INTELLEC® SERIES Il -
MICROCOMPUTER DEVELOPMENT
SYSTEM PROGRAMMER’S
REFERENCE MANUAL

Order Number: 121618-002

Copyright © 1981 Intel Corporation

1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 L

ii

PRINT HISTORY

... Print :
Edition Software Date Reason
Second | ISIS-II V4.1 3/81 | Added information concerning Network
ISIS-III (D) V1.0 Development System-I (NDS-I).

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(2)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager Plug-A-Bubble
CREDIT intel MCS PROMPT

i Intelevision Megachassis Promware

ICE Intellec Micromainframe RMX/80

iCS iRMX Micromap System 2000
im iSBC Multibus uUPl

Insite iSBX Multimodule uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

[aa na\rea\zeeA |

PREFACE

This manual provides you with complete information about the Series III from the
programming viewpoint. This includes pertinent factors in the Series III hardware
environment, plus discussions of the two operating systems with their built-in
requirements and capabilities, notably the system service routines.

These routines are Intel program modules, supplied with the system, that your pro-
gram can call to perform various input/output functions on your Intellec
Microcomputer Development System.

Because that system contains two separate operating environments for program
execution, Intel provides two sets of system service routines:

¢ For 8086-based user systems, described in Chapter 2

e For 8080/8085-based user systems, working under ISIS-II, described in
Chapter 3

To run programs in either of these environments requires that you have used the
appropriate tools. For example, to execute a PL/M program on the 8085 processor,
you need to have compiled and linked it using PL/M-80 and LINK rather than
PL/M-86 and LINK86. Similarly, to execute on the 8086 chip, your program needs
to have passed through the latter two tools. (Appendix H discusses the issue of link-
ing modules compiled under the 8080-based PL/M-86 with those compiled under the
8086-based translator.)

Required Software

The Series 111 is an Intellec Microcomputer Development System that provides
support for both development and execution of programs using either the 8086 chip
or the 8080/8085 chip. The Series I1I contains both hardware and software beyond
earlier versions of the Intellec system.

Software

* A new 8086-resident monitor, DEBUG-86, used during bootstrap (initial cold
startup) and available for later program analysis and modification.

e A new 8086-resident nucleus, providing new built-in system service functions
for your 8086-based programs, including hard disk access.

e A new system command, RUN, which provides the communication and
processing between the 8080/8085 processor and the resident 8086 processor
board, RPB-86. RUN loads programs into the RPB-86 environment and deter-
mines when to pass control to them.

Other Reference Manuals to Use

e [Intellec Series 111 Console Operating Instructions 121609
® PL/M-86 User’s Guide for 8086-Based Development Systems 121636

* 8086/8087/8088 Macro Assembly Language Reference Manual for
8086-Based Development Systems 121627

iii

Reader’s Guide: How to Use this Manual

The manual is a reference tool enabling you to find the information needed to design
and write programs that run on the Series III. To develop a full understanding
requires study of the other manuals listed above, notably the Intellec Series IIT
Console Operating Instructions.

Parallel Structure

The topics in Chapters 2 and 3 have a parallel structure in that similar functions are
presented in similar order. This parallelism is reflected in table 1-3. It shows most of
the Series III system service routines, with their closest ISIS-II equivalents, in the
order of usage by a hypothetical program.

Functional Groupings

Although alphabetical listings of the system services appear in Chapter 1 and the
Index, the central chapters of the manual use functional groupings to present
capabilities related to each general topic.

For example, as indicated in the Table of Contents, the routines to allocate or free
memory appear in the same section as the routine for finding out the size of an
allocated segment, all under the heading of Memory Management.

Similarly, the thirteen routines for file management appear under that heading, but
separated into four groups of related sub-functions.

Although the Index is enough to find any individual description, these groupings
may aid both initial study and later reference to routines related by function.
‘“‘Railroad-Chart’’ Notation

In Chapters 2 and 3 the system service routines are discussed in functional groupings
such as File Management Routines, Exception Routines, or Monitor 1/0 Interface

Routines.

At the beginning of each such group discussion there is a chart showing how the
routines of that group are invoked, as functions or procedures. For example:

—»((segbase =)-—>G)Q$ALLOCATE)——>
—t—(cm.D—»(DQSFREE)—» —>

@
(" size =)—»(DosGETsstE)—>

1216181

Memory Management Routines

The full name of each system routine is shown in all capital letters, as is the word.
CALL. These must appear exactly as shown.

Names shown in lower-case italic letters indicate variables or parameters you must
supply when you invoke the routine. However, you may substitute any names you
choose for these lower-case items.

The example chart indicates that DQ$FREE is invoked as a procedure by a CALL,
while DQSALLOCATE and DQS$GETSSIZE are invoked as functions. The word
returned by DQSALLOCATE is a segment base, and the word returned by
DQSGETSSIZE is the size of a block of memory. The parameters used by
DQSFREE and DQS$GETSSIZE are the same, whereas DQSALLOCATE has a
different first parameter. All three invocations have an exception pointer as the final
(second) parameter. The detailed discussion of each of these routines appears in
Chapter 2, but the general interpretation of these charts is the same throughout this
manual.

CONTENTS

CHAPTER 1 PAGE
SERIES III INTRODUCTION
Operating System Considerations 1-1
Needed Capabilities 1-1
Desirable Features. 1-1
Functions of the Series I1I and ISIS-II
Operating Systems. 1-1
Program DevelopmentCycle. 1-2
Specific System Services for Each
TargetEnvironment 1-3
For the 8086-Based Environment 1-3
For the 8085-Based Environment 1-3
Built-In Service Routines 14
CHAPTER 2

SERIES I11 OPERATING SYSTEM AND
THE 8086-BASED ENVIRONMENT

Conceptual Considerations 2-1
Command Tail Arguments. e 2-1
Memory Management.......................... 2-1
Connections.iiiiiiiii e 2-2
Buffers i 2-3
Workfiles 2-3
Exception Conditions and Exception Handling. 2-4
Unavoidable Errors. 2-4
AvoidableErrors. 2-4
Data Types and Register Convention 2-4

External Procedure Definitions for Series 111

System Service Routines...................... 2-5
Introduction. 2-5
Utility and Command Parsing Service Routines 2-6
DQSGETSTIME..... 2-6
DQSGETSSYSTEMSID. 2-7
DQSGETSARGUMENT 2-7
DQSSWITCHSBUFFER 2-9
Memory Management Routines 29
DQSALLOCATE..............ccvvinan... 29
DQSFREE i, 2-10
DQSGETSSIZE., 2-10
Program Connection and File Existence Routines . 2-11
DQSATTACH. i, 2-11
DQSCREATEcooiiiiiiiiin. 2-12
DQSDELETE 2-12
DQSDETACH...... ..ot 2-13
DQSGET$CONNECTIONSSTATUS 2-13
File Naming Routines 2-15
DQSRENAME 2-15
DQSCHANGESEXTENSION 2-15
File UsageRoutines........................... 2-16
DQSOPEN. 2-16
DQS$SEEK 2-17
DQSREAD. 2-17
DQSWRITE..coueiiin... 2-19
DQSTRUNCATE....... ..., .. 2-19

vi

PAGE
DQSCLOSE.ottt 2-20
DQSSPECIAL.ttt .. 2-20
Program Control Routines. 2-21
DQSEXITot 2-21
DQSOVERLAYoiiviiiinnann. .. 2-21
Exception Handling Routines 2-22
DQSTRAPSEXCEPTION. 2-22
DQSGETSEXCEPTIONSHANDLER....... .. 2-23
DQSTRAPSCC... ..o, 2-23
DQ$DECODESEXCEPTION 2-23
Usage Examples.............................. 2-24
DQSALLOCATE and FREE................. 2-24
DQSGETSSIZE.coviiineennann... 2-25
Example Using ATTACH, CREATE, OPEN,
READ, WRITE, CLOSE, DETACH. 2-26

Example Using GETSCONNECTIONSSTATUS,
SEEK, WRITE, TRUNCATE,

CHANGESEXTENSION 2-27
Echo Program Example 2-29
CHAPTER 3
ISIS-II AND MONITOR
SERVICE ROUTINES
Memory Organization and Allocation 3-2
Interrupt Vectors. 3-2
TheKernel 3-2
Input and OutputtoFiles......................... 3-2
Bufferso 34
Computing Program Base Address................. 34
ProgramAreao ... 34
Monitor Area.oooiiii it 34
Base Address of Your Program 34
Examples ... i i 3-5
General Parameter Discussion. 3-5
Arguments............o i, 3-6
Connections.cooiiiiiii i 3-6
Function References 3-6
Input/Output Parameters 3-6
Termso 3-7
Line-Edited Files.............................. 3-7
TerminatingaLine 3-7
Reading from the Line Edit Buffer............. 3-8
Editing Characters 3-8
Readinga Command Line 39
Summary of System Calls........................ 3-10
System Calls Syntax and Usage 3-10
PL/MCalls ..., 3-11
Assembly LanguageCalls. 3-11
File Input/OutputCalls 3-11
System Call Cautions 3-12
OPEN., 3-12
READ. ... oo, 3-14
WRITE. . .. i 3-16

CONTENTS

CHAPTER 1 PAGE
SERIES III INTRODUCTION
Operating System Considerations.................. 1-1
Needed Capabilitiesccoviiiiiiiaans 1-1
Desirable Features...........cooiiiiviananannn 1-1
Functions of the Series 111 and ISIS-II
Operating Systems.covviieienannnnnnn 1-1
Program DevelopmentCycle. 1-2
Specific System Services for Each
Target Environmentoooan 1-3
For the 8086-Based Environment 1-3
For the 8085-Based Environment 1-3
Built-In Service Routinescooeiiiiinann. 14
CHAPTER 2

SERIES II1 OPERATING SYSTEM AND

THE 8086-BASED ENVIRONMENT

Conceptual Considerations 2-1
Command Tail Arguments.oou.. 2-1
Memory Management.ccouieenrnnennnnn 2-1
(00011175013 1) 1 - N 2-2
3371 § 1= ¢35 R R S 23
WOTKEleS - . v et e e it e 2-3
Exception Conditions and Exception Handling. 24
Unavoidable Errors.coovviiiiiiiann. 24
Avoidable Errors.ccoviiiiinniiannanns 24
Data Types and Register Convention 2-4

External Procedure Definitions for Series III

System Service Routines. 2-5
Introduction.oovnirn o it 2-5
Utility and Command Parsing Service Routines 2-6
DQSGETSTIME...........cciiiiiiieiinnnn, 2-6
DQSGETSSYSTEMSID.cooviinn.... 2-7
DQSGETSARGUMENTccovvinn.n.. 2-7
DQS$SWITCHSBUFFER 2-9
Memory Management Routines 29
DQSALLOCATEciiiiiiiennnnnnnn. 2-9
DQSFREEiiiiiiiiiiiiiiiiiiininaeenns 2-10
DQSGETSSIZE.......cciiviiiiinnernnnnnen 2-10
Program Connection and File Existence Routines . 2-11
DQSATTACH. ... it 2-11
DQSCREATE.......cciiiiniiiiiiaiinnnnnn 2-12
DQSDELETEccoviiiiiiiiinnnnnnnn. 2-12
DQSDETACH.ciitiiiiiiiiiieennnn 2-13
DQSGET$CONNECTIONSSTATUS 2-13
File Naming Routines.coiiinnnn 2-15
DQSRENAMEccoiiiiiniinnnnnn 2-15
DQ$CHANGESEXTENSION 2-15
FileUsage Routines.oovieiniannnnennnn 2-16
DQSOPEN.oiiiiiiiiiiiiiiiiaaannnn 2-16
DQSSEEK . ..ottt 2-17
DQSREAD. it e 2-17
DQSWRITE.cciiiiiiiiiiiiiiiniiins 2-19
DQSTRUNCATEcviiviininnennnn.n. 2-19

PAGE
DQSCLOSE. ... ittt iiiiiiiiiacanann, 2-20
DQSSPECIAL.iiiiiiiiiiiiianiaannn 2-20
Program Control Routines. 2-21
5103 25, € AN 2-21
DQSOVERLAYciiiiiiiiiiinananns 2-21
Exception Handling Routines 2-22
DQS$TRAPSEXCEPTION. 2-22
DQSGETSEXCEPTIONSHANDLER......... 2-23
DQSTRAPSCC. ... cciiiiiiiiiiiiaiiaanannn 2-23
DQS$DECODESEXCEPTION 2-24
UsageExamples........ccovvviiiniiiiiiiiii.. 2-24
DQSALLOCATEandFREE................. 2-24
DQSGETSSIZE.cciiiiiiiiiiianannnn. 2-25
Example Using ATTACH, CREATE, OPEN,
READ, WRITE, CLOSE, DETACH...... 2-26
Example Using GETSCONNECTIONSSTATUS,
SEEK, WRITE, TRUNCATE,
CHANGESEXTENSION 2-28
Echo Program Example 2-29
CHAPTER 3
ISIS-I1 AND MONITOR
SERVICE ROUTINES
Memory Organization and Allocation 32
Interrupt Vectors. o i, 3-2
TheKernel ...ttt 3-2
Inputand OutputtoFiles......................... 3-2
Buffers ...cooviiiiiiiiiiiiii it et 34
Computing Program Base Address................. 34
Program Areaccciiiiiiiiiiiiiiiaaenns 34
Monitor Area.iiiiiiiiii i, 34
Base Address of Your Program.................. 34
25 :1 117 o (P 3-5
General Parameter Discussion..................... 3-5
ATSUIENtS iiiiiiiaeetaieanannananananns 3-6
ConnectionsS. coviieeieiaeneceananaatananes 36
Function Referencescooaeiiaa.... 3-6
Input/Output Parameters 3-6
=14 1 e 3-7
Line-Edited Files.ocoiiiiiian it 3-7
TerminatingaLinel ... 3-7
Reading from the Line Edit Buffer............. 3-8
Editing Charactersccccoeeniaaanann. 3-8
ReadingaCommand Line 39
Summary of System Calls. 3-10
System CallsSyntaxand Usage 3-10
PL/MCallsoiiiiiiiiiiiiiiaiaaainaannnn 3-11
Assembly LanguageCalls. 3-11
File Input/Output Calls 3-11
System CallCautionsc.... 3-12
OPEN.. ... it iaieiaaaann 3-12
READ. ... it iiiiiiiiiiiatiicieanaananns 3-14
WRITE. ... ittt aaaes 3-16

vii

CONTENTS (Cont’d.)

PAGE
SEEK .. i e 3-17
RESCAN i 3-20
CLOSE. ..ot it ei e 3-21
SPATH. ... e, 3-22
Disk Directory, Console, and Program Execution
Control.....ocvviiiiiin it iie it 3-24
Disk Directory Maintenance 3-24
DELETEttt 3-25
RENAME 3-26
ATTRIB...... i 3-27
Console Reassignment and Error
MessageOQutput.oovvvennennn.. 3-28
CONSOL ...ttt 3-28
WHOCON. ...ttt i 3-29
ERROR ... it 3-30
Program Execution......................... 3-31
LOAD. ... i 3-31
EXIT. .. e 3-33
Monitor 1/0 Interface Routines 3-33
CI(ConsoleInput)covivvuiennn... 3-35
CO (ConsoleQutput)coviiiiennnnn... 3-36
APPENDIX A
SERIES III NOTES
APPENDIX B
SERIES III INTERRUPT DISCUSSION
APPENDIX C
SERIES IIT1 EXCEPTION CODES
APPENDIX D

SAMPLE ASSEMBLY LANGUAGE
USAGE OF SERIES III SERVICES

PAGE
RI(ReaderInput) 3-37
PO (PunchOutput)...........ccoovieivnnn.. 3-38
LO(ListOutput)ooivviiniiiinnnnnnn. 3-39
UI (Universal PROM Programmer Input)...... 3-40
UOUPPOutput).covieiiiiininennnnn 3-42
System Status Routines.ccouvo... 3-44
CSTS (Console Input Status). 3-45
UPPS(UPPStatus)cccoiunn... 3-46
IODEF (I/0 Definition). 3-47
IOCHK (1/0 Configuration Check)........... 3-48
IOSET (Set 170 Configuration) 3-50
MEMCK (Check RAM Size)oon 3-50
Interrupt Processingc.cooviiienunnnnnn. 3-51
Priority of Interruptscovvviiinnn.. 3-51
The Interrupt Mask Register 3-52
Interrupt Mask Initialization................. 3-52
Interrupt Acceptance 3-52
Interrupt Removal....................o..... 3-53
PL/M Interrupt Handler Discussion 3-54
SampleCodeciiiiiiiiiiiiiiaaaa, 3-54
APPENDIX F
ASCII CODES
APPENDIX G

ISIS-II ERROR CODES

APPENDIX H
OBJECT MODULE RELOCATION
AND LINKAGE

APPENDIX 1
APPENDIX E TABLES OF PARAMETERS
TYPE—A SAMPLE ISIS-I1 PROGRAM AND ROUTINES
TABLES
TABLE TITLE PAGE TABLE TITLE PAGE
1-1 Alphabetical List of Service Routines Available 32 Monitor RoutineUsage 3-34
in the Series I1I Operating System 1-4 3-3 System Status Routine Usage............. 3-45
1-2 Service Routines by Functional Groups 1-4 3-4 IOCHK Configuration Values............ 3-48
1-3 Hypothetical Steps in Program Execution I-1 Alphabetical Parameter Definitions I-1
and Service Routines Relevant to Each I-2 Alphabetical List of Series 111
N o OO PR 1-5 ServiceRoutines....................... I-3
3-1 Index from Routine to Discussion.......... 3-1 13 Index from Routine to Discussion.......... I-7

viii

CHAPTER 1
SERIES Il INTRODUCTION

Operating System Considerations

An operating system is a group of programs that provide the functional (as opposed
to physical) environment in which your programs do their work. As an analogy, the
operating system is not unlike the elevators, mail chutes, telephone systems, and
other machines inside a modern office building: they greatly facilitate efficient pro-
duction and allocation of resources.

Needed Capabilities

Usual capabilities of an operating system include the management of devices
attached to the hardware of the system. These include the console input and output
devices and auxiliary memory devices such as flexible or hard disk drives. Typically,
the operating system also recognizes commands to invoke the execution of programs
such as language translators, or the programs you develop using them.

Desirable Features

The use of interrupts and the management of overlays and error conditions extend
the range of functions (and recoveries) available to your programs. Interrupts allow
orderly communication to additional devices or coprocessors attached to the
original hardware. Overlays permit the design and use of a program larger than the
memory size, by partitioning it into parts whose processing is mutually exclusive and
which can fit in the memory available. These are linked by calls that cause memory
to be reused by the other sections of the program. Service routines designed to
handle exceptions allow early detection and handling of unwanted conditions arising
during execution.

Functions of the Series Ill and ISI1S-Il Operating Systems

The Series 111 and ISIS-II operating systems include the above capabilities plus
several other functions, such as command scanning and dynamic file or device
manipulation (i.e., under program control during execution).

Command scanning permits your program to pick up options specified on the line
invoking program execution, or to treat specially formatted files as if they were
input at the console.

Dynamic file control means that during execution you can maintain a list of twelve
files or devices used by your program (e.g., written or.read), but restrict physical
access to a smaller group of six actually in use at any one time. The existence of this
list can make input/output operations more efficient.

The Series I1I operating system also provides memory management and an inter-
active symbolic debugging aid.

Memory management during execution allows you to allocate memory for specific
processes as they arise, and free those blocks when they are no longer needed.

1-1

Series III Introduction

1-2

The debugging tool is named DEBUG-86. Its interactive language is similar to those
of Intel’s ICE-86 or ICE-88 emulators. Using it, you can insert breakpoints into
your program, execute it until some predefined condition is encountered, and halt so
that you may examine the state of processor registers or of variables in your
program.

How you use DEBUG-86 is fully described in the Intellec Series III Console
Operating Instructions.

Program Development Cycle

The cycle begins with an idea and ends with a fully checked-out program that per-
forms the desired work in an acceptable manner.

The idea evolves into a design and, ultimately, into program specifications. The
program specifications are split up into smaller groups of functions, each to be per-
formed by a single module of code.

As work progresses, problems may arise. These may be due to unforeseen gaps or
complications within the base design, or may reflect difficulties in implementing it.
Modules may require expansion, modification, or integration with other modules.
Some functions may merge or be abandoned. Communication of parameters may
change.

To minimize such changes (and the redesign, rework, and relearning resulting from
them), four guidelines are suggested: ‘

1. Extremely clear and specific goals for the program, written down and explicitly
agreed upon by the designers, implementers, and users

2. Isolation into separate modules of every non-trivial function of the system or
program, including the isolation of difficult design decisions

3. Full and clearly understandable documentation for every module, including
liberal comments in the code

4. Clearly written standards for implementation of modules, including
conventions for naming and passing parameters

The closer you approach these ideals, the farther you get from unexpected, costly
changes.

The modules defined by the process above then form the units of actual pro-
gramming work, separately specified at the detail level. They are coded, translated,
and tested, both individually and in logical groups.

As these groups are tested and combined with other checked-out groups, the com-
plete program approaches final integration. The final tests explore every major
option defined by the original program specifications, using input data that reflects
the ultimate usage as closely as possible.

At each stage of individual and multi-module testing, the debugging functions pro-
vided in the operating system aid in isolating the source of unexpected results. Under
the Series III operating system, DEBUG-86 permits use of symbolic names for
debugging output, reference to instructions by line number, access to processor
registers and flags, and alternate execution modes with or without the use of break-
points. Under the ISIS-II operating system, the Monitor debugger or an In-Circuit
Emulator provide similar functions.

Series III Programmer

Series 1 Programmer Series HI Introduction

Specific System Services for Each
Target Environment

When you are developing a program to run on the Series 111, you must choose one of
the two environments provided for program execution: the 8086-based or the
8080/8085-based. Each has similar built-in facilities to aid the development and
testing of your program products, including standard system services (e.g.,
input/output) callable from your programs. This frees you from rewriting routines
already embedded in the operating system, and provides a standard interface for all
modules or systems you develop. However, the interface for each operating system
environment is unique: the calls and parameters differ.

For the 8086-Based Environment

For the 8086-based environment, you will develop the modules using the languages
which run on the 8086 and produce code that works on the 8086, e.g., the resident
ASM-86 or PL/M-86 translators. (Earlier versions of these translators ran on the
8080/8085 chip but produced code to run on the 8086 chip. In some cases, modules
compiled or assembled with these prior versions of the translators can be used
unchanged. Appendix H clarifies the circumstances in which this is workable.)

Over two dozen system service routines are available in the 8086-based environment.
They enable you to use the capabilities of the Series III operating system to manage
the resources of that environment.

A conceptual introduction to their expected parameters and results appears early in
Chapter 2. A full discussion of each parameter used also appears with the sample
PL/M-86 declarations for these external procedures. Discussion of each routine
ends with syntax examples and the list of exception conditions that can occur during
the routine’s execution. Brief, combined usage examples appear after these
discussions.

Whenever you write a module that uses one of these service routines, you simply
declare it as an external procedure. LINK86 then provides the correct address to the
resident system program. You specify the library appropriate to the PL/M-86 model
of segmentation you programmed for: SMALL.LIB, COMPAC.LIB, or
LARGE.LIB.

After linking and locating groups of modules that will work together in your final
system, you can test them alone or together. The DEBUG-86 feature described in the
Intellec Series III Console Operating Instructions can aid the process of isolating
and correcting defects as they become apparent.

For the 8085-Based Environment

For the 8085-based environment, under the ISIS-II operating system, you will use
the standard 8085-based versions of these same translators to build your modules.
These modules will then run under ISIS-1I on the 808S. In this environment, they
may call upon ISIS routines for a variety of input/output services which already
exist as part of the ISIS-II facilities. Many of these operate similarly to those of the
8086-based operating system, and some are unique to ISIS-II.

There are 15 ISIS-II routines and 13 Monitor routines available. Their conceptual
introduction appears in Chapter 3, followed by a detailed discussion of each routine,
its parameters, and sample program usage.

Series III Introduction

As under Series I1I, whenever you write a module that uses one of these service
routines, you simply declare it as an external procedure. When the module is pro-
cessed by LINK, the correct address to the resident system program is provided. The
DEBUG feature of the Monitor can aid the program analysis and correction
process.

Built-In Service Routines

The parameters appropriate to each service routine tell what the desired effect is,
and include the address of a word to be filled by the system indicating whether the
desired operation finished successfully. Your call should normally be followed by
code that tests this word, permitting error recovery, alternate processing, or exit,
depending on the operation’s results.

These parameters are described in the next two chapters. Each chapter presents a
uniform (though not identical) format for its system service routines, based on the
two different environments and operating systems.

To help you understand what services are available, the names of all 8086-based
system routines appear in each of three separate tables below, ordered

a. Alphabetically (table 1-1)
b. In groups by function (table 1-2)

¢. By sequence of use in a hypothetical program. Table !-3 also shows their nearest
functional equivalent under ISIS-II. (Some procedures used under the Monitor
of ISIS-II have no direct counterpart in the 8086-based environment.)

All 8086-based procedures begin with DQS$.

Table 1-1. Alphabetical List of Service Routines Available in the
Series 111 Operating System

Series III Programmer

DQSALLOCATE DQSGETSSYSTEMSID
DQSATTACH DASGETSTIME
DRSCHANGESEXTENSION DQSOPEN

DQECLOSE DQSOVERLAY
DQSCREATE DQSREAD
DQSDECODESEXCEPTION DQSRENAME
DQ$DELETE DQ$SEEK
DQSDETACH DQ$SSPECIAL
DQSEXIT DAQ$SSWITCHSBUFFER
DQSFREE DQ$STRAPSCC
DQSGETSARGUMENT DQASTRAPSEXCEPTION
DQSGETSCONNECTIONSSTATUS DQSTRUNCATE
DASGETSEXCEPTIONSHANDLER DQSWRITE

DQSGETSSIZE

Table 1-2. Service Routines by Functional Groups

UTILITY and INPUT SCANNING

DASGETSSYSTEMSID
DQSGETSTIME
DASGETSARGUMENT
DASSWITCHSBUFFER

MEMORY MANAGEMENT

DQSALLOCATE
DQSFREE
DQ$GETSSIZE

Series I Programmer

Series III Introduction

Table 1-2. Service Routines by Functional Groups (Cont’d.)

Table 1-3.

FILE MANAGEMENT

Program Connection and File
Existence

DAQSATTACH
DQSCREATE
DQSDELETE
DQSDETACH
DASGETSCONNECTIONSSTATUS

Naming

DQSRENAME
DRSCHANGESEXTENSION .

Program Usage

DQSOPEN
DQR$SEEK
DAQSREAD
DASWRITE
DQSTRUNCATE
DQ$SCLOSE
DQSSPECIAL

Program Control

DQSOVERLAY
DQRSEXIT

EXCEPTION HANDLING

DQSDECODESEXCEPTION
DQ$TRAPSCC
DRSTRAPSEXCEPTION
DAQSGETSEXCEPTIONSHANDLER

Hypothetical Steps in Program Execution and
Service Routines Relevant to Each Step

Service Routine Names
For Use In
ForUselin 8080 Environment
8086 Environment (Some names repeat because
routine is multi-function)

1. finds out date and DASGETSTIME
systemi.d. forlogging/ DQSGET$SYSTEMSID none
reporting purposes

2. allocates a memory DQSALLOCATE none
work area for inter- DA$SGETSSIZE
mediate calculations

3. determines whether DQ$SPECIAL none: console is always
consoleinputis line-edited
transparent or line-
edited

4. rescans the last DRSGETSARGUMENT RESCAN
command (atfirst,the DQ$SWITCHSBUFFER
one invoking this
program)

5. asksusertoenter DQSWRITE WRITE
needed data or DQSREAD READ
parameters at the
console

6. writestoafile DRSWRITE WRITE

1-5

Series III Introduction Series III Programmer

Table 1-3. Hypothetical Steps in Program Execution and
Service Routines Relevant to Each Step (Cont’d.)

Service Routine Names

ForUse In
ForUseln 8080 Environment
8086 Environment (Some names repeat because

routine is multi-function)

7. loads overlay to DQSOVERLAY LOAD
process next phase or
user response

8. checksto seeif DASATTACH/DQSOPEN SEEK/OPEN
required files DASGETSCONNECTIONSSTATUS

are on-line; gets
status, including file
pointer position

9. creates files as DQSCREATE/DQSOPEN OPEN
needed for program
reads/writes

10. opens the files for DQSOPEN OPEN
reads/writes

11. readsfile(s) or DQSREAD READ
seeks to desired ~ DQS$SEEK SEEK
position in file

12. calculates user supplied none

13. frees memory work DQSFREE none
areas no longer
needed

14. closes and/ordeletes DQ$CLOSE CLOSE
files DQSDELETE DELETE

15. writes new or old DQSWRITE WRITE
file(s)

16. renames certain files DQSRENAME RENAME
or changes extension DQSCHANGESEXTENSION none
on filename string

17. truncates and/or DQSTRUNCATE
closes files no DQSCLOSE CLOSE
longer needed

18. detaches files not DQSDETACH none
currently needed

19. repeats as needed none
from (1.) none

20. naturally, errors or DQSTRAPSEXCEPTION ERROR
exceptions or DQSDECODESEXCEPTION

unwanted conditions DQSTRAPSCC

can occur at each of DQSGETSEXCEPTIONSHANDLER
the above steps. Thus

an implicit step after

any of them is the

detection/handling of

such conditions.

21. exits whenjobis DQSEXIT EXIT

complete or cannot
continue

1-6

CHAPTER 2
SERIES Il OPERATING SYSTEM
AND THE 8086-BASED ENVIRONMENT

This chapter discusses each system service routine available in the 8086-based
environment of the Series 111, as introduced in Chapter 1. These routines provide a
variety of capabilities to programs running on the Series III, without the need for
user development and checkout, since they are part of the operating system.

Conceptual Consideratons

The system service routines embody a variety of expectations as to their usage, con-
stituting a model of the way programs interact with files, the console, and each
other. These expectations are directly reflected in the parameters you must supply
when calling these routines. The following are some of the key concepts underlying
these parameters.

Command Tail Arguments

An 8086-based program, e.g., named PROGRM, can be invoked by typing RUN
PROGRM, or simply PROGRM if the system is already in the RUN mode. (RUN is
discussed in the Intellec Series I11 Console Operating Instructions.) PROGRM may
have options that can be specified on the invocation line. If so, the remainder of that
line (after RUN) is called a ‘‘command tail,’’ including any continuation lines.

This command tail is accessible to PROGRM via the system service routine named
DQSGETSARGUMENT. You call this routine to get each option in the command
tail. The first parameter of this call tells the system where to put the next option
found, i.e., the address of the name you declared in PROGRM as the string to
receive these options.

Successive calls to DQSGETSARGUMENT return successive options, each
separated by some delimiting character such as a blank or parenthesis. (The details
of how to use this routine appear later in this chapter.) The concept of the command
tail is basic to the discussion of that routine. The existence of this capability can
influence design of programs.

Memory Management

The memory management routines keep track of which memory areas are in use and
which are free to be allocated to new uses.

Free space memory management is handled by the service routines
DQSALLOCATE, DQSFREE, and DQS$GETSIZE. The extent of the memory
managed by the free space manager is determined by the type of object module that
is loaded when RUN is invoked, i.e., absolute or relocatable.

When an absolute object module is loaded into memory, the lower limit of the initial
free space pool is set after the load, to the highest address of the module. An
absolute program should be linked/located at 7800H to maximize the amount of
free space available to it. Files saved by the ICE SAVE command lack the object
records required to keep track of the free space and therefore should not use the free
space manager. Thus, relocatable modules are the preferred form.

Series 111 Operating System and the 8086-Based Environment Series I1I Programmer

There are two types of relocatable object module: position-independent-code (PIC)
or load-time-locatable (LTL). In PIC modules, there are no segment register
changes. The code can work wherever it is ultimately loaded. LTL modules contain
special records to resolve program references that do require segment register
changes, e.g., an intersegment jump.

When a relocatable object module (PIC or LTL) is loaded, the lower limit of the free
space pool is set before the load. Memory required to load the segments is then
allocated from the initial free space pool by the free space manager.

The top of memory is determined by the first 32k memory block that is not present.
In a 128K Series I1I with a 20-bit IPB board, the top of memory is 1FFFFFH (128K).
In a Series III with a Model 800, the top of memory is 1F7FF (126K). The difference
arises because the memory occupied by the Monitor responds to all multibus
accesses to locations between nF800 and nFFFF, and thus the corresponding RAM
locations are not usable. In other words, because the Model 800 uses 16-bit address-
ing, it masks the upper 2K of each 64K block of offboard memory.

A request for memory (i.e., invoking DQSALLOCATE) will return the lowest-
addressed segment that satisfies the request. When a segment is freed, it is
automatically combined with adjacent free memory to form the largest contiguous
area possible.

Connections

The operating system will maintain a list of twelve devices or files that your program
may use during its execution, i.e., a list of ‘‘connections.’’” A connection is a word,
named by you, filled by the system service routines DQSATTACH or
DQSCREATE. (Only six connections may be open at once, although multiple opens
of a single device count for only one.)

You then use this word to specify that file or device whenever you need to perform
any operation on it. For files which already exist, DQSATTACH and
DQSDETACH can add or delete connections. New files get connected by your use
of DQSCREATE.

For example, when your program performs console input and console output, the
connections for :CIl: and :CO: must be on this list. The list permits efficient
specification and manipulation of devices or files during execution.

Only objects on this list can be opened or closed, read or written. You use the con-
nection rather than the actual device or file name. During execution, your program
may perform these functions on multiple files, but only six files and devices total
may be open at one time (not counting :CO:).

Some Series I1I service routines include an ‘internal’ open as part of their operation
(and their descriptions later in this chapter will say so). When you use such a routine,
you may need to close another file or device temporarily so as not to exceed the limit
of six open files-plus-devices at once. However, you may open a physical device
more than once, with this counting as only one open ‘file.’

Before a file can be read or written (by DQSREAD or DQ$WRITE), it must not
only be connected but opened (by DQSOPEN). When the activity to that file is com-
pleted, it can be closed (by DQ$SCLOSE). These four routines can be used only with .
connections established earlier.

Output devices are created; input devices are attached. For example, workfiles,

defined below, and console output :CO: must be created, not attached. Console
input is the opposite—:CI: must be attached rather than created.

2-2

Series I Programmer

Buffers

Buffers are areas reserved for expediting disk input/output. A request to buffer a
device will be ignored except in the case of :CO: having been redirected to a disk file.

If a series of read operations can be interspersed with calculation, more efficient
operation results. This is the case when the data being read in is not used immedi-
ately. Similarly, if a sequence of write operations can be interspersed with calcula-
tion, efficiency rises.

When you open a file, buffers are allocated according to your specifications. Your
program will read (only), write (only), or update (both). When a file is opened for
write, the use of the buffers begins with the first call to DQ§WRITE. When opened
for read or update, the use of the buffers begins with the call to DQSOPEN. When a
file is open for update, the most efficient usage is to cluster the reads (interspersed
with calculations) separately from the writes.

Further, you indicate the optimal number of buffers for the type of usage you see
for that file. For seldom-used files, one buffer is best. If the input/output is desired
during the actual DQSREAD or DQS$WRITE, as in the case of the console, zero is
the correct specification. In all other cases, double buffering is appropriate.

Workfiles

Many programs, e.g., language translators, need temporary files to store
intermediate results before final integration and processing can proceed. These files,
by their very nature, are of no interest afterward.

Series 1II recognizes files of this class by the name :WORK:. Such files may be
created any number of times. Each time DQSCREATE is invoked with a pointer to
the string ““6, :WORK_:’’, a new connection is returned representing a new workfile.
The files-will be named 001.TMP, 002.TMP, up to 999.TMP.

You can choose what drive will be used for these files with the workfiles command
described in the Intellec Series III Console Operating Instructions. 1f you make no
choice, drive 1 is used as the default, so that the full pathname for workfiles is
:F1:001. TMP, etc. If you issue the command

WORK :F3:

from the console, this choice is saved in the system file RUN.MAC, and future
workfile names would be :F3: 001. TMP, etc.

This can also be done from a program by invoking DQSCREATE with a pointer to a
pathname consisting of only a drive-name part. For example:

WRK = DQSCREATE (@ (4, ':F3:'), @ ERR);

Workfiles must be created, opened, closed, and detached like any other new file.
However, they are automatically deleted when they are detached. Permanent files on
a shared disk must not be named 001.TMP (up to 999.TMP) since they will be
deleted as soon as any program creates a workfile (or that many workfiles).

Series I11 Operating System and the 8086-Based Environment

2-3

Series 111 Operating System and the 8086-Based Environment Series 111 Programmer

Exception-Conditions and Exception-Handling

Exceptions, or errors, are detected when an indicated operation cannot be com-
pleted in a standard manner. The Series III operating system classifies errors as
either avoidable or unavoidable. Every system service routine except EXIT returns
an error-code through a pointer referred to as excep$p in the descriptions later in
this chapter. Your programs can test this code to see whether the operation you
called for completed successfully. Appendix C contains the standard error names
and values. .

An error-code of zero means things went well, i.e., as expected. For example, when
you call DQSOPEN to prepare a file for input/output, you supply a connection
number. A zero error-code would be returned if the connection representing that file
was successfully opened.

A non-zero error-code indicates an inappropriate event during the routine’s execu-
tion. For example, a write operation would fail if the connection representing the
desired file indicated that the file had already been closed or detached. A non-zero
error code would be returned. Your program should always check for this.

Unavoidable Errors

These errors generally arise from environmental conditions outside the control of a
program. Examples include insufficient memory for a requested operation, or an
expected file not found. These errors always return a non-zero value. Often,
appropriate program action can be taken. In other instances, no remedial
possibilities exist until, for example, the correct disk is found and inserted or the
available memory is increased by adjusting other program functions.

Avoidable Errors

These are typically caused by coding errors such as inappropriate parameters or
unusable numeric results. Hardware-detected errors also fall into this category.
They include division by zero (interrupt 0), overflow (interrupt 4), and interrupts
generated by the 8087 Numeric Data Processor. These cause the system’s default
excepton handler to be executed. (See also Appendix C.)

However, you may establish your own routine to handle hardware-detected excep-
tions by using the system routine DQ$TRAPSEXCEPTION and supplying a pointer
to your exception-handler. (The state of the stack when your routine gets control is
discussed under DQSTRAPSEXCEPTION.)

One special type of exception is defined into the system: When a control-C is typed
at the physical console input device, the system cancels the current job. You can pro-
gram your own response to a control-C, and cause the system to use it by providing a
pointer to your private routine, via the system routine DQ$TRAPSCC.

Data Types and Register Convention

The descriptions of the system service routines that follow later in this chapter
assume data types largely similar to those of PL/M-86. Your calls to system service
routines must supply parameters meeting these specifications.

BOOLEAN A BYTE object taking the values TRUE (OFFH) or FALSE
(00H). The BOOLEAN specification assumes the following
literal definition (in PL/M-86 terms):

DECLARE BOOLEAN LITERALLY 'BYTE' ;

2-4

Series III Programmer Series 111 Operating System and the 8086-Based Environment

BYTE Equivalent to PL/M-86

CONNECTION A token representing a connection to a file or device. The
CONNECTION specification assumes the following literal
definition (in PL/M-86 terms):

DECLARE CONNECTION LITERALLY 'WORD' ;
DWORD Four byte unsigned integer.

POINTER Equivalent to PL/M-86. Two bytes in the SMALL model of
segmentation, four bytes in all others.

STRING A sequence of bytes, the first of which contains the number
of bytes following in the sequence, i.e., not including the
length byte. A length of zero indicates the null string.

TOKEN A word containing the means of locating an
operating-system-object. The TOKEN specification assumes
the following literal definition (in PL/M-86 terms):

DECLARE TOKEN LITERALLY 'WORD' ;

WORD Equivalent to PL/M-86.

The operating system follows the conventions for interfacing PL/M-86 programs
with assembly language programs in preserving only registers CS, DS, SS, IP, SP,
and BP on a call. Other registers and flags may be used by the operating system
routines and, upon return to your program, have no predefined value.

External Procedure Definitions for Series Ili
System Service Routines

Introduction

Any module using a service routine must first declare it as an external procedure and
later link the final object module with the appropriate interface library. This section
shows appropriate PL/M-86 declarations for all Series III routines, with syntax and
usage examples. Appendix D provides a sample of similar declarations using 8086
assembly language.

Instead of an alphabetic listing, this section presents the routines in four categories:
e Utility/command parsing

¢ Memory management

¢ File management

s Exception handling

File management, has four subclasses:
¢ Program connection to files

¢ Existence and naming of files

¢ Program usage of files

¢ Program control (overlays, exit)

2-5

Series II1 Operating System and the 8086-Based Environment Series 111 Programmer

The presentation of each category or subclass begins with a syntax/usage chart of
the routines in it. These charts emphasize the commeonality of many routines, partly
by using a standard naming convention for parameters. These parameter names also
clarify a natural order to the use of many service routines. For example, before you
can validly invoke a procedure that uses a connection number (e.g., DQSOPEN),
you must first invoke one of the two routines that provides such a number:
DQSATTACH or DQSCREATE.

Appendix 1 lists all the routines and parameters in alphabetic order.

Utility and Command Parsing Service Routines

Two utility and three command-parsing routines are described in this section. The
charts below illustrate how you invoke them.

— G)—ED)
I D e O
Coseamssrsrenst)—=(ise)

Time and I.D. Utility Calls

121618-2

—(delim =)—»@QseET$ARGUMENHargumen§$p)——->
. , O
—>@e|im$oﬂset =)—>@stquCH$BUFF59——>((buffersp,)——>

Input-Line-Scanning Control Routines

121618-3

Lower case entries indicate names, values, or pointers that you must create. Upper
case words must be used exactly as shown. Where an equal sign appears, the service
routine invoked on the right returns a byte or word value. This number, possibly
modified if it is part of an expression, is then stored as the value of the variable to
the left of the equal sign.

The routines shown are discussed below.
DQSGETSTIME: PROCEDURE (di$p, excep$p) EXTERNAL;
DECLARE dt$p POINTER,
excep§p POINTER ;
END

Series 111 does not maintain a time log. However, this routine will return the system
date, which can be set by the DATE command.

di$p must be a pointer to a user structure of the form

DECLARE
DT STRUCTURE (DATE (8) BYTE, TIME (8) BYTE) ;

DATE has the form MM/DD/YY for month, day, year. TIME is returned as 8
blanks.

Exception Codes Returned: E$0K, E$PTR

2-6

Series 111 Programmer Series 111 Operating System and the 8086-Based Environment

DASGETSSYSTEMSID: PROCEDURE (id$p, excep$p) EXTERNAL;
DECLARE id$p POINTER,
excep$p POINTER ;
END ;

This routine returns a string identifying the operating system. /d$p must point to a
21-byte buffer you define in your program.

The message returned is

SERIES-III
Exception Codes Returned: E$0K, E$PTR

DAQSGETSARGUMENT: PROCEDURE (argument$p, excep$p) BYTE EXTERNAL;
DECLARE argumeni$p POINTER,
excep$p POINTER ;
END

argument$p points to an 81-byte area you have declared to receive, as a string, an
argument from the command tail (see discussion earlier in this chapter).

This typed procedure is used as a function (i.e., on the right side of an equal sign in a
PL/M-86 assignment statement). The variable left of the equal sign is filled with the
delimiter found by DQSGETSARGUMENT, as shown in the examples below. If the
exception code is zero, all went well. The possible delimiters include

,) (= #1118 % N\
"+ - & | 1 [> < orDEL(RUBOUT)
or have a hexadecimal value of 0 to 20H.

This function returns the arguments in the command line or user-supplied buffer.
Each successive call returns the next argument.

The command line is pre-scanned at the time your program is invoked. At that time
the sytem makes the following changes to the command line before it is saved in a
system buffer:

1. Each continuation line sequence is converted to a blank. A continuation line
sequence begins with a ““&’’ and ends with the line terminator.

2. A comment is removed entirely. A comment begins with a “;”’ and ends with the
character preceding the line terminator.

3. Any “RUN” or “DEBUG”’ commands preceding the pathname are removed.

If the pathname command entered is an abbreviation, it is replaced by the
correct pathname, e.g., PLM86 is replaced by PLM86.86. (See Appendix A.)

The following rules apply to the arguments and delimiters returned by

DQSGETSARGUMENT:
1. Lower case alphabetic characters are converted to upper case, except inside
strings.

2. Multiple adjacent blanks separating two arguments are treated as one blank.
One or more blanks adjacent to any other delimiter are ignored. A tab is treated
like a blank and returned as a blank.

3. Strings enclosed within a pair of matching quotes are considered literals and not
scanned for interpretation. The enclosing quotes are not returned as part of the
argument. Quotes may be included inside a quoted string by using quotes of the
other type or doubling the quote.

2-7

Series II1 Operating System and the 8086-Based Environment

Series I1I Programmer

The DQ$SWITCH$BUFFER routine (described next) may be used to get arguments
from a user-supplied buffer. The command-line pre-scan is not performed on this
buffer.

The following examples illustrate the argument returned by calls to
DQSGETSARGUMENT:

A) RUN PLMB6 LINKER.PLM PRINT(:LP:) NOLIST

ARGUMENT

8,‘PLM86.86°
10,'LINKER.PLM’
5,'PRINT’

4,LPY
8,'NOLIST’

DELIMITER

‘(,
l)’
CR

B) RUN PLM86 MODULE.SRC PRINT(:F1:THISIS.IT)OPTIMIZE(0)
TITLE ('MY MODULE')

ARGUMENT DELIMITER
8,'PLM86.86 ‘
10,"MODULE.SRC’ £
5,'PRINT’ ‘¢

13, :FL:THISIS.IT’ Yy
8,"OPTIMIZE’ ‘¢

1,0 Y

5,TITLE)

9,MY MODULE)y

0 CR

C) LINK :F&4:X.0BJ,LLIB(MODL),SYSTEM.LIB,PUBLICS &
(:F3:FUNNY.LIB(MOD1)) MAP; my link command

ARGUMENT DELIMITER
7,'LINK.86’
9,:F4:X.0BJ’ ,
4,'LLIB’ '
4,‘MODL’ ‘y
0 ,
10,'SYSTEM.LIB’ 4’
7,'PUBLICS’ ‘C
13,":F3:FUNNY.LIB’ ‘{r
4,‘MOD1’ Yy
0 0
3,'MAP’ CR
Usage Example:

DECLARE DELIM_SCAN BYTE, ERR WORD;
DECLARE NEXT_ARG STRUCTURE
(LENGTH BYTE, ARG (80) BYTE);
DELIM_SCAN=DQSGETSARGUMENT
(INEXT_ARG.LENGTH, QERR);

Exception Codes Returned: E$O0K, ESSTRINGSBUF, ESPTR

Series 111 Programmer Series Il Operating System and the 8086-Based Environment

DASSWITCHSBUFFER: PROCEDURE (buffer$p, excepSp) WORD EXTERNAL;
DECLARE buffer$p POINTER,
excep$p POINTER ;
END ;

This routine is used as a function.

The first time it is invoked, it returns zero after switching the scan pointer to the
buffer whose address you supplied in the invocation. Thereafter, it returns the offset
[from the start of the buffer] of the first character past the last delimiter returned by
DQ$GETSARGUMENT.

This routine should not be called until the command tail has been completely
handled, as there is no way to switch back.

Example:

DECLARE NEXT_COUNT WORD, ERR WORD;
NEXT_COUNT=DQSSWITCHSBUFFER (@ARGLIST, AERR);

Exception Codes Returned: E$0K

Memory Management Routines

The chart below shows how you invoke the three memory management service
routines.

—»((segbase =)——>(DQ$ALLOCAT9—>
——(ca }—(pasFree)}—» - O
—>(size=)—>(DosaETssize }—»

121618-4

Memory Management Routines

Lower case entries indicate names, values, or pointers that you must create. Upper
case words must be used exactly as shown. Where an equal sign appears, the service
routine invoked on the right returns a byte or word value. This number, possibly
modified if it is part of an expression, is then stored as the value of the variable to
the left of the equal sign.

The routines shown are discussed below.

Memory management routines can only be used to allocate and free blocks of
memory and to get the size of any loaded or allocated segment.

DQSALLOCATE: PROCEDURE (size, excep$p) TOKEN EXTERNAL;
DECLARE size WORD,
excepfp POINTER H
END ;

size is the number of bytes of memory desired. A size of zero means a request for
64k bytes. If enough memory is available, this function returns a TOKEN represent-
ing the base of the acquired memory block, that is, the segment part of the pointer to
the acquired area. (The offset of this pointer is zero.) If the operation fails, this
TOKEN will be OFFFFH.

2-9

Series I11 Operating System and the 8086-Based Environment Series I1I Programmer

2-10

DQSALLOCATE is used as a function, i.e., on the right of an equal sign in a
PL/M-86 assignment statement. The variable left of the equal sign is filled with the
connection number.

Example:

PAY_REC_STRUC_BASE = DQSALLOCATE(12,3ERROR_PAY) ;
IF (PAY_REC_STRUC_BASE = OFFFFH) THEN

CALL MY_ERRCHK (PAY_REC_STRUC_BASE, LESS_MEM) ;
IF (ERROR_PAY <> 0) THEN

CALL MY_ERRCHK (ERROR_PAY, MEM_ERR) ;

Exception Codes Returned: E$0K, ESMEM

DQSFREE: PROCEDURE (segment, excep$p) EXTERNAL;
DECLARE segment TOKEN,
excepdp POINTER H
END ;

segment is a TOKEN representing a memory segment acquired earlier from
DQSALLOCATE. The indicated segment is freed. This should be done at the end of
the task that allocated the segment, or whenever it will no longer be needed.

Example:

CALLDQSFREE (PAY_REC_STRUC_BASE, 3ERROR_LESS)

Exception Codes Returned: E$0K, ESEXIST

DQSGET$SIZE: PROCEDURE (segbase, excep$p) WORD EXTERNAL;
DECLARE segbase TOKEN,
excep$p POINTER ;
END ;

segbase is a TOKEN for a memory segment.

This function returns the size of the segment in bytes; zero means 64k bytes. This
segment must have been previously allocated with the DQSALLOCATE routine.

If your program is relocatable, then the loader uses DQSALLOCATE to get the
memory it requires from the memory manager. When you link your program, you
can specify an ‘‘expanding segment’’, meaning that the size of the segment will be
determined when the program is loaded. The size will depend upon the amount of
memory available. '

Relocatable PL/M-86 programs compiled under the SMALL model of segmentation
can use an expanding data segment whose size can be determined with a statement of
the form

SIZE = DQSGET$SIZE (STACKBASE, QEXCEP) ;
In SMALL model programs, the stack segment base and the data segment base are

the same. Thus the above PL/M-86 statement passes the token representing the data
segment base and obtains the data segment size.

Series III Programmer

—]

Example:

DECLARE ARRAY_SIZE WORD;
ARRAY_SIZE = DQSGET$SIZE (ARRAY_BASE, QERR);

Exception Codes Returned: E$0K, E$EXIST

Program Connection and File Existence Routines

The chart below shows how you invoke the routines controlling file existence and the
connections between programs and files or devices. Qutput devices are created and
input devices are attached; e.g., the console input device (:CI:) must be attached; the
console output device (:CO:) must be created. Workfiles must be created, not
attached. A file may be deleted only if no connection is currently established.

DQSCREATE D =ua

——>(DQSATTACH)—»
—(DQSDELETE)
_>(

DQSDETACH
> (DQSGETSCONNECTIONSSTATUS {conn, infoSp,

File/Program Connection Routines

Lower case entries indicate names, values, or pointers that you must create. Upper
case words must be used exactly as shown. Where an equal sign appears, the service
routine invoked on the right returns a byte or word value. This number, possibly
modified if it is part of an expression, is then stored as the value of the variable to
the left of the equal sign.

=

CALL

The routines shown are discussed below.

DQSATTACH: PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL;
DECLARE path$p POINTER,
excep$p POINTER;
END;

path§p points to a string containing a pathname. This string must begin with a
number, telling how many characters will be given within the quotes that follow.
This is the standard format for strings in the Series HI operating system. (It differs
from the format used under the ISIS-II operating system, where a string is not
required to contain its length as the first element.) Examples appear below.

Only input devices, as well as disk files that are not workfiles, can be specified via
the pathname. Attempting to attach :CO: (or :LP:), or to create :CI:, will cause an
ESSUPPORT exception condition. (However, you may DQSATTACH,
DQS$CREATE, or DQS$SEEK the Byte Bucket, :BB:.)

The console input device must be attached only via the :Cl: pathname, and the con-
sole output device must be created only via the :CO: pathname. For example,
assume the console input device is already assigned to the video input (:VI:). Then
this device must not be attached via any other name: an attempt to attach :VI: is an
error.

Also, an attempt to establish a connection on a currently executing user file contain-
ing overlays will cause an exception condition.

. 121618-5

Series HI Operating System and the 8086-Based Environment

2-11

Series I1I Operating System and the 8086-Based Environment

2-12

A maximum of twelve connections can be maintained by Series I11. Only one con-
nection can be established on a particular disk file, as there is only one current file
pointer per file. However, multiple connections to physical (e.g., :LP:) and logical
devices (e.g., :BB:, :CI:) are allowed.

DQSATTACH operates as a function, i.e., a typed procedure. It returns, in the
variable to the left of the equal sign, a connection to an existing file. If the named
file does not already exist, the operation will fail and return a non-zero error code at
the address pointed to by excep$p. Similarly, if the file already has a connection
established, the operation will fail and return a non-zero error code. DQSATTACH
internally opens the file to check whether it exists and then closes it.

Examples:

DECLARE TAX_CONNECTION WORD, ERR WORD;
TAX_CONNECTION = DQSATTACH (3(14,':F1:FEDTAX.JUN') , QERR);

Exception Codes Returned: E$CONTEXT, E$PTR, ESFNEXIST, E$O0K,
E$SSHARE, ESSIX, ESSYNTAX

DQSCREATE: PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL;
DECLARE path$p POINTER,
excep$p POINTER;
END;

path$p points to a string containing a pathname.

DQSCREATE is a typed procedure, returning a connection to a new file. If a file of
the same name exists and is not connected, it is deleted and a new file with this name
is created. If such a file is write-protected or has the format attribute set, or already
has a connection, this function will fail. A non-zero error code will then be returned
in the location pointed to by excep$p. DQSCREATE internally opens the file to
check whether it exists or not and then closes it. This can impact the limit of six open
connections.

Example:

DECLARE NEW_CONNECTION WORD, ERR WORD;
NEW_CONNECTION = DQS$CREATE (a(10,'NEWTAX.AUG') , QERR) ;

/* A connection number will be created for the named*/
/% file and stored in NEW_CONNECTION. */

Exception Codes Returned: E$CONTEXT, E$SHARE, ESFACCESS, ESOK,
ESPTR, E$SIX, ESSYNTAX, ESSPACE

DQSDELETE: PROCEDURE (path$p, excep$p) EXTERNAL;
DECLARE path$p POINTER,
excep§p POINTER;
END;

path$p points to a string containing a pathname.

File deletion is a physical operation rather than a logical operation. The deletion
actually occurs when this procedure is invoked, and an error will result if a connec-
tion is already established on the file to be deleted. This means the file must be
detached if this current execution attached or created it earlier.

Series III Programmer

Series II1 Programmer Series III Operating System and the 8086-Based Environment

In addition, the supplied pathname must contain a file-naine part, and the file to be
deleted must not have the write-protect or format attributes set. It may not be the
file to which the console has been assigned, nor a file which contains user overlays
expected for use in the current execution. (In a name like :F1:MYPROG, the
characters MYPROG constitute the file-name part. The characters :F1: constitute
the device-name part. See also the Intellec Series III Console Operating
Instructions.)

If these conditions are not met, this operation will fail and a non-zero error code will
be returned in the location pointed to by excep$p.

Example:

CALL DQSDELETE (FILESPTR, QERR) ;
/* The file pointed to by FILESPTR will be deleted, */
/* assuming it meets the above conditions. */

ExceptiohCodesRetumed: ESCONTEXT, ESFACCESS, E$SHARE, ES$SOK,
ESPTR, ESSUPPORT, ESSYNTAX, ESFNEXIST

DQSDETACH: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
excep$p POINTER;
END;

conn is a token representing the connection to be detached, i.e., removed from the
current list of attached devices-or-files.

DQSDETACH breaks the connection created by DQSATTACH or DQSCREATE.
If the connection is open, it is closed before being detached. -

Example:
CALL DQSDETACH (PAY_FILE_CONNECTION, QERR);

/* The file whose connection is PAY_FILE_CONNECTION */
/* will be closed and removed from the list of */
/* connected/attached files, i.e., it will be detached. */

Exception Codes Returned: E$EXIST, E$0K, E$SPARAM

DASGETSCONNECTIONSSTATUS: PROCEDURE (conn, infoSp, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
info$p POINTER,
excep$p POINTER;
END;

conn is a connection established earlier via attach or create. The parameter info$p
points to a structure you have declared to receive the connection data found by this
routine. For example:

DECLARE INFO STRUCTURE (

OPEN BOOLEAN,
ACCESS BYTE,
SEEK BYTE,

FILESPTRSLOW WORD,
FILESPTRSHIGH WORD);

2-13

Series III Operating System and the 8086-Based Environment Series III Programmer

These fields bear the following interpretations:

OPEN
True if connection is open, otherwise false.

ACCESS
Access privileges of the connection. The rights are granted if the corresponding
bit is on.
Bit Access
0 delete
1 read
2 write
3 update
SEEK
Types of seek supported:
Bit Seek Types
0 seek forward
1 seek backward

FILESTRSHIGH, FILESPTRELOW

Current position of file pointer interpreted as a four-byte unsigned integer
representing the number of bytes from the beginning of the file. This field is
undefined if file is not open or if seek backward is not supported.

When the connection you specified is established on a physical or logical device, the
access value returned depends on the nature of the device. For example, access
privilege of the line printer is write. For a disk file with the write protect or format
attributes set, access is read; for workfiles, access is read, write, and update. All
other disk files have access privileges of delete, read, write, and update.

Physical devices and the console do not support any type of seek. For the byte
bucket (:BB:), the returned file pointer is 0.

Example:

CALL DQSGETSCONNECTIONSSTATUS (INVENTORY_CONN,
aFILE_STATUS, QERR);

Exception Codes Returned: ESEXIST, ESPARAM, ES$OK, ESSHARE,
ESPTR, E$SIX, ESFNEXIST

NOTE

FILESPTR$HIGH and FILESPTR$SLOW have the same meaning as the
parameters in seek, named HIGHSOFFSET and LOWSOFFSET. The high
word in each case has the high order bits of the four-byte integer.

2-14

Series 111 Programmer Series 111 Operating System and the 8086-Based Environment

File Naming Routines

The chart below shows how you invoke the system service routines that alter file
names.

—>(_ oosrename)—>{(Golisp,newsp,)}— ‘
G —0O—
L—»(pascrancesexTension)—{ (pathsp, extensionsp,}—- i

File Naming Routines

Lowercase entries above represent pointers you must create, indicating the locations
for the pathname strings (and exception code) used in these routines. Uppercase
words must be used as shown. The routines shown are discussed below.

DQSRENAME: PROCEDURE (oldp, newp excep$p) EXTERNAL;
DECLARE o/dsp POINTER,
newSp POINTER,
excep$p POINTER;
END;

old$p and new$p are pointers to the strings containing the existing pathname and
the new pathname, respectively. There must be a filename part and the device parts
must be identical, i.e., cross-volume renames are not supported. (In a name like
:F1:MYPROG, the characters MYPROG constitute the file-name part. The
characters :F1: constitute the device-name part. See also the Intellec Series 111 Con-
sole Operating Instructions.)

An exception condition occurs if a file with the new name already exists or if the file
to be renamed has the write-protect or format attributes set. Renaming a file on

which a connection is established is valid. It is not necessary that such a connection
be established.

Example:
CALL DQSRENAME(QFILE_PTR(3),a(9,'TERMS.NOV') ,QERR);
Exception Codes Returned: E$CROSSFS, ESFACCESS, ESFEXIST,

ESFNEXIST, E$OK, ESPTR, ESSUPPORT,
ESSYNTAX, ESSHARE, ESCONTEXT

DASCHANGESEXTENSION: PROCEDURE (path$p, extension$p, excep$p) EXTERNAL;

DECLARE path$p POINTER,
extension§p POINTER,
excep$p POINTER;

END;

path$p points to a string containing the pathname to be changed. extension$p
points to a three-character extension that is to become the extension in the
pathname. These characters may not be delimiters. This procedure changes only the
specified string and performs no file operations whatever.

DQ$CHANGESEXTENSION replaces any existing extension on the file name with the
supplied extension, e.g., :F4:FILE.SRC can be changed to :F4:FILE.OBJ or
:F4:FILE.LST. If the first character addressed by extension$p is a blank, the file
name will have any prior extension deleted, including the trailing period. (Trailing
blanks are allowed, i.e., the third character or both the second and third characters
of the new extension may be blanks.)

2-15

Series III Operating System and the 8086-Based Environment Series III Programmer

2-16

actual__word = DQSREAD

CALL DQSTRUNCATE {conn, >

R

Examples:

CALL DQSCHANGESEXTENSION (3(8,'TASK.QRY'),a('ANS'),3ERRSP);
/*Filename string will be changed from TASK.QRY to TASK.ANS*/

CALL DQSCHANGESEXTENSION (FILESPTR, a('0BJ'), EXCEPSP) ;
/* This will change the extension on the filename */
/* pointed to by FILE$PTR to be .0BJ * /

Exception Codes Returned: E$0K, ESSTRINGSBUF, ESPTR, ESSYNTAX

File Usage Routines

The system service subroutines shown below provide the means for dynamic file
usage during execution. Only the read routine is a function (typed procedure). All
require a connection number established previously by DQSATTACH or
DQSCREATE.

DQSOPEN (conn, access, numsbuf,)—-»
@—-p@ode, high$offset, Io“dllset),—»

CALL

—»@—»(buf$p, count, j——b °

DQSWRITE

DQSCLOSE {conn, >
—»(DQSSPECIAL ’\ >{L {type, connsci,)—»
121618-7

File Usage Routines

Lower case entries indicate names, values, or pointers that you must create. Upper
case words must be used txactly as shown. Where an equal sign appears, the service
routine invoked on the right returns a byte or word value. This number, possibly
modified if it is part of an expression, is then stored as the value of the variable to
the left of the equal sign.

The routines shown are discussed below.

DQSOPEN: PROCEDURE (conn, access, num$buf, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
access BYTE,
num$buf BYTE,
excep$p POINTER;
END;

conn represents a connection established earlier via attach or create.

Series I1I Programmer Series III Operating System and the 8086-Based Environment

access specifies the type of access desired:

Value Type
1 means read access only
2 means write access only
3 means update (both read and write)

num$buf indicates the optimal number of buffers, and should be 0, 1, or 2. Zero
means that no buffering should occur—physical 1/0 should occur during a
DQ$READ or DQSWRITE. For seldom-used files, num$buf should be 1. In all other
cases it should be 2 for double buffering. If program computation cannot be
interspersed as described earlier in this chapter, num$buf should be O to maximize
performance. ’

Files can be opened ‘externally’ using this routine or ‘internally’ as part of the opera-
tion of other system service routines. The limit of six open files-and-devices includes
those opened ‘internally’ by the system.

Since it is possible to establish multiple connections on the same device, multiple
opens of such a device are also permitted. The device still counts as only one open
device on the list of six. The console input device counts toward this limit but the
console output device does not.

The situations which do an ‘internal’ open include DQSATTACH, DQ$CREATE,
DQSTRUNCATE, DQSOVERLAY, and entry to DEBUG-86. All but the last are
explained under their entries in this chapter.

Entering DEBUG-86 internally opens :CI:.

If access is write or update, the file represented by the connection must not have the
write-protect or format attributes set. The file pointer is set to 0, i.e., the beginning
of the file. If the next access to this file is write, writing begins at the first byte,
destroying earlier contents. To append, you must first read or seek to the end.

The use of DQ$OPEN must not violate physical limitations; e.g., the line printer
must not be opened for read or update.

Example:

CALL DQSOPEN (EMPLOYEE_CONN, 3, 2, QERR);

Exception Codes Returned: ESEXIST, ESFACCESS, E$0K, ESPARAM,
,, ESOPEN, E$SIX, ESSHARE, ESFNEXIST

DQSSEEK: PROCEDURE (conn, mode, high$offset, low$offset, excep$p) EXTERNAL;
DECLARE conn CONNECTION
mode BYTE
low$offset WORD,
high$offset WORD,
excep$p POINTER;
END;

conn represents a currently open connection established earlier via attach or create.

mode indicates the type of seek required.

Series IHI Operating System and the 8086-Based Environment Series III Programmer

Value ‘Type
1 Move file pointer back by ofiset.
2 Set pointer to offset.
3 Move file pointer forward by offset.
4 Move file pointer to end of file minus offset.

When combined, high$offset and low$offset form a four-byte unsigned integer
representing the number of bytes to move the file pointer. (Several of these
parameters and interpretations differ slightly from those of ISIS-II; e.g., the offset
interpretation for a SEEK under ISIS-II is block number and byte number—see
Chapter 3.) If the seek goes beyond the end of file, a file opened for write or update
will be extended with nulls; for a file opened for read, such a seek will position the
pointer to the end of file. If a seek would move the pointer to before the start of the
file, the pointer is set to the beginning of the file. Seeks are invalid on connections to
physical devices or the console.

Example:
CALL DQSSEEK (IONS_CONN, 3, 22, 248, QERR);

This call does a seek from current position forward by an offset of 22 * 216 + 248
bytes, on the file whose connection is IONS__CONN.

" Exception Codes Returned: E$EXIST, ESNOPEN, E$O0K, ESPARAM,
E$SUPPORT

NOTE

high$offset and low§offset have the same meaning as the parameters in
DQSGETSCONNECTIONSSTATUS named file$ptrihigh and file$ptr§low. The
high word in each case has the high order bits of the four-byte integer. In
the invocation of DQ$SEEK, high$offset is pushed onto the stack prior to
low$offset.

DQSREAD: PROCEDURE (conn, bufSp, count, excep$p) WORD EXTERNAL;
DECLARE conn CONNECTION,
buf$p POINTER,
count WORD,
excep$p POINTER;
END;

conn represents an open connection established earlier via attach or create. buf§p
points to a buffer area, at least count bytes long, that you have declared to receive
the data read.

This routine is used as a function, i.e., a typed procedure returning the number of
bytes actually transferred. This number will equal count unless an error occurred or
an end of file was encountered.

count bytes are read from the current location of the file pointer and placed in your
buffer. If the procedure returns a value of zero and an exception code of E$OK, end
of file was encountered.

If your buffer is not long enough to receive the number of bytes requested, this
routine will over-write the memory locations which follow the buffer.

DQS$READ will not recognize control C and control D as having any special mean-

ing if the console has been assigned to a disk or device other than the cold start con-
sole. (See also DQ$TRAPSCC.)

2-18

Series I11 Programmer Series I1I Operating System and the 8086-Based Environment

Example:

DECLARE ACTUAL WORD ENTRIES (256) BYTE, ERR WORD;
ACTUAL = DQSREAD (JOURNAL_CONN, QENTRIES(0), 256,
3ERR);

Exception Codes Returned: ESEXIST, ESNOPEN, ESOK, ESOWRITE,
E$SPARAM, ES$PTR

DQSWRITE: PROCEDURE (conn, buffp, count, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
buf$p POINTER,
count WORD,
excep§p POINTER;
END;

conn tepresents an open connection established earlier via attach or create. Access
must be write or update.

buf$p points to the start of the data to be written out.

count is the number of bytes to be written.

If the count exceeds the remaining length of your buffer, the contents of memory
locations following the buffer will be written to the device or file represented by the
connection you supplied.

Writing begins at the current value of the filepointer, which is 0 if no prior reads,
seeks, or writes to this file have occurred.

A write to a pre-existing file you opened will destroy earlier contents unless the file-
pointer is first positioned (by a seek) at or after the end of file. A subsequent close,
however, does not truncate the file: the original extent {or the new extent enlarged
by seeks or writes) is maintained.

Example:

CALL DQSWRITE (INVENTORY_CONN,aPHYSICAL,256, QERR);

Exception Codes Returned: ESEXIST, ESNOPEN, ESOK, ESOREAD,
ESPARAM, ESPTR

DASTRUNCATE: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn WORD ,
excep$p POINTER;
END;

conn represents a connection established earlier via attach or create and currently
open for write or update. This routine truncates the file represented by conn at the
current file pointer and frees all previously allocated disk space beyond that pointer
value. (If the pointer is at or past the end of file, truncation has no effect.) During
the truncate operation, a workfile is opened and remains open until truncate
completes.

Example:

CALL DQSTRUNCATE (INTERIM_CONN, QERR);

2-19

Series 111 Operating System and the 8086-Based Environment Series II1 Programmer

Exception Codes Returned: E$0K, ESEXIST, ESNOPEN, ESOWRITE,
ESOREAD, ESSHARE, ES$SIX, ESSPACE,
ESPARAM

DQ$CLOSE: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
excep$p POINTER;
END;

conn represents a connection established earlier using attach or create, and opened
via OPEN. :

DQ$CLOSE waits for completion of input/output operations (if any) taking place on
the file, ensures that output buffers are empty, and frees buffers. Once closed, a
connection may be either re-opened or detached. Close does not truncate the file:
the original extent (or the new extent enlarged by seeks or writes) is maintained.

Your programs must attach :CI:, create :CO:, open, close, and detach them.
However, console output does not count toward the limit of six open files.

Example:

CALL DQSCLOSE (TAX_CONNECTION, @ERR);
/* The file whose connection number is in * /
/* TAX_CONNECTION will be closed. */

Exception Codes Returned: E$SEXIST, ESNOPEN, ESPARAM, ES$0K

DQSSPECIAL: PROCEDURE (type, parametersp, excep$p) EXTERNAL;
DECLARE type BYTE,
parameterSp POINTER,
excep$p POINTER;
END;

This procedure is relevant only to console input. This differs from ISIS-II—see
Chapter 3.

If type is one, subsequent console input is transparent, i.e., not line-edited. If type is
two, subsequent console input will be line-edited. The initial default, when a job
begins, is two. A type of three, is identical to a type of 1 except that a DQSREAD of
:CI: will only return the single character already in the system buffer.

parameter$p must point to a connection representing a DQSATTACH of :CI:.

:CIL: can be assigned to a disk file prior to initiating RUN, e.g., by a SUBMIT system
call. If so, this routine returns ESSUPPORT if type one or type three is specified,
even if :CI: is temporarily restored to the cold start console via control E.

A call to this routine changing :CI: from line-edited to transparent causes all
characters currently in the physical console buffer to be discarded.

Example:
CALL DQS$SPECIAL (1,aCI_CONN, QRERR);
Exception Codes Returned: E$0K, ESEXIST, ESPARAM, ESPTR,
ESSUPPORT

2-20

Series ITI Programmer Series 111 Operating System and the 8086-Based Environment

Program Control Routines

The chart below shows how you invoke the exit and overlay routines.

—b-@QsovsnanameSp, excepSpD—-»—}
\

el

—»(DQSEXIT)—S@:&mpletion&ode) |

121618-8

Program Control Routines

Lower case entries above represent pointers or values you must create indicating the
locations for the pathname strings (and exception and completion codes) used in
these routines. The services named above are discussed below.

DQSEXIT: PROCEDURE (completionscode) EXTERNAL;
DECLARE completion$code WORD;
END;

Exit terminates a job. All files are closed and all resources are freed. If the RUN pro-
gram was in control, it then prompts for another command.

The completion$code is intended to indicate whether termination was normal. Its
values and interpretation are to be supplied by user programs if desired. This code is
not referenced by the Series III operating system. (There is no exception pointer
argument because this routine can never generate an exception.)

Example:
CALL DQSEXIT (COMPL);
Exception Codes Returned: none

DQSOVERLAY: PROCEDURE (name$p, excep$p) EXTERNAL;
DECLARE name$p POINTER,
excep$p POINTER;

END; :

This routine causes the loading of the overlay whose name is the string that name$p
points to. Only one level of overlays is allowed, and this routine may be called only
from the root (non-overlaid) phase. .

You define the overlay name with the LINK86 OVERLAY control. The name need
not be restricted to ISIS-II filename conventions but it must not exceed 40
characters. The string used in the call must match the name used in LINK86.

(See the IAPX 86, 88 Family Utilities User’s Guide for 8086-Based Development
Systems for a full discussion of overlays.)

Example:
CALL DQSOVERLAY (3(10'MYPROG.OVZ2'), AERR);
Exception Codes Returned: E$0K, E$EXIST, ESPARAM, ES$SIX,

ESSYNTAX, ESUNSAT, ESADDRESS,
ESBADSFILE

2-21

Series I1I Operating System and the 8086-Based Environment Series III Programmer

Exception Handling Routines

These four routines enable you to specify the routines you want called to handle
exceptions of various types, and to decode the exception numbers returned by
executing programs. The chart below shows how you invoke these system services.

DQSTRAPSEXCEPTION

DOSGETSEXCEPTIONSHANDLER (handlersp,
—(ca)
DGSTRAPSCC ()
v (o
DQSDECODESEXCEPTION) lexcer

Exception Handling Routines

Lower case entries above represent pointers or values you must create, indicating the
locations for the pathname strings (and exception and completion codes) used in
these routines. The services named above are discussed below.

DQSTRAPSEXCEPTION: PROCEDURE (handlersp, excep$p) EXTERNAL;
DECLARE handlersp POINTER,
excepfp POINTER;
END;

handler$p is the address of a four-byte area containing a long pointer to the entry
point of your exception handler. (Programs compiled under the SMALL model of
segmentation have no access-to CS, and thus cannot create the long pointer directly.)

Hardware-detected exceptions will cause the exception handler to be executed. The
state of the stack upon entry is as if the instruction pushed four words and then
executed a long call to the exception handler. The first word pushed is the condition
code. The next three words are reserved for future use by the operating system and
numeric data processor.

Upon entry to the exception handler the stack looks like this:

SP —» reium’lP

return CS

0
0

0

exception code §

p occurred

} stack when

121618-10

See Appendix C for exception code values and descriptions.

The default system action is to display an error message, close files, and terminate
program execution. The message format is

**x% EXCEPTION nnnnH error message
CS:IP = xxxx:yyyy

Example:

EXCEP_ROUT=DQSTRAPSEXCEPTION (QUSER_HANDLER, QERR);

2-22

Series HI Programmer Series I1I Operating System and the 8086-Based Environment

Exception Codes Returned: E$0K

DQSGETSEXCEPTIONSHANDLER: PROCEDURE (handlerSp, excep$p) EXTERNAL;
DECLARE handler§p POINTER,
excepsp. POINTER;
END;

handler§p must point to a four-byte area, which the system fills with a long pointer
to the current avoidable-exception handler. A four-byte pointer is always returned,
even if called from a program compiled under the SMALL model of segmentation.

This pointer will be the address specified in the last call of DQSTRAPSEXCEPTION, if
it has been called.

Example:
CALL DQSGETSEXCEPTIONSHANDLER (@WHICH_HANDLER,3ERR);

Exception Codes Returned: E$0K, ES$PTR
DQSTRAPSCC: PROCEDURE (handlerSp, excepsp)r EXTERNAL;

DECLARE handler$p POINTER,

excep$p POINTER;

END;
Whenever control-C is pressed at the physical console device, the system executes the
default handler or your specially coded routine whose address is specified as
handler$p via this system service call.

When your control-C routine receives control, the registers and flags are the same as
the interrupted program. The stack looks like this:

_ SP =1 returnIP

return CS

stackwhen
exception occurred

Write the control-C routine in assembly language. The program must save the 8086
processor flags and registers and load the DS register with the control-C routine’s
data segment value. Before returning to the interrupted program, the control-C
routine must restore the registers and flags and then execute a long return.

The default control-C handler closes files and terminates program execution. If the.
key was pressed while the system was performing a system service routine (other
than a DQSREAD of :Cl:), that routine is completed and the control-C routine is not
executed until just before the system returns to the calling program. If a DQ$READ
of :Cl: is being serviced, the control-C handler is executed immediately and the
DQ$READ returns an actual count of zero to the calling program.

(If :CI: has been redirected to another device or a disk file, e.g., under SUBMIT, the
special meanings of control-C and control-D will not be recognized from the SUB-
MIT file. They will be treated as ordinary characters unless they come from the cold
start console. However, if a control-E in the file temporarily redirects :CI: to the
cold start console, then these characters temporarily lose their special meanings even
from that console.)

2-23

Series I1I Operating System and.the 8086-Based Environment Series III Programmer

Example:
CALL DQSTRAPSCC (SPECIAL_C_PTR,3ERR_C);
Exception Codes Returned: E$0K

DQSDECODESEXCEPTION: PROCEDURE (exceptionScode, message$p, excep$p) EXTERNAL;
DECLARE exception$code WORD,
message$p POINTER,
excep$p POINTER;
END;

exception$code is a word containing an exception code. message$p is a pointer to
the 81-byte area you declared to receive the error message decoded by the operating
system. The first byte of the message is the length of the string. The word whose
address is excep$p will contain zero unless an unexpected problem in decoding
causes a non-zero code to be returned.

The routine returns a string containing
EXCEPTION nnnnH message

where nnnn is the exception code value and message is the exception message. If the
exception$code you supply as a parameter is not a recognized system error number,
then a question mark (?) appears instead of the message.

Example:
CALL DQSCODESEXCEPTION (ERRNO, @ERRMESS(0), QFERR);

Exception Codes Returned: E$0K

Usage Examples

Of the more than two dozen system service routines, most are invoked by CALL
statements. A few are used as functions, returning a byte or word you can use in
later statements. This section illustrates the usage of some of the more commonly
invoked routines. (Some examples show more than one.)

Appendix I gives brief definitions for every parameter name used in the general pro-
,cedure declaration for each routine.

The usage examples, however, declare variable names you might invent as actual
parameters when you design programs to use the system services. Most of the
examples are not complete programs or procedures, but merely indications of cor-
rect order and reasonable declarations, usage, etc.

Example of Allocate and Free

This example illustrates the use of DQSALLOCATE and DQ$FREE for a block of 1000
bytes. The base of this block, if allocation is successful, is returned by
DQSALLOCATE and assigned to BASE__PARTS.SEGB. This word is the segment
part of the pointer giving the address where the block begins. (The offset part of this
address is always zero.)

2-24

Series I1I Programmer

PL/M=-86 CUMPILER ALLUCFREEEXAMELE PAGE 1

151S=11 PL/M~86 V2.0 COMPILATION GF MODULE ALLOCFREEEXARPLE
OBJECT MUDULE PLACED 1IN :F1:ALFREF.OBJ
COMPILER INVOKED BY: :F2:PLMB6 IF13ALFREE.SRC

1 ALLOCSFFEESEXAMPLE: DG’
2 1 DQSALLOCATE: PROCEDURE (SliE.EXCEPTSP) wOED EXTERNAL;
3 2 DECLARE. SIZE WORD, EXCEPTSP PGINTER;
4 2 END DOSALLUCATE?
5 1 DOSFREE: PROCEDURE (SEGMENT,EXCEPTSP) EXTERNAL;
6 2 DECLARE SEGMENT ORD, EXCEPTSP POIMIER;
? 2 END DOSFEKEE;
8 1 DECLARE BASESKAME POINTER;
9 1 OECLARE (LIM,BYTESSWANTED,ERR) wORD;
10 1 DECLARE ALLO LITERALLY “1°, FRE LITERALLY “2°;
11 1 DECLARE BASESPARTS STRUCI1URE (OFFSETB wCKD,SEGH wURD)
AT (@BASESNAME) INITIAL (0,0);
12 1 MYSERRSCHK: PROCEDURE (SERVICESCODE,FIXUF) EXTERNAL;
13 2 DECLAKE SERVICESCODE BYTE, FIXUP WwORD;
14 2 END MYSERRSCHK:
/¥ OTHER CODE HERE */
15 1 LIM, BYTESSwWANIED = 1000;
16 1 BASESPARTS.OFFSETB = 07
17 1 BASESPARTS.SEGB = DQSALLOCATE (BYTESSWANTED,RERR);
18 1 IF ERR <> 0 THEN CALL NYSERRSCHK (ALLO,L1M);
/% OTHER CODE HERE */
20 1 CALL DOSFREE (BASESPARTS.SEGB,QERR);
21 1 IF ERR <> 0 THEN CALL MYSERRSCHK (FRE,BASESPARTS.SEGB);
/¥ MORE CODE HERE %/
23 1 END ALLUCSFRFESEXAMELE;

MODULE INFORMATION:

CODE AREA SIZE = 00b6H 102D
CONSTANT AREA SIZE = 0000H (1]
VARIABLE AREA SIZk = 0008BH 8y
MAXIMUM STACK SIZE = 0006H 6D

36 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M=86 COMPILATIUN

If allocation is unsuccessful, a non-zero error number will be placed in the location
named “ERR’’. In these examples, the statement after each use of a system service
routine checks the contents of ERR, and executes a user-written error recover
routine if the error code is non-zero.

After the code using those 1000 bytes completes its task, a call to DQ$FREE releases
the allocated block. If this operation does not complete normally, a non-zero error
code is put into ERR. This is again tested by the next statement, which executes an
error recovery routine if ERR is non-zero.

Example of GET$SIZE

This example shows a procedure to initialize an array that is based on-a pointer
supplied in its call. The segment word of this pointer is used by DQ$GETSSIZE to
find out how large the array is, in bytes. If the service routine cannot complete
successfully, it fills ERR with a non-zero error number. This causes the next state-
ment in this example to execute your error-recovery routine with a code telling which
service failed and where.

PL/M=86 COMPILER GETSIZEEXAMPLE PAGE 1

IS1S=11 PL/M=86 V2.0 CGMPILATION GF MUDULE GEISIZEEXAMPLE
OBJECT MCDULE PLACED IN :F1:GETSIZ.0BJ
COMPILER INVOKED BY$ 3F2:PL%86 :FI:GETSIZ.SRC

1 GETSSIZESEXAMPLE: BC;

2 1 DQSGETSS12E: PRUCECURE (SEGMENT,EXCEPTSP) WURD EXTERNAL;Z
3 2 DECLARE SEGMENT WORD, EXCEPT$P POINTER?

4 2 END DCSGETSSIZE;

Series II1 Operating System and the 8086-Based Environment

2-25

Series 111 Operating System and the 8086-Based Environment Series I1I1 Programmer

S 1 MYSERRSCHK: PROCEDURE (SEKVICESCODE,CALSE) EXTERNALj
© 2 DECLARE SERVICESCODE BYTE, CAUSE WORD:

? 2 END MYSERKSCHK;

8 1 ARRAYSINITIALIZE: PKOCEDURE (BASESNAME)?

DECLARE BASESNAME POINTER;

DECLARE (ARRAYSNAME BASEP BASESNAME) (1) WORD;
DECLARE SEGSOFFSET (2) wOUKD AT (RBASESNAME);
DECLARE (LIMIT,ERR,1) WOPD;

DECLARE GET LITERALLY *3°;

LIMIT = DQSGETSSIZE (SEGSOFFSET(1),@ERR)/2;
IF ERR <> 0 THEN CALL MYSERRSCHK (GET,SEGSOUFFSET €(1));

-
-
NWWNRN NN

17 DO i = 1 TO LIMIT;

18 ARRAYSNAME (1) = 0;
19 END;

20 RETURN;

~
=
~

END ARPAYSINITIALIZE;

22 1 END GETSSIZESEXAMPLE;

MODULE INFORMATION:

CODE AREA SIZE = 00584 88D
CONSTANT AREA SIZE = 0000H oD
VARIABLE AREA SIZE = 0006H 6D
MAXIMUM STACK SIZE = 000AH 100
28 LINES READ

O PROGRAM EKROR(S)

END OF PL/M-86 COMPILATION

Example of ATTACH, CREATE, OPEN, READ, WRITE, CLOSE,
and DETACH

This example sets up a hypothetical set of files, connections, and codes to illustrate
the proper order of input/output operations.

The first declarations include codes for
1. Errorrecovery, e.g., ATTA, CRE
2. Subscripts used with file pointers in créating connections, e.g., PAY, FTAX

3. Afile size (PAYSIZE) and a synonym for the type “WORD?”’ to identify names
that will be connections

The hypothetical files are

1. Payroli data,

2. Tax data for California and Federal returns
3. Data on terminated employees.

Only the files for payroll and terminations are explicitly handled in the example.

There are several points illustrated:
1. Before service routines can be used in input/output operations, the appropriate
pointers, buffers, connections, and pathnames must be declared and initialized.

2. Before files can be read or written, they must be opened via the DQ$OPEN
procedure. Prior to opening, they must be attached via the DQSATTACH func-
tion (for existing files) or created via the DQ$CREATE function (for new files).

3. When processing for a given file is over, the file should be closed via the
DQ$CLOSE procedure. If it will not be used again during this execution it may
be detached via the DQSDETACH procedure. This closes the file and removes its
name from the list of connected files.

4. Error checking is advisable after any service routine use.

2-26

"

Series III Programmer

PL/M-86 COMPILER READWR ITHF XAMELF

18IS~11 PL/M=86 V2,0 COMPILATION OF MODULE READWRITEEXAMPLE
OBJECT MODULE PLACED IN :F13$REAWRT.CRJ
COMPILER INVOKED BY: :F2:PLMB6 :#JiKEAwRT SRC

-

READSWRITESEXAMPLE: DO;

2 1 DOSATTACH: PROCEDUFRE (PATHSP, STATUS) WOKD EXTERNAL;
3 2 DECLARE (PATHSP, STATUS) POINTER;
4 2 END DOSATTACH:
5 1 DOSCLOSE: PROCEDURE (AFIN, STATUS) EXTERNAL;
6 2 DECLARE AFTMN WORD, STATUS FUINTER;
7 2 ENU DOSCLOSE?
8 1 DOSCREATE: PROCEDURE (PATHSP, STATUS) RORD EXTERNAL;
9 2 DECLARE (PATHSP, STATUS) FGINTEF;
10 2 END DQSCREATE?
11 1 DQSDETACH: PROCEDURE (CUMNECTION, EXCEPTSP) EXTERNAL;
12 2 DECLARE CONNFCTION @ORD, EXCEFTSP POINTER:
13 2 END DOSDETACH;
14 1 DQSCPEN: PROCEDURE (AFTN, MODE, MUMSBUF, STATUS) EXTERNAL:
15 2 DECLARE AFTN WORD, STATUS PUINTER:
16 2 DECLARE (MODE, NUMSBUF) BYTE;
17 2 END DQSOPEN;
18 1 DOSREAD: PROCEDURE (AFTN, BUFFER, COUNT, STATUS) ADDRESS EXTERNAL?
19 2 DECLARE (AFTN, CUUNT) WOKD;
20 2 DECLARE (BUFFER, STATUS) POINTER;
21 2 END DOSREAD;
22 1 DQSKRITE: PROCEDURE (AF1N, BUFFER, COUNT, STATUS) EXTERNAL:
23 2 DECLARE (AFTN, COUNT) WORD;
24 2 DECLARE (BUFFFR, STATUS) PGINTER;
25 2 END DOSWRITE:
26t MYSERKSCHK: PROCEDURE (SERVICESCODE,CAUSE) EXTEKRMAL;
27 2 DECLARE SERVIC¥.SCUDE BYTE, CAUSE wORD:
28 2 END MYSERRSCHK;
29 1 DECLARE (ATTA,CRE,CPE,CLU,wRI,REA,DET) WORD FXTERMAL;
30 1 DECLARE READ LITERALLY ‘17,
WRITE LITERALLY °2°,
READS®RITE LITERALLY °3°,
PAY LITERALLY °0°,
CTAX LITERALLY = °1°,
FTAX LITERALLY °2°,
TERM LITERALLY °3°,
PAYSSIZE LITERALLY °128°,
CONNECTION LITERALLY °WORD®;
31 1 DECLARE RECSSIZE (5) WORD INITIAL (PAYSSIZE);

PL/M-86 COMPILER READWRITEEXAMPLE

32 1 DECLARE FILESPTRS (2) POINTER:

33 1 DECLARE (PAYSREADSP,EMPLSTERM) POINTER,
PAYSBUF (PAYSSIZE) BYTE AT (@PAYSREADSP),
(GOT,COUNT) WORD INITIAL (0,0);

34 1 DECLARE (PAYSFILE,CTAXSFILE, TERMSFILE) CONNECTION;

35 1 DECLARE FILESNAMES1 (%) BYTE AT (@FILESFTRS (PAY))
INITIAL (11,°:F1:PAYROLL");

36 1 DECLARE FILESNAMES4 (¥) BYTE AT (GFILESPTRS (TERM))
INITIAL (6,°THMNBD');

37 1 DECLARE (1,ERR) WORD;

38 1 PAYSFILE = DQSATTACH (FILESPTRS(PAY),RERR);

39 1 IF ERR <> O THEN CALL MYSERRSCHK (ATTA,’PA®);

41 1 TERM$FILE = DQSCREATE (FILESPTRS(TERM),8ERR);

42 1 IF ERR <> O THEN CALL MYSERRSCHK (CRE,‘TR'};

44 1 CALL DQSOPEN (TERMSFILE,wRITE,2,RERR);

45 1 IF ERR <> 0 THEN CALL MYSERRSCHK (OPE, TR*);

47 i COUNT = RECSSIZE(PAY):

48 1 CALL DQSUPEN (PAYSFILE,READ,2,@ERR):

49 1 IF ERR <> 0 THEN CALL MYSERRSCHK (OFE,°PA*);

51 1 GOT = DQSREAD (PAYSFILE,PAYSREADSP,COUNT,BERR);

52 1 IF ERR <> O THEN CALL MYSERRSCHK (REA,°PA*);

54 1 PAY1: DO I = t TO GOT;
/% ASSUME EMPLSTERM FILLED SOMEWHERE IN THIS DO %/

55 2 CALL DQSWRLTE (TERMSFILE,@EMPLSTERM,PAYSIZE,RQERR);
56 2 IF ERR <> 0 THEN CALL MYSERRSCHK (WRI,“Tk’);
58 2 END PAY1;

59 1 CALL DQSCLOSE (TERMSFILE,@ERR);

60 1 IF ERR <> 0 THEN CALL MYSERRSCHK (CLG,"TR");

62 1 CALL DQSCLOSE (PAYSFILE,QERR);

63 1 IF ERR <> 0 THEN. CALL MYSERRSCHK (CLG, *PA°);

65 1 CALL DQSDETACH (TERMSFILE,RERR);

66 1 IF ERR <> 0 THEN CALL MYSERRSCHK (DET,°TR):

68 1 CALL DQSDETACH (PAYSF1LE,@ERR)}:

69 1 IF ERR <> 0" THEN CALL MYSERRSCHK (DET,°PA°);

/* ADDITOMAL CODE HERE %/
71 1 END READSWRLTESEXAMPLE;

PAGE

PAGE

1

2

Series 111 Operating System and the 8086-Based Environment

2-27

Series I1I Operating System and the 8086-Based Environment

2-28

MODULE INFORMATION:

CODE AREA SIZE = 019EH 4140
CUNSTANT AREA SIZE = 0000H 0D
VARIABLE AREA SIZE = 0020H 320
MAXIMUM STACK SIZE = 000AH 10D
92 LINES READ

0 PROGRA® ERROR(S)

END OF PL/M=-86 COMPILATION

Example Using GETSCONNECTIONSS$STATUS, SEEK,
WRITE, TRUNCATE, CHANGESEXTENSION

(To

be complete, this example would have to include several of the declarations of

the prior example.) It shows a hypothetical typed procedure that

1. Checks the access privileges of the file whose connection is sent as a parameter
(presumably write or update)

2. Seeks to a desired file position using a mode 4 seek, which goes to the end of file
minus a number of bytes, defined by another parameter

3. Writes over the file at that point using data from a buffer address supplied in the
call

4. Truncates the file to eliminate any old data left later in the file beyond what this
write replaced

5. Changes the extension of the file (a pointer to the name is a parameter) to reflect
the date of these changes. (Error processing is not shown.)

6. If all goes well, the procedure returns a zero. Errors along the way cause returns
of non-zero codes.

PL/M=86 CUMPILEFR GETCUONNFXAMPLE PAGE 1

ISIS-I1 PL/M=86 V2,0 CUMPILATLON CF MODULE GETCONNEXAMPLE
OBJECT MUDULE PLACED IN :F1:LATEST.UBJ
COMP1LERK INVOKED BY: (F2:PLM8b IF1:LATEST.SRC

25
27
28

GETSCONNSEXAMPLE: DG?

DQSCHANGESEXTENSION: PROCEDURE (PATHS$P,EXTENSIONSP,EXCEPTSP) EXTERNAL}
DECLARE (PATHSP,EXTENSIONSP,EXCEPTSP) POINTER;
ENC DQSCHANGESEXTEMNSION;

NN

DQSGETSCONNECTIONSSTATUS: PROCEDURE (CUNNECTION,INFOSP,EXCEPTSP) EXTERNAL;
DECLARE CONMECTION WORD;
DECLARE (INFOSP,EXCEPTSP) POINTER;
END DQSGETSCUNNECTIUNSSTATUS;

[NENER

DOSGETSTIME: PROCEDURE (D1SP,EXCEPTSP) EXTERNAL;
DECLARE (D1SP,eEXCEPTSP) POINIER?
END DQSGETSTIME;

[N

DQSSEEK: PROCEDURE (CONNECTION,MODE,HIGHSOFFSET,LOWSOFFSET,EXCEPTSP) EXTERNAL;
DECLARE (CONNECTIUN,HIGHSOFFSET,LOWSOFFSET) WORD;
DECLARE EXCLFTSP POINTER;
DECLARE MOCE BYIE?
END DOSSEEK;:

[SXSESENR

DOSTRUNCATE: PROCEDURE (CONNECTION,EXCEPTSP) EXTERNAL:
DECLARE CONMECTION WORD, EXCEPTSP POINTER?
END DOSTRUNCATE?

NN

DOSWRITE: PROCEDURE (CONNECTION,RUFSP,COUNT,EXCEPTSP) EXTERNAL;:
DECLARE (CONNECTI1ON,COUNT) WORD:
DECLAFPE (BUFSP,EXCEPTSP) POINIER;
END DQSWRITE;

NN -

-

LATESTSSUMMARIES: PROCEDUKRE (LEDGERSCONN,
LEDGERSP,
MTDSCOUNT ,
NEWSMIDSE,
NEWSCOUNT,
NEWSEXTSP) WORD:

DECLARE (LEDGERSCONN,MTDSCOUNT,NEWSCOUNT,ERR) WORD;

DECLARE (NEWSMTDSP,NEWSEXTSP,LEDGERSP) PUINTER;

DECLARE FILESDATA STRUCTURE (OPEN BYTE,ACCESS BYTE,SEEK BYTE,LOWSOFF WORD,
HIGHSOFF #wORD);

DECLARE DATER STRUCTURE (DATE (8) BYTE, TIME (8) BYTE);

N OONN

Series 111 Programmer

Series IIT Programmer

Series III Operating System and the 8086-Based Environment

29 2 CALL DQSGETSCONNECTIONSSTATUS (LEDGERSCONMN,@FILESDATA,@ERR);
30 2 IF ERR <> 0 THEN RETURN 1; /% NEED STATUS TO OPERATE */
32 2 IF FILESDATA.OPEN THEN /% SAFELY; FILE MUST BE OPEN %/
33 2 pO;
34 3 IF FILESDATA.ACCESS < 4 THEN RETURN 2;
/% ACCESS MUST BE WRITE OR UPDATE #/
36 3 IF NOT FILESDATA.SEEK THEN RETURN 37
/% SEEK FORWARD MUST BE SUPPORTED */
PL/M-86 CCMPILER GE TCONNE XAMPLE PAGE
38 3 CALL DQSSFEK (LEDGERSCONN,4,0,MTDSCOUNT,@ERR);
/% TO ENDFILE LESS COUNT */
39 3 IF ERR <> 0 THEN RETUKN 4;
41 3 CALL DOSWRITE (LEDGERSCUNN,@NEWSMTILSP,NEWSCOUNT,@ERR);
/% KEPLACE SUMMARIES WITH LATEST */
42 3 1F ERR <> 0 THEN RETURN 5;
a4 3 CALL DQS$STRUNCATE (LEDGERSCONN,QERR);
/% END THE FILE AFTER CURRENT DATA %/
45 3 IF ERR <> 0 THEN RETURN 67
47 3 CALL DQSGETSTIME (@DATEK,RERR);
48 3 IF ERR <> O THEN RETURN 7;
50 3 DATER.DRIE (2) = * °;
51 3 CALL DOSCHANGESEXTENSION (PLEDGERSP,8DATER.DATE(0),@ERR)?
52 3 IF ERR <> 0 THEN RETURN 8;
54 3 RETURN 03
55 3 ENDZ
ELSE
56 2 RETURN 9;
57 2 END LATESTSSUMMARIES;
58 1 END GETSCONNSEXAMPLE;

MODULE INFORMATION:

END OF PL/M-86 COMPILATION

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZt
73 LINES READ
0 PROGRAM ERROR(S)

= 010AH 266D
= 0000H oD
= 0019H 25D
= 001aH 26D

Echo Program Example

This program example enables the user to type in characters from a console. The
console output device then echoes back the same characters that were typed in.

ERR$CHK is a procedure whereby a check is made after each service routine to
determine if the routine has executed properly. If an error is found, the routine
DQ$DECODESEXCEPTION returns a string of characters containing a formatted
error message. This error message, in turn, is displayed to the console output device
before an exit from the program is performed.

BEGIN is the start of the program whereby a sign-on message. is displayed to the

user.

AGALIN is the main loop of the program, where the writing and reading is done. If
the first character typed in by the user is an ‘E’, an exit will be performed.

PL/M~86 COMPILEK ECHOPG™ PAGE

1SIS-11 PL/M=86 V2.0 COMPILATIOR OF MCDULE ECHOPGM
OBJECT MODULE PLACED IN :F13EPG.UEJ
COMPILER INVOKED BY: :F2:PLM86 :F1:EPG.SRC

-

NN AwWwN

NN

XY

ECHOSPGM: DO;

DOSATTACH: PROCEDUFE (PATHSP, STATUS) WORD EXTERNAL;

DECLARE (PATh$P, STATUS) POINIER:
END DQSATTACH:

DQSCLOSE: PROCEDURE (AFTN, STATUS) EXTERNAL;

DECLARE AFTN WORD, STATUS POINTER;
END DOSCLOSE;

1

2-29

Series 111 Operating System and the 8086-Based Environment Series III Programmer

8 1 DOSCREATE: PROCEDURE (PATHSP, STATUS) WORD EXTERNAL;
9 2 DECLARE (PATHSP, STATUS) POINTER;

10 2 END DOSCREATE;:

11 1 DQSDPECODESEXCEPTION: PROCEDURE (ERRNUM, EXCEPTIONSP, STATUS} EXTERNAL;
12 2 DECLARE ERRNUM WORD;

13 2 DECLARE (EXCEPTIGNSP, STATUS) POINTER:

14 2 END DQSDECODESEXCEPTION;

15 1 DQSDETACH: PROCEDURE (CONNECTION, EXCEPTSP) EXTERNAL;

16 2 DECLARE CONNECTION WORD, EXCEPTSP PUINTER;

17 2 END DQSDETACH;

18t DOSEXIT: PROCEDURE (COMPLETIONSCODE) EXTERNAL;

19 2 DECLARE COMPLETIONSCODE WORD;

20 2 END DQSEXIT:

22 1 DQSOPEN: PROCEDURE (AFTN, MODE, NUMSBUF, STATUS) EXTERNAL:

22 2 DECLARE AFTN WORD, STATUS POINTER;

23 2 DECLARE (MODE, NUMSBUF) BYTE;

4 2 END DQSOPEN;

25 1 DOSREAD: PROCEDURE (AFTN, BUFFER, COUNT, STATUS) ADDRESS EXTERNAL;

2% 2 DECLARE (AFTN, COUNT) WORD:

27 2 DECLARE (BUFFER, STATUS) POINTER;

8 2 END DQSREAD:

29 1t DOSWRITE: PROCEDURE (AFTN, BUFFER, COUNT, STATUS) EXTERNAL:
30 2 DECLARE (AFTN, COUNT) WORD;
3 2 DECLARE (BUFFER, STATUS) POINTER;
32 2 END DQSWRITE;
33 0t DECLARE (STATUS,ACTUAL) ADDRESS;
38 1 DECLARE STATUSSPTR (80) BYTE;S

1 DECLARE BUFFER (128) BYTE;
6 1 DECLARE CRSLF (2) BYTE DATA (ODH,0AH):
7T 1 DECLARE SIGNSONSMSG (%) BYTE INITIAL
(*THIS TEST PROGRAM ECHOES THE CHARACTERS YOU HAVE TYPED IN...°,O0DH,0AH,
“T0 EXIT TYPE IN "E" <CR>‘,0DH,0AH,0AH);
38 DECLARE (RSCONN,WSCONN) ADDRESS PUBLIC:
PL/M+86 COMPILER ECHOPGM PAGE 2

39 1 ERR$SCHK: PROCEDURE RUBLIC;
0 2 ¥F STATUS <> 0 THEN
41 2 [1eH
42 3 CALL DQSDECODESEXCEPTION (STATUS,RSTATUSSPTR,@STATUS);
43 3 CALL DQSWRITE (WSCUNN,@STATUSSPTR(1),STATUSSPTR(0),eSTATUS);
4 3 CALL DQSwRITE (WSCONN,RCRLF,2,@STATUS);
45 3 CALL DQSEXIT €0);
46 3 END;
47 2 END ERRSCHK:
48 1 W$SCONN = DQSCKEATE (@(4,°:C0:°),@STATUS);
49 1 CALL ERRSCHK?
50 1 RSCONN = DQSATTACH (R(4,°:CI:*),@STATUS);
51 1 CALL ERRSCHK3: .
52 1 CALL DQSOPEN (wSCONN,2,0,8STATUS);
53 1 CALL ERRSCHK;:
s4 1 CALL DQSOPEN (RSCONN,1,0,@8STATUS);
55 1 CALL ERRSCHK;
56 1 BEGIN: /% WRITE TO THE CONSOLF. THE SIGN=ON MESSAGE FOR THE USER */
CALL DQSWRITE (WSCONN,@CRSLF,2,@STATUS):
57 1 CALL DQSWRITE (wS$CONN,@CKS$LF,2,8STATUS):
58 1 CALL ERRSCHK;
59 1 CALL DQSWRITE (WSCONN,@SIGNSONSMSG,LENGTH(SIGNSONSYSG),@STATUS);
60 t CALL ERRSCHK;
61 1 AGAIN: /% BEGIN ECHO LOGP */
CALL DQSWRITE (WSCONN,@CKSLF,2,8STATUS):
62 1 CALL ERRSCHK:
63 i CALL DQSWRITE (wSCONN,R¢°? °),3,R@STATUS);
64 1 CALL ERRSCHK:
65 1 ACTUAL = DQSREAD (RSCONN,@BUFFER,128,8STATUS);
66 1 CALL ERRSCHK; *
67 1 IF BUFFER(0) = ‘E° THEN
68 i Doz
69 2 CALL DQSCLOSE (wSCUNN,@STATUS);
70 2 CALL ERRSCHK:
7t 2 CALL DQSCULNSE (RSCONN,@STATUS);
72 2 CALL ERRSCHK:
73 2 CALL DQS$DETACH (WSCONN,@STATUS);
74 2 CALL ERRSCHK;
% 2 CALL DQSDETACH (RSCONMN,@STATUS):
76 2 CALL ERRSCHK:
17 2 CALL DQSEXIT (0):
78 2 END?
ELSE
19 1 Do;
80 2 CALL DOSWRITE (wSCONM,Q(°=> °),3,RSTATUS):
81 2 CALL. ERRSCHK;
82 2 CALL DQSWRITE (wSCUNk WBUFEER,ACTUAL (@STATUS)?
83 2 CALL ERRSCHK:
84 2 GUTG AGAIN:
85 2 END;
86 1 END ECHOSPGM;

2-30

Series III Programmer Series 111 Operating System and the 8086-Based Environment

PL/M=86 COMPILER ECHUPGM PAGE 3

MODULE INFORMATIONZ

CODE AREA SIZE = O01ACH 4280
CONSTANT AREA S1ZE = 0012H 18D
VAKIRBLE AREA SIZk = 0131H 305D
MAXIMUM STACK SI2E = OOQUEH 140

109 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M=86 COMPILATION

2-31

CHAPTER 3
ISIS-Il AND MONITOR
SERVICE ROUTINES

The routines available under ISIS-II and the Monitor are listed alphabetically in
table 3-1.

As shown in table 1-3, many are similar to those available under Series I11.

Under ISIS-II, there are 15 system service routines: 7 in file management, 3 in
maintenance of disk directories, 3 for console control, and 2 for transfer of execu-
tion control.

Under the Monitor, there are 13 additional services: 7 input/output (1/0) interface
routines, 3 status checks, and 3 services relating to I/0 device configuration. The
Monitor is described more fully in the Intellec Series III Console Operating
Instructions.

The routines have been grouped by function to make it easy to see the features they
have in common. Table 3-1 indicates in what group you can find the discussion of
each routine. (M means monitor routine.)

Table 3-1. Index from Routine to Discussion

IS1S-1l and Discussed in

MONITOR Routines Group Named
ATTRIB Disk Directory Maintenance
cI (M) Console Input
CLOSE File Management
co (M) Console Output
CONSOL Console Control
CSTS (M) Console Input Status
DELETE Disk Directory Maintenance
ERROR Console Control
EXIT Execution Control
I0CHK (M) Configuration Check
IODEF (M) User-Defined Devices
I0SET (M) Configuration Set
LO (M) List Output
LOAD Execution Control
MEMCK (M) RAM Size Check
OPEN File Management
PO (M) Punch Output
READ File Management
RENAME Disk Directory Maintenance
RESCAN File Management
RI (M) Reader Input
SEEK File Management
SPATH File Management
Ul (M) UPP Input (Series Il only)
uo (M) UPP Output(Series ll only)
UPPS (M) UP Status (Series Il only)
WHOCON Console Control
WRITE File Management

For effective use of system resources, e.g., memory and disk files, you must know
the parameters expected by these routines and the assumptions that validate them.
Further, your choice of where in memory to put your program must take into con-
sideration how memory is organized under ISIS-II.

This organization is discussed in the next section, service parameters and assump-
tions in the one following, and line-edited input in the next, before the detailed
discussions of each routine.

The Ul, UO, and UPPS routines do not apply to the Model 800. See the UPP con-
trol commands (Compare, Program PROM, and Transfer PROM) described in the
Intellec 800 Microcomputer Development System Operator’s Manual (9800129).

3-1

ISIS-II Services Series III Programmer

Memory Organization and Allocation

The organization of Intellec memory under ISIS-II is shown in the following

illustration:
64K (FFFFH)
MONITOR
- - _\62K (F800H)
[I
PROGRAM AREA
AND ISIS
NONRESIDENT AREA
}— — — — — —— — —1 PROGRAM BASE ADDRESS > = 3180H
VACANT AREA
. — — — — — — ——] TOP OF BUFFER AREA > = 3180H
BUFFER AREA
BUFFER BASE ADDRESS = 3000H
1SIS RESIDENT AREA
LOCATIONS 24-63 (18H-3FH)
USER INTERRUPTS 3-7
ISIS INTERRUPTIS 0,1,2
Interrupt Vectors

Interrupts O through 2 are reserved for ISIS-II and the Monitor. Interrupts 3
through 7 are available for use within your program. However, other Intel software
products can also use interrupts 3 through 7. When using interrupt, you must be sure
to avoid conflicts with Intel software. These locations, 24 through 63, are the only
locations below 12k (3000H) that can be loaded with user code. Loading other loca-
tions below 12k is not allowed.

The Kernel

The ISIS-II resident area is reserved for the kernel, that part of ISIS-II that is always
resident in RAM memory. It may be viewed as a collection of subroutines. Although
the kernel is protected from a program load operation, it is not protected from an
executing program, which may accidentally destroy the integrity of ISIS-II by
writing into this area. This will cause subsequent errors when system services are
requested.

Input and Output to Files

User programs perform input/output (I/0) by making calls to the kernel, i.e.,
system calls. All 1/0 occurs to or from *‘files’’ and is status-driven rather than
interrupt-driven. Interrupts 0, 1, and 2 are reserved for ISIS-II and must not be
masked or altered by your programs.

3-2

Series III Programmer

A ““file’’ is an abstraction of an 1/0O device, considered to be a collection of informa-
tion, usually in machine-readable form. A file can be formally defined as a sequence
of 8-bit values called ‘“‘bytes.””

ISIS-1I usually places no semantic interpretation on the byte values of a file, with the
exception of lined files (see below). Programmers, programs, and devices frequently
interpret the bytes as representing ASCIlI values, and thereby characters.

Programs receive information by “‘reading’’ from an ‘‘input file’’ and transmit
information by ‘‘writing’’ to an ‘‘output file.”’

A major purpose of ISIS-II is to implement files (called ‘‘disk files’’) on
diskettes/platters.

“Diskette’’ is the recording medium for floppies while ‘‘platter’’ is the recording
medium for the hard disk; ‘‘drive’’ is the mechanism on which the medium is
mounted; ‘‘disk’’ is the drive together with a mounted diskette/platter. Where the
meaning is unambiguous, “‘disk”’ is often used in place of ‘‘diskette’’ and ‘‘platter.”

Every disk file is identified by a name unique on its diskette/platter, which has 2
parts: a filename and an optional extension. A disk file’s filename is a sequence of
from 1 to 6 ASCII characters; an extension is a sequence of from I to 3 ASCII
characters. To facilitate name specification within command strings, these ASCII
characters are constrained to be letters and/or digits.

For every non-disk device supported by ISIS-II, there are one or more associated
files, each identified by a name consisting of a pair of ASCIH characters between
colons (see Appendix G for a complete list). Disk drives also have names, which are
used as prefixes to filenames, specifying where the file resides.

No file can exist on more than 1 physical device. In particular, a disk file must reside
entirely on one diskette/platter.

Three files (:BB:, :Cl: and :CO:) deserve special mention:

ISIS-1I supports a virtual input/output device known as a ‘‘Byte Bucket (:BB:).
This device acts as an infinite sink for bytes when written to, and a file of zero
length when read from. Multiple opening of :BB: is allowed; each open returns
a different connection number (AFTN). (See below.)

ISIS-II supports a virtual console known as ‘‘the Console,” which is
implemented as 2 files, an input file (:CI:) and an output file (:CO:). These 2
files are always ‘‘open.”” :CI: is always a ‘‘lined file,”” :CO: is its associated
“‘echo file.”” (Quoted terms are discussed later in this section.) Each is a
pseudonym for some file corresponding to an actual physical device. After a
cold start of ISIS-II (see Intellec Series 111 Console Operating Instructions), :CI:
and :CO: will reference either the teletype (:T1: and :TO:) or the video terminal
(:VE and :VO:), which will be called the ‘“cold start Console.”” User programs
may change the definition of the two halves of the Console from one physical
device to-another.

Whenever an end of file is encountered on :CI:, then both :CI: and :CO: are
automatically redefined to the cold start Console.

It is always from the current Console that the Command Line Interpreter (CLI)

obtains its command lines. Briefly, each. command contains a generalized keyword
which specifies either a user program or CLI command. If the former, CLI causes
that program to be loaded and run; otherwise CLI performs the indicated command
and reads another command line..

ISIS-II Services

3-3

ISIS-1II Services Series III Programmer

Buffers

The buffer area is used by ISIS-II for input/output buffers of 128 bytes each. One
permanent buffer is used by ISIS-II for console input/output. Other buffers are
allocated and deallocated dynamically for you by ISIS-II according to the
input/output requirements of your program. These requirements come from your
explicit system calls to ISIS-1I or are derived from your source code by the translator
you used (e.g., PL/M or assembler).

The minimum size of the buffer area is 384 bytes, allowing for three buffers
including the ISIS-II permanent buffer. If your program requires more than two
buffers, the buffer area increases at the expense of the vacant area.

Computing Program Base Address

Program Area

The program area is above the buffer area. It is used alternately by your programs
and ISIS-II.

Nonresident ISIS-II routines (all commands except DEBUG) run in the program
area. These include the command interpreter, the editor, assembler, compiler,
linker, locater, and library manager. Whenever you communicate with ISIS-II via
console commands, you are using the nonresident command interpreter running in
the program area. These nonresident ISIS-II routines may use all available RAM for
buffers.

Therefore, if your programs must be permanently resident, they should be placed in
ROM, or in RAM that is physically not next to the first contiguous block of RAM.

Monitor Area

The Monitor occupies the top 2k of memory. Addresses FSOOH to FFFFH are
shadowed by the Monitor ROM. If your memory configuration encompasses those
addresses, they cannot be written. The Monitor also uses the top 320 bytes of con-
tiguous RAM for its workspace.

The first 32k of memory must be RAM. Above 32k, memory can be any combina-
tion of ROM and RAM. The Monitor MEMCK routine can be called if a program
needs to know the highest available location of contiguous RAM (below the Monitor
workspace).

Base Address of Your Program

You determine your program’s base address by commands to LOCATE (or by an
ORG statement in 8080/8085 assembly language absolute programs).

Before deciding the base address, you must determine the maximum area required
for buffers under ISIS-II. The number of buffers varies during execution, but the
buffer area must be large enough for the maximum number of buffers allocated
simultaneously.

If you locate the base address of your program below 3180H (or allocate fewer than

3 buffers), an error message is generated. If you allocate more than 19 buffers, an
error message is generated.

34

Series III Programmer ISIS-II Services

The program base address can be calculated using the following formula:
12,288 + (128 * N)

where N is the maximum number of buffers required simultaneously by your pro-
gram. Use the following rules to determine N:

1. Each open disk file requires two buffers until the file is closed.

2. An open line-edited file (e.g., :CI:) requires one buffer until the file is closed.
For a disk file, this buffer is in addition to the two required in rule 1.

3. ISIS-II processing of system calls requires two buffers.

If a CONSOL system call assigns the console input and output to a disk file,
three buffers are required for the console input file and two more for the con-
sole output file. These buffers are required until the program exits or otherwise
terminates execution. If you plan to have a program called by a system com-
mand in a SUBMIT file, you must also allow for these buffers in determining
where in memory to put the origin point of that program.

Example 1:

A program that has no system calls, does not assign the console to a disk file, and is
not called by a command in a disk file, needs three buffers. Therefore, it can have a
base address of 3180H. If the program is changed to open one disk file (other than
:CI:), it needs five buffers, and the base address must be 3280H:

3000H + (128 * 5) = 3280H ; 3000H = 12288 decimal

If this same program were to be called from a SUBMIT file and then defined the
console output device also as a disk file, four more buffers would be needed, requir-
ing an address of 3480H:

3000H + (128 * 9) = 3480H
Example 2:

Suppose a program opens a line-edited disk file (3 buffers) and an echo file on disk
(2 buffers). Assuming console input is open but not a disk file, three buffers are
required for console and system use. The program origin point is calculated as
follows:

3000H + (128 * 8) = 3400H

NOTE

If you want to write a program independent of the type of device used for
data transfers and also independent of how it is called (from the console or
from a SUBMIT file), you should allow for the maximum number of
buffers it might need. This means that for any open non-lined file you
would allow two buffers, and three buffers for each lined file, whether or
not it is a disk file. You would also allow a total of seven buffers to handle
console input and console output, whether or not they are disk files, and
two for system processing of system calls.

General Parameter Discussion

The parameters to system service routines presume certain uses. If you understand
the intended usage, you will readily see the reasons for the parameters and how to
specify them to achieve your purposes.

3-5

ISIS-II Services Series I11 Programmer

The easiest one to understand, used by every routine, is status$p: This address is
filled with a non-zero error code if the service operation could not complete its task
normally. (Appendix G gives these codes and their meanings.)

Arguments

To invoke the execution of a program, you can type its name at the console, e.g.,
PROGRM. PROGRM may have options that can be specified on that invocation
line. If so, the remainder of that line (after the program name) is called a ‘‘command
tail.”’

This command tail is accessible to PROGRM via ISIS-II system calls to READ or
RESCAN, as described later in this chapter. These routines can handle, in similar
fashion, any file that you create to be read as if it were the console. These are called
““lined’” or line-edited files and are discussed in the next section. The PROGRM
using them can then alter its mode of operation depending on the options specified
with each invocation, adding flexibility to the user-interface of your programs.

Connections

ISIS-11 maintains a list of twelve devices or files that your program may use during
its execution, i.e., a list of ‘‘connections.”” A connection is a word, named and
declared by you, filled by the system service routine OPEN.

You then use this word to specify that file or device whenever you need to perform
any operation on it, i.e., to read, write, seek, rescan, or close it.

The list is also called an Active File Table, and the entries on it Active File Table
Numbers, or AFTNs. Only objects on this list can be used for input/output opera-
tions. Such operations are accomplished using the connection rather than the actual
device or file name. During execution, your program may perform these functions
on multiple files, but only six may be open at one time (not counting console input
:CI: and console output :CO:). When I/0 actions for a given file are complete or
the file will not be needed for the next phase of program activity, it can be closed to
make room for other files that may be needed sooner.

Function References

Several Monitor routines are used as functions; i.e., they are invoked as part of an
expression or a parameter list rather than being called. The charts later in this
chapter show the necessary usage by the placement of terms such as ‘‘byte§p’’ or
“byte$out’’ or ‘‘prom$addr’’ to indicate names or addresses you must supply.

Input/Output Parameters

In order to perform a READ or a WRITE, several questions must be answered
unambiguously:

1. How many bytes are to be transferred?
2. To (or from) what file?
3. From (or to) what memory locations?

In the descriptions that follow, (1) is usually supplied as the parameter count, and
(3) as the parameter buffer§p, the address of the locations to be read from or written
into.

Series 111 Programmer

Question (2) naturally requires an ISIS-II pathname, e.g., :F1.:.YOURDA.TAI ,
which can be up to 14 characters long in the format shown. This format for a string
differs from the one used under the Series I1I operating system in two respects: it
does not begin with a count of the characters to follow, and it must end with a non-
valid pathname character. ISIS-1I interprets the first non-valid pathname character
encountered as marking the end of the string. Thus the last character before the non-
valid character is the last character in the string.

Rather than require you to give the name of each file every time you do any
input/output, ISIS-II maintains the table of active files mentioned above. One call
to OPEN establishes the full name as an entry in this table and returns to you a con-
nection number for your use in all further references to this file while it is in use.

Terms

If you have used earlier ISIS systems, you will notice a change in the terms
describing some parameters for system calls. The parameters have not changed. The
new terms highlight similarities between ISIS-II and Series I1I in both concept and
usage.

In several cases the change is simply appending the characters ‘‘$p’’ to each term
which is actually used as an address rather than as the value stored at that address.
In the PL/M calls to the routines, you simply use the dot operator to provide the
address of the variable you declared for use in these routines.

In other cases, there is a new name. For example, conn is used instead of AFTN to
represent a connection to a file (formerly called an active file table number, as
above). The pointer to this connection, giving its address, is called conn$p where it
was formerly named AFTNPTR.

The syntax charts introducing each functional grouping of commands show the
placement of each parameter, and the examples given with each individual com-
mand illustrate actual declaration and usage.

Line-Edited Input Files

ISIS-II provides a special way of reading ASCII files, called line-editing. Line-
editing was designed for (but is not restricted to) the case of a human user, prone to
err, typing characters at a keyboard. The rubout key and control characters dis-
cussed below allow you to correct mistakes and then transmit a perfect line by typing
a carriage return (to which a line feed is appended automatically).

You tell ISIS-II that a file is to be line-edited by supplying a parameter in the OPEN
system call. This call must also specify an echo file you opened earlier, because every
line-edited file must have an associated file to which ISIS-II sends an echo of the
input. If no echo is desired, the byte bucket (:BB:) can be opened as the echo file.

Terminating a Line

While a line is being physically entered from an input device, it is accumulated by
ISIS-II in a 122-character line-editing buffer. When an editing character (described
below) is entered, ISIS-II changes the contents of the buffer. No data is transferred
to the requesting program until the line is terminated in one of three ways:

® Aline feed is entered (automatically appended to every carriage return)
* An escapeis entered
* A non-editing character is entered as the 122nd character

ISIS-II Services

ISIS-II Services Series III Programmer

Reading From the Line-Edit Buffer

When the line has been terminated, the next (or pending) READ system call
transfers the specified number of bytes of data from the line-editing buffer to the
requesting program’s buffer. When the number of bytes entered from a lined READ
is greater than the number requested, ISIS-II keeps track of what characters have
been read from the line-editing buffer. The remaining bytes are returned in response
to subsequent READs.

For example, if the line-editing buffer contains 100 characters and you issue a
READ system call with a count of 50, the first 50 characters are transferred to the
program’s buffer. The next READ system call transfers characters starting at the
51st character. The term MARKER is used in later discussions of this chapter to
represent the position of the next byte to be processed.

If the READ system call requests 100 bytes and the line-editing buffer contains 50,
only 50 bytes are transferred.

A READ call returns bytes from only one logical line at a time. This means only up
to 122 ““uncancelled’’ characters. Thus READ’s of line-edited files often transfer
fewer bytes than requested by count.

A READ system call returns no characters from a logical line until the line has been
input in its entirety. Thus, during physical input, the logical lineis accumulated in an
internal buffer; no information in the buffer is transferred to the reading program
until the termination character (normally a LF) is seen. Therefore ISIS-II has the
opportunity to modify buffer contents conditionally on values entering the buffer.
This is the mechanism of line editing which permits the manipulations described
below.

When all the characters in the line-editing buffer have been read, the buffer pointer
is positioned after the last character; the buffer is not yet cleared. In fact, the
RESCAN system call can be used to reposition the buffer pointer to the beginning of
the line-editing buffer so subsequent READs can reread the contents.

When the buffer has been completely read, with the pointer after the last character,
a new READ system call will transfer new input from the line-edited file into the
line-editing buffer. When the line is terminated, the number of characters requested
by READ are transferred to the program.

Editing Characters

The following characters are used to edit the input of a line-edited file. Control
characters are entered by holding down the control key (CTRL) while the character
is typed.

RUBOUT Pressing RUBOUT deletes the preceding character from the
buffer.

CONTROL P A CONTROL P causes the next character typed to be entered
literally in the line-editing buffer. Use control P when you want
an editing character or terminating character to be entered in
the buffer rather than to cause its usual editing or terminating
function.

CONTROLR A CONTROL R causes a carriage-return/line-feed to be sent to
the console output device, followed by the current undeleted
contents of the buffer. It has no other effects.

Series I1I Programmer

CONTROL X CONTROL X causes the entire contents of the buffer to be
deleted, including itself. It is echoed as a #, carriage return, line
feed.

CONTROL Z CONTROL Z is the only way to indicate end-of-file from a
keyboard input device. It acts like control X except that it has
no echo and it causes the READ system call to return
immediately without transferring any characters, thus
simulating an end-of-file. If more characters are entered after
the control Z, they are entered in the line-editing buffer and
can be read by a subsequent READ system call.

Reading a Command Line

Reading a command line from the console input device is a special case of reading a
line-edited file.

When a command is entered at the console, it is collected by ISIS-II in the line-
editing buffer for :CI: and is not available to the command interpreter (a nonresi-
dent ISIS-1I routine) until it is terminated. The command interpreter reads only the
command name and then calls the program with that name, leaving the line-editing
buffer pointer positioned after the command name. The loaded program can issue a
READ which transfers data starting with the first parameter; or the program can
issue a RESCAN to position the pointer to the beginning of the buffer so it can also
read the command name.

For example, suppose the following command has been entered:
—TYPE :F1:PROGA.SRC(CR—LF)

The line-editing buffer for :CI: contains 20 characters as follows (the CR means
carriage return, LF means line feed):

When the TYPE program is loaded, the buffer pointer is at the fifth character (the
space following TYPE). A READ call starts transferring characters at the fifth
character. New input from :CI: to the line-edit buffer does not happen until the
buffer pointer is moved to the end of the buffer (after the 20th character) aid a
READ call is issued.

Remember that when control is passed to the loaded program, the buffer pointer is
positioned after the command name, not at the end of the buffer. This means that if
no parameters are passed, the first READ from :CI: returns the carriage-
return/line-feed left from the command line. For example, suppose the following
command has been entered:

—PROGA.BIN(CR—LF)

and the line-editing buffer contains 11 characters as follows:

ISIS-I1 Services

ISIS-II Services Series III Programmer

When PROGA.BIN is loaded, the pointer is at the carriage return. If subsequent
input is expected from the console input device, an extra READ must first be issued
to clear the buffer of the carriage return-line feed.

If the program does not read from :CI:, the remaining carriage-return/line-feed is
cleared by ISIS-II from the buffer before a new command is read by the command
interpreter (e.g., after PROGA.BIN exits).

Summary of System Calls

The ISIS-II and Monitor services that can be called by your program include the
following:

* Input/output operations for the disk and the standard Intellec peripherals,
except the Universal PROM Programmer (OPEN, CLOSE, READ, WRITE,
SEEK, RESCAN, SPATH)

¢ Disk directory maintenance (ATTRIB, DELETE, RENAME)

* Console device assignment and error message output (CONSOL, WHOCON,
ERROR)

¢ Program loading and execution and return to the supervisor (LOAD, EXIT)

* Monitor 1/O routines for control of peripheral devices (CI, CO, RI, PO, LO,
Ul, UO) ‘

* Monitor status routines for peripheral devices (CSTS, UPPS, IOCHK, IOSET,
MEMCK)

* Monitor routine to extend I/0 system to user written drivers IODEF)

The interface to these services is a call to ISIS-II that specifies the services desired
and the address of the parameter list the supervisor is to access. The specific calling
sequences are described with the call descriptions. Note that an ISIS-II routine does
not use your stack. Your stack depth is not affected by the call. A call to ISIS-II
destroys the contents of the CPU registers.

The system calls are described in terms of their operation and the parameters your
program must supply.

To clarify the effect of certain system calls on your files, two.integer quantities,
LENGTH and MARKER, are associated with each file in this description.
LENGTH is the number of bytes in the file. MARKER is the number of bytes
already read or written in the file (that is, it acts as a file pointer).

System Call Syntax and Usage

Many of the ISIS-II system calls have names and functions similar to those of the
ISIS-1I commands discussed in the Intellec Series III Console Operating Instructions
Manual. This is true because use of ISIS-II by another program is essentially the
same as your use of ISIS-II when seated at the console.

The ISIS-1I system routines can be called from your PL/M or Assembler Language
programs. If your program does make an ISIS-II system call, you must remember to
link your object program with SYSTEM.LIB using the LINK program.

SYSTEM.LIB is a library file supplied with the ISIS-II system disk. It contains the

procedures necessary to interface your programs containing ISIS-1I system calls with
the ISIS-11 system.

3-10

Series IHI Programmer

PL/M Calls

Your PL/M program can interface to ISIS by performing calls to procedures in
SYSTEM.LIB. Your program must include external procedure declarations so the
proper procedures from SYSTEM.LIB will be included with your program by
LINK. These external procedure declarations may be declared as type address, but
may also be values as well as addresses of values.

Assembly Language Calis

The interface between the 8080/8085 Assembler Language program and ISIS is
accomplished by calling a single ISIS entry point (labeled ISIS) and passing two
parameters. The first parameter is a number that identifies the system call; the
second is the address of a control block that contains the additional parameters
required by the system call. The first parameter is passed in register C, and the
address of the control block is passed in the register pair DE. The entry point must
be defined in your program as an external:

EXTRN ISIS.

The ISIS entry point is defined in a routine in SYSTEM.LIB that must be included
in your program. Use LINK, specifying the-name of your program followed by the
name SYSTEM.LIB. See the MCS-80/85 Utilities User’s Guide for more
information on LINK.

System call identifying numbers can be defined in EQUATE statements before they
are referenced in your program. This allows you to reference these routines symbol-
ically. Only the specific system: calls needed by your program need be defined. Table
3-2lists the identifying numbers for the system calls.

Table 3-2. System Call Identifiers

SYSTEM CALL IDENTIFIER
OPEN 0
CLOSE 1
DELETE 2
READ 3
WRITE 4
SEEK 5
LOAD- 6
RENAME 7
CONSOL 8
EXIT 9
ATTRIB: 10
RESCAN: 11
ERROR: 12
WHOCON. 13
SPATH: 14

File Input/Qutput Calls

Seven system: calls are available to your program for controlling file input/output.
These subroutines let you open files for read or write operations, move the pointer in
an open file, and close the files:when you’re finished.

These: services of the supervisor enable you to transfer variable-length blocks of data
between standard peripheral devices and a memory buffer area in your program: In
addition to the data transfer buffer in your program area, the disk supervisor

ISIS-II Services

3:11

ISIS-1I Services Series III Programmer

requires two 128-byte buffers for each open disk file. This buffer is located in the
buffer area described in the memory layout in Memory Organization and Alloca-
tion. These calls establish and maintain the MARKER and LENGTH quantities
associated with each file in use.

System Call Cautions

ISIS-11 references files by a connection number (AFTN, or active file table number).
Be careful not to confuse this number with the PL/M construction .AFTN. The
period (.) specifies the address of the memory location where the AFTN is stored.

To reduce this potential confusion, both the syntax charts and the sample PL/M
declarations in the examples refer to the connection number as conn, and to the
address as conn$p. Then in the CALLSs of the PL/M examples, periods precede the
names when addresses are to be supplied.

Similarly, the charts and declarations show path$p to represent the address of a
memory location containing the string naming a device or file. The CALL then
shows a period before the variable you declared to hold that string.

i

OPEN H (conn$p, w», access, echD——b

H (conn, HbufSp,coum, actual@—b
WRITE (conn, H butsp, count,)]
—b(SEEH (conn, Hode. block$p, byle@—b

CLOSE (conn,) -

L—(spath)—»((patnsp, intosp,) >
J 12161811

-

READ

)

ISIS-II File Management Routines

Good programming practice suggests status checks when making system calls. This
is similar to the use of excep$p under Series III in Chapter 2. Refer to the TYPE
program in Appendix E for an example of how status checks are used.

OPEN - Initialize File for Input/Output Operations

The OPEN call initializes ISIS tables and allocates buffers that are required for
input/output processing of the specified file. If the specified file is a punch device
(:HP: or :TP:), 12 inches of leader (ASCII nulls) are punched.

Series I1I Programmer

You must pass five parameters in the OPEN call:

1.

conn$p, an address of a two byte field in which ISIS will store the connection
number (AFTN) of the file that is opened. Your program will use this value for
other calls relative to this file. :CI: and :CO: are always open and have the
AFTNs 1 and 0 permanently assigned. Excluding :CI: and :CO:, you can only
have six files open at any one time. Be careful not to confuse AFTN with the
PL/M construction .AFTN. The period prefacing . AFTN signifies the location
in memory of AFTN.

path$p, the address of the ASCII string containing the name of the file to be
opened. The ASCII string can contain leading space characters but no
embedded space characters. It must be terminated by a character other than a
letter, digit, colon (:), or period (.). A space can be used.

access, a value indicating the access mode for which the file is being opened.

A value of 1 specifies that the file is open only for input to the system: READ.
MARKER is set to 0 and LENGTH is unchanged. If the file is nonexistent, a
nonfatal error occurs.

A value of 2 specifies that the file is open only for output from the system:
WRITE. MARKER and LENGTH are set to 0. If the file is nonexistent, a disk
file is created with the filename specified at location path$p, and all attributes of
the new file are reset (0). If it already exists, information in the file will be over-
written. Specifying a file whose format or write-protect attributes are set causes
a nonfatal error.

A value of 3 specifies that the file is open for update: READ and WRITE.
MARKER is set to 0. LENGTH is unchanged for existing files and set to 0 for
new files. If the file is nonexistent, a new file is created with the filename
specified at location path$p, and all attributes are reset (0).

Opening a file for an access mode that is not physically possible causes a non-
fatal error, e.g., opening :HP: (high-speed paper tape punch) for input or :LP:
(line printer) for update.

echo, the AFTN of the echo file if the file is to be opened for line editing. The
echo file must be previously opened for output (access=2). The AFTN of the
echo file is passed in the least significant byte of the field. If this field contains 0,
no line editing is done. To specify an AFTN of 0 for :CO:, a nonzero value must
be in the most significant byte and zero in the least significant byte. For
example, FFOOH specifies the AFTN for the :CO: device.

status$p, the address of a memory location for the return of nonfatal error
numbers.

Nonfatal error codes returned: 3,4,5,9,12,13,14,22,23,25,28

Fatal error codes returned: 1,7,24,30,33

PL/M OPEN Call Example

OPEN:
PROCEDURE (conn$p, path$p, access, echo, status$p) EXTERNAL;
DECLARE (conn$p, path$p, access, echo, status§p) ADDRESS;
END OPEN;

ISIS-II Services

3-13

ISIS-11 Services Series 111 Programmer

DECLARE AFTS$IN ADDRESS;
DECLARE FILENAME(15) BYTE DATA (*:F1:MYPROG.SRC*);
DECLARE STATUS ADDRESS;

CALL OPEN(.AFTSIN,.FILENAME,1,0,.STATUS);
IF STATUS <>0THEN ...

Assembly Language OPEN Call Example

EXTRN 18IS ;LINK TOISIS ENTRY POINT
OPEN EQU 0 ;SYSTEM CALLIDENTIFIER
MV C,OPEN ;LOAD IDENTIFIER
LXi D,0BLK ;ADDRESS OF PARAMETERS
;BLOCK
CALL SIS
LDA ‘OSTAT ;TEST ERROR STATUS
ORA A
JINZ EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE
OBLK: PARAMETER BLOCK FOR OPEN
Dw OAFT ;POINTER TO AFTN
DW OFILE ;POINTER TO FILENAME
ACCESS: Dw 1 ;ACCESS, READ =1, WRITE =2,
;UPDATE =3
ECHO: Dw 0 ;IFECHO <> 0,
;JECHO = AFTN OF
;ECHO OUTPUT FILE
DW OSTAT ;POINTER TO STATUS
OAFT: DS 2 ;AFTN-(RETURNED)
OSTAT: DS 2 ;STATUS (RETURNED)
OFILE: ‘DB *:FO:FILE.EXT ' ;FILE TO'-BE.OPENED

READ - Transfer Data from File to Memory

The READ call transfers data from an open file to a memory location specified by
the calling program. See also ‘“Line-Edited Input Files’’ for additional information
about such files.

You must pass five parameters in the READ call:

1. .conn, the connection number (AFTN) of a file that is open for input or update.
This connection was returned by a preceding OPEN call or is 1 for :CI:.

2. buf$p, the address of a buffer you have declared to receive the data read from
the open file. The buffer must be at least as long as the count described below.
If the buffer is too short, memory locations following the buffer will be
overwritten.

3. count, the number of bytes to be transferred from the file to the buffer.

4. actual$p, the address of a memory location you have declared to receive from
ISIS the actual number of bytes.successfully transferred. The same number is
added to MARKER. The actual number of bytes transferred is never more than
the number specified in the count parameter above.

3-14

Series 111 Programmer ISIS-II Services

For line-edited files, the actual number of bytes is never more than the number
of bytes in the line-edit buffer. When a file is not line edited, the number of
bytes is equal either to count or to LENGTH minus MARKER, whichever is
fewer.
actual = 0 is the only reliable way of detecting end-of-file (for both lined and
non-lined files).)

5. status$p, the address of a memory location you declared for ISIS to store
nonfatal error numbers.

Nonfatal error codes returned: 2, 8

Fatal error codes returned: 24, 30, 33

PL/M READ Call Example

READ:
‘PROCEDURE(conn, buf$p, count, actual$p, status§p)EXTERNAL;
DECLARE (conn, buf$p, count, actual$p, status$§p) ADDRESS;
END READ;

DECLARE AFT$SINADDRESS;

DECLARE BUFFER(128) BYTE;
DECLARE ACTUAL ADDRESS;
DECLARE STATUS ADDRESS;

‘CALL READ (AFT$IN, .BUFFER,128,.ACTUAL,.STATUS);
1F STATUS <>O0THEN ...

Assembly Language READ Call Example

EXTRN 1518 ;LINK TO ISIS ENTRY POINT
READ EQU 3 ;SYSTEM CALL IDENTIFIER
mMvi C,READ ;LOAD IDENTIFIER
LX1 D,RBLK ;ADDRESS OF PARAMETER
;BLOCK
CALL 1815
LDA RSTAT ;TEST ERROR STATUS
‘ORA A
INZ EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE
RBLK: ;PARAMETER BLOCK FOR READ
RAFT: DS 2 ;FILE AFTN
DW IBUF ;ADDRESS OF INPUT BUFFER
RCNT: DW 128 ;JLENGTH OF READ REQUESTED
bw ACTUAL ;POINTER TO ACTUAL
DW RSTAT ;POINTERTO STATUS
ACTUAL: DS 2 ;COUNT OF BYTES READ

JRETURNED)

3-15

ISIS-II Services Series III Programmer

3-16

RSTAT: DS 2 ;STATUS (RETURNED)
IBUF: DS 128 ;INPUT BUFFER

WRITE - Transfer Data from Memory to File

The WRITE call transfers data from a specified location in memory called a buffer
to an open file. You must pass four parameters in the WRITE call:

1. conn, the connection number (AFTN) of a file open for output or update. This
connection was returned by a preceding OPEN call or is O for :CO:.

2. buf§p, the address of the memory buffer from which data is to be transferred.
This address may be in the form

.(string literal)

The period causes the use of the address where the string literal (given inside the
parentheses) is stored. See example below.

3. count, the number of bytes to be transferred from the buffer to the output file.
The value of the count is added to MARKER. If this results in MARKER being
greater than LENGTH, then LENGTH is set equal to MARKER. The number
of bytes actually transferred by WRITE is exactly equal to count. Thus if the
buffer length is less than count, memory locations following the buffer are
written to the file.

4. status$p, the address of the memory location for the return of nonfatal error
numbers.

Nonfatal error codes returned: 2,6

Fatal error codes returned: 7,24,30,33

PL/M WRITE Call Example

WRITE:
PROCEDURE (conn, buf$p, count, status$§p) EXTERNAL;
DECLARE (conn, buf$p, count, status$p) ADDRESS;
END WRITE;

DECLARE AFT$OUT ADDRESS;
DECLARE BUFFER(128) BYTE;
DECLARE STATUS ADDRESS;

CALL WRITE (0,.(‘this is an example of string literal’, 0DH,0AH),38, .STATUS);
CALL WRITE (AFT$OUT,.BUFFER,128,.STATUS);
IF STATUS <>0THEN ...

Series III Programmer ISIS-II Services

Assgmb]y Language WRITE Call Example

EXTRN ISIS ;LINK TO ISIS ENTRY POINT
WRITE EQU 4 ;SYSTEM CALL IDENTIFIER
MVi C,WRITE ;LOAD IDENTIFIER
LXI D,WBLK ;ADDRESS OF PARAMETER
;BLOCK
CALL ISIS
LDA WSTAT ;TEST ERROR STATUS
ORA A
JNZ EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE
WBLK: ;PARAMETER BLOCK FOR
sWRITE
WAFT: DS 2 ;FILE AFTN
DW OBUF ;ADDRESS OF OUTPUT BUFFER
WCNT: DW 128
DW WSTAT ;POINTER TO STATUS
WSTAT: DS 2 ;STATUS (RETURNED)

OBUF: DS 128 ;OUTPUT BUFFER

SEEK - Position Disk File Marker

The SEEK call allows your program to determine or to change the value of the
MARKER associated with a disk file open for read or update. SEEK cannot be used
with a file open for write only. The MARKER value can be changed in four ways:
moved forward, moved backward, moved to a specific location, or moved to the end
of the file. A nonfatal error occurs if SEEK is issued for a file opened for output.

You must pass five parameters in the SEEK call as discussed below. The mode and
file pointer parameters differ from those of Series III.

1. conn, the connection number (AFTN) of a file on a random access device
opened for update or input. This connection was returned by a preceding OPEN
call.

2. mode, a value from 0 through 4 that indicates what action should be performed
on the MARKER. The block and byte parameters (see below) are used either to
represent the current MARKER position or to calculate the desired offset,
depending on ‘“mode.”’ A detailed discussion follows this parameter list.

3. block$p, the address of a memory location containing a 2-byte value used for
the block number. A block is equivalent to 128 bytes, the same as a sector on the
disk.

4. byte$p, the address of a memory location containing a 2-byte value used for the
byte number. The byte number may be greater than 128.

5 status$p, the address of a memory location you declared to receive nonfatal
error numbers from ISIS.

ISIS-II Services

Detailed Discussion of Mode Values

Return Marker Location: Mode=0

Under this mode, the system returns a pair of block and byte values (at block$p and
byte§p) that signify the current position of the marker. For example, if the marker is
just beyond the first block of the file, the system might return the numbers 1 and 0 in
the addresses assigned to block and byte, respectively. It might also return the
numbers 0 and 128, which point to the same byte in the file. The value of MARKER
is given by the following equation:

' MARKER =128 * (block number) + byte number

Move Marker Backward: Mode=1

If the mode value is 1, the marker is moved backward toward the beginning of the
file. The block and byte parameters determine how many. bytes the marker is moved
back; for example, if block is equal to 0 and byte is equal to 382, the marker is
moved backward 382 bytes. To define an offset of N, use block and byte values such
that ‘

N =128 * (block number) + byte number

If N is greater than MARKER, the prescribed action would place the marker before
the beginning of the file. MARKER is then set to-0 (beginning of file) and a nonfatal
€ITOr OCCurs.

Move Marker to Specific Location: Mode=2

In this mode, the marker is moved to a specific position in the file. The block and
byte parameters define the position; for example, if block is equal to 27 and byte is
equal to 63, the marker will be moved to block 27, byte 63. Similarly, if both block
and byte are equal to 0, the marker is moved to the beginning of the file. If the file is
open for update and the prescribed action would place the marker beyond the end of
the file, ASCII nulls (0000H) are added to the file to extend the file to the marker.
(Thus, LENGTH becomes equal to MARKER.)

Move Marker Forward: Mode=3

In this mode, the marker is moved forward toward the end of the file. The block and
byte parameters define the offset N according to the following equation:

N + 128 * (block number) + byte number

If the file is:open for update and the specified action would place the marker beyond.
the end of the file, ASCII nulls (0000H) are added to the file to extend the file to the
marker. (Thus, LENGTH becomes equal to MARKER.)

If the extension of a file by the SEEK operation causes an overflow on the disk, a
fatal error is reported, either during the execution of the SEEK call or when a pro-
gram tries to write into the extended area of the file. This error can become evident
at any time in the life of the file.

If an attempt is made to extend a file that is open only for input, the marker is set to
the former end-of-file and a nonfatal error occurs.

Series III Programmer

Series 111 Programmer ISIS-1I Services

Move Marker to End of File

If the mode value is 4, the marker is moved to the end of the file, Block and byte
parameters are ignored.

NOTE

For a file opened for update, MARKER manipulations can allocate more
memory than LENGTH requires, i.e., than are subsequently written with
data. A DIR will show the allocated file locations as in use. You can
actually allocate more storage than exists as data on disk. Data can still be
written to these locations.

Nonfatal error codes returned: 2,19,20,27,31,35

Fatal error codes returned: 7,24,30,33

PL/M Seek Call Example

SEEK:
PROCEDURE (conn, mode, block$p, byte$p, status§p) EXTERNAL;
DECLARE {(conn, mode, block$p, byte$p, status$p) ADDRESS;
END SEEK;

DECLARE AFT$IN ADDRESS;
DECLARE BLOCKNO ADDRESS;
DECLARE BYTENO ADDRESS;
DECLARE STATUS ADDRESS;

CALL SEEK (AFT$IN,0,.BLOCKNO, .BYTENO, .STATUS);
IFSTATUS<>O0THEN ...

"

Assembly Language SEEK Call Example

EXTRN 1s1s :LINK TO ISIS ENTRY POINT
SEEK EQU 5 ;SYSTEM CALL IDENTIFIER
-
Mvi C,SEEK ;LOAD IDENTIFIER
Lxd D,SBLK ;ADDRESS OF PARAMETER
;BLOCK
CALL 1818
LDA SSTAT -TEST ERROR STATUS
ORA A
JNZ EXCEPT :BRANCH TQ EXCEPTION
JROUTINE
SBLK: ‘PARAMETER BLOCK FOR SEEK
SAFT: D$ 2 ;AFTN FROM OPEN
MODE: DS 2 ;TYPE OF SEEK
DW BLKS :POINTERTO BLKS

3-19

ISIS-II Services Series I1I Programmer

Dw NBYTE ;POINTER TO NBYTE

DW SSTAT ;POINTER TO STATUS
BLKS: DS 2 ;NUMBER OF SECTORS TO SKiP
NBYTE: DS 2 ;NUMBER OF BYTES TO SKIP

SSTAT: DS 2 ;STATUS (RETURNED)

]

RESCAN - Position MARKER to Beginning of Line

The RESCAN call is used on line-edited files only. It allows your program to move
the MARKER to the beginning of a logical line that has already been read. Thus the
next READ call starts at the beginning of the last logical line read. This line is not
re-echoed (output to the echo file) because it has already been input from the
keyboard and echoed. Thus the subsequent READ does not input from a file but
only reads from a buffer in memory.

Y ou must pass two parameters in the RESCAN call:

1. conn, the connection number (AFTN) of a file opened for line-edited input
(with echo file AFTN specified) by a preceding OPEN call

2. status$p, the address of a memory location for the return of nonfatal error
numbers

Nonfatal error codes returned: 2,21

Fatal error codes returned: 33

PL/M RESCAN Call Example

RESCAN:
PROCEDURE (conn, status$p) EXTERNAL;
DECLARE (¢conn, status$p) ADDRESS;
END RESCAN;

DECLARE AFTSIN ADDRESS;
DECLARE STATUS ADDRESS;

CALL RESCAN (AFTSIN, .STAfUS);
IFSTATUS<>0THEN ...

Assembly Language RESCAN Call Example

EXTRN - ISIS ;LINKTO ISIS ENTRY POINT
RESCAN EQU 11 ;SYSTEM CALL IDENTIFIER

MvI C,RESCAN ;LOAD IDENTIFIER

LXi D,IBLK ;ADDRESS OF PARAMETER

;BLOCK

CALL ISIS

LDA ISTAT ;TEST ERROR STATUS

ORA A

3-20

Series III Programmer ISIS-II Services

JNZ - EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE
IBLK: ;PARAMETER BLOCK FOR
;RESCAN
IAFT: DS 2 ;AFTN FROM OPEN
DW ISTAT ;POINTER TO STATUS
ISTAT: DS 2 ;STATUS (RETURNED)

)

CLOSE - Terminate Input/Output Operations on a File

The CLOSE call removes a file from the system input/output tables and releases the
buffers allocated for it by OPEN. You should close each file in use when input/out-
put processing is complete. If the file closed is a paper tape punch device (:HP: or
:TP:), 12 inches of trailer (ASCII null characters) are punched.

You must pass two parameters in the CLOSE call:

1. conn, the connection number (AFTN) of the file to be closed. This connection
was returned by a preceding OPEN call.

2. status$p, the address of a memory location for the return of nonfatal error
numbers.

Nonfatal error codes returned: 2

Fatal error codes returned: 33

PL/M CLOSE Call Example

CLOSE:
PROCEDURE (conn, status$p) EXTERNAL;
DECLARE (conn, status$p) ADDRESS;

END CLOSE;

DECLARE AFTSIN ADDRESS;
DECLARE STATUS ADDRESS;

CALL CLOSE (AFTSIN,.STATUS);
IF STATUS<>O0THEN ...

Assembly Language CLOSE Call Example

EXTRN ISIS ;LINK TOISIS ENTRY POINT
CLOSE EQU 1 ;SYSTEM CALL IDENTIFIER
MVI C,CLOSE ;LOAD IDENTIFIER
LXI D,CBLK ;ADDRESS OF PARAMETER
;BLOCK

3-21

ISIS-II Services

CALL
LDA
ORA
JNZ

CBLK:

CAFT: DS
DW

CSTAT: DS

ISIS
CSTAT
A
EXCEPT

CSTAT

SPATH - Obtain File Information
The SPATH call allows your program to obtain information relating to a specified

file. The information returned by this call includes the device number, file name and
extension, device type, and if a disk file, the drive type.

You pass three parameters in the SPATH call:
I.

Nonfatal error codes returned: 4,5,23,28

Fatal error codes returned: 33

;TEST ERROR STATUS

;BRANCH TO EXCEPTION
;ROUTINE

;PARAMETER BLOCK FOR
;:CLOSE

;FILE AFTN

;POINTER TO STATUS

;STATUS (RETURNED)

Series III Programmer

path$p, the address of an ASCII string containing the name of the file for which
information is requested. The string can contain leading spaces but no
embedded spaces. It must be terminated by a character other than a letter, digit,

colon (:), or period (.). A space can be used.

info$p, the address of a 12-byte memory location in which the system will return
the information. After the call is completed, the buffer will contain the follow-

ing information:

Byte O - Device number

Bytes 1 through 6 - File name

Bytes 7 through 9 - File name extension

Byte 10 - Device type

Byte 11 - Drive type

status$p, the address of a memory location for the return of a nonfatal error

number.

The possible values for the contents of info$p deviee nuniber are;

3-22

0 - disk drive 0

1 - disk drive 1

2 - disk drive 2

3 - disk drive 3

4 - disk drive 4

5 - disk drive §

6 - teletype input

7 - teletype output

8 - CRT input

9 - CRT output
10 - user console input
11 - user console output

Series III Programmer ISIS-II Services

12 - teletype paper tape reader

13 - high speed paper tape reader

14 - user reader 1

15 - user reader 2

16 - teletype paper tape punch (teletype)

17 - high speed paper tape punch

18 - user punch 1

19 - user punch 2

20 - line printer

21 - user list 1

22 - byte bucket (a pseudo input/output device)

23 - console input

24 - console output

25 - disk drive 6

26 - disk drive 7

27 - disk drive 8

28 - disk drive 9
The file name and extension are the ISIS file name, e.g., SAMPLE.SRC without the
period.

The device type specifies the type of peripheral with which the file is associated. The
possible values for this field are

0 - sequential input device

1 - sequential output device

2 - sequential input/output device

3 - random access input/output device

The drive type field specifies the type of drive controller if the device type field is 3.
If the device type is anything except 3, the drive type is undefined. The possible
values for a device type of 3 are

0 - controller not present

1 - two-board double density
2 - two-board single density
3 - integrated single density
4 - two-board hard disk

PL/M SPATH Call Example

SPATH:
PROCEDURE (path$p, info$p, sStatus$py EXTERNAL;
DECLARE (path$p, info$p, status$p) ADDRESS;
END SPATH;

DECLARE FILENAM(15) BYTE;

DECLARE FILINF STRUCTURE (DEVICESNO BYTE,
FILENAME (6) BYTE,
FILESEXT (3) BYTE,
DEVICESTYPE BYTE,
DRIVESTYPE BYTE);

DECLARE STATUS ADDRESS;

CALL SPATH (.FILENAM, .FILINF,.STATUS);
IF STATUS < >0THEN ...

3-23

ISIS-II Services Series 111 Programmer

Assembly Language SPATH Call Example “
EXTRN ISIS ;LINK TOISIS ENTRY POINT

SPATH EQU 14 ;SYSTEM CALL IDENTIFIER
MVI C,SPATH ;LOAD IDENTIFIER
LXI D,SBLK ;LOAD PARAM ADDR
CALL ISIS
LDA SSTAT ;TESTERROR STATUS
ORA A
JNZ EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE
SBLK: ;PARAMETER BLOCK FOR
;SPATH
DW FILEN ;POINTER TO FILE NAME
Dw BUFIN ;POINTER TO BUFFER
Dw SSTAT ;POINTER TO STATUS
FILEN: DS 15 ;FILE NAME FIELD
- BUFIN: DS 12 ;BUFFER FOR DATA

SSTAT: DS 2 ;STATUS (RETURNED)

Disk Directory, Console, and
Program Execution Control

The chart below shows the form of calls to the routines discussed in the following
pages. Each parameter is explained where used.

——»(nENAMEH (oldSp.H newpath$p,)-»
> ,Gnmg H (pamsp,H atrb, onoff,)—-»
—»QONSOLHciSPaihSPH cospathsp,)
—>(_oan }—=(_atnsp,)—»(loadsotiset, contrissw, entrysp,)—»-
—((WHocon }—>(iconn, butsp))—»

| EXIT -
’ 121618-12

Commands for Control of Disk Directories, Console, and Program Execution

Disk Directory Maintenance
Three system calls-are available to your program for changing information in the

disk directory. These calls allow you to delete a disk file, rename a disk file, and
change the attributes of a disk file.

3-24

Series I1I Programmer ISIS-II Services

DELETE - Delete a File from the Disk Directory

The DELETE call removes a specified file from its disk. The file must not be open.
The disk space allocated to the file is released. The space can then be reused for
another file.

You must pass two parameters in the DELETE call:

1. path$p, the address of an ASCII string that specifies the name of the file to be
deleted. The file to be deleted must not be open. The string can contain leading
space characters but no embedded spaces. It must be terminated by a character
other than a letter, digit, colon (:), or period (.). You can use a space.

2. status$p, the address of a memory location for the return of a nonfatal error
number. ;

Nonfatal error codes returned: 4,5,13,14,17,23,28,32

Fatal error codes returned: 1,24,30,33

PL/M DELETE Call Example

DELETE:
PROCEDURE (path$p, status$p) EXTERNAL;
DECLARE (path$p, status$p) ADDRESS;
ENDDELETE;

DECLARE FILENAM(20) BYTE;
DECLARE STATUS ADDRESS;

CALL DELETE (.FILENAM,.STATUS),
IFSTATUS<>0THEN ...

Assembly Language DELETE Call Example

EXTRN ISIS ;LINK TO ISIS ENTRY POINT
DELETE EQU 2 ;SYSTEM CALL IDENTIFIER
MVI C,DELETE ;LOAD IDENTIFIER
LXI D,DBLK ;ADDRESS OF PARAMETER
;BLOCK
CALL ISIS
LDA DSTAT ;TEST ERROR STATUS
ORA A
JNZ EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE
DBLK: ;PARAMETER BLOCK FOR
;DELETE
DW DFILE ;POINTER TO FILENAME
DW DSTAT ;POINTER TO STATUS

3-25

ISIS-II Services Series III Programmer

DSTAT: Ds 2 ;STATUS (RETURNED)
DFILE: OB ‘FILE.EXT’ ;NAME OF FILE TO BE DELETED

3’

RENAME - Change Disk Filename
The RENAME call allows your program to change the name of a disk file.

You must pass three parameters in the RENAME call:

1. old$p, the address of an ASCII string that contains the old file name. The string
can contain leading spaces but no embedded spaces. It must be terminated by a
character other than a letter, digit, colon (:), or period (.). You can use a space.

2. newpath$p, the address of an ASCII string that contains the new file name. The
string must obey the rules above. The device portion of the name must be the
same as that in old name.

3. status$p, the address of a memory location for the return of a nonfatal error
number.
Nonfatal error codes returned: 4,5,10,11,13,17,23,28

Fatal error codes returned: 1,24,30,33

PL/M RENAME Example

RENAME:
PROCEDURE (o/d$p, newpath$p, status$pEXTERNAL;
DECLARE (0/d$p, newpath$p, status$p) ADDRESS;
END RENAME;

DECLARE OFILE(20) BYTE;
DECLARE NFILE(20) BYTE;
DECLARE STATUS ADDRESS;

CALL RENAME (.OFILE,.NFILE,.STATUS);
IFSTATUS<>O0THEN ...

Assembly Language RENAME Call Example

EXTRN {SIS ;LINK TO ISIS ENTRY POINT
RENAME EQU 7 ;SYSTEM CALLIDENTIFIER

Mvit C,RENAME ;LOAD IDENTIFIER

LXi DNBLK ;ADDRESS OF PARAMETER
;BLOCK

CALL i81S

LDA NSTAT ;TEST ERROR STATUS

ORA A

JNZ EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE

3-26

Series 111 Programmer ISIS-II Services

NBLK: ;PARAMETER BLOCK FOR
;RENAME
DW FILE2 ;POINTERTO OLD FILENAME
DW FILE1 ;POINTER TO NEW FILENAME
DwW NSTAT ;POINTERTO STATUS
NSTAT: DS 2 ;STATUS (RETURNED)
FILE1: DB ‘FILE.NEW' ;NEW NAME OF FILE

FILE2: DB ‘FILE.OLD’ ;OLD NAME OF FILE

ATTRIB - Change the Attributes of a Disk File
The ATTRIB call allows your program to change an attribute of a disk file.

Y ou must pass four parameters in the ATTRIB call:

1.

path$p, the address of an ASCII string containing the name of the file whose
attribute is to be changed. The string can contain leading space characters but
no embedded spaces. It must be terminated by a character other than a letter,
digit, colon (:), or period (.). A space can be used.

atrb, a number indicating which attribute is to be changed:
0 - invisible attribute

1 - system attribute

2 - write protect attribute

3 - format attribute

onoff, a value indicating whether the attribute is to be set (turned on) or reset
(turned off). The value is stored in the low order bit of the low order byte. A
value of 1 specifies that the attribute be set and a value of 0 specifies that it be
reset.

status$p, the address of a memory location for the return of a nonfatal error
number.

Nonfatal error codes returned: 4,5,13,23,26,28

Fatal error codes returned: 1,24,30,33

PL/M ATTRIB Call Example

ATTRIB:
PROCEDURE (pathdp, atrb, onoff, status$p) EXTERNAL,;
DECLARE (path$p, atrb, onoff, status§p) ADDRESS;
END ATTRIB;

DECLARE FILE(15) BYTE;
DECLARE STATUS ADDRESS;

CALL ATTRIB (.FILE,2,0,.STATUS),
IFSTATUS<>0THEN...

3-27

ISIS-II Services Series I11 Programmer

3-28

Assembly Language ATTRIB Call Example

EXTRN ISIS ;LINK TO ISIS ENTRY POINT
ATTRIB EQU 10 ;SYSTEM CALL IDENTIFIER
MvI C,ATTRIB ;LOAD IDENTIFIER
LXI D,ABLK ;LOAD PARAM ADDR
CALL ISIS
LDA ASTAT ;TEST ERROR STATUS
ORA A
JNZ EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE
ABLK: ;PARAMETER BLOCK FOR
;ATTRIB
Dw FILEN ;POINTER TO FILE NAME
Dw 2 ;ATTRIBUTE IDENTIFIER
DW 0 ;SET/RESET SWITCH
bDw ASTAT ;POINTER TO STATUS
FILEN: DS 15 ;FILE NAME FIELD

ASTAT: DS 2 ;'STATUS (RETURNED)

’

Console Reassignment and Error Message Output

Three system calls are available to your program for system console control. They
allow you to change the device used as the system console, to determine which device
is the current console, and, if needed, to send an error message to the console.

CONSOL - Change Console Device

The CONSOL call allows your program to change the console input and output
device names (:CI: and :CO:) to refer to devices other than the initial system
console.

You must pass three parameters in a CONSOL call:

1. ci$path$p, the address of an ASCII string containing the name of the file to be
used for system console input. The string can have leading spaces but no
embedded spaces. It must end with a character other than a letter, digit, colon
(:), or period (.). You can use a space. Before opening the new file, the file is
closed unless it happens to be :CI: which is always open. If the specified file can-
not be opened, a fatal error occurs.

2. cofpath$p, the address of an ASCII string containing the name of the file to be
used for system console output. The name must follow the rules above. Before
opening the new file, the current output file is closed unless it happens to be
:CO: which is never closed. If the specified file cannot be opened, a fatal error
occurs.

3. status$p, the address of a memory location for the return of a nonfatal error
number.

No nonfatal error codes are returned; all errors are fatal: 1,4,5,12,
13,14,22,23,24,28,30,33

Series I1I Programmer

PL/M CONSOL Calil Example
CONSOL:

PROCEDURE (ci$path$p, co$path$p, status$p) EXTERNAL;
DECLARE (ci$path$p, co$path$p, status$p) ADDRESS;

END CONSOLE;

DECLARE INFILE(6) BYTE;
DECLARE OUTFILE(6) BYTE;

DECLARE STATUS ADDRESS;

CALL CONSOL (.INFILE,.OUTFILE,.STATUS);

IFSTATUS<>O0THEN ...

Assembly Language CONSOL Call Example

EXTRN
CONSOL EQU
Mvi
LXi
CALL
LDA
ORA
JNZ

CBLK:

Dw
)
DW

INFILE: DS
OTFILE: DS
CSTAT: DS

ISIS ;LINK TOISIS ENTRY POINT

8 ;SYSTEM CALL IDENTIFIER

C,CONSOL ;LOAD IDENTIFIER

D,CBLK ;LOAD PARAM ADDR

ISIS

CSTAT ;TEST ERROR STATUS

A

EXCEPT ;BRANCH TO EXCEPTION
;ROUTINE
;PARAMETER BLOCK FOR
;CONSOL

INFILE ;POINTER TO FILE NAME

OTFILE ;POINTER TO FILE NAME

CSTAT ;POINTERTO STATUS

15 ;INPUT FILE NAME

15 ;OUTPUT FILE NAME

2 ;STATUS (RETURNED)

WHOCON - Determine File Assigned as System Console

The WHOCON call allows your program to determine what file is assigned as the
current system input console or output console.

You must pass three parameters in the WHOCON call:
1. conn, a value that indicates whether the input or output file (:CI: or :CO:) name

is to be returned. A value of 0 specifies output and a value of 1 specifies input.

ISIS-II Services

2. bUf$p, the address of a 15-byte buffer reserved by your program for the return
of the name of the file assigned to :CI: or :CO:. The name is returned as an
ASCII string terminated by a space.

3. (Assembly language only) The address of a memory location for return of an

error number.

3-29

ISIS-II Services Series III Programmer

No nonfatal error codes are returned. Fatal 33 may occur..

PL/M WHOCON Call Example

WHOCON:
PROCEDURE (conn, buf$p) EXTERNAL;
DECLARE (conn, buf$p) ADDRESS;
END WHOCON;

DECLARE BUFF$IN(15) BYTE;

CALL WHOCON (1,.BUFFSIN);

Assembly Language WHOCON Call Example

EXTRN ISIS

WHOCON EQU 13 ;CALL IDENTIFIER
Mvi C,WHOCON ;LOAD IDENTIFIER
LXI D,WBLK ;LOAD PARAM ADDR
CALL ISIS

WBLK:

AFTN: DS 2 ;AFTN FORINOROUT
DW BUFIN ;POINTER TO BUFFER
bw STATUS ;POINTERTO STATUS RETURN

BUFIN: DS 15 ;BUFFER FOR-RETURN

;FILE NAME

STATUS: DS 2 ;STATUS RETURN

’

ERROR - Output Error Message on System Console

The ERROR call enables your program to send an error message to the initial system
console.

You must pass two parameters in the ERROR call:

1. errnum, the error number to output to the' console. The error number must be in
the low order eight bits of the parameter. Only the numbers 101 through 199
inclusive should be used for user programs (under ISIS-11); the other numbers
(0-100 and 200-255) are reserved for system programs. The system displays the
error in the following format: ERROR nnn, USER PC mmmm where nnn is the
error number specified in the call and mmmm is the return address in the calling
program.

2. (Assembly language only) The address of a memory location for return of an
error number.

No nonfatal error codes are returned. Fatal 33'may occur..

3-30

Series III Programmer

PL/M ERROR Call Example

ERROR:
PROCEDURE (errnum) EXTERNAL,;
DECLARE (errnum) ADDRESS;
END ERROR,;

DECLARE ENUM ADDRESS;

CALL ERROR (ENUM);

Assembly Language ERROR Call Example

EXTRN ISIS
ERROR EQU 12 ;CALL IDENTIFIER
Mvi C,ERROR ;LOAD IDENTIFIER
LXI D,EBLK ;LOAD PARAM ADDR
CALL ISIS
EBLK:
ERNUM: DS 2 ;ERROR NUMBER FIELD
DW STATUS ;ISIS-I WANTS TO RETURN A
STATUS: DS 2 ;STATUS, SO PUT IT HERE

Program Execution

Your program can transfer control to another program by using the LOAD system
call, or to ISIS by using the EXIT system call. The LOAD call loads another pro-
gram and then transfers control to it, to the Monitor, or back to the calling pro-
gram. The EXIT call is used to terminate processing and return to ISIS.

LOAD - Load a File of Executable Code and Transfer Control

The LOAD call allows your program to load a LOCATED or absolute object file.
After the file is loaded, control is passed to the loaded program, the calling pro-
gram, or to the Monitor depending on the value of a parameter.

- A parameter list of five variables must be passed with the LOAD call:

1.

path$p, the address of an ASCII string containing the name of the file to be
loaded. The string can contain leading spaces but no embedded spaces. It must
be terminated by a character other than a letter, digit, colon (:), or a period (.).
Y ou can use a space.

load$offset, a bias value to be added to the load address, causing the program to
be loaded at the adjusted address. The use of the bias does not mean that the
program is relocatable. Usually the code cannot be executed at the biased
address. For most applications, the bias will be zero.

control$sw, a value indicating where control is transferred after the load. A
value of zero returns control to the calling program. The debug toggle is
unchanged (see also the Intellec Series I1I Console Operating Instructions).

A value of 1 transfers control to the loaded program. The debug toggle is reset.
If the program is not a main program, its entry point is zero, which causes con-
trol to vector through location zero to the Monitor.

ISIS-II Services

3-31

ISIS-II Services

3-32

Series I1I Programmer

A value of 2 transfers control to the Monitor. The debug toggle is set. The
Monitor Execute (G) command can be used to start the program.

4. entry$p, the address of a memory location for the return of the loaded program
entry point address when the control value is zero. The entry point is obtained
from the loaded program. A zero is returned if the program is not a main

program.

5. status$p, the address of a memory location for the return of a nonfatal error

number.

Nonfatal error codes returned: 3,4,5,12,13,22,23,28,34

Fatal error codes returned: 1,15,16,24,30,33

PL/M LOAD Call Example

LOAD:

PROCEDURE (path$p, load$offset, control§sw, entry$p, status$p) EXTERNAL;
DECLARE (path$p, load$offset, control$sw, entry$p, status$p) ADDRESS;

END LOAD;

DECLARE FILNAM(15) BYTE;
DECLARE ENTRY ADDRESS;
DECLARE STATUS ADDRESS;

CALL LOAD (.FILNAM,0,1,.ENTRY,.STATUS);

IFSTATUS<>O0THEN ...

Assembly Language LOAD Call Example

LOAD

’

LBLK:

BIAS:

SWITCH:

FILNAM:

ENAD:
LSTAT:

’

EXTRN
EQU

MVI
LXI
CALL
LDA
ORA
JNZ

DW
DS

Dw
DW

DS
DS
DS

ISIS
6

C,LOAD
D,LBLK
ISIS
LSTAT
A
EXCEPT

FILNAM
2

2

ENAD
LSTAT

N

;CALL IDENTIFIER

;LOAD IDENTIFIER
;LOAD PARAM ADDR

;TEST ERROR STATUS

;BRANCH IF ERROR

;POINTER TO FILE NAME

;BIAS FIELD

;CONTROL SWITCH

;POINTER TO ENTRY ADDRESS
;POINTER TO STATUS

;FILE NAME FIELD
;ENTRY POINT ADDR (RETURN)
;STATUS (RETURNED)

Series 1II Programmer ISIS-II Services

EXIT - Terminate Program and Return to ISIS-II

The EXIT call terminates execution and returns to ISIS-II. All open files are closed,
with the exception of :CO: and :CI:. The current system console assignment is not
changed. :

You pass no parameters in a PL/M call to EXIT. In an assembly language call, one
parameter is passed: the address of a memory location for return of an error
number.

No error codes are returned

PL/M EXIT Call Example

EXIT:
PROCEDURE EXTERNAL;
END EXIT;

CALL EXIT;

Assembly Language EXIT Call Example

EXTRN ISIS
EXIT EQU 9 ;CALL IDENTIFIER
MVI CEXIT ;LOAD IDENTIFIER
LXI D,EBLK ;LOAD PARAM ADDR
CALL ISIS
EBLK:
DW ESTAT ;POINTER TO STATUS
ESTAT: DS 2 ;STATUS FIELD

Monitor 1/0 Interface Routines

The Monitor contains the following 170 interface routines:

* Console Input, which reads a character entered at the system console.
¢ Console Output, which writes a character to the system console.

¢ Reader Input, which reads a character from the system reader device.
¢ Punch Output, which writes a character to the system punch device.

* List Output, which writes a character to the system list device.

¢ . UPP Input, which reads a byte from the Universal PROM programmer. (Series
I only.)

¢ UPP Output, which writes a byte to the Universal PROM programmer. (Series
11 only.)

These routines are available as ISIS-II calls. The following sections describe how to
use each of these routines, how and where information is passed to them, how and
where information is returned, and an example of each.

3-33

ISIS-HI Services Series III Programmer

NOTE

Assembly language calls to Monitor I/0 routines change the contents of the

“registers. If the contents of a register must be preserved, you should save
them before calling the Monitor and then restore them after return from the
Monitor I/0 routine.

| AND 7H

(prom$addr)

(byte$Sout, prom$add o

X

;

-

121618-13

00

Monitor Routine Usage in PL/M

Table 3-2. Monitor Routine Usage

Procedure Assembly
O " MonitorRoutine Performs Results Language
Function u Results
F Cl Console Input \ fills byte$p fills Reg. A
-~
with character from console input
device
P Cco Console Output sends bytefout sends byte
N from Reg. C y
r
to console output device
F Rl Reader Input \ fills byte$p fills Reg. A
Y
with character from paper
tape reader device
P PO Punch Output sends bytefout sends byte
\ from Reg. C P
Y
to paper tape punch device
P LO List Output sends byte$out sends byte
N from Reg. C y

Y

to system list device

3-34

Series I1I Programmer

ISIS-1I Services

Procedure Assembly
or M l_iam; of Performs RPL/ ﬂ Language
Function onitor Routine esults Results
F Ul Universal PROM fills byte$p fills Reg. A
Programmer Input \ J
-~
with 8 bits from the PROM address
supplied as the contents of
__A
r N\
prom$addr Register pair BC
in the call
P uo Universal PROM sends byte§out sends byte
Programmer Output N from Reg. C y

CI - Console Input Routine

—— -
to the PROM address supplied as the
contents of

-~
prom$addr
in the call

the most-
significant byte in
the D register and
the least-
significant byte in
the E register

The Console Input routine reads a character entered at the Intellec Console input
device and returns it as a byte variable (if called from PL/M) or in the A-register (if
called from the assembler). No parameters are passed to the routine. The routine,
once called, loops until a character is input at the console device. This character is

not echoed on the Console Output device.

The name of the Console Input routine in SYSTEM.LIB is CI.

PL/M CI Call Example

This example routine reads a string of characters from the Console device. The
routine terminates when a carriage return is detected or when the number of
characters specified by BUFSIZ has been read. If a carriage return is detected, the
DONE code is executed, and if the buffer is filled, the OVFL code is executed.

Cl: PROCEDURE BYTE EXTERNAL;
ENDC};

DECLARE BUFSIZ LITERALLY ‘122’;
DECLARE BUFFER(BUFSIZ) BYTE;
DECLARE INDEX BYTE;
DECLARE CR LITERALLY ‘0DH’;

INDEX =0;
BUFFER(INDEX) = Cl AND 7FH;

DO WHILE BUFFER(INDEX) <> CR;
IF INDEX < LAST (BUFFER);
DO;
INDEX = INDEX + 1;
BUFFER(INDEX) = Cl AND 7FH;

/*ENTRY POINTINTO SYSTEM.LIB*/

/*BUFFER SIZE*/

/*BUFFER FOR STORING CHARACTERS*/
/*INDEX INTO BUFFER*/

/*CARRIAGE RETURN*/

/*READ IN CHARACTER AND STRIP OFF*/

I*PARITY BIT*/

/*CONTINUE READING UNTIL A CARRIAGE™/
{*RETURN HAS BEEN INPUT ORTHE*/
/*BUFFERISFULL"/

3-35

ISIS-II Services

3-36

END;
ELSE
DO;
/*OVFL CODE*/
END;
END;
/*DONE CODE*/

Assembly Language CI Call Example

EXTRN

BUFSIZ EQU
CR EQU
BUFFER: DS

LXI

MVI
LOOP:

CALL

ANI

MOV

CPI

Jz

INX
DCR
JZ
JMP

DONE:

OVFL:

Cl

122

ODH
BUFSIZ
H,BUFFER
D,BUFSIZ
Cl

7FH

M,A

CR
DONE

OVFL

LOOP

CO - Console Output Routine

The Console Output routine takes a single character and transmits it to the system
console output device. The character is passed as a byte parameter if called from
PL/M or passed in the C-register if called from the assembler.

PL/M CO Call Example

Series III Programmer

;:ENTRY POINT INTO SYSTEM.LIB
:FORCI

:BUFFER SIZE

:CARRIAGE RETURN

;BUFFER

;HL POINT TO BEGINNING OF
;BUFFER
;SET UP BUFFER SIZE COUNTER

;GET CHARACTER

;STRIP OFF PARITY

;STORE IT IN BUFFER

;1S IT A CARRIAGE RETURN
;IFITIS, JUMP TO THE DONE
;CODE

;OTHERWISE, MOVE THE
;BUFFER POINTER
;DECREASE CHARACTER
;COUNT

;IF BUFFER FULL, JUMP TO THE
;OVFL CODE

;GET THE NEXT CHARACTER

;DONE CODE

;OVFL CODE

The name of the Console Output routine in SYSTEM.LIB is CO.

This example uses the Console Output routine to output a string of characters to the
Console device. The routine terminates after a carriage return is detected in the out-
put string and is transmitted to the Console device. In this simple example there is no

check to see if the buffer has been exhausted.

CO: PROCEDURE (CHAR) EXTERNAL;

DECLARE CHAR BYTE;

END CO;

/*ENTRY POINT INTO SYSTEM.LIB*/

Series 111 Programmer ISIS-II Services

DECLARE BUFFER(122) BYTE; /*BUFFER CONTAINING STRING TO BE*/
I*OUTPUT*/

DECLARE INDEX BYTE; /*INDEX INTO BUFFER*/

DECLARE CR LITERALLY °0DH’; /*CARRIAGE RETURN*/

INDEX =0;

CALL CO(BUFFER(INDEX)); /*OUTPUT THE FIRST CHARACTER*/

DO WHILE BUFFER(INDEX) < >CR;
INDEX = INDEX + 1;
CALL CO(BUFFER(INDEX)); I*CONTINUE OUTPUTTING UNTIL A*/
1*CARRIAGE RETURN HAS BEEN OUTPUT*/
END;

Assembly Language CO Call Example

EXTRN CO ;ENTRY POINTINTO SYSTEM.LIB
;FORCO
CR EQU ODH ;CARRIAGE RETURN
BUFFER: DS 122 ;BUFFER CONTAINING OUTPUT
;STRING
LXi H,BUFFER ;HL CONTAIN ADDRESS OF
;BUFFER
LOOP:
MOV CcM ;GET CHARACTER FROM
;BUFFER
CALL CO ;OUTPUT THE CHARACTER TO
;THE CONSOLE
MVI A,CR
CMP M ;ISIT A CARRIAGE RETURN?
JZ EXIT ;GOTOEXITIFITIS
INX H ;INCREMENT BUFFER POINTER
JMP LOOP ;OUTPUT NEXT CHARACTER
EXIT:

RI - Reader Input Routine

The Reader Input routine reads a single character from the system Reader device
and returns it as a byte value (if called from PL/M) or in the A-register (if called
from the assembler). If a character is not read within 250 milliseconds, an end-of-file
condition is simulated and a value of zero is returned with the 8080 carry condition
code set to 1. Thus the condition of the carry bit specifies whether or not valid data
was returned. Your program must handle the end-of-file character when it is read.

The name of the Reader Input routine in SYSTEM.LIB is RI.

PL/M RI Call Example

The following example uses the Reader Input routine to read a string of characters
from paper tape and store them in a buffer. The operation is terminated when the
reader runs out of tape or a control Z (1AH) character is read (used here as an end-
of-file character). In this simple example there is no check made for overflowing the
buffer area.

RI: PROCEDURE BYTE EXTERNAL,; /*ENTRY POINT INTO SYSTEM.LIB*/
END RI;

ISIS-1I Services Series III Programmer

DECLARE BUFFER$PTR ADDRESS;
DECLARE BUFFER BASED BUFFERSPTR BYTE;
DECLARE ENDFILE LITERALLY "1AH’; /*END OF FILE CONDITION*/

DECLARE TEMP BYTE; /*TEMPORARY VARIABLE IN CASE*/
/*READ RESULTS IN END OF FILE*/
/*CONDITION*/

DECLARE ESCAPE BYTE; /*BOOLEAN TO DECIDE IF*/
/*SHOULD EXIT ROUTINE*/

DECLARE TRUE LITERALLY '0FFH’;
DECLARE FALSE LITERALLY *00H’;

BUFFER$PTR = .MEMORY; /*INITIALIZE THE BUFFER*/
{*POINTER*/
TEMP =R, /*READ IN FIRST CHARACTER*/

IF CARRY THEN ESCAPE = TRUE;
ELSE ESCAPE = FALSE;
DO WHILE NOT ESCAPE;
BUFFER = TEMP AND 7FH; /*STORE THE CHARACTER AFTER*/
I*STRIPPING OFF PARITY BIT*/
IF BUFFER <> ENDS$FILE THEN

DO
BUFFERS$PTR = BUFFERS$PTR + 1;
TEMP =R; {*CONTINUE READING IN THE NEXT*/
/*CHARACTER*/
IF CARRY THEN ESCAPE = TRUE;
END;
END;
Assembly Language RI Call Example
EXTRN 31] ;ENTRY POINT INTO SYSTEM.LIB
;FORRI
EOF EQU 1AH ;END OF FILE CONDITION
LXI H,BUFFER ;HL POINTS TO BEGINNING OF
;BUFFER
LOOP: .
CALL Ri ;GET ACHARACTER
JC EXIT ;EXIT IF CARRY BIT SET (1.E. 250
;MS. TIME-OUT)
ANl 7FH ;STRIP OFF PARITY BIT
MOV M,A ;STOREIT IN THE BUFFER
CPI , EOF ;1S IT AN EOF CHARACTER?
Jz EXIT JEXITIFITIS
INX H ;OTHERWISE, MOVE THE
;BUFFER POINTER
JMP LOOP ;GET THE NEXT CHARACTER
EXIT:
;EXIT CODE
BUFFER: DS 1 ;EXPANDABLE BUFFER

PO - Punch Output Routine

The Punch Output routine takes a single character and transmits it to the System
Punch device. The character is passed as a byte parameter if called from PL/M or
passed in the C-register if called from assembler.

The name of the Punch Qutput routine in SYSTEM.LIB is PO.

3-38

Series 111 Programmer IS1S-1I Services

PL/M PO Call Example

This example uses the Punch Output routine to output a string of characters to the
Punch device. The routine terminates after a Control Z(1 AH) is detected in the out-
put string and is transmitted to the Punch device. In this simple example there is no
check to see if the buffer has been exhausted.

PO: PROCEDURE (CHAR) EXTERNAL; /* ENTRY POINT INTO SYSTEM.LIB* /
DECLARE CHAR BYTE;
END PO;

DECLARE BUFFER(122) BYTE; /* BUFFER CONTAINING STRING TO */

/* BEOUTPUT */

DECLARE INDEX BYTE; /* INDEX INTO BUFFER */

DECLARE ENDSFILE LITERALLY1AH’; /* END OF FILE*/

INDEX =0; .

CALL PO(BUFFER(INDEX)); I* OUTPUT THE FIRST CHARACTER */

DO WHILE BUFFER(INDEX) < > ENDS$FILE;
INDEX =INDEX + 1;
CALL PO(BUFFER(INDEX)); /* CONTINUE TOOUTPUT UNTIL */
/* AN END-OF-FILE HAS BEEN PUNCHED */
END;

Assembly Language PO Call Example

EXTRN PO ;ENTRY POINT INTO SYSTEM.LIB FOR PO
EOF EQU 1AH ;CONTROL/Z
BUFFER: Ds 122 ;BUFFER CONTAINING OUTPUT STRING
LXx1 H,BUFFER ;HL CONTAINS ADDRESS OF BUFFER
LOOP:
MOV C.M ;GET CHARACTER FROM BUFFER
CALL PO ;OUTPUT THE CHARACTER TO THE
:PUNCH
MVI A,EOF ;LOAD THE EOF CHARACTER INTO THE
;A-REG
CMP M ASIT AN END-OF-FILE?
Jz EXIT GOTOEXITIFITIS
INX H ;INCREMENT BUFFER POINTER
JMP LOOP ;OUTPUT NEXT CHARACTER
EXIT:

LO - List Output Routine

The List Output routine takes a single character and transmits it to the system list
device. The character is passed as a byte parameter if called from PL/M or passed in
the C-register if called from an assembly language program.

The name of the List Output routine in SYSTEM.LIB is LO.
PL/M LO Call Example

This example uses the List Qutput routine to output a string of characters to the list
device. The routine terminates after an ETX character (03H) is detected in the out-
put string and is transmitted to the list device. In this simple example there is no
check to see if the buffer has been exhausted.

LO: PROCEDURE(BUFF) EXTERNAL,; 1* ENTRY POINT INTO SYSTEM.LIB */

DECLARE CHAR BYTE;
ENDLO;

3-39

ISIS-I1 Services Series 111 Programmer

DECLARE BUFFER(122) BYTE; /* BUFFER CONTAINING STRING TO */
/* BEOUTPUT */

DECLARE INDEX BYTE; /* INDEX INTO BUFFER */

DECLARE ETX LITERALLY 03H’; /* TERMINAL CHARACTER */

INDEX =0,

CALL LO(BUFFER(INDEX)), I* OUTPUT THE FIRST CHARACTER */

DO WHILE BUFFER(INDEX) < > ETX;
INDEX =INDEX + 1;
CALL LO(BUFFER(INDEX)); /* CONTINUE TOQUTPUT UNTIL AN ETX */
{* HAS BEEN TRANSMITTED */

END;
Assembly Language LO Call Example

EXTRN Lo ;ENTRY POINT INTO SYSTEM.LIB FORLO
ETX EQU 03H ;TERMINATING CHARACTER
BUFFER: DS 122 ;BUFFER CONTAINING OUTPUT STRING
x4 H,BUFFER ;HL CONTAINS ADDRESS OF BUFFER
LOOP:
MOV Cc.M ;GET CHARACTER FROM BUFFER
CALL LO ;OUTPUT THE CHARACTER TO THE LIST
MVi AETX ;LOAD EXT CHARACTER INTO A-REG
CMP M ;1S IT AN END OF FILE?
Jz EXIT ;BRANCH TO EXITIFIT IS
INX H ;INCREMENT BUFFER POINTER
JmpP LOOP ;OUTPUT NEXT CHARACTER
EXIT:

UI - Universal PROM Programmer Input Routine (Series II Only)

This routine reads eight bits of data from the Universal PROM Programmer (UPP)
and returns it as a byte value (if called from PL/M) or in the A-register (if called
from the Assembler). You send the PROM address of the desired data as an address
parameter (if calling from PL/M) or load it into register pair BC (if calling from an
assembly language program), as shown below:

B REGISTER C REGISTER
5 4 3 2 1 07 6 5 4 3 2 1 0
\A11 A10 A9 A8 |A7 A6 A5 A4 A3 A2 Al AQ

o~
S o

8 LEAST SIGNIFICANT BITS OF
12 BIT PROM ADDRESS

4 MOST SIGNIFICANT BITS OF
12 BIT PROM ADDRESS

NIBBLE SELECT
0= LEAST SIGNIFICANT 4
BITS
1= MOST SIGNIFICANT 4
BITS
(IGNORED FOR 8-BIT PROMS)

SOCKET SELECT
0= SOCKET #2
1= SOCKET #1

MUST BE ZERO

MUST BE ZERO

3-40

Series III Programmer ISIS-II Services

Before calling the UI routine, you should call the Universal PROM Programmer
Status routine (described later in this chapter) to ascertain the current status of the
UPP. If an error occurs in the process of reading from the UPP, the content of the
A-register is meaningless. Thus, you should follow the call to the UPP input routine
with another call to the UPP status routine.

The name of the Universal PROM Programmer Input routine in SYSTEM.LIB
is UL.

PL/M UI Call Example

The following PL/M procedure reads the first LENGTH locations from a PROM in
socket 1 into the user buffer pointed to by BUFFERSADDRESS. If it encounters
any UPP error, it will stop immediately and return the nonzero value of the UPP
status byte; otherwise, it will return a value of zero after LENGTH locations have
been read.

Ul: PROCEDURE(PROMS$ADDR) BYTE EXTERNAL;/* RETURNS DATA IN PROM */

DECLARE PROMSADDR ADDRESS; /* AT PROMSADDR */
END Ul;

UPPS: PROCEDURE BYTE EXTERNAL; I* RETURNS UPP STATUS */
END UPPS;

READ$PROMS$TOSBUFFER: PROCEDURE (BUFFER$ADDRRESS,LENGTH) BYTE;
DECLARE (BUFFER$ADDRESS,LENGTH) ADDRESS;
DECLARE (BUFFER BASED BUFFER$SADDRESS)(1) BYTE;

DECLARE SOCKET$1 LITERALLY’2000H’; /* SELECT SOCKET 1 MASK */
DECLARE SOCKET$2 LITERALLY’0000H’; /* SELECT SOCKET 2 MASK */
DECLARE BUSY LITERALLY’01H’; /* UPP BUSY STATUS */

DECLARE COMPLETE LITERALLY'02H’; /* OPERATION COMPLETE STATUS */
DECLARE STATUS BYTE; /* SAVE FOR STATUS */

DECLARE | ADDRESS;
DOI=0TOLENGTH-1;

DO WHILE ((UPPS AND BUSY) < > 0); {* WAIT FOR UPP READY */
END;
BUFFER(\) = Ul(| OR SOCKET$1); /* READ DATA */
IF (STATUS: = UPPS) <> COMPLETE
THEN /* CHECK STATUS */
RETURN STATUS;
END;
RETURN 0;

END READSPROMS$TOSBUFFER,;

Assembly Language Ul Call Example

The following assembly language procedure implements the same function as the
preceding PL/M example. Note that the status value is returned in the A-register.

EXTRN ul ;ROUTINE TO READ FROM DATA
EXTRN UPPS ;ROUTINE TO READ UPP STATUS
BUSY EQU 01H ;UPPBUSY CODE
COMPLT EQU : 02H ;UPP OPERATION COMPLETE CODE
SOC1 EQU 2000H ;SOCKET 1 SELECT MASK
S0C2 EQU 0000H ;SOCKET 2 SELECT MASK
BUFAD: bW 0 ;SAVE FROM BUFFER POSITION
LENGTH: DwW 0 ;SAVE FOR COUNT
PROMAD: Dw 0 ;SAVE FOR PROM ADDRESS OR’D WITH
;’SOCT’
RPTB: MOV H,B ;STORE 'BUFFERSADDRESS’
Mov L,C
SHLD BUFAD

3-41

ISIS-II Services Series III Programmer

LXI H,S0C1 ;SET UP PROMAD TO 'SOC1’ TO GET
;’SOC1 or ADDR’

SHLD PROMAD

XCHG ;STORE 'LENGTH’

SHLD LENGTH

RPTB1: MOV AH ;CHECK IF NO LOCATIONS LEFT TO

;READ

ORA L

Rz ;RETURN WITH RESULT ZERO IF DONE

RPTB2: CALL UPPS ;CHECK FOR'UPP NOT BUSY’ STATUS

ANI BUSY

JNZ RPTB2 ;LOOP WHILE BUSY

LHLD PROMAD ;SET UP PROM ADDRESS

MOV B,H ;ULEXPECTS ADDRESS IN BC

MOV C,L

INX H ;INCREMENT POSITION FOR NEXT TIME

SHLD PROMAD ;STORE IT BACK

CALL ul ;READ PROM LOCATION

LHLD BUFAD ;READ CURRENT BUFFER POSITION

MOV M,A ;STORE PROM VALUE

INX H ;INCREMENT POSITION FOR NEXT TIME

SHLD BUFAD

CALL UPPS ;:CHEGK IF OPERATION OK

CP| COMPLT

RNZ ;RETURN WITH BAD STATUS IF NOT
;COMPLETE

LHLD LENGTH :CHECK LOOP COUNTER

DCX H :DECREMENT COUNT

SHLD LENGTH

JMP RPTB1 ;LOOP

UO - Universal PROM Programmer Output Routine (Series II Only)

This routine transfers eight bits of data as a byte parameter (if called from PL/M) or
from the C-register (if called from the Assembler) to the UPP. You pass the PROM
address (to be programmed) as an address parameter if calling from PL/M, or with
the most significant byte in the D-register and the least signficant byte in the E-
register, if calling from an assembly language program. See the Universal PROM
Programmer Input Routine (U]) for a description of the address bits.

Before calling the Universal PROM Programmer Output routine, you should call
the Universal PROM Programmer Status routine (described later in this chapter) to
ascertain the current status of the UPP. You should also follow the call to the UPP
output routine with another call to the UPP status routine to determine the success
of the operation.

The name of the Universal PROM Programmer output routine in SYSTEM.LIB
is UO.

PL/M UO Call Example

The following PL/M procedure programs the first LENGTH locations (of a PROM
in socket 2) from the user buffer pointed to by BUFFER$SADDRESS. If it
encounters any UPP errors, it will stop immediately and return the nonzero value of
the UPP status byte; otherwise, it will return a value of zero after LENGTH loca-
tions have been programimed.

3-42

Series 111 Programmer

ISIS-II Services

UO; PROCEDURE(PROMSDATA,PROMSADDR) EXTERNAL; /* PROGRAM PROM LOCATION */

DECLARE PROMS$DATA BYTE;
DECLARE PROM$ADDR ADDRESS;
END UO;

UPPS: PROCEDURE BYTE EXTERNAL;
END UPPS;

/* ’PROMSADDR’ WITHDATA */
/* 'PROMSDATA’ */

/* RETURNS UPP STATUS */

PROGRAM$PROM$FROMSBUFFER: PROCEDURE(BUFFERSADDRESS,LENGTH) BYTE;
DECLARE (BUFFER$SADDRESS,LENGTH) ADDRESS;
DECLARE (BUFFER BASED BUFFERSADDRESS)(1) BYTE;

DECLARE SOCKET$1 LITERALLY’2000H";
DECLARE SOCKET$2 LITERALLY’0000H’;
DECLARE BUSY LITERALLY’01H’;
DECLARE COMPLETE LITERALLY’02H’;
DECLARE STATUS BYTE;
DECLARE | ADDRESS;
DOI=0TO LENGTH-1;
DO WHILE ((UPPS AND BUSY) <>0);
END;
CALL UO(BUFFER(I), | OR SOCKET$1);
IF (STATUS: = UPPS) < > COMPLETE
THEN
RETURN STATUS;
END;
RETURN 0;
END PROGRAM$PROMSFROMSBUFFER;

Assembly Language UO Call Example

/* SELECT SOCKET 1 MASK */

/* SELECT SOCKET 2 MASK */

/* UPP BUSY STATUS */

/* OPERATION COMPLETE STATUS */
I* SAVE FOR STATUS */

/* WAIT FOR UPP READY */

/* PROGRAM LOCATION */

/* CHECK STATUS */

The following assembly language procedure implements the same function as the
preceding PL/M example. Note that the status value is returned in the A-register.

EXTRN uo
EXTRN UPPS
BUSY EQU 01H
COMPLT EQU 02H
SOC1 EQU 2000H
S0C2 EQU 0000H
BUFAD: DW 0
LENGTH: DW 0
PROMAD: DW 0
PPFB: MOV H.,B
MOV L,C
SHLD BUFAD
LXI H,S0CH1
SHLD PROMAD
XCHG
SHLD LENGTH
PPFB1: MOV AH
ORA L
Rz
PPFB2: CALL UPPS
ANI BUSY
JINZ PPFB2
LHLD PROMAD
MOV B,H
MOV ClL

;ROUTINE TO WRITE PROM DATA
;ROUTINE TO READ UPP STATUS
;UPP BUSY CODE

;UPP OPERATION COMPLETE CODE
;SOCKET 1 SELECT MASK
;SOCKET 2 SELECT MASK

;SAVE FOR BUFFER POSITION
;SAVE FOR COUNT

;SAVE FOR PROM ADDRESS OR’D
;WITH 'SOCT’

;STORE 'BUFFER$ADDRESS’

;SET UP PROMAD TO *SOC1’ TO GET
;’SOC1 OR ADDR’
;STORE LENGTH’

;CHECK {F NO LOCATIONS LEFT
;TOREAD

;RETURN WITH RESULT ZERO IF DONE
;CHECK FOR'NOT BUSY’ STATUS

;LOOP WHILE BUSY

;SET UP PROM ADDRESS
;UO EXPECTS ADDRESS IN BC

3-43

ISIS-I1 Services Series II1 Programmer

INX H ;INCREMENT POSITION FOR NEXT TIME

SHLD PROMAD ;STOREIT BACK

LHLD BUFAD ;READ CURRENT BUFFER POSIT!ION

MOV AM ;READ PROM VALUE

INX H ;INCREMENT POSITION FOR NEXT TIME

SHLD BUFAD

CALL uo ;PROGRAM VALUE INTO PROM

CALL UPPS ;CHECK IF OPERATION OK

CPI COMPLT

RNZ ;RETURN WITH BAD STATUS IF NOT
;COMPLETE

LHLD LENGTH ;CHECK LOOP COUNTER

DCX H ;DECREMENT COUNT

SHLD LENGTH

JMP PPFB1 ;LOOP

System Status Routines

The Monitor contains the following system status routines:

* Console input status, which determines if a character is ready for input from the
Console input device.

* Universal PROM programmer status, which reads an eight-bit status byte from
the Universal PROM Programmer.

e Define I/0 drivers, which links non-standard 1/0 devices to the Monitor.

¢ System 1/0 configuration status, which returns an eight bit byte describing the
current I/0 assignments.

e Set I/0 configuration, which changes the current I/0 assignments.

¢ RAM memory status, which returns the highest RAM address available to the
user.

The following sections describe how to use each of these routines, how and where
information is passed to them, how and where information is returned, and an
example of each.

G-
- 10CHK)
—o b (oot y——>(___ wewox___)——t—

—>@EF (driver$code, entrySpointD—b
‘—>Q)SET (configuration$byte))———»—
12161814

Status Routine Usage (in PL/M)

ISIS-II Services

Table 3-3. System Status Routine Usage

Series I1I Programmer
Procedure
or St :lan;:a Oft' Reports On
Function atus Routine

F CSTS Console Input
Status

F UPPS Universal PROM
Programmer
Status

P IODEF Existence and
location of user-
written programs
(1/O drivers) for
non-standard
devices

F IOCHK 1/O Configuration

P IOSET New System
Configuration

F MEMCK Highest address

of contiguous
memory available
to user programs

1Bit meanings in routine description

CSTS - Console Input Status Routine

The Console Input Status routine tests the Console device to determine if a character
is ready for input. If this routine is called from PL/M, it returns a value of 00H if no
key has been pressed since the last call to the Console Input Routine (CI) or a value
of OFFH if a key has been pressed. If this routine is called from an assembly
language program, then the 00H or OFFH value will be returned in the A-Register.

Returns

Assembly

PL/M Language

00H if no key, OFFH
if any key pressed

The values shown at
left are returned in
Reg. A

Eight-bit value' Eight-bit value in
A-register

Nothing, IODEF tells the Monitor what
routines are to be used.

Eight-bit value
describing the
currently con-
figured devices'

Value returned in
the A-register

Eight-bit value
is sent, setting
newl/O
assignments

Value is sent
in the C-register

The highest Address value
(address (a 16-bit returned in the H
value) and L registers

The name of the Console Input Status routine in SYSTEM.LIB is CSTS.

PL/M CSTS Call Example

The following example tests the Console Input Device during a Console Output
operation so that the operator has the facility to signal that the output operation be
terminated. A Control C character (03H) entered at the Console Input Device will
signal this termination.

CSTS: PROCEDURE BYTE EXTERNAL;

END CSTS;

/* ENTRY POINT INTO SYSTEM.LIBFOR */

I* CSTS */

Cl: PROCEDURE BYTE EXTERNAL;
ENDCL;

DECLARE CTLC LITERALLY *03H’;

I* ENTRY POINT INTO SYSTEM.LIB FORCI */

/* CONTROL/C SIGNALS TERMINATE */
/* OPERATION */

3-45

ISIS-I1 Services

{F CSTS THEN
bO;
IFCIAND 7FH = CTLC THEN
DO;

END;
END;

Series III Programmer

/* AKEY HAS BEEN PRESSED */

/* CONTROL/C RECEIVED. TERMINATE */
/* OUTPUT OPERATION. */

Assembly Language CSTS Call Example

EXTRN

"EXTRN
CTLC EQU

CALL
RRC
JNC

CALL

ANI

cPi

9z
CONT:

TERM:

csTs
Ci
03H
csTs
CONT
Ci
7FH
CTLC
TERM

;ENTRY POINT INTO SYSTEM.LIB FOR
;CSTS

;ENTRY POINT INTO SYSTEM.LIB FOR Gl
;CONTROL/C SIGNALS TERMINATE
;OUTPUT

:GET CONSOLE STATUS

;ROTATE TO CARRY FLAG

;:NO CHARACTER, CONTINUE OUTPUT
;OPERATION

;THERE IS A CHARACTER, GETIT

;1S IT ACONTROL/C
;IF YES, BRANCH TO TERMINATE CODE

;CODE TO CONTINUE OUTPUT
:OPERATION

;CODE TO TERMINATE OUTPUT
;OPERATION

UPPS - Universal PROM Programmer Status Routine (Series II Only)

The Universal PROM Programmer Status routine returns an eight-bit status byte as
a byte value (if called from PL/M) or in the A-register (if called from an assembly
language program). The meaning of the bits in the status byte are

BIT

7.6 5 4 3 2 1

0 UPP DEVICE STATUSBYTE

I— BUSY

— OPERATION COMPLETE/VERIFIED
- FAILED TO PROGRAM PROM

PROGRAMMING ERROR

ADDRESS ERROR

- HARDWARE ERROR

BOARD SENSE ERROR

3-46

ORIENTATION ERROR

Series I1I Programmer ISIS-II Services

If the UPP is not present or is timed-out, the value returned is OFFH.

For additional information concerning the meaning of the status bits, see the
Universal PROM Programmer Hardware Reference Manual.

The name of the Universal PROM Programmer Status routine in SYSTEM.LIB
is UPPS.

See the description of UI and UO for examples of the use of UPPS.

IODEF - 1/0 Definition Routine

You can write /O drivers for non-standard 1/0 devices and make them a part of the
Monitor. By making your drivers a part of the Monitor, they become accessible to
other Intellec programs.

This section does not describe how to write an I/0 driver for a non-standard device.
It only describes how to link the driver, once it is written, to the Monitor. See the
specific device hardware manual for information on writing your own driver.

The Monitor has facilities to handle eight user-written drivers. Each driver is
assigned to one of the following driver-codes:

User-defined Console input
User-defined Console output
User-defined Reader 1
User-defined Reader 2
User-defined Punch 1
User-defined Punch 2
User-defined List device

N AN WL AW = O

User-defined Console status routine

Only one program can be assigned to each of these codes at any one time. You can
change and swap programs, but you cannot have two assigned to the same code.

These codes correspond to the number assignments available in the 170 configura-
tion assignment command and routine.

When you write your own driver for a Console device you have to supply three
routines: one for input, one for output, and one to check the Console status.

To link your driver to the Monitor, you must call IODEF and pass it two
parameters. If you use a PL/M call, pass the function code (from above) as a byte
value and the entry point address of the driver as an address parameter. If you use
an assembly language call, the function code is passed in the C-registers and the
entry address in the D and E registers (most-significant bits of D and least- signifi-
cant bits of E).

In defining your own driver you must be careful to locate it in an area of RAM
which will not be overwritten by ISIS-11 or other programs. If your driver is located
entirely in ROM below you will not have this problem.

The name of the 1/0 Definition routine in SYSTEM.LIB is IODEF.

3-47

ISIS-II Services Series III Programmer

The external declaration for IODEF in PL/M necessary to link it with
SYSTEM.LIB s

IODEF: PROCEDURE(driver$code, entry$point) EXTERNAL;
DECLARE driver§code BYTE;

DECLARE driver$entry$point ADDRESS;
END IODEF;

The external declaration for IODEF in Assembly Language is EXTRN IODEF.

IOCHK - Check System 170 Configuration Routine

The Check System 1/0 Configuration routine returns a value which describes the
current assignment of physical devices to the logical system devices (Console,
Reader, Punch, and List). It is returned as a byte value (if called from PL/M) or in

the A-Register (if called from the assembler). This value is divided into four 2-bit
fields:

BITS
7 6 5 4 3 2 1 0 STATUSWORD
N——

N —p— ——

| L CONSOLE

READER

PUNCH

LIST
Table 3-4 shows the meaning of the possible values in each field:

Table 3-4: IOCHK Configuration Values

VALUE CONSOLE READER PUNCH LIST
00 7Y TTY TTY TTY
01 CRT H.S.READER H.S.PUNCH CRT
10 BATCH U.D. U.D. LINE PRINTER
11 u.D. u.D. U.D. U.D.

U.D. - User-defined device using user written routines.

The following are lists of the mask values you must use to check for specific system

devices and types of physical devices assigned to them. The mask values are shown
in hexadecimal and binary representation.

Masks to check for system device:

CONSOLE 03H 00000011B
READER OCH 00001100B
PUNGH 30H 001100008
LIST GOH 110000008

3-48

Series I11 Programmer

Masks to check for physical device codes:

CONSOLE TTY 00H
CRT 01H
BATCH 02H
User 03H
READER TTY 00H
PUNCH 04H
User1 08H

User2 O0CH

000000008 PUNCH TTY 00H
000000018 PUNCH 10H
00000010B User1 20H
00000011B User2 30H
000000008 LIST TTY 00H
000001008 CRT 40H
000010008 PRINTER 80H
00001100B User COH
NOTE

000000008
000100008
001000008
001100008

000000008
010000008
100000008
110000008

When first loaded, the Monitor is initially configured to give the console
and list devices the codes of the first device operated during initialization,
and to assign the code for TTY to all other devices.

ISIS-1I Services

The name of the check system I/O configuration routine in SYSTEM.LIB is

IOCHK.

PL/M IOCHK Call Example

This example checks which device is assigned as the system punch. If the high speed
stand-alone device is being used, the program can go ahead and punch a tape
because this type of device is presumed to be turned on and ready. However, if
another device (e.g., TTY) is assigned as the punch device, a message must be sent to
the operator to turn the punch on.

IOCHK: PROCEDURE BYTE EXTERNAL;

END IOCHK;

DECLARE DEVMSK LITERALLY’001100008’;
DECLARE TYPE LITERALLY ’00010000B’;

IF {lOCHK AND DEVMSK) <> TYPE THEN

DO;

END;

Assembly Language IOCHK Call Example

EXTRN
DEVMSK EQU
TYPE EQU

CALL
ANI

CPI
JZ

CONT:

1* PUNCH DEVICE IS NOT */

I* HIGH SPEED PUNCH, SO SEND */
1* MESSAGE TO THE OPERATOR */

IOCHK

00110000B

000100008

IOCHK
DEVMSK

TYPE
CONT

1* ENTRY POINT INTO SYSTEM.LIB */

I* MASK TO ISOLATE PUNCH ASSIGNMENT */
I* MASK FOR HIGH SPEED PUNCH DEVICE */

;ENTRY POINT INTO SYSTEM.LIB FOR

;IOCHK

;MASK TO ISOLATE PUNCH DEVICE

;ASSIGNMENT

;MASK FOR HIGH SPEED PUNCH

;GET THE STATUS BYTE

;MASK ALL BUT THE PUNCH

;ASSIGNMENT

;YES, BRANCH TO PUNCH CODE
;OTHERWISE, EXECUTE CODE TO SEND
;MESSAGE TO THE OPERATOR

3-49

ISIS-II Services

Series 11 Programmer

IOSET - Set System 1/0 Configuration Routine

This routine modifies the system 1/0 configuration assignments. The new con-
figuration is passed to the routine as a byte parameter (if called from PL/M) or in
the C-register (if called from an assembly language routine). Refer to the description
of the IOCHK routine for a specification of this configuration byte parameter.

The name of the Set System I/0 Configuration routine in SYSTEM.LIB is IOSET.

PL/M IOSET Call Example
The following PL/M sequence changes the Console device to be the CRT:

IOSET: PROCEDURE(CONFIG) EXTERNAL; /* ENTRY POINT INTO SYSTEM.LIB */
f* FORIOSET */

DECLARE CONFIG BYTE;
END IOSET;
IOCHK: PROCEDURE BYTE EXTERNAL; /* ENTRY POINT INTO SYSTEM.LIB */
/* FORIOCHK */
END IOCHK;

DECLARE DEVMSK LITERALLY ’00000011B’; /*MASK TO ISOLATE CONSOLE ASSIGNMENT*/
DECLARE NEWDEV LITERALLY *00000001B’; /*MASK TO ASSIGN CRT TO CONSOLE*/

CALL IOSET({IOCHK AND (NOT DEVMSK)) OR NEWDEV);

Assembly Language IOSET Call Example

EXTRN IOSET ;ENTRY POINT INTO SYSTEM.LIB FOR
;IOSET
EXTRN I0CHK ;ENTRY POINT INTO SYSTEM.LIB FOR
;JIOCHK
DEVMSK EQU 00000011B ;MASK TO ISOLATE CONSOLE
;ASSIGNMENT
NEWDEV EQU 00000001B ;MASK TO ASSIGN CRT TO CONSOLE
CALL I0CHK ;GET THE CURRENT I/O STATUS
ANt NOT DEVMSK ;CLEAR THE CURRENT CONSOLE
;ASSIGNMENT
ORI NEWDEV ;ASSIGN THE CRT TO THE CONSOLE
;DEVICE
Mov C,A
CALL IOSET ;SET THE NEW ASSIGNMENT

MEMCK - Check RAM Size Routine

The Check RAM Size routine returns the highest memory address of contiguous
memory available to the user. This address is the highest address available after the
Monitor has reserved its own memory (320 bytes) at the top of contiguous RAM.
This value is returned as an address value (if called from PL/M) or in the H and L
registers (if called from an assembly language routine).

The name of the Check RAM Size routine in SYSTEM.LIB is MEMCK.

In a system containing 64k of RAM, the user top of memory is OFFFFH minus 2k
for the Monitor PROM and minus 320 bytes for Monitor RAM space, or 0F6COH.
In a 32k system the top of memory is 7TECOH, since the 2k for the monitor is still

- located between 62 and 64k.

3-50

Series 111 Programmer ISIS-H Services

The BOOT program determines the last 256 byte page of RAM by checking the first
byte of each page starting from the beginning of memory. When the first non-RAM
location is encountered, the previous byte of memory is considered to be the last
byte of RAM in the system. (A 2k region is skipped from E800H to EFFFH. The
BOOT ROM resides at these locations.)

This test allows the user to add additional ROMs to the system or to use memory-
mapped 1/0 boards in the system as fong as the locations used begin at the start of a
256 byte page of memory. It is always best to use the last page(s) of physical memory
for these purposes to preserve RAM for use by ISIS.

Example: If you use the 16 contiguous memory-mapped locations from F700H to

F70FH for a peripheral controller, the top of user memory then becomes F700H-
140H, or FSCOA.

PL/M MEMCK Call Example

The following example obtains the highest address of contiguous memory available.

MEMCK: PROCEDURE ADDRESS EXTERNAL; /* ENTRY POINT INTO SYSTEM.LIB */
END MEMCK;

DECLARE MADR ADDRESS; /* ADDRESS TO CONTAIN VALUE RETURNED BY MEMCK */

MADR = MEMCK;

Assembly Language MEMCK Call Example

EXTRN MEMCK ;ENTRY POINT INTO SYSTEM.LIB FOR
;MEMCK
MADR: DS 2 ;CONTAINS VALUE RETURNED BY
;MEMCK
CALL MEMCK

SHLD MADR ;STORE ADDRESS IN MADR
Interrupt Processing

Interrupt processing is controlled by logic on the processor board. It provides an
eight-level priority interrupt structure using an Interrupt Mask Register (the
I-register), and a ‘‘current operating level’’ indicator, which keeps track of the level
of interrupt currently serviced. The Interrupt Mask Register is set by a program or
from the Console device. You select which interrupts will be acknowledged at any -
time.

NOTE

Interrupts 0, 1, and 2 are reserved for internal use and must not be referenc-
ed by the user.

Priority of Interrupts

There are eight levels of interrupts, numbered 0 through 7. The levels correspond to
the eight Interrupt switches and lights on the front panel. Interrupt 0 has the highest
priority and interrupt 7, the lowest. An interrupt is not serviced until all higher
priority interrupts are serviced. An interrupt of level 4 that is currently being serv-
iced can be interrupted to service an interrupt of level 3, 2, 1, or 0. It cannot be inter-
rupted to service one of level 5, 6, or 7, nor can it interrupted by another level 4.

3-51

ISIS-II Services Series II1 Programmer

The Interrupt Mask Register

The Intellec Interrupt Mask Register (I-register) determines which interrupts are
accepted by the system. The Interrupt Mask Register contains eight bits, each of
which corresponds to an interrupt level:

BITS 7 6 5 4 3 2 1 0
INTERRUPTLEVELS 7 6 5 4 3 2 1 0

A “‘1”’ bit in the Interrupt Mask Register prevents the corresponding interrupt from
being serviced. A ‘0’ bit allows the interrupt to be serviced. For example, the
Intellec Monitor sets the Interrupt Mask Register to OFEH (11111110B) which
blocks all interrupts except interrupt 0.

The Interrupt Mask Register can be set programmatically by writing the desired
value to Port OFCH. For example:

MVI A,0FOH (OUTPUT(OFCH)=0FOH ;in PL/M)
OUT OFCH

sets the Interrupt Mask Register to 11110000B, blocking interrupts 4 through 7 and
allowing interrupts O through 3.

A program can also read the current value of the Interrupt Mask Register from Port
OFCH. For example:

IN OFCH (INPUTSMASK=INPUT (OFCH); in PL/M)

places the current value of the Interrupt Mask Register into the A-register (or
INPUT$MASK, for the PL/M example). -

Interrupt Mask Register Initialization

The Interrupt Mask Register is initialized by the Monitor when the system is turned
on and when the RESET button is pressed. At both of these times it is set to OFEH
(11111110B); only interrupt 0 is allowed. If ISIS-II is boot loaded, the mask register
is set to OFCH (11111100B); interrupts 0 and 1 are allowed.

Interrupt Acceptance

When an interrupt occurs, the Interrupt Mask Register is checked to see if an inter-
rupt of that level is permitted. If it is not, no further action is taken, but the inter-
rupt is not cleared and remains pending. If the interrupt is permitted, the ‘“‘current
operating level’’ is checked to see if another interrupt of equal or higher priority is
being serviced. If so, the new interrupt remains pending until the value of the “‘cur-
rent operating level’’ is less than the priority of the new interrupt.

When the new interrupt can be serviced, all Multibus interrupts are locked out, while
an RST instruction to the appropriate interrupt address (see the following table) is
generated and the “‘current operating level®’ is set to the new value. The interrupt
lock-out is then removed.

3-52

Series I1I Programmer ISIS-1I Services

The addressé& called when an interrupt is accepted are

INTERRUPT
LEVEL ADDRESS

0000H
0008H
0010H
0018H
0020H
0028H
0030H
0038H

N EWN =0

Interrupt Removal

The program servicing an interrupt must do two things: transmit a signal to the
interrupting device, telling it to remove the interrupt signal it generated initially; and
restore the ‘““‘current operating level’’ maintained by the system. The former action is
device-dependent. The latter is accomplished by writing a value of 20H to port
OFDH. This must be done with interrupts disabled. (If the code permits another
interrupt to be serviced while this is being done, a stack overflow could result.) The
following is a sample sequence in assembly language for doing this:

MVI A,20H

out OFDH

POP PSW ;RESTORE A-REGISTER AND FLAGS
El ;ENABLE INTERRUPTS

The following is a sample PL/M sequence for restoring the current operating level:

DISABLE; /*DISABLE INTERRUPTS*/
OUTPUT(OFDH) = 20H; I*RESTORE THE INTERRUPT LOGIC*/
ENABLE; /*ALLOW INTERRUPTS*/
The following example shows the skeleton of the code necessary to service an inter-
rupt at level 5:
ASEG ;VECTOR GOES AT ABSOLUTE
;LOCATION
ORG 40 ;RST ADDRESS FOR INTERRUPT 5
JMP INTS
CSEG ;PUT CODE IN RELOCATABLE CODE
:SEGMENT
INTS:
El ;ROUTINE CAN BE INTERRUPTED
PUSH PSW ;SAVE
PUSH B ;. REGISTERS
PUSH D s
PUSH H ;

;<code to service interrupt and remove signal>

3-53

ISIS-11 Services Series I11 Programmer

POP H ;RESTORE
POP D ; REGISTERS
POP B ;.
DI ;CRITICAL SECTION:
s DISABLE INTERRUPTS
Mmvi A,20H ;RESTORE CURRENT OPERATING LEVEL
ouT OFDH
POP PSW ;RESTORE A REG-AND FLAGS
El ;PERMIT INTERRUPTS AFTER NEXT
; INSTRUCTION
RET ;THE RETURN MUST IMMEDIATELY

;FOLLOW THE EI TO MAKE SURE
;IT1S EXECUTED BEFORE ANOTHER
;INTERRUPT OCCURS

Here is another example, in PL/M, that also discusses issues in ISIS-II
which must be confronted by programmers preparing interrupt handlers:

INTERRUPTSEXAMPLE;
DO;

[hhkkhkkdhhhhhkhkhkhdkhhhkhhhhhkhkhhhhrhhhhhkbhhhhhhkkhhhhhhkhrhkhhhkhrkhkhkkhdhhkk

THIS EXAMPLE APPLIES WHEN EXECUTING WITH ISIS-II. IT SHOWS

HOW AN INTERRUPT SERVICE PROCEDURE IS WRITTEN IN PL/M AND WHAT
SHOULD BE DONE IN THE MAIN PROGRAM TO PREPARE FOR SERVICING AN
INTERRUPT. _

THE FOLLOWING CHARACTERISTICS OF ISIS ARE SIGNIFICANT WHEN WRITING
INTERRUPT PROGRAMS:

1. ISIS USES AN INTERNAL (ITS OWN) STACK AND NOT THE
USER'S STACK FOR ITS OPERATION.

2. ISIS DEPENDS ON DISK COMPLETION INTERRUPTS (INTERRUPT 2)
FOR ITS CORRECT OPERATION.

THESE CHARACTERISTICS IMPOSE THE FOLLOWING REQUIREMENTS ON A
USER-WRITTEN INTERRUPT PROGRAM:

1. IT MUST SAVE THE ISIS STACK AND LOAD ITS OWN STACK.
ISIS PROVIDES 10 BYTES OF ITS STACK TO ALLOW THE
SWAPPING OF STACKS.)

2. IT MUST RESTORE THE ISIS STACK WHEN ITS PROCESSING IS
COMPLETE.

3. IT MUST SAVE/RESTORE THE STATE OF CPU REGISTERS
CAUTOMATIC WITH PL/M).

4. IT SHOULD NOT USE PERIPHERAL DEVICES WHICH ARE MANAGED
BY ISIS. CONFLICTS CAN ARISE WHEN BOTH ISIS AND A USER
PROGRAM ATTEMPT TO COMMUNICATE WITH THE SAME DEVICE SUCH
AS THE CONSOLE (CRT,TTY). ISIS IS GENERALLY POLLING THE
DEVICE (E.G., WAITING FOR INPUT), AND THE USER-PROGRAM IN
THIS CASE IS USING INTERRUPTS WITH THE SAME DEVICE.

5. IT MUST LEAVE THE INTERRUPT SYSTEM ENABLED WHEN CALLING
ISIS ROUTINES WHICH ACCESS THE DISK (E.G., OPEN, READ,
SEEK, ETC.)

6. IT SHOULD USE THE INTERRUPT MASK TO ENABLE/DISABLE THE
DESIRED INTERRUPT(S).

7. IT SHOULD NOT CALL ISIS ROUTINES UNLESS IT IS A CERTAINTY
THAT NO OTHER PART OF THE ENTIRE USER-PROGRAM CAN BE
INTERRUPTED IN THE MIDDLE OF USING AN ISIS ROUTINE. ISIS
IS NOT REENTRANT! IF ANY PART OF THE PROGRAM USES ISIS
AND CAN BE INTERRUPTED, THEN THIS INTERRUPT PROCEDURE
MUST NOT CALL ISIS ROUTINES.

khkkhkhkhhhhkhhhhhhkhhkhhkhhkhkhkhkrhkhkhkrhhhkhhhhhhhhdhhhkhhhhhhkkkhhhhkhhhkhkhkk/

3-54

Series 111 Programmer ISIS-1I Services

USERSINTERRUPT:
PROCEDURE INTERRUPT 5 PUBLIC;
DECLARE ISIS$STACKSPTR ADDRESS;

ISISSSTACKSPTR = STACKSPTR ; /* SAVE ISIS STACK */
STACK$SPTR = OF6COH ; /* SETUP USER STACK TO HIGH MEMORY =*/

/*'INSERT USER CODE TO SERVICE THE
DEVICE GENERATING INTERRUPT S5 */

STACK$PTR = ISISSSTACKSPTR ; /* RESTORE ISIS STACK */
OUTPUT(OFDH) = 020H ; /* OUTPUT EOI (END OF INTERRUPT)

SIGNAL TO SYSTEM INTERRUPT
CONTROLLER (8259) =/

END USERSINTERRUPT;

/**************i*******************/

A */
/* START OF MAIN PROGRAM */
/% */

/*****t****************************l

/* EXAMPLE OF USER SERVICING INTERRUPTS GENERATED ON LEVEL 5 =*/

OUTPUT (OFCH) = INPUT(OFCH) AND ODFH ; /% READ INTERRUPT MASK AND */
/* UNMASK INTERRUPT S, LEAVING */
/* REMAINING INTERRUPTS UNCHANGED =/

ENABLE ; /* ENSURE INTERRUPTS ENABLED */
/* INSERT USER CODE TO START THE */
/* DEVICE THAT GENERATES AN */
/* INTERRUPT 5 */

OUTPUT (OFCH) = INPUT(OFCH) OR 020H ; /* WHEN INTERRUPTS ARE NOT TO BE */
/* SERVICED ANYMORE, READ INTERRUPT =/
/* MASK AND RESTORE ORIGINAL MASK */
END ;

EOF

3-55

APPENDIX A
SERIES Il NOTES

1. When a program is invoked under RUN, i.e., under Series III in the 8086-based
environment, its extension is presumed to be ““.86”’ if none is provided. If the
program name is followed by a period only, the name is used with no extension.

Examples:

Program Invoked

RUN MYPROG.ABS MYPROG.ABS
RUN MYPROG MYPROG.86
RUN MYPROG. MYPROG

These rules also apply to programs loaded via the console command LOAD.
2. The Series I1I loader does not fully support the following:

a.

shared overlays in the LARGE mode of segmentation. The overlays are
spread out in memory rather than sharing space as much as possible. See the
IAPX 86, 88 Family Ultilities User’s Guide for 8086-Based Development
Systems. '

multiple expanding segments. The intention of the expanding segment is to
make available all of the memory remaining after all other segments are
successfully located. This is correctly done when the expanding segment is
last and the only one of its kind. However, when earlier segments request a
maximum-desired length, it is granted. Consequently later expanding
memory segments may be allocated less than their maximum-desired space,
and will abort the load if their minimum-required specification cannot be
met.

APPENDIX B
SERIES Ill INTERRUPT DISCUSSION

There are three sets of interrupts at work in the Series 111 operating system:

1. The set of interrupts fielded by the operating system, which includes ‘‘divide by
zero’’ and “‘overflow’’. These are accessible to the user if he writes an exception
handler for that purpose and incorporates it into the environment under the
operating system by using the DQSTRAPSEXCEPTION system call.

2. The set of hardware interrupts which interrupt the Series Il software. These use
the interrupt vectors numbered 56 through 63, located at addresses 224 through
252 decimal, representing levels O through 7 of the master interrupt controller.
This is an 8259A located on the RPB-86. It is initialized by a built-in sequence as

follows:

a. Output PICPORT A=13H; (ICWI)

b. PIC PORT B=38H; (ICW2)

c. PIC PORT B=0DH; (ICW4)

d. PIC PORT B=FEH; (interrupt mask)

PIC PORT A is port 0COH, as discussed in the description of the 8259A in
Intel’s 1980 Component Data Catalog.

The last instruction is the initial setting of the interrupt mask, enabling interrupt
levels 0 and 1 on the 8259A which vector through interrupt vectors 56 and 57 in 8086
memory.

a, (ICWI1) 00001 0011
l T»-8259A WILL REQUIRE ICW4
‘ SINGLE MODE (NOT CASCADED)
NQ EFFECT IN 8086 MODE
EDGE TRIGGERED MODE
b ALWAYS 1
»NO-EFFECT IN 8086 MODE

b. ICW2). 001t 1000

: “TT——»-NO EFFECT IN 8086 MODE
LT, -T; OF INTERRUPT VECTOR ADDRESS

c. (ICW4) 000 1101

B [ﬁ"‘-»&u&euanﬁ'
_ » NORMAL END-OF INTERRUPT

—-p»- BUFFERED MODE MASTER
- SPECIAL MODE FULLY NESTED
= ALWAYS 0

d. The initial interrupt mask is set to-OFCH to allow. chip-interrupts 0-and 1. to
generate interrupts to the RPB-86. The 8253 Programmable timer chip:
counter: 1 is. connected to level 0 (corresponding to an-interrupt through
vector 56)-and is-used by the operating system.

B-l'

Series III Interrupt Discussion Series III Programmer

3. The set of interrupt vectors available for user software include 64 through 183.
Under the Series III operating system, users should not use interrupt vectors
outside this range except by writing exception handlers as described in item 1
above. To do so is likely to conflict with system software in unpredictable and
undesirable ways. Any reprogramming of the 8259A requires EXTREME
caution.

APPENDIX C
SERIES lll EXCEPTION CODES

1. Exceptions Returned from System Calls:
ESOK (0000H)

ESCONTEXT (0101H)

The routine was called in an illegal context. More specifically, this includes an
attempt to

e Attach or create a file when 12 connections already existed
e Attach, create, or delete a file to which the console was assigned
e Attach, create, or delete the user file containing overlays

e Attach, create, delete, or rename a file at the Network Manager when the
user is not logged on. (Applies to NDS-1 Workstation only.)

E$SCROSSFS (0102H)
The operation attempted an illegal cross volume rename.

ESEXIST (0103H)
The specified token or connection did not exist, or the specified overlay did not
exist.

ESEACCESS (0026H)

A deletion, rename, or destructive creation of a write-protect or format file was
attempted; or the mode of open did not agree with the file attributes or device
characteristics.

ESFEXIST (0020H)
The specified file exists when it is not expected to exist.

ESFNEXIST (0021H)

The specified file does not exist when it is expected to exist. The deletion,
rename, or attachment of a workfile will also cause the exception. - :

ESMEM (0002H)

Insufficient memory for requested operation.

ESNOPEN (0104H)

The operation attempted to close, read, write, or seek a connection which
wasn’t opened. :

ESOPEN (0105H)

The operation attempted to open a connection which was already opened.

ESOREAD (0106H)
A write operation was attempted on a connection opened for read.

ESOWRITE (0107H)
A read operation was attempted on a connection opened for write.

C-2

E$SPARAM (0108H)

An argument had an illegal value. This is usually the result of a bounds check
(e.g., 0 < connection token < 12).

ESPTR (0109H)

A pointer argument was illegal. If this was the excep$p argument, the operating
system aborts the job and prints an error message to the cold-start console.

E$SHARE (0028H)

An attempt was made to delete, rename, open, destructively create, or attach to
a file on which a connection was already established. At an NDS-I Workstation,
this may mean that the file is currently open by another user.

ES$SIX (010AH)
An attempt was made to open a seventh connection.

E$SPACE (0029H)
The operation attempted to add a directory entry to a full directory.

ESSTRINGSBUF (0081H)

The string is over 45 characters in length (DQSCHANGESEXTENSION) or the
argument is over 80 characters in length (DQ$GETSARGUMENT).
E$SSUPPORT (23H)

One of the following operations was attempted:

The deletion or rename of a physical or logical device

® The seeking of a physical device or the console

* A DQS$SPECIAL with a connection which was not established -on :Cl:

* A DQSSPECIAL with type one or type three when :Cl: has been assigned to
a disk file.

ESSYNTAX (010CH)

An illegal ISIS pathname was specified. This includes device-name-parts not

supported by Series 111, or an illegal overlay name.

ESUNSAT (010EH)

The overlay contains unresolved external symbols. Load completed.

ESADDRESS (010FH)

The overlay loaded contained addresses in the operating system area. The load
was not completed.

E$BADSFILE (0110H)
The file containing the overlay is not a valid object file.

Series I1I Programmer

2. Hardware-Detected Conditions

E$ZEROS$DIVIDE (8000H)
A divide by zero was attempted.

ESOVERFLOW (8001H)
An overflow occurred.

E$8087 (8007H)
An 8087 error occurred.

Series III Exception Codes

c3

APPENDIX D
SAMPLE ASSEMBLY LANGUAGE USAGE
OF SERIES IlIl SERVICES

Detailed discussions of the language features used below appear in the
8086/8087/8088 Macro Assembly Language Reference Manual for 8086- Based
Development Systems .

SOURCE

NAME UDI_EXAMPLES

;THE FOLLOWING ILLUSTRATES THE CALLING CONVENTIONS FOR THE SYSTEMS
;SERVICE ROUTINES. THE PARAMETERS ARE PUSHED ONTO THE STACK

;PRIOR TO THE CALL. THESE EXAMPLES ASSUME THE SMALL MODEL

;OF COMPILATION. FOR LARGE, YOU WOULD CHANGE THE ATTRIBUTES

;OF THE PROCEDURES TO "FAR'", AND PRIOR TO THE PUSH OF EACH
;PARAMETER YOU WOULD HAVE TO "PUSH Ds".

ASSUME CS:CODE, DS:DATA
DATA SEGMENT PUBLIC

FILE_NAME DB 9,'AFILE.SRC’ ;A FILE NAME STRING
EXCEPT bW 0 ;WHERE EXCEPTION CODES ARE RETURNED
CONN DW 0 ;FILE CONNECTION STORED HERE
ACTUAL DW 0 ;NUMBER OF BYTES FROM I/0 CALL
DATA ENDS

CODE SEGMENT PUBLIC
;THE EXTERNAL DECLARATIONS FOR THE SYSTEMS PROCEDURES
EXTRN DQATTACH:NEAR, DQOPEN:NEAR, DQREAD:NEAR, DQCLOSE:NEAR
ATTACH_FILE PROC NEAR
MoV AX, OFFSET FILE_NAME ;GET POINTER TO FILE NAME

PUSH AX

MOV AX, OFFSET EXCEPT ;GET POINTER TO EXCEPT
PUSH AX

CALL DQATTACH ;CALL SERVICE ROUTINE

MOV CONN, AX ;CONNECTION RETURNED IN AX
RET

ATTACH_FILE ENDP

;THE FOLLOWING PROCEDURE HAS TWO PARAMETERS WHICH ARE PASSED
;ON THE STACK TO OPEN_FILE. THEY ARE DEFINED BELOW.

ACCESS EQU WORD PTR [BP + 4]

NUMBUF EQU WORD PTR [BP + .6]

OPEN_FILE PROC NEAR
PUSH CONN ;GET CONNECTION TOKEN
PUSH ACCESS :GET ACCESS TYPE
PUSH NUMBUF ;GET NUMBER OF BUFFERS
MOV AX, OFFSET EXCEPT ;GET POINTER TO EXCEPT
PUSH AX
CALL DQOPEN
RET

Sample Assembly Language Usage of Series I1I Services

OPEN_FILE

;THE FOLLOWING PROCEDURE HAS TWO

ENDP

Series III Programmer

PARAMETERS WHICH ARE PASSED

;ON THE STACK TO READ_FILE. THEY ARE DEFINED BELOW.

BUFFERP
COUNT

READ_FILE

READ_FILE
CLOSE_FILE

CLOSE_FILE
CODE ENDS

END

EQU
EQU

PROC

PUSH
PUSH
PUSH
MoV
PUSH
CALL
MOV
RET

ENDP
PROC
PUSH
MOV

PUSH
CALL
RET

ENDP

WORD PTR [BP + 4]
WORD PTR [BP + 61

NEAR

CONN

BUFFERP

COUNT

AX, OFFSET EXCEPT
AX

DQREAD

ACTUAL, AX

NEAR

CONN

AX, OFFSET EXCEPT
AX

DQCLOSE

;GET CONNECTION TOKEN
;GET POINTER TO BUFFER
;GET COUNT OF BYTES
;GET POINTER TO EXCEPT

;NUMBER BYTES READ IN AX

;GET CONNECTION TOKEN
;GET POINTER TO EXCEPT

APPENDIX E
TYPE—A SAMPLE ISIS-Il PROGRAM

This appendix describes two programs—one written in PL/M, one written in
8080/8085 Assembly Language, with identical functions. Both programs allow you
to type a file to the :CO: device by specifying:

TYPE filename
rather then

COPY filename to :CO:

The PL/M program must be compiled and linked with SYSTEM.LIB and
PLMS80.LIB and located to an actual memory location before it can be executed.
The assembly language program must be assembled, linked to SYSTEM.LIB and
located to an actual memory location before it can be executed.

PL/M Version of TYPE

TYPE:
DO;
DECLARE BUFFER(128) BYTE;)
DECLARE ACTUALSCOUNT ADDRESS;
DECLARE STATUS ADDRESS;
DECLARE AFT$iN ADDRESS;
DECLARE READSACCESS LITERALLY “1’;

OPEN:
PROCEDURE (AFT,FILE,ACCESS,MODE,STATUS) EXTERNAL;
DECLARE (AFT,FILE,ACCESS,MODE,STATUS) ADDRESS;
END OPEN;

CLOSE:
PROCEDURE (AFT,STATUS) EXTERNAL;
DECLARE (AFT,STATUS) ADDRESS;
END CLOSE;

READ:
PROCEDURE (AFT,BUFFER,GOUNT,ACTUAL,STATUS) EXTERNAL;
DECLARE (AFT,BUFFER,COUNT,ACTUAL,STATUS) ADDRESS;
END READ;

WRITE:
PROGEDURE (AFT,BUFFER,COUNT,STATUS) EXTERNAL;
DECLARE (AFT,BUFFER,COUNT,STATUS) ADDRESS;
END WRITE;

EXIT:
PROCEDURE EXTERNAL;
END EXIT;

ERROR:
PROCEDURE (ERRNUM) EXTERNAL;
DECLARE (ERRNUM) ADDRESS;
END ERROR;

" E-1

Type—A Sample ISIS-II Program

It

READ THE CONSOLE FILE TO GET THE PARAMETER STRING.
FOR THIS EXAMPLE, THE COMMAND ENTERED IS

TYPE ASM.LST(CR)(LF)

AT THIS POINT, THE CONSOLE INPUT BUFFER CONTAINS

*

ASM.LST(CR)(LF)

CALL READ(1,.BUFFER,128, ACTUALSCOUNT,.STATUS);
CALL OPEN(.AFTSIN,.BUFFER,READ$ACCESS,0,.STATUS);
IF STATUS >0 THEN CALL ERROR(STATUS);

,t

THE FILE ASM.LST IS NOW OPEN FOR INPUT.

*!

ACTUALSCOUNT =1;
DO WHILE ACTUALSCOUNT < > 0;
CALL READ(.AFTSIN, .BUFFER, 128, ACTUALSCOUNT, .STATUS);
IF STATUS >0 THEN CALL ERROR(STATUS);
CALL WRITE(0, .BUFFER, ACTUALSCOUNT, .STATUS);
IF STATUS >0 THEN CALL ERROR(STATUS);

END;

CALL WRITE (0,.(‘COPY COMPLETED’, 0DH, 0AH), 16, .STATUS)
CALL CLOSE(AFTSIN, .STATUS);

IFSTATUS >0 THEN CALL ERROR(STATUS);

CALL EXIT;

END;

8080/8085 Assembly Language Version of TYPE

OPEN
CLOSE
READ
WRITE
EXIT
ERROR

BEGIN:

Sample Program

EQU 0

EQU 1

EQU 3

EQU 4

EQU 9

EQU 12

EXTRN ISIS

CSEG ;BEGINNING OF CODE SEGMENT
LXI SP,STCKA +4

Mvi C.READ ; READ THE CONSOLE
LXI D,RBLK

CALL ISIS

LDA STATUS

ORA A

JNZ ERR

Series I1I Programmer

Series I1I Programmer

LOOP:

DONE:

ERR:

OBLK:

CBLK:
CAFT:

MVI
LXi
CALL
LDA
ORA
JNZ
LHLD
SHLD

MVI
X1
CALL
LDA
ORA
JNZ
LHLD
MOV
ORA
Jz
MVI
LXI
CALL
LDA
ORA
JNZ
JMP

Mvi
LXI
CALL
MVI
LXi
CALL

Mvi
LXi
CALL
MVI
LXI
CALL

DSEG

DW
DW
DW
DW
DW

DS
DW

C,OPEN
D,OBLK
ISIS
STATUS
A

ERR
AFT
CAFT

C.READ
D,RBLK
ISIS
STATUS
A

ERR
ACTUAL
AH

L

DONE
C,WRITE
D,WBLK
ISIS
STATUS
A

ERR
LOOP

C,CLOSE
D,CBLK
ISIS
C,EXIT
D,XBLK
ISIS

C,ERROR
D,EBLK
ISIS
C.EXIT
D,XBLK
ISIS

AFT
BUFFER
1

0
STATUS

2
STATUS

Type—A Sample ISIS-1I Program

; OPEN THE INPUT FILE

; READ THE INPUT FILE

; WRITE TO THE CONSOLE

" CLOSE THE INPUT FILE

; NORMAL EXIT

; ERROR MESSAGE

; ERROR EXIT

; BEGINNING OF DATA SEGMENT

; READ ACCESS
; NO ECHO

Type—A Sample ISIS-II Program

RBLK:
AFT:

WBLK:

ACTUAL:

XBLK:

EBLK:

STATUS:

BUFFER:

STCKA:

END

bW
DwW
DW
Dw
Dw

DwW
DW
DS

bw

bW

DS

DwW

DS

bs

BEGIN

1
BUFFER
128
ACTUAL
STATUS

0
BUFFER
2
STATUS

STATUS

2
STATUS
128

4

Series I Programmer

APPENDIX F
ASCII CODES

Table F-1. ASCII Code List

Decimal Octal Hexadecimal Character
0 000 00 NUL
1 001 o1 SOH
2 002 02 STX
3 003 03 ETX
4 004 04 EOT
5 005 05 ENQ
6 006 06 ACK
7 007 07 BEL
8 010 08 BS
9 011 09 HT
10 012 0A LF
11 013 0B vT

12 014 0C FF
13 0185 0D CR
14 016 OE SO
15 017 OF Sl
16 020 10 DLE
17 on 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM
26 032 1A sSuB
27 033 iB ESC
28 034 1C FS
29 035 1D GS
30 036 1E RS
31 037 1F us
32 040 20 SP
33 041 21 !
34 042 22 o
35 043 23 #
36 044 24 $
37 045 25 %
38 046 26 &
39 047 27 ‘
40 050 28 (
41 051 29)
42 052 2A *
43 053 2B +
44 054 2C ’
45 055 2D -
46 056 2E .
47 057 2F /
48 060 30 0
49 061 31 1
50 062 32 2
51 063 33 3
52 064 34 4
53 065 35 5
54 066 36 6
55 067 37 7
56 070 38 8
57 071 39 9
58 072 3A :
59 073 3B ;
60 074 3C <

ASCIH Codes Series III Programmer

Table F-1. ASCII Code List (Cont’d.)

Decimal Octal Hexadecimal Character
61 075 3D =
62 076 3E >
63 077 3F ?
54 100 40 @
85 101 1 A
66 102 42 B
87 103 43 C
68 104 44 D
69 105 45 E
70 106 46 F
n 107 47 G
72 110 48 H
73 m 49 |
74 112 4A J
75 113 4B K
76 114 4C L
77 15 4D M
78 118 4E N
79 117 4F O
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 W
87 127 57 w
88 130 58 X
89 131 59 Y
90 132 5A z
9 133 5B [
92 134 5C A
93 135 5D]
94 136 5E A
95 137 5F —
96 140 60 4
97 141 61 a
98 142 62 b
99 143 63 (o]

100 144 64 d
101 145 65 e
102 146 66 f
. 103 147 67 g
104 150 68 h
105 151 69 i
106 152 6A i
107 153 68 k
108 154 6C |
109 155 6D m
110 156 6E n
mn 157 6F o]
112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 S
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 X
121 1 79 y
122 172 7A b4
123 173 7B {
124 174 7C |
125 175 0 }
126 176 7E -
127 177 7F DEL

Series I1I Programmer

Abbreviation

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
si
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GSs
RS
us
sP
DEL

Table F-2. ASCII Code Definition

Meaning

NULL Character
Start of Heading
Start of Text

End of Text

End of Transmission
Enquiry
Acknowledge

Bell

Backspace
Horizontal Tabulation
Line Feed

Vertical Tabulation
Form Feed

Carriage Return
Shift Out

Shift In

Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge
Synchronous idle

End of Transmission Block

Cancel

End of Medium
Substitute
Escape

File Separator
Group Separator
Record Separator
Unit Separator
Space

Delete

Decimai

WWWRINDNNDNDNNNDNN = b = b b h b d b b
N=20OO0ONONBEWN=—=SOCOONDINBLWN-OORANIIOLEWN=O

127

ASCII Codes

F-3

APPENDIX G
ISIS-Il ERROR CODES

The following manual is referred to in-this appendix as ‘“‘reference 1°’:

Intellec Series ITII Microcomputer Development System Console
Operating Instructions

This appendix provides a listing of error codes and/or messages issued by ISIS-II.

Reference 1 provides such a listing for RUN, DEBUG-86, and some nonresident’

system routines. Other nonresident system routine error messages, such as those for
link and locate, are listed in the iAPX Family Utilities User’s Guide for 8086-Based
Development Systems and the MCS-80/85 Utilities User’s Guide for 8080/8085-
Based Development Systems.

Error message numbers are allocated as follows:

e 1-99 inclusive — ISIS-II resident routines (808078085 mode)

e 100-119 inclusive — RUN command (8086 mode)

e 120-199 inclusive — DEBUG-86(8086 mode)

e 200-255 inclusive — nonresident system routines (808078085 mode)

IS1S-1l Error Routines (8080/8085 Mode)

Errors encountered by ISIS-II are either fatal or nonfatal. In the following lists fatal
errors are noted as such. The other errors are generally nonfatal unless they are

issued by the CONSOL system call (see tables G-1 and G-2).

A nonfatal error immediately halts processing and permits your program to take a-

recovery path of your choosing. The error number is returned to your program.

If an error occurs when you are entering a console command, the error is echoed
followed by an error message: For example, the following input results in the error’
message shown: ‘

{0PY PR:CREDIT cF1i<CR>E

+PR:CREDIT, UNRECOGNIZED DEVICE NAME

A fatal error immediately halts processing but does not permit recovery. Control
returns to ISIS-1I which overlays some user program: area with nonresident ISIS-1I
files, and displays the:folowing error message:

ERROR nnn USER PC mmmm:

where nnn is the error number- and mmmim is the. contents of the program counter
when the error occurred.

In general, after displaying an error message, the system displays the ISIS-II prompt
character (a hyphen) and waits for you to enter the corrected input.

The action taken in response to-fatal errors depends on the setting of an' internal
system switch called the debug toggle. That switch indicates whether control.is to
return to ISIS-I1I' (debug=0) or the Monitor (debug=1)-when an-error occurs.

ISIS-II Error Codes

Table G-1. Nonfatal Error Numbers Returned by System Calls

OPEN 3,4,5,9,12,13, 14, 22, 23, 25, 28.
READ 2,8.

WRITE - 2,6.

SEEK 2,19, 20,27, 31, 35.
RESCAN 2,21.

CLOSE 2.

DELETE 4,5,13, 14,17, 23, 28, 32.
RENAME 4,5,10,11,13,17, 23, 28.
ATTRIB 4,5,13, 23, 26, 28.
CONSOL None; all errors are fatal.
WHOCON None.

ERROR None.

LOAD 3,4,5,12,13, 22, 23, 28, 34.
EXIT None.

SPATH 4,5,23,28.

Table G-2. Fatal Errors Issued by System Calls

OPEN 1,7,24, 30, 33.
READ 24, 30, 33.

WRITE 7,24, 30, 33.

SEEK 7,24, 30, 33.
RESCAN 33.

CLOSE 33.

DELETE 1, 24, 30, 33.
RENAME 1, 24, 30, 33.
ATTRIB 1, 24, 30, 33.
CONSOL 1,4,5,12,13,14, 22, 23, 24, 28, 30, 33.
WHOCON 33.

ERROR 33.

LOAD 1,15, 16, 24, 30, 33.
SPATH 33.

Any of the following actions sets the debug toggle to one and transfers control to the
Monitor:

¢ Pressing interrupt switch 0 while a program is running.
¢ Executing program load with the DEBUG switch specified in the command line.
* Executing a LOAD system call with a transfer value of 2.

.Any of the following actions sets the debug toggle to zero, performs the operation

listed, then transfers control to ISIS-11:

¢ Pressing interrupt switch 1 while a program is running. This action terminates
processing.

¢ Executing an EXIT system call. This action terminates a program.

* Executing a LOAD system call with a transfer value of 1. This action loads an
absolute object file.

* Executing a Monitor G8 command. This action exits the Monitor.

If the debug toggle is zero when a fatal error occurs, the following occur:
¢ All open files are closed in their current state, including :CI: and :CO-.
¢ The initial system console device is opened as :Cl: and :CO:.

* A fresh copy of ISIS-II is read in from the disk, and ISIS-II prompts for a
command with a hyphen (-).

Series III Programmer

Series I1I Programmer

If the debug toggle is set to one when a fatal error occurs, the following occur:

All open files are left open.
Control passes to the Monitor.
Monitor prompts for a command with a period (.).

At this point Monitor commands can be used to examine registers and memory to

try

to determine the cause of the error. However, the program should not be

restarted with a simple Monitor G command, because the ISIS-II restart address has

not

been saved. DO NOT RESET THE SYSTEM AT THIS POINT. A G8 com-

mand should be used instead so all files are closed. Rebooting does not close files.

NOTE

Although programs cannot be loaded in the ISIS-II area, the ISIS-II area is
not protected from a running program. If a program should happen to
destroy parts of ISIS-11, subsequent system calls may not operate correctly
and input/output may destroy areas on your disk. This would happen
mainly when an undebugged program is running. ISIS-II can always be
restored by bootstrapping from a good system disk.

ISIS-1I error messages codes are:

1.

Fatal error. The memory area from 3000H to program origin is used for
input/output buffers. Too few buffers were allocated to meet the current
request in addition to earlier requests.

Illegal AFTN argument. The number supplied as an AFTN (active file table
number) is inappropriate. Perhaps your program closed a file prematurely and
then tried to read it.

Fatal error. AFT (Active File Table) is full. At most, six files may be active at
one time. You must close one of your open files before a file can successfully
be opened.

Incorrectly specified filename. You have possibly entered too many characters
for filename, as in OLDFILE.]1 (the maximum is six characters before the
period, three after). Filename conventions are described in Chapter 3 of
Reference 1.

. Unrecognized device name. You have entered an incorrect device name, as in

:PR: for the line printer :LP:. Check the device names in Chapter 3 of
Reference 1.

Attempt to write to input device. An attempt has been made to write to an
input device. You can only write to an output device, such as a line printer
(:LP:). See Chapter 3 of Reference 1 for information on devices.

7. Fatal error. The disk is full. Check that you have specified the intended disk.
8. Attempt to read from output device. Some devices, like the line printer (:LP:),

10.

11.

are output only and cannot be read. The current operation either should not be
a READ or needs to use a different device name. See Chapter 3 of Reference 1
for devices.

Disk directory is full. There is no room on the target disk’s directory to add an
additional filename. The limit is 200 entries for flexible disks and 992 entries
for hard platters.

Pathname is not on same disk. A system call was attempted (RENAME) that
requires two pathnames on the same device but the specified pathnames did
not specify the same device.

File already exists. A filename identical to the one just used was found.
Perhaps a different drive was intended, or a different spelling of the filename.

ISIS-II Error Codes

G-3

I

ISIS-II Error Codes Series II1 Programmer

12. File is already open. Only console input (:CI:) and console output (:CO:) may
be opened multiple times. If the spelling of the filename is correct, a flaw may
exist in the program logic. For example, an earlier module may be using the
file too soon or there may be an unintended loop.

13. No such file. The specified filename could not be found in the directory on the
disk in the drive indicated by your command. A different drive or disk may
have the file. For example, a console request to load a RUN file with a default
extension of .86.

14. Write-protected file encountered. The intended operation (e.g., WRITE,
RENAME, DELETE) could not be done because the specified file has the
write-protect or format attribute set.

15. Fatal error. ISIS overwrite. The system detected an attempt to write into the
area reserved for the ISIS resident files, i.e., below 3000H. Such an operation
would create unpredictable results and is disallowed.

16. Fatal error. Bad load format. This error was possibly caused by a
source-language file. Files to be loaded for 8080/8085 execution must be in
absolute object module format.

17. Not a disk file. An attempt was made to reference a disk file on a wrong device
type, with an improper pathname, such as :HP:FILE2 instead of :Fn:FILE2.
File accessing conventions are described in Chapter 3 of Reference 1.

18. Illegal ISIS commands. This error results when an ISIS system call is made
with an illegal command number. For RUN programs, the version number of
RUN may not be compatible with the version number of ISIS.

19. Attempted seek on non-disk file. Seeks on physical devices other than disk
drives are invalid (:BB: is an exception and is valid).

20. Astempted back seek too far. The seek attempted to go beyond the beginning
of the file; MARKER is set to zero.

21. Can’trescan. The file was not opened for line-editing.

22. Illegal access mode to open. Only 1, 2, and 3 are valid, meaning input (read),
output (write), or update (both read and write).

23. Missing filename. The system expected a filename, but one was not supplied.

24. Fatal error. Disk input/output hardware error. When error number 24 occurs,
an additional message is displayed:

STATUS=00nn
D=x T=yyy S=zzz

where x represents the drive number, yyy the track address, zzz the sector
address, and where nn has the following meanings:

For flexible disks:

01 Deleted record

02 Datafield CRC error

03 Invalid address mark

04 Seek.error

08 Address error

0A ID field CRC error

0E ‘No.address mark

oF Incorrect data address mark

10 Data overrun or data underrun
20 Attempt to write on Write Protect
40 Drive has indicated a Write error
80 Drive not ready

G-4

Series TII Programmer

25.

26.

27.

28.
29.

30.
31.

32.

33.

34.

35.

For hard disks:

o ID field miscompare

02 Data‘field CRC error

04 Seek-error

08 Bad sector address

0A iDfield CRC.error

0B Protocol violations

oC Bad track address

0E No.ID address mark or sector not found
OF Bad data field address mark

10 Format error

20 Attemptto write on write-protected drive
40 Drive has indicated a write error

80 Drive not ready

Illegal echo file. An echo file must have an active file table number (AFTN)
between 0 an 255, and must already be opened for output. Check that these
conditions are met.

Illegal attribute identifier. This error refers to the second parameter to the
ATTRIB system call routine. Check that you have specified a valid parameter.
Only 0, 1, 2, or 3 is valid, meaning the invisible, system, write-protect, or for-
mat attributes, respectively.

Illegal seek command. An unsupported mode for the specified device was used
in a seek command.

Missing extension. An expected file extension was not supplied.

Fatal error. Premature EOF. An unexpected end of file was encountered from
the console.

Fatal error. Drive specified was not ready.

Can’t seek on write only file. Seeks can be executed only on read or update
files.

‘Can’t delete open file. You need to close the file before attempting to delete it.

Verify the pathname.

Fatal error. Illegal system call parameter. A parameter was specified in a

system call which is meant to be used as a pointer to a memory area intended
for the receipt of data; however, ISIS found that this pointer was pointing to
the memory space which ISIS occupies. ISIS will not allow a user to write into
its memory space.

Fatal error. The return switch in a LOAD system call was not 0, 1 or 2, the
only valid values.

Seek past EOF. An attempt was made to extend a file opened for input by
seeking past end-of-file.

ISIS-I1 Error Codes

G-5

APPENDIX H
OBJECT MODULE RELOCATION
AND LINKAGE

Development projects which have libraries of checked-out modules will naturally
prefer to avoid retranslating their source, i.e., recompiling or reassembling each
such module.

Figure H-1 presents the valid possibilities for combining object modules created by
resident and cross-product translators or relocation-and-linkage packages. (“‘Cross-
product’ here means software packages that execute on an 8080/8085-based system
but create code to run on an 8086-based system.)

As long as LINK and LOCATE are used in sequence, object or absolute modules
developed using cross-product translators can be combined with new object modules
developed using resident translators. The following text identifies the permitted and
prohibited possibilities:

PERMITTED

1. The resident R&L86 will successfully process any object or absolute module
produced by any Intel cross-product or resident product.

2. The cross-product R&L package will successfully process any non-main, object
module produced by resident translators.

3. Current absolute loaders (e.g., those named in figure H-1) will successfully
process non-overlay modules produced by resident products as well as the out-
put of cross-products.

4. Modules which are Position-Independent Code (PIC) or Load-Time Locatable
(LTL) do not need LOC86 and can be RUN directly after being processed by
LINKS6.

PROHIBITED

1. The cross-product R&L package cannot process:
a. Main object modules from resident translators.
b. Modules produced by resident R&L86.

Current absolute loaders cannot process overlay modules
R&L86.

')
¢
=3
]
Q
.
)
<
[o N
(e
]
"
@
<}
Q.
&
53
=3

See the JAPX 86, 88 Family Utilities User’s Guide for complete details on Intel’s
R&L packages.

Object Module Relocation Series III Programmer

i i

RESIDENT CROSS-PRODUCT
TRANSLATORS TRANSLATORS

i]

- only non-main
OBJECT modules OBJECT
MODULES MODULES

\ B .

[RESIDENT N B 'CROSS-PRODUCTY
2 LINK86 : g LINK86)
| ' ¥
RESIDENT . {crOsS-PRODUCTY
C LOC86) LOC86

only
non-overlay

modules

121618-15

Use of Relocation and Linkage Packages

H-2

TABLES OF PARAMETERS AND

v | APPENDIX 1

SYSTEM SERVICE ROUTINES

Although the discussion of each routine includes explanation of the parameters,
table I-1 lists them in alphabetic order for study or reference. In many cases the same
parameter name is used in the discussions of both operating systems. For this
reason, the routine names appear only once, without DQS$, e.g., OPEN, SEEK
rather than DQSOPEN, DQ$SEEK, OPEN, SEEK.

Table 1-2 repeats the alphabetical table from Chapter | as an index to the descrip-
tions of the Series 111 operating system service routines, which appear in Chapter 2.
The external PL/M-86 declarations for these routines follow table I-2 in
alphabetical order.

The external PL/M-86 declarations for the ISIS-II operating system service routines
follow table I-3 in alphabetical order.

Table I-1. Alphabetical Parameter Definitions

Parameter Routines Using This Parameter and
Name Brief Definition of Parameter
2 access OPEN, SEEK

A number telling how you plan to use the file, e.g., read, or
write, or both

arg$p GETSARGUMENT
Pointer to the 81-byte area you have declared to receive the
argument from a line-edited input source

block$no SEEK (ISIS-II only)
A number telling what (or hdw many) block of a disk file are
being referred to

M pufsp READ, WRITE, SWITCH$BUFFER

Pointer to the area you have declared for reading from (or
writing to) a file; for read or write, it should be at least COUNT
bytes long or unintended resuits will occur

byte$no SEEK (ISIS-II only)

A number telling what (or how many) bytes of a disk file block
are being referred to

compl$cod EXIT
A word telling the success of program completion and
termination
M conn DETACH, GETSCONNECTIONSSTATUS, OPEN,
SEEK, READ, WRITE, TRUNCATE, CLOSE,
SPECIAL
Connection to a file or device, established earlier via attach or
create
M count READ, WRITE
The number of bytes you want read or written
delim GETSARGUMENT

A byte filled by the routine with the delimiter ending the cur-
rentargument

Tables of Parameters and System Service Routines Series II1 Programmer

T
it

Table I-1. Alphabetical Parameter Definitions (Cont’d.)

Parameter Routines Using This Parameter and
Name Brief Definition of Parameter
dt$p GETSTIME
Pointer to the structure you set up for date and time
™ excep$p ALL ROUTINES BUT EXIT
Pointer to the word you have declared to receive the exception
value
exception$cod DECODESEXCEPTION
A word into which you have placed an exception code
exception$p DECODESEXCEPTION

Pointer to the 81-byte area you have declared for receiving the
formatted me'ssage corresponding to excep$cod

extension$p CHANGESEXTENSION
Pointer to the extension as you wish it to be

fileptrlow or Same as low$offset, high$offset

high

handler$p TRAPSEXCEPTION, GETSEXCEPTIONSHANDLER,
TRAPSCC

Pointer to the entry-point of your routine to handle current
exceptions (or Control C)

high$offset SEEK, GETSCONNECTIONSSTATUS

Most significant 2-byts of 4-byte integer whose value is
the position of the file pointer, ie., the number of
bytes from the beginning of the file

id$p GETSSYSTEMSID
Pointer to the location where you want the system-name ..
sign-o¥put
@ info$p GETSCONNECTIONSSTATUS, SPATH (ISIS-II)
Pointer to the pathname whose connection you need to know
low$offset SEEK, GETSCONNECTIONSSTATUS

Least significant 2-bytes of 4-byte integer position of file
pointer—see high$offset

mode SEEK
Value representing direction and type of seek operation
@ name$p OVERLAY
Pointer to the pathname of the overlay to be ioaded next
M new$p RENAME
Pointer to the pathname as you wish to have it
M num$buf OPEN
Number of buffers to be used for /0 to file being opened
M old$p RENAME
Pointer to the pathname as it is now
@ path$p CREATE, DELETE, ATTACH,
CHANGESEXTENSION

Pointer to the pathname you wish to use

Series 111 Programmer Tables of Parameters and System Service Routines

Table I-1. Alphabetical Parameter Definitions (Cont’d.)

Parameter Routines Using This Parameter and
Name Brief Definition of Parameter

segbase FREE, GET$SIZE

The word containing the base of a block of bytes
size ALLOCATE

The number of bytes you want to use
status$p ISIS-II

Synonym for excep$p
type SPECIAL

A value determining whether console input should be line-
edited or transparent

(Y same parameter used with same meaning by ISIS-I routines

2 same parameter name discussed in Chapter 3 on ISIS-ll, but full meaning includes
differences, discussed under the routines where it is used

Table I-2. Alphabetical List of Series III Service Routines

E
E

o -

XTENSION

SEXCEPTION

O—-O—AmMoOO
zmmm MmI>

- X O 0
EONOZ
m—mm=ZCcC
m oMz
—om

>
—<

UFFER
EPTION

—_CIT=MMZ MM —A——A—A—A—A M= —A oMo > —ir-
HZ OV OU-ORPIPOIDIZHPAAAAMAIPMOIPNEZ>O

Mmoo X -~ =—»mw;mMmoO>>

Z>mMoxT> m
-4 KO A

EAA—-ANNNTVVOOMMOOOMDTIMOOOOOO >
OO DEOMMM<OMMMMMMOXMMMOr—T—r
mo ©

DQSALLOCATE: PROCEDURE (size, excep$p) TOKEN EXTERNAL;
DECLARE size WORD,
excep$p POINTER ;
END ;

DQSATTACH: PROCEDURE (path$p, excepsp) CONNECTION EXTERNAL;
DECLARE path§p POINTER,
excep$p POINTER ;
END ;

I3

Tables of Parameters and System Service Routines Series I1I Programmer

Table I-2. Alphabetical List of Series III Service Routines (Cont’d.)

DQSCHANGESEXTENSION: PROCEDURE (path$p, extension$p, excep$p) EXTERNAL;

DECLARE pathdp POINTER,
extension§p POINTER,
excep$p POINTER ;

END ;

DQSCLOSE: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
excep$p POINTER ;
END ;

DQSCREATE: PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL?
DECLARE path$p POINTER,
excep$p POINTER ;
END ;

DQSDECODESEXCEPTION: PROCEDURE (exception$code, message$p, excep$p) EXTERNAL;
DECLARE exceptionfcode WORD,
message$p POINTER,
excep$p POINTER ;
END ;

DQSDELETE: PROCEDURE (path$p, excep$p) EXTERNAL;
DECLARE path$p POINTER,
excep$p POINTER ;
END ;

DQSDETACH: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
excep$p POINTER ;
END ;

DQ$EXIT: PROCEDURE (completion§code) EXTERNAL;
DECLARE completion§code WORD ;
END ;

DQSFREE: PROCEDURE (segment, excep$p) EXTERNAL;
DECLARE segment TOKEN,
excep$p POINTER ;
END ;

DQSGETSARGUMENT: PROCEDURE (argumentp, excep$p) BYTE EXTERNAL;
DECLARE argument$p POINTER,
excep$p POINTER ;
END ;

1-4

Series I11 Programmer Tables of Parameters and System Service Routines

Table I-2. Alphabetical List of Series I11 Service Routines (Cont’d.)

DQSGETSCONNECTIONSSTATUS: PROCEDURE (conn, infosp, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
info$p POINTER,
excep$p POINTER ;
END ;

DQSGETSEXCEPTIONSHANDLER: PROCEDURE (handler$p, excep$p) EXTERNAL;
DECLARE handlersp POINTER,
excepdp POINTER ;
END ;

DASGET$SIZE: PROCEDURE (segbase, excep$p) WORD EXTERNAL;
DECLARE segbase TOKEN,
excep$p POINTER ;
END ;

DQSGETSSYSTEMSID: PROCEDURE (id$p, excepsp) EXTERNAL;
DECLARE idsp POINTER,
excep$p POINTER ;
END ;

DQSGETSTIME: PROCEDURE (dt$p, excep$p) EXTERNAL;
DECLARE dt$p POINTER,
excep$p POINTER ;
END ;

DQSOPEN: PROCEDURE (conn, access, num$buf, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
access BYTE,
num$buf BYTE,
excep$p POINTER ;
END ;

DQSOVERLAY: PROCEDURE (name$p, excep$p) EXTERNAL;
DECLARE name$p POINTER, ' o

excep$p POINTER ;

END ; :

DQSREAD: PROCEDURE (conn, buf§p, count, excep$p) WORD EXTERNAL;
DECLARE conn CONNECTION,
buf$p POINTER,
count WORD,
excep$p POINTER ;
END ;

DQSRENAME: PROCEDURE (old$p, newsSp excep$p) EXTERNAL;
DECLARE old$p POINTER,
newSp POINTER,
excep$p POINTER ;
END ;

I-5

Tables of Parameters and System Service Routines Series HI Programmer

Table I-2. Alphabetical List of Series III Service Routines (Cont’d.)

DQSSEEK: PROCEDURE (conn, mode, highSoffset, lowSoffset, excep$p) EXTERNAL;
DECLARE conn CONNECTION
mode BYTE,
low$offset WORD,
high$offset WORD,
excepdp POINTER ;
END ;

DASSPECIAL: PROCEDURE (type, parametersp, excep$p) EXTERNAL;

DECLARE #type BYTE,
parameter§p POINTER,
excep$p POINTER ;

END ;

DQSSWITCHSBUFFER: PROCEDURE (buffersp, excep$p) WORD EXTERNAL;
DECLARE buffersp POINTER,
excepsp POINTER ;
END ;

DASTRAPSCC: PROCEDURE (handlerSp, excep$p) EXTERNAL;
DECLARE handlerSp POINTER,
excep$p POINTER;
END ;

DASTRAPSEXCEPTION: PROCEDURE (handlerSp, excep$p) EXTERNAL;
DECLARE handlerSp POINTER,
excep$p POINTER ;
END ;

DQSTRUNCATE: PROCEDURE (conn excep$p) EXTERNAL;
DECLARE conn WORD
excep$p POI’ZNT ER ;
END ;

DASWRITE: PROCEDURE (conn, bufSp, count, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
buf$p POINTER,
count WORD,
excepfp POINTER ;
END ;

Series 111 Programmer Tables of Parameters and System Service Routines

Table I-3. Index from Routine to Discussion

I1S1S-1l and Discussedin
MONITOR Routines Group Named
ATTRIB Disk Directory Maintenance
cl (M) Console input
CLOSE File Management
co (M) Console Output
CONSOL Console Control
CSTS (M) Console Input Status
DELETE Disk Directory Maintenance
ERROR Console Control
EXIT Execution Control
I0OCHK (M) Configuration Check
I0DEF (M) User-Defined Devices
I0SET (M) Configuration Set
LO (M) List Output
LOAD Execution Control
MEMCK (M) RAM Size Check
OPEN File Management
PO (M) Punch Output
READ File Management
RENAME Disk Directory Maintenance
RESCAN File Management
RI (M) Reader Input
SEEK File Management
SPATH File Management
Ul (M) UPP Input
uo (M) UPP Output
UpPPS (M) UP Status
WHOCON Console Control
WRITE File Management

ATTRIB:
PROCEDURE (path$p, atrb, onoff, status$p) EXTERNAL;
DECLARE (path$p, atrb, onoff, status$p) ADDRESS;
- END ATTRIB;

Cl: PROCEDURE BYTE EXTERNAL; /*ENTRY POINT INTO SYSTEM.LIB*/
ENDC;

CLOSE:
PROCEDURE (conn, status$p) EXTERNAL;
DECLARE (conn, status$p) ADDRESS;
END CLQOSE;

CO: PROCEDURE (CHAR) EXTERNAL; /*ENTRY POINT INTO SYSTEM.LIB*/
DECLARE CHAR BYTE;
ENDCO;

CONSOL:
PROCEDURE (ci§path$p, coSpath$p, status$p) EXTERNAL;
DECLARE (cifpathp, copath$p, status§p) ADDRESS;

END CONSOLE;
CSTS: PROCEDURE BYTE EXTERNAL; {* ENTRY POINT INTO SYSTEM.LIB FCR */
i* C8T8 */
ENDCSTS;

7

Tables of Parameters and System Service Routines Series I1I Programmer

Table I-3. Index from Routine to Discussion (Cont’d.)

DELETE:
PROCEDURE (path$p, status$p) EXTERNAL;
DECLARE (path$p, status$p) ADDRESS;

END DELETE;

ERROR:
PROCEDURE (errnum) EXTERNAL;
DECLARE (errnum) ADDRESS;
END ERROR;

EXIT:
PROCEDURE EXTERNAL;
END EXIT;

IOCHK: PROCEDURE BYTE EXTERNAL; /" ENTRY POINT INTO SYSTEM.LIB */
END IOCHK;

IODEF: PROCEDURE(driver$code, entry$point) EXTERNAL;
DECLARE driver$code BYTE;)
DECLARE driver$entry$point ADDRESS;
END IODEF;

IOSET: PROCEDURE(CONFIG) EXTERNAL; /* ENTRY POINT INTO SYSTEM.LIB */
‘ /* FORIOSET */
DECLARE CONFIG BYTE;
END IOSET;

LO: PROCEDURE(BUFF) EXTERNAL,; /* ENTRY POINT INTO SYSTEM.LIB */
DECLARE CHAR BYTE;
ENDLO;

LOAD:
PROCEDURE (path$p, load$offset, control$sw, entry$p, status$p) EXTERNAL;
DECLARE (path$p, load$offset, control$sw, entry$p, status$p) ADDRESS;
END LOAD;

MEMCK: PROCEDURE ADDRESS EXTERNAL; /* ENTRY POINT INTO SYSTEM.LIB */
END MEMCK;

OPEN:
PROCEDURE (conn$p, path$p, access, echo, status$§p) EXTERNAL;
DECLARE (conn$p, path$p, access, echo, status$p) ADDRESS;
END OPEN;

PO: PROCEDURE (CHAR) EXTERNAL; /* ENTRY POINT INTO SYSTEM.LIB*/
DECLARE CHAR BYTE;
END PO;

18

Series III Programmer Tables of Parameters and System Service Routines

Table I-3. Index from Routine to Discussion (Cont’d.)

READ:
PROCEDURE(conn, buf$p, count, actual$p, status$p)EXTERNAL;
DECLARE (conn, buf$p, count, actual$p, status$p) ADDRESS;
END READ;

RENAME:
PROCEDURE (0/d$p, newpath$p, status$pEXTERNAL;
DECLARE (o/d$p, newpath$p, status$p) ADDRESS;
END RENAME;

RESCAN:
PROCEDURE (conn, status$p) EXTERNAL;
DECLARE (conn, status$p) ADDRESS;
END RESCAN;

RI: PROCEDURE BYTE EXTERNAL; [*ENTRY POINT INTO SYSTEM.LIB*/
ENDRI;

SEEK:
PROCEDURE (conn, mode, block$p, byte$p, status$p) EXTERNAL;
DECLARE (conn, mode, block$p, byte$p, status$p) ADDRESS;
END SEEK;

SPATH:
PROCEDURE (path$p, info$p, status$p) EXTERNAL;
DECLARE (path$p, info$p, status$p) ADDRESS;

END SPATH;

Ul: PROCEDURE(PROMSADDR) BYTE EXTERNAL; /* RETURNS DATA IN PROM */
DECLARE PROMSADDR ADDRESS; /* AT PROMSADDR */
END UI;

UO; PROCEDURE(PROMSDATA,PROMSADDR) EXTERNAL; /* PROGRAM PROM LOCATION */

DECLARE PROMSDATA BYTE; /*’PROMSADDR’ WITH DATA */
DECLARE PROM$ADDR ADDRESS; *’PROMSDATA' */

END UO;

UPPS: PROCEDURE BYTE EXTERNAL; I* RETURNS UPP STATUS */
END UPPS;

WRITE:

PROCEDURE (conn, buf$p, count, status$p) EXTERNAL;
DECLARE (conn, buf$p, count, status$p) ADDRESS;
END WRITE; :

WHOCON:
PROCEDURE (conn, buf§p) EXTERNAL;
DECLARE (conn, buf§p) ADDRESS;
END WHOCON;

INDEX

This index uses the phrase ‘‘for Series III’’ as an abbreviation for ‘‘under the Series
I11 operating system.”’ Similarly, the phrase ‘‘for ISIS-II’” means ‘‘under the ISIS-11

operating system.”’

absolute object module, 2-1, 3-31
access, 2-13, 2-14, 2-17, 3-13
address parameters, 3-7, 3-10, 3-12, 3-16
AFTN, 3-3, 3-6, 3-7, 3-12ff
AFTNPTR, 3-7
ampersand, 2-7
argument, 2-7, 2-8
ASCII,
characters, 3-3
codes, Appendix F
files, 3-7
nulls, 2-18, 3-12
ASM-86, 1-3
assembly language service routine usage,
for ISIS-11, after each routine description
calls, 3-11
for Series I11, Appendix D
attaching versus creating files, 2-2, 2-11
ATTRIB, 3-27

base address, 2-1, 3-4
:BB:, 2-11, 2-12, 2-14, 3-3
BOOLEAN, 24
BOOT program, 3-51
buffer$p, 3-6
buffers,
for ISIS-11, 3-2, 3-4, 3-8, 3-9, 3-11, 3-12
pointer, 3-8
for Series 111, 2-3, 2-17, 2-18, 2-19
and efficiency, 2-3
BYTE, 24, 2-5
byte bucket (:BB:), 2-11, 2-14, 3-3

cautions, 3-12
CI (Console Input), 3-35
CLlI, 3-3
CLOSE, 3-21
:CI:, see console input
CO (Console Output), 3-36
:CO:, see console output
cold-start, Preface-iii, 2-18
command parsing routines, 2-6
command line interpreter, 3-3, 3-4, 3-8
see also CLI
command-tail arguments
for ISIS-11, 3-6, 3-9, 3-14, 3-20
for Series I11, 2-1, 2-7, 2-17
comments, 2-7
communication
of parameters, 1-2
among program developers, 1-2
COMPAC.LIB, 1-3
conceptual considerations
for ISIS-II, 3-2 thru 3-11
for Series I1I, 2-1 thru 2-4

CONNECTION, 2-5
connections
for ISIS-II, 3-6, 3-7
for Series I11, 2-2, 2-12
multiple, 2-12
conn$p, 3-7, 3-12
CONSOL, 3-5, 3-28
console,
input (:CLY), 2-2, 2-11, 2-13, 2-18, 2-20,
2-23,3-3,3-5
output (:CO?), 2-2, 2-11, 2-14, 3-3
control, 3-24
reassignment, 3-28
see also SUBMIT
determination, 3-29
continuation line, 2-7
control characters, 3-7 thru 3-9
control C, 2-4, 2-18, 2-23
control D, 2-18, 2-23
count, 3-6
creating versus attaching files, 2-2, 2-11
cross-products, 1-3, Appendix H
CSTS (Console Input Status), 3-45

data type, 2-4
DEBUG, 14, 2-7, 3-4
DEBUG-86, Preface iii, 1-2, 2-17
debugging, 1-1 thru 1-4
debug toggle, 3-31
default exception handler, 2-4
DELETE, 3-25
deleting a file
partially
via DQSTRUNCATE, 2-19
via DQ$SWRITE, 2-19
via DQ$CREATE, 2-12
via DQSDELETE, 2-12
delimiter, 2-1, 2-7, 2-8, 2-15
design, 1-2
device management, 1-1, 2-2, 2-14, 3-22
device-name part, 2-13, 2-15
division by zero, 2-4, B-1
disk, 3-3
disk directory control, 3-24
diskette, 3-3
documentation, 1-2
dot operator, 3-7, 3-16
DQSALLOCATE, Preface-v, 2-1, 2-2,
2-9,2-24
DQSATTACH, 2-2, 2-11, 2-26, 2-27
DQ$CHANGESEXTENSION, 2-15, 2-28
DQSCLOSE, 2-2, 2-20, 2-26, 2-27
DQ$SCREATE, 2-2, 2-3, 2-11, 2-12, 2-26,
2-27
DQSDECODESEXCEPTION, 2-23

Index-1

Index

Index-2

DQSDELETE, 2-11, 2-12
DQSDETACH, 2-2, 2-13, 2-26, 2-27
DQS$EXIT, 2-21
DQS$FREE, Preface-v, 2-10, 2-24
DQSGETSARGUMENT, 2-7
DQSGETSCONNECTIONSSTATUS,
2-13, 2-14, 2-18, 2-28
DQSGETSEXCEPTIONSHANDLER,
2-23

DQSGETSSIZE, Preface-v, 2-10, 2-25
DQS$GETSSYSTEMSID, 2-7
DQSGETSTIME, 2-6, 2-28
DQSOPEN, 2-2, 2-3, 2-4, 2-16, 2-26, 2-27
DQSOVERLAY, 2-21
DQSREAD, 2-2, 2-17, 2-20, 2-23, 2-26
DQSRENAME, 2-15 -
DQS$SEEK, 2-11, 2-17, 2-28
DQS$SPECIAL, 2-20
DQS$SWITCHSBUFFER, 2-8, 2-9
DQS$TRAPSCC, 2-4, 2-18, 2-23
DQS$TRAPSEXCEPTION, 24, 2-22, B-1
DQSTRUNCATE, 2-14, 2-19, 2-28
DQSWRITE, 2-2, 2-3, 2-19, 2-27, 2-28
drive, 3-3

selection for workfiles, 2-3
DWORD, 2-5

echo
file, 3-5, 3-7
program example, 2-29
efficiency
input/output, 2-3
end of file, 2-18, 2-19, 3-3
EQUATE, 3-11
ERROR, 3-30
€rrors
for ISIS-II, 3-6, 3-12, 3-30
codes, Appendix G
message control, 3-30
for Series I11
avoidable, 2-4
codes, Appendix C
messages, 2-22, 2-23, Appendix C
unavoidable, 2-4
excep$p, 2-4, 2-12, 3-12
exception conditions and handling
for ISIS-II, 3-6, 3-12, 3-30, Appendix G
for Series 111, 2-4, 2-22, 2-23,
Appendix C
stack state, 2-22
exception or status parameter word,
1-4
for ISIS-II, see also status$p
for Series I11, see also excepSp
execution control
for ISIS-II, 3-31 thru 3-33
for Series 111, 2-21
EXIT, 3-33
expanding segment, 2-10, 3-50, A-1
extending a file with nulls, 2-18
extension
assumed under RUN, A-1
of file-name, 2-15, 3-3
external procedure definitions, 1-3, 1-4
for ISIS-I1, 3-12ff, Appendix I

Series III Programmer

for Series 111, 2-5ff, Appendix D,
Appendix I
EXTRN, 3-11

FALSE, 2-4
file, 3-3
console, 2-7 thru 2-9, 2-20, 3-3,
3-7 thru 3-10
echo, 3-5
line-edited, 3-7 thru 3-10
file control, 1-1
see connections
file existence routines, 2-11
creating versus attaching, 2-2, 2-11
deletion of pre-existing file, 2-12
via DQSCREATE, 2-12
temporary, 2-3
file management, Preface-iv
filename, 3-3
file-name part, 2-13, 2-15
file naming routines, 2-15
file pointer, 2-13, 2-14, 2-17, 2-18
file usage routines, 2-16
‘format’ file, 2-12 thru 2-15, 2-17
free space, 2-1, 2-2
created on disk, 2-19
function references, Preface-v, 3-6
shown in charts, 2-6, 2-9, 2-11, 2-16,
3-34,3-44
functional groupings of system
services, Preface-iv, 1-4, 1-5, 2-5,
3-1, 3-10

groupings, see functional

:HP:, 3-12
hypothetical program steps, 1-5, 1-6
In-Circuit Emulators, 1-2
interface libraries, 1-3
interrupt discussion
for ISIS-II, 3-2, 3-51 thru 3-54
acceptance, 3-52
current operating leyel, 3-52
handler discussion and sample,
3-54
mask initialization, 3-52
mask register, 3-52
removal, 3-53
for Series I1I, Appendix B
invocation line, 2-1
argument, 2-7
IOCHK (170 Configuration Check), 3-48
IODEF (1/0 Definition), 3-47
IOSET (Set 170 Configuration), 3-50
IPB, 2-2
ISIS-1I operating system, 1-3, 3-1
error codes, Appendix G
file input/output, 3-2, 3-3
general parameter discussion, 3-5
thru 3-7, Appendix I
hypothetical service usage, 1-5, 1-6
interrupt
handling, 3-51 thru 3-54
vectors, 3-2
program base address, 3-4, 3-5

Series III Programmer

memory organization and allocation,
3-2

Monitor area, 3-4

sample program, Appendix E

service routines, 3-12f

summary of system calls, 3-10

kernel, 3-2

LARGE.LIB, 1-3
LENGTH, 3-10, 3-12ff
LF, line feed, 3-7, 3-8 :
limitation on opens, 2-2, 2-17, 2-20
line-edited files
for ISIS-II, 3-3, 3-7 thru 3-9, 3-14
for Series I11, 2-1, 2-7, 2-20
line-editing buffer, 2-7, 3-7, 3-8, 3-9
line feed, 3-7, 3-8
LINK, Preface-iii, 1-4, 2-8, 3-10, 3-11
LINKS86, Preface-iii, 1-3, 2-8, 2-21
list of connections, 2-2, 2-12
LO (List Output), 3-39
LOAD, 3-31
load-time locatable code, see LTL
LOCATE, 3-4, 3-31
locating, 1-3, 2-1, 2-2
:LP: 2-12, 3-13
LTL,2-2

management of
commands, 1-1, 2-7, 3-3
debugging, 1-1, 1-2
devices, 1-1
errors, 1-1, 2-22, 2-23
files, 1-1, 2-2 thru 2-4, 2-11 thru 2-20,
3-1 thru 3-7
interrupts, 1-1, Appendix B,
Appendix G
memory allocation, 1-1, 2-9, 2-10
overlays, 1-1, 2-21
MARKER, 3-8, 3-10, 3-12ff
MEMCK (Check RAM Size), 3-4, 3-50
memory
management
for ISIS-II, 3-50
for Series 111, 2-1
routines, 2-9
top, 2-2, 3-2, 3-50
mode, 2-17, 3-17
modules, 1-2, 1-3
Monitor, 1-3, 1-4, 2-2, 3-1, 3-4
debugger, 1-2
debug toggle, 3-31
initial configuration, 3-49
170 interface routines, 3-33 thru 3-50
syntax chart, 3-34
usage table, 3-34
ROM, 3-4
system status routines, 3-44
workspace, 3-4
multiple connections, 2-12

nonresident ISIS-II programs, 3-4
notes re Series I11, Appendix A

Index

object module
relocation and linkage, Appendix H
types, 2-1, 2-2
OPEN, 3-12
opens, 2-2
internal, 2-2, 2-12, 2-14, 2-17, 2-19, 2-20
operating system
considerations, 1-1
definition, 1-1
desirable features, 1-1
ISIS-H functions, 1-1
needed capabilities, 1-1
Series I1I functions, 1-1
optimal buffering, 2-3
options on command line, 2-1
ORG, 34
overflow, 2-4, B-1
overlay, 2-21
exceptions, 2-11, 2-13, 2-21
restriction in LARGE, A-1

-$p, 3-7
parallel structure, Preface-iv
parameters
addresses, 3-7, 3-10, 3-11, 3-12
communication among modaules, 1-2
of system service routines, 1-3, 1-4, 3-1,
Appendix I
(see also each routine)
pointers, 2-4, 2-5ff
pathname, 2-7, 2-11, 2-13, 2-15, 3-3, 3-7,
3-12, 3-26
periods, 3-12, 3-16
PIC, 2-2
platter, 3-3
PL/M-80, Preface-iii
PL/M-86, Preface-iii, 1-3
PO (Punch Output), 3-38
POINTER, 2-5
pointer, 2-4, 2-5
file, 2-13, 2-14, 3-8
position-independent-code, see PIC
program connection routines, 2-11
program control routines, 2-21, 3-24
program
development cycle, 1-2
integration, 1-2 :
interface with operating systems, 1-3
specifications, 1-2
standards, 1-2, 1-3
program executon, 1-3
for IS1S-11, 3-31, 3-24
for Series 111, 2-21
hypothetical steps related to service
routine usage, 1-5, 1-6
program load, 2-1, 2-2

“‘railroad-chart”’notation, Preface-ivand v
examples, see syntax charts

READ, 3-6, 3-8, 3-9, 3-14

Readers Guide, Preface-iv

reads interspersed, 2-3

register convention, 2-4, 3-10, 3-34

reloactable object module, 2-1, 2-2, 2-10

RENAME, 3-26

Index-3

Index

Index-4

RESCAN, 3-6, 3-8, 3-9, 3-20

RESET, 3-52

RI (Reader Inputer), 3-37

RPB, Preface-iii

rubout and control characters, 3-7 thru 3-9

RUN, Preface-iii, 2-1, 2-7, 2-8, 2-20, 2-21,
A-1

SEEK, 3-17
seeking
types of, 2-14, 2-17, 3-19
Segment
expanding, 2-10, 3-50, A-1
freed, 2-2
loaded, 2-9
lowest-addresses, 2-2
registers, 2-2
stack and data base, 2-10
sequence of service routine use, 2-2, 2-6
Series 111 operating system, 1-3, 2-1
expectations, 2-1
functional groups, 1-4, 1-5
hypothetical service usage, 1-5, 1-6
model, 2-1
parameters, 2-1
service routines, 1-4 thru 1-6, 2-5ff
sequence, 2-2, 2-6
SMALL.LIB, 1-3, 2-10, 2-22
SPATH, 3-22
stack state after exception, 2-22, 3-10
status or exception parameter word, 1-4
for ISIS-H, see also status$p
for Series 111, see also excep$p
status$p, 3-6, 3-12ff
STRING, 2-5
string
for ISIS-11, 2-11, 3-7, 3-12, 3-16, 3-26
for Series 111, 2-3, 2-7, 2-8, 2-11, 2-15
SUBMIT, 2-20, 2-23, 3-5
syntax
charts, Preface-iv, v, 2-6, 2-9, 2-11, 2-15,
2-16, 2-21, 2-22, 3-12, 3-24, 3-34,
3-44
examples, 1-3
system
date, 2-6
identifying string, 2-7

Series III Programmer

SYSTEM.LIB, 3-10, 3-11
system services
for ISIS-1I operating system, 1-3, 1-5
external procedures, 3-12ff
summary, 3-10
for Series I1I operating system, 1-3, 1-4,
1-5
external procedures, 2-5ff
sample assembly language usage,
Appendix D
system status routines (Monitor), 3-44

tab, 2-7

target environments, 1-3

teletype (:T1:, :TO:), 3-3

temporary files, 2-3

terms, 3-7

TOKEN, 2-5

‘TP, 3-12

TRUE, 24

TYPE sample program, Appendix E

UI (Universal PROM Programmer Input),
3-40
UO (UPP Output), 3-42
update mode, 2-3, 2-14
UPPS (UPP Status), 3-46
usage examples
for ISIS-II, after each routine description
for Series 111, 2-24 thru 2-29
explanation of file examples, 2-26,
2-27
Utility routines, 2-6
VI, 2-11, 3-3
video input, 2-11, 3-3
output, 3-3
VO, 3-3

WHOCON, 3-29
WORD, 2-5
‘WORK:, 2-3
workfiles, 2-2, 2-3, 2-11, 2-19
WRITE, 3-6, 3-16
write-protected file, 2-12 thru 2-15, 2-17
writes
interspersed, 2-3

- ® Series lll Programmer Reference Manual
“1@ 121618-002

REQUEST FOR READER’S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1to 10 with 10 being the best rating.

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

ciTy STATE ZIP CODE

Please check here if you require a written reply. []

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All

comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTACLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

NO POSTAGE
NECESSARY
IF MAILED
INU.S.A.

intel

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printedin U.S.A.

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	A-01
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	G-04
	G-05
	H-01
	H-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

