
MeS-80/8S UTILITIES
USER'S GUIDE

for8080/8085-Based
Development Systems

Manual Order Number: 121617-001 Rev. A

I
Copyright © 1980 Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

BXP Intellec Multibus
CREDIT iSBC Multimodule
i iSBX PROMPT
ICE Library Manager Promware
iCS MCS RMX
Insite Megachassis UPI
Intel Micromap JAScope
Intelevision

and the combination of ICE, iCS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

[A4"34/981/SK DO I

PREFACEI

This manual describes the ISIS-II LINK, LOCATE, and LIB utility programs, as
well as the OBJHEX and HEXOBJ code conversion programs. These programs
manipulate 8080 and 8085 object modules. The following references will probably
aid you in your use of this manual:

Related Literature

InteJJec Series III Microcomputer Development System Product
Overview 121575-001

InteJJec Series III Microcomputer Development System Console
Operating Instructions 121609-001

InteJJec Series III Microcomputer Development System
Programmer's Reference Manual 121618-001

InteJJec Series III Microcomputer Development System Pocket
Reference

8080/8085 Assembly Language Programming Manual

ISIS-II 8080/8085 Macro Assembler Operator's Manual

8080/8085 Assembly Language Reference Card

121610-001

9800301D

9800292D

9800438D

You may also wish to keep the language manual and compiler operating instructions
handy if you are programming in either PL/M-80 or Fortran-80.

Notational Conventions

UPPERCASE

italics

[]

{ }

{ } ...

Characters shown in uppercase must be entered in the
order shown. You may enter the characters in uppercase
or lowercase.

Italics indicate variable information, such as filename or
address.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by braces, in which
case it is optional.

At least one of the enclosed items must be selected unless
the field is also surrounded by braces, in which case it is
optional. The items may be used in any order unless
otherwise noted.

Ellipses indicate that the preceding argument or
parameter may be repeated.

iii

pu nctuation

IiD·II ,,*,

iv

Punctuation other than ellipses, braces and brackets must
be entered as shown. For example, the punctuation
shown in the following command must be entered:

SUBMIT PLM86(pROGA,SRC,'9 SEPT 81 ')

In interactive examples, input lines and user responses are
printed in white on black to differentiate input lines from
system output.

· ' n

CHAPTER 1
INTRODUCTION TO MODULAR
PROGRAMMING

PAGE

The "Tools" of Modular Programming 1-1
The Advantage of Modular Programming. 1-2

Efficient Program Development. 1-2
Use of Different Source Language 1-2
Multiple Use of Subprograms 1-2
Ease of Debugging and Modifying. 1-2

Microprocessor Memory Allocation. 1-3
Intellec Memory Organization. 1-3
Program Segments and Memory Requirements. 1-4
Relocation and Linkage. .. 1-4

Relative Addressing 1-5
Intra- and Inter-Segment References 1-5
External References and Public Symbols. 1-6
Keeping Track of Finished Files 1-6
Libraries. .. 1-7

CHAPTER 2
USING THE LINK PROGRAM
Introduction 2-1
Libraries as LINK Input Files 2-1
Program Segments in the LINK Process 2-1

Relocation Types. .. 2-2
LINK Invocation 2-3
MAP .. 2-4
NAME .. 2-6
PRINT .. 2-6

CHAPTER 3
LOCATE COMMAND
Introduction 3-1
Invoking the LOCATE Program 3-1
How LOCATE Locates Segments. 3-2

Locating with the Default Order 3-2
Memory Pages and the Hand L Registers 3-2

Locating with the ORDER Control. 3-3
Locating with the Specific Address Controls. 3-4

Special LOCATE Considerations. 3-4
When Using the Segment Location Controls 3-4
Allocating 110 Buffer Space. 3-5

Multi-line Invocation. .. 3-6
COLUMNS 3-6
LINE .. 3-7
MAP .. 3-8
NAME .. 3-9
PRINT .. 3-9
PUBLICS 3-9
PURGE 3-10
SYMBOLS 3-10
START 3-10

CONTENTS

PAGE

RESTARTO 3-11
STACKSIZE 3-12
ORDER 3-12
CODE .. 3-12
DATA .. 3-13
MEMORY 3-13
STACK 3-13
l(common)/. .. 3-14
II .. 3-14

CHAPTER 4
ISIS-II LIBRARIAN
Introduction 4-1
CREATE 4-1
ADD .. 4-2
DELETE 4-2
LIST .. 4-3
EXIT .. 4-3

CHAPTER 5
PROGRAM OVERLAYS AND LINKED
LOADING
Overview 5-1

CHAPTER 6
CODE CONVERSION PROGRAMS
Introduction 6-1
HEXOBJ 6-1
OBJ HEX 6-2

APPENDIX A
HEXADECIMAL PAPER TAPE FORMAT

APPENDIXB
HEXADECIMAL-DECIMAL
CONVERSION

APPENDIXC
ASCII CODES

APPENDIXD
ISIS-II ERROR MESSAGES
Introduction. .. D-l
ISIS-II Error Descriptions. .. D-l
Error Messages for Nonresident System Routines. . .. D-5

APPENDIXE
LINK ERROR MESSAGES
Introduction. .. E-l

Fatal Errors. .. E-l
Non-Fatal Error Messages. .. E-2

v

APPENDIXF
LOCATE ERROR MESSAGES
Introduction F-I

Fatal Errors F-I
Non-Fatal Error Messages. .. F-2

TABLE TITLE PAGE

C-I ASCII Code List. C-l

FIGURE TITLE PAGE

1-1
2-1
2-2
3-1

vi

Computing Relative Addresses 1-5
Segment Type Combination with LINK. 2-2
LINK Map. .. 2-4
LOCATE Symbol Table 3-7

CONTENTS (Cont'd.)

APPENDIXG
LIB ERROR MESSAGES
Introduction. .. G-I

Command Errors. .. G-I
File or Module Errors G-2

FIGURE

TABLES

ILLUSTRATIONS

TITLE PAGE

LOCA TE Memory Map. 3-8
LIST Command Output. 4-3

3-2
4-1
5-1
A-I

Overlays 5-1
Paper Tape Record Format A-I

CHAPTER 1
INTRODUCTION TO MODULAR

PROGRAMMING

The "Tools" of Modular Programming

Modular programming is fairly straightforward once you have determined module
inputs and outputs, such as parameters passed between modules, and links to the
"outside world" of other programs and I/O. Modular programming produces
clear, efficient programs. However useful modular programming may be, it would
not help much without the software tools needed to manipulate modules. Three
module handling programs can fill this need:

• A linking program which combines separate modules into a single module.

• A locating program which turns relative memory addresses into absolute
addresses, so that the program may be loaded for execution or debugging.

• A library manager which permits you to create and update libraries of program
modules which you will need in the future.

ISIS-II fulfills these requirements with the LINK, LOCATE, and LIB programs,
along with the standard object code format produced by the PLM80 and FORT80
compilers and the ASM80 assembler. These programs provide full modular pro
gramming capacity.

NOTE

These 8080/8085 linkage and location features are not applicable to iAPX
86 and iAPX 88 object code. For information on iAPX 86,88 family object
module management, see the iAPX86,88 Family Utilities User's Guide for
8086-Based Development Systems.

Other absolute object code formats are not compatable with the ISIS-II system so
two code conversion programs have been provided:

• The HEXOBJ command translates hexadecimal code to the absolute modules
format for execution on the ISIS-II system. Hexadecimal format code is pro
duced by translators on large systems and by earlier ISIS assemblers.

• Translation from ISIS-II absolute module format to hexadecimal is performed
by the OBJHEX program. This command is used to convert files from the
ISIS-II format to Hexadecimal for PROM loading or execution on another
system.

The LINK program combines ISIS-II 8080/8085 object modules in a single file. The
relative addresses of instructions within the modules are adjusted to correspond to
their position in the linked module, and references between modules and between
programs are resolved.

The relative addresses assigned by LINK to instructions in program modules are
converted to absolute addresses by the LOCATE program. LOCATE produces
absolute object modules which can be executed under ISIS-II.

Modules which will be used again are usually kept in libraries. LIB allows the pro
grammer to create libraries, to add or delete modules, and to list available modules.
Standard mathematical functions, I/O routines, and frequently used program
segments make up most libraries.

1-1

Introduction to Modular Programming MCS-80/85 Utilities

1-2

The Advantages of Modular Programming

Most programs are too long or complex to write as a single block. Programming
becomes much simpler when the code is divided into small functional units. Modular
programs are usually easier to code, debug, and change than straightline programs,
and generally run more efficiently, too. The main program and the subroutines can
be coded separately once the module interfaces have been determined. The modular
approach to programming is similar to the design of hardware which contains
numerous circuits. The device or program is logically divided into "black boxes"
with specific inputs and outputs. The internal structure of each unit need not be
known to design others. Each routine or circuit is a discrete unit whose inputs and
outputs are fully defined.

Efficient Program Development

Programs can be developed more quickly with the modular approach since the small
sub-programs are easier to understand, design, and test than large programs. With
the module inputs and outputs defined, the programmer can supply the needed input
and verify the correctness of the module by examining the output. The debugged
modules are separately written and translated to machine-understandable code and
stored in a library file with the LIB command. When all the needed modules are
completed and tested, the LINK command will combine them into one program
module. This module can be assigned absolute memory addresses by LOCATE, and
the entire program tested.

Use of Different Source Languages

One of the greatest advantages of modular programming on the ISIS-II system is
that individual modules may be programmed in different source languages.
"Number crunching" routines are best written in FORTRAN because of its
mathematical capabilities. 110 routines can be coded in PL/M because of the ease
with which that language handles input and output. Assembly Language is best
suited for routines which handle any bit manipulation which may be needed.

The ISIS-II FORT80 and PLM80 compilers and the ASM80 assembler produce the
same object code format, so a finished program can be built from these segments.

Multiple Use of Subprograms

Code written for one program is often useful in others. Modular programming
allows these sections to be saved for future use. Because the code is relocatable,
saved modules can be linked to any program which fulfills their input and output
requirements. With straightline programming, such sections of code are buried
inside the program and are unavailable.

Ease of Debugging and Modifying

It is much easier to track down bugs in modular programs. Once the faulty module is
identified, fixing the problem is considerably simpler. When a program must be
modified, modular programming again simplifies the job. You can link new or
debugged modules to the existing program with confidence that the rest of the pro
gram will not be changed.

MCS-80/85 Utilities Introduction to Modular Programming

Microprocessor Memory Allocation

Microprocessor memory in field applications is usually tailored for a specific task,
with RAM (read/write memory) for variable data and ROM (read-only memory) or
PROM (programmable ROM) for your program and constant data. Memory can be
installed in such a way that some memory addresses refer to no actual memory.

You may not know the addresses of RAM and ROM in your final application during
early development, while you are still writing and testing your program on the
Intellec system. The only memory constraints imposed by the development system
are that your programs do not overwrite ISIS-II resident routines, and that they fit
within available memory. Intellec system memory is a series of RAM locations from
o to 32, 48, or 64k bytes.

Intellec Memory Organization

ISIS-II occupies all memory below 12k (3000H), except for locations 24-63. Those
memory locations contain the eight interrupts. ISIS-II and the monitor use inter
rupts 0, 1, and 2; and interrupts 3 through 7 are available for use by your program.
Memory locations 24-63 are the only ones below 12k that can be loaded with your
code. Loading other positions below 12k is not possible, but care .must be taken to
assure that your program does not write to memory locations in this area-it is pro
tected from program loads, but not from program output operations. Writing to
memory positions below 12k will damage ISIS-II and will cause errors when system
functions are requested. (Resetting the system will restore ISIS-II if your program
does accidentally write to this area.)

Starting at 12k is the buffer area, used for input and output buffers of 128 bytes
each. One buffer is reserved by ISIS-II for console input/output. The minimum area
allows for three permanent buffers, including the console buffer. If your program
requires more than these permanent buffers, more will be added and removed as
necessary.

Your programs run in the area above the buffers and below the top of memory.
ISIS-II nonresident routines such as the editor and the command interpreter also run
in this area. Some nonresident programs of ISIS-II use almost all of the RAM
between the buffers and 32k. For this reason, the first 32k of memory in an ISIS-II
system must be RAM. Above 32k, the memory may be any combination of ROM
and RAM. User programs which remain permanently in memory must be placed
above 32k so that the ISIS-II programs do not overwrite them.

The monitor MEMCK routine returns the address of the top of contiguous RAM
minus the workspace reserved for the monitor. On a 64k system, the monitor itself
uses 2k of RAM, so the value returned by MEMCK will be equal to the top of
memory less 2k less 320 bytes. On a 32k system, the monitor is not located in con
tiguous RAM, so MEMCK will return the location of the top of memory minus 320
bytes. These reserved areas are treated in the same way as the ISIS-II reserved
areas-protected from program loading, but not from program output.

As your program develops, and as y6ur application hardware becomes available,
address requirements will become more specific. In the final application, code may
be in PROM beginning at location 0 and variable data may be in the first block of
RAM. A program which had a base address of 4000H for compatability with ISIS-II
and had variable data immediately following the code will need new addresses to fit
these application requirements. A development system which produced only
absolute code would require program modification to produce new addresses. With
ISIS-II's relocatable object code, you need only produce a new absolute module
with the LOCATE program. LOCATE can assign specific addresses to place code in
ROM or PROM and variable data in RAM.

1-3

Introduction to Modular Programming MCS-8Q/SS Utilities

1-4

Program Segments and Memory Requirements

The locate program allows the user to specify the location of segment to areas of
memory because of the way in which the language translators divide modules into
segments. The segments are:

• Code-This segment contains the machine instructions and constant data which
is not modified during program execution. It is generally placed in ROM or
PROM.

• Data-The data segment, which must be in RAM, contains variable data and
storage for input and output buffers.

• Stack-The program stack, which must also be in RAM, contains the data and
return address needed when a program enters and returns from a subroutine or
function.

• Memory-This segment is the remaining system RAM memory which is not
required for code, data, or the stack. Its size is determined by LOCATE with the
monitor MEMCK routine when the program is located for execution on ISIS-II.

• Common segments-FORT80 requires RAM memory for COMMON and
BLANK COMMON areas. These areas are needed by FORT80 for storage of
variables which are used in more than one block of code.

• Absolute information-Relocatable modules can contain absolute information
in addition to these relocatable segments. The ASEG statement in Assembly
Language causes the instructions following it until the next CSEG or DSEG
statement to have absolute addresses.

LINK can accept absolute modules produced by LOCATE. The linked module
produced will be relocatable except for that section. PL/M-80 variables
declared with the AT attribute have absolute references when compiled.

LINK gives segments a relative start address of zero. Subsequent instructions and
data are given increasing relative addresses. The addresses are "relative" to the
beginning of the segment. With LOCATE, a base address (the absolute memory
location which the start of a segment will occupy) can be specified for any segment
when a relative object module is located. LOCATE adds this base address to each
relative address, forming absolute addresses. References between relative memory
addresses are adjusted appropriately. When all relative addresses have been replaced
with absolute addresses, the module is an absolute object module.

Relocation and Linkage

The ISIS-II resident compilers, FORT80 and PLM80, and the assembler, ASM80,
provide LINK and LOCATE with various types of information in the relocatable
object modules they create. This information consists of:

• Relative addresses of instructions and data in the module.

• A list of addresses, contained in the address fields of instructions or in data,
which refer to locations within the same segment. These addresses are called
intra-segment references.

• A list of addresses which refer to locations in the same module, but in a
different segment. These are called inter-segment references.

• A list of addresses which refer to locations in other modules. These are termed
external references.

• A list of the public and/or external symbols in the module. These symbols allow
LINK to satisfy external references.

You must understand public and external symbols and external references to suc
cessfully use LINK and LOCATE. Other topics will be discussed in this section to
give a complete picture of the mechanics of relocation and linkage.

MCS-80/8S Utilities Introduction to Modular Programming

Relative Addressing

When a source program is compiled by PLM80 or FORT80 or assembled by
ASM80, relative addresses are assigned to instructions and information in the code
and data segments. The addresses are assigned by a location counter which is set to
zero at the start of each segment, and is incremented by the byte length of each
instruction or data element in the segment.

LINK combines several modules to form one object module by combining all
segments of a kind into one segment. All code segments are joined in one code seg
ment; all data segments, are combined into one data segment, and so on. The relative
addresses in the first of each type of segment are unchanged. The addresses of the
segments which are appended to that segment are equal to the length of the first seg
ment plus their original relative address.

CODE
SEGMENT

3

CODE
SEGMENT

2

CODE
SEGMENT

1

• 2CD3H

-L
t

3FOOH

~
10tOH ,

683H
10FOH LENGTH OF FIRST CODE SEGMENT
3FOOH LENGTH OF SECOND CODE SEGMENT

+2CD3H POSITION OF INSTRUCTION IN THIRD SEGMENT
6883H RELATIVE ADDRESS IN OBJECT MODULE

Figure-I-I. Computing Relative Addresses 121617-1

LOCATE produces an absolute module from a relocatable one by adding an
absolute base address to each address in every segment. You may select the base
address for each segment, but they can be left for LOCATE to assign. The order of
segments in the absolute module can be assigned by the user or may be left to be set
by LOCATE.

Intra- and Inter-Segment References

Relative addresses in data or in the address fields of instructions which make
reference to other locations must always match the addresses of the referents. If the
address refers to a location within the same segment, it is an intra-segment reference.
Instructions which jump back to the beginning of a loop are typical intra-segment
references. References to a location outside the current segment but within the same
module are called inter-segment references. A statement in the code segment which
refers to a location in the data segment is an example of an inter-segment reference.

LINK updates intra-segment references with the new addresses of the referents once
they have been assigned. LOCATE converts these references to absolute addresses
by adding the base address of the segment in which they appear to them.

1-5

Introduction to Modular Programming MCS-80/85 Utilities

1-6

Inter-segment references are processed similarly. The new relative addresses of the
referents are substituted for the original ones, just as above, but LOCATE adds the
base address of the segment which contains the referent to the address field of the
reference, rather than the base of the segment containing the reference.

External References and Public Symbols

The remaining type of references are those which refer to locations not within the
same module. These references differ from those above in that the translator knows
nothing about the referent. In order for the translator to permit a reference to an
external location, you must declare the referent as an external symbol. The
translator will then know that the referent is defined in some other module. The
referent is an external symbol, and the statement which uses it is an external
reference.

Modules containing external references are said to be "unsatisfied" modules. LINK
searches through all of the modules it is to connect for matching public symbols and
external references. A public symbol is a variable or a label which is declared to be
public in the source program. The public declaration is placed in the object code to
be used by LINK.

When LINK matches an external reference to a public symbol, the address of the
public symbol is placed in the address field of the external reference. The address
may be absolute or relative. Since the modules are linked into one module, and the
external reference is satisfied, the external declaration is no longer necessary. LINK
removes external symbols, but not public symbols. The public symbols remain to
satisfy any modules added in the future which need them. In the linked object
module, the reference is now an intra- or inter-segment reference. LINK issues a
warning for each unsatisfied external reference. This is not necessarily an error, so
LINK continues processing until every possible external reference has been satisfied.
The unsatisfied module must again be linked to satisfy the remaining external
references. If you declare an external symbol but never make an external reference
to that symbol, LINK will give a warning even though no unsatisfied reference
exists.

When all external references have been matched to public symbols, a module is
"satisfied." If LOCATE finds an external reference in an object module which it is
processing, it issues a warning, but continues to produce the absolute module. This
allows execution of the program for debugging up to but not including the
unsatisfied reference. If the reference is executed, the result is unpredictable.

Keeping Track of Finished Files

You should have some way of keeping track of the status of object modules. One
way is saving the LINK and LOCATE memory maps. Another is using extensions
on the filenames which reflect the file's status. Use caution with the extension .
. TMP, as many ISIS-II routines use temporary files with this extension. They will
delete your file if it has the same name and extension as the temporary files they
create.

MCS-80/8S Utilities Introduction to Modular Programming

Libraries

Libraries of program modules make the job of building programs even simpler. The
LIB library manager program permits you to create and alter libraries of object
modules. LIB creates a directory of modules in each library to keep track of the
modules it contains. It will give you a list of all the modules in a library, and will list
the public symbols in each module if you wish. LINK uses the libraries in the follow
ing manner. Once all the external references have been satisfied by public symbols
within the modules to be joined, LINK searches the libraries which you have
specified in the invocation linefOfl5U01ic symbols to match any remaining
unsatisfied external symbols. It then copies the object code of the library module
containing the public symbol into the linked object module. Only the modules which
are required to satisfy external references are copied. The process is repeated until all
possible matches have been made.

1-7

CHAPTER 2
USING THE LINK PROGRAM

Introduction

The ISIS-II LINK program combines a number of object modules specified in an
input list into a single object module in an output file. The input files may be
relocatable modules produced by any of the language translators available for use
with ISIS-II. They may be relocatable files which have already been linked one or
more times. LINK can even accept absolute files as input. Files which have already
been linked and located can be run on ISIS-II. Any file in an ISIS-II object module
format can be processed by LINK.

Libraries as LINK Input Files

When libraries of object modules are among the input files, LINK searches them for
symbols which resolve external references in other input modules. The only library
modules which are included in the output module are those which satisfy external
references in other modules. If any unsatisfied references remain after the library
search is complete, a warning is placed on the LINK map. (The LINK map describes
the structure of the output module and includes other diagnostic information. The
map is described in detail on pages 2-4 and 2-5.)

As stated in Chapter 1, this warning is not necessarily an indication of an error, as
during the intermediate steps of program development and debugging, such situa
tions are not uncommon. If you place breakpoints in your program before the exter
nal references during these development stages, you can execute the program up to
the breakpoints. If any external reference is left unsatisfied, and the program
executes through it, the results cannot be predicted.

Program Segments in the LINK Process

As LINK combines the modules, it adjusts the relative addresses of the instructions
and data elements in them. To do this, the modules are separated into the segments
which make them up. Segments of each type (CODE, DA T A, STACK, and
MEMORY) are appended to one another; all data segments are joined into one data
segment, all code segments are combined, and so on. The relative address of each
instruction or data element is adjusted to be relative to the beginning of the new
longer segment. Finally, the new segments are rejoined to form the object module.

The order of the modules in the output file is determined by the order of the input
list. Thus, the file which is specified first in the list will have the lowest relative
addresses in each segment. The second module listed will begin at the first available
address after the first module. Again, if a library file is a member of the input list,
then it must be specified after the module which refers to it.

For example, the following LINK command is given:

.. :N~ A, :3.::-._:B/B TO C<.:r>

Module A contains code, data, and stack segments, and a reference satisfied by a
module in the library OBJECT.LIB. Module B contains code and data only. The
resulting object module C has the following structure:

2-1

Using the Link Program MCS-80/85 Utilities

2-2

CODE
SEGMENT

FROM
MODULE A

FROM
MODULE B

DATA
SEGMENT

FROM
MODULE A

FROM
MODULE B

STACK
SEGMENT

FROM
MODULE A

MEMORY
SEGMENT

LENGTH
DETERMINED

BY
LOCATE

Figure 2-1. Segment Type Combination with LINK 121617-2

The exception to this rule is absolute information. LINK does not change absolute
addresses. When LINK-assigned addresses conflict with absolute addresses, a
message is placed on the LINK map to indicate this. This message is not necessarily
an error indication. You may wish to overlap relocatable and absolute addresses.

If module B had contained a reference to OBJECT .LIB, then the invocation would
have read:

LINK A,B,OBJECT.LIB TO C<cr>

Relocation Types

All program segments have one of the following relocation types:

• Absolute, or non-relocatable (A) segments have fixed base addresses and must
be placed at that address.

• Byte relocatable (B) segments are placed at the next available byte.

• Page relocatable (P) segments are located at the first available byte which lies on
a page boundary (a location with an address evenly divisible by IOOH, or 256).
Such addresses end with -OOH.

• Inpage relocatable (I) segments are located at the first available byte such that
the segment does not cross a page boundary. Inpage relocatable segments must
be less than or equal to IOOH bytes in length.

When LINK combines segments with different relocation types, it does so using the
following rules:

• Byte relocatable segments follow the preceding segment at the next byte. The
output segment is byte relocatable only if all input segments are byte
relocatable. Otherwise, it is page relocatable.

• Page relocatable segments follow the preceding segment at the first free page
boundary. The memory locations from the end of the last segment to the page
boundary are unused. This space is called a gap and will appear on the memory
map. The output segment is page relocatable.

MCS-80/85 Utilities Using the Link Program

• Inpage relocatable segments are located either immediately after the preceding
segment (if there is enough room between the end of the last segment and the
next page boundary) or at the top of the next page. This is because in page
relocatable segments cannot cross page boundaries. LINK will change an inpage
relocatable segment to page relocatability if it is longer than 100H or 256 bytes.

The output segment will be inpage relocatable only if both of the following con
ditions are met. The segment must consist of all inpage relocatable segments,
and it must be 256 bytes in length or less. If either of these conditions are not
met, the output segment is page relocatable.

The memory that is left unused by LINK as it preserves the relocation type of the
segments is marked on the LINK map. Gaps will be denoted by the entry "*GAP*"
in the segment name column.

LINK Invocation

The LINK program is invoked by

- LIN K inputlist TO outputfile [controls] <cr>

where input/ist is either

filename [(modname , ...)] , ...

or

PUB LIe S (filename [(modname, ...)], ...)

In the first input list, filename is an ISIS-II file containing object modules. If
filename is a library of object modules, you have the option to specify which of its
modules are to be linked into the object file. If modnames are specified, then only
those modules will be linked in. If the modules are not specified, then LINK will
search the library for modules which satisfy external references in other modules.
You may specify as many filenames and modnames as you wish.

Remember-libraries must be listed after the modules for which they satisfy external
references.

In the second input list, only the absolute public declarations from the specified files
are included. The external references in other modules are satisfied by these declara
tions, but the object file produced does not contain the code of the specified files.
This permits linking without combining for program overlays. (See Chapter 4.) The
rules for inclusion of library modules are the same.

The outputfile will contain the object module produced by LINK. The outputfile
must not be the saD;le as any entry in the inputlist .

The controls are any of the following:

MAP
N A M E (modulename)
P R I NT (filename)

If the invocation is longer then one line on your terminal (or more than 122
characters), you can continue it on the next line by placing an ampersand (&) as the
last non-blank character before the <cr> at the end of the line. You may continue in
this way for as many lines as are necessary to complete the invocation. LINK will
echo a double asterisk (**) to indicate the continuation.

2-3

Using the Link Program MCS-80/SS Utilities

2-4

For example:

=
The ampersand must not appear within a filename or keyword~ but can be placed
between a keyword and the parenthesis which surrounds its associated parameter list
as above, between PUBLICS and its list.

LINK uses a temporary file named LINK. TMP on the disk which is to con
tain the output module. If you have a file with that same name on the disk,
LINK will destroy it.

Appendix D describes error messages produced by LINK.

Syntax:

Default:

Definition:

MAP

MAP

No LINK map is produced.

MAP requests that a LINK map be produced. The map is sent to
the :CO: if no file has been specified with the PRINT(filename)
control.

The LINK map includes the following information:

• LINK sign-on message

• Invocation line, exactly as entered (unless map is output to
:CO:)

• The length of the relocatable segments in the output module

• The addresses of the absolute information in the output
module

• The names of all of the input modules included in the object
module

• Any non-fatal error messages or warnings

The example which follows includes all of this information.

ISIS-II OBJECT LINKER Vx.y INVOKED BY:

-LINK ZANA.DOO,KUBLA.KON,':F1:0RSON.WLZ(TINSTAAFL),&
**PUBLICS(DEVERE.AUX) TO ROSE.BUD NAME(CITIZEN@KANE)&
**MAP PRINT(TREZUR.MAP)

IINSTAAFL - MODULE NOT FOUND IN LIBRARY

LINK MAP OF MODULE CITIZEN@KANE
WRITTEN TO FILE :FO:ROSE.BUD

Figure 2.2 LINK Map

MCS-80/8S Utilities Using the Link Program

SEGMENT INFORMATION:

START STOP LENGTH REL NAME

2345H B CODE
10BCH 10EEH 33H CODE
22FEH 22FFH 2H CODE

107H B DATA
OH B MEMORY

OH 2H 3H A ABSOLUTE
40H 711 H 6D2H A ABSOLUTE

100H 1FFH 100H A ABSOLUTE

INPUT MODULES INCLUDED:
:FO:ZANA.DOO
:FO:KUBLA.KON(ALPH)
:FO:DEVERE.AUX(LIBMOD)(PUBLICS)

UNRESOLVED EXTERNAL NAMES:

GAP
GAP

OVERLAP

TWILIGHT-REFERENCED IN :FO:KUBLA.KON(ALPH)

(Other errors, if any, would appear here.)

Figure 2-2. LINK Map (Cont'd.)

The entries in the REL column indicate the relocation type of
each segment. They are encoded as follows:

A Absolute or non-relocatable. Such segments must appear at
the exact address which is specified in the START column.

B Byte-relocatable. Segments with this relocation type can be
placed anywhere in memory which does not cause a conflict.
There must be enough room to contain the entire segment
without any overwriting of other segments.

P Page-relocatable. These segments must be placed at a page
boundary in memory. A page boundary has an address
which is divisible by 256. 8080 addresses are 16 bits long,
and the addresses are contained in two bytes, called the
high- and low-order bytes. The high-order byte for all
addresses within a page is the same. Thus, the beginning of
page-relocatable segments may be accessed by specifying
only the high-order byte, and setting the low-order byte to
zero. Once within the segment, other addresses in the seg
ment are accessed by the usual combination of high- and
low-order bytes.

Segments of this type must be 256 bytes or less in length.
This is because such segments contain code which only
changes the low-order byte of the address. Such a segment
cannot cross a page boundary, because the code within can
not make reference to an address with a different high-or'der
address byte.

2-5

Using the Link Program

Syntax:

Default:

Definition:

Example:

Syntax:

Default:

Definition:

Example:

2-6

MCS-80/85 Utilities

NAME

NAME(modulename)

outfile name without extension

The NAME control allows you to select a name for the output
module which is more descriptive than the six-letter file name.
The name can be from 1 to 31 characters long, with the follow
ing format:

letter [letter I digit I @ I ?] ...

Where letter is A through Z, digit is 0 through 9. The commer
cial at sign and the question mark may appear anywhere after
the first character, and are generally used to separate words
when there are more than one.

If NAME(modulename) is not specified, then the six-character
name (without the three-letter extension) of the output file will
be used.

(See previous example.)

PRINT

PRINT(filename)

The LINK map, if the MAP control (Page 2-4) is specified, is
output to :CO:.

PRINT(filename) directs the placement of the LINK map. The
filename is any ISIS filename-but not one which already exists
unless you don't care if that file's contents are destroyed and the
LINK map put in their place.

In the MAP control example, the LINK map is directed to the
file :FO:TREZUR.MAP.

• 2 CHAPTER 31
LOCATE COMMAND n

Introduction

The LOCATE program converts relocatable input files into absolute output files
ready for execution on the ISIS-II system. With LOCATE, you have complete con
trol over the absolute object module:

• You may allow LOCATE to determine the order of segments in the output file.

• You may specify the order of all of the segments.

• You may specify the order of some of the segments, and allow LOCATE to
select the rest.

• You may let LOCATE determine the location of each segment in memory.

• You may specify the location of any or all of the segments.

Remember-LOCATE will determine the order and location of all of the segments
which you do not specify.

If you specify memory locations incorrectly-by forcing in-page relocatable
segments across page boundaries, or by causing segments to overlap-then
LOCATE will issue an error message, but will continue processing the input file.
The LOCATE program does this because some seeming errors-especially overlap
ping segments-are intentional.

Invoking the LOCATE Program

The LOCATE program is called by

L 0 CAT E inputfile [T 0 outputfile] [controls]

where

inputfile is an ISIS-II file containing relocatable object code. outputfile is the
name of the file to contain the absolute object code.

If TO outputfile is omitted, then LOCATE sends the output to a file with the
same filename as the inputfile, but with no extension.

~~!ESI
If you have a file with the same name as the appropriate output file,
then it will be destroyed. If outputfile is not specified, then the
inputfile must have an extension to prevent its destruction.

The controls are any of the following:

COLUMN S (number>
LINES
MAP
NAME (outputmodname)
P R I NT (file)
PUBLICS
PURGE
SYMBOLS

START (address)
COD E (address)
D A T A (address)
MEMORY (address)
S T A C K (address)
S T A C K S I Z E (fength)
/ common / (address)
/ / (address)
OR D E R (segment sequence)
RESTARTO

3-1

MCS-80/85 UtilitiesLocate Command

The controls can be grouped into two categories: the format control group and the
absolute control group.

The first group sets the format o f the output files. The list file is formatted by all but
the NAME control, which affects the object module. The second group controls the
order of segments, the absolute memory locations o f segments, and other
parameters o f the absolute object module.

How LOCATE Locates Segments
Module segments are normally located sequentially i n memory in the following
order:

CODE
STACK
/commons/
DATA
MEMORY

You may allow the segments to be located by this default order; you may use the
ORDER command to override some or all o f the defaults; or you may use the seg-
ment base address controls alone or i n conjunction with either or both o f these
methods.

Locating with the Default Order

When you allow LOCATE to choose the order and location o f the segment, the code
segment is located 680H bytes above the top of ISIS- l l . The rest o f the segments arc
placed immediately above the code segment. Gaps between segments are generated
only when required by segment relocation type.
• Byte relocatable (B) segments are located at the next available byte.
• Page relocatable (P) segments arc located at the first available byte which lies on

a page boundary (a location with an address evenly divisible by 100H, or 256).
Such addresses end with OOH.

• In-page relocatable (I) segments arc located at the first available byte such that
the segment docs not cross a page boundary. In-page relocatable segments must
be Hess than or equal to IOOH bytes i n length.

Memory Pages and the H and L Registers
These relocation types are provided for programs that reference memory by
manipulating the H and L registers independently. (Sec the 8080/8085 Assembly
Language Programming Manual, order number 9800301, for a description of the
H IGH and LOW operators.) You can store data on a page boundary and address
elements in i t by changing only the L register. Doing so saves considerable time. I f
the data does not cross a page boundary, you never have to change the H register at
al l . Be careful i n using the H IGH operator on relocatable addresses. You may get an
incorrect address because LOCATE assumes the unused portion of the address is
zero. I f the unused portion of the address is not zero, and the addition of the low
order port ion o f the segment base address causes a carry into the high order portion,
that carry wi l l not be detected when the H IGH operator is used. I n the following
example, the H IGH operation is performed on the relocatable address 1234H, and
LOCATE adds a segment base address o f 10F0H:

3-2

Locate CommandMCS-80/85 Utilities

HIGH(1234H) = 12H (which LOCATE assumes i s 1200H)

WITH HIGH OPERATOR WITHOUT HIGH OPERATOR

1200H
+10F0H

1234H
+10F0H

22F0H 2324H

The h igh part of
which is22H

The high part of
which is23H

Because LOCATE has no knowledge of the low order portion of the address, there
is a chance that the high-order part o f the located address wi l l be off by one. The
located address wi l l be correct only i f there is no carry from the low order port ion.

You can avoid this situation by using the H IGH operator only on addresses i n page
relocatable segments.

This problem does not occur with the LOW operator. Addresses on which the LOW
operator is used wil l always be correct.

Savings in memory space and execution time can result from the use of the H IGH
and LOW operators, but access to some areas of memory may be lost because o f the
way L INK and LOCATE act to preserve relocation types.

I f you let LOCATE assign the base addresses of segments, i t does so in a way that
preserves the relocation type of the segment. I f you specify an address that violates
the relocation type o f a segment, LOCATE wil l move the segment to the next page
boundary. I f LOCATE encounters an in-page relocatable segment which cannot be
fit into one page o f memory, i t changes the relocation type to page relocatable.
LOCATE issues a message to the l ist file to report any changes.

Locating with the ORDER Control
You can completely determine the order of the segments with the ORDER control.
When you list a l l o f the segments in its parameter list, the the first segment listed wil l
be located 680H bytes above ISIS-11. A l l the others wi l l follow in order, just as with
the default, but i n the order specified i n the parameter list. Gaps are left only when
required by relocation types.

I f you do not specify al l o f the segments in the ORDER control:
• First, the segments specified in the ORDER control are located in the order

specified.
• Next, the non-specified segments are located immediately after the last specified

segment. They are located according to the default order minus the already-
located segments.

For example, the ORDER control

ORDER (DATA, STACK)

will cause the segments to be located as follows:

DATA
STACK
CODE
/commons/
MEMORY

3-3

Locate Command MCS-80/85 Utilities

3-4

Locating with the Specific Address Controls

You can also change the order of the segments by specifying the base addresses of
the individual segments. As with the ORDER control, not all segments need to be
specified. When the address controls are used, the following method is used to deter
mine the location of the segments:

• Segments are located according to the ORDER control (if it is in effect) and the
default.

• The starting address of a segment is either the first available byte or page
boundary (according to relocation type), or the address specified in the segment
address controls. Gaps will be generated when the relocation type requires it and
when the next segment's specified address causes it.

Remember that LOCATE will change the specified base address of a segment if the
given address violates the segment's relocation type, and in-page relocatable
segments will be changed to page relocatable if the segment is longer than 256 bytes.
In either case, an error message is generated.

This set of controls

ORDER(DATA,STACK) CODE(6000H)

will produce the following sequence of segments:

DAT A (located 680H bytes above ISIS-II)
STACK (located according to its relocation type after DATA)
CODE (beginning at 6000H)
/commons/ (if any, immediately after CODE, according to relocation type)
MEMORY (immediately after /commons/, if any, otherwise, immediately after

CODE)

There will be a gap between the end of the STACK segment and the beginning of the
CODE segment.

Special LOCATE Considerations

When Using the Segment Location Controls

If you intend to specify only some of the segments, and want LOCATE to take care
of the rest, it is best to use the ORDER control to modify the default sequence so
that there is:

1. Enough space in memory for all of the segments

2. No chance of conflicts for the same memory space.

If you do not design the memory allocation carefully, you run the risk of conflicts.
Just to be safe, always use the MAP control when specifying segment locations. Use
it to verify the correctness of your memory allocation. Conflicts do not stop
LOCATE, for reasons explained earlier.

When you specify FORTRAN common segment addresses using the /commons/
and / / controls, you should also specify the memory segment address. The memory
segment must be above the top of the highest of these segments. Since LOCATE
handles common segments in an arbitrary order, you will not know which common
segment will be located last. If the last common segment handled by locate is in low
memory, and LOCATE locates the memory segment by default, it will be placed
immediately after this common segment and it will overwrite the segments which
follow.

MCS-80/85 Utilities Locate Command

Allocating I/O Buffer Space

Care must be taken to assure that you leave enough space for the buffers needed by
ISIS-II for I/O. The maximum space required for buffers must be determined
before deciding the base address of your program. The number of buffers varies
dynamically, so the largest buffer area required is one large enough to handle the
greatest number of buffers open at any instant. If you attempt to set the base
address of your program (the lowest address in memory which your program
occupies) below 3180H, an error message will be generated. The maximum number
of buffers is 19.

Your program base address can be calculated with either of the following formulas:

12288 + (128 * N) (N in decimal)
or

3000H + (80H * N) (N in hexadecimal)

where N equals the greatest number of buffers required at any time during your pro
gram execution.

Use the following rules to calculate N:

• Each open disk file requires two buffers as long as it is open.

• An open line-edited file including :CI: requires one buffer until the file is closed.
For a disk file, this buffer is in addition to the two already required by rule 1.

• Any system call that accesses a disk directory (LOAD, DELETE, RENAME,
ATTRIB, or CONSOL when it specifies a disk file) requires two buffers during
the duration of the call. The buffers are freed upon return to the calling
program.

• When the CONSOL system call assigns the console input or output device to a
disk file, three buffers are required for the console input file and two are
required for the output file. The buffers are freed upon return to the calling
program.

• When the CONSOL system call assigns the console input or output device to a
disk file, three buffers are required for the console input file and two are
required for the output file. The buffers are allocated until an end-of-file is
encountered.

EXAMPLE: Suppose a program does not contain system calls, does not
assign the console to a disk file. and is not called by a command
in another disk file. Such a program needs a minimum of three
buffers. If the program opens a disk file, then it will need five
buffers.

To calculate this program's base address, use either formula:

or
12,288 + (128 * 5) = 12,928

3000H + (80H * 5) = 3480H

Now suppose this same program has been called from a SUB
MIT file, where the console outpu.t is also a disk file. This adds
two buffers for the disk output file and two for the program call
from the SUBMIT file:

or
12,288 + (128 * 9) = 14,340

3000H + (80H * 9) = 3408H

Locate Command MCS-80/85 Utilities

3-6

If you wish your program to be independent of the type of device which is used for
data transfers and independent of how it is called (from the console or from a sub
mit file), you should allow for the maximum number of buffers it might need. This
means that for any open file you should allow two buffers whether or not it is a disk
file. You should also allocate five buffers for the console input and output files,
whether or not it is a disk file. You should also allocate five buffers for the console
input and output files, whether or not they are disk files.

Multiple-Line Invocation

LOCA TE allows you to continue the invocation on more than one line if required. If
the invocation is longer than one line on your terminal (up to a maximum of 122
characters), then you can continue on the next line by placing an ampersand (&) as
the last non-blank character before the <cr>. LOCATE responds with a double
asterisk, indicating that it is ready for the continuation. The rules for the placement
of the ampersand are the same as for LINK -between words, and between controls
and associated parameters, but never inside any word. For example:

MM.

LOCATE uses a temporary file named LOCATE.TMP on the same disk as
the output file. If you have a file by that name, LOCATE will overwrite it.

Appendix E, LOCATE Error Messages, lists error messages and warnings.

The control definitions follow.

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

COLUMNS(numbqr)

where number is 1,2, or 3.

COLUMNS(l)

COLUMNS

COLUMNS determines whether the symbol table in the list file
is to be printed in 1,2, or 3 columns.

The control .. -t.N will produce the following symbol
table:

MCS-80/8S Utilities

NOTE:

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

NOTE:

Locate Command

SYMBOL TABLE OF MODULE BATTLE
READ FROM FILE BATTLE.SHP
WRITTEN TO FILE BOTTLE

YALUE

30118
30158
30278
301108
30628
31028
3230B
33110B

TYPE

HOD
PUB
SYM
SYM
SYM
PUB
PUB
SYM
LIN

SYMBOL

SINK
FIRE
SIO
SIl
TIGER
TANI
BIRD
DRONE
272

Figure 3-1. LOCATE Symbol Table

The COLUMNS control is ignored unless SYMBOLS,
PUBLICS, or LINES is specified.

LINES

LINES

The line numbers are not listed in the symbol table.

The LINES control requests that all line numbers and module
names be entered in the list file as the symbol table. The VALUE
column in the table is blank for module names. The TYPE col
umn displays LIN for line numbers, and MOD for module
names.

On the symbol table above, the symbols SINK and 272 are a
module name and a line number placed in the table by the
LINES control.

The LINES control is not the only control on the contents of the
symbol table. The SYMBOLS control places input module
names and local symbols in the table.

Although the SYMBOLS and LINES controls both place
module names into the table, LOCATE only im;ludes them
once. The PUBLICS control includes public symbols on the
table.

3-7

Locate Command MCS-80/85 Utilities

3-8

MAP

SYNTAX: MAP

DEFAULT: A memory map is not produced.

DEFINITION: The MAP control enables the listing of a memory map on the list
device or file. The map lists the actual start address of the
module as well as the start and stop addresses of each individual
segment, the length of each segment, and the relocation type of
the segment. These relocation types are from the input file, not
the output file, as the segments are no longer relocatable. The
relocation types are the same as for LINK. See page 2-2 for an
explanation of relocation types.

When two segments overlap, a warning (*OVERLAP*) is
issued. LOCATE does not stop processing when an overlap is
discovered, as they are often intentional. The three-byte overlap
in the following example is an intentional overlap. The three
absolute bytes are intended to fit into the relocated data
segment.

MEMORY MAP OF MODULE VOICE
READ FROM FILE :Fl:VOICE.SYN
WRITTEN TO FILE :Fl:VOICE.
MODULE START ADDRESS AT 3000H

START STOP

0008H OOOAH
3000H 343FH
3440H 412EH
3630H 3632H
412FH 415FH
4160H F6BFH

LENGTH REL NAME

3H A ABSOLUTE
440H B CODE

12EFH B DATA
3H A ABSOLUTE ·OVERLAp·

31H B STACK
AF60H B MEMORY

Figure 3-2. LOCATE Memory Map

NOTE

The length given on the map for the MEMORY segment
is equal to the length of the available memory on the
host Intellec system. It has no relation to the actual
amount of memory available in the device for which the
program is destined. You must be certain that there is
sufficient memory available in the target device.
LOCATE has no way of knowing how much memory it
has.

MCS-80/85 Utilities

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

SYNTAX:

DEFAULT:

DEFINITION:

NOTE:

Locate Command

NAME
NAME(output module name)

where output module name will contain the absolute object
module.

The module is given the name of the input module.

This control allows you to assign a descriptive name to the
object module produced by LOCATE. This name may be from 1
to 31 characters in length, and must follow the format:

letter [letter I digit I @ I ?] .. ,

where letter is A through Z, digit is 0 through 9, and @ and?
may appear anywhere after the first letter. These two characters
are generally used to separate words in the name.

NAME(VOICE@SYNTHESIS@SYSTEM)

PRINT
PRINT(filename)

where filename is the ISIS-II file which is to receive all the mat
ter directed to the list device.

If PRINT(filename) is omitted, then the listing file is :CO:.

The PRINT control specifies the list file for the ancillary output
which is not part of the object module. The memory map, sym
bol table and error messages are produced for your use in debug
ging the program.

PRINT(TREZUR.MAP)

PUBLICS
PUBLICS

The printing of the symbol table is supressed, or the public
symbols are not included if it is printed by another control.

The PUBLICS control causes the public symbols in the input
module to be included in the symbol table. If no other symbols
have been requested, then the PUBLICS control causes the
generation of the table.

This control, the SYMBOLS control and the LINES control all
determine the printing or non-printing of the symbol table and
its contents.

3-9

Locate Command

SYNTAX:

DEFAULT:

DEFINITION:

SYNTAX:

DEFAULT:

DEFINITION:

SYNTAX:

3-10

MCS-SO/SS Utilities

PURGE
PURGE

Symbols are left in the absolute module.

When the PURGE control is used, all of the public symbols,
local symbols, module names, and line numbers are removed
from the object module. This is done to make the module
smaller and to help it load more rapidly. The symbols should be
left in until the module is completely debugged as the line
numbers, local symbols, and module names aid this process. If
the module is to be linked with another module, then the public
symbols will be necessary, too. PURGE should only be used on
completely debugged programs.

SYMBOLS
SYMBOLS

The Symbol table is not printed, or the local symbols and
module names are not included.

This is the third of the symbol table controls. Like the LINES
control, this one causes the module names to be included in the
table, but includes local symbols instead of line numbers.

START
START(address)

where address is the address of the first instruction in the code
segment of your program. As with all of the following controls,
the value of address may be given in any of these bases:

Decimal: START(lOOOD) or START(lOOO) Note-a
value with no base indicated is assumed to be
decimal.

Hexadecimal: START(2FFFH) Note-the address must start
with a digit. If the value is, for example C40F,
then the control must read START(OC40FH).

Octal:

Binary:

ST ART(27770) or ST ART(2777Q) Note-the
use of the letter "0" can lead to confusion, as
it looks like the numeral "0". For this reason,
the letter "Q" may be used to indicate an octal
value.

START(lIOIOIOOIOl B)

MCS-80/85 Utilities

DEFAULT:

DEFINITION:

EXAMPLE:

SYNTAX:

DEFAULT:

DEFINITION:

NOTE:

Locate Command

The start address is taken from the input module.

START permits you to specify the exact starting address of your
program. You can align the code segment with the ROM in your
final application by specifying the address of the first ROM
location. This lets you load the program into the correct memory
area without having to change the object code.

The reason that device memory addresses usually do not match
those from the Intellec system on which you developed the pro
gram is that Intellec addresses for user-written programs begin
at location 3000H to leave room for the ISIS-II resident
routines. Application systems generally do not have such
restrictions.

ST ART can also be used to create room for user-written resident
routines on the Intellec system. Suppose you have such routines
and that they occupy lOOOH bytes of Intellec memory. These
routines can reside in the lOOOH bytes above the ISIS-II
routines. If so, then other programs will have to begin at address
4000H or higher so as not to over-write your resident programs.
Specifying the ST ART(4000H) control will locate other pro
grams accordingly.

STARTCOOF6H)

The program now begins at memory location 00F6H. Note that
this address is incompatible with ISIS-II.

RESTARTO

RESTARTO

Locations 0, 1, and 2 are left unchanged in the absolute module.

RESTARTO places a jump instruction in the first three locations
of the absolute module. The address field (the target of the
jump) is the start address of your program. The start address is
taken from the START control, if that control is in effect, or it
is determined by the start address in the input module. When the
CPU receives a RESTART signal, the program counter is set to
0, .and the jump command is executed. The jump restarts your
program. Use RESTARTO when you are ready to test the pro
gram on your system, whether standalone or with the in-circuit
emulator.

REST AR TO is ignored if the module is not a main module.
REST ARTO is not compatable with ISIS-II, which does not
allow user code to be loaded into these locations.

3-11

Locate Command

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

NOTE:

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

l·l2.

MCS-80/85 Utilities

STACKSIZE
STACKSIZE(value)

where value is the desired length (in bytes) of the stack segment.

The stacksize is obtained from the input module.

ST ACKSIZE allows you to allocate a specific space for the stack
segment of your program. The ISIS-II stacksize calculation
allows for extra information which your final application will
not need. By specifying the exact stacksize to fit your needs, you
make your program smaller and more efficient.

STACKSIZE(33)

When debugging your program on an Intellec system, 12
additional bytes are required. If the STACKSIZE control is not
specified, then LOCATE adds these bytes to the stack length
obtained from the input file.

ORDER

ORDER(segment list)

where segment list is a list of the segments which you wish to
place first, second, third, etc, above the top of ISIS-II.

See page 3-2, "How LOCATE Locates Segments."

This control permits you to select the order of the segments in
the absolute module. Those segments not mentioned in the seg
ment list are located by the default as described on page 3-3.

ORDER(STACK,DATA,/AHAB/)

CODE
CODE(address)

where address is the desired base address of the code segment.

See page 3-2, "How LOCATE Locates Segments."

The CODE(address) control locates the beginning of the code
segment at the specified address.

CODE(3F~F~)

MCS-80/85 Utilities

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

Locate Command

DATA

DA T A (address)

where address is the desired base address of the data segment.

See page 3-2, "How LOCATE Locates Segments."

The DA T A(address) control locates the beginning of the data
segment at the specified address.

DATA(32768D)

MEMORY
MEMORY(address}

where address is the desired base address of the memory
segment.

See page 3-2, "How LOCATE Locates Segments."

MEMO RY(address) control locates the beginning of the
memory segment at the specified address.

MEMORY (1 011 00011 01 01 001 B)

STACK
5T ACK(address)

where address is the desired base address of the stack segment.

See page 3-2, "How LOCATE Locates Segments."

The ST ACK address control locates the beginning of the
STACK segment at the specified address.

STA2K(67?OQ)

3-13

Locate Command

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

SYNTAX:

DEFAULT:

DEFINITION:

EXAMPLE:

3-14

MCS-80/85 Utilities

Icommonl
/ common segment name/ (address)

where common segment name is the name of a FORTRAN
common segment, and address is the desired base address for
that segment.

See page 3-2, "How LOCATE Locates Segments."

The /common/(address) control locates the beginning of the
specified FORTRAN common segment at the specified address.

INUNZIOI (3077H)

II
II (address)

where address is the desired base address of an unnamed
FORTRAN common segment.

See page 3-2, "How LOCATE Locates Segments."

The / /(address) control locates the beginning of an unnamed
FORTRAN common segment at the specified address.

""P':III

CHAPTER 41
ISIS-II LIBRARIAN

Introduction

The ISIS-II LIB command allows you to create specially formatted files to contain
libraries of object modules, to alter the contents of these files by adding new
modules and deleting old ones. LIB will also provide a listing of the modules in a
given library, if desired. Libraries can be used as input to the LINK program, which
searches libraries for modules required by the other programs being linked. The
library modules which LINK selects are those which satisfy external references in the
other modules.

The library manager program is called by the LIB command:

-HH

LIB identifies itself with its sign-on message, followed by an asterisk prompt:

ISIS-II LIBRARIAN Vx.y
*

You will receive this prompt while in LIB after each command is completed. At the
asterisk, you may enter any of the following LIB sub-commands:

CREATE
ADD
DELETE
LIST
EXIT

If a command line is longer than a line on your console (up to the maximum of 122
characters allowed), you may continue it on the next line by entering an ampersand
as the last non-blank character on the line before the <cr>. LIB responds to this with
a double asterisk to let you know that it is ready for the continuation of the com
mand line.

LIB uses a temporary file named LIB.TMP on the library file disk. If you
have a file with this name, it will be destroyed.

Appendix F lists the LIB error messages.

The LIB sub-command definitions follow.

SYNTAX:

CREATE

CREA TE filename

where filename is the name of the new library file. If another file
exists with that name, an error message is given, and you are
prompted for a new filename.

4-1

ISIS-II Librarian MCS-80/85 Utilities

4-2

DEFINITION:

EXAMPLE:

SYNTAX:

DEFIN ITION:

EXAMPLE:

SYNTAX:

The CREATE control creates an empty library file. You must
then ADD modules to the file.

CREATE CARNEG.LIB<cr>

ADD
ADD filename[(modname, ...), ...] TO library

where filename is the name of a file containing at least one
object module, and modname is the name of a library module if
that file is a library, too. If filename is a library file, but mod
names are not given, all modules in filename are copied into
library. You may enter as many filenames or modnames as you
wish. library is the name of an existing library file.

This command inserts modules into the library. The modules
may be elements of another library, or they may be in object
files. If a module is in an object file, then it is placed in the
library, and the directory in the library is updated. If the module
is contained in a library, then you may specify the modules you
wish to copy, or you may omit this list and let LIB copy all of the
modules in the source library. If you specify the modules, then
only those modules are copied into the library. If you omit the
modnames, then LIB copies the entire input library into the
library.

ADD BOOK, MONDO.LIB(BIG, GOOD) TO CARNEG.LIB<cr>

DELETE
DELETE library(modname, ...)

where library is the library from which you would like to
remove some modules, and modname is the name of one of the
modules you're removing.

DEFINTITION: The DELETE control permits you to remove modules from
libraries for which you have no need. DELETE removes the
module and alters the directory of the library to reflect this
change.

EXAMPLE: DELETE CARNEG.LIB(ANDREW, DALE)(-:r)

MCS-80/85 Utilities

SYNTAX:

DEFINITION:

EXAMPLE:

SYNTAX:

DEFINITION:

EXAMPLE:

ISIS-II Librarian

LIST
LlSTlibrary[(mod, ...), ...] [TOlistfile] [PUBLICS]

where library is the library for which you need a list of modules,
mod is one of those modules, and listfile is a file or an output
device on which the list is to be printed. PUBLICS calls for a
listing of the public symbols in each listed module.

With the LIST command, you can examine the contents of your
libraries. You can send this list to a file to print later, or you may
print the list directly, depending upon listfile. If TOlistfile is
omitted, the listing will be sent to the console output. With the
library and modname controls, you may specify which of the
modules in library LIB should list. The PUBLICS control lists
the public symbols in each module after the module name.

This LIST command

will cause the following to be listed on the line printer:

PROJECTOR
RACK
NUMBER
STATUS

FILM
HOUR
MINUTE
SECOND
FRAME

SLIDE
TRAY
POSITION

Figure 4-1. LIST Command Output

EXIT

The EXIT command returns control to ISIS-II.

EXIT

4-3

CHAPTERS
PROGRAM OVERLAYS

AND LINKED LOADING

Overview
When a program is larger than the available memory, it is necessary to link the
modules which make it up without combining them in one file. During execution,
when one part of the program is finished, and another needed, the second can be
loaded into the area of memory which had held the first. The same area of memory
can hold different sections of the program at different times. This multiple use of
the same memory area is called a program overlay.

Under ISIS-II, modules to be loaded separately must be in different files. The first
module is loaded by giving the name of the file which contains it as a command. The
subsequent loads of the overlays must be performed by your program using the
LOAD system call.

In the typical use of LINK and LOCATE, modules with external references are com
bined with modules with matching public symbols to produce a module with no
unresolved external references. In linking without combining, the external
references must still be satisfied, but the program containing the public symbols
must not be included. The LINK "PUBLICS" control links the public symbols
from the input modules listed in the PUBLICS control to matching external
references. The word PUBLICS tells LINK that the modules themselves are not to
be combined into the output module, just the public symbols.
For example:

LINK A, PUBLICS(B,C) TO A.LNK
results in a module A.LNK, whose external references to the absolute modules Band
C are satisfied. Band C must be absolute modules for LINK to know the addresses
of the public symbols they contain (-obviously, since relocatable modules by
definition do not contain absolute addresses). The typical usage of LINK before
LOCATE is reversed. You must LOCATE Band C to create absolute modules
(which may contain unresolved external references--it really doesn't matter) before
you LINK them to A.

Consider the following example. A "root" segment (the segment loaded first) calls
segment "A." Segment "A," in turn, calls another segment, "AA." Next, segment
"AAA" overlays segment "AA." Finally, the root segment calls segment ~'B,"
which overlays "A," but does not disturb "AAA," which it uses. The illustration
below depicts this overlay scheme. The "cards" are program segments. The
segments which overlap are overlays. Segments beside one another occupy different
areas of memory.

Figure 5-1. Overlays 121617-3

5-1

Program Overlays and Linked Loading MCS-80/85 Utilities

5-2

All of these segments must be in different files because they are loaded separately.
The root loads "A" and "B," and "A" loads "AA" and "AAA."

If you locate the root first, you can use the memory map produced by LoeA TE to
determine the base address of "A" and "B." The maps produced by locating "A"
and "B" can be used to determine the base address of "AA" and "AAA." You
must locate "AA" above the top of "A," and "AAA" above the top of "A" or
"B," depending upon which is higher.

Suppose the modules make the following references to one another:

The ROOT has external references to A and B.
A has external references to AA, AAA, and the ROOT module.
B contains external references to AAA and the ROOT.
AA has external references to A.
AAA contains external references to A and B.

The absolute modules produced by LOeA TE are as yet unsatisfied, and have been
given the .TMP extension. The following LINK commands, performed upon these
absolute modules, will produce a working program.

The modules are now fully connected but not combined, and are ready to run. You
may wish to LOeA TE all of the modules again just to make certain that all of the
external references have been satisfied.

NOTE

When you link without combining to produce overlays, you must provide
overlay management in your program. Before a segment makes use of
another, both must be in memory. In the above example, ROOT must load
A and B, and A must load AA and AAA. B does not load anything, A has
already loaded AAA, and the root is loaded from the start. You must also
make sure that you allocate memory properly-if segment B is longer than
A, and AAA begins immediately above A, then AAA will be destroyed by
loading B. If AA contains data which will be needed after it is overwritten,
you must provide the means to save the data when AAA is loaded. Linking
without combining provides the hooks for overlaying, but the runtime
management must be designed into your software.

· ~ CHAPTER 6
CODE CONVERSION PROGRAMS n

I ntrod uction

The two ISIS-II code converters exist to provide compatibility with systems employ
ing a hexadecimal object code format by converting programs between the ISIS-II
format and the hexadecimal format, and vice-versa.

The 'Code conversion programs change the character coding, but not the content of
the files they process. Instructions and addresses will be the same, but expressed in a
different format.

SYNTAX:

DEFINITION:

EXAMPLE:

HEXOBJ

H EXO BJ hexfile TO absfile [ST ART (address)]

where hexfile contains hexadecomal MCS-80/85 code, absfile
is the output file to contain the ISIS-II compatible absolute
object module, and address is the desired start address of the
output module.

HEXOBJ converts hexadecimal-encoded MCS-80/85 code into
ISIS-II compatible form. the output module receives the name
portion of absfile. HEXOBJ produces a symbol table only if
symbols were defined in the hexfile.

With the optional START(address) control, you may specify
the start address of the object module. This address may be
given in any of the bases described on page -.- of chapter -.
If START(address) is omitted, then HEXOBJ will search the
end-of-file record of hexfile for that information. The address
stored there is determined by an assembly-language statement, a
numeric lable on the first statement of a PL/M program, or a
compiler control. If none of these have been used, then there will
be no start address in hexfile, and HEXOBJ will set the start
address of absfile to O. You cannot load and run such a pro
gram under ISIS-II, since all memory below 3000H is reserved.

HEXOBJ :F1 :PRIMO.HEX TO ABS.OBJ START(3300H)

6-1

Code Conversion Programs

SYNTAX:

DEFINITION:

EXAMPLE:

6-2

MCS-80/85 Utilities

OBJHEX

OBJHEX absfile TO hexfile

where absfile contained an ISIS-II absolute object module, and
hexfile will contain hexadecimal-format object code.

OBJHEX is the converse of HEXOBJ-it produces hexadecimal
object code from and ISIS-II formatter file. The starting address
is obtained from absfile, and the hexadecimal code does not
contain a symbol table. You may wish to convert files to hexa
decimal format for loadng into PROM, or so that the program
may run on a system which uses hexadecimal coding.

OBJHEX SOURCE.ABS TO :F2:SINK.HEX

APPENDIX A
HEXADECIMAL PAPER TAPE FORMAT

Object code is stored on paper tape in an ASCII representation of the program in
memory. The code is blocked into records, each of which contains the record type,
length, type, memory load address, and checksum in addition to the data. Figure
A-I shows the frames of a tape record.

H CHECKSUM n DAT
>

,.... I"

""'"--'"

RECORD TYPE

LOAD
ADDRESS

RECORD
LENGTH

RECORD MARK

Figure A-I. Paper Tape Record Format

The Record Mark is a colon (3AH) and is used to signal the start of a record.

121617-4

The Record Length is the count of the data bytes in the record. A record length of
zero indicates end-of-file.

The Load Address specifies the address at which the first data byte will be loaded.
The successive data bytes will be stored in successive memory locations.

The Record Type specifies the type of this record. All data records are type o. End
of-file records can be type 0 or 1.

The Data consists of two frames per memory word. The data is represented by hex
adecimal values OOH through FFH.

The Checksum is the negative of the sum of all 8-bit bytes in the record, beginning
with the Record Length and ending with the last Data byte, evaluated modulo 256.
The sum of all bytes in the record (including the checksum) should be zero.

A-I

· ' APPENDIX B
HEXADECIMAL-DECIMAL CONVERSION n

The following table is for hexadecimal to decimal and decimal to hexadecimal con
version. To find the decimal equivalent of a hexadecimal number, locate the hex
adecimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position. Sub
tract the decimal number from the table from the starting number. Find the dif
ference in the table. Continue this process until there is no difference.

BYTE BYTE
HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1

2 8,192 2 512 2 32 2 2

3 12,288 3 768 3 48 3 3

4 16,384 4 1,024 4 64 4 4

5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6

7 28,672 7 1,792 7 112 7 7

8 32,768 8 2,048 8 128 8 8

9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10

B 45,056 8 2,816 B 176 8 11

C 49,152 C 3,072 C 192 C 12

D 53,248 0 3,328 D 208 0 13

E 57,344 E 3,548 E 224 E 14

F 61,440 F 3,840 F 240 F 15

B-1

Decimal Octal Hexadecimal

0 000 00
1 001 01
2 002 02
3 003 03
4 004 04
5 005 05
6 006 06
7 007 07
8 010 08
9 011 09

10 012 OA
11 013 OB
12 014 OC
13 015 OD
14 016 OE
15 017 OF
16 020 10
17 021 11
18 022 12
19 023 13
20 024 14
21 025 15
22 026 16
23 027 17
24 030 18
25 031 19
26 032 1A
27 033 1B
28 034 1C
29 035 1D
30 036 1E
31 037 1F
32 040 20
33 041 21
34 042 22
35 043 23
36 044 24
37 045 25
38 046 26
39 047 27
40 050 28
41 051 29
42 052 2A
43 053 2B
44 054 2C
45 055 20
46 056 2E
47 057 2F
48 060 30
49 061 31
50 062 32
51 063 33
52 064 34
53 065 35
54 066 36
55 067 37
56 070 38
57 071 39
58 072 3A
59 073 3B
60 074 3C
61 075 3D
62 076 3E
63 on 3F

Table C-l. ASCII Code List

Character Decimal

NUL 64
SOH 65
STX 66
ETX 67
EOT 68
ENO 69
ACK 70
BEL 71
as 72
HT 73
LF 74
VT 75
FF 76
CR 77
SO 78
SI 79

DLE 80
DC1 81
DC2 82
DC3 83
DC4 84
NAK 85
SYN 86
ETB 87
CAN 88
EM 89

SUB 90
ESC 91
FS 92
GS 93
RS 94
US 95
SP 96

! 97
" 98
II 99
$ 100
% 101
& 102 , 103
(104
) 105
* 106
+ 107

108
- 109

110
I 111
0 112
1 113
2 114
3 115
4 116
5 117
6 118
7 119
8 120
9 121

122
J 123
< 124
= 125
> 126
? 127

Octal

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

APPENDIX CI
ASCII CODES

Hexadecimal Character

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F 0
50 P
51 0
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C
5D]
5E A
5F -
60 ,
61 a
62 b
63 c
64 d
65 e
66 f
67 9
68 h
69 i
6A j
6B k
6C I
60 m
6E n
6F 0
70 P
71 q
72 r
73 5
74 t
75 u
76 v
n w
78 x
79 Y
7A z
7B I 7C
70
7E
7F DEL

C-l

· "- APPENDIX D
ISIS-II ERROR MESSAGES n

Introduction

This appendix lists the error messages issued by ISIS-II. These errors can occur at
the invocation of any of the ISIS-II routines, or can be generated by error conditions
encountered in the operation of those routines.

The error numbers are divided into three groups as follows:

• Errors 1-99 are those which occur within ISIS-II resident routines.

• Errors 100-199 are reserved for user-written program errors.

• Errors 200-255 are generated by ISIS-II non-resident routines.

ISIS-II errors can be either fatal or non-fatal. Fatal errors halt program execution
immediately, and do not permit recovery. Fatal errors result in the return of control
to ISIS-II, which overwrites some of the user program area. ISIS-II displays this
error message:

ERROR nnn USER PC mmmm

Where nnn is the error number, and mmmm is the address in the program counter
when the error occurred.

Non-fatal errors halt the execution of the current program, but do not return control
to ISIS-II. User-written error handling routines can restore the program to the pre
error condition. If the error occurs in a program invocation, the errant input is
echoed, and an appropriate error message is given, as below:

COP Y : G 1 : eRE 0 ITT 0 : F 0 : C ROT <cr
:G1:CREDIT, UNRECOGNIZED DEVICE NAME

The non-fatal errors encountered by some ISIS-II non-resident routines have
appropriate error messages-these are included in the error descriptions.

In the list below, fatal errors are identified by an asterisk before the error
description.

ISIS-II Error Descriptions

o No error detected. This is the normal state.

*1 Too few buffers have been allocated than are required to meet the current
program needs. Trying to allocate more than the maximum of 19 buffers will
cause this error as well.

2 ILLEGAL AFTN ARGUMENT

The value specified as an AFTN (Active File Table Number) is either not in the
table of open files or is otherwise incorrect. Such an error will occur when your
program tries to read a file which has been closed. To recover from this error,
replace the AFTN with a correct value.

*3 Attempt to open more than six files simultaneously. The AFT can contain, at
most, six files. To recover from this error, close one file, thereby freeing an AFT
position.

0-1

ISIS-II Error Messages MCS-80/85 Utilities

0-2

4 INCORRECTLY SPECIFIED FILENAME

You have entered a filename which is illegal for one of these reasons:

• It contains more than six letters, or has an extension of more than three
letters.

• It contains illegal characters. Filenames may contain only the characters
A - Z and the numerals 0 - 9.

• The first character of the file name is a numeral. Filenames must begin with
a letter.

5 UNRECOGNIZED DEVICE NAME

The device name specified is not a legal device. Check the ISIS-II User's Guide
for a full list of legal devices.

6 A TTEM PT TO WRITE TO AN IN PUT DEVICE

It is impossible to write to an input device such as a file open for input or any of
the terminal input files. :CI:, :VI:, and :TI: are all input devices.

*7 Insufficient disk space. The disk is full. Before writing to a disk, make sure that
it has sufficient room.

8 ATTEMPT TO READ FROM AN OUTPUT DEVICE

Some devices, like the line printer (:LP:), are output-only devices. You cannot
read from them. :CO:, :VO:, and :TO: are output-only, and cannot be read.

9 DISK DIRECTORY FULL

There is no room in the disk directory for any new files. There is a limit of 200
files for floppy disks, and 992 for hard disks.

10 NOTONSAMEDISK

The second file specified is not on the same disk as the first, but it is expected to
be. An attempt to rename a file to another disk will produce this error.

11 FILE ALREADY EXISTS

The specified filename matches one already on the disks. Many ISIS-II routines
which produce this error allow you to decide whether to replace the old file with
the specified one, or to change the name of the new file.

12 FILE IS ALREADY OPEN

Only the console input and output (:CI: and :CO:) may be opened more than
once without being closed. Other files can only be opened once. Check your
program for these possible causes: .

• The program makes an unintended jump to the OPEN statement.

• The filename is misspelled in the second OPEN statement.

• You have coded more than one OPEN statement for the file.

13 NO SUCH FILE

The file specified is not in the directory of the disk specified. Probable causes
are an incorrect filename or device designator.

MCS-80/8S Utilities ISIS-II Error Messages

14 WRITE PROTECTED

The intended WRITE, RENAME, or DELETE operation could not be per
formed because the file is write protected (attribute W). This error also occurs
when one of these operations is attempted on a disk whose write-protect slot is
open.

*15 Attempted load into ISIS-II reserved area. The system will not allow you to load
programs below 3000H because that area is reserved for ISIS-II resident pro
grams. Such a load operation would not permit the use of system calls, and
would make return of control to ISIS-II impossible.

*16 Illegal load format. The file to be loaded is not an ISIS-II absolute-format file.
To be loaded and executed by the ISIS-II system, code must be in the proper
absolute format.

17 NOT A DISK FILE

An attempted reference to a disk file has been made using a non-disk device
identifier. An example would be :HP:THIS in place of :FI :THIS. This error
differs from number 5 in that the device name given here is a legal device name,
but not the correct one.

*18 This error reports that an ISIS system call was made from a program with an
illegal command number.

19 ATTEMPTED SEEK ON NON-DISK FILE

Seeks on devices other than disk drives are invalid, with the exception of :BB:.
Check for possible errors in AFTNs or misspellings.

20 ATTEMPTED BACK SEEK TOO FAR

The seek went beyond the beginning of a file. MARKER is set to zero. See the
ISIS- II User's Guide.

21 CAN'T RESCAN

Files which are not open for line-editing cannot be rescanned.

22 ILLEGAL ACCESS MODE TO OPEN

There are only three legal access mode parameters for OPEN:

1 Input (Read-only)
2 Output (Write-only)
3 Update (Read-Write)

Error 22 can also indicate that the access mode selected is not legal for this file.

23 MISSING FILENAME

A filename is expected as an argument to a command, and is not present.
DELETE <cr> (no file designated for deletion) is a case for which this error
would occur.

0-3

ISIS-II Error Messages MCS-80/85 Utilities

D-4

*24 Disk 110 error. An additional message follows the usual error number line

ST A TUS=OOnn
D=x T=yyy S=zzz

where x is the drive number
yyy is the track address
zzz is the sector address
nn indicates the following:

For Floppy disks:

01 Deleted record
02 Data field CRC error
03 Invalid address mark
04 Seek error
08 Address error
OA ID field CRC error
OE No address mark
OF Incorrect address mark
10 Data overrun or underrun
20 Attempt to write on write protected disk
40 Drive has indicated a write error
80 Drive not ready

For Hard disks:

01 ID field miscompare
02 Data field CRC error
04 Seek error
08 Bad sector address
OA ID field CRC error
OB Protocol violation
OC Bad track address
OE No ID address mark or sector not found
10 Format error
20 Attempt to write on write protected drive
40 Drive indicates write error
80 Drive not ready

Error 24 may indicate permanent damage to the disk. If so, then you may wish
to copy the salvagable files to a new disk with the COpy command.

25 Echo files, like all other 110 files, must have an AFTN which is between 0 and
255. Echo files must be open for output. Check that both of these requirements
are met.

26 ILLEGAL ATTRIBUTE IDENTIFIER

The second parameter to the A TTRIB system call (not to be confused with the
A TTRIB program) must be

o Invisible file
1 System file
2 Write-protected file
3 Format attribute file

MCS-80/85 Utilities ISIS-II Error Messages

27 ILLEGAL SEEK COMMAND

The MODE for the SEEK system call must be one of these values:

o Return marker location
1 Move marker backward
2 Move marker to specific location
3 Move marker forward
4 Move marker to end of file

Error 27 can also indicate that the mode selected is not possible for the specified
file.

28 MISSING EXTENSION

A filename extension is expected but not entered. Check for mistyped filename.

*29 Premature EOF. An unexpected end-of-file has been encountered from the
console or an input file. Check for possible misspellings or other errors which
might cause the incorrect input file to be read.

*30 Drive not ready. The disk drive specified is not ready. Check the drive to make
certain that the disk is inserted correctly, and the door is completely closed and
latched.

31 CAN'T SEEK ON WRITE ONLY FILE

Seeks can only be performed on files open for update or read. This non-fatal
error can be processed by selecting the correct file or by closing and re-opening
the specified file in one of these modes.

32 CAN'T DELETE OPEN FILE

You must close a file before attempting to delete. Check to be certain that the
filename is correct.

*33 Illegal system call parameter. Check all parameters of the call at the location
specified in the PC portion of the error message.

*34 Illegal return switch in LOAD system call. The only legal values are

o Control is returned to the calling program. The debug toggle is
unchanged.
Control is returned to the loaded program, and the debug toggle
is reset.

2 Control is returned to the Monitor. To restart program, use the
Monitor "G" command.

35 SEEK PAST EOF

The file is opened for input, and a SEEK has been attempted beyond the end-of
file. You may SEEK beyond the end of a file open for update.

Error Messages for Nonresident System Routines
201 UNRECOGNIZED SWITCH

A character not known as a switch for this routine was entered. The Escape
character, for example, is not allowed in invocation lines, so COpy A TO
B<esc> is illegal.

D-5

ISIS-II Error Messages MCS-80/8S Utilities

0-6

202 UNRECOGNIZED DELIMITER

A character which is not allowed in a name and is not recognized as a valid
delimiter has been entered.

203 INVALID SYNTAX

A parameter in a system call was inappropriate in the context used. Such a case
is COpy A FOR B, where FOR is inappropriate in the COpy command.

204 Premature end-of-file. See error 29.

206 ILLEGAL DISK LABEL

The label entered in the IDISK or FORMAT command is either too long or
violates the legal character rules for disk labels. These rules are the same as for
files.

207 No END statement found in input. The input file being read lacks the expected
END record. Check for misspelled input file name. Other causes can be a prob
lem in translating or linking the file.

208 CHECKSUM ERROR

The bits of the records read do not add up properly. Either an I/O error has
occurred or the input source is damaged. Check for damage to the disk, paper
tape, or other input medium.

209 RELO FILE SEQUENCE ERROR

Either an I/O error has occurred, or an incorrect input file has been specified.

210 INSUFFICIENT MEMORY

The required or requested amount of RAM is not available. Either too much
RAM was requested, or some hardware problem has arisen.

~1 RECORDTOOLONG

A record longer than expected has been encountered. Make sure the input file is
correct.

212 ILLEGAL RELO TYPE

Relocation types must be one of these:

A Absolute, non-relocatable
B Byte-relocatable
P Page-relocatable
I In-page relocatable

See Chapter 2 for an explanation of relocation types.

213 FIXUP BOUNDS ERROR

The address required violates numeric bounds on addresses. See Chapter 1 for
an explanation of Intellec memory configuration.

MCS-80/85 Utilities ISIS-II Error Messages

214 ILLEGAL SUBMIT PARAMETER

One of the actual parameters to be substituted for a formal parameter within a
submit file is in error. See the ISIS-II User's Guide.

215 ARGUMENT TOO LONG

The number of characters in an actual argument may not exceed 31.

216 TOO MANY PARAMETERS

More parameters supplied than defined, or the limit of 10 parameters has been
exceeded.

217 OBJECT RECORD TOO SHORT

One of the records in an object module file has fewer bytes than were expected.
This error can be caused by an 110 error or by an incorrect file specification.

218 ILLEGAL RECORD FORMAT

The record format must conform to Intel standard. Check for a misspelled
filename or damage to the disk or input medium.

219 PHASE ERROR

The expected phase input (for the next step of a translation process) is incor
rectly specified.

220 No end-of-file record in object module file. An end-of-file record must be
contained in every object file according to the standard object file format.

221 Segment overflow during LINK. Because of the size of the Intellec memory
area, no segment may exceed 64K bytes in length. This error indicates that some
segment has exceeded this limit.

222 Unrecognized record in object module file. Here, again, the object module file
does not match the standard object module format.

223 Fixup record pointer is incorrect. The fix up record allows LINK to adjust the
addresses of inter- or intra-segment references, and external references. If the
pointer is incorrect, then LINK cannot correctly adjust the addresses.

224 Illegal record sequence in LINK object module file. The records within one of
the LINK object module files are out of order. This could indicate an I/O error,
damaged disk, or an incorrect file specification.

225 Illegal module name specified. Module names must conform to the standard
format explained on page -.-.

226 Module name exceeds 31 characters. There is a 31 character limit on the length
of filenames.

227 Command syntax requires left parenthesis. Self explanatory.

228 Command syntax requires right parenthesis. Self explanatory.

229 Unrecognized control specified. One of the controls to a command is probably
misspelled, or is not a legal control for this command. Example: LINK A.OBJ,
B.LIB TO AB.OBJ START(3000H). The START control is a LOCATE con
trol, not a LINK control.

D-7

ISIS-II Error Messages MCS-80/85 Utilities

0-8

230 Duplicate symbol found. If LINK encounters a symbol which is used in more
than one module, this message is issued. If it indicates an error, then you must
change the source code of one of the modules so that the symbols differ.

231 File already exists. See error 11.

232 Unrecognized command. The command specified does not exist. Check for
misspellings. Check the ISIS-II User's Guide for a list of legal commands.

233 Command syntax requires a "TO" clause. Some commands, such as COPY,
require a TO <filename> clause.

234 CANNOT FORMAT FROM TARGET DRIVE

The source disk for formatting another disk must be in a different drive from
the target drive, except when the single drive mode is selected with the IDISK
command.

235 NON-DISK DEVICE

You have specified a non-disk device, such as :LP:, when the system expects a
disk device. You cannot use IDISK on the line printer, for example.

236 More than 249 common segments in input files. No more than this number can
be processed. This limit should not impose restrictions under normal
circumstances.

237 Specified common segment not in object file. You have specified a non-existent
common segment in the "/common namel" control to LOCATE.

238 Illegal stack content record in object file. The stack content record in the object
file does not conform to the expected format. This usually indicates an 110
error.

239 No module header record in input object file. Again, an error in the format to
the input object module file, possibly due to an I/O error. Check also for a
damaged disk.

240 Program exceeds 64K bytes. Obviously, this will not fit into the Intellec
memory. You may wish to subdivide the program and use overlays so that the
memory needed at anyone time is less than 64K bytes. Chapter 4 explains the
use of program overlays.

· ' APPENDIX E I
LINK ERROR MESSAGES n

Introduction

Errors encountered by LINK cause an unnumbered message to be sent to the current
console device and, in the case of non-fatal errors, to the LINK map. Fatal error
messages are sent only to the console device because processing is halted. Non-fatal
errors do not halt LINK processing.

Fatal Errors

Command Errors
Errors caused by improper command entry are followed by a partial copy of the
errant command followed by a number sign (#) in the vicinity of the error.

ERROR MESSAGE
partial copy of command#

The following messages identify improper command errors.

INVALID SYNTAX

This message occurs when some part of the command is not recognized. The prob
lem can be a mistyped keyword, a missing comma, or an non-blank character
following a line-continuation ampersand.

DUPLICATE FILE NAME

The same file is specified as the input and output file.

'TO' EXPECTED

The command syntax requires a 'TO' clause for the output file. This message
indicates that the clause has been omitted.

LEFT PARENTHESIS EXPECTED

A PUBLICS, NAME, or PRINT keyword is not followed by a "(".

RIGHT PARENTHESIS EXPECTED

The list following one of the three keywords listed above is not terminated with a
")".

INVALID NAME

The module name contains an illegal character, or begins with a numeral. See
Chapter 2 for the rules concerning module names.

NAME TOO LONG

Module names may not be longer than 31 characters.

UNRECOGNIZED CONTROL

E-l

Link Error Messages MCS-80/85 Utilities

E-2

A character string other than NAME, MAP, or PRINT has been encountered.

Input File Errors

If there is an error in the internal format of a specified input file, one of the follow
ing messages will be generated. These errors can be the result of something as simple
as a misspelling of a filename, or the error may be the result of problems generated
by a language translator or a previous LINK. If the filenames all appear to be cor
rect, then compile the program and try to LINK it again. If the problem persists, and
the fault seems to be either LINK or the translator, report it to Intel with a Software
Problem Report.

filename, PREMATURE EOF (see ISIS-II error 29)
filename, CHECKSUM ERROR (see ISIS-II error 204)
filename, RECORD TOO LONG (see ISIS-II error 211)
filename, ILLEGAL RELO RECORD (see ISIS-II error 212)
filename, FIXUP BOUNDS ERROR (see ISIS-II error 213)
filename, ILLEGAL RECORD FORMAT (see ISIS-II error 218)
filename, NO EOF

This error indicates that the file being read in has no end-of-file
record. LINK cannot process such a file.

filename, BAD RECORD SEQUENCE
The records in the object module file specified are out of order.
LINK cannot process a file unless the records are in the proper order.

filename, ILLEGAL STACK CONTENT RECORD (see ISIS-II error 238)
filename, NO MODULE HEADER RECORD

The file named lacks the module header record which contains
information needed by LINK to process the file.

filename, NOT A LIBRARY
You have specified a list of library modules following a file which is
not a library.

filename, SEGMENT TOO LARGE (see ISIS-II error 221)
filename, INSUFFICIENT MEMORY

LINK cannot create the output file specified because there is not
enough room in memory for the LINK work space, which consists
mainly of the symbol table.

Non-Fatal Error Messages

Non-fatal errors issued by LINK are written to the map file and to the current con
sole device (if different).

MORE THAN 1 MAIN MODULE, CONFLICT IN modname

This indicates that LINK found more than one main module in the input list. The
module named in the message is the second main module found. All of the main
modules are included in the output module, but the starting address of the output
module is taken from the first main module detected.

name-MULTIPLY DEFINED, DUPLICATE IN modname

The public name given here was defined in more than one module. The second
definition was detected in the module specified.

MODULE NOT IN LIBRARY, LOOKING FOR filename(modname)

The module named has not been found in the library given in the error message.

/name/-UNEQUALCOMMON LENGTH, CONFLICT IN modname

Two named common segments with the same name but different lengths were
found. The module containing the second segment found is given in the message.

APPENDIX F I
LOCATE ERROR MESSAGES

Introduction

Errors encountered by LOCATE cause an unnumbered message to be sent to the
current console device and, in the case of non-fatal errors, to the memory map.
Fatal error messages are sent only to the console device because processing is halted.
Non- fatal errors do not halt LOCATE processing.

Fatal Errors

Command Errors

Errors caused by improper command entry are followed by a partial copy of the
errant command followed by a number sign (II) in the vicinity of the error.

ERROR MESSAGE
partial copy of command'

The following messages identify improper command errors.

INVALID SYNTAX

This message occurs when some part of the command is not recognized. The prob
lem can be a mistyped keyword, a missing comma, or an non-blank character
following a line-continuation ampersand.

'TO' EXPECTED

The command syntax requires a 'TO' clause for the output file. This message
indicates that the clause has been omitted.

LEFT PARENTHESIS EXPECTED

A COLUMNS, ORDER, START, STACKSIZE, CODE, DATA, STACK,
MEMORY, Icommon namel, II, NAME. or PRINT keyword is not followed by a
"(".

RIGHT PARENTHESIS EXPECTED

The list following one of the twelve keywords listed above is not terminated with a
")" .

INVALID NAME

The module name or I common namel contains an illegal character. See Chapter 2
for the rules concerning module names.

NAME TOO LONG

Module names and Icommon namels have a length limit of 31 charact~rs.

common name, COMMON NOT FOUND

F-I

Locate Error Messages MCS-80/85 Utilities

F-2

The input module does not contain the common segment specified in the command.

UNRECOGN~EDCONTROL

A character string other than NAME, MAP, PRINT, COLUMNS, SYMBOLS,
LINES, PUBLICS, PURGE, ORDER, CODE, DATA, STACK, STACKSIZE,
MEMORY, /common namel, II, RESTARTO, START, or STACKSIZE has been
encountered.

Input File Errors

If there is an error in the internal format of a specified input file, one of the follow
ing messages will be generated. These errors can be the result of something as simple
as a misspelling of a filename, or the error may be the result of problems generated
by a language translator or during LINK. If so, then translate the source code again,
and re-LOCATE the object module. If the problem persists, and seems to be the
fault of LINK or the translator, report it to Intel with a Software Problem Report.

filename, PREMATURE EOF (see ISIS-II error 29)
filename, CHECKSUM ERROR (see ISIS-II error 204)
filename, RECORD TOO LONG (see ISIS-II error 211)
filename, ILLEGAL RELO RECORD (see ISIS-II error 212)
filename, FIXUP BOUNDS ERROR (see ISIS-II error 213)
filename, ILLEGAL RECORD FORMAT (see ISIS-II error 218)
filename, NO EOF

This error indicates that the file being read in has no end-of-file
record. LOCATE cannot process such a file.

filename, BAD RECORD SEQUENCE
The records in the object module file specified are out of order.
LOCA TE cannot process a file unless the records are in the proper
order.

filename, ILLEGAL STACK CONTENT RECORD (see ISIS-II error 238)
filename, NO MODULE HEADER RECORD

The file named lacks the module header record which contains
information needed by LOCATE to processs file.

filename, PROGRAM EXCEEDS 64K (see ISIS-II error 221)
filename, INSUFFICIENT MEMORY

LOCATE cannot process the input file specified because there is not
enough room in memory for work space.

Non-Fatal Error Messages

Non-fatal errors issued by LOCATE are written to the map file and to the current
console device (if different).

IN-PAGE SEGMENT> 256 BYTES COERCED TO PAGE BOUNDARY

An in-page relocatable segment has been discovered which is longer than the limit of
256 bytes for such segments. See Chapter 2 for a description of relocation types.

UNSATISFIED EXTERNAL(n) external name

This error occurs when an unsatisfied external name is encountered in the input file.
The number (n) is the count of the number of unsatisfied names uncovered so far. It
is used to identify the unsatisfied name in the following message.

REFERENCE TO UNSATISFIED EXTERNAL(n) AT xxxxH

MCS-80/85 Utilities Locate Error Messages

This message reports the address of the reference to the unsatisfied external name
identified by (n).

(MEMORY OVERLAP FROM xxxxH THROUGH yyyyH

This message is issued if the same memory location is defined in more than one pro
gram segment.

F-3

APPENDIX G I
LIB ERROR MESSAGES

Introduction

All LIB error messages are nonfatal because LIB is an interactive program. The
command which caused the error will be aborted, but LIB will not be interrupted.

Command Errors

Errors caused by improper command entry are followed by a partial copy of the
incorrect command with a number sign (#) in the vicinity of the error.

ERROR MESSAGE
partial command#

The following are the LIB command error messages:

INSUFFICIENT MEMORY

LIB cannot execute the command given because it requires more memory than in
available in the intellec system.

INVALID MODULE NAME

A module listed in the command is incorrectly specified. Module names must con
form to the format given in chapter 2.

INVALID SYNTAX

Check the command for one of the following:

• Misspelled keywords.

• Ampersand followed by a non-blank character.

• ADD: TO filename not followed by a <cr>.

• DELETE: libname(modname) not followed by a <cr>.

• DELETE: modname not specified.

• CREATE: filename not followed by a <cr>.

• LIST: TO filename not followed by PUBLICS or a <cr>.

LEFT PARENTHESIS EXPECTED

There is a missing "(" in the command.

RIGHT PARENTHESIS EXPECTED

There is a missing ")" in the command.

MODULE NAME TOO LONG

The specified module name exceeds 31 characters.

'TO' EXPECTED

G-l

LIB Error Messages MCS-80/85 Utilities

0-2

The TO filename is omitted in the ADD command.

UNRECOGN~EDCOMMAND

An illegal or misspelled command was entered. The only legal commands are ADD,
CREATE, DELETE, EXIT, and LIST.

File or Module Errors

The following errors indicate that there is some problem with the file or module
specified. There is no partial copy of the command given with these error messages.

FILE ALREADY EXISTS

The file specified in the CREATE command already exists. Choose a new name for
the library.

filename, CHECKSUM ERROR (see ISIS-II error 208)

Filename, DUPLICATE SYMBOL IN INPUT

You have attempted to ADD a file which contains a PUBLIC symbol already within
the library.

filename, ILLEGAL RECORD FORMAT (see ISIS-II error 218)

filename, NOT LIBRARY

The specified file is not a library.

filename, OBJECT RECORD TOO SHORT (see ISIS-II error 217)

filename(modname): NOT FOUND

You have attempted to delete a module which does not exist. Check for misspelling
of the filename or module name.

modname-ATTEM PT TO ADD DU PLICATE MODU LE

The specified module name already appears within the library.

symbol-ALREADY IN LIBRARY

You have attempted to add a module that contains a PUBLIC symbol which is
already in the library.

absolute address, 1-1,2-2,2-5
absolute segment, 2-2, 2-5
ADD command (LIB), 4-2
address

absolute, 1-1, 1-4
base, 1-4
relative memory, 1-1, 1-5
relative start, 1-4
start assigned by HEXOBJ, 6-1

ampersand (&), as continuation character
in LIB, 4-1
in LINK, 2-3f.
in LOCATE, 3-6

at sign (@), in module names, 2-6,3-9
A TTRIB system call, 3-5

base address, 1-4
blank common, 3-14
braces, as notation ({}), iii
brackets, as notation ([]), iii
buffer areas

allocating, 3-5f.
in ISIS-II, 1-3, 3-5

byte-relocatable segments, 2-2, 2-5

CODE
control (LOCATE), 3-12
in ORDER control, 3-12
see also ORDER

code segment, 1-4,2-2
where loaded by LOCATE, 3-2

COLUMNS control
in LOCATE, 3-6f.
interaction with SYMBOLS,

PUBLICS,
LINES, 3-7

commands
LIB,4-lff.

ADD,4-2
CREATE,4-1
DELETE,4-2
EXIT,4-3
LIST,4-3

LINK, 2-3ff.
MAP, 2-4
NAME,2-6
PRINT,2-6
PUBLICS, 2-3, 5-1

LOCATE,3-1ff.
CODE,3-12
COLUMNS, 3-6
Icommon/,3-14
I I (blank common), 3-14
DATA,3-13
LINES, 3-7
MAP, 3-8
MEMORY, 3-13
NAME,3-9
ORDER,3-12

INDEX

PRINT,3-9
PUBLICS, 3-9
PURGE,3-1O
RESTARTO,3-11
STACK,3-13
STACKSIZE,3-12
START,3-1O

common segments
blank,3-14
in LOCATE, 3-3
named,3-14
unnamed,3-14

Icommonl control (LOCATE), 3-14
CONSOL system call, 3-5
continuation character (&)

see ampersand
CREATE command (LIB), 4-1

DATA control (LOCATE), 3-13
data segment, 1-4, 2-2

in ORDER control (LOCATE), 3-12
where loaded by LOCATE, 3-2
see also ORDER

debugging, 1-2
defaults

order of segments, 3-3
see individual commands for defaults

DELETE command (LIB), 4-2
DELETE system call, 3-5

ellipses, in syntax notation, iii
error messages

disk 1/0, D-4
ISIS-II,D-lff.
LIB

command errors, G-l
file or module errors, G-2

LINK, E-lff.
.input file errors, E-2

LOCATE, F-lff.
input file errors, F-2

EXIT command (LIB), 4-3
extensions, file name, 1-6, 2-4, 3-6, 4-1
external references, 1-4, 1-6, 4-1, 5-1

file name extensions, 1-6, 2-4, 3-6, 4-1

gaps
how generated, 2-3, 3-3, 3-4
how reported (LINK), 2-3, 2-5

hexadecimal paper-tape format, A-I
HEXOBJ,6-1
HIGH operator, 3-2f.

iAPX 86,88 family, 1-1
iIi page-relocatable segments, 2-2, 2-5
interrupts, used by ISIS-II, 1-3
inter-segment references, 1-4, I-5f.

Index-I

Index

intra-segment references, 1-4, I-Sf.
invocation

LIB,4-1
LINK,2-3
LOCATE, 3-1, 3-6

ISIS-II
error messages, D-I ff.
interrupt usage, 1-3
memory usage, 1-3

LIB,4-lff.
ADD command, 4-2
CREATE command, 4-1
DELETE command, 4-2
error messages, G-I f.
EXIT command, 4-3
invocation, 4-1
LIST command, 4-3
PUBLICS control, 4-3

librarian, see LIB
libraries, 1-7

as LINK input files, 2-1,2-3
creating, modifying, listing see LIB

library manager, see LIB
LIB. TMP temporary file, 4-1
LINES control (LOCATE), 3-7

see also PURGE
LINK, 2-lff.

error messages, E-lff.
invocation, 2-3f.
MAP command, 2-4
NAME command, 2-6
~)Verlays, use with 5-1 f.
PRINT command, 2-6
PUBLICS control, 2-3, ~-I

LINK.TMP temporary file, 2-4
LIST command (LIB), 4-3

PUBLICS control, 4-3
literature, related, iii
LOAD system call, 3-5
LOCATE

error messages, F-lff.
invocation, 3-1, 3-6
LIB,4-lff.

ADD,4-2
CREATE,4-1
DELETE,4-2
EXIT,4-3
LIST,4-3

LINK, 2-3ff.
MAP, 2-4
NAME,2-6
PRINT,2-6
PUBLICS, 2-3, 5-1

LOCATE, 3-lff.
CODE,3-12
COLUMNS, 3-6
/common/,3-14
/ / (blank common), 3-14
DATA,3-13
LINES, 3-7
MAP, 3-8
MEMORY, 3-13
NAME,3-9
ORDER, 3-12

Index-2

MCS-80/8S Utilities

PRINT, 3-9
PUBLICS, 3-9
PURGE, 3-10
REST AR TO, 3-11
STACK,3-13
STACKSIZE,3-12
START,3-10

LOCATE.TMP temporary file, 3-6
LOW operator, 3-2f.

MAP
control in LINK, 2-4f.
control in LOCATE, 3-8

MEMORY
control (LOCATE), 3-13
in ORDER control (LOCATE), 3-12
see also ORDER

memory map, 1-6, 2-4f, 3-8
memory segment, 1-4, 2-2

length of, 3-8

NAME
control in LINK, 2-6
control in LOCATE, 3-9

named common, 3-14
order produced by LINK, 3-3f.

notation, syntax, iii

OBJHEX, 6-2
ORDER control (LOCATE), 3-12

default order, 3-2
specifying segment order, 3-3

overlapping segments, 2-2,2-5,3-1,3-8
overlays, 5-lff.

management, 5-2
root segment, 5-1

page-re1ocatable segments, 2-5
paper-tape format (hexadecimal), A-I
PRINT

control in LINK, 2-6
control in LOCATE, 3-9

program segments
assigning addresses to, 3-4, 3-12f.
definition of, 1-4
in LINK, 2-1
in LOCATE, 3-2
ordering, 3-2f, 3-12f.

public symbols, 1-4,2-3,4-3,5-1
PUBLICS

control in LIB, 4-3
control in LINK, 2-3
control in LOCATE, 3-9
see also PURGE

punctuation, in syntax notation, iv
PURGE control (LOCATE), 3-10

see also LINES, SYMBOLS,
PUBLICS

question mark (1) in module name,
2-6,3-9

related literature, iii
relative memory addresses, 1-1, 1-4f.
relative start address, of a segment, 1-4
relocation types, 2~2

how treated by LINK, 2-2f.

MCS-80/85 Utilities

RENAME system call, 3-5
REST ARTO control (LOCATE), 3-11
reverse video, in syntax notation, iv
root segment, 5-1

satisfied module, 1-6
STACK

control (LOCATE), 3-13
in ORDER control, 3-12
see a/so ORDER

stack segment, 1-4,2-2
STACKSIZE control (LOCATE), 3-12
START control (LOCATE), 3-1Of.
SUBMIT files, effect on buffer

requirements, 3-5
SYMBOLS control (LOCATE), 3-10

see a/so PURGE
syntax notation, iiif.
system calls (ISIS-II), 3-5

temporary files
LIB. TMP, 4-1
LINK.TMP, 2-4
LOCATE.TMP, 3-6

Index

unnamed (blank) common, 3-14
unsatisfied external references, 1-6, 2-1
unsatisfied modules, 1-6

Index-3

MCS-80/B5 Utilities User's Guide
for B080/BOB5-Based Development Systems

121617-001 Rev. A

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rati.ng.

NAME __ ___ DATE _________________ _

TITLE __ _

COMPANYNAME/DEPARTMENT ________________________ ~ ______________________ ~

ADDRESS
CITY __ ----_. ----,---- STATE ____________ _ ZIP CODE ________ _

Please check here if you require a written reply. [J

WE'D LIKE YOUR COMMENTS .•.

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

111111 NO POSTAGE
NECESSARY

IF MAILED

IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	Contents
	1 Introduction to modular programming
	2 Using the Link program
	3 Locate command
	4 ISIS-II Librarian
	5 Program overlays and linked loading
	6 Code conversion programs
	A Hexadecimal paper tape format
	B Hexadecimal - Decimal conversion
	C ASCII codes
	D ISIS-II error messages
	E Link error messages
	F Locate error messages
	G Lib error messages

