and Name sub
systems. The Par subsystem, consisting of the modules AI, A2, and A3, is
apparently the main program since it exports no procedures.

2. A SMALL program wishing to communicate with the TEMPREAL CEL
library might have the following controls:

$SMALL
$LARGE(CEL EXPORTS MQERSGN, MQEROIM, MQERANT, MQERNIN, MQERMOO;
$ EXPORTS MQEREXP, MQERLGE, MQERLGO, MQERSNH, MQERCSH, MQERTNH;
$ EXPORTS MQERSIN, MQERCOS, MQERTAN, MQERASN, MQERACS, MQERATN;
$ EXPORTS MQERY2X, MQERAT2, MQERRNT, MQERINT, MQERRMO)

The LARGE model is used to generate long calls to the named procedures. It also
forces the compiler to make no assumptions about the sharing of code or data within
the library.

3. Four subsystems (main_sub, read_sub, write_sub, sort_sub) have less than
64K each of code and data. The modules in main_sub contain the following
controls:

$COMPACT(main sub
$COMPACT(read sub
$COMPACT(write sub
$COMPACT(sort sub

HAS main1~main2) EXPORTS buf,fi le,error$exit)
EXPORTS read)

EXPORTS write,consol)
EXPORTS sort$buf,sorter)

0-3

PL/M-86 Advanced Segmentation PL/M-86 User's Guide

G-4

Therefore, we know that the subsystems share the following resources:

SUBSYSTEM NAME EXPORTEDID EXPORTED TYPE

main_sub: buf (variable)
file (variable)
error$exit (procedure)

read_sub: read (procedure)
write_sub: write (procedure)

consol (procedure)
sort_sub: sort$buf (variable)

sorter (procedure)

Note from this example that:

• Because each subsystem has only one segment for data (a characteristic of the
CaMP ACT model), references to data exported by another subsystem can be
optimized.

• Each of the four subsystems follow the COMPACT model of segmentation.
This will provide optimal code for references to data and procedures local to
each subsystem.

• The actual declarations for the procedures and variables in the EXPORTS list
take the form of normal PUBLICs and EXTERNALs. The EXTERNALs need
not be declared unless they are referenced within the module.

Breaking an application that is currently using the LARGE model into loosely
coupled CaMP ACT subsystems may reduce code size by 20-30%.

APPENDIX H
RUN-TIME PROCEDURE AND

ASSEMBLY LANGUAGE LINKAGE

This chapter describes the handling at run time of non-interrupt procedures.
Assembly-language subroutines that are to be linked with PL/M-86 programs or
procedures must be compatible with these conventions. The easiest way to ensure
compatibility is simply to write a dummy procedure in PL/M-86 with the same argu
ment list as the desired assembly language subroutine and with the same attributes.
Then compile the dummy procedure with the correct size control and with the
CODE control specified. This will produce a pseudoassembly listing of the
generated iAPX 86 code, which may then be simply copied as the prologue and
epilogue of the assembly language subroutine. This having been done, an
understanding of the material in this chapter is not needed.

For the handling of interrupt procedures, see Appendix I.

H.1 Calling Sequence

For each procedure activation (CALL statement or function reference) in the
source, the object code uses a calling sequence. The calling sequence places the pro
cedure's actual parameters (if any) on the stack and then activates the procedure
with a CALL instruction.

The parameters are placed on the stack in left-to-right order. Since the direction of
stack growth is from higher locations to lower locations, this means that the first
parameter occupies the highest position on the stack and the last parameter occupies
the lowest position. Note that a BYTE parameter value occupies two bytes on the
stack, with the value in the lower byte. The contents of the higher byte are
undefined. A POINTER parameter value in the COMPACT, MEDIUM, and
LARGE cases consists of a segment address and an offset. The I6-bit segment
address is pushed first, and then the 16-bit offset is pushed.See Chapter 4 for details
on data representations.

After the parameters are passed, the CALL instruction places the return address on
the stack. In the SMALL and COMPACT cases, this is a 16-bit offset (the contents
of the IP register) and occupies two contiguous bytes on the stack.

In the MEDIUM and LARGE cases, the type of the return address depends on
whether the procedure is local or public. The return address for a local procedure,
like any return address for the SMALL case, is a I6-bit offset and occupies two con
tiguous bytes on the stack. For a public procedure in the MEDIUM or LARGE case,
and for procedures exported from COMPACT, the return address is a POINTER
value consisting of a segment address and an offset and is passed in the same way as
a POINTER parameter. The 16-bit segment address (contents of the CS register) is
pushed first, and then the 16-bit offset (IP register contents) is pushed.

Control is then passed to the code of the procedure by updating the IP register. In
"MEDIUM and LARGE cases, and for procedures exported from COMPACT, the
CS register is also updated.

At the~point where the procedure gains control, then, the stack layout is as shown in
figure H-I.

H-l

Run-Time Procedure and Assembly Language Linkage PL/M-86 User's Guide

H-2

higher
locations

a:
~UJ
01-
«z
I-~
(1)0

o

lower
locations

~--------_ ~ Stack marker (BP reg. contents)

parameter 0
parameter 1

parameter n

return segment address }
1-----------1

return offset

Each parameter occupies 2 or 4
bytes - see text

Absent in SMALL or COMPACT
program or local procedure

...... ----------1......- Stack pointer (SP reg. contents)

Figure H-l. Stack Layout at Point Where a Non-Interrupt
Procedure is Activated

H.2 Procedure Prologue

121636-6

In compiling the procedure itself, the compiler inserts at the beginning a sequence of
code called the prologue. This code accomplishes the following steps:

1. If the procedure has the PUBLIC attribute and the program size is LARGE, or
if it is exported from a COMPACT subsystem, the contents of the DS register
are placed on the stack. Then the DS register is updated with a value that is
found in the current code segment (i.e., the segment containing the procedure).
(The DS register contains the segment address for the current data segment; thus
this step implements the pairing of code and data segments in the LARGE case
and is not needed in the SMALL, COMPACT, and MEDIUM cases because the
data segment does not change.)

2. If any parameter of the procedure is referenced by a nested procedure, all
parameters are removed from the stack and placed in space reserved for them in
the data segment.

3. The stack marker offset (BP register contents) is placed on the stack, and the
current stack pointer (SP register contents) is used to update the BP register.

4. If the procedure has the REENTRANT attribute, space is reserved on the stack
for any variables declared within the procedure (this does not include based
variables, variables with the DATA attribute, or variables with the AT
attribute).

Control then passes to the code compiled from the executable statements in the pro
cedure body. At this point, the stack layout is as shown in Figure H-2.

During execution of the procedure, further stack space may be used for temporary
storage generated by the compiler.

PL/M -86 User's Guide Run-Time Procedure and Assembly Language Linkage

higher
locations

a:
w
~ z
;:)

o
(,)

~
(,)

<
~
(/)

lower
locations

parameter 0
parameter 1

parametern

return segment address

return offset

old data segment
address

-- _ old stack marker

local variables

This s~ace may be
used uring pro-
cedure execution

}

Absent if any parameter is
referenced within a nested procedure.

} Absent in SMALL or COMPACT
program or local procedure

}
Only in PUBLIC procedure in
LARGE program

...- New stack marker (BP reg. contents)

} Only in reentrant procedure

Stack pointer may change
during procedure execution

Figure H-2. Stack Layout During Execution of
Non-Interrupt Procedure Body

H.3 Procedure Epilogue

121636-7

To return from the procedure, the compiler inserts a code sequence called the
epilogue. This accomplishes the following steps:

1. If the compiler has used stack locations for temporary storage or local variables
during procedure execution, the stack pointer (SP register) is loaded with the
stack marker (BP register contents). This has the effect of discarding the tem
porary storage.

2. The old stack marker is restored by popping the stored value from the stack into
the BP register.

3. If the procedure has the PUBLIC attribute and the program size is LARGE or it
is exported from a COMPACT subsystem, the old data segment address is
restored by popping the stored value from the stack into the DS register.

4. A RET instruction is used to return from the procedure. If the program size is
SMALL, the RET pops the stored return address (a 16-bit offset) into the IP
register. It also discards any parameters stored on the stack.

If the program size is MEDIUM or LARGE and the procedure is local, the RET per
forms the same actions described above for a return in the SMALL or COMPACT
case. If the program size is MEDIUM or LARGE and the procedure is public, the
RET pops the stored return-address offset from the stack into the IP register and
then Raps the return-address segment address into the CS register. It also discards
any parameters stored on the stack.

H-3

Run-Time Procedure and Assembly Language Linkage PL/M-86 User's Guide

H.4 Value Returned from Typed Procedure

The result of a typed procedure is returned as follows:

Procedure Type Result Returned in:

BYTE AL Register
WORD AX Register
DWORD OX and AX Registers
INTEGER AX Register
POINTER (SMALL size)* BX Register
POINTER (COMPACT size) ES and BX Registers
POINTER (MEDIUM size) ES and BX Registers
POINTER (LARGE size) ES and BX Registers
SELECTOR AX Register
REAL Top of RMU stack

·Under the ROM option, the result is returned in ES and BX registers.

H-4

APPENDIX I
RUN-TIME INTERRUPT PROCESSING

1.1 General

An interrupt is initiated when the CPU receives a signal on its "maskable interrupt"
pin from some peripheral device or control is transferred to an interrupt vector by
the CAUSE$INTERRUPT statement. (If your program runs under an operating
system that traps interrupts, you do not need the information in this appendix.)

Note that the CPU does not respond to this signal unless interrupts are enabled. The
"main program prologue" (code inserted by the compiler at the beginning of the
main program) enables interrupts.

NOTE
If you require your program to begin with interrupts disabled, simply start
with the instruction DISABLE;. Since the iAPX 86 processor does not
actually allow an interrupt to occur until the first machine instruction
following the enabling instruction has been processed, the resulting code
sequence will not allow any maskable interrupts to occur.

If interrupts are enabled, the following actions take place:

1. The CPU completes any instruction currently in execution.

2. The CPU issues an "acknowledge interrupt" signal and waits for the
interrupting device to send an interrupt number.

3. The CPU flag registers are placed on the stack (occupying two bytes of stack
storage).

4. Interrupts are disabled by clearing the IF flag.

5. Single stepping is disabled by clearing the TF flag.

6. The CPU activates the interrupt procedure corresponding to the interrupt
number sent by the interrupting device.

7. When that procedure terminates, the stack is automatically restored to its state
when the interrupt was received, and control returns to the point where it was
in terru p ted.

The mechanism for this activation and restoration are described below.

1.2 The Interrupt Vector

If the NOINTVECTOR control is not used, an interrupt vector entry is auto
matically generated by the compiler for each interrupt procedure. Collectively, the
interrupt vector entries form the interrupt vector. If NOINTVECTOR is used, the
programmer must supply the interrupt vector as explained below in section 1.4.

The interrupt vector is an absolutely located array of POINTER values beginning at
location O. Thus the nth entry is at location 4*n and contains the location of a pro
cedure declared with the INTERRUPT n attribute.

Note that the first and second bytes of each entry contain an offset, while the second
two bytes contain a segment address. The entries are always four-byte pointers, and
the segment address is always used in transferring to the interrupt procedure, even if
the program size is SMALL.

1-1

Run-Time Interrupt Processing PL/M-86 User's Guide

1-2

The CPU uses the interrupt vector entry to make a long indirect call to activate the
appropriate procedure. At this point, the current code segment address (CS register
contents) and instruction offset (lP register contents) are placed on the stack.

At the point where the procedure is activated, the stack layout is as shown in figure
1-1.

higher
locations

~ffi! <.)1-
<z
I-=>
<no

u
lower
locations

Flag reg. contents

return segment address

return offset

2 bytes

Present regardless of
program size

.... ------.....t..- Stack pointer

Figure 1-1. Stack Layout at Point Where an Interrupt
Procedure Gains Control

1.3 Interrupt Procedure Preface

121636-8

At the beginning of each interrupt procedure, before the prologue described in the
preceding chapter, the compiler inserts an interrupt procedure preface that
accomplishes the following steps:

1. Push the ES register contents onto the stack.

2. Push the DS register contents onto the stack.

3. Load the DS register with a ne'w data segment address taken from the current
code segment (i.e., the segment containing the interrupt procedure).

4. Push the AX register contents onto the stack.

5. Push the CX register contents onto the stack.

6. Push the DX register contents onto the stack.

7. Push the BX register contents onto the stack.

S. Push the SI register contents onto the stack.

9. Push the DI register contents onto the stack.

10. At this point, a CALL instruction transfers control to the procedure prologue
(described in Appendix H).

NOTE

The compiler may make temporary use of the DS register in some
cases (e.g., string built-ins), but always restores it. Care must be
taken when writing your own interrupt procedure in assembly
language to note this possibility.

At the point where the procedure prologue gains control, the stack layout is as
shown in figure 1-2.

After the procedure prologue is executed, at the point where the code compiled from
the procedure body gains control, the stack layout is as shown in figure 1-3.

The return from the procedure body transfers control back into the interrupt pro
cedure preface. At this point the procedure epilogue (see Appendix H) has restored
the stack to the layout of figure 1-2. The interrupt procedure preface continues with
the following steps:

PL/M-86 User's Guide Run-Time Interrupt Processing

higher
locations

a:
w
~
Z
::l
o
(.)

>C
(.)
c(
~
II)

lower
locations

Flag reg. contents

return segment address

return offset

ES reg. contents
OS reg. contents
AX reg. contents
CX reg. contents
OX reg. contents
BX reg. c;ontents
SI reg. contents
01 reg. contents I

2 bytes

Present regardless of
program size

CPU status information

.....-Stack pointer

Figure 1-2. Stack Layout After Interrupt Procedure
Preface and Before Procedure Prologue

higher
location s

a:
w
I
Z
:::I
o
()
~
()
<t
Im

lower
location

s

Flag reg. contents

return segment address
(in interrupted program)

return offset

ES reg. contents
OS reg. contents
AX reg. contents
CX reg. contents
OX reg. contents
BX reg. contents
SI reg. contents
01 reg. contents

return segment address
(in interrupt procedure preface)

return offset

old data segment
address

- old stack marker

local variables

This space may be
used during pro-
cedure execution

}

}

}

2 bytes

Present regardless of
program size -

CPU status information

Absent in SMALL program
or local procedure

}
Only ill PUBLIC procedure in
LARGE program

~ New stack marker (BP reg. contents)

} Only In , •• nl"nl p,oo.du,.

Stack pOinter may change
during procedure execution

Figure 1-3. Stack Layout During Execution
of Interrupt Procedure Body

121636-9

121636-10

1-3

Run-Time Interrupt Processing PL/M-86 User's Guide

1-4

II. Pop the stack into the OI register.

12. Pop the stack into the SI register.

13. Pop the stack into the BX register.

14. Pop the stack into the OX register.

IS. Pop the stack into the CX register.

16. Pop the stack into the AX register.

17. Pop the stack into the OS register.

18. Pop the stack into the ES register.

19. Execute an IRET instruction to return from the interrupt procedure. This
restores the IP, CS, and flag register contents from the stack.

At this point the stack has been restored to the state it was in before the interrupt
occurred, and processing continues normally.

1.4 Writing Interrupt Vectors Separately

In some cases it may be desirable to write the interrupt vector separately (in
PL/M-86 or assembly language). This can be done by using NOINTVECTOR to
prevent generation of an interrupt vector by the compiler. The separately created
interrupt vector can then be linked into the program.

Creation of a separate explicit interrupt vector requires some care. The @ operator
in PL/M-86 provides access to a procedure's normal (Le., called) entry point, not to
its interrupt entry point. The interrupt entry point first saves the status of the inter
rupted program before invoking the interrupt procedure through its normal entry
point. The exact length of these operations depends on the compilation options
chosen, the attributes of the interrupt procedure, and the version of the compiler
being used. The built-in function INTERRUPT$PTR can be used during execution
to return the actual interrupt entry point. Discussion of this function appears in
Chapter 11.

The usefulness of a separately created interrupt vector can be seen by considering an
example.

Suppose that two modules for a multimodule program are developed separately.
Both use interrupt procedures, but at the time when the modules are written the
assignment of interrupt numbers to the various interrupt procedures has not been
determined.

The two modules are therefore compiled with the NOINTVECTOR control. When
this is done, the n in an INTERRUPT n attribute is ignored-since normally it
would only be used to put the procedure's entry in the proper location within the
interrupt vector.

Later, when the program is linked together, a separately created interrupt vector can
be linked in. Within this interrupt vector, the placement of the entry for a given
interrupt procedure determines which interrupt number will activate that procedure.

Similarly, you could have a library of interrupt procedures, all compiled with
NOINTVECTOR. Any program could then have any of these procedures linked in,
with a separately created interrupt vector.

The built-in procedure SET$INTERRUPT can be used during execution to create
the correct interrupt vector for each interrupt routine. This procedure is discussed in
Chapter 11.

APPENDIX J
COMPILER INVOCATION AND ADDITIONAL

INFORMATION FOR SERIES III USERS

This appendix contains information that is specific to the Intellec Series III
Microcomputer Development System. It covers the following areas:

• Compiler invocation and file usage

• Examples of system-dependent floating-point library linkage

• Examples of system-dependent compiler controls

• Related publications

J.1 Compiler Invocation

The compiler is supplied on a diskette that does not contain an operating system or
relocation software. It may be desirable to copy the compiler to another disk (such
as a system disk). The Compiler consists of a single file: PLM86.86.

The following example illustrates the normal sequence of operations used to compile
a PL/M-86 program from system bootstrap to the end of compilation. The steps
involved are as follows:

1. Power up the Intellec hardware.

2. Insert a system disk into drive O. In this example, the system disk contains the
compiler.

3. Insert a non system disk into drive 1. In this example, this disk contains a
PL/M-86 source file to be compiled.

4. Bootstrap the Operating System (full instructions appear in the Series III
Console Operating Instructions).

5. Compile the program with the PL/M-86 Compiler. After compilation, the
program may be linked and relocated.

The PL/M-86 Compiler is invoked from the system console using the standard com
mand format described in the Series III Console Operating Instructions. Continua
tion lines can be specified by using the ampersand (&) as a continuation character.
The ampersand can be used any place there is a space or other delimiter .

. The invocation command has the general form:

RUN directory-name P L M 8 6 source-file [control]

where

directory-name identifies which device contains the compiler disk. In the Series III
operating environment, this takes the form :Fn:, where n is the disk drive number.
Directory-name may be omitted if the compiler is in Drive O.

source-file is the name of the file containing the PL/M-86 source module.

controls is an optional sequence of compiler controls. (See Chapter 15.)

In the interactive sequence shown in figure 1-1, comments appearing to the right of
semicolons are for clarification, not material entered by the user. This example
shows how to compile a complete program that does not require more than 64K
bytes of storage for the code or more than 64K bytes for data.

J-l

Compiler Invocation and Additional Information for Series III Users PL/M-86 User's Guide

1-2

ISIS-II V4. 1 ; the system identifies itself

-RUN PLM86 :Fl:MIPROG.SRC ; the compiler is invoked

SERIES-III PL/M-86 COMPILER V2.0
PL/M-86 COMPILATION COMPLETE. 0 WARNINGS. 0 ERRORS

; the program may now be linked and relocated

Figure J -1. Interactive Compilation Sequence

In the normal usage of the PL/M-86 Compiler the compilation listing is written by
default to a disk file on the same disk as the source file. This file has the same name
as a source file, but has the extension LST. Thus, in the example above, the listing is
found in :Fl:MYPROG.LST. Similarly, the object code file is on the same disk and
has the same file name, but has the extension OBJ. In the example
:Fl :MYPROG.OBJ contains the object code produced by compiling
:Fl:MYPROG.SRC.

Examples

1. RUN PLM86 : F1 : PROG1. SRC

In this example, the operating system and the compiler are in drive O. The com
piler is directed to compile the source module on :Fl:PROG1.SRC. This file
resides on the disk in drive 1 and has the name PROG I.SRC.

2. RUN :F1:PLM86 :F1:MVPROG.SRC PRINT(:LP:)TITLE('TEST PROGRAM 4')

In this example, the compiler disk is in drive 1 and the operating system is in
drive O. The compiler is directed to compile the source module on
:Fl :MYPROG .SRC, directing all printed output to :LP:, and placing 'TEST
PROGRAM 4' in the header on each page of the listing.

J.2 File Usage

Input Files

The compiler reads the PL/M-86 source from the source-file specified on the com
mand line (see previous section) and also from any files specified with INCLUDE
controls (as described Chapter 15). These files must be standard Series III disk files.
The source input should contain a PL/M-86 source module.

Output Files

Two output files are produced during each compilation unless specific controls are
used to suppress them. These are the listing and object code files. Each of these may
be explicitly directed to some standard Series III pathname (device or file) by using
the PRINT and OBJECT controls respectively. If the user does not control these
outputs explicitly, the compiler writes them to disk files on the disk containing the
input file. These files have the same file name as the input file, but have the exten
s'ions LST for the listing and OBJ for the object code. For example, if the compiler is
invoked by:

RUN PLM86 :F1:MVPROG.SRC

PL/M-86 User's Guide Compiler Invocation and Additional Information for Series III Users

the listing and all other printed output is written to :FI :MYPROG .LST and the
object code to :Fl:MYPROG.OBJ. If these files already exist they are overwritten.
If they do not exist the compiler creates them.

The object code file may be used as input to the ISIS-II relocation and linkage
facilitie-s. (See theiAPX 86,88 Family Utilities User's Guide.)

Compiler Work Files

The compiler uses work files during its operation which are deleted at the comple
tion of compilation. All of these files are on the device :WORK: unless the
WORKFILES control is used to specify another device.

All of the work files have names with the extension TMP. Therefore, you should
avoid naming files with the extension TMP on any device used by the compiler for
work files, as there is a possibility that they will be destroyed by the operation of the
compiler.

J.3 Linking to Floating-Point Libraries with
the Series III

Suppose you write a PL/M-86 program called EASY that, at first, uses no REAL
math at all. No interface library is needed. As modules are added during the
development process, you supply a PL/M-86 REAL math routine called ACURAT,
and you revise EASY to call it.

If you have no 8087 chip installed in your system, the correct linking statement for
the above conditions would be:

LINKS6 ACURAT.OBJ, EASY.OBJ, ESOS7.LIB, PESOS7

However, if ACURAT were written in some other language such as FORTRAN86
or ASM86, the following command should be used instead:

LINKS6 ACURAT.OBJ, EASY.OBJ, ESOS7.LIB, ESOS7

If you DO have an actual 8087 chip installed in your system, then the two examples
above should become:

LINKS6 ACURAT.OBJ, EASY.OBJ, SOS7.LIB

More detailed and advanced discussions of the features and functions of the iAPX
86 utilities appear in the manual titled iAPX 86, 88 Family Utilities User's Guide.

,J.4 Series III-Specific Compiler Controls

This appendix includes a fold-out page for the system-specific examples of several
compiler controls. This page is designed to be opened out and used in conjunction
with the corresponding text in Chapter 15.

J-3

Compiler Invocation and Additional Information for Series III Users PL/M -86 User's Guide

1-4

J.5 Related Publications

Below is a list of other Intel publications you might need along with this manual.
The manual order number for each publication is given immediately following the
title. The paragraph below each title describes the book.

Intellec Series III Product Overview, 121575

A summary description of the set of manuals that describe the Intellec Series III
development system and its supporting hardware and software. This short manual
includes a description of each manual related to the Series III, plus a glossary of
terms used in the manuals.

Intellec Series III Console Operating Instructions, 121609
Intellec Series III Pocket Reference, 121610

Instructions for using the console features of the Series III, including the resident
monitor. The Console Operating Instructions provides complete instructions, and
the Pocket Reference gives a summary of this information.

Intellec Series III Programmer Reference Manual, 121618

Instructions for calling system routines from user programs for both microprocessor
environments (8080/8085 and 8086) in the Series III.

ISIS-II CREDIT (CR T-Based Text Editor) User's Guide, 9800902
ISIS-II CREDIT (CR T-Based Text Editor) Pocket Reference, 9800903

Instructions for using CREDIT, the CRT-basedtext editor supplied with the Series
III. The User's Guide provides complete operating instructions, and the Pocket
Reference summarizes this information for quick reference.

iAPX 86,88 Family Utilities User's Guide, 121616

Instructions for using the utility programs LINK86, LIB86, LOC86, CREF86, and
OH86 in iAPX 86-based environments to prepare compiled or assembled programs
for execution.

8086/8087/8088 Macro Assembly Language Reference Manualfor 8086-Based
Development Systems, 121627

8086/8087/8088 Macro Assembler Operating Instructions for 8086-8ased
Development Systems, 121628

8086/8087/8088 Macro Assembly Language Pocket Reference, 121674

Instructions for using the 8086/8087/8088 macro assembly language and its
assembler in iAPX 86-based environments. The Language Reference Manual gives a
complete description of the assembly language the Operating Instructions gives
complete instructions for operating the assembler and the Pocket Reference pro
vides summary information for quick reference. You need these publications if you
are coding some of your routines in assembly language.

ICE-86 Ill-Circuit Emulator Operating Instructions for ISIS-II Users, 9800714
ICE-86 Pocket Reference, 9800838
ICE-88 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800949
ICE-88 Pocket Reference, 9800950

Instructions for using the ICE-86 and ICE-88 In-Circuit Emulators for hardware
and software development. The Operating Instructions manuals give complete user
descriptions of the In-Circuit Emulators, and the Pocket Reference guides provide
summary information for quick reference. You need the corresponding publications
if you are using the ICE-86 or ICE-88 emulator.

•

Control

WORKFILES

OBJECT

PRINT

INCLUDE

Examples

WORKFILES(:FO:,: F1:)

WORKF I LES (: FO: ,: FO:)

OBJECT(: F1 :OTHER .OBJ)

PRINT(:LP:)

INCLUDE(:F1:SYSLIB.SRC)

•

8087.LIB, 13-14
ABS, 11-3, 11-6
actual parameters, 10-2 thru 10-5
addition, 4-1, 5-1, S-3
addresses

physical, 9-S
relative, IS-14
relocation, 1-9
unique, I-S, 3-3

affine, see infinity
ambiguity

in embedded assignments, 5-14
in location references, 6-S
of address/location, 9-4

AND, 5-S, 5-6, S-8, 7-8, 15-25
apostrophe, 2-2, 2-5
arithmetic, 1-8,4-1,4-2

floating-point, 4-2, Chapter 13
modulo, 5-4, 7-6
operators, 5-3, 5-4, 5-6
signed,4-1
summary of rules, 5-9 thru 5-12
unsigned, 4-1

array, 3-2, 6-1 thru 6-S
contiguity, 4-6, 6-1
declaration, 3-3,6-1,6-3
elements, 1-7, 6-1, 11-2
initialization, 3-4 thru 3-6
number of bytes, 11-2
number of elements, 6-1, 11-1
reference, 4-3
structures, 6-3,6-4,8-1 thru 8-3
subscripts, 6-1,6-2
usage, 1-7

ascending
order in string moves, 11-11, 11-12

ASCII, 2-1, 2-6, 3-S, 5-2, 7-10, IS-19, Appendix F
assembly language linkage, Appendix H
assignment

embedded, 3-1, S-9, 5-14
floating-point, 13-1, 13-6
statement, 1-3,1-6,3-4,5-12 thru 5-14,6-2,7-7

asterisk, 2-1, 2-S, 3-6, 5-3
@ operator, 2-1, 3-5,4-2 thru 4-6,10-3,11-14,11-15,15-21
AT, 3-1, 3-4, 3-7,4-2,4-7 thru 4-9, 9-S, IS-8, IS-9
attributes, 3-1, 3-4,6-2

affecting section, 15-22
initialization, 3-1, 3-4 thru 3-7
linkage, 3-1, 9-4 thru 9-7, 10-7, 10-8
location, 3-1

BASED, 4-S, 4-6, 10-2, 10-7
based, 3-4, 4-2, 4-4 thru 4-6, 6-2, 9-5, 10-2, 10-3, 10-7,

15-8, IS-14
binary

number, see constant
point, 13-2
scientific notation, 13-2

blank, 2-1,2-3, 7-3

INDEX I

block, 1-3, 1-4, 1-7, 3-4
kinds, 1-3
levels, 1-4, I-S
names 1-4
nesting, 1-4, 1-5,9-1 thru 9-5
structure, 1-3, Chapter 9

BNF, Appendix A
BOOLEAN expressions

see logical, short-circuit
BUILD$PTR,11-16
built-in

functions, 11-1 thru 11-8,11-10,11-11, 11-14thru 11-16
procedures, 1-8, 11-3,11-9 thru 11-13,11-15

REAL, 13-8 thru 13-10
variables, 1-8,11-8, 11-9, 11-14

By, see DO, iterative
BYTE, 3-1,4-1, S-1 thru S-13

CALL, 5-12, 7-2, 7-12, 10-1, 10-4 thru 10-6, 10-9
calling sequence, Appendix H
carriage return, 2-1, 2-5
CARRY, 12-1,12-2
CASE, see DO
CAUSE$INTERRUPT, 7-11,10-10
character

set, 2-1
strings, see string

CMPB,11-1O
CMPW, 11-10
CODE control, 15-16, IS-17, 15-21, Appendix H
code

section, 15-15, 15-16, IS-22, Chapter 17, Appendix G
space efficiency, 15-9

colon, 2-1, 2-2
comma, 2-1, 3-4, 3-9,10-4
comment, 2-1,2-3, 2-S
communicating values, 1-5

see also parameters
COMPACT control, 15-15, 17-4, 17-S

restrictions, 17-5
compilation

constant, 3-1, 3-7, 3-8
steps, IS-1
summary, 15-22, 15-23

compiler controls, Chapter 15
compiler files, Appendix J

input, Appendix J
output, Appendix J
work, IS-3, Appendix J

compiler invocation, Appendix J
complement

ones, S-S
twos, 4-1

compound
delimiter, 2-3
operands, S-2, S-3, S-7

COND control, IS-24, IS-27
conditional

execution 7-7 thru 7-10
compilation, 15-24 thru 15-28

lndex-l

Index

constant, 2-3, 3-1,3-4 thru 3-8
character. 2-5
compilation, 3-1
execution, 3-1
expression, 3-5,5-10 thru 5-12, 7-3
list, 4-4
numeric, 5-1

binary, 2-3, 2-4
decimal, 2-3, 2-4
floating-point, 2-4
hexadecimal, 2-3, 2-4
octal, 2-3, 2-4
real,2-4

string, 2-5
whole-number, 2-3

type, 2-4
constant section, 15-22, 17-2 thru 17-7
constraints, Appendix B
context, signed or unsigned, 5-1, 5-10 thru 5-13
contiguity, 3-2, 4-4, 4-6, 6-1, 10-2
control line, 15-1
controls, Chapter 15

list, 15-2, 15-3
conversion

explicit, 11-2 thru 11-6
implicit, 5-12,5-13, 10-5

count, 11-7 thru 11-13, 12-2
counter, 7-1
cross-reference listing, 15-21, 15-22
CS register, 17-1 thru 17-7

DATA, 3-1,3-4 thru 3-7,9-5, 17-2
data section, 15-15, 15-16, 15-22, Chapter 17, AppendixG
DEBUG control, 15-14
DEC, 12-2
decimal adjust, 12-2
decimal point, 2-1, 2-4, 5-1
DECLARE, 1-3,3-1

combining, 3-9
elements, 3-10

declarations, 1-3, 3-1 thru 3-10
elements, 3-10
factored, 3-3
local,9-3
mUltiple, 1-3,3-1,9-3
outer level, 1-4
placement, 1-4
procedure, 3-10
variable, 3-2

results, 3-4
default

control word setting, 13-8
recovery, 13-6 thru 13-8, 13-14

defining
declaration, 9-5, 10-7, 10-8

delay, 11-13
delimiters, 2-3, 2-5
denormal, 13-5, 13-7, 13-8
descending

order in string moves, 11-10, 11-11
destination

location in string moves, 11-9
dimension specifier, 6-1, 10-2, 10-7

implict, 3-6
DISABLE, 10,-8, 10-9
division, 4-1,5-1,5-3,5-4

Index-2

PL/M-86 User's Guide

DO
as unit, 7-2, 7-4, 7-8
block, 1-3 thru 1-5, 7-4, 7-8

CASE, 1-8,7-1,7-3,7-4
iterative, 1-7,7-1, 7-5 thru 7-7
simple, 1-7, 7-1 thru 7-3
WHILE, 1-7,7-1,7-4,7-5

exit, 7-2
labeled,7-3
loop, 7-1
nested, 7-3, 9-1 thru 9-4
statement, 1-7

dollar sign, 2-2, 15-1
dot operator, 2-1, 3-5, 4-4, 4-7, Appendix E
DOUBLE, 11-4
OS register, 17-1 thru 17-7
DWORD, 3-2,4-1,5-1,5-3,5-10 thru 5-13

E8087, 13-14
E8087.LIB, 13-14
EJECT control, 15-18, 15-20
element

in declarations, 3-1, 3-9, 10-2
in initializations, 3-4
in string moves, 11-9
of expression, 1-8

elimination of
common subexpressions, 15-5
superfluous branches, 15-6

ELSE part, 1-6, 7-9
see IF statement or control

embedded assignment, 5-9,5-14
possible ambiguity, 5-14

emulation, 13-1, 13-10 thru 13-14
ENABLE,IO-1O
END, 1-4, 1-7,3-10,7-1,10-1,10-5
entry point, 4-3, 10-5, 10-9, Appendix H, Appendix I
equal sign, 1-6,2-1,2-2, 15-21
error handling, 13-10
errors, 2-1,3-4,6-4,9-5, 13-1, 15-23, Chapter 18

REAL, handling, 13-10
evaluation order, 5-6, 5-9

. exception conditions for REALs, 13-5 thru 13-8
exception handling procedure, 13-10 thm 13-13
executable statement, 1-3 thru 1-8, 2-1, 2-8, 7-2, 10-1
execution

constant names, 3-1
faster, 15-9
suspending, 10-10

exclusive extent, 9-1 thru 9-3
explicit

label declaration, 3-8
type conversion, 11-2 thru 11-6

exponent of REAL number, B-1, B-2, 13-7
EXPORTS list, Appendix G
expression, 1-6 thru 1-8, 3-3, 5-1 thru 5-14, 10-4

analysis, 5-6 thru 5-9
constant, 5-10 thru 5-12
evaluation order, 5-9
floating-point, Chapter 13
REAL, Chapter 13
restricted, 3-5
subscript, 6-2
summary of rules, 5-9 thru 5-12

extended scope, 9-4, 9-5,10-7,10-8
extent, inclusive or exclusive, 9-1 thru 9-3

PL/M-86 User's Guide

EXTERNAL, 3-1, 3-6, 3-7, 3-10, 7-11, 9-4 thru 9-7, 10-7,
lO-8, 15-16

factored declaration, 2-9, 3-3
false, 4-1,5-5,5-6, 7-4, 7-7
far references to procedures, Appendix G
fatal errors, 18-14
fields of a REAL number, 13-1
file usage, Appendix J
FINDB, 11-11
FINDRB, 11-11
FINDRW,I1-11
FINDW, li-ll
FIX, 11-3 thru 11-5
FLOAT, 11-3, 11-4
floating-point linkage, 13-13

-floating-point number, 3-4, 4-2, Chapter 13
format in memory, 13-1

flow control statements, 7-1 thru 7-12
folding of constant expressions, IS-S
formal parameters, 10-2 thru 10-7
fraction of REAL number, 13-1
function, 10-4

REAL, 13-1, 13-3, 13-6, 13-10
references, 5-2, 5-9, 5-12, 10-1 thru 10-5, 15-S
see also built-in

general controls, 15-1
GET$REAL$ERROR, 13-9 thru 13-13
GOTO, 3-9, 7-2, 7-11, 9-6 thru 9-9, IO-S, 10-9
gradual underflow, 13-3, 13-5, 13-7, 13-8
grammar of PL/M-86, Appendix A
greater than, see relational

HALT, 7-11,10-8
hardware

features, 12-1, 12-2
flags, 12-1, 12-2

HIGH, 11-3, 11-4
high-level languages, -1-1, 1-2
HLT,7-11

lABS, 11-3, 11-6
identifier, 1-3, 1-5, 1-6,3-2,6-1,6-2

definition, 2-2
examples, 2-2
listing, 15-21, 15-22
predeclared, Appendix D

IEEE math standard, 13-1
IF control, 15-25
IF statement, 1-6,5-5, S-l1, 7-3, 7-7, 7-8

enclosing DO blocks, 7-8 thru 7-10
nested, 7-8 thru 7-lO

implicit
dimension specifier, 3-6
label declaration, 3-9
type conversion, 5-12, 5-13, 10-5

INCLUDE control, 15-2, 15-21, 15-23, Appendix J
inclusive extent, 9-1 thrn 9-3
index

in string moves, 11-9 thrn 11-12
variable, 6-2, 7-6
see also DO, iterative

infinity control, 13-4, 13-5, 13-7, 13-8

INIT$REAL$MATH$UNIT, 13-1, 13-8
IN ITIAL, 3-1, 3-4 thru 3-7, 4-2, 9-5, IS-16
initializations, 3-4 thru 3-7

multiple, 3-4
of REAL math facility, 13-1, 13-8, 13-10
string constant, 2-S

INPUT, 1-8, 11-9
inner level, 7-11

see outer
input! output, 1-8, 11-8, 11-9

ports, 1-8
insertion sort example, 8-1 thru 8-3, 16-1 thru 16-3
INT, 11-3, l1-S
INTEGER, 3-2,4-1,4-2,5-1 thru 5-4, 15-4

least significant bits, 3-2
interface libraries, 13-13, 13-14, Chapter 14
interface list, Appendix G
intermediate results, 13-3 thru 13-6
internal REAL format, 13-1, 13-4
INTERRUPT attribute, 10-7 thru 10-9
INTERRUPT$PTR,11-15
interrupt

attribute, 10-7
enabled or disabled, 10-8, 10-9, 13-4, 13-10,

Appendix I
entry point, 11-5, Appendix I
emulator usage, 13-1S
masking, 13-10, 13-14
mechanism, 10-9, Appendix I
Preface, Appendix I
procedures, 10-8 thru 10-10, 11-15, Appendix)
REAL, 13-4 thru 13-18
related procedures, 11-15
signal, 10-8, 10-9
software, 11-1S
vectors, 10-9, 15-4, Appendix I

interrupt request, 13-4
INTVECTOR control, 15-4
invalid operation, 13-5, 13-6, 13-8, 13-9
invocation

line, Appendix J
of procedure, 1-3, 1-4

IN WORD, 1-8, 11-8

LABEL, 3-1, 3-8
label, 3-8, 7-2

as target of GOTO, 7-11
declaration, 3-8, 3-9,9-1

results, 3-9
definition, 3-1, 3-8, 3-9, 10-2
generated, 15-21
scope, 9-6 thru 9-9

LARGE, 15-16,17-1,17-7, 17,..8
restrictions, 17-7, 17-8

LAST, 1-1,6-5,11-2
LEFTMARGIN, IS-I, IS-3, 15-24
left-to-right, 5-6 thru S-9
LENGTH, 6-S, 11-1
length

in string moves, 11-9
less than, see relational
letters

upper and-lower case, 2-1
level

block, 9-1 thru 9-4

Index

Index-3

Index

module, 3-7
outer, 1-4

libraries of floating-point functions, 13-13, 13-14
line-feed, 2-1, 2-S
LINK86, 1-9,3-10, 15-9
linkage, 3-1

assembly language, Appendix H
floating point, 13-13, 13-14

list
as array, 1-7,3-2,6-1
as structure, 3-2, 6-2 thru 6-5
of controls on line, IS-1
of initialization values, 3-4 thru 3-7

restriction, 3-6, 3-7
of parameters, 10-2 thru 10-10
of scalars, 3-2, 6-1

LIST control, 15-17, IS-24
listing format controls, IS-19 thru IS-23
listing, sample, IS-20, 15-21
listing selection and content controls, IS-19 thru IS-23
LITERALL Y, 3-1, 3-2, 3-7, 3-8,4-7
loading, 3-4
LOC86, 1-1, 1-9, IS-9
local meaning, I-S, 11-1, IS-14
local_save_area, 13-12, 13-13
location

address, 3-3
attribute, 3-1
contents, 1-3
references, 2-5, 3-5,4-2 thru 4-7, 6-S, 11-1
in string moves, 11-9

lock, 11-14, II-IS
LOCKSET, 11-14
logical

operation, 4-1
operator, 4-1, S-5 thru S-9, IS-25

long calls to procedures, Appendix G
loop optimization, 15-7
LOW,!11-3,11-4

machine code optimization, 4-9, 15-6
main

module, 1-5,9-6,9-9
program, 1-5, 15-7

manual organization, Preface v
masked error, 13-4, 13-6 thru 13-8
matrix as structure, 6-4
MEDIUM, 15-15, 17-1, 17-5, 17-6

restrictions, 17-6
member

reference. 6-4, 6-5,10-2
structure, 6-2 thru 6-5

MEMORY, 1-1,11-2,11-13
memory

concepts, 17-1
free, 11-13
mapped lIO, 4-9
shared, 11-14

memory section, 15-15, 15-16, Chapter 17
MINUS, 12-1
minus sign, 5-3, 5-4, S-6
MOD, 1-8,5-3, S-4, 5-6
models of segmentation, Chapter 17, Appendix G
modular programming, 7-1

advantages, 9-1, 10-1
use of procedures, 10-1

Index-4

module, 9-1 thru 9-9
as block, 1-3
level,3-7
main, 1-4
object, 15-14

modulo arithmetic in DOs, 7-6
MOVB, 11-9, 11-10
MOVE, 11-12, 11-13
MOVRB, 11-10
MOVRW, 11-10
M 0 V W, 1 1-9, 11-10
multiple

assignment, 5-14
declarations, 1-5,3-1,9-3
initializations, 3-4

multiprocessor
lock, 11-14, 11-15

multi-tasking, 13-9, 13-10

name, 1-4, 1-7, 1-8, 3-2
on a DO, 1-7

PL/M-86 User's Guide

of procedure, 1-8,3-10,10-1,10-2,10-5
recognized in blocks, 9-1 thru 9-9

NAN, 13-7, 13-8
negative values, 4-1
nesting

of blocks, 1-3 thru 1-5, 7-3, 9-1 thru 9-4, IS-21
of procedures, 10-6, 10-10

NOCODE control, 15-17
NOCOND control, 15-27, 15-28
NODEBUG control, 15-14
NOINTVECTOR control, 15-4
NOLIST control, 15-17
NOOBJECT control, 15-f4
NOOVERFLOW control, 15-4
NOPAGING control, 15-18
NOPRINT control, 15-17, 15-18
NOSYMBOLS control, 15-18
NOT, 5-5, 15-25
notation, Preface vi, vii
NOTYPE control, 15-14
NOXREF control, 15-18

object
code, 15-14
file controls, 15-4 thru 15-16
module, 15-14

OBJECT control, 15-14, Appendix J
object module sections, 17-1
offset, 17-1

of REAL exponent, 13-1
OFFSET$OF, 11-16
ones complement, 5-5
operand, 1-8,5-1 thru 5-14
operator, 1-8,5-1,5-6

precedence, 5-6
optimization

and hardware flags, 12-1
OPTIMIZE controls, 15-5 thru 15-13
optimizing

indeterminate storage operations, 15-9
machine code, 4-9, 15-6
pointer comparisons, 15-9

OR, 5-5, 15-25
order

of multiple assignments, 5-14

PL/M-86 User's Guide

of operand evaluation, 5-6, 5-9, 5-14
of parameter evaluation, 10-3

outer level, 1-4,3-4,4-3, 7-11,9-1 thru 9-9
out-of-range

case number, 7-3
OUTPUT, 1-8, 11-8, 11-9
OUTWORD, 1-8, 11-8, 11-9
OVERFLOW control, 15-4
overflow, 13-3, 13-5, 13-7, 13-8

PAGELENGTH control, 15-19
PAGEWIDTH control, 15-19
PAGING control, 15-18
parameters,

control, 15-1
parentheses, 1-4, 1-5,2-2,3-2 thru 3-7, 5-2, 5-6, 5-14,10-2,

10-4, 15-25
PARITY, 12-1, 12-2
pathname, 15-14, 15-17,15-23
pattern, 11-7 thru 11-9, 12-2
PE8087, 13-14
PL/M-80, Appendix E
PL/M-86

compiler, Appendix J
and PL/M-80, Appendix E
sample program, 1-9, 1-10
statements, 1-3

PLM87.LIB, 4-1, Chapter 14
PLUS, 12-1
plus sign, 2-3, 2-5,4-6,5-3 thru 5-6
POINTER, 3-2, 3-5,4-2, 5-13
pointer, 3-4,4-4

comparisons, 15-9
POINTER and SELECTOR related functions, 11-16
precedence, 5-6 thru 5-9
precision, 13-5, 13-8, 13-9
predeClared identifiers, Appendix D
primary

controls, 15-1
operands, 5-3

PRINT control, 15-17, 15-18
PROCEDURE, 3-10, 10-1, 10-2
procedure, 1-3, 1-4, 1-8

activation, 1-3, 7-11, 7-12
lock, 9-1 thru 9-7
body, 10-1, 10-6, 10-7
declaration, 1-3,3-1,3-2
definition block, 1-3,3-10
epilogue, Appendix H
handling REAL interrupts, 13-10 thru 13-13
invoking, 1-3, 1-8, 7-12
in location references, 4-3
name, 3-10
parameters, 3-10, 3-11, 5-2
prologue, Appendix H
reentrant, 9-1, 10-10
termination, 1-4, 10-5
typed, 5-2, 10-4, Appendix H
untyped, 7-12, 10-4
value, 1-3,3-3,5-2

program, 1-3 thru 1-5,9-1
control, 10-1
documentation, 2-6
example, 1-9, 1-10,8-1 thru 8-3, 16-1 thru 16-3
main, 1-3
size controls, 3-3, 15-15, 15-16, Chapter 17, Appendix G

program constraints, Appendix B
program development process, 1-9
projective, see infinity
prologue, 10-9, Appendix H

Index

PUBLIC, 3-1, 3-6 thru 3-8, 7-11, 9-4 thru 9-7, 10-7, 10-8

qualified references, 5-1, 5-2
quote, see apostrophe

RAM control, 15-16
REAL, 2-4, 3-1, 3-2, 3-5,4-1,4-2,5-1,5-3,5-4,5-7 thru

5-13, Chapter 13
REAL error

byte, 13-3, 13-4, 13-7 thru 13-9
categories, 13-4

REAL exceptions, 13-5 thru 13-8, 13-11 thru 13-14
REAL math facility, 13-1,13-3, 13-4
REAL mode word, 13-4, 13-5

initial value, 13-4
suggested value, 13-6, 13-9

REAL-parameter passing, 13-3
recursion, 10-10
REENTRANT, 3-10, 10-10, 17-2
reentrant procedure, 9-1,10-1,10-10,10-11
references

to arrays and structures, 6-4, 6-5, 10-3, 11-1, 11-2
external, see scope
location, 2-5, 3-5, 4-2 thru 4-6,6-5, 11-1
qualified

fully, 5-1,5-2,5-12,6-4, 11-1
partially, 6-4, 6-5, 11-1 thru 11-3

unqualified, 6-4, 6-5
related publications, Appendix J
relational

operation, 4-1,5-8,5-9
operator, 4-2, 5-4 thru 5-9, 15-25

removal of unreachable code, 15-6 thru 15-8
representation of REAL values, 13-1, 13-2
reserved words, 2-3, Appendix C
RESET control, 15-26, 15-27
RESTORE control, 15-24
RESTORE$REAL$STATUS, 13-6, 13-9, 13-10, 13-13
restoring REAL status, 13-9, 13-10
restricted expression, 3-4, 3-5
RETURN, 5-12, 7-12, 10-5, 10-6
return address, Appendix H
reuse of duplicate code, 15-6, 15-7

restriction, 15-7
reversal of branch condition, 15-6, 15-8
ROL,11-7
ROM control, 15-16, 17-2 thru 17-7
ROR,11-7
rotation functions, 11-7, 11-8, 12-2
rounding, 13-3 thru 13-5, 13-8; 13-9
RUN, Appendix J
run-time, 4-3, 4-4, 5-1, 7-3, 10-3, Appendix H, Appendix 1

SAL, 11-8
sample

listing, 15-20, 15-21
programs, 1-9, 1-10,8-1 thru 8-3, 16-1 thru 16-3

SAR, 11-8
SAVE control, 15-24
saving REAL status, 13-9, 13-10
SAVE$REAL$STATUS, 13-1,13-6, 13-9thru 13-13
scalar, 3-2 thru 3-5, 5-2, 5-12,6-4

Index-5

Index

SCL,12-2
scope, 9-1 thru 9-9, 11-1

extended, 9-4 thru 9-7, 10-7, 10-8
of labels, 3-8
of procedure name, 10-1, 10-2
of variables, 1-4, 1-5

SCR,12-2
SDK-86, 13-1
segment

address, 17-1
overlap, 15-8, 15-9

segmentation
controls, 15-15, 15-16, Chapter 17

extensions, Appendix G
select_expression, see DO CASE
SELECTOR, 3-2,4-4,5-3,5-10,5-13
SELECTOR$OF, 4-4, 11-16
semicolon, 2-2
separators, 2-2
SETB, ll-12
SET control, 15-26
SET$INTERRUPT, 11-15
SET$REAL$MODE, 13-1, 13-9
SETW, 11-12
shared memory, 11-14
shift functions, 11-6 thru 11-8
SHL,11-7
short-circuit Boolean evaluation, 15-5
SHR,11-7'
side effects, 5-9, 10-3, 10-4

see also order
SIGN, 12-1,12-2
SIGNED, 11-5
sign of REAL number, B-1
SIZE, 6-5, ll-I, 11-2
size controls, 3-3, 15-15, 15-16, Chapter 17
SKIPB, 11-11
SKIPRB, 11-11
SKIPRW, lJ-ll
SKIPW,l1-11
slash, 3-1, 3-6, 5-3, 5-4
SMALL, 15-15, 17-4, 17-4

restrictions, 17-3
soft recovery from REAL underflow, 13-6

see underflow, denormal
source

code; 1-9
location in string moves, 11-9
program, 15-14

source inclusion controls, 15-23, 15-24
source PL/M -86 errors, 18-1 thru 18-13
SP,II-14
space, see blank
special charactes, 2-1 thru 2-3
SS, 11-4, 17-1 thru 17-7
STACKBASE,II-14
STACKPTR, ll-14
stack, 3-2, Appendix H

market offset, Appendix H
maximum, 15-22
overflow, 13-1
pointer, 11-14
REAL, 13-3, 13-6, 13-11 thru 13-13
segment

base address, 11-14
usage, 10-10, Appendix H, Appendix I

Index-6

PL/M-86 User's Guide

stack section, 15-15, 15-16, Chapter 17, Appendix G
start_expr, 7-1
statement number, 15-14, 15-21
step_expr, see DO, iterative
STI,7-11
strength reduction, 15-5
string

in compilation constant, 3-7, 3-8
comparison, 11-10
constant, 2-1, 2-3, 2-5, 3-1, 3-6,4-4, 5-2
copying, 11-9, 11-10
definition, 11-9
index, 11-9 thru 11-12
manipulation, 11-9 thru 11-12
order of copy, 11-9, 11-10
target, 11-11
translation, 11-12
type, 2-6
value, 2-6, 3-5, 5-2
value assignment, 11-12

STRUCTURE, 3-1, 3-3, 3-5,6-2
structure, 3-2,3-5, 3-6,4-6,6-2 thru 6-5

arrays, 6-2 thru 6-5
declaration, 6-2
example, 3-3, 3-5, 4-7
as matrix, 6-4
references, 3-11, 4-2, 6-5
type, 3-5, 6-2

subexpression, 5-2, 5-6 thru 5-9, 15-5, 15-25
subroutine, see procedure
subscript, 3-2, 3-3, 3-10,4-5,4-6,5-11,6-1 thru 6-5, 10-2,

13-6, 15-9
subsystems, modular, Appendix G
SUBTITLE control, 15-19
subtraction, 4-1, 5-3
suffix, 2-4
superfluous

branches, 15-6
operations, 15-5

support library, 4-1, Chapter 14
symbolic and cross-reference listing, 15-21, 15-22
symbolic

debugging, 15-14
names, see variable, SYMBOLS

SYMBOLS control, 15-18, 15-22, 17-3
syntax

BNF description, Appendix A

tab, 2-1, 2-5, 7-3
target

label in GOTO, 7-11,9-6 thru 9-9
in string moves, 11-12

THEN part, 1-6
see IF statement or control

TIME,11-13
TITLE control, 15-19
token, 2-3
true, 3-8,4-1, 5-5, 5-6, 7-4, 7-7
twos complement, 4-1
type, 1-7,3-1

of arithmetic, 1-8,4-1, 5-3, 5-4
conflict, 9-5
conversion

explicit, 11-3 thru 11-7
implicit, 5-8, 5-12 thru 5-14

of counter in iterative DO, 7-6

. PL/M-86 User's Guide

data, 4-1 thru 4-3
mixing, 5-8
procedure, 10-3, 10-4, 10-7, Appendix H

TYPE control, 15-4

unary operators, 5-6
. underflow, 13-3, 13-5, 13-7, 13-8

underscore, 2-2
unmasked error, 13-4, 13-6 thru 13-9
UNSIGN, 11-3, 11-6
untyped procedure, 7-12, 10-3., 10-4, 10-7
usage

declaration, 9-5, 10-7, 10-8

variable, 1-4, 1-8,3-1 thru 3-3, 4-1
area size, 15-22
assignment, 5-12 thru 5-14
based, 3-4,4-5,4-6
declaration, 3-2

results, 3-4
definition, 3-1
initialization, 3-1, 3-4 thru 3-7
names, 1-4, 1-8, 3-1

negative, 4-1
REAL, Chapter 13
references, 1-8, 5-2
reinitialization, 3-4
subscripted, 6-1 thm 6-4
types, 4-1 thru4-6, 5-3 thru 5-5, 5-8, 5-10 thru 5-14

vector, interrupt, Appendix I

WAIT state, 13-10
warnings, 15-23, Chapter 18
WHILE, see DO
whole-numbers,

context, 5-1
WORD, 1-8,3-1,3-2,4-1,4-4,5-1 thru 5-13

least significant bits, 3-2
WORKFILES, 15-3

XLAT,I1-12
XOR, 5-5, 15-25
XREF control, 15-18, 15-22, 17-3

ZERO, 12-1, 12-2
zero divide, 13-5, 13-7,13-8

Index

Index-7

REQUEST FOR READER'S COMMENTS

PLlM-86 User's Guide
121636-002

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and compreteness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

.------"''''.''',,_.'''.'''''-,,_.'''--'''--- ---_ .

. _-"''''''"._,,----------

4. Did you have any difficulty understanding descriptions or wording? Where?

---_. __ ._----

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _______ . ___ "'_. _____ _

N A M E ._"' .. "_" _._ _ " .. _ _,, .. _._ _ ,, ___ .. _. ___ ... ___ ". __

TIT L E ____ __ _ .. __ ___ ___ ._._ .. _._ _ _" .. ""_._ .. __ .. """.".",,. " " " _ ... _._._ _ .. "

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE
(COUNTRY)

Please check here jf you require a written reply. [.J

DATE _. _____ . ___ ______ _

. __ _ .. - •. ----

ZIP CODE

WE'D LIKE YOUR COMMENTS ..•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

I I I I
NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	PL/M-86 USER'S GUIDE
	HOW TO USE THIS MANUAL
	CONTENTS
	ILLUSTRATIONS
	CHAPTER 1 OVERVIEW
	1.1 Product Definition
	1.2 The PL/M-86 Language
	Using a High-Level Language
	Why PL/M?

	1.3 Categories of PL/M-86 Statements
	1.4 The Structure of a PL/M-86 Program
	Block Nesting and Scope of Variables: An Introduction

	1.5 Executable Statements
	Assignment Statement
	IF Statement
	DO and END Statements
	Built-in Procedures and Variables
	Expressions
	Input and Output

	1.6 The Program Development Process
	1.7 Sample Program

	CHAPTER 2 BASIC CONSTITUENTS OF A PL/M-86 PROG RAM
	2.1 PL/M-86 Character Set
	2.2 Identifiers and Reserved Words
	2.3 Tokens, Separators, and the Use of Blanks
	2.4 Constants
	Whole-Number Constants
	Floating-Point Constants
	Character Strings

	2.5 Comments

	CHAPTER 3 DATA DECLARATIONS
	3.1 Variable Declaration Statements
	Types
	Examples
	Results

	3.2 Initializations
	The Implicit Dimension Specifier
	Names for Execution Constants: The Use of DATA

	3.3 Compilation Constants (Text Substitution): The Use of LITERALLY
	3.4 Declarations of Names for Labels
	Results

	3.5 Combining
	3.6 Declarations for Procedures

	CHAPTER 4 DATA TYPES AND BASED VARIABLES-
	4.1 BYTE, WORD, and DWORD Variables:
	4.2 INTEGER Variables: Signed Arithmetic
	4.3 REAL Variables: Floating-Point Arithmetic
	4.4 POINTER Variables and Location References
	The @ Operrator
	Storing Strings and Constants via Location References

	The "DOT" Operrator

	4.5 SELECTOR Variables
	4.6 Based Variables
	Location References and Based Variables

	4.7 Contiguity of Storage
	4.8 The AT Attribute

	CHAPTER 5 EXPRESSIONS AND ASSIGNMENTS
	5.1 Operands
	Constants
	Variable and Location References
	Subexpressions
	Compound Operands

	5.2 Arithmetic Operators
	The +, -, *, and I Operators
	The MOD Operator

	5.3 Relational Operators
	5.4 Logical Operators
	5.5 Expression Evaluation
	Precedence of Operators: Analyzing an Expression
	Compound Operands Have Types
	Relational Operators Are Restricted
	Order of Evaluation of Operands

	5.6 Choice of Arithmetic: Summary of Rules
	Special Case: Constant Expressions

	5.7 Assignment Statements
	Implicit Type Conversions
	Constant Expression
	Multiple Assignment
	Embedded Assignments

	CHAPTER 6 STRUCTURES AND ARRAYS
	6.1 Arrays
	Subscripted Variables

	6.2 Structures
	Arrays of Structures
	Arrays Within Structures
	Arrays of Structures with Arrays Inside the Structures

	6.3 References to Arrays and Structures
	Fully Qualified Variable References
	Unqualified and Partially Qualified Variable References

	CHAPTER 7 FLOW CONTROL STATEMENTS
	7.1 DO and END Statements: DO Blocks
	Simple DO Blocks
	DO CASE Blocks
	DO WHILE Blocks
	Iterative DO Blocks

	7.2 The IF Statement
	Nested I F Statements
	Sequential IF Statements

	7.3 GOTO Statements
	7.4 The HALT Statement
	7.5 The CAUSE$INTERRUPT Statement
	7.6 The CALL and RETURN Statements

	CHAPTER 8 SAMPLE PROGRAM 1
	8.1 Insertion Sort Algorithm

	CHAPTER 9 BLOCK STRUCTURE AND SCOPE
	9.1 Names Recognized Within Blocks
	Restrictions on Mu·ltiple Declarations

	9.2 Extended Scope: The PUBLIC and EXTERNAL Attributes
	9.3 Scope of Labels and Restriction on GOTOs

	CHAPTER 10 PROCEDURES
	10.1 Procedure Declarations
	Parameters
	Typed Versus Untyped Procedures

	10.2 Activating a Procedure--Function References and CALL Statements
	Indirect Procedure Activation

	10.3 Exit from a Procedure: The RETURN Statement
	10.4 The Procedure Body
	10.5 The Attributes: PUBLIC and EXTERNAL, INTERRUPT, REENTRANT
	Interrupts and the INTERRUPT Attribute
	Activating an Interrupt Procedure with a CALL Statement
	Reentrancy and the REENTRANT Attribute

	CHAPTER 11 BUILT-IN PROCEDURES, FUNCTIONS, AND VARIABLES
	11.1 Obtaining Information About Variables
	The LENGTH Function
	The LAST Function
	The SIZE Function

	11.2 Explicit Type and Value Conversions
	The LOW, HIGH, and DOUBLE Functions
	The FLOAT Function
	The FIX Function
	The INT Function
	The SIGNED Function
	The UNSIGN Function
	The ABS and lABS Functions

	11.3 Shift and Rotate Functions
	Rotation Functions, ROL and ROA
	Logical-Shift Functions, SHL and SHR
	Algebraic-Shift Functions, SAL and SAR

	11.4 Input and Output
	The INPUT and INWORD Functions
	The OUTPUT and OUTWORD Arrays

	11.5 String Manipulation Procedures
	The MOVB and MOVW Procedures
	The MOVRB and MOVRW Procedures
	The CMPB and CMPW Functions
	The FINDB/FINDW and FINDRB/FINDRW Functions
	The SKIPB/SKIPW and SKIPRB/SKIPRW Functions
	The XLAT Procedure
	The SETB and SETW Procedures

	11.6 Miscellaneous Built-Ins
	The MOVE Procedure
	The TIME Procedure
	The MEMORY Array
	STACKPTR and STACKBASE
	The LOCKSET Function

	11.7 Interrupt-Related Procedures
	The SET$INTERRUPT Procedure
	The INTERRUPT$PTRFunction

	11.8 Pointer and Selector-Related Functions
	The BUILD$PTR Function
	The SELECTOR$OF Function
	The OFFSET$OF Function

	CHAPTER 12 PL/M-86 FEATURES INVOLVING iAPX 86 HARDWARE FLAGS
	12.1 Optimization and the iAPX 86 Hardware Flags
	12.2 The PLUS and MINUS Operators
	12.3 Carry-Rotation Built-in Functions
	12.4 The DEC Function
	12.5 CARRY, SIGN, ZERO, and PARITY Built-in Functions

	CHAPTER 13 FLOATING-POINT ARITHMETIC: THE REAL MATH FACILITY
	13.1 Representation of REAL Values
	13.2 REAL-Parameter Passing and and Stack Conventions
	13.3 The REAL Math Facility
	13.4 Exception Conditions In REAL Arithmetic
	Invalid Operation Exception
	Denormal Operand Exception
	Zero 0 ivide Exception
	Overflow Exception
	Underflow Exception
	Precision Exception

	13.5 The INIT$REAL$MATH$UNIT Procedure
	13.6 The SET$REAL$MODE Procedure
	13.7 The GET$REAL$ERROR Function
	13.8 Saving and Restoring REAL Status
	The SAVE$REAL$STATUS Procedure

	13.9 Writing a Procedure to Handle REAL Interrupts
	13.10 Floating-Point Linkage

	CHAPTER 14 SUPPORT LIBRARY: PLM86.LIB
	CHAPTER 15 COMPILER CONTROLS
	15.1 Introduction to Compiler Controls
	15.2 The WORKFILES Control
	15.3 The LEFTMARGIN Control
	15.4 Object File Controls
	INTVECTOR/NOINTVECTOR
	OVERFLOW INOOVERFLOW
	OPTIMIZE
	OPTIMIZE(0)
	OPTIMIZE(1)
	OPTIMIZE(2)

	OBJECT INOOBJECT
	DEBUG/NODEBUG
	TYPE/NOTYPE
	Program Size Controls
	SMALL
	COMPACT
	MEDIUM
	LARGE

	RAM/ROM Control

	15.5 Listing Selection and Content Controls
	PRINT INOPRINT
	liST INOllST
	CODE/NOCODE
	XREF/NOXREF
	SYMBOLS/NOSYMBOLS

	15.6 Listing Format Controls
	PAGING/NOPAGING
	PAGELENGTH
	PAGEWIDTH
	TITLE
	SUBTITLE
	EJECT
	Sample Program Listing
	Symbol and Cross-Reference Listing
	Compilation Summary

	15.7 Source Inclusion Controls
	INCLUDE
	SAVE/RESTORE

	15.8
	IF / ELSE / ELSEIF / ENDIF
	SET/RESET
	COND/NOCOND

	CHAPTER 16 SAMPLE PROGRAM 2
	CHAPTER 17 OBJECT MODULE SECTIONS AND PROGRAM SIZE CONTROL
	17.1 iAPX 86 Memory Concepts
	17.2 Object Module Sections
	Code Section
	Constant Section
	Data Section
	Stack Section
	Memory Section

	17.3 The SMALL Case
	PL/M-80 Compatibility

	17.4 The COMPACT Case
	Programming Restrictions in the COMPACT Case

	17.5 The MEDIUM Case
	Programming Restrictions in the MEDIUM Case

	17.6 The LARGE Case
	Programming Restrictions in the LARG E Case

	CHAPTER 181 ERROR MESSAGES
	18.1 Source PL/M-86 Errors
	18.2 Fatal Command Tail and Control Errors
	18.3 Fatallnput/Output Errors
	18.4 Fatal Insufficient Memory Errors
	18.5 Fatal Compiler Failure Errors

	 APPENDIX A GRAMMAR OF THE PL/M-86 LANGUAGE
	A.1 Lexical Elements
	A.2 Modules and the Main Program
	A.3 Declarations
	A.4 Units
	A.5 Expressions

	APPENDIX B PROGRAM CONSTRAINTS
	APPENDIX C PL/M-86 RESERVED WORDS
	APPENDIX D PL/M-86 PREDECLARED IDENTIFIERS
	APPENDIX E PL/M-80 AND PL/M-86
	APPENDIX F ASCII CODES
	APPENDIX G PL/M-86 ADVANCED SEGMENTATION
	G.1 Basic Controls
	G.2 Long Calls and Far References
	G.3 Subsystems

	APPENDIX H RUN-TIME PROCEDURE AND ASSEMBLY LANGUAGE LINKAGE
	H.1 Calling Sequence
	H.2 Procedure Prologue
	H.3 Procedure Epilogue
	H.4 Value Returned from Typed Procedure

	APPENDIX I RUN-TIME INTERRUPT PROCESSING
	1.1 General
	1.2 The Interrupt Vector
	1.3 Interrupt Procedure Preface
	1.4 Writing Interrupt Vectors Separately

	APPENDIX J COMPILER INVOCATION AND ADDITIONAL INFORMATION FOR SERIES III USERS
	J.1 Compiler Invocation
	J.2 File Usage
	J.3 Linking to Floating-Point Libraries with the Series III
	J.4 Series III-Specific Compiler Controls
	J.5 Related Publications

	INDEX

