
tN-TELLEC® SERIES III
MICROCOMPUTER

DEVELOPMENT SYSTEM
CONSOLE OPERATING

INSTRUCTIONS

Order Number: 121609-003

Copyright © 1980, 1981 Intel Corporation
'----___ ---'1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I~ ____ ~

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager Plug-A-Bubble
CREDIT intel MCS PROMPT
i Intelevision Megachassis RMX/SO
ICE Intellec Micromainframe System 2000
iCS iRMX Micromap UPI
im iSBC Multibus
Insite iSBX Multimodule

A769/l082j4K CP

REV. REVISION HISTORY DATE

-001 Original issue. 9/80

-002 12/80

-003 Adds information to support ISIS-II V4.2 and 11/81
corrects information in previous edition.

iii

PREFACE

This manual provides console operating instructions for the Intellec Series III
Microcomputer Development System, an advanced system that provides dual
operating environments, one for SOS6/S0S8-based software and another for
SOSO/SOS5-based software.

This manual is designed to support new users as well as those who are already
familiar with microcomputers.

Operation of this system requires version 4.1 or later of the ISIS-II operating
system. Wherever SOS6-based software is referenced in this manual, the information
applies equally to SOSS-based software.

This manual contains seven chapters and seven appendixes:

• Chapter 1, System Overview, describes the keyboard, control panel, screen, disk
drives, and configurations supported.

• Chapter 2, System Operation, describes system start-up and shut-down, and
disk formatting tutorials.

• Chapter 3, Device/File Management, describes device/file naming formats,
device/file accessing, and disk directories.

• Chapter 4, Console Commands, describes and shows examples of the ISIS-II
commands for storing, identifying, and manipulating your programs.

• Chapter 5, The Monitor, describes and shows examples of the Monitor
commands for SOSO/SOS5 program debugging.

• Chapter 6, DEBUG-S6, describes and shows examples of the DEBUG-86
commands for 8086 program debugging.

• Chapter 7, Error Messages, gives a listing of error messages and recovery.

• Appendix A, Hexadecimal Paper Tape Format, describes the paper tape format
used by the Monitor.

• Appendix B, Hexadecimal-Decimal Conversions, provides
hexadecimal-to-decimal and decimal-to-hexadecimal conversions.

• Appendix C, ASCII Codes, shows ASCII codes, their meanings, and their
values.

• Appendix D, Summary of ISIS-II Console Commands, provides a listing of all
ISIS-II console commands and their syntax.

• Appendix E, Summary of Monitor Commands, provides a listing of all Monitor
commands and their syntax.

• Appendix F, Summary of DEBUG-S6 commands, provides a listing of all
DEBUG-S6 commands and their syntax.

• Appendix G, Summary of Error Messages, provides a listing of error messages.

The Intellec Series III Microcomputer Development System is part of the
Microsystem SO iAPX family of processors.

Microsystem 80 Nomenclature

Over the last several years, the increase in microcomputer system and software com
plexity has given birth to a new family of microprocessor products oriented towards
solving these increasingly complex problems. This new generation of

v

vi

microprocessors is both powerful and flexible and includes many processor
enhancements, such as numeric floating point extensions, I/O processors, and
operating system functionality in silicon.

As Intel's product line has grown and evolved, its microprocessor product number
ing system has become inadequate to name VLSI solutions involving the above
enhancements.

In order to accommodate these new VLSI systems, we've allowed the 8086 family
name to evolve into a more comprehensive numbering scheme, while still including
the basis of the previous 8086 nomenclature.

We've adopted the following prefixes to provide differentiation and consistency
among our Microsystem 80 related product lines:

iAPX - Processor Series
iRMX - Operating Systems
iSBC - Single Board Computers
iSBX - MUL TIMODULE Boards

Concentrating on the iAPX Series, two Processor Families are defined:

iAPX 86 - 8086 CPU based system
iAPX 88 - 8088 CPU based system

With additional suffix information, configuration options within each iAPX system
can be identified, for example:

iAPX 86/10 CPU Alone (8086)
iAPX 86/11 CPU + lOP (8086 + 8089)
iAPX 88/20 CPU + Math Extension (8088 + 8087)
iAPX 88/21 CPU + Math Extension + lOP (8088 + 8087 + 8089)

This nomenclature is intended as an addition to rather than a replacement for,
Intel's current part numbers. These new series level descriptions are used to describe
the functional capabilities provided by specific configurations of the processors in
the 8086 Family. The hardware used to implement each functional configuration is
still described by referring to the parts involved (as is the case for the majority of the
8086 information described in this manual).

This improved nomenclature provides .a more meaningful view of system capability
and performance within the evolving Microsystem 80 architecture.

Related Publications

For more information on the Intellec Series III Microcomputer Development
System, see the following manuals:

• Intellec Series III Microcomputer Development System Product Overview,
121575

•

•

•

•

Intellec Series III Microcomputer Development System Programmer's
Reference Manual, 121618

Intellec Series III Microcomputer Development System Installation and
Checkout Manual, 121612

Intellec Series III Microcomputer Development System Schematic Drawings,
121642

iAPX 86, 88 Family Utilities User's Guide, 121616

• ISIS-II CREDIT CR T-Based Text Editor User's Guide, 9800902

• iAPX 86,88 User's Manual, 210201

• ASM86 Language Reference Manual, 121703

• 8086/8087/8088 Macro Assembler Operating Instructions for 8086-Based
Development Systems, 121628

• An Introduction to ASM86, 121689

Auxiliary Product Manuals

The following manuals describe auxiliary products:

• PL/M-86 User's Guide, 121636

• Pascal-86 User's Guide, 121539

• FORTRAN-86 User's Guide, 121570

• MCS-80/85 Utilities User's Guide for 8080/8085-Based Development Systems,
121617

• 8089 Macro Assembler User's Guide, 9800938

• ICE-86A Microsystem In-Circuit Emulator Operating Instructions for ISIS-II
Users, 9800714

• ICE-88 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800949

• iSBC 957A Intellec-iSBC 86/12A Interface and Execution Package, 9800743

• 8089 Real-Time Breakpoint Facility Operating Instructions for ICE-86A
In-Circuit Emulator Users, 162490

• Model 740 Hard Disk Subsystem Operation and Checkout, 9800943

Refer to the Literature Guide, 802800, for the most current information on available
publications.

Notational Conventions

UPPERCASE

italics

[]

{ }

{ } ...

Characters shown in uppercase must be entered in the
order shown. You may enter the characters in uppercase
or lowercase.

Italics indicate variable information, such as filename or
address.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which
case it is optional.

At least one of the enclosed items must be selected unless
the field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless
otherwise noted.

Ellipses indicate that the preceding argument or
parameter may be repeated.

vii

punctuation

W·i ••• ,.

viii

Punctuation other than ellipses, braces and brackets must
be entered as shown. For example, the punctuation
shown in the following command must be entered:

SUBMIT PLM86(PROGA,SRC,'9 SEPT 81')

In interactive examples, input lines and user responses are
printed in white on black to differentiate input lines from
system output.

CHAPTER 1
SYSTEM OVERVIEW

PAGE

The Basic System. 1-1
System Software Components. 1-1
Dual Execution Modes , 1-3

8080/8085 Execution Mode. 1-3
8086 Execution Mode. .. 1-3

The Intellec Terminal. .. 1-4
The Display Area 1-4
The Keyboard 1-4
The Control Panel. .. 1-6

Disk Drives. .. 1-7
Disk Drive Configurations. .. 1-8
Disk Format Characteristics. .. 1-8

Flexible Disks. .. 1-8
Hard Disks. .. 1-8
Types of Disk Files .. 1-9

CHAPTER 2
SYSTEM OPERATION
Operation of Systems Containing Flexible Disks 2-1

Care of Flexible Disks 2-1
Flexible Disk System Operating Precautions 2-1
Flexible Disk System Start-up Procedure 2-2
Flexible Disk Insertion 2-2
Flexible Disk Removal 2-2
Flexible Disk System Shut-Down Procedure 2-4
Flexible Disk Formatting Procedures 2-5

Example I-Formatting a Flexible Disk in a
System Containing Multiple Flexible
Disk Drives 2-5

Example 2-Formatting a Flexible Disk in a
System Containing a Single Flexible
Disk Drive 2-6

Operation of Systems Containing Hard Disk
Drives 2-7

Hard Disk Subsystem Controls 2-7
Care of Hard Disks 2-7
Hard Disk Subsystem Operating Precautions 2-9
Hard Disk System Cold Start 2-9
Hard Disk Cartridge Installation 2-10
Hard Disk Cartridge Removal 2-12
Hard Disk Subsystem FAULT Operation 2-12
Hard Disk System Power-down Procedure 2-13
Hard Disk System Subsequent Start-up

Procedure 2-13

CHAPTER 3
DEVICE/FILE MANAGEMENT
Device/File Accessing. .. 3-1
Device Names. .. 3-1
Filenames. .. 3-2

Filename. .. 3-2
Default Extensions. .. 3-3

CONTENtS

PAGE

Disk File Pathname , .. 3-3
Disk Directory. .. 3-4

Filename 3-5
Blocks , .. 3-5
Length 3-5
Attributes. .. 3-5

Invisible .. 3-5
Write-protect. .. 3-5
Format 3-6
System ;................... 3-6

The System Console .. 3-6
Line Editing 3-6
Operator-Controlled Pauses 3-7
Interrupting Program Execution. 3-7

8080/8085 Execution Mode. 3-7
8086 Execution Mode. .. 3-8

CHAPTER 4
ISIS-II CONSOLE COMMANDS
Command Categories. .. 4-1

Disk Maintenance Commands. 4-1
File Maintenance Commands 4-1
8080/8085 Program Execution Commands. 4-1
8086 Program Execution Commands. 4-2
File Editing Commands .. 4-2
Program Control and Code Conversion

Commands. .. 4-2
Entering Commands. .. 4-2

Command Syntax , 4-3
Specifying Disk Files 4-3

Disk Maintenance Commands. 4-3
IDISK-Disk Formatting Command 4-5
FORMAT -Disk Formatting Command 4-7
FIXMAP-Hard Disk Mapping Command 4-9

Mark Command .. 4-10
Free Command .. 4-11
List Command. .. 4-12
Count Command 4-13
Record Command ... , 4-14
Quit Command 4-14
Exit Command 4-15
FIXMAP Error Conditions. 4-15

File Control Commands. .. 4-17
Wild Card File Names 4-17
DIR-Disk Directory Listing 4-18
COPY -Copy a File. .. 4-20
HDCOPY -Copy Hard Disk Tracks. 4-23
DELETE-Delete a Disk File , 4-26
RENAME-Rename a Disk File 4-27
ATTRlB-Change/Display Disk File Attributes .. 4-28
VERS-Display ISIS Utility Version Numbers 4-30

Program Execution Commands 4-30

ix

PAGE
SOSO/SOS5 Program Execution Commands " 4-31

Filename-Direct Program Execution '" 4-31
DEBUG-Transfer Control to Monitor. 4-31
SUBMIT -Non-Interactive Program Execution ... 4-32

S086 Program Execution Commands " 4-35
RUN-Activate the SOS6 Execution Mode '" 4-35
WORK-Change/Display Workfile Default

Drive " 4-37
DA TE-Change/Display System Date " 4-3S
EXIT -Exit the RUN Program " 4-39

CHAPTER 5
THE MONITOR

System Initiation
I/O Interface
SOSO/SOS5 Program Development.

Command Categories
Entering Commands

Command Syntax
Entry Errors

Invalid Characters
Address Value Errors
Checksum Errors '" ,

Program Execution Commands
G-Execute Command :

Monitor I/O Configuration Commands
A - Assign Command
Q - Query Command

Memory Control Commands
D - Display Command
F - Fill Command
M - Move Command
S - Substitute Command
X - Register Command (Display Form)
X - Register Command (Modify Form)

Paper Tape I/O Commands
R - Read Command
W - Write Command
E - End-of-File Command '"
N - Null Command

Utility Command
H - Hexadecimal Command

CHAPTER 6
DEBUG-86
Command Categories ' .. .
Character Set
Invoking DEBUG-S6
Entering Commands

Continuation Lines
Comments
Line Editing

x

5-1
5-1
5-1
5-2
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-7
5-S
5-9
5-9
5-10
5-10
5-11
5-12
5-13
5-13
5-15
5-15
5-16
5-16
5-17
5-17
5-17

6-1
6-2
6-3
6-3
6-3
6-3
6-4

CONTENTS (Cont'd.) I

PAGE
Interrupting Program Execution. 6-4
Error Conditions. .. 6-4
Expressions 6-4

Operands .. 6-5
Numeric Constants 6-5
Command Keywords 6-5
Keyword References. .. 6-6
Register References. .. 6-6
Memory References 6-6
Port References. .. 6-S
Symbolic References. .. 6-S
Statement Number Reference '" 6-9
String Constants 6-10

Operators 6-10
Relational Operators 6-12
Arithmetic Operators .. 6-12
Content Operators 6-13
Logical Operators .. 6-14

Arithmetic and Logical Semantic Rules 6-15
Command Contexts 6-16

Utility Commands. .. 6-17
DEBUG-Transfer Control to DEBUG-86 6-17
EXIT-Exit DEBUG-S6 6-19
LOAD-Load SOS6 Object Code 6-20

Execution Commands. .. 6-21
GO-Execute SOS6 Instructions 6-21
GR-Change/Display Go Register '" 6-23
STEP-Execute a Single Instruction 6-24

Change Commands 6-25
Change Register-Change Content of a Register .. 6-26
Change Memory-Change Contents of Memory

Locations. .. 6-27
Change Port-Change Contents of I/O Ports 6-29

Display Commands '" 6-31
Display Register-Display Contents of 8086

Registers. .. 6-31
Display Memory-Display 8086 Memory 6-32
Display Memory (ASM Form)-Display 8086

Memory in ASM Form. 6-34
Display Port-Display I/O Port Contents. 6-36
Display Boolean-Display Boolean Value 6-37
Display Stack-Display User Stack Contents 6-38
Evaluate-Display Integers in Five Bases 6-38

Symbol Manipulation Commands 6-40
Define Symbol-Enter New Symbol. 6-40
Display Symbols-Display One or More Symbols. 6-42
Display Lines-Display Statement Numbers 6-43
Display Modules-Display Module Names 6-44
Change Symbols-Change Value of a Symbol 6-44
Remove Symbols-Remove Symbols/Modules. . .. 6-46
Set Domain-Establish Default Module 6-47

Compound Commands 6-48
REPEAT Command. .. 6-48

PAGE

COUNT Command 6-50
IF Command 6-51
Nesting Compound Commands 6-52

CHAPTER 7
ERROR MESSAGES
ISIS-II Error Routines 7-1
RUN Program Error Messages 7-6
DEBUG-86 Error Messages 7-7
Console Command Interface Errors 7-8
Other Console Command Interface Errors 7-9

APPENDIX A
HEXADECIMAL PAPER TAPE
FORMAT

APPENDIXB
HEXADECIMAL-DECIMAL
CONVERSION

APPENDIXC
ASCII CODES

FIGURE TITLE PAGE

1-1 Basic System 1-2
1-2 System with External Flexible Disk

Drive Unit .. 1-2
1-3 System with Hard Disk Subsystem 1-3
1-4 The Display " 10 ' 1-4
1-5 The Keyboard .. 1-5
1-6 The Control Panel .. 1-6
1-7 Flexible Disk Drives 1-7
1-8 Flexible Disk .. 1-9
1-9 Hard Disk Cartridge 1-9
2-1 Flexible Disk Insertion - Vertical

CONTENTS (Cont'd.)

APPENDIXD
SUMMARY OF ISIS-II
COMMANDS

APPENDIXE
SUMMARY OF MONITOR
COMMANDS

APPENDIXF
SUMMARY OF DEBUG-86
COMMANDS

APPENDIXG
SUMMARY OF ERROR
MESSAGES

APPENDIXH
MODEL 800 START-UP AND
SHUT-DOWN PROCEDURES

ILLUSTRATIONS

FIGURE TITLE PAGE

Position .. 2-3
2-2 Flexible Disk Insertion - Horizontal

Position 2-3
2-3 Drive Door Release Button 2-4
2-4 Flexible Disk Write-Protect Tab 2-5
2-5 Hard Disk Drive Subsystem 2-8
2-6 Hard Disk Cartridge Installation 2-11
3-1 Directory Listing Example 3-4
A-I Paper Tape Record Format A-I
H-l Hard Disk prive Subsystem H-3
H-2 Hard Disk Cartridge Installation H-6

xi

System Overview Series III Operating Instructions

Figure 1-1. Basic System 121609-14

Figure 1-2. System With External Flexible Disk Drive Unit 121609-1

1-2

Series III Operating Instructions System Overview

Figure 1-3. System With Hard -Disk Subsystem 121609-2

Dual Execution Modes

8080/8085 Execution Mode

The following functions operate in the 8080/8085 execution mode:

• All ISIS-II console commands except RUN and its subcommands

• Monitor commands

You load and execute your 8080/8085 executable programs by simply entering the
name of your program.

8086 Execution Mode

The following functions operate in the 8086 execution mode:

• The RUN command, which invokes the 8086 mode

• The RUN subcommands, DATE, WORK, and EXIT

• DEBUG-86 commands

You load and execute your 8086 executable programs by entering the RUN com
mand and the name of your program.

To use ISIS-II console commands, you must first exit to the 8080/8085 mode as
described under the RUN and EXIT commands at the end of Chapter 4.

System Overview Series III Operating Instructions

1-4

Each program displays a prompt character, as follows:

Program Prompt Mode

ISIS-II - (hyphen) 8080/8085
Monitor . (period) 808018085
RUN > (angle bracket) 8086
DEBUG-86 * (asterisk) 8086

The Intellec Terminal

This section describes the display area, keyboard, and control panel of the Intellec
terminal.

The Display Area

The video screen, shown in figure 1-4, has a display area that is 80 characters wide
and 25 lines long.

Every character typed at the keyboard is displayed on the screen. A cursor (a blink
ing underscore) indicates where the next character will be entered.

You may use special features of the display when creating files with the CREDIT
Text Editor (see the ISIS-II CREDIT CRT-Based Text Editor User's Guide).

The Keyboard

ISIS-II CRT-BASED EDITOR V2.0
OLD FILE SIZE=120 BLKS LEFT=488

Q1
JANUARY
.fEBRUARY
MARCH
Q2
APRIL
MAY
JUNE

Figure 1-4. The Display 121609-3

The keyboard, shown in figure 1-5, is your interface with the system. From the
keyboard you control the system, enter data and commands, and request data.

The data you enter at the keyboard is stored in a line editing buffer until you press
the RETURN key or enter 122 characters. You can edit the contents of the line
editing buffer with the line editing characters described in Chapter 3, Line Editing.

Series III Operating Instructions System Overview

Escape
(ESC)

Control
(CNTL)

Repeat
(RPT)

RUBOUT

RETURN

Figure 1-5. The Keyboard

Cursor
Control
Keys

Typewriter
(TPWR)

121609-4

The keyboard is a typewriter-style electronic keyboard. In addition to the standard
typewriter keys, the keyboard has other keys that perform specialized functions, as
follows:

CNTL

ESC

RPT

RUB
OUT

RETURN

TPWR

HOME

(arrows)

The CNTL (Control) key changes the function of certain
predefined alphabetic keys. A key whose function is changed by
the CNTL key is called a control character. Control characters
are defined throughout the manual. Examples are CNTL-R,
CNTL-S, and CNTL-Q. To enter a control character, hold
down the CNTL key and type the designated letter. A control
character is entered into memory as one character, but is
displayed with an up arrow, as in fR.

The ESC (Escape) key terminates the line edited input in
8080/8085 mode. The ESC key displays as a dollar sign ($).

The RPT (Repeat) key provides multiple entry of other keys.
When RPT and a second key are held down, the function of the
second key is repeated until the RPT key is released. For
example, to delete several characters from the current input line,
press both the RPT and the RUBOUT keys until the desired
number of characters are deleted. The RPT key functions with
all keys except the CNTL, SHIFT, HOME, and TPWR keys.

The RUBOUT key deletes the preceding character from both the
display and the line editing buffer. Repeated usage is allowed.

The RETURN key enters the carriage return and line feed
characters. The use of the RETURN key in examples of input
lines is indicated by <cr>.

The TPWR (Typewriter) key provides lowercase entry (latched
position) or uppercase entry (unlatched position) of alphabetic
characters. The TPWR key functions with the alphabetic keys
only.

The HOME key is used with the CREDIT Text Editor (see the
ISIS-II CREDIT CR T-Based Text Editor User's Guide).

The four keys with arrows are cursor control keys and are used
with the CREDIT Text Editor.

1-5

System Overview Series III Operating Instructions

o intel

1-6

POWER SWITCH

o
'------ INTERRUPTS -----' RUN RESET

Figure 1-6. The Control Panel

The Control Panel

The system control panel, shown in figure 1-6, contains the following switches
and/ or indicators (right to left):

POWER

RESET

RUN

INTERRUPTS

o

1

2

3,4,6,7

5

The POWER switch (square white button) turns on the
power to the basic system console including the integral disk
drive and gives control of the system to the Monitor.

If a system disk is in drive 0, the RESET switch loads the
ISIS-II operating system into 8080/8085 memory and gives
control of the system to ISIS-II; if a system disk is not in
drive 0, it restarts the Monitor.

The RUN indicator light remains on while system power is
on and the 8080/8085 processor is not in a halt state;

Interrupt 0 is a manual interrupt. When you press interrupt
0, processing terminates and control of the system is
transferred to the Monitor.

In 8086 mode, you can use CNTL-D to interrupt processing
and enter DEBUG-86.

Interrupt 1 is a manual interrupt. When you press interrupt
1, processing terminates and control of the system is
transferred to ISIS-II if a system disk is in drive O.

In 8086 mode, you can use CNTL-C to interrupt processing
and return control to RUN or ISIS-II depending on how
RUN was invoked~

Interrupt 2 is reserved for system usage.

Interrupts 3, 4, 6, and 7 can be used to generate Multibus
interrupts if you make allowances for software products
contained in your system.

In 8086 mode, interrupt 5 must not be used.

Q

121609-5

Series III Operating Instructions System Overview

Disk Drives

Hard disk subsystem controls are described in Chapter 2 under Operation of
Systems Containing Hard Disk Drives.

Flexible disk drives are shown in figure 1-7. The front of each disk drive consists of:

• A disk drive door

• A drive door release button, which opens the drive door and releases the disk for
removal

• A drive indicator light, which is lit during disk input/output operations.

In addition, the external drive units shown in figure 1-7 (b) and (c) contain a power
switch and on/off indicator light

ON/OFF INDICATOR

(b) lOW-PROFILE EXTERNAL
FLEXIBLE DISK DRIVE UNIT

DRIVE DOOR

(a) INTEGRAL FLEXIBLE DISK DRIVE

POWER
SWITCH

POWER SWITCH

DRIVE DOOR
RELEASE BUTTON

ON/OFF
INDICATOR

(c) HIGH-PROFilE EXTERNAL
FLEXIBLE DISK DRIVE UNIT

Figure 1-7. Flexible Disk Drives 121~15

1-7

System Overview Series III Operating Instructions

1-8

Disk Drive Configurations

The Series III supports up to eight drives, including single- and double-density flexi
ble disk drives and hard disk drives. Table 1-1 describes the possible disk drive con
figurations and drive numbers for each.

You will note in table 1-1 that hard disk drives are always numbered drive 0 for the
fixed hard disk platter, and drive 1 for the removable hard disk platter. Flexible disk
drives, however, are assigned drive numbers according to the system configuration.

Table 1-1. Series III Disk Drive Configurations

Drive Numbers

Configuration 0 1 2 3 4 5 6 7 8 9

H+D H-F H-R * * D D (D) (D)
H + IS H-F H-R * * IS *
H + D + IS H-F H-R * * D D (D) (D) IS *

H + ID H-F H-R * * ID * IS *

H + ID + D H-F H-R * * ID *
D D D (D) (D) D D
IS IS *
D + IS D D (D) (D) IS *
ID ID *
ID + D ID * D D

H = Hard disk
F = fixed platter of hard disk
R = removable platter of hard disk

D = Double-density flexible disk
IS = Integrated single-density flexible disk
ID = Integrated double-density flexible disk
* = Not available
Parentheses () indicate optional drives within the particular configuration.

Disk Format Characteristics

Flexible Disks

The flexible disk used with the Intellec Series III Microcomputer Development
System contains 77 tracks each. A flexible disk formatted in a single-density disk
drive has 26 sectors per track; a flexible disk formatted in a double-density disk drive
has 52 sectors per track. Each sector contains 128 bytes.

Once a flexible disk is formatted in a single- or double-density disk drive, it must be
reformatted to be used in a drive of a different density. A flexible disk is shown in
figure 1-8.

Hard Disks

Hard disk platters contain 400 tracks on each of two surfaces. Each track has 36
sectors of 128 bytes. The system translates this data format into 200 logical tracks,
with 144 logical sectors per logical track. Each hard disk subsystem contains two
hard disk platters, a fixed platter in drive 0 and a removable cartridge in drive 1. A
removable cartridge is shown in figure 1-9.

Series III Operating Instructions System Overview

LABELS

----1'-------' '-.1.

INDEX HOLE

SPINDLE HOLE

READ/WRITE ACCESS HOLE

WRITE-PROTECT SLOT

Figure 1-8. Flexible Disk 121609-7

HANDLE

DISK CARTRIDG E J
Figure 1-9. Hard Disk Cartridge 121609-8

Types of Disk Files

A disk is either a system or non-system disk depending on the ISIS-II files contained
on it:

• A system disk contains at least the files necessary to boot the operating system.

• A non-system disk contains only the files necessary for the creation and storage
of files, leaving more space for data than on a system disk.

When the system is reset with an ISIS-II system disk in the appropriate drive, the
operating system initializes and takes control of the system.

At system start-up, only the essential ISIS-II files are loaded into memory. ISIS-II
command files remain on disk until you enter a command that calls them. The
required programs are then loaded into memory and executed. After the command
program has completed its functions, the memory it was using is again available.
This technique gives you the full capabilities of the operating system and lets you
reserve most of the memory space for your work.

1-9

System Overview Series III Operating Instructions

1-10

Each file on a disk has a name. ISIS-II program files come with assigned names; you
name each file you create. To access a file, you need only specify its name, not its
address. .

The four basic types of files are:

• Format files thatare used by ISIS-II for disk formatting.

• System files that contain both the basic system programs and the command
programs

• Program files that you create

• Data files that are used by your programs or by ISIS-II

CHAPTER 21
SYSTEM OPERATIO~

This chapter provides tutorial information on how to operate an Intellec Series III
system. The following funct,ions are described:

• Care of disks

• Operating precautions

• Flexible disk insertion and removal

• Start-up and shut-down procedures for systems containing flexible disk drives

• Flexible disk formatting procedures

• Cold start and hard disk formatting procedures for systems containing a hard
disk unit

• Hard disk cartridge installation and removal

• Subsequent start-up and power-down procedures for systems containing a hard
disk unit

The first half of the chapter describes systems containing flexible disk drives; the
second half describes systems containing hard disk drives. For start-up and shut
down procedures for Model 800 systems, see Appendix H.

Operation of Systems Containing Flexible Disks

Care of Flexible Disks

The flexible disk is a cost-effective and convenient medium for the storage of data.
With proper care, you can ensure continued trouble-free reading and writing of flex
ible disk files. Specific precautions are:

• Return the flexible disk to its envelope 'Yhen not in use

• Do not touch or clean the recording surface

• Do not smoke when handling the flexible disk

• Do not bend the flexible disk or use paper clips or other mechanical devices on it

• Use a felt tip pen on the disk label, not a pencil or ball point pen

For information concerning the operating and storage environment, see the Intellec
Series III Microcomputer Development System Installation and Checkout Manual.

Flexible Disk System Operating Precautions

The following actions can damage or modify the contents of a flexible disk:

• Turning on or turning off the power to the system or to an external disk drive
unit with a flexible disk already inserted in the drive.

• Opening the disk drive door while the indicator light on the drive door release
button is on.

• Removing a disk while the system is being booted and the ISIS-II prompt
character is not displayed.

• Pressing the RESET switch while writing information on the flexible disk (i.e.,
the indicator light on the drive door is on).

2-1

System Operation Series III Operating Instructions

2-2

Flexible Disk System Start-up Procedure

To start up a system containing flexible disk drives only, follow these steps:

1. Turn on the power switch on the console control panel.

2. Press the RESET button. The system displays the Monitor sign-on message and
prompt character (a period):

SERIES II MONITOR, Vx.y

(x.y is the version and release number of the Monitor.)

3. If you have an external disk drive unit attached to your system, turn on the
power to the drive unit.

4. Insert the ISIS-II system flexible disk in drive 0 as described in the next section,
Flexible Disk Insertion.

5. Press the RESET button. This loads the ISIS-II operating system files from disk
into memory.

The system displays the ISIS-II sign-on message and prompt character (a hyphen):

ISIS-II, Vx.y

(x.y is the version and release number of ISIS-II.)

6. The system is now ready to accept a command from the console.

NOTE
After you press RESET in step 5, the ISIS-II prompt (a hyphen) should
be displayed. If the prompt displayed is a period (indicating that the
Monitor is still in control), check for one of the following conditions: a
non-system disk in drive 0, an incorrectly installed disk, or a dis
connected drive.

Flexible Disk Insertion

Before you insert a flexible disk, be sure that power to the system (and to the exter
nal flexible disk drive unit if any) is turned on.

If the drive door has a vertical opening, insert the flexible disk with the read/write
slot first and the write-protect tab down (see figure 2-1).

If the drive door has a horizontal opening, insert the flexible disk with the
read/write slot first and the write-protect tab to the left (see figure 2-2).

When the disk is inserted, close the drive door.

Flexible Disk Removal

To remove a flexible disk from a disk drive, follow these steps:

1. Check that the last character displayed is the ISIS-II prompt character (a
hyphen) indicating that ISIS-II is in control of the system.

If the last character displayed is not a hyphen, press interrupt 1.

2. Check that the indicator light on the drive door release button is off (see figure
2-3).

If the light remains on for more than 10 seconds and a read operation is not in
progress, disengage the drive by pressing the RESET button, holding RESET
pressed if necessary until the light goes out.

Series III Operating Instructions System Operation

------------ ---

~
-~

,- -- - p= - I-r== I-

----eo ---- -------...

~ ~

~ ~ ~
'-- '~ -

--~

Figure 2-1. Flexible Disk Insertion, Vertical Position 121609-9

Figure 2-2. Flexible Disk Insertion, Horizontal Position 121609-10

2-3

System Operation Series III Operating Instructions

2-4

3. Press the drive door release button. The door automatically opens and releases
the flexible disk.

4. Remove the flexible disk and place it in its protective envelope.

Flexible Disk System Shut-Down Procedure

When you are ready to turn off the system, follow these steps:

1. Remove all flexible disks as described in the preceding section.

2. Turn off the power switch on the external disk drive unit if any.

3. Turn off the power switch on the console control panel.

DRIVE DOOR

DRIVE DOOR
RELEASE BunON

DRIVE DOOR

DRIVE DOOR
RELEASE BunON

DISK DRIVE
INDICATOR LIGHT

Figure 2-3. Drive Door Release Button 121609-12

Series III Operating Instructions System Operation

Flexible Disk Formatting Procedures

Before using a blank disk, you must format it. Examples below provide step-by-step
disk formatting instructions for systems with multiple flexible disk drives and for
systems with a single flexible disk drive.

The flexible disks required are:

• A source disk, referred to as the system or source disk, that contains ISIS-II
system files.

• A blank disk, referred to as the output disk.

Before formatting a flexible disk, a reflective tab (provided with Intel disks) must be
placed over an open write-protect slot, as shown in figure 2-4.

DI[~~I
o

@
o n

/
TAB ON
WRITE-PROTECT SLOT

/
WRITE-PROTECT
SLOT

Figure 2-4. Flexible Disk Write-Protect Tab 121609-13

With the instructions given in example 1 you can produce any of three types of disks:

1. A basic system disk.

2. A basic non-system disk.

3. A duplicate back-up disk that contains all the files on the source disk. (It is a
good idea to make a back-up copy of the important files on your disks.)

With the instructions given in example 2, you can produce types 1 and 3.

Example I-Formatting a Flexible Disk in a System Containing
Multiple Flexible Disk Drives

1. Apply power to the system. Press the RESET button. The system displays the
Monitor sign-on message and prompt (a period).

2. Apply power to the external disk drive unit.

3. Insert the system disk into drive O.

4. Insert the output (blank) disk into drive 1.

5. Press the RESET button.

The system displays the ISIS-II sign-on message and prompt (a hyphen).

6. Enter one of the following commands:

To format a basic system disk:

FORMAT :F1:MYDISK S<c r)

To format and createa duplicate back-up disk:
FeRMAT :F1:MvDISK A<c r)

To format a nonsystem disk:

FORMAT :F1:MYOISK<:")

2-5

System Operation Series III Operating Instructions

2-6

7. The system displays the name of each file copied.

8. The disk is now ready to be used on the system.

For additional information and examples of the FORMAT command, see Chapter
4.

Example 2-Formatting a Flexible Disk in a System Containing a
Single Flexible Disk Drive

It is recommended that all disks used on a single disk system be formatted as a
system disk and that you write-protect your source system disk in case the two disks
are switched.

1. Turn on the system power and press the RESET switch. The system displays the
Monitor sign-on message and prompt character (a period).

2. Insert a system disk into the disk drive.

3. Press the RESET button. The system displays the ISIS-II sign-on message and
prompt character (a hyphen).

4. Enter the following command:

rDrSK :FO:MYDISK S <cr>
5. The system displays:

SYSTEM DISK
6. The system then displays:

LOAD OUTPUT DISK, THEN TYPE (CR)
The system waits for you to remove the system disk, insert the ouput disk, and
press the RETURN key.

7. The system then displays:

LOAD SYSTEM DISK, THEN TYPE (CR)
The system waits for you to remove the output disk, insert the system disk, and
press the RETURN key.

8. When the new disk is formatted it can be used on the system as a system disk. To
produce a duplicate back-up disk, continue with the remaining steps in this
procedure.

9. When the ISIS-II prompt character (a hyphen) is displayed, enter the following
command:

COpy *.* TO *.* <cr>
where *. * is the wild card designation that matches all filenames. All files
remaining on the source disk are copied to the output disk.

10. The system then displays:

LOAD SOURCE DISK, THEN TYPE (CR)
If the source disk is already inserted in the drive, press the RETURN key
without swapping disks. If not, swap disks and press the RETURN key.

11. The system then displays:

LOAD OUTPUT DISK, THEN TYPE (CR)
Swap disks and press the RETURN key.

12. Repeat steps 10 and 11 in accordance with the messages displayed, if any.

13. The system displays the names of each file copied.

14. When the copy is completed, the new disk is a duplicate back-up disk.

For additional information on the IDISK and COpy commands, see Chapter 4.

Series III Operating Instructions System Operation

Operation of Systems Containing Hard Disk Drives

Hard Disk Subsystem Controls

The front panel of the hard disk drive includes four backlighted operating switches
and two status indicators (see figure 2-5 and table 2-1). A brush indicator and two
cartridge holddown arms are mounted on the top of the disk drive. Two circuit
breakers are positioned on the back panel.

Table 2-1. Hard Disk Drive Controls and Indicators

Control or Indicator Function

MAIN Circuit Breaker (CB1) Applies main ac to disk drive.

+34 VOLT Circuit Breaker (CB2) Applies dc voltage to disk drive electronics; not
accessible to operator (covered by switch plate).

START /STOP Switch/Indicator Alternate-action switch with indicator. When pressed,
applies power to spindle motor and initiates the first
seek mode; indicator lights to indicate power is applied
to spindle motor and spindle is rotating. When pressed
the second time, removes power to spindle motor; indi
cator remains lighted until spindle stops rotating.

READY Indicator

ACTIVE Indicator

FAULT Switch!lndicator

WRITE PROTECT/CART
Switch !Indicator

WRITE PROTECT / FIXED
Switch/Indicator

Brush Indicator

Cartridge Holddown Arms

Care of Hard Disks

NOTE

The first seek mode is completely automatic
and requires approximately 65 seconds to com
plete. In the event of a fault during this time,
heads will automatically go to emergency
retract and spindle will stop.

Lights when spindle is up to speed, heads are loaded,
and disk drive is ready for use.

Lights when disk drive is actively engaged in any mode:
direct seek (forward or reverse), return-to-zero seek, or
read / write / erase.

Lights when any fault (except power failure) exists.
PreSSing switch resets fault logic.

Alternate-action switch with indicator. Prohibits writing
or erasing on cartridge disk. Indicator lights to indicate
that cartridge is protected.

Alternate-action switch with indicator. Prohibits writing
or erasing on fixed disk. Indicator lights to indicate that
fixed disk is protected.

Indicates position of brush motor. Allows brush to be
manually moved.

Hold disk cartridge in place. Interlock circuits prevent
arms from being lifted as long as spindle is rotating.

The hard disk drive assembly is extremely sensitive to contaminants on the hard disk
platter surface. The head does not make contact with the disk platter, but rides
about 1.14 microns above it. If contaminants such as a human hair (100 microns in
diameter), a smoke particle (6.35 microns), fingerprints, or dust come between the
disk drive head and the platter surface, the contact will usually destroy both the head
and the disk.

2-7

System Operation Series III Operating Instructions

2-10

9. Wait until the READY indicator is lit (65 seconds).

10. At the console, enter the following command:

:F4:FORMAT :FO:ISISx.y S FROM 4<cr>

where x.y corresponds to the ISIS-II version and release number displayed in
step 8 above. This step formats the fixed hard disk in drive 0 as a system hard
disk. Wait until the formatting operation is completed (indicated by an ISIS-II
prompt) before going to step 11.

11. Press the Interrupt 1 switch on the console control panel. Drive 0 is now the
system disk drive.

12. To format the removable cartridge as a non-system disk, enter the following
command:

FORMAT :F1:NONSYS.DSK<cr>

13. The system is now ready to accept another command from the console.

NOTE
All interrupt 1 and ISIS-II aborts reboot from the system hard disk in
drive O. The system flexible disk in drive 4 is required only for system
start-up and reset (RESET switch) operations.

Hard Disk Cartridge Installation

Stabilize the disk cartridge temperature to the disk drive environment before it is
installed. Be sure that the disk is clean, then install it as follows (see figure 2-6):

1. Check that the MAIN circuit breaker (CB1) is ON.

2. Check that the START/STOP indicator is not lit.

3. Check that the brush indicator slot is aligned with the black line. If not, align it
with a coin or similar object.

4. Raise the disk drive cover.

5. Lift the cartridge holddown arms.

(If the arms are locked, the previous steps may not have been completed prop
erly, or the drive may have malfunctioned. In the latter case, the cartridge must
be removed by an Intel Service Representative.)

6. Separate the dust cover from the disk cartridge by sliding the cover release
button to the side and lifting the cartridge handle. Remove and set the dust
cover aside.

7. Check that brush indicator slot is aligned with the black line. If not, align it with
a coin or similar object.

8. Gently place the disk cartridge onto the spindle hub with head opening toward
rear of disk drive.

9. Rotate the cartridge slowly back and forth until it seats into detent.

10. Push the cartridge handle down.

11. Replace the dust cover, open end down, over the disk cartridge.

12. Position the cartridge holddown arms over the cartridge.

13. Close the disk drive cover.

14. Press the START/STOP switch. If the spindle motor does not rotate, disk
cartridge is not installed properly (press START/STOP and perform steps 4
through 13 again).

15. If the spindle motor rotates, wait until the READY indicator is lit (65 seconds).

Series III Operating Instructions

DISK CARTRIDGE)

\DUSTCOVER

HANDLE r-----------------------------,

HOLDDOWN
ARM

COVER RELEASE
BUTTON

SPINDLE HUB

Figure 2-6. Hard Disk Cartridge Installation

System Operation

b.~---___t--COVER RELEASE
BUTTON

DISK CARTRIDGE AND
DUST COVER IN PLACE

943-01

2-11

System Operation Series III Operating Instructions

2-12

Hard Disk Cartridge Removal

To remove a hard disk cartridge, follow these steps:

1. Check that MAIN circuit breaker (CBl) is on and that the blower motor is on.

NOTE

If the MAIN circuit breaker is on but the blower motor is not, the
cartridge must be removed by a service representative.

2. Check that the START/STOP indicator is not lit.

3. Check that the brush indicator slot is aligned with the black line. If not, align it
with a coin or similar object.

4. Raise the disk drive cover.

5. Lift the cartridge holddown arms.

(If the arms are locked, the previous steps may not have been completed prop
erly, or the drive may have malfunctioned. In the latter case, the cartridge must
be removed by an Intel Service Representative.)

6. Remove cartridge dust cover and set aside.

7. Hold the cover release button, lift the cartridge handle, and lift the cartridge
clear of the disk drive spindle.

8. Place the dust cover in position on disk cartridge and release the cover release
button.

NOTE

To prevent dust and foreign objects from entering the disk drive, never
leave the unit open without a cartridge in place for an extended period
of time.

Hard Disk Subsystem FAULT Operation

The FAULT indicator comes on when a nondamaging fault exists, such as when
more than one head is selected.

If a momentary power failure occurs, the FAULT indicator does not come on. In
such an event, the hard disk heads go into emergency retract and the unit stops. The
unit automatically restarts when power returns to normal.

If the FAULT indicator is lit, follow these steps:

1. Check that the system flexible dis.k is in drive 4.

2. Press the FAULT switch. If the FAULT indicator goes out, and remains out,
resume normal operation. If not, continue with step 3.

3. Press the START/STOP switch to remove power from the spindle. Allow the
spindle to stop, then press the START/STOP switch again. Allow the spindle to
reach operating speed.

If the F AUL T indicator goes out, resume normal operation. If not, proceed to
step 4.

4. Press the START/STOP switch to remove power from the spindle, and contact
a service representative.

Series III Operating Instructions System Operation

Hard Disk System Power-down Procedure

To power-down the system, follow these steps:

I. Remove all flexible disks as described under the Flexible Disk Removal section.

2. Press the START/STOP switch. The following occurs:

• The READ Y indicator extinguishes.

• The heads retract.

• The START indicator goes out after the spindle stops rotating.

• The cartridge hold-down arm interlocks open.

3. Turn off power to the external disk drive unit, if any.

4. Turn off the power switch on the console control panel.

Note that the main power (CBl) to the hard disk subsystem is not turned off.

Hard Disk System Subsequent Start-up Procedure

Once you have completed the cold-start procedure, you can follow the simplified
start-up procedure given in this section for your day-to-day operations. This start-up
procedure assumes the following:

• The flexible disk to be inserted in drive 4 and the fixed hard disk platter in drive
o are both system disks and contain the same version of ISIS-II.

If they do not contain the same version of ISIS-II, follow the instructions in the
Hard Disk System Cold Start section.

• The main power to the hard disk subsystem (CHI) is left on 24 hours a day.

The day-to-day start-up procedure is as follows:

1. Apply power to the system console.

2. Press the RESET switch. The system displays the Monitor sign-on message and
prompt character (a period):

SERIES II MONITOR, Vx.y

(x.y is the version and release number of the Monitor.)

3. Apply power to the external flexible disk drive unit if any.

4. Insert a system flexible disk in drive 4.

5. Press the START/STOP switch on the hard disk subsystem.

6. When the READY indicator is lit, press the RESET switch on the console.

7. The system displays the ISIS-II sign-on message and prompt character (a
hyphen):

ISIS-II, Vx.y

(x.y is the version and release number of ISIS-II.)

8. The system is now ready to accept a command from the console. For example,
to format the removable hard disk cartridge as a non-system disk, enter the
following command:

FORMAT :F1:NONSYS.DSK<cr>

For further information concerning disk formatting, see Chapter 4. For further
information concerning the hard disk subsystem, see the Model 740 Hard Disk
Subsystem Operation and Checkout Manual.

2-13

Device/File Management Series III Operating Instructions

3-2

Standard devices are predefined devices for which I/O driver routines are speci
fically provided. System names assigned to standard devices are:

: F 0 :
through
: F 9 :
: T I :
: TO:
: T P:
:TR:
: V I :
:VO:
:HP:
: H R:
: L P :

Directory on the disk in drive 0 ... 9
Teletypewriter keyboard
Teletypewriter printer
Teletypewriter punch
Teletypewriter reader
V ideo terminal keyboard
Video terminal screen
High-speed paper tape punch
High-speed paper tape reader
Line printer

The generic devices, system console and byte bucket, do not exist in their own right,
but provide flexibility for input or output of your data.

Logical names assigned to the device being used as .the system console are:

: C I : Console input file
: CO: Console output file

The keyboard and screen are normally :CI: and :CO: respectively. However, you
can establish some other device, such as a disk file, as :CI: or :CO: with the
CONSOL system call.

You can use the byte bucket for data you do not want saved or displayed. The
logical name assigned to the byte bucket is:

: B B : Byte bucket

Filenames

All ISIS-II files come with system-assigned names. When you create disk files with a
text editor such as CREDIT, you assign a name to that file. The name may be
expanded with an extension that further identifies the file.

Filename

The term filename refers to both the name of the file and the extension, if any. Each
new file you create must have a unique filename.

The general format for filename is:

name. extension L L 1-3 alphanumeric characters

1-6 alphanumeric characters

Series III Operating Instructions Device/File Management

where

name is a one- to six-character name you assign to a file. The characters must be
alphabetic or numeric .

. extension is a one- to three-character modifier you create for name. An .exten
sion is optional when the file is created, but if .extension is specified, it must
always be used when referencing the file.

Default Extensions

Default extensions are predefined extensions that the system assumes under certain
programs when you do not supply one. Default extensions are designed to save you
time when entering commands.

When you specify any 8086 filename with no extension under the RUN program, the
system assumes an extension of .86. If you specify an extension (or a name and
period with no extension, as in TEST2.), the default extension is not assumed.

When you specify an 8080/8085 filename with no extension, some ISIS-II programs
and the language translators assume a default extension.

Examples of default extensions are:

.OBJ Translator output

.86 ISIS-II RUN program

.CSD ISIS-II SUBMIT program

.BAK ISIS-II CREDIT program

.TMP ISIS-II LINK, Locate, Lib, CREDIT, and RUN programs

.LNK ISIS-II LINK program

These extensions are explained further under the individual commands. It is recom
mended that you do not assign such extensions to your source program's files.

Disk File Pathname

The path name for disk files is:

: Fn:filename

where

:Fn: refers to the directory of the disk in drive n that contains the target file. The
value n is an integer between 0 and 9 inclusive. If :Fn: is not specified, :FO: is
assumed. filename follows :Fn: with no intervening space, as in :FI :MYPROG.

The following example illustrates the file path name as well as a common use of
extensions.

:F1:PROGA.SRC
:F1 :PROGA.LST
:F1 :PROGA.OBJ
:F1:PROGA.LNK
:F1:PROGA

-for the source code
-for the listing from the translator
-for the object code
-for the linked object code
-for the code located at absolute addresses for execution

3-3

Device/File Management Series III Operating Instructions

3-4

If the disk that contains these files is moved to drive 2, :Fn: becomes :F2:. :Fn: is
dependent on the physical location of the disk.

Note that all these files have the same name and are distinguished only by the exten
sion. Extensions allow you to distinguish between different files associated with a
single program.

Disk Directory

Files are accessed through a disk directory that keeps track of each file on the disk by
its filename.

A directory on a flexible disk has space for 200 entries. A directory on a hard disk
has space for 992 entries. This means that a flexible disk can contain up to 200 files,
and a hard disk can contain up to 992.

A directory entry contains identifying information about a file. For example, it
includes the following items:

• Filename
• Number of blocks allocated to the file

• Number of bytes in the file (length)

• Attributes

Figure 3-1 shows a directory listing obtained by using the DIR command.

DIRECTOR! OF :FO:X409
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 26 3200 IF ISIS .MAP 5 512 IF
ISIS .TO 24 2944 IF ISIS .LAB 54 6184 IF
ISIS .BIN 94 11756 SIF ISIS .CLI 20 2401 SIF
ATTRIB 40 4909 WSI COP! 69 8489 WSI
DELETE 39 48211 WSI DIH 55 6815 WSI
EDIT 58 72110 WSI FIXMAP 52 6498 WSI
HDCOPI 48 5994 WSI HEXOBJ 34 4133 WSI
IDISK 63 1895 WSI LIB 82 10221 WSI
LINK 105 130111 WSI LINK .OVL 31 4518 WSI
LOCATE 120 15021 WSI OBJHEX 28 3331 WSI
RENAME 20 2346 WSI SUBMIT 39 4821 WSI
SYSTEM.LIB 24 2849 WS FPAL .LIB 111 9125 WSI
FORMAT 62 1189

1272
1212/4004 BLOCKS USED

Figure 3-1. Directory Listing Example

Series III Operating Instructions Device/File Management

Filename

Each filename in the directory includes the extension if any.

Blocks

ISIS-II treats a file as a string of bytes. Space is allocated to a file in complete 128-
byte blocks even though the last block in the file may be only partially used. In other
words, a block is not shared by two files. When you delete a file, the blocks it
occupied are released for reassignment by ISIS-II.

For every 62 blocks of data, another block is required for pointers that specify the
location of files. You can calculate the number of data and pointer blocks required
by a file of N bytes with the following formula:

63*(N/128)/62

Any result containing a decimal fraction is rounded to the next higher integer. For
example, a file of 9000 bytes requires

63*(9000/128)/62=
63*70.31162=
72.15=
73 blocks required

Length

The length of a file is the number of bytes contained. Length increases as a file is
written and can be affected by other programs containing the system calls OPEN
and SEEK.

Attributes

Four attributes are associated with each file that may be set or reset (turned on or
off) by the ATTRIB command or the A TTRIB system call:

• Invisible

• Write-protect

• Format

• System

When you create a file with the CREDIT Text Editor, or copy a file with the COpy
command, no attributes are set. (The COpy command C switch copies attributes.)

Invisible. The invisible attribute prevents files from being listed by the DIR
command unless you use the invisible (I) switch. System files on the system disks
supplied with your system have this attribute set.

Write-protect. The write-protect attribute protects files from being modified,
deleted, or renamed. However, write-protected files are overwritten by the IDISK
and FORMAT commands.

3-5

Device/File Management Series III Operating Instructions

3-8

8086 Execution Mode

Interrupt 1 performs the same functions in 8086 mode as in 8080/8085 mode.

To interrupt 8086 program execution and enter DEBUG-86, use CNTL-D.

To terminate 8086 program execution and close files, use CNTL-C. CNTL-C returns
control to the 8086 RUN program if you are in interactive RUN mode, and to ISIS
II if you are in noninteractive RUN mode. For information on interactive and
noninteractive RUN modes, see the RUN command at the end of Chapter 4.

CHAPTER 4
ISIS-II CONSOLE COMMANDS

ISIS-II console commands perform the following basic tasks:

• Prepare a new disk for use by the system (i.e., format the disk)

• Create, delete, and revise files and directories

• Convert object file formats

• Execute your S080/S0S5 programs

• Execute your S086 programs

Command Categories

The following ISIS-II console commands are associated with each of the preceding
tasks:

Disk Maintenance Commands

IDISK Formats a new disk to a basic system or non-system disk.

FORMAT Formats a new disk and copies files.

FIXMAP Maps bad sectors on a hard disk.

File Maintenance Commands

DtR

COpy

HDCOPY

DELETE

RENAME

ATTRIB

VERS

Displays the names of and information about the files listed
within the disk directory.

Copies a file from one device to another.

Copies one hard disk to another.

Removes references to a file from the directory and frees disk
storage space associated with that file.

Changes the name of a disk file.

Changes and/or displays the attribute(s) of a disk file.

Displays ISIS utility version numbers.

8080/8085 Program Execution Commands

filename

SUBMIT

DEBUG

Loads and executes an 8080 or S085 program named Filename

Enters a file that contains commands to be executed.

Loads an 8080 or 8085 program if specified, and gives control to
the Monitor.

4-1

ISIS-II Console Commands Series III Operating Instructions

4-2

8086 Program Execution Commands

RUN

• filename

• DEBUG

• WORK

• DATE

• EXIT

Activates the 8086 execution mode and optionally executes an
8086 program. The following commands control 8086 process
ing in RUN mode:

Executes an 8086 program named filename (see the RUN
command).

Loads an 8086 program if specified, and gives control to
DEBUG-86. This command is described in Chapter 6.

Changes or displays the default drive used for workfiles.

Changes or displays the system date.

Exits the RUN program and returns control to ISIS-II.

File Editing Commands

File creation and editing commands for the CREDIT TextEditor are described in
the following manual:

• ISIS-II CREDIT CR T-Based Test Editor User's Guide

Program Control and Code Conversion Commands

Program control commands (for Librarian, Linker, and Locator) and code conver
sion commands (for hexadecimal to/from object module format conversion) are
described in the following manuals:

• MCS-80/85 Utilities User's Guide for 8080/8085-Based Development Systems

• iAPX 86, 88 Family Utilities User's Guide

Entering Commands

Your communication with ISIS-II is through the system console. When you press
RESET, ISIS-II signs on and issues its prompt character (a hyphen):

ISIS-II Vx.y

where x.y is the version and release number of ISIS-II.

You can enter a command whenever the ISIS-II prompt is displayed. Each com
mand is entered as a command line and must be terminated by a carriage return or a
line feed. When you press the RETURN key after entering a command line, a line
feed is automatically entered.

You can intersperse comment lines with command lines. Begin each comment line
with a semicolon.

You can correct or edit the current input line with the RUBOUT key. Other line
editing characters are described in Chapter 3, Line Editing. Once the RETURN key
is pressed that input line can no longer be edited.

The RUN and DEBUG ... 86 programs are the only ones that execute in the 8086
mode. If the system is in 8086 mode, you must exit to ISIS-II before entering any
other ISIS-II command program.

Series III Operating Instructions ISIS-II Console Commands

Command Syntax

The general syntax of ISIS-II console command is:

command parameters<cr>

where

command is the name of a command program.

parameters are one or more data required by the command. When you enter
more than one parameter, separate them with commas or blank spaces unless
noted otherwise under the individual commands. When a parameter consists of
switches, they may be separated by spaces, but not by commas.

Parameters enclosed in brackets ([]) are optional. If an optional parameter is
omitted, default actions are performed by ISIS-II commands as explained with each
command.

In most cases a command is executed when the carriage return is encountered. Any
exceptions are noted under the individual commands.

Specifying Disk Files

The command syntax of many commands includes the following designation:

: Fn:filename

Where this format is shown, the following definitions apply unless otherwise noted
under the individual command:

:Fn: refers to the directory of the disk in drive n that contains filename. The
value n is an integer between 0 and 9 inclusive. If :Fn: is not specified, :FO: is
assumed.

filename is the name (and extension if any) of the target file. Enter filename
immediately after :Fn: with no intervening space, as in :FI :MYPROG.

Disk Maintenance Commands

The commands described in this section are:

IDISK

FORMAT

FIXMAP

Formats a disk as a system or non-system disk.

Formats a disk as a system or non-system disk and copies
additional files.

Maps bad sectors on hard disk.

A blank disk must be formatted with either the FORMAT or IDISK command
before it can be used on the system. You can format the disk as any of the following:

• A basic system disk containing only the ISIS-II files necessary to start-up and
operate the system and maintain the disk file directory.

• A basic non-system disk containing only the ISIS-II files necessary to maintain
the disk file directory, leaving more space for data than on a system disk.

• A system or non-system disk containing additional ISIS-II files.

4-3

ISIS-II Console Commands Series III Operating Instructions

4-4

You must use IDISK or FORMAT to convert a non-system disk to a system disk.

If your system has at least two disk drives, use either the FORMAT or IDISK com
mand. If your system has a single disk drive, use the IDISK command.

Use a disk formatted as either a single- or double-density disk only in a disk drive of
the same density. If you wish to use that disk in a drive of a different density, format
the disk again with FORMAT or IDISK in a drive of the desired density.

Table 4-1 shows the ISIS-II files copied for each FORMAT or IDISK command
shown. Note that the COpy command must be used in conjunction with IDISK.

The information in this table applies only if your source disk files have the same file
attributes set as those shown in the Attributes column.

NOTE

The F attribute is reserved for the basic format files listed in table 4-1. If you
remove the F attribute from those files, your new disk will not be formatted
properly. If you assign the F attribute to any other file, that file will not be
copied by the FORMAT command.

Table 4-1. Disk Formatting Example

Type of File

ISIS-II basic format files ISIS.DIR IF X X
ISIS. MAP IF X X
ISIS.TO IF X X
ISIS.LAB IF X X

"ISIS.BAD IF X X
ISIS.OVO IF X X

ISIS-II basic system files ISIS. BIN SIF X
ISIS.CLI SIF X

ISIS-II system command files ATTRIB WSI X
COPY WSI X
DELETE WSI X
DIR WSI X
•
•
•

Notes: (1) (3)

"ISIS.BAD is supplied with hard disk systems only
.... Attributes: 1=lnvisible F=Format S=System

(1) Formats a basic non-system disk.
(2) Formats a basic system disk.

W=Write-protect

X X
X X
X X
X X
X X
X X

X
X

X
X
X
X

(4) (1)

(3) Formats a system disk and copies all other files on the source disk.

X
X
X
X
X
X

X
X

X
X
X
X

(2) (5) (6)

(4) Formats a system disk and copies all other files that have the S attribute set." *
(5) Copies any files that do not have the S attribute set.
(6) Copies all other files that have the S attribute set.

Series III Operating Instructions ISIS-II Console Commands

IDISK-Disk Formatting Command

The IDISK command formats a new disk for use with ISIS-II.

Command Syntax
IOISK :Fn:label [switchesl<cr>

where

:Fn: refers to the directory of the disk to be formatted. The value n is the
number of the drive (0-9) where the blank disk is located.

label is the name to be given to the blank disk. The syntax of label is the same as
for filename with up to six characters for name and three for extension. Label
must follow :Fn: with no intervening space or comma, as in :Fl :MYDISK.

switches are one or more of the following:

S Formats the new disk as a basic system disk. If S is not specified, the
disk is formatted as a basic non-system disk.

P Specifies single drive mode. The system prompts for output and
system disks, pausing to display the prompt messages and to allow
changing of disks. If source and destination drives are the same, the P
switch is the default.

FROM n Specifies the disk drive containing the source disk files needed for
formatting the new disk. The value n is an integer 0-9 for drive
numbers 0 through 9. If the FROM n switch is not specified, the
default is to drive O. If n is not a valid integer 0-9, an error message
results. For example:

:F10:MYDISK, INCORRECTLY SPECIFIED FILE

Description

IDISK copies only the files needed for a basic disk (whether system or non-system).
A basic non-system disk contains only the files needed to format the disk: ISIS.DIR,
ISIS.MAP, ISIS.TO, and ISIS.LAB, plus ISIS.BAD if a hard disk. For a basic
system disk, IDISK copies two additional files: ISIS.BIN and ISIS.CLI.

If you want other files such as command files copied to the new disk, use the COPY
command.

Single Drive Systems. You can use IDISK on single-drive or multiple-drive disk
systems. On single drive systems, you are prompted to remove the disk and insert the
blank disk. When the formatting is completed, you are prompted to insert the
original system disk. See example 1.

Hard Disk Systems. The hard disk platter in drive 0 must be formatted as a system
disk. See example 3 below.

When used with a hard disk, IDISK verifies each sector. If IDISK cannot read a
sector reserved for an ISIS-II file, the following message is displayed:

FATAL BAD SPOT AT LOGICAL ADDRESS (ttt, sss),STATUS=nnnn

where ttt is the logical track address (in decimal), sss is the logical sector address (in
decimal), and nnnn is the hard disk error status (in hexadecimal).

4-5

ISIS-II Console Commands Series III Operating Instructions

4-6

If the unreadable sector does not correspond to an ISIS-II file, the following
message is displayed:

BAD SPOT AT LOGICAL ADDRESS (ttt, sss), STATUS=nnnn

Since ISIS-II allocates hard disk sectors serially, if no mechanism existed to skip
over bad hard disk sectors, the remaining sectors would remain unallocated and
unusable. Instead, ISIS-II checks hard disk sectors for irregularities during
FORMAT and IDISK operations. If a bad_sector is encountered, it is allocated to
ISIS.BAD and hard disk formatting continues.

Examples

1. This example formats a new disk in drive 0 as a basic system disk on a
single-drive system. IDISK prompts for the new (output) disk and for the system
disk. IDISK gives the disk the name SYS.Vl. To copy other files on the newly
formatted disk, use the COpy command for single drive systems described later
in this chapter.

IDISK :FO:SYS.V1 S<cr>
SYSTEM DISK
LOAD OUTPUT DISK, THEN TYPE (CR)
LOAD SYSTEM DISK, THEN TYPE (CR)

2. This example formats a new disk in drive 1 as a basic system disk and gives the
disk the name NSYS.Vl. The COPY command copies all other non-format files
from the disk in drive 0 to the disk in drive 1.

IDISK :F1:NSYS.V1 S<cr>
SYSTEM DISK

COpy *.* TO :F1: C B<cr>
COPIED :FO:ATTRIB TO :F1:ATTRIB
COPIED :FO:COPY TO :F1:COPY
COPIED :FO:DELETE TO :F1:DELETE

3. This example formats a hard disk platter in drive 0 as a basic system disk and
copies the basic files needed to format the disk from the system disk in drive 4.
To copy other files onto the newly formatted disk, use the COpy command as
shown in the previous example.

:F4:IDISK SYSTEM.DSK S FROM 4<cr>

Series III Operating Instructions ISIS-II Console Commands

FORMAT-Disk Formatting Command

The FORMAT command formats a new disk for use with ISIS-II and copies files to
the new disk.

To format a disk on a system with a single flexible disk drive, use the IDISK
command.

Command Syntax

FORMAT :Fn:label [switches]<cr>

where

:Fn: refers to the directory of the disk to be formatted. The value n is the
number of the drive (0-9) where the blank disk is located.

NOTE
In versions of ISIS-II before version 4.0, :Fn: defaulted to :Fl: in the
FORMAT command. This default has been removed. If you have SUB
MIT files that use this default, you must change them. You will receive
an error message if you try to default to :Fl:.

label is the name to be given to the disk. The syntax of label is the same as for
filename with up to six characters for name and three for extension. Label must
follow :Fn: with no intervening space or comma, as in :Fl :MYDISK.

switches are one or more of the following, separated with spaces:

A Copies all files to the specified disk except files (other than ISIS-II
system format files) with the format attribute set. If the source disk is
a system disk, the new disk becomes a system disk.

S Copies the basic format files and all files with the system attribute set.
If the source disk is a system disk, the new disk becomes a system
disk. (The S switch functions differently under FORMAT than it
does under IDISK.)

FROM n Specifies the disk drive contammg the disk files needed for
formatting. n is an integer 0-9, for drives 0 through 9. If the FROM n
switch is not specified, the default is to drive o. If n is not a valid
integer 0-9, an error message is displayed. For example:

Description

:F10:MYDISK, INCORRECTLY SPECIFIED FILE

If you specify :FO: and no FROM n switch, or if you specify :FO: and
FROM 0, the following error message is displayed:

CANNOT FORMAT FROM TARGET DRIVE

A disk is formatted as a system or non-system disk depending on the type of source
disk used and on the switches specified in the FORMAT command.

When a system disk is formatted, FORMAT copies other files in addition to the
basic format files.

4-7

ISIS-II Console Commands Series III Operating Instructions

4-10

A command may be truncated at any point after its first character. For example, M,
MA, or MAR may be used to stand for Mark.

When a command calls for a disk address, that address should have the form:

track, sector[T]

where

track is a number from 0 to 199 that specifies the logical track address contain
ing the bad sector.

sector is a number from 1 to 144 that specifies the logical sector address of the
bad sector within the track.

T is an optional switch indicating that a group of 36 sectors should be processed.

The T switch is appropriate if the STATUS reported in the error message was 0001,
OOOA, or OOOE. (See Chapter 7 for a description of status.)

If the T switch is present, the sector number specifies a group of 36 sectors on track:

If sector is in the range 1-36, that group of sectors is processed.

If sector is in the raJ?ge 37-72, that group of sectors is processed.

If sector is in the range 73-108, that group of sectors is processed.

If sector is in the range 109-144, that group of sectors is processed.

Track and sector numbers, and the T switch, if present, should be separated by
spaces. the track and sector numbers should be those reported in the error message
that identified the bad sector.

Mark Command
The Mark command changes the known state of a sector from good to bad.

The syntax of the Mark command is:

MARK disk-address<cr>

where

disk-address is the track-and-sector address of the sector to be marked as bad.

If the T switch is present, a group of 36 sectors is marked as bad. A sector known to
be bad is not allocated to any file.

If the sector specified in the Mark command is not associated with an existing file,
the sector is marked as bad. If the T switch is not present, the system displays:

SECTOR MARKED

If the T switch is present, no message appears when a single sector is marked;
instead, when all 36 sectors have been processed, the system displays the message:

TRACK PROCESSED

Series III Operating Instructions ISIS-II Console Commands

•

If the sector belongs to an existing file, it cannot be marked as bad. Under any of the
following conditions, the sector is not marked:

If the sector belongs to one of the required ISIS-II format files, the system displays:

(track,sector) REQUIRED BY ISIS-II

The system will be unreliable when the questionable disk is in use. You should for
mat a new hard disk and copy your program and data files onto it.

If the sector is already known to be bad, marking the sector is redundant. The
system displays:

(track,sector) ALREADY MARKED

If the sector belongs to a file other than a required format file, the system displays:

(track,sector) IN USE

If you know the name of the file, exit to ISIS-II and delete the file; then use
FIXMAP to mark the bad sector. If you do not know the name of the file, follow
this procedure:

1. Exit to ISIS-II, using either the Quit or the Exit command (described below).

2. Give the command
COpy :Fn:*.* TO :Fn: Q C<cr>

where :Fn:*. * refers to the disk containing the source files, and the second :Fn:
refers to another hard disk. The Q switch causes the system to query before
copying each file. (See the description of COPY.)

3a. If the copy is successful, disk :Fn: contains a usable copy of the bad disk. Use
FIXMAP to get a list of bad sectors on the bad disk; then use IDISK or
FORMAT to reformat that disk, and use FIXMAP to mark any bad sectors
missed by the formatting command.

3b. If an error occurs while the disk is being copied, write down the last filename
displayed by Copy, as well as the track and sector numbers appearing in the
error message. Use the Delete command to delete the bad file from the bad disk,
then use FIXMAP to mark the bad sector. If an error occurs and prevents you
from deleting the file, repeat step 2. The file you attempted to delete will not be
copied to the new disk. Repeat step 3a.

Example 1: The following example illustrates the use of the Mark command:

* MARK 27 83<c r >
SECTOR MARKED
* MARK 27 83<c r >
~27,83) ALREADY MARKED

Free Command

The Free command changes the known state of a sector from bad to good.

The syntax of the Free command is:

FREE disk-address<cr>

where

disk-address is the track-and-sector address of the sector to be freed for
allocation.

4-11

ISIS-II Console Commands Series III Operating Instructions

4-12

If the T switch is present, a group of 36 sectors is freed. You might use this com
mand if you had marked a sector by mistake.

If the sector specified in the Free command is known to be bad, it is freed for alloca
tion. If the T switch is not present, the system displays:

SECTOR FREED

If the T switch is present, no message appears when a single sector is freed; instead,
when all 36 sectors have been processed, the system displays the message:

TRACK PROCESSED

Under either of the following conditions~ the sector is not freed:

If a sector is already free for allocation, freeing the sector is redundant. The system
displays:

(track,sector) ALREADY FREE

If the sector is not free because it is in use by a file, the system displays:

(track,sector) NOT A BAD SECTOR

There is no reason to free a good sector that is part of an existing file.

Example 2: The following example illustrates the use of the Free command. Note
that 8 5 T and 8 10 T identify the same group of 36 sectors, i.e., sectors 1-36 on
track 8.

* FREE 180 51<cr>
SECTOR FREED
* MARK 8 5 T<cr>
TRACK PROCESSED
* FREE 8 10<cr>
SECTOR FREED
* FREE 8 10 T<cr>
(8,10) ALREADY FREE
TRACK PROCESSED

List Command

The List command writes a list of all known bad sectors on the named file.

The syntax of the List command is:

LIST [filename]<cr>

where

[filename] is an optional parameter specifying the listing file.

The listing file may be either an output device or a disk file. It may not reside on the
disk being fixed. If no filename is given, the list is printed on the console.

The format of the output is one sector per line, with track and sector numbers
separated by a comma. The list includes all sectors marked by FIX MAP , as well as
bad sectors found by IDISK and Format.

Series III Operating Instructions ISIS-II Console Commands

If there are no known bad sectors, the system displays:

NO BAD SECTORS

If output is directed to a device other than the console, the following message is
displayed after the list is written to the device:

LIST WRITTEN

If the named file resides on the disk being fixed, the system displays:

CANNOT LIST TO TARGET DRIVE

Example 3: The following example illustrates the use of the List command. The list
is written first to the console, then to a disk file.

*1.' 180,63
182,115
182,116
182,117
* LIST DISK.FIL<cr>
LIST WRITTEN

Count Command
The Count command reports the number of known bad sectors on the disk.

The syntax of the Count command is:

COUNT<cr>

The command displays the following message on the console:

xxxxx BAD SECTORS

where

xxxxx is a decimal number, the number of known bad sectors on the disk. A sec
tor that has not been marked, or a sector that has been marked and then freed,
is not a known bad sector.

Example4: The following example illustrates the use of the Count command:

*1'1'.· 180,63
182,115
182,116
182,117
*".III~IJi·"
4 BAD SECTORS

4-13

ISIS-II Console Commands Series III Operating Instructions

4-14

Record Command
The Record command records the changes specified by Mark and Free.

The syntax of the Record command is:

RECORD<cr>

When this command is entered, changes specified by Mark and Free are recorded on
the disk.

If you intend to use the Exit command to leave the FIXMAP program, the Record
command is unnecessary. (Exit is described below.) If you intend to use the Quit
command, the Record command is required; otherwise, none of the marking and
freeing specified during the work session-or since the last Record command-will
actually take effect.

When the recording is complete, the system displays:

CHANGES RECORDED

If no sector has been marked or freed during the work session-or since the last
Record command-the system displays:

NO CHANGES

Example 5: The following example illustrates the use of the Record command.

*,; ••• 1;1.+.,
CHANGES RECORDED
*'; ••• 1:4
NO CHANGES

Quit Command
The Quit command stops the operation of FIX MAP and returns to ISIS-II.

The syntax of the Quit command is:

QUIT<cr>

If the Record command has not been given, changes specified by Mark and Free are
not recorded on the disk.

Example 6: The following example illustrates the use of the Quit command. Note
that the freeing of sector 12, 86 is not recorded on the disk; therefore, upon reentry
to FIXMAP, that sector is still known as bad.

* FREE 12 86<cr>
SECTOR FREED

Series III Operating Instructions ISIS-II Console Commands

Exit Command

The Exit command records changes and returns to ISIS-II.

The syntax of the Exit command is:

EXIT<cr>

The Exit command is equivalent to the Record command followed by the Quit com
mand: changes specified by Mark and Free are recorded on the disk, and control
returns to ISIS-II.

Example 7: The following example illustrates the use of the Exit command. (Com
pare this example with example 6, above.)

* FREE 12 86<cr>

FIXMAP 1<c r >
ISIS-II MAP FIXER Vx.y
* •• , i' ••

NO BAD SECTORS

FIX MAP Error Conditions

The following errors cause immediate termination of FIXMAP and a return to ISIS
II. If execution terminates as a result of one of these errors, work done since the last
Record command is not recorded on the disk.

If no hard disk is present, the system displays:

USE ON HARD DISK SYSTEM ONLY

If no drive number is given in the FIX MAP command, or if an illegal switch is pre
sent, the system displays:

INVALID SYNTAX

If this message appears in response to a command within FIXMAP, it means that
the command was typed incorrectly, and it does not terminate the session.

If the specified drive number is greater than 3, the system displays:

DRIVE NUMBER OUT OF RANGE

(In the maximum configuration of the system, the hard disk drives are numbered 0
and 1.)

If the disk does not exist in the system, is not on-line, or is not properly connected,
the system displays:

ERROR 30 USER PC xxx x

where

xxxx is a hexadecimal number.

4-15

ISIS-II Console Commands Series III Operating Instructions

4-16

Example 8: The following example illustrates a typical work session with
FIXMAP. You invoke the command and begin by getting a list of all bad sectors on
the target drive (drive 1, as indicated in the FIX MAP command). The Count com
mand reports that there are eight bad sectors, and the Record command shows that
no sectors have been marked or freed during this work session. You free the last 36
sectors on the track containing track 170, sector 113; all sectors except the eight
known bad sectors are already reported to be free. You mark track 170, sector 113 as
a bad sector, and again list and count the number of bad sectors. This time, the
Record command reports that changes have been made. You free the remaining bad
sector, list again, and return to ISIS-II.

FIXMAP 1<cr>
FIXER V1.0

*';'.;1'."
NO CHANGES
* FREE 170 113 T<cr>
(170,109) ALREADY FREE
(170,110) ALREADY FREE
(170,111) ALREADY FREE
(170,112) ALREADY FREE
(170,121) ALREADY FREE
(170,122) ALREADY FREE
(170,123) ALREADY FREE
(170,124) ALREADY FREE
(170,125) ALREADY FREE
(170,126) ALREADY FREE
(170,127) ALREADY FREE
(170,128) ALREADY FREE
(170,129) ALREADY FREE
(170,130) ALREADY FREE
(170,131) ALREADY FREE
(170,132) ALREADY FREE
(170,133) ALREADY FREE
(170,134) ALREADY FREE
(170,135) ALREADY FREE
(170,136) ALREADY FREE
(170,137) ALREADY FREE
(170,138) ALREADY FREE
(170,139) ALREADY FREE
(170,140) ALREADY FREE
(170,141) ALREADY FREE
(170,142) ALREADY FREE
(170,143) ALREADY FREE
(170,144) ALREADY FREE
TRACK PROCESSED
* MARK 170 113<cr>
SECTOR MARKED *I·.'U'· 170, 113

Series III Operating Instructions ISIS-II Console Commands

*"". 1 BAD
*
C

* FREE 170 113<:r>
SECTOR FREED
*-.t'e+
NO BAD SECTORS

File Control Commands

The commands described in this section are:

DIR
COpy

HDCOPY

DELETE

RENAME

ATTRIB

VERS

Lists the entries in the disk directory

Copies files from one device to another

Copies files from one hard disk to another

Erases filenames from the disk directory

Changes the name of disk files

Changes or displays the attributes of a disk file

Displays ISIS utility version numbers

Wild Card File Names

The DIR, COPY, DELETE and A TTRIB commands allow you to specify filenames
using a wild card construct. Either of two special wild card characters can replace
some or all of the characters in a name or extension. The wild card characters mean
match anything when the system searches a directory for a filename.

The two wild card ch~racters are:

• An asterisk (*) to specify a wild card match to any number of characters.

• A question mark (1) to specify a wild card match to single character.

The asterisk specifies a wild card match to any name and/or any extension in the
directory. For example:

ABC.*-means match any filename with the name ABC and any or no
extension.

* .PLM-means match any filename with the extension .PLM, such as A.PLM
or MYPROG.PLM.

* . *-means match all filenames in the directory.

The asterisk can also specify a wild card match for the remainder of the name or
extension except for the initial character. For example:

AB* .HEX-means match any filename with AB as the first two characters of
the name and HEX as the extension. This example would match: ABC.HEX,
ABXYZ.HEX, AB.HEX.

*B.HEX is illegal, since * must follow the initial character.

4-17

ISIS-II Console Commands Series III Operating Instructions

4-18

Each question mark specifies a single character for a wild card match. For example:

A?B.HEX-means match any filename with A and B as the first and third
characters of a three-character name and HEX as the extension. This example
would match: ACB.HEX, AXB.HEX, AMB.HEX.

A?1 . *-means match any filename with A as first character of a three-character
name and any extension.

:device: cannot include a wild card character.

Wild card constructs enable you to specify multiple filenames with a single reference
when using the DIR, ATTRIB, DELETE, and COpy commands. For example, you
can copy mUltiple rough draft files to an output device by specifying:

COpy CHAP?DFT TO :LP:<cr>

DIR-Disk Directory Listing

The DIR command lists the contents of a specific disk directory.

Command Syntax

OIR [FOR filename] [TO listfile][switches]<cr>

The positions of these fields are not fixed.

where

filename is the file (or group of files specified with the wild card construction)
whose directory entry is to be listed. If FOR filename is omitted, the entire
directory is listed. If filename is not a wild card name (that is, does not contain *
or ?), it is listed even if it has the invisible attribute.

listfile is the name of the file or output device such as :TO: or :HP: to contain
the directory listing. If TO listfile is omitted, the listing is displayed on the
screen.

switches are one or more of the following, separated by spaces:

0-9 Lists the directory of the disk in :FO:, :Fl:, :F2:, ... :F9:. If
omitted, the directory of the disk in drive 0 is listed. If more than
one drive number is specified, only the rightmost one has effect.
The drive number also overrides any device specification in FOR
filename.

Lists all files, including files with the invisible attribute set. If
omitted, only files with the invisible attribute not set are listed.

F Gives fast output, listing only filenames.

o Prints the directory in a single column format. The default is
double column format.

Z Prints the number of sectors presently used on the specified disk as
a fraction of the number of available sectors.

Series III Operating Instructions ISIS-II Console Commands

P Specifies single drive mode. After loading the command, the
system pauses with the message:

LOAD SOURCE DISK, TYPE (CR)

After the source disk is loaded and the RETURN key is pressed, the
requested directory is output to the specified device. The system
then requests that the system disk be replaced:

LOAD SYSTEM DISK, TYPE (CR)

Description

The DIR default is the directory output in two columns with the
following headings:

DIRECTORY OF name. ext

NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR

where

name. ext is the label of the disk volume that is assigned by the
FORMAT or IDISK command. It has the same syntax as a
filename. Each item listed by D IR is explained in the section "Disk
Directory" in Chapter 3. The directory listing shows the number of
blocks in use and the total number of blocks within the disk (2002,
4004, or 28800).

Examples

I. The following example lists two files of a flexible disk on a single density
system. The system files, which have the invisible attribute set, are not listed.

-I-II.H ..
DIRECTORY OF :FO: ISOOAB.SYS

NAME

PROGA

.EXT

.HEX

BLKS LENGTH A ITR NAME

SUMS

126

.EXT BLKS LENGTH A ITR

75 9263 w 51

936/2002 BLOCKS USED

2. The following is the same as example I except a fast listing is requested:

-1-11_.+
DIRECTORY OF :FO:ISOOAB.SYS
PROGA.HEX
936/2002 BLOCKS USED

6357

3. The following example requests a directory listing of all format files be sent to
the line printer. The format files have the invisible attribute, and ISIS. * is a wild
card filename, so the I switch must be specified.

DIR I FOR 1515.* iO :LP:<c r >
4. A single-column fast directory listing of the double-density filexible disk in drive

1 is requested by the following command:

DIR 1 F 0<::">
DIRECTORY OF DISK :F1:ISI.V10
TYPE.M80
TYPE.HEX
TYPE
1337/4004 BLOCKS USED

4-19

ISIS-II Console Commands Series III Operating Instructions

4-20

COPY-Copy a File

The COPY command copies files from one device to another.

Command Syntax
COpy [:Fn:]infile [•••] To{[:Fn:~[outfi'e]I[Switches]<cr>

, :devlce:

where

infile is a file (or group of files when using the wild card construct) to be copied.
The copy does not affect the contents of infile. If more than one infiJe is
specified, they are concatenated in the order specified. When concatenating
files, specify the full name and extension of each file. The wild card construct
may not be used when concatenating files.

outfile is a file to be created or recreated. If :Fn: is not specified, :FO: is
assumed. outfile must include the extension, if any. If outfile is not specified,
:Fn: must be specified.

:device: is an output device, such as :LP:, :TO:, :HP:, or :CO:

switches are one or more of the following:

S Copies files with the system attribute set. For example, the
command:

COpy :FO:*.* TO :F1:*.* S<cr>

copies only files with the system attribute from drive 0 to drive 1.

N Copies files without the system or format attribute set.

P Specifies single drive mode. When files are to be copied between
two disks on the same drive, the system prompts for disk swaps
with the following messages:

LOAD SOURCE DISK, THEN TYPE (CR)
LOAD OUTPUT DISK, THEN TYPE (CR)
LOAD SYSTEM DISK, THEN TYPE (CR)

Q Specifies the query mode. The system displays the following
message before a copy is performed: COpy infile TO outfile? A
yes or y response causes the copy to be performed. Any other
response causes the copy not to be performed.

C Creates outfile with the attributes set from the infile. For example,
if file XYZ with the I attribute set is copied to the file ABC, the
final file ABC will have the I attribute set.

If this switch is not specified, outfile is created with all attributes
reset (off). This switch does not copy the format (F) attribute.

B Deletes an existing file without displaying the "ALREADY
EXISTS" prompt. The existing file is deleted and recreated with
new data.

U Opens outfile for update instead of deleting it. The "ALREADY
EXISTS" message is suppressed. The length is not changed unless
the copy causes an increase in the size of the file.

If U and B are both specified, the U function is performed.

Series III Operating Instructions ISIS-II Console Commands

Description

When copying from one device to another, the destination can be disk files or
physical devices. The copy must be made from an input device to an output device.
For example, you can copy from the reader to the punch but not from the punch to
the reader.

If outfile is an existing disk file and is not write protected, the following message is
displayed:

outfiLe FILE ALREADY EXISTS
DELETE?

If you respond to the message with yes or y (followed by a carriage return), COpy
deletes the existing file before making the copy. No action is performed if you give
any other response.

If outfile is write protected, then the following message is output:

outfiLe WRITE PROTECTED

Single Drive Mode. The COPY command supports single disk drive systems. You
can copy files from one disk to another using only a single drive. The command
prompts for the source, output, and system disks as it needs them. If you specify a
copy on a drive with no change in filename, the command assumes you want to swap
disks and prompts for the swaps. For example, the command

COPY ABC TO ABC <cr>

results in prompts to swap disks in drive O. But the commands

COpy ABC TO : F1 :ABC<cr>

and

COpy ABC TO DEF<cr>

do not result in prompts for disk swapping. You can also copy files between dif
ferent disks on the same drive by specifying the P (pause) switch in the command.

Wild Card Designations. When you use wild card designations, the following rules
apply:

• Every position in the infile that contains an * must have a corresponding * in the
outfile name.

• Every position in the infile name that contains a ? must have corresponding? or
* in the outfile name.

• The wild card characters cannot be used in device designations (you cannot
specify:F*:).

To selectively copy files with the wild card construct, use the query mode. For
example:

COpy :FO:CHAp?DFT TO :F1: Q<cr>

The system then displays the query message before copying each file.

4-21

ISIS-II Console Commands Series III Operating Instructions

4-22

Copying to Another Disk. The COpy command provides a special case for conve
nience when copying disk files to a different disk.If outfile is to have the same name
as infile, you need not enter outfile. For example:

COpy :F1:ABC.XYZ TO :F2:<cr>

is the same as specifying:

COpy :F1:ABC.XYZ TO :F2:ABC.XYZ<cr>

This form can be used with wild card designations in infile:

COpy :F1:*.* TO :F2:<cr>

At the end of the listing of files that were copied the following message is displayed
if write-protected files have been encountered:

WRITE PROTECTED FILE ENCOUNTERED

Possible Error Conditions

If you use a wild card designation when concatenating files, an error message is
displayed:

coPY A, BC.* TO D<cr>
WILD CARD DELIMITERS DURING CONCATENATE

When you use the concatenate operation, outfile must not have the same name as
infile. If it does, the following error message results:

COpy A,B TO B<cr>
SOURCE FILE EQUALS OUTPUT FILE ERROR

If the rules governing wild card designations are not followed, the following error
message is displayed:

COpy ABC.*TO D<c r >
FILE MASK ERROR

Examples

1. This example copies three files to one, overwriting its contents:
copy CHAP1 ,CHA D2,CHAP3 TO BOOK<c r

)

:FO:BOOK FILE ALREADY EXISTS,
DEL E T E? t ,.,
APPENDED :FO:CHAP1 TO :FO:BOOK
APPENDED :FO:CHAP2 TO :FO:BOOK
APPENDED :FO:CHAP3 TO :FO:BOOK

2. Example 1 could have been done in the following way:

APPENDED :FO:CHAP1 TO :FO:BOOK
APPENDED :FO:CHAP2 TO :FO:BOOK
APPENDED :FO:CHAP3 TO :FO:BOOK

Series III Operating Instructions ISIS-II Console Commands

3. This example lists a file on the line printer:

COpy BOOK TO :LP:<cr>
COPIED :FO:BOOK TO :LP:

4. This example displays a file on the console output device:

COpy CHAP1 TO :CO:<cr>
(text of CHAP1)
COPIED :FO:CHAP1 TO :CO:

5. This example copies a file from the disk in drive 0 to the disk in drive I:

COpy PROA TO : F1 :NEWPRG B<cr>
COPIED :FO:PROGA TO :F1 :NEWPRG

6. This example copies system files from one disk to another on drive 0:

COpy *.* TO *.* S<cr>
LOAD SOURCE DISK, THEN TYPE (CR)
LOAD OUTPUT DISK, THEN TYPE (CR)
COPIED :FO:ASM80 TO :FO:ASM80

LOAD SYSTEM DISK, THEN TYPE (CR)
If the files to be copied are quite large (exceeding the size of the available RAM)
the LOAD SOURCE and LOAD OUTPUT messages will be displayed more
than once. As each file is copied, a COPIED message is displayed. After the last
file is copied, the LOAD SYSTEM message is displayed.

7. These examples show valid uses of wild card names with the COpy command:

COpy :F1:*.* TO :F2<cr>

COpy :F1 :A??C TO :FO:D??E<cr>

COpy :F1:*.* TO :F3: N<cr>

COpy :F1 :A????? TO :FO:B*.CPY<cr>

HDCOPY-Copy Hard Disk Tracks

(copy all files except those
with the FORMAT
attribute)

(copy all non-system and
non-format files)

The HDCOPY command copies the contents of one hard disk to another hard disk
on a track-by-track basis. The data transformed are verified during reading of the
data into memory. HDCOPY formats the designation disk before writing data to it.

Command Syntax

H D COP Y {i n d r i veT 0 0 u t d r i ve} < c r>
BACKUP

where

indrive is the number of the drive containing the source hard disk.

outdrive is the number of the drive containing the. destination hard disk.

Both drive numbers must be 0 or I, but both cannot be the same drive number.
Both drives must be a hard disk drive.

BACKUP is a switch that can be used to backup a removable hard disk platter.

4-23

ISIS-II Console Commands Series III Operating Instructions

4-24

Description

If you specify BACKUP, the following actions occur:

• The contents of the disk in drive 1 are copied to the disk in drive O.
• ISIS-II prompts for the backup disk to be placed in drive 1.
• The contents of the disk in drive 0 are copied to the disk in drive I.
• ISIS-II prompts for a system disk to be placed in drive 1.
• The contents of the disk in drive 1 are copied to the disk in drive O.

If a disk error is detected while reading from the source hard disk, the following
message appears on the console device, and a sector of OFFH is written to the
destination disk:

DISK ERROR-UNABLE TO READ FROM SOURCE DISK ON DRIVE M
LOGICAL ADDRESS (ttt, sss), STATUS = nnnn

If an error is detected when reading from or writing to the destination disk, the
following message appears on the console device:

DISK ERROR-UNABLE TO WRITE TO DESTINATION DISK ON DRIVE N
LOGICAL ADDRESS (ttt, sss), STATUS = nnnn

In both cases, processing continues. You must decide whether or not to use the
destination disk or to attempt to make a new copy (seeFIXMAP command).

In these error messages, ttt is the logical track address (in decimal); sss is the logical
sector address (in decimal); and nnnn is the hard disk error status (in hexadecimal)
as described in Chapter 7.

As each track is copied to the destination disk, a T is printed on the console device.
If no errors have been detected during a copy operation, the following message is
displayed:

VERIFICATION OK

If errors have been detected, the following message is displayed:

BAD SECTORS ENCOUNTERED

Possible Error Conditions

The source and destination drives cannot be the same drive number, or a fatal error
results, and an error message is displayed:

SPECIFIED DRIVES NOT HARD DISK

Series III Operating Instructions ISIS-II Console Commands

Examples:

1. A sample HDCOPY command:

H~COPY 1 TO O<cr>
LOAD DISK(S), THEN TYPE (CR)
DRIVE 1 DISK NAME MYDISK.123 IS SOURCE DISK
DRIVE 0 DISK WILL BE OVER-WRITTEN
OK TO CONTINUE?
'W,+.
TT
TT
TT
DRIVE 1 DISK NAME MYDISK.123 COPIED TO DRIVE 0
VERIFICATION OK
HARD DISK COpy COMPLETED

2. A sample HDCOPY command with the BACKUP switch:

HOCOPY BACKUP<cr>
LOAD DISK IN DRIVE 1, THEN TYPE (CR)
DRIVE 1 DISK NAME MYDISK.123 IS SOURCE DISK
DRIVE 0 DISK WILL BE OVER-WRITTEN
OK TO CONTINUE? , .. '"
TT
TT
TT
DRIVE 1 DISK NAME MYDISK.123 COPIED TO DRIVE 0
LOAD BACKUP DISK IN DRIVE 1, THEN TYPE (CR)
DRIVE 0 DISK NAME MYDISK.123 IS SOURCE DISK
DRIVE 1 DISK WILL BE OVER-WRITTEN
OK TO CONTINUE?
'Wei'
TT
TT
TT
DRIVE 0 DISK NAME MYDISK.123 COPIED TO DRIVE 1
LOAD SYSTEM DISK IN DRIVE 1, THEN TYPE (CR)
DRIVE 1 DISK NAME ISOOAT.SYS IS SOURCE DISK
DRIVE 0 DISK WILL BE OVER-WRITTEN
OK TO CONTINUE?

TT
TT
TT
DRIVE 1 DISK NAME ISOOAT.SYS COPIED TO DRIVE 0
VERIFICATION OK
HARD DISK COpy COMPLETED

4-25

ISIS-II Console Commands Series III Operating Instructions

4-26

DELETE-Delete a Disk File

The DELETE command deletes specified directory entries.

Command Syntax
DELETE [:Fn:lfilename [Q] [, ... [Q]] [P]<cr>

where

filename is the name of a file to be deleted. The wild card construction can be
used to delete a group of files.

Q Specifies the query mode. The system displays the following message
before each file is deleted: filename, DELETE? A yes or y response
causes the deletion. Any other response causes the deletion not to be
performed.

P Specifies single drive mode. The system displays prompt messages for
disk swaps.

Description

This command effectively removes the specified file or group of files from a disk,
making the space it occupied available to ISIS-II for reassignment. A file with the
write-protect or format attribute set cannot be deleted.

If filename is a file with neither the write-protect nor format attribute set, the file is
deleted and a confirming message is sent to the console.

If filename does not exist, the following message is sent to the console where
filename is that specified in the DELETE command:

filename, NO SUCH FILE

If the file cannot be deleted because it has the write-protect or format attributes set,
the following message is sent to the console.

filename, WRITE PROTECTED

Query Mode. When you use the Q switch, the system displays the query message
before deleting each file.

The query mode allows you to selectively delete files when using the wild card con
struct. For example:

DELETE :Fn:CHAP?* Q<cr>

The system then displays the query message for each file that matches the wild card
construct.

Single Drive Mode. If you need to swap disks to delete files, specify the P (pause)
switch with the command. Before the deletion is performed, the system displays:

LOAD SOURCE DISK, THEN TYPE (CR)

Series III Operating Instructions ISIS-II Console Commands

When the deletion is completed, the following message is displayed:

:Fn:fjiename, DELETED
LOAD SYSTEM DISK, THEN TYPE (CR)

Examples:

1. This example deletes three files.

DELETE CHAP?*<cr>
: FO: CHAP1 . TXT, DE LETED
:FO:CHAP2.LST, DELETED
:FO:CHAP3.SRC, DELETED

2. This example shows an attempt to delete a write-protected file.

DELETE PROGA.ASM<cr>
:FO:PROGA.ASM, WRITE PROTECTED

3. This example shows the deletion of a file using the P switch.

DELETE PROGB.ASM P<cr>
LOAD SOURCE DISK, THEN TYPE (CR)
:FO:PROGB.ASM, DELETED
LOAD SYSTEM DISK, THEN TYPE (CR)

RENAME-Rename a Disk File

The RENAME command changes the name of a disk file. Only the directory is
affected.

Command Syntax
RENAME [:Fn:]oidname TO [:Fn:]newname<cr>

where

:Fn: must be the same for both oldname and newname.

oldname is the name of an existing file whose write-protect or format attribute
is not set. oldname follows :Fn: with no intervening space, as in :F2:MYPROG.

newname is the new name to be assigned to oldname. newname follows :Fn:
with no intervening space, as in :F2:PROG I.

Description

When you enter the command to change the name of an existing file to a new name
that does not already exist, the system makes the change in the directory.

However, if another file with the new name already exists, the following message is
displayed:

newname, ALREADY EXISTS, DELETE?

If the existing file is to be deleted, enter a Y or y followed by a carriage return.
RENAME will delete the existing file and change the name of oldname in the
directory.

4-27

ISIS-II Console Commands Series III Operating Instructions

4-28

If the existing file to be deleted is write-protected or if you enter any character other
than Y or y, the existing file is not deleted and the file to be renamed is not renamed.

NOTE
RENAME cannot be used on nonsystem disks on a single drive system. To
change the name of a nonsystem disk file with only a single drive, use the
COpy command to copy the file to a file with the new name, then delete the
old file with the DELETE command.

Possible Error Conditions

If oldname is a nonexistent file, an error occurs.

If the :Fn: part of oldname does not match the :Fn: part of newname, an error
occurs.

Examples

1. The name of a file on drive 0 is changed from CHAPI to CHAP.ONE:

RENAME CHAP1 TO CHAP.ONE<cr>

2. An attempt is made to rename a write-protected file:

RENAME NEWPRG.TXT TO PROGA.TXT<cr>
NEWPRG.TXT, WRITE PROTECTED

3. In this example, the new name is the name of an existing file.

RENAME TEXT.BAK TO TEXT.OLD<cr>
TEXT.OLD, ALREADY EXISTS, DELETE? .ifiiQ

ATTRIB-Change/Display Disk File Attributes

The A TTRIB command changes and/or displays the specified attributes of a disk
file.

Command Syntax
ATTRIB [:Fn:]filename [attriblist] [Q]<cr>

where

filename is a disk file whose attributes are to be changed. The wild card con
struction can be used to change and/ or display the attributes of a group of files.

attriblist is one or more of the following:

10 or II Resets (10) or sets (11) the invisible attribute. When set, the file
is not listed by the DIR command unless the I switch is
specified in the DIR command.

WO or WI Resets (WO) or sets (WI) the write-protect attribute. When set,
the file cannot be opened for output or update, and cannot be
deleted or renamed.

Series III Operating Instructions ISIS-II Console Commands

FO or Fl

SO or SI

Resets (FO) or sets (FI) the format attribute. Removal of the
format attribute from system files will cause improper format
ting of new system disks. This attribute is reserved for specific
system files and should not be assigned to any other file.
Assigning this attribute to any other file will cause that file not
to be copied by the FORMAT command.

Resets (SO) or sets (SI) the system attribute. When set, the file
is copied to the disk being formatted by the FORMAT com
mand when the S switch is used. This file is also copied by the
COpy command when the S switch and wild card notation are
used.

If two values of the same attribute are specified, for example both 10 and II,
the one rightmost in the command takes precedence.

Q Specifies query mode operation.

Description

When you specify the Q switch, A TTRIB displays the following messages before
changing the attributes of a file:

filename, MODIFY ATTRIBUTES?

Type a Y or y if you want the file attributes modified. Any other response causes
ATTRIB to leave the attributes unchanged for the specified file and to go on to the
next file in the group.

If a nonexistent disk file is specified, ATTRIB displays:

filename, NO SUCH FILE

If a non-disk file is specified, ATTRIB displays:

filename, NON-DISK DEVICE

When attributes for a file have been changed, the current attributes for the file are
displayed.

Examples

1. This example changes the write-protect attribute of a group of files:

ATTRIB PROGA.* w1<cr>
FILE

:FO:PROGA.SRC
:FO:PROGA.OBJ

CURRENT ATTRIBUTES
W
W

2. This example sets the system attribute for the TYPE program so it will be
transferred onto new system disks (see FORMAT command).

ATTRIB TYPE S1<cr>
FILE

:FO:TYPE
CURRENT ATTRIBUTES

S

4-29

ISIS-II Console Commands Series III Operating Instructions

4-30

VERS-Display ISIS Utility Version Numbers

The VERS command displays the version number of user-specified ISIS command
programs (e.g., DIR, ATTRIB, COPY, IDISK).

Command Syntax

VERS [:Fn:]filename<cr>

where

filename is the name of the ISIS file on :Fn: whose version number is to be
displayed.

Description

The VERS command should be used to ensure that the version numbers of the ISIS
command programs currently on your system are the same as (i.e., compatible with)
the version number of the ISIS you signed on under.

Examples

1. This program lists the version number of a compatible ISIS command program:

VERS DELETE<cr>
V4.2

2. This example lists the version number of an incompatible ISIS command (the
basic operating system version number is 4.2):

VERS EDIT<cr>
V 4. 1

3. This example shows an attempt to list the version number of a non-ISIS file:

VERS MYFILE.EXT<cr>
FILE DOES NOT CONTAIN A PROGRAM VERSION NUMBER

4. This example shows an attempt to list the version of a file not in the directory
of the target device:

VERS NONFIL<cr>
ERROR 13 USER PC 375B

Program Execution Commands

You can call a program in three ways:

• Direct execution in which you must respond to any queries from the program
and to any errors encountered during program execution.

• Debug execution in which the debugging provisions of the system aid you in
identifying and locating program errors.

• Non-interactive execution in which you submit the program as a job to be
handled by the system without any interaction on your part. You prepare a file
that interacts with the program in the same manner as you would during direct
execution of the program (see the SUBMIT command).

Series III Operating Instructions ISIS-II Console Commands

Two sets of ~ecution commands are provided, one for your 8080- or S085-based
programs, and another for your 8086-based programs.

8080/8085 Program Execution Commands

The commands described in this section are:

filename

DEBUG

SUBMIT

Loads and executes an 8080/S085 program named filename.

Loads an 8080/S085 program, if specified, and gives control
to the Monitor.

Enters a file that contains commands to be executed.

Filename-Direct Program Execution

Your 8080/S085-based programs are loaded and executed by simply entering the
name of the file. You may include parameters with the filename to provide control
over the program to be executed. However, the program must be written to accept
these parameters and must read the parameters from the line ending buffer. (Further
details on parameters are given in the Intellec Series III Microcomputer Develop
ment System Programmer's Reference Manual.)

DEBUG-Transfer Control to Monitor

The DEBUG command loads an executable 80S0/80.S5 program, if specified, and
passes control to the Monitor.

Command Syntax

-DEBUG [[:Fn:]filename [parameters]]<cr>

where

:Fn: is the directory on the drive n that contains the target file. n is any integer
value between 0 and 9 inclusive. If :Fn: is not specified, :FO: is the default.

filename is any ISIS-II command or the file name of an executable program.
The program must be an absolute object module. If filename is omitted, control
transfers to the Monitor, but no program is loaded.

parameters are the normal parameters of the program to be executed.

Description

When your executable SOSO/S085 program is loaded, the Monitor displays the con
tents of the program counter and prompts for a command with a period (.) on the
. system console.

To begin execution of the program, enter the Monitor G command. You may
specify a starting address (entry point address) and up to two breakpoint addresses
in the G command.

4-31

ISIS-II Console Commands Series III Operating Instructions

4-32

When execution of your program is suspended at the breakpoint address, you can
use other Monitor commands to inspect and/or change the contents of memory
and! or registers and then continue program execution from the point of suspension
with another G command.

You can return to ISIS-II from the debug mode and reset the debug switch in one of
the following ways:

• Enter the Monitor command GS.

• Execute an EXIT system call in the program being debugged.

• Press interrupt 1.

Examples

1. This example executes a program named LIST in debug mode at a load address
of 36S0H:

DEBUG LIST FILE.TXT<cr>
#3680

.'ii'"
(The LIST program is executed.)

2. This example executes the same program in debug mode, suspends execution at
the specified breakpoint address, and then returns to ISIS-II with a GS com
mand instead of letting the program issue an EXIT system call:

DEBUG LIST FILE.TXT<cr>
#3680

(U se Monitor commands to examine registers and memory when the breakpoint
36AO is reached.)

.ICI;"''''
ISIS-II,Vx.y

3. This example allows you to transfer to Monitor control with no program
loaded. Return to ISIS-II by entering the Monitor G command with no address.

'·'1:11.'"
#0008

SUBMIT -Non-Interactive Program Execution

The SUBMIT command causes ISIS-II to take its commands from a disk file rather
than the console.

Command Syntax

SUBMIT [:Fn:Jfilename[(parameter[, ...])9]<cr>

where

filename is the name (and extension, if any) of the file containing the command
sequence definition (explained below). If extension is omitted, SUBMIT
assumes the default extension .CSD.

parameter is an actual value that is to rephlce a form'al parameter in the com
mand sequence definition file. The maximum number of parameters allowed is
10. If you omit a parameter from the SUBMIT list, enter a comma in its place.

Series III Operating Instructions ISIS-II Console Commands

A parameter is a character string of up to 31 characters. Any ASCII character
from 20H to 7 AH is legal, except a comma, space, Qr right parenthesis. If a
parameter contains a comma, space, or right parenthesis, enclose the parameter
in quotation marks. To use a quotation mark inside a quoted parameter, use
two quotation marks in its place. For example:

ITITLE("QUOTE (II) SEARCH ROUTINE")I

is used in the final command as:

TITLE(IQUOTE (I) SEARCH ROUTINE I)

Description

SUBMIT uses two files:

• A command sequence definition (CSD) file that contains the command
sequence definition. You create this file with formal parameters.

• A command sequence (CS) file that contains the command sequence to be
executed. SUBMIT creates this file with the actual parameters supplied in your
SUBMIT command replacing the formal parameters. The command sequence
file has the same name as the command sequence definition file but with the
extension CS. You should not modify this file.

SUBMIT reassigns the console input device to the CS file it has created and
returns control to ISIS-II, which then executes the commands in the CS file. The
CS file has a final command that restores the console input device to its former
device assignment and deletes the CS file.

When you create the CSD file, specify formal parameters by using two characters,
%n, where n is a digit from 0 through 9. You may place formal parameters
anywhere in the CSD file. To enter a percent sign (070) that is not to be interpreted as
a formal parameter, precede it by a CNTL/P character, as in tPOJo.

You can execute any program noninteractively that reads its commands from :CI:.
To execute an 8086 program under SUBMIT, include the RUN command in the
CSD file as shown in example 1 below.

The CSD file can also contain commands to the programs being run. If you use a
SUBMIT command in a CSD file, it causes another CS file to be created. You can
nest SUBMIT commands to any depth.

A CNTL-E (tE) in a CS file switches the console input from the CS file to the initial
system console, allowing interactive processing. To return control to the CS file,
enter CNTL-E at the console. If control is not returned to the CS file, or if an error
occurs after a command sequence has started processing, control returns to ISIS-II
and the CS file is not deleted.

NOTE

If a CS file returns control to the initial console device while entering com
mands in 8086 mode, CNTL-D and CNTL-C will lose their special meaning,
i.e., they will not interrupt processing.

Any program running under SUBMIT must allow two buffers in addition to the
open files and buffers required by the program itself. See the Inte/Jec Series III
Microcomputer Development System Programmer's Reference Manual for
information on how to determine the base address of your program.

Any program running under SUBMIT should not contain the system call CONSOLo

4-33

ISIS-II Console Commands Series III Operating Instructions

4-34

Examples

1. The following example shows a PL/M-86 compilation executed noninteractively
on a 4-drive system. The PL/M-86 command has only three items that change.
Using SUBMIT to enter the command automates the process, saving you
keystrokes at the console.

The command sequence definition is in the file PLM86.CSD. See the iAPX 86,
88 Family Utilities User's Guide for an explanation of the controls in the
PLM86 command. The file P86.CSD contains the following:

RUN PLM86 :F1:%O.%1 DEBUG XREF PRINT (:F3:%O.LST) DATE(%2)

This command sequence definition contains three formal parameters, indicated
by UfoO, Ufo 1, and Ufo2. The SUBMIT command used to start the compilation is as
follows:

SUBMIT P86CPROGA,SRC,'9 SEPT 80')<cr>

The command sequence created and executed by SUBMIT is shown as it would
be echoed on the console output device:

-RUN PLM86 :F1:PROGA.SRC DEBUG XREF PRINT
(:F3:PROGA.LST) DATE(9 SEPT 80)

SERIES III PL/M-86 COMPILER, V1.0
PL/M-86 COMPILATION COMPLETE 0 PROGRAM ERROR(S)

-:FO:SUBMIT RESTORE P86.CS(:VI:)

2. This example shows a PL/M-80 compilation, a LINK, and a LOCATE executed
from a SUBMIT file on a 2 flexible disk drive system. A CNTL-E is entered in
the command sequence definition after the PL/M compilation so you can
remove the compiler disk. When the regular system disk (with LINK and
LOCATE) is mounted, you enter CNTL-E to resume processing. The text editor
does not echo the tE; however, it is echoed when the SUBMIT file is executed.

The file CMPLNK.CSD in drive 1 contains the following command sequence
definition. See the MCS-80/85 Utilities User's Guide for 8080/8085-8ased
Development Systems for an explanation of controls in the PLM80 command.
The CMPLNK.CSD file contains:

PLM80 %0.%1 DEBUG XREF DATE(%2)
1'E
LINK %O.OBJ,SYSTEM.LIB TO %O.SAT&
PRINT(%0.MP1) MAP
LOCATE %O.SAT PRINT(%0.MP2) MAP

The SUBMIT command entered to compile, link, and locate PROGA.SRC follows:

SUBMIT :F1 :CMPLNK C: F1 :PROGA,SRC, '3 OCT 81 ')<cr>

Series III Operating Instructions ISIS-II Console Commands

The command sequence actually executed is shown as it would be echoed on the con
sole output device:

-PLM80 :F1:PROGA.SRC DEBUG XREF DATE(3 OCT 81)

ISIS-II PL/M-80 COMPILER V3.1
PL/M-80 COMPILATION COMPLETE 0 PROGRAM ERROR(S)

-tEtE
-LINK :F1:PROGA.OBJ,SYSTEM.LIB TO :F1:PROGA.SAT &
**PRINT(:F1:PROGA.MP1) MAP
-LOCATE :F1:PROGA.SAT PRINT(:F1:PROGA.MP2) MAP
-:FO:SUBMIT RESTORE :F1:CMPLNK.CS(:VI:)

8086 Program Execution Commands

The commands described in this section are:

RUN

filename

DEBUG

WORK

DATE

EXIT

Activates the 8086 execution mode and optionally executes an
8086 program.

Loads and executes an 8086 program named filename (see the
RUN command).

Loads an 8086 program, if specified, and gives control to
DEBUG-86. This command is described in Chapter 6.

Changes or displays the default drive used for workfiles.

Changes or displays the system date.

Exits the 8086 execution mode and returns control to ISIS-H.

RUN-Activate 8086 Execution Mode

The RUN command activates the 8086 execution mode, and optionally loads and
executes an 8086 program.

Command Syntax
RUN [[:Fn:]filename [parameters] [icomments]]<cr >

where

fjlename is the name of your 8086 program. If you enter no extension, the
system assumes a default extension of .86. For example, if you enter MYPROG
as the filename, the system looks for MYPROG .86. This default extension is
not assumed if you enter your own extension (or a period and no extension, as in
MYPROG.).

comment is one or more ASCII characters not including a carriage return or line
feed. Comments always begin with a semicolon.

4-35

ISIS-II Console Commands Series III Operating Instructions

4-36

Description

When a RUN command requires more than one line, terminate each intermediate
line with an intermediate line terminator that consists of an ampersand (&) followed
by a carriage return. You can optionally insert a comment, preceded by a semicolon
(;), between the ampersand and the carriage return. You can enter up to 120
characters before each line terminator.

When the RUN program is ready to accept a continued command line, it prompts
with two angle brackets (»).

You can enter a comment, preceded by a semicolon, either on a line containing a
command or on a separate line. If you enter the comment on the same line as a com
mand, place the comment after the command. If you begin the comment on a new
line, use the line only for comments.

Your program can read the filename and parameters in the command line by calling
the DQGETARGUMENT routine described in the Intellec Series III Micro
computer Development System Programmer's Reference Manual.

Operating Modes. You can operate the RUN program in interactive or non inter
active modes.

Noninteractive Mode. In this mode you invoke the RUN program and load and
execute your 8086 program by entering one command. After program execution
control returns directly to ISIS-II. You must re-enter RUN for each 8086 program to
be execu ted.

Activate this mode as follows:

RUN: F1 :MYPROG<cr>

Interactive Mode. In this mode you invoke RUN first. RUN signs on; you then
load and execute 8086 programs by entering each filename without re-entering
RUN. After each program is executed, control returns to RUN.

Activate this mode as follows:

-liPI~h'.

The Run program signs on and issues its prompt character (»:

ISIS-II RUN 8086, Vx.y
>

where x.y is the version and release number of the Run program.

You can now execute successive programs by just entering the program name
followed by a carriage return. After each program is executed, the RUN prompt
character (» is displayed.

To return to ISIS-II enter the EXIT command (explained later in this chapter).

Interrupting Program Execution. To terminate 8086 program execution and close
files and return control to RUN or ISIS-II, use CNTL-C. CNTL-C returns control
to the RUN program if you are in interactive RUN mode, and to ISIS-II if you are in
noninteractive RUN mode.

Series III Operating Instructions ISIS-II Console Commands

To interrupt 8086 program execution and enter DEBUG-86, use CNTL-D.

Interrupt 1 performs the same functions in 8086 mode as in 8080/8085 mode. That
is, when interrupt 1 is pressed, all open files are closed in their current state, the
initial console becomes the current console, and control of the system is transferred
to ISIS-II.

Do not use iriterrupt switch 0 while in the 8086 mode.

Examples

1. To activate the 8086 execution mode and run one program (noninteractive
mode):

RUN :F1:AVG.SRC<cr>

2. To activate the 8086 execution mode and run several programs (interactive
mode):

~1;lIIf··
ISIS-II RUN

ASM86 :F1:A
• r I • /'I V \J" l, I-

: t : •
VG.SRC<cr>

:F1 :AVG.<cr>
:F1 :AVG.XYZ<cr>
EXIT<cr>

(executes ASM86.86)
(executes AVG.86)
(executes AVG)
(executes AVG.XYZ)

WORK-Change/Display Default Drive of Workfiles

The Work command changes or displays the default drive used for temporary
work files in the 8086 execution mode.

Command Syntax

[RUN] WORK [:Fn:]<cr>

where

:Fn: specifies the drive n that is to be set as the default drive for your temporary
workfiles. n is an integer value between 0 and 9 inclusive. The initial system
default is :Fl: If :Fn: is not specified, the current default is displayed.

Description

The system assigns filenames in the following form as system work files as they are
created:

nnn.TMP

where

nnn are integer values between 000 and 999 inclusive.

If you create files with names of this form on the same disk, they are subject to dele
tion unless one of the following conditions exists:

• Your files have the write-protect attribute set.

• You use the WORK command to change the default drive being used for your
workfiles.

4-37

ISIS-II Console Commands Series III Operating Instructions

4-38

For information on creating temporary workfiles, see the InteJJec Series III
Microcomputer Development System Programmer's Reference Manual.

The default drive is saved in the system file RUN.MAC and is obtained from this file
whenever RUN is activated. The RUN.MAC file is assumed to be on the same drive
specified for the RUN file. If it does not exist when the WORK command is entered,
it is created on this disk.

If the system is already in the RUN program interactive mode, do not enter RUN on
the WORK command line.

Examples

1. To change the default drive to drive 0 in the interactive mode:

>
>

WORK :FO:<cr>

2. To display the default drive in the interactive mode:

>
: F 0 :
>

3. To change the default drive to drive 0 in the noninteractive mode:

R'.'N w8RK :FO:<:">

4. To display the default drive in the noninteractive mode:

RJN WJRK<:">

: F 0 :

DATE-Change/Display System Date

The DATE command changes or displays the system date.

Command Syntax
[RUN] DATE [nn/nn/nnl<cr>

where

nn is any integer value between 00 and 99 inclusive that specifies the date
desired. If the date is not specified, the last date entered is displayed. The ini-tial
default date is 09/01/80.

Description

You can enter the date in either the U.S. format (month/date/year) or the European
format (date/month/year).

The system does not automatically update the date but saves the last date entered in
the system file RUN.MAC and obtains it from this file upon each subsequent invo
cation of RUN. The RUN .MAC file is assumed to be on the same disk specified for
the RUN file. If it does not exist when the DATE command is entered, it is created
on this disk.

Series III Operating Instructions ISIS-II Console Commands

If the system is'already in the RUN program interactive mode, do not enter RUN on
the DATE command line.

Examples

1. To enter the date December 15, 1981 in the interactive mode:

>
>

DATE 12/15/81 <c r>

2. To display the last date entered in the interactive mode:

12/15/81
>

3. To enter the date March 1, 1981 in the noninteractive mode:

RUN DATE 03/01/81<cr>

4. To display the last date entered in the noninteractive mode:

RUN OATE<cr>

03/01/81

EXIT-Exit the RUN Program

The EXIT command transfers control from the Run program to ISIS-II.

Command Syntax

EXIT<cr>

Description

Use the EXIT command to return to ISIS-II after an interactive RUN invocation
(i.e., RUN was invoked by specifying RUN followed by a carriage return). You can
enter an EXIT command whenever the RUN prompt character (» is displayed.

Example

To exit the RUN program and return to ISIS-II:

4-39

CHAPTERS
THE MONITOR

The Monitor is a program stored in ROM that provides the following supervisory
functions:

• Initiation of the system at start-up

• 110 interface to all standard peripheral devices except disks

• Software development of your 8080/8085-based programs

System Initiation

The Monitor handles the initiation of the system when you first start up.

In a system without hard disk drives, the Monitor checks drive 0 for a system flexible
disk. ISIS-II files are loaded from disk into memory and control is passed from the
Monitor to ISIS-II. If a non-system disk is in drive 0, control is retained by the
Monitor.

In a system with a hard disk drive, the Monitor checks drive 4 for a system flexible
disk.

After ISIS-II is loaded, you can access the Monitor functions by pressing interrupt
O.

I/O Interface

The Monitor handles 110 interface to the console, printer, paper tape reader, and
punch. When an input or output operation to these devices is needed, ISIS-II calls
the appropriate Monitor routine. When the operation is completed, the Monitor
routine returns control to ISIS-II.

ISIS-II handles disk I/O (see Chapter 3).

8080/8085 Program Development

The Monitor provides a command set that enables you to debug your 8080/8085-
based programs. Monitor commands allow you to:

• Display and modify memory and processor registers.

• Initiate execution of your 8080/8085 programs.

• Insert breakpoints into your 8080/8085 programs before execution.

• Read hexadecimal data from an external device into memory.

• Write hexadecimal data from memory to an external device.

5-1

The Monitor

5-2

Series III Operating Instructions

Command Categories

The commands described in this chapter are grouped as follows:

Program Execution Commands

Execute (G) Transfers control from the Monitor to the loaded
program and optionally sets one or two breakpoints in
the program

Monitor I/O Configuration Commands

Assign (A) Changes device assignment

Query (Q) Displays the devices currently assigned

Memory Control Commands

Display (D)

Fill (F)

Move(M)

Substitute (S)

Displays a specified range of memory

Fills a specified range of memory with a constant value

Copies the contents of a specified range of memory into
another area of memory

Modifies memory on a byte-by-byte basis

Register Command (X)

Display Form Displays the contents of all registers

Modify Form Changes the contents of a single register

Paper Tape I/O Commands

Read (R) Reads data from paper tape into memory

Write (W) Writes data from memory to paper tape

End-of-File (E) Writes an end-of-file record to paper tape

Null Leader/Trailer (N) Writes null leader and trailer characters to paper tape

Utility Command

Hexadecimal Add and subtract two hexadecimal numbers

Series III Operating Instructions

Entering Commands

Your communication with the Monitor is through the system console. When you
turn on the system power, the Monitor responds with the following sign-on message
and a prompt character (a period) at the left side of the display:

SERIES II MONITOR, Vx.y

where

x.y is the version and release number of the Monitor.

To load an 8080/8085 program from disk into memory for debugging, enter the
DEBUG command described in Chapter 4 specifying the name of the program to be
debugged. For example:

DEBUG: F1 :MYPROG<cr>

Your program is now loaded, control of the system is passed to the Monitor, and the
Monitor prompt character (a period) is displayed.

You can enter commands at the console anytime after the Monitor prompt character
is displayed at the left margin.

Monitor commands are single alphabetic characters. Many commands have required
or optional parameters. Parameters may be alphabetic or numeric as indicated
under each command.

Numeric parameters are entered in hexadecimal format. The Monitor recognizes
only the numeric characters 0 through 9 and the uppercase alphabetic characters A
through F as legal hexadecimal digits. In this manual, hexadecimal numbers are
shown with an H appended; however, do not enter the H in a Monitor command.

Normally, commands are executed when you press the return key on the keyboard.
Any exceptions to this are fully explained in the individual command descriptions.

Command Syntax

The general syntax of Monitor commands is:

command[parametersJ<cr>

where:

command is the single alphabetic character for the command.

parameters are one or more variable data supplied with the command.
Parameters can be numeric or alphabetic. When a numeric parameter is called
for, it must be entered in hexadecimal form and is limited to four hexadecimal
digits (OOOOH through FFFFH). Larger numbers can be entered, but only the
four rightmost digits are used by the system. For example, the value 123456H is
treated as 3456H by the system.

Where a comma is shown in the syntax, you can use either a comma or a space
unless otherwise noted under the individual commands.

The Monitor

5-3

The Monitor

5-4

Series III Operating Instructions

Entry Errors

The Monitor checks for several error conditions:

• Invalid characters

• Address value errors

• Checksum errors

Invalid Characters
The Monitor checks the validity of each character entered at the Console device. As
soon as it encounters an invalid character, it displays a number sign (#) and aborts
the command. It displays the prompt character on the next line and waits for more
input. In the following example, 4 is rejected because it is not a valid command:

·tt

The first character entered must be a valid command, otherwise it is rejected by the
Monitor.

Address Value Errors

All addresses must be entered in hexadecimal. Any character other than 0-9 and A-F
is rejected by the Monitor. In the following example, G is not a valid hexadecimal
digit:

. nll'IIIW'IMlJ
Many commands require two addresses where the first address is lower than the
second. If the first address is higher than the second, the operation will be per
formed on the single address specified as the first address. For example, suppose you
meant to fill memory from address 900 to address 1000 with the constant FFH but
entered the addresses in the opposite order as follows:

F1000,900, FF<cr>

The Monitor would place a FF in address l000H and do nothing else. No indication
that an error occurred is given. You will only find the error when you notice that a
single byte was filled instead of 100H bytes.

The valid range of address is OOOOH through FFFFH. If addresses higher than
FFFFH are entered, only the last four digits will be used when the command is exe
cuted. For example, if 10000H is entered instead of 1000H:

F10000,900, FF<cr>

The command would have been evaluated as:

.FOOOO,900,FF

and memory from address 0 through 900 would have been filled with FF. This com
mand would have erased some of the memory that the Monitor itself uses. No
indication of this error is given except that the Monitor will not function correctly
for some commands until you reboot the system.

Series III Operating Instructions

Checksum Errors
Object code punched onto paper tape by the Monitor or Assembler contains
checksum digits, which permit the Monitor to detect improperly punched tape or a
tape reader error condition when the tape is read in.

When the Monitor detects a checksum error when reading from an input device,
such as a paper tape reader, it types the number sign (#) and stops reading the tape.

If a checksum error is detected, reread the tape from the beginning. If checksum
errors continue, check the tape reader hardware or check the tape for damage.

Program Execution Commands

The following command is described in this section:

Execute (G) Transfers control from the Monitor to the loaded program and
optionally sets one or two breakpoints in the program

G-Execute Command

The Execute command transfers control to the program at the address specified or
implied in the command and optionally sets one or two breakpoints in the program
to which control is passed.

Command Syntax

G[start-addressl[breakpoint1J[,breakpoint21<cr>

where

G is the Execute command code.

start-address is the address to be placed in the program counter. Control of the
system is passed to this address. The address must be specified in hexadecimal.

breakpointJ and breakpoint2 are points in the program where control is passed
back to the Monitor. The breakpoints are entered in hexadecimal.

Description

The Execute command transfers control from the Monitor to your own program.
You can specify the starting address and one or two breakpoints with the command.
The starting address is optional. If it is not specified in the command, the address in
the program counter is used. In the following conditions, you can be sure that the
desired address is in the program counter:

• You interrupted your program with the interrupt 0 switch and you have done
nothing to destroy the program's registers.

• You loaded the program from paper tape and the end-of-file record contained
the entry point address. This entry point address is loaded into the program
counter by the Monitor.

The Monitor

5-5

The Monitor Series III Operating Instructions

5-6

• Y qu modified the program counter to your entry point address with the Register
command.

• Your program returned control to the Monitor because a breakpoint was
encountered.

A breakpoint is the address of an instruction within your program that, if fetched,
results in the return of control to the Monitor. Breakpoints allow you to check the
contents of registers or data fields in your program. When a breakpoint is reached,
the instruction at the address is not executed before control is returned to the
Monitor. The instruction at the breakpoint is executed when you return control to
your program with the Execute command.

If breakpoints are specified, the Execute command functions differently than most
of the Monitor commands. Before the carriage return is entered, the Monitor
prompts for breakpoints if a comma is entered after typing G. Command entry is in
the following sequence:

1. Enter the command code and, optionally, the start-address followed by a
comma: .RI".

2. The Monitor displays a dash:

.[1";'-
3. Enter the first breakpoint address:

.[1";'-_
4. Follow step 5 or 6 depending on how many breakpoints you want to set.

5. If a second breakpoint is not to be set, press RETURN:

.[1'.-".4."
6. If a second breakpoint is to be set, enter another comma, enter the second

breakpoint, and press RETURN:

.[1,.--,-,1 ... "
If the command contains a syntax error, no breakpoints are set. The command must
be reentered and the breakpoints again specified.

When either of the breakpoints are reached and control is returned to the Monitor,
or when control is returned to he Monitor because of an interrupt 0, both break
points are eliminated. If you want them when you resume execution of your pro
gram, you must specify them again.

There are two important points you must know when using breakpoints to debug
and test your program:

• In saving the CPU status for your program, the Monitor uses the top 12 bytes of
your program stack. This pushes the status of your registers and program
counter onto the stack. You should be aware of this when examining the stack.
When control is returned to your program, your registers are restored and the
stack pointer is reset as if the breakpoint had never occurred.

• The interrupt system is enabled when the Monitor is entered. The Monitor
cannot determine the state of the interrupt system just prior to exit from your
program. It is assumed that the interrupt system was enabled and so interrupts
are enabled when control is returned to your program. It is your responsibility
to either enable or disable the interrupt system.

Series III Operating Instructions

Examples:

1. To pass control to the program address in the program counter: ... , ..
2. To pass control to the program whose entry pont is 30A:

. [l1··!U'·
3. To pass control to the program whose entry is 30A and to set a breakpoint at

address 400 within that program:

. fll.'M-t •• , •• 6
4. To pass control to the program whose entry point is 30A and to set two

breakpoints, at addresses 400 and 500, within that program: . [1,.,;11-_-",.1., ••
Monitor 1/0 Configuration Commands

The Monitor has four logical system devices defined:

• Console
• Reader
• Punch
• List

You have the option of selecting the physical device that will perform the required
logical device function. The Monitor commands that allow you to control the system
110 configuration are:

Assign (A) Changes device assignment.

Query (Q) Displays the devices currently assigned

The characteristics of each logical device and the physical devices that can be
assigned to each logical device are as follows:

• The Console is an interactive, character-oriented input and output device. A
teletypewriter and a CRT terminal have all these characteristics.

• The Reader is a character-oriented input device that transfers data on command
and notifies the calling system when no more data is available. A paper tape
reader meets these qualifications.

• The Punch is a character-oriented output device that accepts a character from
the calling system and records it on an external medium. A paper tape punch
meets these qualifications.

• The List device is a character-oriented output device that accepts a character
from the calling program and records it on an external medium in human
readable form. A line printer meets these qualifications.

A driver program is required for each physical device assigned. The physical devices
for which the Monitor provides driver programs are:

• Teletype console with a keyboard, printer, paper tape reader, and punch. This
type of device can be assigned to all the system devices.

• CR T devices with a keyboard that are compatible with the Intellec system. This
type of device can be assigned to the Console or the List device.

• High speed paper tape reader. This type of device can be assigned to the Reader
device.

• High speed paper tape punch. This type of device can be assigned to the Punch
device.

The Monitor

5-7

The Monitor Series III Operating Instructions

5-8

• Line printer. This type of device can be assigned to the List device.

• Batch. This is a non-interactive mode in which CONSOLE input is read from
the assigned READER device and written to the assigned LIST device. In
preparing a command file for BATCH input, you should enter cominands in
exactly the same way as if the system were in interactive mode. Each command
should end with a carriage return/line feed pair. The period (prompt) character
generated by the Monitor in interactive mode should not appear as part of the
command. Since the Monitor will continue to read from the READER until the
CONSOLE is reassigned, the last command in the BATCH command file
should reassign the CONSOLE to prevent the Monitor from reading off the end
of the tape.

A-Assign Command
You can assign one physical device to a system with the Assign command.

Command Syntax
ALogical-device=physicaL-device <cr>

where

A is the Assign command code.

logical-device is the system device that is to to be assigned a physical-device. The
possible values for logical-device are:

Cor CONSOLE
Ror READER
P or PUNCH
L or LIST

The equal sign (=) must be entered.

physical-device is the physical device that is to be assigned to the logical-device.
The possible values of physical-device for each logical-device are:

Logical
Device

CONSOLE

READER

PUNCH

LIST

Physical Device

T or TTY (teletype terminal)
C or CRT (compatible CRT terminal)
B or BATCH (batch mode)
1 (user-defined device for which a user-written program is present)

T or TTY (teletype terminal)
P or PTR (high speed paper tape reader)
1 or 2 (user-defined devices for which user-written driver programs are
present)

T or TTY (teletype terminal)
P or PTP (high speed paper tape punch)
1 or 2 (user-defined devices on which user-written driver programs are
present)

T or TTY (teletype terminal)
C or CRT (compatible CRT terminal)
Lor LPT (line printer)
1 (user-defined device for which a user-written driver program is present)

Series III Operating Instructions

Examples
1. To assign a high-speed paper tape reader as the system Reader device:

.11 E

or

2. To assign a CRT terminal as the system Console device:

·fiB H*!
or

Q-Query Command

The Query command displays the current status of the system 1/0 devices. It
displays a list of the system devices and the physical devices assigned to them.

Command Syntax
Q<cr>

where

Q is the Query command code. No parameters are allowed with this command.

Example

To list the current assignments of system devices:

c=
R=T
P=T
l=l

This response indicates that a teletype terminal is assigned as the Console, Reader,
and Punch devices. A line printer is assigned as the List device, not the Console
device.

Memory Control Commands

There are four Monitor commands for accessing the 8080/8085 memory. The com
mands that only read memory can be used on RAM as well as PROM and ROM.
The commands that write to memory can only effectively be used on RAM. If you
specify ROM or PROM with these commands, no error indication is given but the
write portion of the command is not executed.

The Memory control commands are:

• Display (D) Displays a specified range of memory.

• Fill (F) Overlays a specified range of RAM with a constant value.

• Move (M) Copies the contents of a specified portion of memory into
another RAM location.

• Substitute (S) Modifies RAM on a byte-by-byte basis.

The Monitor

5-9

The Monitor

5-10

Series III Operating Instructions

D-Display Command

The Display command displays a section of memory formatted into lines of 16 bytes
separated by spaces with the address of the first byte at the left margin.

Command Syntax

Ostart-address,end-address<cr>

where

D is the Display command code.

start-address is the beginning of the memory range to be displayed. The address
must be specified in hexadecimal. The start-address must be less than or equal to
end-address. If start-address is equal to end-address, a single byte is displayed.

end-address is the end of the memory range to be displayed. The address must
be specified in hexadecimal.

Description

If the List device is not ready, the Display command will hang. To continue the
operation, make the List device ready, or, if that isn't possible, press the interrupt 0
button on the main chassis.

Example

To display the contents of memory locations I09H through I2AH:

D109,12A<cr>
0109 09 OA 08 OC 00 OE OF
0110 01 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF
0120 01 02 03 04 05 06 07 08 09 OA

F-Fill Command

The Fill command writes a specified I-byte constant into a specified RAM area. If
ROM or PROM is specified, no error is issued, and the command continues to com
pletion even though the memory does not change.

Command Syntax

Fstart-address,end-address,constant<cr>

where

F is the Fill command code.

start-address specifies the beginning of the memory range to be filled with the
constant. The memory address must be entered in hexadecimal.

end-address specifies the last byte of the memory range to be filled with the
constant. The memory address must be entered in hexadecimal.

constant is the byte to be written to the specified-address range~ The constant
must be entered as a hexadecimal number. -

Series III Operating Instructions

Description

If a character other than 0 through F is entered, the command is terminated and the
prompt character (.) is displayed.

Example

To initialize memory locations 20H through 2FH with OOH:

F20,2F,O<c r)

M-Move Command

The Move command copies a specified area of memory into an area of RAM.

Command Syntax

Mstart-address,end-address,destination-address<cr>

where

M is the Move command code.

start-address is the address of the first byte to be moved. The address must be
specified in hexadecimal.

end-address is the address of the last byte to be moved. The address must be
specified in hexadecimal.

destination-address is the address to which the first byte (start-address) is to be
moved. Each subsequent byte is moved to a location one higher than the last.

Description

The move is done on a byte-by-byte basis, that is, the first byte of the specified area
is copied to the new location, then the second byte is copied to the location following
the first new location, and so forth. The data in the original location is not
destroyed. Any data existing at the new location is overlaid.

Because the command works on a byte-by-byte basis, you should be careful when
attempting to move a block of data to a location within the block. By the time the
command reaches the end of the block, the data will have been overlaid by the first
data moved.

Examples

I. To move the data currently at address OIOOH through 0200H to address 0400H
through 0500H:

2. To move the data currently at address lOOOH through IFFFH to address 1500H
through 24FFH:

M':==,',,+;:;:,AS::<:">

The Monitor

5-11

The Monitor

5-12

Series III Operating Instructions

3. If you tried to do the above example with a single command as follows:

M1 000,1 FFF ,1500<c r>
the first 500H bytes would be copied as you expected, but the second 500H bytes
would be a copy of the first 500H because bytes 1500H through IFFFH were
overlaid by the first 500H bytes.

S-Substitute Command

The Substitute command displays memory locations on an individual basis and gives
you the option of modifying each location as it is displayed.

Command Syntax
Saddress,[databyte][,[databyte]][...]<cr>

where

S is the Substitute command code.

address specifies a RAM address. The address must be specified in hexadecimal.

data-byte specifies a single byte of data in hexadecimal that is to replace the byte
currently at the location specified by address. This is an optional parameter. If it
is not entered, the byte specified by address is not modified.

Description

The Substitute command functions differently than most of the Monitor com
mands. The function of this command is performed before the carriage return
«cr» is entered.

The Substitute command functions in the following manner:

1. Enter the command code and the address followed by a comma:

·,t'·'·' 2. The contents of the specified memory location followed by a dash is displayed:

.'."'FF-
3. You can now do any of the following:

• Modify the contents of the address by entering a new byte in hexadecimal:
., •• IFF-fli

• Look at the next sequential byte of data by entering a comma:

. ",.MF F-IOO-
• End the comma and not modify the data byte by pressing the carriage return

key:

. 'I., •• IF F -BIB
• Any combination of the first two and finally ending with a carriage return:

.II.F F-fliWOO-111-1tMM4
The example changes the first byte from FFH to AAH, leaves the second
byte unchanged, and changes the third byte from 11 H to 22H.

Series III Operating Instructions

The registers you can display and modify and their symbols in the Monitor are:

Symbol

A CPU A register
B CPU B register
C CPU C register
D CPU D register
E CPU E register
F CPU flag byte
H CPU H register
I Intellec interrupt mask
L CPU L register
M CPU Hand L registers combined
P CPU program counter
S CPU stack pointer

The F register is packed with the CPU condition flags:

76543210

II' L~::YSl ~panty
always 0
auxiliary carry

~------ always 0
~------- zero

'----------- sign

X-Register Command (Display Form)

This form of the Register command displays the contents of all the registers. To
modify register contents, use the modify form of the command.

Command Syntax

X<cr>

where

X is the Register command code.

Example

To display the contents of the Intellec registers: .-A=OO 8=78 C=OO 0=47 E=11 F=02 H=FC I=FC L=20 M=FC20 P=1024 S=C010

X-Register Command (Modify Form)

The modify form of the Register command allows you to display and optionally
change the contents of the registers, one at a time.

The Monitor

5-13

The Monitor

5-14

Series III Operating Instructions

Command Syntax
Xregister, [data] [, data]] [, •••]<cr>

where

X is the Register command code.

register is a single register symbol.

data is one or two bytes of data (depending on the register) to be placed in the
register. The data must be entered in hexadecimal.

Description
This form of the Register command functions differently than most of the Monitor
commands. The function of the command is performed before the carriage return
«cr» is entered.

The modify form of the Register command functions in the following manner:

1. Enter the command code and the register symbol:

·ED
2. The contents of the specified register followed by a dash is displayed:

.tIt FF-

3. You can now do any of the following:

• Modify the contents of the register by entering new hexadecimal data:

.tII FF-.
• Look at the contents of the next sequential register by entering a comma:

.tII F F-IEE-
• End the command and not modify the register by pressing the carriage

return key:

•
.tII FF-_

This example changes the C register from FFH to EEH, leaves the D register
unchanged, and changes the flag byte from 02H to 82H.

Examples

1. To examine but not change the M register:

. Ell 1234-_
2. To examine and change the M register:

.• 1234 I:t;

3. To examine all the registers in sequence and change the D and H registers:

.11 OO-111-122-1P3-11144-~2-155-IIIEC-166-IFF66-IFC9C-IE410-1111
4. To examine and change the interrupt mask (1) and the L register:

.tII FE-a 45

Series III Operating Instructions

Paper Tape 1/0 Commands

The Monitor has four commands to support your use of paper tape:

Read (R) Reads data from a paper tape into the memory.

Write (W)

End-of-File (E)

Writes data from memory to paper tape.

Writes an end-of-file record to paper tape.

Null Leader/Trailer (N) Writes null leader and trailer characters to paper tape.

The Monitor reads and writes paper tape in hexadecimal format. This format is
described in Appendix A.

R-Read Command

The Read command reads a paper tape in hexadecimal format from the device
assigned as the Reader and loads the data into memory at the location specified in
the record.

Command Syntax
Rbias<cr>

where

R is the Read command code.

bias is a value (modulo 65,536) to be added to the load address contained in the
paper tape record. The data is loaded at the memory location specified by the
record address and the bias value. The bias value must be specified in hexa
decimal. If there is no bias, a value of 0 must be used.

NOTE

The addition of the bias value does not imply that the code is
relocatable. In some cases, the code would not be executed at the biased
location.

Description

The data read is not changed in any way by the specification of a bias value.

Examples
I. To read a paper tape into memory:

. 'Mea
2. To read a paper tape into a memory location that is lOOOH above the address

specified in the tape record:

·'I·,",h*4·

The Monitor

5-15

The Monitor

5-16

Series III Operating Instructions

W-Write eommand
The Write command punches the contents of a specified memory area to the
assigned punch device.

Command Syntax

Wstart-address,end-address<cr>

where

W is the Write command code.

start-address is the first memory location to be punched onto the tape. The
start- address must be specified in hexadecimal.

end-address is the last memory location to be punched into the tape. end
address must be specified in hexadecimal. The end-address must be higher than
start-address.

Description

The Write command does not put an end-of-file record on the paper tape. Thus you
can punch non-contiguous areas of memory as a single file. The final record in a
paper tape file must be an end-of-file record. After you have written the last memory
area to tape, you must write an end-of-file record with the End-of-File command.

Examples

1. To write the contents of memory locations 200H through 3AFH to paper tape:

W200,3AF<:r>

2. To write the contents of memory locations 450H through 54FH and locations
l000H through 1 FFFH to paper tape as a single file:

W450,54F<cr>

W1000,1FFF<c r >

E-End-of-File Command

The End-of-File command punches an end-of-file record in all tapes written by a
Write command.

Every paper tape file must have an end-of-file record as the last record. If the end
of-file record is missing, the reader will read off the end of the tape.

Command Sytax
Eentry-point<cr>

where

E is the End-of-File command code.

entry-point is the entry point address of the program in the file to which the eod
of-file record is being added. The entry-point must be specified in hexadecimal.
A zero should be specified if an entry point address is not wanted.

Series III Operating Instructions

Description

You can specify an entry point address in the end-of-file record written with the
End-of-File command. The entry point address is the address of the first instruction
in the program to be executed. When this address is specified in the end-of-file
record, the address.is loaded into the program counter when the tape is read with a
Read command. You can then execute the program by entering a simple Execute (G)
command. If the load address field is 0, the program counter is not altered by the
Read command.

Examples
1. To punch an end-of-file record in a tape that has just been written by a Write

command:

•••••
2. To punch an end-of-file record in a tape that has just been written and specify

an entry point address to be used when the tape is read with a Read command:

·lIltltl •••

N-Null Command

The Null command punches a 60 null character leader or trailer.

Command Syntax

N<cr>

where

N is the Null command code.

Description

The null character is a OOH. You should punch a leader before writing data to a tape
and after the end-of-file record. It makes the tape easier to load and saves the data
on the tape from the usual damage that tape ends incur through normal handling.

Example

To punch a leader or trailer in a paper tape:

·IfU'·

Utility Command

The utility command performs hexadecimal addition and subtraction.

H-Hexadecimal Command

The Hexadecimal command adds and subtracts two hexadecimal numbers.

The Monitor

5-17

The Monitor

5-18

Command Syntax
Hnumber1,number2<cr>

where

H is the Hexadecimal command code.

Series III Operating Instructions

numberJ is the first number to be added. This number is used as minuend for
the subtraction. The number must be entered in hexadecimal.

number2 is the second number to be added. This number is used as the sub
trahend for the subtraction.

Description

The numbers can include up to four hexadecimal digits.

The command displays two four-digit values. The first is the addition of the two
numbers and second is the subtraction. Negative numbers must be entered in their
two's complement form.

If more than four digits are entered, the command uses the rightmost four digits.
The leading digits are lost.

Example

To add and subtract E49 (minuend) and III (subtrahend):

HE49,111<cr>

OF5A 0038

CHAPTER 6
DEBUG-86

DEBUG-86 is a program stored in ROM that provides symbolic debugging of your
8086 programs. DEBUG-86 provides an English language command set that enables
you to:

• Initialize DEBUG-86 and load your program from a disk file.

• Specify starting and stopping conditions for program execution.

• Execute your program in real-time mode.

• Execute your program in single-step mode.

• Display and alter 8086 registers, memory locations, and I/O ports.

The files to be debugged by DEBUG-86 must contain executable 8086 object
modules. This means that the translator output must be either linked and located to
produce an 8086 absolute object module, or linked with the LINK86 BIND control
to produce a Position-Independent Code (PIC) or Load-Time Locatable (LTL)
object module. These processes are described in the iAPX 86, 88 Family Utilities
User's Guide.

The development cycle for LTL code is faster because you don't have to locate your
source code. The loader locates your code in memory as the code is reached.

Absolute object modules should be located at 7800H.

Command Categories

Utility Commands

DEBUG Activates DEBUG-86.

EXIT Exits DEBUG-86.

LOAD Loads your program code into 8086 memory.

Execution Commands

GO

GR

STEP

Causes execution of your program until breakpoint
conditions are met.

Sets or displays the contents of the Go register.

Causes execution of a single program instruction.

Change Commands

Change Register Changes the contents of a single register or status flag.

Change Memory Changes the contents of 8086 memory locations.

Change Port Changes the contents of hardware I/O ports.

6-1

DEBUG-86

6-2

Series III Operating Instructions

Display Commands

Display Registers Displays the contents of user 8086 registers.

Display Memory Displays the contents of 8086 memory locations.

Display Memory
(ASM form)

Display Port

Display Stack

Display Boolean

Evaluate

Displays the contents of 8086 memory locations in 8086
Assembly language mnemonics.

Displays contents of I/O ports.

Displays contents of user's stack.

Displays boolean value of input.

Displays a value in five number bases.

Symbol Manipulation Commands

Define Symbols

Display Symbols

Display Lines

Display Modules

Change Symbols

Remove Symbols

Set Domain

Enters a new symbol in DEBUG-86 symbol table.

Displays symbols and their values.

Displays statement numbers and their values.

Displays module names.

Changes value and type of symbols.

Removes specified symbols or modules, or all modules,
symbols, and statement numbers.

Sets a default module for statement number references.

Compound Commands

Repeat

Count

If

Character Set

Causes looping of a command.

Causes looping of a command.

Causes execution of a command if a specified condition is
met.

The valid characters in the DEBUG-86 command language are:

• Upper and lower case alphabetic ASCII characters A through Z

• Digits 0 through 9

• Blank space or comma

• Carriage return/line feed

• $ as a separator in combined words, as in DA T A$ENTR Y

• Algebraic operators: +, -, *, /

• Relational operators: =, <, >, <=, >=, < >
• The characters?, @, &, ;, :, ., (,), +, #, ,

All other characters are errors.

Series III Operating Instructions

Invoking DEBUG-86

You can invoke DEBUG-86 in either of two ways:

• Using the 8086 DEBUG command. This method allows 15k of memory for the
DEBUG-86 symbol table, which means space for about 1500 symbols (assuming
an average of 10 characters per symbol). However, no 110 buffers are allocated
for your program. regardless of the number of buffers you may have requested.
(None are assumed necessary during debugging.)

• Using CNTL-D to interrupt your 8086 program execution and enter
DEBUG-86. This method allows 3k of memory for the DEBUG-86 symbol
tables, which means space for about 300 10-character symbols. Buffers are
allocated as specified in your program.

Entering Commands

Your communication with DEBUG-86 is through the system console. DEBUG-86
displays an asterisk prompt (*) at the left margin when it is ready to accept a com
mand from the console.

DEBUG-86 takes input from the console but does not interfere with the original
command line.

For example:

> RUN [<c r >] DEBUG PlM86 PROG.SRC PRINT (:LP:) <cr>

will load the compiler and transfer control to DEBUG-86. DEBUG-86 does not read
the parameters on this command line but goes back to the console for instruction.
When the PL/M-86 program is finally executed, the command line parameters .are
still available to it using DQGETARGUMENT (see the Intellect Series III Micro
computer Development System Programmer's Reference Manual.)

You can enter up to 120 characters per input line before entering a line terminator (a
carriage return or a line feed). On the Intellec terminal, a line feed is automatically
entered when you press the RETURN key.

Continuation Lines

A command line can consist of one or more input lines. If you need to continue a
line, terminate it with one of the following intermediate line terminators:

• A line terminator embedded in a string that is enclosed in quotes.

• A line terminator preceded by an ampersand (&) that is not embedded in a
quoted string or a comment.

In this case, characters entered between the ampersand and the line terminator
are ignored and the ampersand is treated as a space.

When the system is ready to accept a continued line, it displays two asterisks (**).

Comments

You may use comments in any input line. Begin the comment with a semicolon (;). If
the line contains commands, place the semicolon and comments after the com
mands. If you start an input line with a semicolon, use the line only for comments.

DEBUG-86

6-3

DEBUG-86

6-4

Series III Operating Instructions

If you use an ampersand to continue a commahd line that also contains comments,
place the ampersand before the semicolon. An ampersand that is embedded in a
comment is ignored.

Comments are not stored internally. The main use of comments is to document an
execution session while it is in progress.

Line Editing

You can use ISIS-II line editing functions to correct errors in the current input line
before you enter a line terminator. See Chapter 3 for a description of the line editing
characters.

Interrupting Program Execution

You can interrupt SOS6 program execution and enter DEBUG-S6 by using CNTL-D.

You can terminate SOS6 program execution, close files, and return control to RUN
by using CNTL-C. If CNTL-C is entered while the system is servicing a system call,
a pause may occur before control is transferred.

Interrupt 1 performs the same functions in SOS6 mode as in SOSO/SOS5 mode. That
is, when you press interrupt 1, all open files are closed in their current state, the
initial console becomes the current console, and control is transferred to ISIS-II.

You should not use interrupt 0 while in the SOS6 mode.

Error Conditions

For syntax errors, DEBUG-S6 displays the input line including the error followed by
a number sign (#) and a carriage return.

For all errors, DEBUG-S6 displays the following error message:

ERROR xxx

where

xxx is a decimal error number.

Error messages are defined in Chapter 7.

Expressions

You can use expressions as command arguments to specify numeric values or
boolean (true/false) conditions. An expression is a formula that evaluates to a
number and represents one of the following;

• Pointer-a pair of 16-bit unsigned integers. The first integer of the pair is called
the base and the other integer is called the displacement.

• Integer-a single 16-bit unsigned integer treated modulo 65536, where any bits
beyond 16 bits are not used. This is a special case of pointer, with the base value
equal to O.

Series III Operating lIistructions

DEBUG-86 provides only unsigned-integer arithmetic on pointers and integers.
Arithmetic operations are applied separately to bases and displacements (i.e.,
integer arithmetic is always 16-bit). Signed arithmetic is not provided.

The following are examples of expressions.

• Expressions containing a single value:

3
FFFFH

• Expressions containing operands, operators, and parentheses:

2 + 3
174/4
0100H + OOFFH
2 * (6 + 4)
(127 + 44)/20

• Expressions containing symbols:

.SYMBA - 2

.. MOD1 . SAM + 21

The followirig sections describe the operands and operators that you can use in
expressions.

Operands

You can reference the following types of operands:

• Numeric constant

• Command keywords

• Keyword references

• Register references

• Memory references

• Port references

• Symbolic references

• Statement number references

• String constants

Numeric Constants

A numeric constant produces a fixed unsigned 16-bit integer value, and consists of
decimal digits 0 through 9, the letters A through F (hexadecimal digits), and the suf
fix H for the number base. You do not have to enter the suffix H; it is the default
base.

You can specify numbers in other bases by entering the suffix for the new base, as in
lOOT. The suffix T = decimal base, Q = octal base, and Y = binary base.

The Evaluate command displays constant values in five bases.

Command Keywords

Command keywords are system-assigned names of command functions to be exe
cuted. Examples are LOAD, GO, STEP, REGISTER, FLAG, ASM, STACK, and
EVALUATE.

DEBUG-86

6-5

DEBUG-86

6-6

Series III Operating Instructions

Keyword Ref~rences

Keyword references are system-assigned names of system variables such as registers,
status flags, ports and memory. Keyword references allow you to access system
variables to display or modify their contents.

You can use keyword references in three ways:

• In an expression, as in RAX +5*8. The keyword value returned is the current
contents of the referenced object.

• Alone as in RAX <cr>. The current contents of the referenced objects are
displayed.

• On the left side of an equals sign as in RAX = 5555<cr>. The contents of the
referenced object is set to the value on the right side.

If the value referenced is less than 16 bits, the system right-justifies the value and
fills the unused high-order bits with zeroes. If the value is larger than 16 bits, the
extra high-order bits are lost.

Register References

To access a register, use the corresponding keyword reference listed in table 6-1.

The functions of all registers except the pseudo registers are described in The 8086
Family User's Manual. The pseudo registers are described under the GO command
in this chapter.

Memory References

When you reference a memory location, use the format:

memory-type address

where memory-type is one of the following:

BYTE, a one-byte integer value located at address.

WORD, a two-byte integer value with low byte at address and high byte at
address + 1.

SINTEGER, same as BYTE.

INTEGER, same as WORD.

POINTER, a four-byte pointer value located at address through address + 3.

The value of address must be an integer.

Series III Operating Instructions DEBUG-86

Table 6-1. 8086 Register Keyword References

Type of Register Keyword 8086 Register and Interpretation

RAX 16-bit Accumulator
RAH High 8 bits of Accumulator
RAL Low 8 bits of Accumulator
RBX 16-bit Base Register
RBH High 8 bits of Base Register

General Registers RBL Low 8 bits of Base Register
RCX 16-bit Count Register
RCH High 8 bits of Count Register
RCL Low 8 bits of Count Register
RDX 16-bit Data Register
RDH High 8 bits of Data Register
RDL Low 8 bits of Data Register

Pointer Registers SP 16-bit Stack Pointer
BP 16-bit Base Pointer

Index Registers SI 16-bit Source Index
01 16-bit Destination Register

CS 16-bit Code Segment Register

Segment Registers OS 16-bit Data Segment Register
SS 16-bit Stack Segment Register
ES 16-bit Extra Segment Register

Status Registers IP 16-bit Instruction Pointer Register
RF 16-bit Flag Register

AFL Auxiliary-carry out of low byte to high byte
CFL Carry or borrow out of high byte
DFL Direction of string manipulation instruction
IFL Interrupt-enable (external)

1-bit Flag Registers OFL Overflow flag in signed arithmetic
PFL Parity
SFL Sign of the result of an operation
TFL Trap used to place processor in single step mode for

debugging
ZFL Zero indicates a zero value result of an operation

GR Go register; controls breaking of real-time execution

Pseudo Registers BR Breakpoint registers
BRO Breakpoint register 0
BR1 Breakpoint register 1

6-7

DEBUG-86

6-8

Series III Operating Instructions

When you change memory or reference it in an expression, BYTE is equivalent to
SINTEGER and WORD to INTEGER. However, when you display memory, the
form of the display is either unsigned (BYTE, WORD) or signed (SINTEGER,
INTEGER).

Examples:

BYTE 1000H
WORD 101
INTEGER. ABLE
POINTER CS:IP

Port Reference

DEBUG-86 supports a maximum of 64K 8-bit (PORT) or 16-bit (WPORT) ports.
To reference ports, use one of the following formats, depending on the size of port
desired:

PORT address
WPORT address

Examples:

PORT 123
PORT RDX
WPORT 1FFH

Symbolic References

DEBUG-86 maintains a symbol table and a source program statement number table
that allow you to use symbolic addressing. The DEBUG-86 tables acquire symbols in
two ways:

1. When you load your program with the LOAD command, your program symbol
information is copied to the DEBUG-86 symbol tables.

2. When you use the Define Symbol command, you enter additional symbols into
the symbol table for use during the debugging session.

The number of symbols possible depends on how DEBUG-86 was invoked:

• If you invoke DEBUG-86 with the 8086 DEBUG command, 15k of memory is
available for the DEBUG-86 symbol tables. This provides space for about 1500
symbols (assuming an average of 10 characters per symbol.)

• If you invoke DEBUG-86 by interrupting 8086 program execution with
CNTL-D, 3k of memory is available for the DEBUG-86 symbol tables. This
provides space for about 300 10-character symbols.

A symbol table value is assigned to each symbol. This value represents either the
address or the numeric value of the symbol. When you reference a symbol, you are
retrieving its address or numeric value.

The following types of symbols and corresponding values are loaded into the tables:

Series III Operating Instructions

Symbol Type

Instruction and statement labels

Program variables

Program constants

Module names

Value

Address of the instruction

Address of the variable

Constant numeric value

None assigned

In a PL/M-86 or PASCAL-86 program, a module name is the label of a simple DO
block that is not nested in any other block. In an Assembly language program, a
module name is a label that is the object of a NAME directive.

Symbols contained in a module are local to that module. To reference a symbol
name that occurs in different modules, specify the desired module.

The symbol table is organized to preserve the modular structure of your program.
Before code is loaded, the table contains a single unnamed module that always
comes first. Named modules follow in the order in which they are loaded. Local
symbols are stored in the named module in the order of their appearance. Symbols
defined without a module name are stored in the unnamed module in the order in
which they are defined.

When you enter a symbol reference as an operand, its value is obtained from the
table and used in the associated expression. To reference a symbol, use the following
format:

[.. module].symbol ...

If you specify a module name, only that module is scanned; otherwise the entire
table is scanned. When you specify more than one symbol, the table is scanned for
the first occurrence of each symbol in sequence. The system returns a pointer con
taining the base and displacement address values for each symbol.

By assigning symbolic names to modules, procedures, and variables, you gain flexi
bility in retrieving interrelated variables. For example, assume that the symbol .X
represents a variable that is used in procedures PROCX, PROCY, and PROCZ of
module MODA. You could then retrieve the symbol .X in each procedure as
follows:

.. MODA.PROCX.X

.. MODA.PROCY.X
•. MODA.PROCZ.X

Statement Number Reference

When you reference a statement number, you reference the first instruction
generated by the compiler for the source statement. In other words, you are
referencing the program location via the statement number.

If different modules (each with its own statement numbers) are linked, or if more
than one module is loaded in the DEBUG-86 statement number table, specify a
module name in the statement number reference, as follows:

[.. module 1lstatement-number

The statement number is an integer value. If it does not have an explicit suffix, the
default suffix is decimal. The value returned is a pointer value that is the absolute
address of the first instruction generated by the compiler for the source statement.

DEBUG-86

6-9

DEBUG-86

6-10

Series III Operating Instructions

Examples:

#45
.. TEST1#12H

String Constants

You can enter any ASCII character (ASCII codes OOH through 7FH) as a string con
stant by enclosing the character in single quotes. The operand value of a string con
stant is a 16-bit integer with the high-order bits set to 0, and the low-order seven bits
set to the ASCII code. For example, the string constant 'A' has the value
000000000 1000001 Y (0041 H).

Table 6-2 lists the printing ASCII characters and their corresponding hexadecimal
codes. (A blank space means a nonprinting character.)

Table 6-2. ASCII Printing Characters and CODES (20H-7EH)

Character Hex Code Character Hex Code Character Hex Code

Space (SP) 20 @ 40 60
! 21 A 41 a 61
" 22 8 42 b 62
II 23 C 43 c 63
$ 24 0 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66 , 27 G 47 9 67
(28 H 48 h 68
) 29 I 49 i 69
* 2A J 4A j 6A
+ 28 K 48 k 68
, 2C L 4C I 6C

- 20 M 40 m 60
2E N 4E n 6E

I 2F 0 4F 0 6F
0 30 P 50 P 70
1 31 Q 51 q 71
2 32 R 52 r 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w 77
8 38 X 58 x 78
9 39 Y 59 Y 79

3A Z 5A z 7A
, 38] 58 78
< 3C I 5C I 7C
= 3D [50 70
> 3E 1\ (t) 5E 7E
? 3F -(-) 5F

Operators

An expression can contain any combination of unary and binary operators. A unary
operator takes one operand, and a binary operator takes two operands.

Table 6-3 describes the operators you can use with DEBUG-86. The operators are
shown as they are entered in expressions and are ranked in order of precedence from
highest (1) to lowest (10).

For discussion, the operators are classed as shown in table 6-4.

Series III Operating Instructions

Table 6-3. DEBUG-86 Operators

Precedence 1

2

3

4

6

7

8

9

10

Notes:

Unary
Operator 81nary2

u

+ u

- u

* b

I b

MOO b

+ b

- b

content- u
operator"

= b

> b

< b

<> b

>= b

<= b

NOT u

AND b

OR b

XOR b

Effect3

Base, displacement integer connector for a pOinter
(e.g., 1234:5678 or CS:IP).

Unary plus.

Unary minus, (-N) means (65536-N), the 2's
complement of N, modulo 216

.Integer multiplication.

Integer division. The result is the integer quotient;
the remainder (if any) is lost.

Modulo reduction. The remainder after division,
expressed as an integer.

Addition.

Subtraction.

Treats operand as memory or port address, returns
the content of that address.

Is equal to. Result is either TRUE (FFFFH) or FALSE
(0).

Is greater than. Result is TRUE or FALSE.

Is less than. Result is TRUE or FALSE.

Is not equal to. Result is TRUE or FALSE.

~s greater than or equal to. Result is TRUE or FALSE.

Is less than or equal to. Result is TRUE or FALSE.

Unary Logical (1 's) complement. Bitwise 1 becomes
0, 0 becomes 1; TRUE becomes FALSE, FALSE'
becomes TRUE.

Bitwise AND. If both corresponding bits are 1 's,
result has 1 in that bit; else O. TRUE AND TRUE yields
a TRUE result; any other combination is FALSE.

Bitwise inclusive OR. If either corresponding bit is a
1, result has 1 in that bit; else O. If either operand is
TRUE, result is TRUE; else FALSE.

B.itwise exclusive OR. If corresponding bits are
different, result has 1 in that bit; else O. If one operand
is TRUE and the other is FALSE, result is TRUE; if
both are TRUE or both are FALSE, result is FALSE.

11 = highest precedence (evaluated first), 10 = lowest precedence.

2U = unary, b = binary.

3Refer to text for additional details.

4content-operator is one of the tokens BYTE, WORD, SINTEGER, INTEGER, POINTER,
PORT, or WPORT.

DEBUG-86

6-11

DEBUG-86

6-12

Series III Operating Instructions

Table 6-4. Classes of Operators

Class Operators

(Numeric)
Arithmetic

unary +,-,
binary *,1, MOD, +, -,:

Content
unary content-operators

(Boolean)
Relational

binary =, >, <, <>, >=, <=
Logical

unary NOT
binary AND,OR,XOR

Unary +,-,
content-operators,
NOT

Binary *, I, MOD, +, -,:,
relational-operators,
AND,OR,XOR

Relational Operators

A relational operator calls for a comparison of its two operands. The six relational
operators are shown in table 6-4. Each comparison evaluates to a result that is true
(FFFFH) or false (0).

Arithmetic Operators

The DEBUG-86 scanner distinguishes unary "+" and "-" from binary "+" and
"-" by context. (Unary "+" is superfluous, since it is the default.)

Unary "-". A unary "-" applied to an integer means 2's complement modulo
65536. In other words, (-N) evaluates to (65536-N). As DEBUG-86 uses only
unsigned arithmetic, unary "-" does not apply to pointers.

Binary "+". Binary "+" applies to pointer and integer values only and results in
the arithmetic sum of its two operands. .

When you add two integers, the result is treated modulo 65536 (any high-order bits
after the sixteenth bit are dropped).

When you add a pointer and an integer, the displacement value of the pointer is
summed with the integer modulo 65536 and the base value of the pointer is
unchanged.

Binary "-". Binary "-" applies to pointer and integer values only and results in
the arithmetic difference to the two operands.

When you subtract an integer from another integer, the result is the 2's complement
difference. The result is treated modulo 65536, so that a negative result (-N)
becomes (65536-N).

Series III Operating Instructions

When you subtract an integer from a pointer, the result is the 2's complement dif
ference of the pointer displacement and the integer modulo 65536, and the base
value of the pointer remains unchanged.

When you subtract a pointer from another pointer (they must have the same base),
the result is the 2's complement difference of the displacements modulo 65536, and
the resulting base value is set to O. An error occurs if the base values of the pointers
are different.

Binary "*", "I", and "MOD". These operators apply only to integer operands
and return only integer results.

Binary "*,, results in the multiplication of two integer operands, truncated to the
low-order 16 bits.

Binary "/" causes the first integer operand to be divided by the second. The result is
the integer quotient; the remainder, if any, is lost. Thus, (5/3) evaluates to (1).

Binary "MOD" returns the remainder after integer division as an integer result, and
the quotient part of the division is lost. Thus, (5 MOD 3) evaluates to (2), the
remainder of (5/3).

Content Operators

Content operators are keywords that refer to the contents of memory locations and
I/O ports. In expressions they function as unary operators with precedence immedi
ately below subtraction. Table 6-5 summarizes the content operators.

To be used in an expression, a content operator must precede a single operand that is
a valid address. A range of addresses (using a keyword such as TO or LENGTH)
cannot be used in an expression.

Table 6-5. Content Operators

Operator Content Returned

BYTE 1-byte integer value from the addressed location in user memory.

WORD 2-byte integer value from the addressed location in user memory.

SINTEGER Same as BYTE.

INTEGER Same as WORD.

POINTER 4-byte pOinter value from the addressed location in user memory.

PORT 1-byte value from addressed 8-bit 110 port.

WPORT 2-byte value from addressed 16-bit 110 port.

DEBUG-86

6-13

DEBUG-86

6-14

Series III Operating Instructions

Logical Operators

The four logical operators and corresponding examples are shown in table 6-6.

The logical operator NOT results in aI's complement of an operand; a 16-bit
operand is assumed.

The logical operators AND, OR, and XOR each compare a pair of bits. Each
operator causes different results as shown in table 6-6.

Table 6-6. Logical Operators

Bit Comparison Examples
Operator

Bit 1 Bit2 Result Operation Result

NOT 1 N/A 0 NOT 0 FFFFH
0 N/A 1 NOT 1 FFFEH

NOT 11110110Y 1111111100001001Y
NOT FFFFH 0
NOT FFFEH 1

AND 0 0 0 o AND 0 0
0 1 0 1010Y AND 1001Y 1000Y
1 0 0 FFFFH AND 0 0
1 1 1 FFFFH AND FFFFH FFFFH

1 AND 0 0

OR 0 0 0 o OR 0 0
0 1 1 1 OR 0 1
1 0 1 1010Y OR 1001Y 1011Y
1 1 1 FFFFH OR 1 FFFFH

FFFFH OR FFFFH FFFFH

XOR 0 0 0 o XOR 0
0 1 1 1 XOR 0 1
1 0 1 1010Y XOR 1001Y 11Y
1 1 0 FFFFH XOR 0 FFFFH

FFFFH XOR FFFFH 0

Series III Operating Instructions

Arithmetic and Logical Semantic Rules

Table 6-7 provides a summary of the semantic rules that apply to arithmetic and
logical operations. The table specifies the function performed by each type of
arithmetic and logi~al operation, the input required, and the result of the operation
(output).

Table 6-7. Arithmetic and Logical Semantic Rules

Operation Operators Input Output Function

logical AND,OR,XOR 2 integers integer Bitwise conjunction or disjunction of integers.

not NOT integer integer One's complement of an integer.

relational <, >, <=, >=, <>, = • 2 pointers, same integer Logical test of relational expression. If the displace-
base ment integer values satisfy relational operation (true),

• 2 integers integer then the output integer value = FFFFH. If the displace-
ment integer values do not satisfy the realtional opera-
tion (false), the output integer = O. If the base values of
the input pointers are not equal, an error occurs.

arithmetic *,I,MOD 2 integers integer Unsigned product (*), quotient(l), or remainder (MOD)
oftwo integers.

memory- BYTE, WORD, INTEGER, pointer or integer Fetches content of memory location addressed by
content SINTEGER integer input value.

memory- POINTER pointer or pOinter Fetches content of memory location addressed by
content integer input value.

1/0- PORT, WPORT integer integer Fetches content of 1/0 port (8-bit or 16-bit) addressed
content by input value.

+(binary) + • pointer, integer pOinter Sum of the displacement values, same base as the
• integer, integer integer pOinter. Sum of the integers.

-(binary) - • 2 pointers with integer Two's complement difference of displacement values.
= base values Error occurs if base values are unequal.

• pOinter& pointer Two's complement difference of pOinter displacement
integer value and integer input, same base as the pointer.

-(unary) - integer integer Two's complement of the input integer.

+(unary) + All types same No change.

override : • integer & pointer pOinter Replaces current base value of pointer with input
basel integer value.
construct • 2 integers pointer Constructs new pointer with base value set to first
pointer input integer value and displacement set to second

integer.

DEBUG-86

6-15

DEBUG-86

6-16

Series III Operating Instructions

Command Contexts

All expressions produce numeric values as results. The interpretation or use of the
result depends on the command that contains the expression. Contexts that control
the interpretation of an expression are summarized in table 6-8.

A numeric expression is an expression in a numeric command context which treats
the result as a numeric value. All bits are significant.

A boolean expression is an expression in a boolean command context. Only integer
values may be used in boolean contexts. The least significant bit (LSB) of the result
is tested to obtain a TRUE or FALSE value. The result of a boolean expression is
TRUE if its LSB is 1, FALSE if its LSB is O.

A boolean expression uses relational and logical operators to manipulate
TRUE/FALSE values. When a relational operator is evaluated, the result is either 0
(FALSE) or FFFFH (TRUE). These results can have a numeric interpretation, but
relational operators have limited usefulness in numeric contexts.

When logical operators are applied to TRUE/FALSE values, the results are also
boolean, as follows:

NOT: NOT FALSE - TRUE
NOTTRUE- FALSE

AND: TRUE AND TRUE - TRUE
TRUE AND FALSE - FALSE
FALSE AND TRUE - FALSE
FALSE AND FALSE - FALSE

OR: TRUE OR TRUE - TRUE
TRUE OR FALSE -+ TRUE
FALSE OR TRUE -+ TRUE
FALSE OR FALSE -+ FALSE

XOR: TRUE XOR TRUE -+ FALSE
TRUEXORFALSE-TRUE
FALSE XOR TRUE - TRUE
FALSE XOR FALSE - FALSE

Table 6-8. Command Contexts

Type of Entry Contexts Interpretation Limitations Examples of Use

Numeric expression Set and change 16-bit unsigned All operands and operators IP = .AA * 256T + 10FFFH
commands, etc. number; bit size allowed. Numeric constant

may be reduced to without suffix is interpreted
fit destination. ir hexadecimal radix.

Boolean expression BOOL,IF, LSB=O-FALSE All operands and operators .AA AND .BB AND NOT .CC
UNTIL, LSB=1-TRUE allowed. Numeric constants
WHILE without suffix are interpreted

in hexadecimal radix.

Address FROM, Pointer to Only arithmetic operators are GO FROM .BB + 10
content- memory or allowed outside of the outer-
operator, 16-bit (or fewer) most parentheses. Constant
partition address in without suffix are interpreted

memory or JlO. in hexadecimal radix.

Decimal number statement- positive number No operators are allowed
number outside the outermost paren-

theses. All constants withoot
suffix are decimal.

Series III; Operating' Instructions

Utility Commands

DEBUG-86 utility commands provide file management capabilities. The utility com
mands are:

DEBUG Activates DEBUG-86.

EXIT Exits DEBUG-86.

LOAD Loads user program code into memory.

DEBUG-Transfer Control to DEBUG-86

The Debug command activates DEBUG-86.

Command Syntax
[:Fn:JRUN DEBUG [[:Fn:JfiLename [parametersJJ<cr>

where

RUN is a command keyword that invokes the 8086 execution mode.

DEBUG is a command keyword that invokes DEBUG-86.

filename is the name (including extension) of a program that is a valid absolute,
PIC, or LTL 8086 object module. If no extension is specified, RUN adds an
extension of .86. If filename ends with a period (as in MYPROG .), the null
extension is assumed.

parameters is a series of one or more ASCII characters (separated by commas or
spaces) representing variable data required by the user program and to be pro
cessed by the program.

Abbreviation

None

Description

You can operate DEBUG-86 in either interactive or noninteractive mode.

Noninteractive Mode. Specify DEBUG and optionally your program on the RUN
activation line, as follows:

-[:Fn:]RUN DEBUG [[:Fn:Jfilename[(parameters)JJ<cr>

DEBUG-86 signs on, then prompts for a command with an asterisk (*):

DEBUG 8086, Vx.y
*

where x.y is the version and release of the DEBUG-86 program.

When you issue an EXIT command after the debugging session, control returns
directly to ISIS-II.

DEBUG-86

6-17

DEBUG-86

6-18

Series III Operating Instructions

Interactive Mode. Specify the RUN program only on the RUN activation line as
follows:

-[:Fn:]RUN<cr>

RUN signs on, then prompts for a command with an angle bracket:

ISIS-II RUN 8086, Vx.y
>

where x.y is the version and release number of the RUN program.

Issue the DEBUG command and optionally specify your program as follows:

DEBUG [[:Fn:lfilename[(parameters)]l<cr>

DEBUG-86 signs on, then prompts for a command with an asterisk.

When you issue the EXIT command after the debugging session, control returns to
the RUN program which displays its prompt (». The system remains in the RUN
interactive mode, and you can execute or debug another 8086 program.

To return control to ISIS-II, issue an EXIT command to the RUN program.

Loading Your Program. You can load the program to be debugged in either of
two ways:

Noninteractively, by specifying the program on the DEBUG command activation
line. DEBUG-86 signs on after the program is loaded. This method allows your pro
gram to access parameters on the command line if you use DQGETARGUMENT,
but does not load the DEBUG-86 symbol tables.

Interactively, by specifying only DEBUG on the command activation line.
DEBUG-86 signs on without loading your program. You then load your program
with the LOAD command explained later in this section. This method loads the
DEBUG-86 symbol tables, but does not allow your program to access parameters on
the command line. If you use this method, you must enter the entire filename includ
ing the default extension .86 that is added by RUN.

Examples

1. To activate the 8086 interactive execution mode:

-I;I!I~h'ri
ISIS-II RUN 8086, Vx.y
>'.11:8 • 11
DEBUG 8086, Vx.y
*

2. To transfer control directly to DEBUG-86:

:F1:RUN DEBUG<cr>
DEBUG 8086, Vx.y
*

3. To load your 8086 program and transfer control to DEBUG-86 in one step:

RUN DEBUG : F1 : PROG2. 86<c r>
DEBUG 8086, Vx.y
*

Series III Operating Instructions

4. To transfer control directly to DEBUG-86 then load your program with the
LOAD command:

R!.JN DE8u~<:">

DEBUG 8086, Vx.y
* LOAD :F1:PRCG2.86<c r >
*

EXIT-Exit DEBUG-86

The EXIT command exits DEBUG-86.

Command Syntax
EXIT<cr>

where

EXIT is a command keyword that transfers control from DEBUG-86 to the
RUN program in the interactive mode, or to ISIS-II in the noninteractive mode.

Abbreviation

EXIT can be abbreviated to EX!.

Description

In the noninteractive mode, the EXIT command operates as follows:

RUN DEBUG<c r>
DEBUG 8086, Vx.y
*.u·+

In the interactive mode, the EXIT command operates as follows:

RUN 8086, Vx.y
r.r.IIl:III!"'~

Vx.y

>

The last EXIT command is the RUN EXIT command (see Chapter 4, ISIS-II Con
sole Commands).

For further information on interactive and non interactive modes, see the DEBUG
command explained on the previous page.

Possible Error Conditions

None, except for possible ISIS-II errors that may occur when the system is in
non interactive mode and you are returning to ISIS-II.

DEBUG-86

6-19

DEBUG-86

6-20

Series III Operating Instructions

Example

*1:£'

LOAD-Load 8086 Object Code

The Load command loads 8086 object code from the specified disk directory and file
into 8086 memory. The Load command is the only way to load symbols and line
numbers into the DEBUG-86 symbol table.

where

filename is the complete name of a disk file that is a valid absolute, PIC or L TL
8086 object module. A default extension is not assumed; you must provide an
extension.

NOSYMBOL is a modifier that prevents the program symbol table from being
loaded.

NOLINE is a modifier that prevents the program line number table (in
PL/M-86 or P ASCAL-86 programs) from being loaded.

Abbreviation
LOAD can be abbreviated to LOA, NOSYMBOL to NOS, and NOLOAD to NOL.

Description
The Load command allows you to load the local symbols and their types if present,
source statement numbers, module names, segment and group names, and object
code from the specified file.

For absolute programs, no checking is done for RAM being present. If your pro
gram is located in the memory address space where no memory exists, no warnings
will be given.

For PIC and LTL code, the loader allocates only existing memory. The system
prevents code from piling up in 8086 memory beyond previously loaded PIC/L TL
code by deallocating 8086 memory space before loading. The system inserts
symbolic information in the associated module and symbol tables in the order
encountered. A base and displacement value are loaded for all symbols and state
ment numbers.

You can enter the NOSYMBOL and NOLINE modifiers in any order or combina
tion. When you use more than one modifier, separate them with spaces. A modifier
may not be specified twice in the same load command.

Series III Operating Instructions

Possible Error Conditions
Invalid object files cause an error message to be' displayed and abort the load
operation.

Unsatisfied externals cause a warning to be displayed but do not abort the load
operation.

Examples

1. To load an absolute, PIC, or L TL file from a disk in drive 0:

* ~OAD :~O:TEST.VR1<cr>

2. To load an absolute, PIC, or L TL file from a disk in drive 2 without loading
program symbols:

* LOAD :F2:ABSOCO.DE2 NOSYMBOL<c r >
3. ToIoad an absolute, PIC, or LTL file from a disk in drive 1 without loading the

program statement numbers:

* LOAD :F1:COUNT.ONE NOLINE <c r >

Execution Commands

This section describes the following commands:

GO Executes your program until breakpoint conditions are met.

GR Displays or changes the contents of GR.

STEP Executes a single program instruction.

These commands allow you to specify the address where execution is to begin, and
to specify the conditions for halting and returning control to the console for further
commands.

After your program code is loaded, DEBUG-86 initializes for execution by loading
the instruction pointer (IP) and code segment register (CS) with the address specified
by the loaded object module.

In PIC and L TL codet SS and SP, and DS or ES may also be present with CS:IP.

GO-Execute 8086 Instructions

The GO command transfers control of the system to your program at the address
specified or implied and executes instructions until breakpoint conditions, if any,
are satisfied.

Command Syntax

{

[FOREVER] }
GO [FROM address] [TIll break-address [OR break-address]]

[TILL break-register [OR break~register]]
<cr>

where

FROM address specifies the address of the first instruction to be executed. If
FROM address is omitted, execution begins at the address in the IP and CS. The
address must specify the CS:IP content in the form nnnn:nnnn, as in 800:0
(leading zeros need not be entered).

DEBUG-86

6-21

DEBUG-86

6-22

Series III Operating Instructions

NOTE
If address is entered in the form 8000, for example, a relative jump
could add a displacement to the value in the IP and cause an
overflow. The CS:IP then would not reflect the desired value.

FOREVER is a function keyword that disables all breakpoint conditions.

TILL is a keyword introducing one or more breakpoint conditions.

break -address is an integer expression entered as a pointer that references a 20-
bit execution address.

break-register is one of the breakpoint registers, BRO or BRI. The address for
BR forms a 20-bit memory address where DEBUG-86 writes a one-byte inter
rupt to get control.

Abbreviation

GO can be abbreviated to G, FROM to F, and TILL to T.

Description

The GO command begins real-time execution, optionally loading the CS and IP with
a starting address, and continues until the breakpoint conditions are satisfied.

FOREVER Condition. When you enter a simple GO FOREVER command, execu
tion begins at the current CS:IP address and continues until one of the following
occurs:

• You enter a CNTL-D character. (If your program disables 8086 interrupts, the
abort is disabled.)

• A fatal error occurs (explained in Chapter 7).

• Your program executes a system call to the EXIT routine.

When you enter the CNTL-D character, the following operations occur:

• DEBUG-86 completes executing the current instruction or system call.

• Execution halts; the IP and CS contain the address of the next instruction to be
executed.

• The next instruction to be executed is disassembled.

• The message PROCESSING ABORTED is displayed, acknowledging the user
abort.

Instead of having your program execute forever, you may specify one or two
breakpoints.

Breakpoints. A breakpoint is the address of a program instruction that results in
thexeturn of control to DEBUG-86. A breakpoint allows you to check the contents
of registers or data fields at the specified point in your program.

When you enter a GO command with a breakpoint specified, DEBUG-86 saves the
instruction at the breakpoint address, replaces it with a breakpoint instruction, and
transfers control to your program. When the breakpoint is reached, DEBUG-86
regains control. When you GO again, DEBUG-86 restores the saved instruction and
gives control to your program. The instruction at the breakpoint address is not exe
cuted until your program regains control.

If a breakpoint is set at the starting address for resuming execution, a single step is
executed, then the GO command, to enable you to keep a breakpoint the same when
executing loops.

Series III Operating Instructions

Breakpoint Registers. This option uses the contents of the breakpoint registers,
BRO and BRI, as breakpoint addresses.

To change the contents of either breakpoint register, or BR when setting both
registers to the same value, use the form:

*break-register = address<cr>

To display the contents of either the BRO or BRI breakpoint register, use the form:

*break-register<cr>

Possible Error Conditions

Since DEBUG-86 must modify memory to get control, it cannot perform the break
function in ROM. DEBUO-86 cannot enter GO with the 8086 Trap Flag (TFL) set.

Examples
1. *ICI,6 ••

2. * GO FROM 780:2<cr>

3. * GO FROM 780:2 TILL 780:9 OR 780:F<cr>

4. * GO FROM .. MOD.GO<cr>

5. * G F .START T BRO<cr>

6. * GO FOREVER<cr>

G R Change/Display Go Register

The Go Register (OR) command changes or displays the contents of the go register.

Command Syntax

Display form:

GR<cr>

Change form:

{
FOREVER }

GR = TIll break-address [OR break-address]
TIll break-register [OR break-register]

where

<cr>

FOREVER is a keyword that disables all breakpoint conditions. Execution
stops only when you abort processing.

TILL is a keyword that introduces one or more breakpoint conditions.

break-address is an integer expression entered as a pointer that references a 20-
bit execution address. The first break-address sets the contents of BRO; the
second break-address sets the contents of BRI.

break-register is one of the breakpoint registers, BRO or BRI (or BR to denote
both breakpoint registers), that is to be enabled.

DEBUG-86

6-23

DEBUG-86

6-24

Series III Operating Instructions

Abbreviation
TILL can be abbreviated to T.

Description
The GR defines breakpoints conditions currently in force. By setting the contents of
GR to a breakpoint condition (using the change form of the command), you do not
have to re-enter the breakpoint conditions each time you restart execution with the
GO command.

Entering GR<cr> displays the contents of GR.

Possible Error Conditions
Error 126, Symbol does not exist.
Error 137, Module does not exist.

Examples
1.

*
2. *

*
3. *

*
4. *

*
5. *

*
6. *

GR = ~8REJER<:r>

GR = TIL~ BR~<:r>

GR = TILL BRO OR BR1<:r>

GR = T 780:9 OR 780:F<cr>

GR = T 780:9 or 780:F<c r >

STEP-Execute a Single Instruction

The STEP command causes the execution of a single instruction in your program.

Command Syntax

STEP [FROM addressl<cr>

where

FROM address specifies the address where single step execution is to begin. If
FROM address is omitted, the address in the IP and CS is used. The address
must specify the CS:IP contents in the form nnnn:nnnn, as in 800:0 (leading
zeros need not be entered).

NOTE

IF address is entered in the form 8000, for example, a relative jump
could add a displacement to the value in the IP and cause an
overflow. The CS:IP then would not reflect the desired value.

Series III Operating Instructions

Abbreviation

STEP can be abbreviated to S or STE, and FROM to F or FRO.

Description

When the STEP command is first issued, it initializes the user environment for
single-step execution, optionally loading . a starting address, and executes one
instruction step. A subsequent step is executed each time you enter the STEP (or S)
command.

After each step, the system displays the disassembled instruction to be executed
next. If the step command is embedded in a compound command (described later in
this chapter) the next instruction to be executed is not disassembled. This gives you
the ability to make multiple steps and lets you decide whether ,to disassemble or not
with the ASM form of the Display Memory command.

The Step command is a powerful debugging feature for repeat loops (compound
commands) where you can give the terminating condition (UNTIL or WHILE) and
display system status and values after each step.

Possible Error Conditions

Error 126, Symbols does not exist.
Error 137, Module does not exist.

Examples

1. *_ •• S ..

*
2. * STEP FROM 780:2<c r)

*
3. * SF .. MOD.GO<c r)

*
4. * S F 23 + 10<c r)

*
5. * S FRCM CS: (W:RD .X); SHeRT "UMP INDIRECT THROUGu .X<:r)

*
6. * S F 23 + 10<c'")

Change Commands

This section describes the Change commands that allow you to change the contents
of 8086 registers, 110 ports, and memory. The Change commands are:

Change Register

Change Memory

Change Port

Changes the contents of a single register or
status flag.

Changes the contents of 8086 memory
locations.

Changes the contents of 110 ·ports

DEBUG-86

6-25

DEBUG-86

6-26

Series III Operating Instructions

Change Register-Change Content of a Register

The Change Register command changes the contents of a single 8086 processor
register or status flag.

Command Syntax

register = change-exp<cr>

where

register is one of the following keyword references:

8086 Register Type

8-bit registers

16-bit registers

1-bit status flags

Keyword References

RAL, RAH, RBL, RBH, RCL,
RCH,RDL,ROH

RAX, RBX, RCX, ROX,
SP, BP, 51, 01, 55,
CS, OS, ES, IP, RF

CFl, PFL, AFL, ZFL,
SFL, TFL, IFL, OFL, OFL

change-exp is a numeric expression specifying the new contents of register.

Abbreviation

None

Description

If change-exp contains fewer bits than the specified register, the bits are right
justified and the unspecified high-order bits are set to zeroes.

If change-exp contains more bits than the specified register, the extra high-order bits
are lost.

Possible Error Conditions

Error 148, Integer value required
Error 147, Pointer value required

Examples
1. To change the contents of AX to ()()()()H:

*
*

2. To change the contents of IP to F23AH:

*
*

3. To change the contents of CS to the word value located at WORD.SAM:

*

*

Series III Operating Instructions

Change Memory-Change Contents of Memory Locations

The Change Memory command changes the contents of one or more memory
locations.

Command Syntax

memory-type address

where

{
[TO end-addreSS]}
[LENGTH n]

change-exp [, ...]19<cr>

memory-type is one of the following keywords: BYTE, WORD, SINTEGER,
INTEGER, POINTER.

address is a memory location entered as a pointer value containing a base (which
can be omitted if 0) and a displacement. If a range is accessed, address is the
starting address. address can be either:

• A numeric expression, the result of which is an address modulo 65536.

• A memory content reference of the form (memory-type address), as in
BYTE(WORD 1(00). The content of the address or address pair inside the
parentheses is treated as the address for the memory-type outside the
parentheses.

TO end-address specifies the upper limit of a range of memory that is to be
modified. The end-address must be greater than or equal to address. Both
addresses must have the same base.

LENGTH n specifies the number of bytes, words, or pointers (depending on
memory-type) to be modified. The value n must be an integer value.

change-exp is the value to replace the contents of the specified memory location.
Up to 19 change-exps may be listed. The change-exp must be a pointer value if
memory-type is a pointer; otherwise, it must be an integer value. The change
exp may be any of the following:

• A numeric expression, representing a single value.

• A string, enclosed in quotes, that represents consecutive bytes consisting of
the ASCII equivalents of the string characters.

• A range of memory addresses, representing consecutive bytes, words, or
double words of user memory.

Abbreviation

BYTE can be abbreviated to BYT, WORD to WOR, SINTEGER to SIN,
INTEGER to INT, POINTER to POI, and LENGTH to LEN

Description

To change the contents of a single memory location, use the form:

memory-type address = change-exp<cr>

To change the contents of a range of memory locations, use any of the following
forms:

1. memory-type address = change-exp [, ... 119<cr>
In this form the upper limit of the destination range is implicit in the number of
change-exps listed.

DEBUG-86

6-27

DEBUG-86

6-28

Series III Operating.In~tructions

2. memory-type address TO end-address =
change-exp [, ... 119<cr>

If the number of change-exps is smaller than the range, the system repeats
values as necessary. If larger than the range, the extra values are lost and an
error occurs.

With this form, you access memory depending on memory-type specified, as
follows: .

• BYTE or SINTEGER. You access each byte location in the range, including
address and end-address.

• WORD or INTEGER. Address pairs are accessed until end-address is
reached. If end-address is the low address of a pair, the last word is formed
from end-address and the next address. ..

• POINTER. Address quadruples are accessed until end-address is reached.
If end- address is the low address of a quadruple, the last pointer is formed
from end-address and the next three addresses; if end-address is not the low
address of a quadruple, the access ends after the previous quadruple.

3. memory-type address LENGTH n = change-exp [, ... 119<cr>
This form specifies the actual number of bytes, words, or pointers to be
modified. Access can begin with even- or odd-numbered address. The range is
filled as described under the second form above.

Possible Error Conditions

Error 149, Invalid base error
Error 124, Partition bounds error
Error 148, Integer value required
Error 127, Memory failure
Error 139, Excessive data

Examples

1. To change the byte contents of asingle memory location 800:30H

* BYTE 800:30 = FF<cr>

*
2. To change the byte contents of a range of memory locations to a single value:

* BYTE 800:30 LEN 16 = OOH<cr>

*
3. To replace the byte contents of a range of memory locations with a list of new

values:

* BYT 800:30 TO 800:FF = 12, 34, 56, 78, 9A, BC<cr>

*
4. To replace the word contents of a single memory location with the contents of

the register IP:

* WORD 800:30 = IP<cr>

*
5. To increment the contents of a single memory location:

* WaR 800:30 = (WaR 708:F) + 1<cr>

*
6. To change the pointer contents of a single memory location:

* POINTER 800:30 = ABCD:1234<cr>

*

· Series III Operating Instructions

7. To replace the byte contents of a range of memory with a string:

*

*
8. To replace the pointer contents of a range of memory with the contents of a

second range of memory:

* POI 800:30 = POI 800:5 1 LEN 28<:~)

*
9. To change the byte contents of a memory location referenced by a statement

number:

* BYT :t;56 = ';A<:r)

*

Change Port-Change Contents of 1/0 Ports

The Change Port command changes the contents of one or more I/O ports.

Command Syntax

{
[TO end-addreSS]}

port-type address [LENGTH n] = change-exp [, ...]19<cr>

where

port-type is one of the following:

• PORT -references the 8-bit port value at address.

• WPORT-references the 16-bit port value at address and address + I, one
byte at a time and not as a single 16-bit port value.

address is the address of an 8086 port and is an integer value between 0 through
65,535 inclusive. If a range of ports is specified, address is the starting address
of the range.

TO end-address specifies the upper limit of a range of port addresses. The end
address is an integer value between 0 and 65,535 inclusive, and must be greater
than or equal to address. Both addresses must have a base of zero.

LENGTH n specifies the number of port or word port addresses to be
displayed. The value of n must be an integer.

change-exp is the value to replace the contents of the specified port. Up to 19
change-exps of the following types may be listed:

• A numeric expression that represents a single value.

• A string enclosed in quotes that represents consecutive bytes consisting of
the ASCII equivalents of the string characters.

• A range of memory or port addresses, representing consecutive bytes or
words of user memory or I/O ports.

Abbreviation

PORT can be abbreviated to POR, WPORT to WPO, and LENGTH to LEN.

DEBUG-86

6-29

DEBUG-86

6-30

Series III Operating Instructions

Description

To change the contents of a single port, use the form:

port-type address = change-exp<cr>

To change the contents of a range of ports, use one of the following forms:

1. port-type address = change-exp [, ••. J19<cr>
The upper limit of the destination range is implicit in the number of change-exps
listed.

2. port-type address TO end-address = change-exp [, •.•] 19<c r>
If the number of change-exps is smaller than the range, values are repeated as
necessary to fill the range. If the number is larger than the range, the excess
values are lost and an error occurs.

3. port-type address LENGTH n = change-exp [, ••• J19<cr>
This form specifies the actual number of ports to be modified. Access can begin
on an even- or odd-numbered address. The specified range is filled as described
under No.2 above.

Possible Error Conditions

Error 148, Integer value required
Error 124, Partition bounds error
Error 139, Excessive data

Examples

1. To change the contents of a single byte port:

* PORT D8 = 41 <c r>

*
2. To change the contents of a range of byte ports:

* PORT CO = 11, 22, 33, 44, 55, 66<c r >

*
3. To replace the contents of a range of ports with a string:

* PORT 1000 TO 1005 = 'ABCDE'<cr>

*
4. To fill a range of ports with the same value:

* paR 1000 LEN 5 = FF<c r >

*
5. To attempt to fill a range with too many values:

* paR 1000 TO 1002 = 11,22,33, FF<cr>

*
An error message such as ERROR 140 is displayed.

Series III Operating Instructions

Display Commands

This section describes the commands that enable you to display the following
systems elements:

• 8086 processor registers

• 8086 status registers

• Memory

• Ports
• Status flags

The Display commands are:

Display Registers Displays contents of 8086 registers.

Display Memory Displays contents of 8086 memory locations.

Display Memory
(ASM Form)

Displays contents of 8086 memory locations in 8086
Assembly language mnemonics.

Display Port Displays contents of 1/0 ports.

Display Stack Displays contents of user's stack.

Display Boolean Displays boolean value of input.

Evaluate Displays an integer value in five number bases or a pointer
value in five hexadecimal digits.

Display Register-Display Contents of 8086 Registers

The Display Register command displays the contents of one or more 8086 processor
registers and status flags.

Command Syntax

{

re9 ister[, ooo]19}
REGISTER

FLAG

where

<cr>

register is any of the following keyword references (up to 19 can be entered,
separated by spaces):

8086 Register Type

8-bit registers

16-bit registers

1-bit status flags

Keyword References

RAL, RAH, RBL, RBH, RCL,
RCH, ROL, ROH

RAX, RBX, RCX, ROX, SP,
BP, SI, 01, SS, CS, OS,
ES, IP, RF

CFL, PFL, AFL, ZFL, SFL,
TFL, IFL, DFL, OFL

DEBUG-86

6-31

DEBUG-86

6-32

Series III Operating Instructions

REGISTER is a command keyword that causes the display of all the 16-bit 8086
registers.

FLAG is a command keyword that displays all the I-bit status flags.

Abbreviation

REGISTER can be abbreviated to R or REG, and FLAG to FLA.

Description

The referenced values are displayed on 80-column-wide lines separated by spaces
according to the appropriate format, as follows:

8-bit-register-name = byte
16-bit-register-name = word
status-flag-name = bit

Possible Error Conditions

Syntatic errors are possible.

Examples

I To display the AX, BH, SP and AFL registers:

* RAX,RBH,SP,AFL<cr>

RAX=0001H RBH=2FH SP=FFE7H AFL=O<cr>

2. To display all nineteen 16-bit registers:

* or*_
RAX=OOOHRBX=OOA2HRCX=0001HRDX=0010HSP=OOOAHBP=OOOOHSI=0123HDI=OOOOH
CS=OOOOHDS=FF1EHSS=OOOOHES=OOOOHRF=OOOOHIP=FABCH

3. To display the nine status flags:

*'8:+"
CFL=O PFL=O AFL=O ZFL=O SFL=O TFL=1 IFL=O DFL=O OFL=O

Display Memory-Display 8086 Memory

The Display Memory command displays the contents of one or more 8086 memory
locations.

Command Syntax

memory-type address I[TO end-addreSS]) <cr>
[LENGTH n]

where

memory-type is one of the following keywords: BYTE, WORD, SINTEGER,
INTERGER, POINTER.

Series IIlOperating Instructions

address is a pointer value that contains abase (which need not be entered if 0)
and a displacement and specifies an address of a memory location. If a range is
specified, address is the starting address in the range. The address can be either:

• A numeric expression, the result of which becomes an address modulo .
65536.

• A memory content reference in the form (memory-type address), as in
BYTE(WORD 1000). The content of the address or address pair inside the
parentheses is treated as the address for the memory-type outside the
parentheses.

TO end-address specifies the upper limit of a range of memory. The end-aadress
must be greater than or equal to address. Both addresses must have the same
base.

LENGTH n specifies the number of bytes, words, or pointers to be displayed.
The value n must be an integer.

Ab breviation
BYTE can be abbreviated to BYT, WORD to WOR, SINTEGER to SIN,
INTEGER to INT, POINTER to POI, and LENGTH to LEN

Description
To display the contents of a single memory location, use the form:

memory-type address<cr>

To display the contents of a range of memory locations use either of two forms:

1. memory-type address TO end-address<cr>
2. memory-type address LENGTH n<cr>

In 1 and 2 above, memory is accessed as described under the Change Memory
Command.

Each line of display contains the memory address of the first value followed by a
maximum number of values depending on memory type, as follows: BYTE-16,
WORD-8,. SINTEGER-8, INTEGER-8, POINTER-4.

Possible Error Conditions

Error 149, Differing bases
Error 124, Partition bounds error

Examples

1. To display the byte contents of location 800:30H:

* BYTE 800:30<cr>
aYT 0800:0030H=66H

2. To display the byte contents of locations 800:30H through 800:30H:

* BYT 800:30 LEN 10<cr>

aYT 0800:0030H=66H 6FH 72H 20H 70H 72H 6FH 67H 72H 61H
3. To display the word contents of location 800:30H:

* WORD 800:30 <cr>
WOR 0800:0030H = EF06H

DEBUG-86

6-33

DEBUG-86

6-34

Series III Operating Instructions

4. To display 16H words beginning at location 800:30H:

* WaR 800:30 LEN 16<cr>
WOR 0800:0030H=6F66H 2072H 7270H 676FH 6172H 736DH

5. To display the pointer contents of location 800:30H:

* POINTER 800:30<cr>
POI 0800:0030H=2072:6F66H

6. To display the POINTER contents of locations 800:30H through 800:3BH:

* POI 800:30 TO 800:3B<cr>
POI 0800:0030H=2072:6F66H 676F:7270 736D:6172H

Display Memory (ASMfC)rm~-Display 8086 Memory in
ASM Form

The ASM form of the Display Memory command displays the contents of one or
more 8086 memory locations in 8086 Assembly language mnemonics.

Command Syntax

ASH address I[TO end-addreSS]) <cr>
[LENGTH n]

where

address is a pointer value that contains a base and a displacement and specifies
an address of a memory location. If a range is specified, address is the starting
address in the range. The address can be either:

• A numeric expression, the result of which becomes an address modulo
65536.

• A memory content reference in the form (memory-type address), as in
BYTE(WORD 1000). The content of the address or address pair inside the
parentheses is treated as the address for the memory-type outside the
parentheses.

TO end-address specifies the upper limit of a range of memory. end-address
must be greater than or equal to address. Both addresses must have the same
base.

LENGTH n specifies the number of bytes, words, or pointers to be displayed.
The value of n is an integer.

Abbreviation

LENGTH can be abbreviated to LEN

Description

The specified range of memory is disassembled into 8086 Assembly language in the
following format:

Address

FFOO:0390
FFOO:0391
FFOO:0393

Prefix Mnemonic

IN
TEST
JE

Operands

A L, DX
AL,07H
$-06H

Corrments

;SHORT

Series III Operating Instructions

where

AD DR marks the first byte (or prefix) of the instruction in hexadecimal.

PREFIX identifies any prefix byte other than segment override (such as LOCK,
REPE, REPNE) that may be specified. If none is specified, the column is blank.

MNEMONIC is the 8086/8087/8088 macro assembler mnemonic for the
instruction.

OPERANDS define zero or more operands separated by commas. Register
operands are any of the 8086 registers: AL, AH, BL, BH, CL, CH, DL, DH,
AX, BX, CX, DX, SI, DI, BP, SP.

The disassembled memory operands used by DEBUG-86 have the following format:

~ICS}J {BYTE} ['{BX}' J ['{DI}' J ['{XXXXXH} , J OS: WORD PTR [BP] [SI] []
ES DWORD +xxH
SS ? -xxH

where

Example: the display ES:BYTE PTR [BX] [SI] [+OIH]
represents the operand BYTE ES:(BX+SI+l)

• The first field is the segment register field and is only displayed if the instruction
has a segment-override prefix.

• In the second field, an entry "?PTR" means that the type of the pointer cannot
be determined from the context.

Example: LEA A X .? P T R [34AOH]

• In the third and fourth fields the base register (BX, BP, and index register (DI,
SI) fields are not displayed for direct memory operands. When
these fields are displayed, they are enclosed in brackets.

• The last field is either a 16-bit unsigned (word) number, or a signed 8-bit (byte)
number. The entry is displayed enclosed in brackets.

• At least one of the last three fields (base register, index register, number) is
displayed for any memory operand.

Examples

1. To display the contents of address 800:9C7H in ASM form:

* ASM 800:9C7<cr>
AD DR
0800:09C7H

PREFIX MNEMONIC
MOV

OPERANDS
AX, WORD PTR [1848H]

2. To display the contents of a range of addresses in ASM form:

* ASM 800:BBC LEN 5 <cr>
AD DR
0800:0BBCH
0800:0BBEH
0800:0BCOH

PREFIX MNEMONIC
SBB
JE
CALL

OPERANDS
BYTE PTR [BX][SI],AL
$+39H
$+003BH

COMMENTS

COMMENTS

iSHORT
iSHORT

DEBUG-86

6-35

DEBUG-86

6-36

Series III Operating Instructions

Display Port-Display 1/0 Port Contents

The Display Port command displays the contents of one or more I/O ports.

Command Syntax

Por t-type add res s IE TO end-address J} <c r>
\[lENGTH nJ

where

port-type is one of the following keywords:

• PORT -references the 8-bit port value at address.

• WPORT-references the 16-bit port value at address and address + 1, one
byte at a time and not as a single 16-bit port value.

address is the address of an 8086 port and is an integer value between 0 through
65,535 inclusive. If a range is specified, address is the starting address of the
range.

TO end-address specifies the upper limit of a range of port addresses. end
address is an integer value between 0 and 65,535 inclusive, and must be greater
than or equal to address.

LENGTH n specifies the number of port or word port addresses to be
displayed. The value n must be an integer.

Abbreviation

PORT can be abbreviated to POR, WPORT to WPO, and LENGTH to LEN.

Description

To display the contents of a single port, use the form:

port-type address<cr>

To display the contents of a range of ports, use either the TO end-address form or
the LENGTH n form.

Possible Error Conditions

Error 148, Integer value required
Error 124, Partition bounds error

Examples

1. To display the contents of the byte port at address 120H:

* PORT 120<cr>
POR 0120H=BFH

2. To display the contents of a range of byte ports:

* PORT 120 TO 126<cr>
POR 0120H=BFH 7FH BFH 7FH BFH 7FH

Series III Operating Instructions

3. To display the contents of a single word port at address 12OH:

*
WPO 0120H=7FBFH

4. To display the contents ofa range of word ports:

* WDORT 120 ~o 128<:::r>

WPO 0120H=7FBFH 7FBF~ 7FRFH 7BBFH 7BBFH

Display Boolean-Display Boolean Value

The Display Boolean command displays the boolean value of the input value.

Command Syntax
BOOl expression<cr>

where

expression is an integer expression, the result of which is evaluated to a boolean
value. If the least significant bit of the result equals 1, the boolean value is
TRUE; otherwise the boolean value is FALSE.

Abbreviation

BOOL can be abbreviated to BOO.

Description

A boolean expression is an expression that is contained in a boolean command con
text. The least significant bit of the result is tested to obtain a TRUE or FALSE
value. Any integer value may be used in a boolean context.

A boolean expression uses relational and logical operators to manipulate
TRUE/F ALSE values. When a relational operator is evaluated, the result is always
either 0 (FALSE) or FFFFH (TRUE).

Possible Error Conditions
Error 148, Integer value required

Examples
1. To display the boolean value of FFH:

* Baal FF<c r >
TRUE

*
2. To display the boolean vaue of an expression that includes logical and relational

operators:

* BOO CS=DS AND IP > SO<cr>

FALSE

*

DEBUG-86

6-37

DEBUG-86

6-38

Series III Operating Instructions

3. To display the boolean value of an expression that includes a symbol:

* BOO BYTE .X - F2<cr>

FALSE
*

Display Stack-Display User Stack Contents

The Display Stack command displays the contents of the user's stack.

Command Syntax

STACK expression<cr>

where

expression is an integer expression, the value of which defines the number of
words on the user stack to be displayed.

Abbreviation

STACK can be abbreviated to ST A.

Description

The stack is located in user memory referenced by the pointer value SS:SP. The
specified number of words are displayed from the top of the stack.

Possible Error Conditions

Error 148, Integer value required
Error 126, Symbol does not eixst

Examples
1. To display the contents of five words at the top of the stack:

* STACK 5<cr>

WOR 0839:0DCCH=4100H 4342H 2045H 3D30H 6874H
2. To display the contents of n stack words, where n is the word value stored at

.SAM:

* STA .SAM<cr>

EVALUATE-Display Integers in Five Bases

The Evaluate command displays integer values in binary, octal, decimal, hex
adecimal, and ASCII, and pointer values in pointer and 20-bit forms.

Command Syntax
EVALUATE expression [SYMBOLICALLY]<cr>

where

expression is an integer expression.

Series III Operating Instructions

SYMBOLICALL Y is a keyword that displays each numeric value output by the
command as as a symbol or a source statement, plus a remainder. The numeric
value is assumed to be a pointer. If no symbol with a value less than the value
being evaluated exists, it is displayed in pointer form.

Abbreviation
EV ALUATE can be abbreviated to EVA, and SYMBOLICALLY to SYM.

Description
The Evaluate command translates integers from one base to another and computes a
20-bit address like that of a pointer. Any expression is evaluated to a single number
and the result is displayed in binary, octal, decimal, hexadecimal, and ASCII bases.

In the four numeric bases, the BYTE and WORD values have a suffix and sufficient
leading zeroes to contain the following number of digits.

BYTE
WORD

Hexadecimal
(H)

2
4

Decimal
(T)

3
5

Octal
(Q)

3
6

Binary
(Y)

8
16

In base ASCII, characters are enclosed in single quotes ('); printing characters
(ASCII codes 20H through 7EH after bit 7 is masked off) are displayed, while non
printing characters are suppressed.

If you specify the keyword SYMBOLICALLY, the system searches the symbol table
for the symbol or statement number with the same base whose offset value is closest
to but not greater than the value being output. If a symbol and a statement number
have the same value, the symbol is used. The value is then displayed as either (sym
bol + numeric constant) or (statement number + numeric constant), where the
numeric constant is the non-zero remainder in hexadecimal base. If no symbol or
statement number has a value less than or equal to the value, it is output as a
numeric constant.

Possible Error Conditions

Error 126, Symbol or line does not exist
Error 137, Module does not exist

Examples
1. To display the value of 4142H in the five bases:

* EVA 4142<c:r>

1000001010000V 40502Q 16706T 4142H 'AB'
*

2. To display the value of FFH + ADH in five bases:

* EVA FF + AD<cr>

110101100V 654Q 428T 1ACH I,'
*

3. To display 111 :0222H as a symbol or statement number plus remainder:

* EVA 111 :0222 SYM<cr>

0111 :0222H
*
This example assumes that no symbol or statement number match.

DEBUG-86

6-39

DEBUG-86

6-40

Series III Operating Instructions

4. To display III :222H as a symbol or statement number plus remainder:

* EVA 11 1:222<:")

.• MOD1.SAM + 0021H
*
This example assumes that a matching symbol with an address at 111:201 has
been selected~

Symbol Manipulation Commands

The commands described in this section allow you to manipulate the symbols and
statement numbers in the DEBUG-86 symbol and statement number tables. With
these commands, you create and change symbols, and display and·remove symbols,
modules, and source statement numbers.

The Symbol Manipulation commands are:

DEFINE Symbol

Display Symbols

Display Lines

Display Modules

Change Symbols

Remove Symbols

Set Domain

Enters a new symbol in the table.

Displays symbols and their values.

Displays statement numbers and aSSOCiated absolute
addresses.

Displays the names of all modules.

Changes the value and type of symbols.

Removes specified symbols, or specified modules, or all
modules, symbols, and statement numbers.

Establishes a default module for statement number
references that do not contain a module name.

Define Symbol-Enter New Symbol

The Define Symbol command enters new symbols in the DEBUG-86 symbol table.

Command Syntax

DEFINE [.. modulel.symbol = change-exp [OF memory-typel<cr>

where

module is the name of an existing program module, in which symbol is to be
located. The module is prefixed by two periods (..).

symbol is a user-defined symbol to be entered into the symbol table for use dur
ing the debugging session. The symbol references a location in the symbol table,
and is prefixed by a period (.).

change.,.exp is a numeric expression, the value of which is to be assigned to
symbol. The change-exp represents an address of statement labels or variables,
or the value of a constant.

OF memory-type specifies any of the following: BYTE, WORD, SINTEGER,
INTEGER, or POINTER. If memory-type is omitted, symbol has no type.

Serie~ III Operating Instructions

Abbreviation

DEFINE can be abbreviated to DEF.

Description

The rules for defining new symbols are as follows:

You can use up to 122 characters for the symbol name, of which the first 31
characters must be a unique combination.

The first character in the symbol name must be an alphabetic character, or one of
the two characters @ or ? The remaining characters can be these characters or
numeric digits.

You can specify the module that is to contain the new symbol. The module named
must already exist in the table. The symbol is then placed in that module's section of
the table. Symbols defined without a module are placed in the unnamed module at
the head of the table.

The new symbol name may not duplicate a symbol name already present in the
named module. However, the same symbol name may appear in different modules.

Possible Error Conditions

Error 125, Symbol already exists
Error 137, Module does not exist

Examples
I. To enter the byte symbol .BEGIN in the symbol table module .. MAIN with a

value ofF3H:

* DEFINE .. MAIN.BEGIN = F3 OF BYTE<cr>

*
2. To enter the untyped symbol .CAR into the symbol table with a value of

()()()() :OFOO H:

* DEF .CAR = OOOO:OFOO<cr>

*
3. To enter the word symbol ENTI into the symbol table with a value of . V AR +

10:

* DEF .ENT1 = .VAR + 10 OF WOR<c r >

*
4. To enter a pointer symbol .CAT2 into the symbol table with a value of

0700:0050H:

* DEF .CAT2 = 0700:0050 OF POI<cr>

*
5. To enter a pointer symbol .CAT2 in the module .. SUBRA with a value of

OOOO:OOFOH:

* DEF .. SUBRA.CAT2 = OOOO:OOFO OF POI<cr>

*

DEBUG-86

6-41

DEBUG-86

6-42

Series III Operating Instructions

Display Symbols-Display One or More Symbols

The Display Symbols command displays one or more symbols (and modules if any).

Command Syntax

{ SYMBOL } <cr>
[..module].symbol [. symbol 1 •••

where

SYMBOL is a command keyword that causes the entire DEBUG-86 symbol
table to be displayed, module by module.

module is the name of the program module in which symbol is located. The
module is prefixed by two periods (..).

symbol is the name of a symbol that references a location in the symbol table.
The symbol is prefixed by a period (.).

Abbreviation
SYMBOL can be abbreviated to SYM.

Description
To display a value from the symbol table, enter the symbol name (and module name
if any). If the symbol desired is the first occurrence of that symbol in the symbol
table, you do not need the module name. The symbol table value is displayed on the
next line.

To display the entire symbol table, enter the command SYMBOL. Symbols are
displayed module by module, starting with the. unnamed module. Each module
name is displayed at the head of that module's symbols. The value corresponding to
each symbol is also displayed.

Possible Error Conditions
Error 137, Module does not exist
Error 126, Symbol does not exist

Examples
1. To display the symbol .SAM: .

.SAM=0200:1FE2H OF INT
2. To display the symbol .SAM located in module .. MYPROG:

.SAM=0200:1FE2H OF IMT
3. To display the entire symbol table: .

.TEMP=OOOO.0001H
MODULE .. MAIM
.BEGIN=0800:0050H

Series III Operating Instructions

.VAR=0800:0100H OF BYT
MODULE •• SUBR
.PROC=0800:0069H
.X=0800:0101H OF WOR

Display Lines-Display Statement Numbers

The Display Lines command displays the value of a single source statement number
or all statement numbers.

Command Syntax

IL IN E 1
[.. module]#statement-number <cr>

where

LINE is a command keyword that displays all statement numbers and
associated absolute addresses in the current domain. The module name is
printed at the head of the module's line numbers when displaying all lines.

module is the name of the program module in which statement-number is
located. It is prefixed by two periods.

statement-number is the source statement number. It is a numeric constant with
a default suffix that is always decimal. It is prefixed by a number sign (#).

Abbreviation

LINE can be abbreviated to LIN.

Description

DEBUG-86 maintains a statement number table for PL/M-86 or PASCAL-86 pro
gram source codes. The statement numbers are assigned by the compiler. The
address of the first instruction generated by each source statement corresponds to
each source statement number in the table.

When you issue the command, LINE, each module name is printed at the head of
the module's line numbers.

To display the value of a single source statement number and associated absolute
address, specify the statement number prefixed by a number sign (#).If two or more
modules have been compiled separately and contain the same statement numbers,
specify the module name.

DEBUG-86 does not allow you to change the address corresponding to an existing
statement number, or define any new statement numbers, or delete (remove) any
statement numbers.

Possible Error Conditions

Error 137, Module does not exist
Error 126, Statement number does not exist

DEBUG-86

6-43

DEBUG-86

6-44

Series III Operating Instructions

Examples

1. To display the value from the number table of a single statement number:

*r/16 ...
#1 = 0 800 : 0050 H

2. To display the value from the number table of a single statement number
contained in a particular module:

* .• MAIN #2<cr>

#2=0800:0057H
3. To display the addresses of all the statement numbers in the statement number

table:

*I'I~'_.
MODULE .. MAIN
#1=0800:0050H
#2=0080:0057H
MODULE .. SUBR
#1 = 11 40 : 0 01 2 H
#2=1140:0037H
#3=1140:00DFH

Display Modules-Display Module Names

The Display Modules command displays the names of all the modules currently in
the DEBUG-86 symbol table.

Command Syntax

MODULE<cr>

Abbreviation

MODULE can be abbreviated to MOD

Description
To display the names of all the modules currently in the symbol table, enter the
keyword MODULE.

Possible Error Conditions

None

Example

*1" ••• "
MODULE .. MAIN
MODULE .. SUBR

Change Symbols-Change Value of a Symbol

The Change Symbol command changes the value (and memory-type if specified) of
a symbol.

Series III Operating Instructions

Command Syntax
[.• module].symbol[.symbol ...] •.. = change-exp [OF memory-typeJ<cr>

where

module is the name of the program module in which symbol is located and is
prefixed by two periods (..).

symbol is the name of an existing symbol that references a location in the sym
bol table. Each symbol is prefixed by a period (.).

change-exp is a numeric expression of a pointer value to be assigned to symbol
and represents either the address of statement labels or variables, or the value of
a constant.

OF memory-type specifies the memory type of symbol: BYTE, WORD,
SINTEGER, INTEGER, or POINTER. If OF memory-type is omitted, the
symbol's memory type is not changed.

Abbreviation
BYTE can be abbreviated to BYT, WORD to WOR, SINTEGER to SIN,
INTEGER to INT, and POINTER to POI.

Description

The Change Symbol command replaces the value (and memory-type if specified) of
a symbol.

When the same symbol name exists in different modules, specify the name of the
module containing the desired symbol.

Possible Error Conditions

Error 137, Module does not exist
Error 126, Symbol does not exist

Examples

1. To change the value of a single symbol in the symbol table:

* .ABC = 2000<cr>

*
2. To change the value and memory type of a symbol located in a particular

module:

* .. MAIN.DEF = 450 OF WOR<cr>

*
3. To replace the value of a symbol with the sum of the values of two other

symbols, and change the memory type:

* .TEMP = .ABC + .. MAIN.DEF OF WORD<cr>

*

DEBUG-86

6-45

DEBUG-86

6-46

Series III Operating Instructions

Remove Sllmbols-Remove Symbols/Modules

The Remove Symbols command removes one or more symbols, or one or more
modules, or all symbols and lines from the DEBUG-86 tables.

Command Syntax

{
[.. mOdUleJ.srmbOl [.symbol ... J19

REMOVE SYMBOL
MODULE .. module [, .. moduleJ ...

where

. . .. }
<cr>

module is the name of an existing program module in the symbol table, and is
prefixed by two periods (..). Up to 19 modules can be listed at one time.

symbol is the name of an existing symbol in the symbol table, and is prefixed by
a period (.). Up to 19 symbols can be listed at a time.

SYMBOL is a command modifier that deletes the entire current DEBUG-86
symbol table.

MODULE is a command modifier that deletes all the symbols and lines of the
named module from the symbol and statement number tables. The object code
is not affected.

Abbreviation

REMOVE can be abbreviated to REM, SYMBOL to SYM, and MODULE to MOD.

Description

To remove one or more symbols from the symbol table, use the first form of the
command syntax. If the desired symbols occur in more than one module, specify the
module name. The first occurrence of each symbol is deleted.

To remove all modules, symbols and statement numbers from both tables, use the
second form of the command syntax.

To remove a single module, use the third form of the command syntax. Removing a
module removes all symbols and statement line numbers lines in the module, but
does not affect the object code.

When more than one module is listed, separate them with commas. When more than
one symbol is listed, separate them with spaces.

Possible Error Conditions

Error 139, More than 20 symbols entered
Error 137, Module does not exist
Error 126, Symbol does not exist

Series III Operating Instructions

Examples
1. To remove a single symbol from the symbol table:

* REMOVE .ABC<cr>

*
2. To remove a symbol from a particular module:

* REMOVE .. MAIN.DEF<cr>

*
3. To remove symbols from different modules:

* REM .HIJ, .PARM1, .. MAIN.TWO, .CARS, .CARS1 .. SUBR.XX<cr>

*
4. To delete both the symbol table and the statement number table entirely:

* REMOVE SYMBOL<cr>

*
5. To remove a single module from the symbol and statement number tables:

* REMOVE MODULE .. MAIN<cr>

*
6. To remove three modules from the symbol and statement number tables:

* REM MOD .. MAIN, .. SUBR, .. CALC<cr>

*

Set Domain-Establish Default Module

The Set Domain command establishes a specified module as the default module for
statement number references.

Command Syntax
DOMAIN .. module<cr>

where

DOMAIN is a command keyword that establishes a default module for source
statement number references.

module is the name of an existing program module in the statement number
table and is prefixed by two periods (..).

Abbreviation
DOMAIN can be abbreviated to DOM.

Description
This command establishes a default module so that you need not specify the module
name each time you reference a statement number contained in that module.

When the domain is set, you need not use module names on statement numbers
while debugging that portion of the program.

DEBUG-86

6-47

DEBUG-86

6-48

Series III Operating Instructions

Possible Error Conditions

Error 137, Module does not exist

Example

1. To establish the module .. MAIN as the default:

* DOMAIN .. MAIN<cr>

*

Compound Commands

The compound commands described in this section enhance the operation of
DEBUG-86 by extending the power of the simple commands. A compound com
mand is a control structure that contains zero or more commands.

The compound commands are:

REPEAT A looping command
COUNT A looping command
IF A conditional execution command

The examples in this section are independent of each other. The introduction to each
example gives the initial conditions for that example, and does not assume any
results or conditions from any previous examples.

REPEAT Command

The REPEAT command executes zero or more DEBUG-86 commands in a loop; the
loop can also contain zero or more logical conditions for termination.

The REPEAT command consists of the REPEAT keyword, zero or more com
mands of any type, zero or more exit conditions using WHILE or UNTIL, and the
keyword END. Enter each of these elements on its own line of the console display.
Terminate each input line with an intermediate carriage return (shown as cr in the
command syntax). Terminate the last line, END, with a final carriage return to
begin the sequence of execution.

Syntax

REPEAT<cr>

[
corrmand<c r>
WHILE boolean-expreSSion<cr>]
UNTIL boolean-expression<cr>

END<cr> ,

Description

After each intermediate carriage return, the system begins the next line with a period
(giving an indented appearance), then the asterisk prompt to signal readiness to
accept the next line. The END keyword can be entered as ENDR or ENDREPEAT;
the characters after END serve as a form of "comment" to indicate which loop is
being terminated.

The elements to be repeated are shown in brackets in the syntax. Each element can
be a command, a WHILE clause, or an UNTIL clause. You can mix these elements
in any order, using any number of each type of element.

Series III Operating Instructions

Each command is executed when it is encountered on each iteration. After the com
mand has been completely executed, the loop proceeds to the next element.

The WHILE and UNTIL keywords introduce exit clauses. The WHILE clause ter
minates execution of the loop when its boolean-expression evaluates FALSE. The
UNTIL clause terminates the loop when its boolean-expression evaluates TRUE.

In both the WHILE and UNTIL clauses, the boolean-expression is evaluated each
time the clause is encountered; that is, once per iteration. Evaluation at each itera
tion involves looking up the values of any references in the expression. Thus, the
result can change with each evaluation.

The choice of WHILE or UNTIL is usually a matter of convenience-there is always
a way to convert one into the other. For example, "WHILE bool-expr" is
equivalent to "UNTIL NOT (bool-expr)".

NOTE

To terminate execution of a REPEAT (or COUNT) loop, enter CNTL-D at
the console. The DEBUG-86 command currently executing halts wherever it
happens to be; if you are executing, the current instruction is completed
before the break. DEBUG-86 responds to the CNTL-D character with the
asterisk prompt.

To return to RUN and then optionally to ISIS-II, enter CNTL-C.

Here are some brief examples of the REPEAT command.

Example 1. Generate an ASCII table similar to table 6-2:

DEFINE .TEMP = 40H
REPEAT

WHILE .TEMP <= 7EH
EV AlUA TE . TEMP
.TEMP = .TEMP + 1

ENDR

Example 2. Single-step through the user program for each instruction until a
repetitious routine (.DELA Y) is reached:

REPEAT
UNTIL CS:IP = .DELAY
STEP
ASH CS:IP

ENDR

Example 3. Using a complex combination of conditions in the boolean expression:

REPEAT
UNTIL (CS:IP > .END XOR .VAR1 = 0) OR (.TEMP > 0 XOR .VAR2 = 1)
STEP
REGISTER

ENDR

Example 4. Execute from the start of the program (.START) until a breakpoint
(.ERROR) is reached, display status registers, then continue execution, and display
ing registers until a terminating condition (BYTE. VAR = 2) is reached:

REPEAT
GO TILL . ERROR
REGISTER
UNTIL BYTE .VAR 2

ENDR

DEBUG-86

6-49

DEBUG-86

6-50

Series III Operating Instructions

COUNT Cqmmand

Like REPEAT, the COUNT command sets up a loop. In addition to the WHILE
and UNTIL clauses discussed under REPEAT, COUNT includes a loop counter that
terminates the loop if no exit condition is met before the counter runs out.

The COUNT command has the form:

COUNT arithmetic-expression<cr>

[
COmmand<Cr>]
WHILE booLean-expression<cr>
UNTIL booLean-expression<cr>

END<cr>

The arithmetic-expression after COUNT controls the (maximum) number of itera
tions to be performed. If a numeric constant is used (for example, COUNT 10),
DEBUG-86 interprets it in implicit hexadecimal base; in other words, any number
entered after COUNT without an explicit radix is interpreted as a hexidecimal
number.

If the entry after COUNT is an arithmetic-expression, it is evaluated to give the
number of iterations. The COUNT expression is evaluated once, before any loop
elements are encountered. It is not evaluated again on any interation. The COUNT
expression uses the values of any references it contains as they stand at the time of
evaluation. For example, consider the following command sequence:

DEFINE .XX = 2
COUNT .XX

.XX = .XX + 1
END

This loop goes through two iterations, although .XX has value 4 when the loop
terminates.

The loop terminates when the number of iterations given by the COUNT expression
has been performed or when an exit condition is tested and causes exit, whichever
comes first. The following example illustrates this concept.

DEFINE .XX = 1
COUNT 5

.XX = .XX + 1
WHILE .XX < 5

END

To show that the loop terminates on the WHILE condition before the COUNT
expression is exhausted, we can "track" the loop in operation. Table 6-9 shows the
track.

Table 6-9. Tracking a COUNT Command

Iteration .XX .XX<S

1 2 TRUE
2 3 TRUE
3 4 TRUE
4 5 FALSE

The loop terminates during the fourth iteration, when .XX < 5 becomes FALSE.

Series III Operating Instructions

Conversely, the COUNT expression specifies the maximum number of iterations to
be performed in case no exit clause produces an exit on any iteration. For example:

COUNT 10T
UNTIL CS:IP = .DELAY
STEP
ASH CS:IP

END

In this command, the COUNT expression specifies a maximum of ten STEPs, in
case the first instruction at .DELA Y is not reached during any iteration.

With a REPEAT command or with a COUNT command that include one or more
clauses, there may be no direct way to tell how many iterations occurred before the
loop terminated. For these cases, you can insert a loop counter as a loop element.
For example, to obtain table 6-9 as a display you could use the following sequence:

BASE = T
DEFINE .ITER = 0
DEFINE .XX =
COUNT 10T

.XX = .XX + 1

.ITER = .ITER + 1

.ITER

.xx
BOOL .XX < 5
WHILE .XX < 5

END

The command BOOL .XX < 5 produces a display of TRUE or FALSE.

The following example executes to a breakpoint, displays 8086 registers, then con
tinues executing, breaking, and displaying for 10 iterations:

COUNT 10T
GO TILL .PAUSE EXECUTED
REGISTER

END

IF Command

The IF command permits conditional execution in a command sequence. The IF
command has the form:

IF boolean-expression [THEN1<cr>
[comnand<c r> 1 ••.

[
ORIF boolean-expression [THEN1<cr>]

[comnand<c r>] ...

rE LS E<c r>]
L [comnand<c r>] ...
END<cr>

The command must have the IF clause; the ORIF and ELSE clauses are optional.
The command can include as many ORIF clauses as desired. The IF and ORIF
clauses each contain a single condition (boolean expression). Any clause can contain
none, one, or more commands. A clause with no commands simply produces an exit
when its condition is TRUE.

DEBUG-86

6-51

DEBUG-86

6-52

Series III Operating Instructions

DEBUG-86 examines each boolean expression in turn, clause by clause, looking for
the first TRUE condition. If a TRUE condition is found, the commands in that
clause are executed and the IF command terminates. If none of the conditions is
TRUE, the commands in the ELSE clause are executed and the IF command ter
minates. If the ELSE clause is omitted and no condition is TRUE, the IF command
terminates with no commands executed.

The END keyword is required to close off the IF command; it can be written as
ENDIF to clarify nesting.

The following is an example of the IF command.

IP = 1
IF IP < 1

EVALUATE 1
ORIF IP < 2

EVALUATE 2
ORIF IP < 3

EVALUATE 3
ELSE

EVALUATE 4
END

This example displays the result of EVALUATE 2 and then terminates. The first
condition (IF IP < 1) is FALSE, so EVALUATE 1 is skipped. The second condition
(ORIF IP < 2) is TRUE, so EVALUATE 2 is executed and the IF command ter
minates. The third condition (ORIF IP < 3) is not tested, even though it happens to
be TRUE.

In practice, however, the IF command is useful when it is nested in a REPEAT or
COUNT loop rather than appearing at the top level. A nested IF command enables
you to test conditions that can change (due to other commands in the loop), whereas
when an IF command is at the top level the TRUE or FALSE state of any condition
is known, or can be determined with the BOOL command. Thus, the result from the
previous example can be obtained with fewer steps:

BOO liP < 1
BOOl IP < 2
EVALUATE 2

(Displays FALSE)
(Displays TRUE)

Nesting Compound Commands

The REPEAT, COUNT, and IF commands can be nested to provide a variety of
control structures.

Each nested compound command must have its own END keyword. When entering
a nested command sequence, you may wish to use the keywords ENDR, ENDC, and
ENDIF to help you keep straight which command you intend to close off.
DEBUG-86 does not check nesting levels at entry, and if an END is omitted, the
resulting error makes it necessary to enter the entire command again.

Each nested REPEAT or COUNT command can contain its own exit clauses
(WHILE or UNTIL). Each exit clause can terminate the loop that contains it, but
has no effect on any outer loops or commands.

As an example of nesting, suppose you want to STEP through a program with
disassembled display, but skip a repetitive timeout routine, .DELAY, that is called

Series III Operating Instructions

with an 8086 short-call instruction several times during program execution. One way
to achieve this effect is with the following command sequence:

REPEAT
IF CS:IP = .DELAY

IP = WORD SS:SP
SP = SP + 2

ENDIF
STEP
ASM CS:IP

ENDR

At each call to .DELAY in the program, the displacement of the return address for
the call is pushed on the stack. The keyword SP refers to the stack pointer, and SS is
the stack segment register; SS:SP is the address of the top of the stack where the
return address is stored. The effects of the commands IP = WORD SS:SP and SP =
SP + 2 are to load the return address back into IP and reset the stack pointer just as
if the return instruction at the end of .DELA Y had been executed.

As another example of nesting, suppose the user code at statements #21 and #22 is
incorrect or not written yet. The following sequence executes to the point where
substitute code is to be inserted, inserts the code (equivalent to IF MARK> 0 THEN
PTR = PTR + 2 in PL/M), then continues executing beginning with statement #23
(the insertion is made any time execution reaches statement #21):

GO FROM .START TILL #21
REPEAT

IF WORD .MARK > 0
WORD .PTR = WORD .PTR + 2

ENDIF
GO FROM #23

ENDR

An exit can be made only when a condition is tested, not when it occurs. To cause an
exit, the test must be placed at the point in the loop where the condition occurs. For
example, consider the following command sequence:

REPEAT
UNTIL IP = 1000H
STEP

ENDR

In this command the condition IP = 1000H is tested after every STEP. If the
sequence of STEPs reaches IP = lOOOH as the next instruction, the loop will ter
minate. By contrast, consider this example:

REPEAT
UNTIL IP = 1000H
COUNT 10

STEP
ENDC

ENDR

In the second example, the condition IP = 1000H is tested after every ten STEPs.
The loop exits only if IP = 1000H occurs at the end of some group of ten instruc
tions. If IP = 1000H occurs during one of the groups of ten STEPs, the loop does
not terminate because that condition is changed by subsequent STEPs before the test
can be made.

DEBUG-86

6-53

DEBUG-86

6-54

Series III Operating Instructions

If the command has more than one exit clause, each exit clause is tested when it is
encountered. If the result at. the moment of the test causes an exit, the loop ter
minates; otherwise, the loop proceeds to the next element.

The loop exits only when the current test causes it, even though some other clause in
the loop would cause an exit if it could be tested at that moment. Consider this (arti
ficial) example:

DEFINE .ll = 0
CS = 780
IP = 0
REPEAT

UNTIL IP > 10H
COUNT 5

STEP
ENDC
ASH CS:IP
WHILE .ll = 0
.ll = .ll + 1

ENDR

Assume for this example that the code being executed (with STEP) contains only
two-byte instructions. Then, after the first time through the loop, IP = OAH (lOT)
and .ZZ = 1. On the second iteration, the test IP > lOH is FALSE when it is
encountered, so the STEP and ASM commands are executed again. At this point, IP
> lOH is TRUE but since it is not tested, no exit occurs. Instead, the condition .ZZ =
o is tested, found to be false, and the loop exits.

CHAPTER 7
ERROR MESSAGES

This chapter lists the error messages issued by ISIS-II, RUN, DEBUG-86, and
nonresident system routines. Exception codes returned from system calls to the UDI
are described in the InteJJec Series III Microcomputer Development System Pro
grammer's Reference Manual.

Error message numbers are allocated as follows:

• 1-99 inclusive - ISIS-II resident routines (8080/8085 mode)

• 100-119 inclusive - RUN command (8086 mode)

• 120-199 inclusive - DEBUG-86 (8086 mode)

• 200-255 inclusive - nonresident system routines (8080/8085 mode)

"Reference 1" in the explanation of error messages indicates that addition informa
tion is contained in the InteJJec Series III Microcomputer Development System Pro
grammer's Reference Manual.

ISIS-II Error Routines (8080/8085 Mode)

Errors encountered by ISIS-II are either fatal or nonfatal. In the following lists fatal
errors are noted as such. The other errors are generally nonfatal unless they are
issued by the CONSOL system call (see tables 7-1 and 7-2).

A nonfatal error immediately halts processing and permits your program to take a
recovery path of your choosing. The error number is returned to your program.

If an error occurs when you are entering a console command, the error is echoed
followed by an error message. For example, the following input results in the error
message shown:

COpy :PR:CREDIT TO :F1:<cr>
:PR:CREDIT, UNRECOGNIZED DEVICE NAME

A fatal error immediately halts processing but does not permit recovery. Control
returns to ISIS-II which overlays some user program area with nonresident ISIS-II
files, and displays the following error message:

ERROR nnn USER PC mmmm

where nnn is the error number and mmmm is the contents of the program counter
when the error occurred.

In general, after displaying an error message, the system displays the ISIS-II prompt
character (a hyphen) and waits for you to enter the corrected input.

The action taken in response to fatal errors depends on the setting of an internal
system switch called the debug toggle. That switch indicates whether control is to
return to ISIS-II (debug=O) or the Monitor (debug=l) when an error occurs.

Any of the following actions sets the debug toggle to one and transfers control to the
Monitor:

• Pressing interrupt switch 0 while a program is running.

• Executing program load with the DEBUG switch specified in the command line.

• Executing a LOAD system call with a transfer value of 2.

7-1

Error Messages Series III Operating Instructions

7-2

Any of the following actions sets the debug toggle to zero, performs the operation
listed, then transfers control to ISIS-II:

• Pressing interrupt switch 1 while a program is running. This action terminates
processing.

• Executing an EXIT system call. This action terminates a program.

• Executing a LOAD system call with a transfer value of 1. This action loads an
absolute object file.

• Executing a Monitor 08 command. This action exits the Monitor.

If the debug toggle is zero when a fatal error occurs, the following occur:

• All open files are closed in their current state, including :CI: and :CO:.

• The initial system console device is opened as :CI: and :CO:.

• A fresh copy of ISIS-II is read in from the disk, and ISIS-II prompts for a
command with a hyphen (-).

If the debug toggle is set to one when a fatal error occurs, the following occur:

• All open files are left open.

• Control passes to the Monitor.

• Monitor prompts for a command with a period (.).

At this point Monitor commands can be used to examine registers and memory to
try to determine the cause of the error. However, the program should not be
restarted with a simple Monitor 0 command, because the ISIS-II restart address has
not been saved. DO NOT RESET THE SYSTEM AT THIS POINT. A 08 com
mand should be used instead so all files are closed. Rebooting does not close files.

NOTE

Although programs cannot be loaded in the ISIS-II area, the ISIS-II area is
not protected from a running program. If a program should happen to
destroy parts of ISIS-II, subsequent system calls may not operate correctly
and input! output may destroy areas on your disk. This would happen
mainly when an undebugged program is running. ISIS-II can always be
restored by bootstrapping from a good system disk.

Table 7-1. Nonfatal Error Numbers Returned by System Calls

OPEN 3,4,5,9,12,13,14,22,23,25,28.
READ 2,8.
WRITE 2,6.
SEEK 2,19,20,27,31,35.
RESCAN 2,21.
CLOSE 2.
SPATH 4,5,23,28.
DELETE 4,5,13,14,17,23,28,32.
RENAME 4,5,10,11,13,17,23,28.
ATTRIB 4,5,13,23,26,28.
GETATT 4, 5, 13, 23, 28.
GETD 3,4,5,13,23.
CONSOl None; all errors are fatal.
WHOCON None.
ERROR None.
lOAD 3,4,5,12,13,22,23,28,34.
EXIT None.

Series III Operating Instructions Error Messages

Table 7-2. Fatal Errors Issued by System Calls

OPEN
READ
WRITE
SEEK
RESCAN
CLOSE
SPATH
DELETE
RENAME
ATTRIB
GETATT
GETD
CONSOl
WHOCON
ERROR
lOAD

ISIS-II error messages codes are:

1,7,24,30,33.
24,30,33.
7,24,30,33.
7,24,30,33.
33.
33.
33.
1, 24,30,33.
1,24,30,33.
1, 24,30,33.
1,24,30,33.
1, 24, 30, 33.
1,4,5,12,13,14,22,23,24,28,30,33.
33.
33.
1,15,16,24,30,33.

1. Fatal error. The memory area from 3000H to program origin is used for
input/output buffers. Too few buffers were allocated to meet the current
request in addition to earlier requests. See reference 1 for information on how
to allocate buffers.

2. Illegal AFTN argument. The number supplied as an AFTN (active file table
number) is inappropriate. Perhaps your program closed a file prematurely and
then tried to read it. Active file table numbers are described in reference 1.

3. Fatal error. AFT (Active File Table) is full. At most, six files may be active at
one time. You must close one of your open files before a file can successfully
be opened. (Reference 1)

4. Incorrectly specified filename. You have possibly entered too many characters
for filename, as in OLDFILE.I (the maximum is six characters before the
period, three after). Filename conventions are described in Chapter 3.

5. Unrecognized device name. You have entered an incorrect device name, as in
:PR: for the line printer :LP:. Check the device names in Chapter 3.

6. Attempt to write to input device. An attempt has been made to write to an
input device. You can only write to an output device, such as a line printer
(:LP:). See Chapter 3 for information on devices.

7. Fatal error. The disk is full. Check that you have specified the intended disk.

8. Attempt to read from output device. Some devices, like the line prin"ter (:LP:),
are output only and cannot be read. The current operation either should not be
a READ or needs to use a different device name. See Chapter 3 for devices.

9. Disk directory is full. There is no room on the target disk's directory to add an
additional filename. The limit is 200 entries for flexible disks and 992 entries
for hard platters.

10. Pathname is not on same disk. A system call was attempted (RENAME) that
requires two path names on the same device but the specified pathnames did
not specify the same device. (Reference 1)

11. File already exists. A filename identical to the one just used was found.
Perhaps a different drive was intended, or a different spelling of the filename.

12. File is already open. Only console input (:CI:) and console output (:CO:) may
be opened multiple times. If the spelling of the filename is correct, a flaw may
exist in the program logic. For example, an earlier module may be using the
file too soon or there may be an unintended loop.

7-3

Error Messages Series III Operating Instructions

7-4

13. No such Jile. The specified filename could not be found in the directory on the
disk in the drive indicated by your command. A different drive or disk may
have the file. For example, a console request to load a RUN file with a default
extension of .S6.

14. Write-protected file encountered. The intended operation (e.g., WRITE,
RENAME, DELETE) could not be done because the specified file has the
write-protect or format attribute set.

15. Fatal error. ISIS overwrite. The system detected an attempt to write into the
area reserved for the ISIS resident files, i.e., below 3000H. Such an operation
would create unpredictable results and is disallowed.

16. Fatal error. Bad load format. This error was possibly caused by a
source-language file. Files to be loaded for 80S0/S0S5 execution must be in
absolute object module format.

17. Not a disk file. An attempt was made to reference a disk file on a wrong device
type, with an improper pathname, such as :HP:FILE2 instead of :Fn:FILE2.
File accessing conventions are described in Chapter 3.

IS. Illegal ISIS commands. This error results when an ISIS system call is made
with an illegal command number.

19. Attempted seek on non-disk file. Seeks on physical devices other than disk
drives are invalid (:BB: is an exception and is valid). (Reference 1 gives in
formation on the SEEK system call.)

20. Attempted back seek too far. The seek attempted to go beyond the beginning
of the file; MARKER is set to zero. (Reference 1)

21. Can't rescan. The file was not opened for line-editing. (Reference 1)

22. Illegal access mode to open. Only 1, 2, and 3 are valid, meaning input (read),
output (write), or update (both read and write). (Reference 1)

23. Missing filename. The system expected a filename, but one was not supplied.

24. Fatal error. Disk input! output hardware error. When error number 24 occurs,
an additional message is displayed:

STATUS=OOnn
D=x T=yyy S=zzz

where x represents the drive number, yyy the track address, zzz the sector
address, and where nn has the following meanings:

For flexible disks:

01 Deleted record
02 Data field CRC error
03 Invalid address mark
04 Seek error
08 Address error
OA ID field CRC error
OE No address mark
OF Incorrect data address mark
10 Data overrun or data underrun
20 Attempt to write on Write Protect
40 Drive has indicated a Write error
80 Drive not ready

Series III Operating Instructions

For hard disks:

01 10 field miscompare
02 Data field CRC error
04 Seek error
08 Bad sector address
OA 10 field CRC error
OB Protocol violations
OC Bad track address
OE No 10 address mark or sector not found
OF Bad data field addressmark
10 Format error
20 Attempt to write on write-protected drive
40 Drive has indicated a write error
80 Drive not ready

25. Illegal echo file. An echo file must have an active file table number (AFTN)
between 0 an 255, and must already be opened for output. Check that these
conditions are met. (Reference 1)

26. Illegal attribute identifier. This error refers to the second parameter to the
ATTRIB system call routine. Check that you have specified a valid parameter.
Only 0, 1, 2, or 3 is valid, meaning the invisible, system, write-protect, or for
mat attributes, respectively. (Reference 1)

27. Illegal seek command. An unsupported mode for the specified device was used
in a seek command. (Reference 1)

28. Missing extension. An expected file extension was not supplied.

29. Fatal error. Premature EOF. An unexpected end of file was encountered from
the consoie.

30. Fatal error. Drive specified was not ready.

31. Can't seek on write only file. Seeks can be executed only on read or update
files. (Reference 1)

32. Can't delete open file. You need to close the file before attempting to delete it.
Verify the pathname. (Reference 1)

33. Fatal error. Illegal system call parameter. A parameter was specified in a
system call which is meant to be used as a pointer to a memory area intended
for the receipt of data; however, ISIS found that this pointer was pointing to
the memory space which ISIS occupies. ISIS will not allow a user to write into
its memory space. (Reference 1)

34. Fatal error. The return switch in a LOAD system call was not 0, 1 or 2, the
only valid values. (Reference 1)

35. Seek past EOF. An attempt was made to extend a file opened for input by
seeking past end-of-file. (Reference 1)

Error Messages

7-5

Error Messages Series III Operating Instructions

7-6

RUN Program Error Messages
(80SS Execution Mode)

When an error occurs under the RUN program, both the error number and the error
message are displayed. Processing halts and control returns to the RUN program.
The system displays the RUN prompt (» and waits for you to enter a new
command.

Errors 117 through 119 are warnings. The system displays the warning message and
processing continues.

101. HARDWARE NOT RESPONDING (fatal error)

8086 hardware is not present or is malfunctioning.

102. INVALID SYNTAX

RUN does not understand your request. Check the input line and re-enter.

103. COMMAND LINE TOO LONG

The RUN activation line exceeds 120 characters.

104. INSUFFICIENT MEMORY TO LOAD

The loader does not have enough 8086 memory to load the requested object
file.

105. MISMATCHED SOFTWARE/FIRMWARE

The version of RUN does not correctly operate with the 8086 firmware.

106. ERROR 106 USER PC mmmm

where mmmm is the contents of the program counter and indicates a failing
area in the operating system. This error should never occur; however, if it
does, contact your Intel representative.

107. ILLEGAL LOAD ADDRESS

Loader tried to load a user program into 8086 system memory. User 8086
memory begins at 7800H.

108. INVALID OBJECT FILE

The file specified in a LOAD command is not a valid object file.

117. UNRESOLVED SYMBOLS (warning)

The file just loaded contains externals that were not satisfied at link time. The
file was loaded correctly except for references to the unsatisfied externals.

118. RAM FAILURE (warning)

RAM failure was detected on the 8086 processor board.

119. ROM CHECKSUM ERROR (warning)

ROM checksum error was detected on the 8086 processor board.

Series III Operating Instructions Error Messages

DEBUG-86 Error Messages (8086 Execution Mode)

When an error occurs under DEBUG-86, the system displays the error number only,
as follows:

ERROR xxx

where xxx is a decimal error number.

After the error number, the system displays the DEBUG-86 prompt (*) and waits for
you to enter a new command.

The following list defines DEBUG-86 error numbers:

120. Syntax error. The command line entered does not conform to the defined
syntax. ,

121. Invalid token. The command line contains a token that does not follow the
rules for a well-formed token.

122. No such line. The specified line number does not exist in the current module.

123. Inappropriate number. The value entered is not appropriate in the current
context.

124. Partition bounds error. The partition values entered in a command are not
correct. Either the left part of the partition is greater than the right part or the
values of the partition extremes are out of range in the current context.

125. Symbol already exists. The symbol entered in a DEFINE command is already
defined in the symbol table.

126. Symbol does not exist. The symbol referenced does not reside in the symbol
table.

127. Memory failure. Data written to memory was not correctly read back. This
error can be caused by writing data into non-existent or bad memory.

133. Null string error. A null string was used where a non-null string is required.

134. Memory overflow. Memory requirements of all dynamic tables exceed the
amount of memory available. This error can be caused by an object module
with too many symbols or line numbers.

135. Stack overflow. The capacity of a statically allocated stack internal to the
diagnostic program has been exceeded.

136. Command too complex. The command complexity requires more memory
than can be allocated.

137. Module does not exist. The specified module does not exist in the symbol
table.

139. Excessive data. The amount of data to be inserted into a partition exceeds the
size of the partition.

141. Unsuitable execute file. The file referenced in an execute command either
contains code that is out-of-bounds for the execute command, or it is a main
module.

142. Line too long. The command line was longer than 120 characters on a line.

143. Too many partitions. Number of partitions entered exceed the acceptable
maximum of 19.

147. Pointer value required. A non-pointer value was used in a context that requires
a pointer.

148. Integer value required. A non-zero base value was used in a context that
requires an integer.

149. Differing bases. Two pointers with different bases were used in a context
where pointers with the same base are required, e.g., the lower and upper
bounds of a partition.

7-7

Error Messages Series III Operating Instructions

7-8

Console Command Interface Errors
(8080/8085 Execution Mode)

201. Unrecognized switch. Certain predefined switches (e.g., P, S, A, U, C) can be
used depending on the ISIS-II command. Some commands that have switches
are IDISK, FORMAT, and COPY. Check the specified command in Chapter
4.

202. Unrecognized delimiter A character was encountered that was invalid in a
name and not known as a delimiter.

203. Invalid syntax. There is an error in the command as entered. The error may be
an unrecognized keyword or a missing comma, for example.

206. Illegal disk label. The label supplied violates the rules for a valid disk label.

208. Checksum error. The bits of the records read do not add up properly. An
inappropriate input or medium was supplied. There may be an error in the
internal format of the specified file that may have occurred during translation
or linking. Retranslate and relink the source module.

209. Relo file sequence error. An inappropriate input file was specified.

210. Insufficient memory. The required amount of RAM is not present.

211. Record too long. A record longer than allowed was encountered.

212. Illegal relo type. Relocation types must conform to Intel standard formats.

213. Fixup bounds error. The required address violated numeric bounds on
addresses.

214. Illegal SUBMIT parameter. An error was made in the actual parameter to be
substituted for a formal parameter in a command sequence file. (See the
SUBMIT command in Chapter 4.)

215. Argument too long. The number of characters in the actual argument must not
exceed 31.

216. Too many parameters. More parameters were supplied than defined.

217. Object record too short. This error may be caused by an 110 error in the file to
be loaded.

218. Illegal record format. The record format did not match the Intel standard.

219. Phase error. The expected phase input (e.g., for the next step of a translation
process) was not correctly supplied.

220. No end-of-file record in object module file. There is an error in the internal
format of the specified file. Retranslate and relink the source module.

221. Segment overflow during LINK operation. The output segment cannot be
grea ter than 64 k bytes.

222. Unrecognized record in object module file. There is an error in the internal
format of the specified file. Retranslate and rei ink the source module.

223. Fixup record pointer is incorrect. There is an error in the internal format of the
specified file. Retranslate and relink the source module.

224. Illegal record sequence in object module file in LINK. There is an error in the
internal format of the specified file that may have occurred during translation.
Retranslate and relink the source module.

225. Illegal module name specified. An illegal or misspelled module name was
entered.

226. Module name exeeds 31 characters. Module names exeeding 31 characters may
not be used.

227. Command syntax requires left parenthesis. There is a missing left parenthesis
in the command line. Re-enter the command correctly.

Series III Operating Instructions Error Messages

228. Command syntax requires right parenthesis. There is a mlssmg right
parenthesis in the command line. Re-enter the command correctly.

229. Unrecognized control specified in command. A character string other than the
expected control keyword was entered. Enter the correct control keyword.

230. Duplicate symbol found. You have attempted to add a symbol that already
exists.

231. File already exists. The file specified in a CREATE command already exists.

232. Unrecognized command. An illegal or misspelled command was entered.

233. Command syntax requires a TO clause. The command syntax requires a TO
clause to specify the output file.

234. Filename illegally duplicated in command. The same filename is specified both
as an input and output file.

235. File specified in command is not a library file. The specified file is not a library
file.

236. More than 249 common segments in input files. You cannot have more than
249 common segments.

237. Specified common segment not found in object file. The input module does
not contain the common segment specified in the command.

238. Illegal stack content record in object file. There is an error in the internal
format of the specified file that may have occurred during the translation and
link process. Retranslate and relink the source module.

239. No module header in input object file. There is an error in the internal format
of the specified file. Retranslate and relink the source module.

240. Program exeeds 64k bytes. The output module to be placed in the output file
exeeds the maximum of 64k bytes.

Other Console Command Interface Errors

Additional 80S0/S0S5 link and locate error messages are described in the
MCS-80/85 Utilities User's Guide for 8080/8085-Based Development Systems.

All 8086 mode link and locate error messages that may occur during LINK86,
LOCS6, OH86, CREF86, and LIB86 operations are described in the iAPX Family
Utilities User's Guide.

7-9

APPENDIX A
HEXADECIMAL PAPER TAPE FORMAT

Object code is stored on paper tape in an ASCII representation of the program in
memory. The code is blocked into records, each of which contains the record type,
length, type, memory load address, and checksum in addition to the data. Figure
A-I shows the frames of a tape record.

H CHECKSUM n DATA

r'" ~r'"

--"'"

RECORD TVPE

LOAD
ADDRESS

RECORD
LENGTH

RECORD MARK

Figure A-I. Paper Tape Record Format

The Record Mark is a colon (3AH) and is used to signal the start of a record.

The Record Length is the count of the data bytes in the record. A record length of
zero indicates end-of-file.

The Load Address specifies the address at which the first data byte will be loaded.
The successive data bytes will be stored in successive memory locations.

The Record Type specifies the type of this record. All data records are type O. End
of-file records can be type 0 or 1.

The Data consists of two frames per memory word. The data is represented by hex
adecimal values OOH through FFH.

The Checksum is the negative of the sum of all 8-bit bytes in the record, beginning
with the Record Length and ending with the last Data byte, evaluated modulo 256.
The sum of all bytes in the record (including the checksum) should be zero.

A-I

APPENDIX B
HEXADECIMAL-DECIMAL CONVER"SION

The following table is for hexadecimal to decimal and decimal to hexadecimal con
version. To find the decimal equivalent of a hexadecimal number, locate the hex
adecimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position. Sub
tract the decimal number from the table from the starting number. Find the dif
ference in the table. Continue this process until there is no difference.

BYTE BYTE
HEX DEC HEX DEC HEX DEC HEX DEC

° ° ° ° 0 ° 0 ° 1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 C 12
0 53,248 0 3,328 0 208 0 13
E 57,344 E 3,548 E 224 E 14
F 61,440 F 3,840 F 240 F 15

B-1

Table C-l. ASCII Code List

Decimal Octal Hexadecimal Character Decimal

0 000 00 NUL 64
1 001 01 SOH 65
2 002 02 STX 66
3 003 03 ETX 67
4 004 04 EaT 68
5 005 05 ENQ 69
6 006 06 ACK 70
7 007 07 BEL 71
8 010 08 BS 72
9 011 09 HT 73

10 012 OA LF 74
11 013 OB VT 75
12 014 OC FF 76
13 015 00 CR 77
14 016 OE so 78
15 017 OF SI 79
16 020 10 OLE 80
17 021 11 OC1 81
18 022 12 OC2 82
19 023 13 OC3 83
20 024 14 OC4 84
21 025 15 NAK 85
22 026 16 SYN 86
23 027 17 ETB 87
24 030 18 CAN 88
25 031 19 EM 89
26 032 1A SUB 90
27 033 1B ESC 91
28 034 1C FS 92
29 035 10 GS 93
30 036 1E RS 94
31 037 1F US 95
32 040 20 SP 96
33 041 21 ! 97
34 042 22 " 98
35 043 23 # 99
36 044 24 $
37 045 25 %

100
101

38 046 26 & 102
39 047 27 , 103
40 050 28 (
41 051 29)
42 052 2A *

104
105
106

43 053 28 + 107
44 054 2C , 108
45 055 20 - 109
46 056 2E 110
47 057 2F I 111
48 060 30 0 112
49 061 31 1 113
50 062 32 2 114
51 063 33 3 115
52 064 34 4 116
53 065 35 5 117
54 066 36 6 118
55 067 37 7 119
56 070 38 8 120
57 071 39 9 121
58 072 3A 122
59 073 38 ,
60 074 3C <

123
124

61 075 3D = 125
62 076 3E > 126
63 077 3F ? 127

Octal

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

APPENDIX C I
ASCII CODES

Hexadecimal Character

40 @
41 A
42 B
43 C
44 0
45 E
46 F
47 G
48 H
49 1
4A J
4B K
4C L
40 M
4E N
4F a
50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C
50]
5E A
5F -
60 ,
61 a
62 b
63 c
64 d
65 e
66 f
67 9
68 h
69 i
6A j
6B k
6C 1
60 m
6E n
6F 0
70 P
71 q
72 r
73 5
74 t
75 u
76 v
77 w
78 x
79 Y
7A z
7B I 7C
70
7E
7F OEL

C-l

ASCII Codes Series III Operating Instructions

Table C-2. ASCII Code Definition

Abbreviation Meaning
Decimal

Code

NUL NULL Character 0
SOH Start of Heading 1
STX Start of Text 2
ETX End of Text 3
EOT End of Transmission 4
ENQ Enquiry 5
ACK Acknowledge 6
BEL Bell 7
BS Backspace 8
HT Horizontal Tabulation 9
LF Line Feed 10
VT Vertical Tabulation 11
FF Form Feed 12
CR Carriage Return 13
SO Shift Out 14
SI Shift In 15

DLE Data Link Escape 16
DC1 Device Control 1 17
DC2 Device Control 2 18
DC3 Device Control 3 19
DC4 Device Control 4 20
NAK Negative Acknowledge 21
SYN Synchronous Idle 22
ETB End of Transmission Block 23
CAN Cancel 24
EM End of Medium 25

SUB Substitute 26
ESC Escape 27
FS File Separator 28
GS Group Separator 29
RS Record Separator 30
US Unit Separator 31
SP Space 32

DEL Delete 127

C-2

APPENDIX D
SUMMARY OF ISIS-II

CONSOLE COMMANDS

This appendix provides a summary of command syntax for ISIS-II commands.

Disk Maintenance Commands

IDISK-Disk Formatting Command

IDISK :Fn:label [switchesl<cr>

where

label is the name to be given to the blank disk.

switches are one or more of the following:

S Formats the new disk as a basic system disk.

P Specifies single drive mode.

FROM n Specifies the disk drive containing the source disk files needed for
formatting the new disk. The value n is an integer 0-9 for drive
numbers 0 through 9. If the FROM n switch is not specified, the
default is to drive O.

FORMAT-Disk Formatting Command

FORMAT :Fn:label [switchesl<cr>

where

label is the name to be given to the disk.

switches are one or more of the following:

A Copies all files to the specified disk except files (other than ISIS-II
system format files) with the format attribute set.

S Copies the basic format files and all files with the system attribute set.

FROM n Specifies the disk drive containing the disk files needed for
formatting. n is an integer 0-9, for drives 0 through 9. If the FROM n
switch is not specified, the default is to drive o.

FIXMAP-Hard Disk Mapping Command

FIXMAP drive<cr>

where

drive is the number of the hard disk drive on which the command is to operate;
drive is an integer value of 0 or 1.

D-1

ISIS-II Console Commands Series III Operating Instructions

0-2

FIXMAP Commands

Mark disk-address
Free disk -address
List filename
Count
Record
Quit
Exit

Change the known state of a sector from good to bad.
Change the known state of a sector from bad to good.
List all known bad sectors.
List the number of known bad sectors.
Record changes specified by Mark and Free.
Exit to ISIS-II without recording changes.
Record changes and exit to ISIS-II.

A disk-address takes the form:

track,sector[T]

where

track is a number from 0 to 199 that specifies the logical track address contain
ing the bad sector.

sector is a number from 1 to 144 that specifies the logical sector address of the
bad sector within the track.

T is an optional switch indicating that a group of 36 sectors should be processed.

File Control Commands

DIR-Disk Directory Listing

01 R [F 0 R f i Len ame] [TO Lis t f i L e] [5 wit c h e 5] < c r>

where

filename is the file (or group of files specified with the wild card construction)
whose directory entry is to be listed.

switches are one or more of the following:

0-9 Lists the directory of the disk in :FO:, :Fl:, :F2:, ... :F9:.
I Lists all files, including files with the invisible attribute set.
F Gives fast output, listing only filenames.
o Prints the directory in a single column format.
Z Prints the number of sectors presently used.
P Specifies single drive mode.

COPY-Copy a File

copy [:Fn:]infiLe [, ••.] TO{[:dFn:~[Outfile]}[SwitcheS]<cr>
: eVlce:

where

infile is a file (or group of files when using the wild card construct) to be copied.

outfile is a file to be created or recreated.

:device: is an output device, such as :LP:, :TO:, :HP:, or :CO:

Series III Operating Instructions ISIS-II Console Commands

switches are sme or more of the following:

S Copies files with the system attribute set.
N Copies files without the system or format attribute set.
P Specifies single drive mode.
Q Specifies the query mode.
C Creates outfile with the attributes set from the infile.
B Deletes an existing file without displaying the "ALREADY

EXISTS" prompt.
U Opens outfile for update instead of deleting it.

HDCOPY-Copy Hard Disk Tracks

!indrive TO outdrive} < >
HDCOPY BACKUP cr

where

indrive is the number of the drive containing the source hard disk.

outdrive is the number of the drive containing the destination hard disk.

Both drive numbers must be 0 or 1, but both cannot be the same drive number.
Both drives must be a hard disk drive.

BACKUP is a switch that can be used to backup a removable hard disk platter.

DELETE-Delete a Disk File

DELETE [:Fn:]fiLename [Q] [, •.. [Q]] [P]<cr>

where

filename is the name of a file to be deleted. The wild card construction can be
used to delete a group of files.

Q Specifies the query mode.
P Specifies single drive mode.

RENAME-Rename a Disk File

RENAME [:Fn:]oLdname TO [:Fn:]newname<cr>

where

:Fn: must be the same for both oldname and newname.

oldname is the name of an existing file whose write-protect or format attribute
is not set.

newname is the new name to be assigned to oldname.

D-3

ISIS-II Console Commands Series III Operating Instructions

0-4

ATTRIB-Change/Display Disk File Attributes

ATTRIB [:Fn:Jfilename [attriblistJ [QJ<cr>

where

filename is a disk file whose attributes are to be changed. The wild card con
struction can be used to change and/ or display the attributes of a group of files.

attriblist is one or more of the following:

IO or 11 Resets (10) or sets (11) the invisible attribute.
WO or WI Resets (WO) or sets (WI) the write-protect attribute.
FO or Fl Resets (FO) or sets (FI) the format attribute.
SO or SI Resets (SO) or sets (SI) the system attribute.
Q Specifies query mode operation.

VERS-Display ISIS Utility Version Numbers

VERS [:Fn:Jfilename<cr>

where

filename is the name of the ISIS file on :Fn: whose version number is to be
displayed.

8080/8085 Program Execution Commands

Filename-Direct Program Execution

[:Fn:]filename [parametersJ

where

parameters are parameters needed by filename.

DEBUG-Transfer Control to Monitor

-DEBUG [[:Fn:]filename [parametersJJ<cr>

where

filename is any ISIS-II command or the file name of an executable program.

parameters are the normal parameters of the program to be executed.

SUBMIT -Non-Interactive Program Execution

SUBMIT [:Fn:Jfilename[(parameter[, •.• J)9J<cr>

where

filename is the name (and extension, if any) of the file containing the command
sequence definition (explained below). If extension is omitted, SUBMIT
assumes the default extension .CSD.

parameter is an actual value that is to replace a formal parameter in the com
mand sequence definition file. The maximum number of parameters allowed is
10. If you omit a parameter from the SUBMIT list, enter a comma in its place.

A parameter is a character string of up to 31 characters.

Series III Operating,ldstructions ISIS-II Console Commands

8086 Program Execution Commands

RUN-Activate'8086 Execution Mode

RUN [[:Fn:]fiLename [parameters] [icomments]]<cr >

where

filename is the name of your 8086 program. If you enter no extension, the
system assumes a default extension of .86.

comment is one or more ASCII characters not including a carriage return or line
feed. Comments always begin with a semicolon.

WORK-Change Default Drive for Workfiles

[RUN] WORK [:Fn:]<cr>

where

:Fn: specifies the drive n that is to be set as the default drive for your temporary
workfiles. n is an integer value between 0 and 9 inclusive. The initial system
default is :Fl: If :Fn: is not specified, the current default is displayed.

DATE-Change/Display System Date

[RUN] DATE [nn/nn/nn]<cr>

where

nn is any integer value between 00 and 99 inclusive that specifies the date
desired. If the date is not specified, the last date entered is displayed. The initial
default date is 09101180.

EXIT

EXIT<cr>

D-5

APPENDIX E
SUMMARY OF MONITOR COMMANDS

This appendix provides a summary of the command syntax for Monitor commands.

Program Execution Commands

G-Execute Command

G[start-address] [breakpoint1][,breakpoint2]<cr>

Monitor 1/0 Configuration Commands

A-Assign Command

Alogical-device=physical-device <cr>

The possible values of physical-device for each logical-device are:

Logical
Physical Device

Device

CONSOLE T or TTY (teletype terminal)
C or CRT (compatible CRT terminal)
B or BATCH (batch mode)
1 (user-defined device for which a user-written program is present)

READER T or TTY (teletype terminal)
P or PTR (high speed paper tape reader)
1 or 2 (user-defined devices for which user-written driver programs are
present)

PUNCH T or TTY (teletype terminal)
P or PTP (high speed paper tape punch)
1 or 2 (user-defined devices on which user-written driver programs are
present)

LIST T or TTY (teletype terminal)
C or CRT (compatible CRT terminal)
L or LPT (line printer)
1 (user-defined device for which a user-written driver program is present)

Q-Query Command

Q<cr>

E-l

Summary of Monitor Commands Series III Operating Instructions

E-2

Memory Control Commands

D-Display Command

Dstart-address,end-address<cr>

F-Fill Command

Fstart-address,end-address,constant<cr>

M-Move Command

Mstart-address,end-address,destination-address<cr>

S-Substitute Command

Saddress,[databyte][,[databyte]][...]<cr>

X-Register Command (Display Form)

X<cr>

X-Register Command (Modify Form)

Xregister, [data] [, data]] [, ...]<cr>

Paper Tape 1/0 Commands

R-Read Command

Rbias<cr>

W-Write Command

Wstart-address,end-address<cr>

E-End-of-File Command

Eentry-point<cr>

N-Null Command

N<c r>

Series III Operating Instructions

Utility Command

H-Hexadecimal Command

Hnumber1,number2<cr>

Summary of Monitor Commands

E-3

APPENDIX F
SUMMARY OF DEBUG-86 COMMANDS

This appendix provides a summary of the command syntax of DEBUG-86
commands.

Utility Commands

DEBUG-86 utility commands provide file management capabilities. The utility com
mands are:

DEBUG-Transfer Control to DEBUG-SS

[:Fn:]RUN DEBUG [[:Fn:]filename [parameters]]

where

filename is the name (including extension) of a program that is a valid absolute,
PIC, or L TL 8086 object module. If no extension is specified, RUN adds an
extension of .86. If filename ends with a period (as in MYPROG .), the null
extension is assumed.

parameters is a series of one or more ASCII characters (separated by commas or
spaces) representing variable data required by the user program and to be pro
cessed by the program.

EXIT-Exit DEBUG-S6

EXIT<cr>

LOAD-Load 8086 Object Code

LOA 0 [: F n : lf i/ en ame ~: ~ ~ ~ : : 0 L} ..] < c r)

where

filename is the complete name of a disk file that is a valid absolute, PIC or LTL
8086 object module. A default extension is not assumed.

NOSYMBOL is a modifier that prevents the program symbol table from being
loaded.

NOLINE is a modifier that prevents the program line number table (in
PL/M-86 or PASCAL-86 programs) from being loaded.

F-I

DEBUG-86 Commands Series III Operating In~tructions

F-2

Execution Co.mmands

GO-Execute 8086 Instructions

{

[FOREVER] }
GO [FROM address] [TILL break-address [OR break-address]] .

[TILL break-register [OR break-register]]

where

<cr>

FROM address specifies the address of the first instruction to be executed. If
FROM address is omitted, execution begins at the address inthe IP and CS. The
address must specify the CS:IP content in the form nnnn:nnnn, as in 800:0
(leading zeros need not be entered).

break-address is an integer expression entered as a pointer that references a 20-
bit execution address.

break-register is one of the breakpoint registers, BRO or BRI. The address for
BR forms a 20-bit memory address where DEBUG-86 writes a one-byte inter
rupt to get control.

GRCommand

Display form:

GR<cr>

Change form:

{
FOREVER }

GR = TILL break-address [OR break-address]
TILL break-register (OR break-register]

<cr>

where

break -address is an integer expression entered as a pointer that references a 20-:
bit execution address. The first break-address sets the contents of BRO; the
second break-address sets the contents of BRI.

break-register is one of the breakpoint registers, BRO or BRI (or BR to denote
both breakpoint registers), that is to be enabled.

STEP-Execute a Single Instruction

STEP (FROM address]<cr>

where

FROM address specifies the address where single step execution is to begin. If
FROM address is omitted, the address in the IP and CS is used. The address
must specify the CS:IP contents in the form nnnn:nnnn, as in 800:0 (leading
zeros need not be entered).

Series III Operating Instructions DEBUG-86 Commands

Change Commandos

Change Register-Change Content of a Register

regfster = change-exp<cr>

where

register is one of the following keyword references:

8086 Register Type Keyword References

8-bit registers

16-bit registers

1-bit status flags

RAL, RAH, RBL, RBH, RCL,
RCH, ROL, ROH

RAX, RBX, RCX, ROX,
SP, BP, SI, 01, SS,
CS, OS, ES, IP, RF

CFL, PFL, AFL, ZFL,
SFL, TFL, IFL, OFL, OFL

change-exp is a numeric expression specifying the new contents of register.

Change Memory-Change Contents of Memory Locations

memory-type address {[TO end-addreSS])
[LENGTH n] = change-exp [•.•. 119<cr>

where

memory-type is one of the following keywords: BYTE, WORD, SINTEGER,
INTEGER, POINTER.

address is a memory location entered as a pointer value containing a base (which
can be omitted if 0) and a displacement. If a range is accessed, address is the
starting address.

TO end-address specifies the upper limit of a range of memory that is to be
modified. The end-address must be greater than or equal to address. Both
addresses must have the same base.

LENGTH n specifies the number of bytes, words, or pointers (depending on
memory-type) to be modified. The value n must be an integer value.

change-exp is the value to replace the contents of the specified memory location.
Up to 19 change-exps may be listed. The change-exp must be a pointer value if
memory-type is a pointer; otherwise, it must be an integer value.

F-3

DEBUG-86 Commands Series III Operating Instructions

F-4

Change Port-Change Contents of 1/0 Ports

I[TO end-addreSS]}
port-type address [LENGTH n] = change-exp [, ...]19<cr>

where

port-type is one of the following:

• PORT -references the 8-bit port value at address.

• WPO R T - references the I6-bit port value at address and address + 1, one
byte at a time and not as a single 16-bit port value.

address is the address of an 8086 port and is an integer value between 0 through
65,535 inclusive. If a range of ports is specified, address is the starting address
of the range.

TO end-address specifies the upper limit of a range of port addresses. The end
address is an integer value between 0 and 65,535 inclusive, and must be greater
than or equal to address. Both addresses must have a base of zero.

LENGTH n specifies the number of port or word port addresses to be
displayed. The value of n must be an integer.

change-exp is the value to replace the contents of the specified port.

Display Commands

Display Register-Display Contents of 8086 Registers

{
register[, oooJ19}

REGISTER <cr>
FLAG

where

register is any of the following keyword references (up to 19 can be entered,
separated by spaces):

8086 Register Type

8-bit registers

16-bit registers

1-bit status flags

Keyword References

RAL, RAH, RBL, RBH, RCL,
RCH, ROL, ROH

RAX,RBX, RCX, ROX,SP,
BP, SI, 01, SS, CS, OS,
ES, IP, RF

CFL, PFL, AFL, ZFL, SFL,
TFL, IFL, OFL, OFL

REGISTER is a command keyword that causes the display of all the 16-bit 8086
registers.

FLAG is a command keyword that displays all the I-bit status flags.

Series III Operating Instructions DEBUG-86 Commands

Display Memory-Display 8086 Memory

memory-type address {[TO end-addreSS]} <cr>
[LENGTH n]

where

memory-type is one of the following keywords: BYTE, WORD, SINTEGER,
INTERGER, POINTER.

address is a pointer value that contains a base (which need not be entered if 0)
and a displacement and specifies an address of a memory location. If a range is
specified, address is the starting address in the range. The address can be either:

TO end-address specifies the upper limit of a range of memory. The end-address
must be greater than or equal to address. Both addresses must have the same
base.

LENGTH n specifies the number of bytes, words, or pointers to be displayed.
The value n must be an integer.

Display Memory-Display 8086 Memory in ASM Form

ASM address {[TO end-addreSS]}
.[LENGTH n]

where

<cr>

address is a pointer value that contains a base and a displacement and specifies
an address of a memory location. If a range is specified, address is the starting
address in the range. The address can be either:

TO end-address specifies the upper limit of a range of memory. end-address
must be greater than or equal to address. Both addresses must have the same
base.

LENGTH n specifies the number of bytes, words, or pointers to be displayed.
The value of n is an integer.

Display Port-Display 1/0 Port Contents

Po r t - t yp e add res s Ir TOe n d - add res s]} < C r>
\rLENGTH n]

where

port-type is one of the following keywords:

• PORT -references the 8-bit port value at address.

• WPORT -references the 16-bit port value at address and address + I, one
byte at a time and not as a single 16-bit port value.

address is the address of an 8086 port and is an integer value between 0 through
65,535 inclusive. If a range is specified, address is the starting address of the
range.

F-5

DEBUG-86 Commands Series III Operating Instructions

F-6

TO end-address specifies the upper limit of a range of port addresses. end
address is an integer value between 0 and 65,535 inclusive, and must be greater
than or equal to address.

LENGTH n specifies the number of port or word port addresses to be
displayed. The value n must be an integer.

Display Boolean-Display Boolean Value

BOOl expression<cr>

where

expression is an integer expression, the result of which is evaluated to a boolean
value. If the least significant bit of the result equals 1, the boolean value is
TRUE; otherwise the boolean value is FALSE.

Display Stack-Display User Stack Contents

STACK expression<cr>

where

expression is an integer expression, the value of which defines the number of
words on the user stack to be displayed.

EVALUATE-Display Integers in Five Bases

EVALUATE expression [SYMBOlICAllYJ<cr>

wbere

expressiofl is aft iRteger expressioN.

SYMBOLICALL Y is a keyword that displays each fluftleric value outp,wt by the
cORHMaN as as a symbol or a source statemest, plus a remaiooer.

Symbol Manipulati·on Commands
Define Symbol-Enter New Symbol

DEFINE [.. moduleJ.symbol = change-exp [OF memory-typeJ<cr>

where

module is the name of an existing program module, in which symbol is to be
located.

symbol is a user-defined symbol to be entered into the symbol table for use dur
ing the debugging session. The symbol references a location in the symbol table.

change-exp is a numeric expression, the value of which is to be assigned to
symbol. The change-exp represents an address of statement labels or variables,
or the value of a constant.

OF memory-type specifies any of the following: BYTE, WORD, SINTEGER,
INTEGER, or POINTER. If memory-type is omitted, symbol has no type.

Series III Operating Instructions DEBUG-86 Commands

Display Symbols-Display One or More Symbols

J SYMBOL } <cr>
\ [.. mo d u l e] . 5 ymb 0 l L 5 ymb 0 l] ...

where

SYMBOL causes the entire DEBUG-86 symbol table to be displayed.

module is the name of the program module in which symbol is located.

symbol is the name of a symbol that references a location in the symbol table.

Display Lines-Display Statement Numbers

JLINE J
\[. . module]#statement-number <cr>

where

LINE is a command keyword that displays all statement numbers and
associated absolute addresses in the current domain.

module is the name of the program module in which statement-number is
located.

statement-number is the source statement number. It is a numeric constant with
a default suffix that is always decimal.

Display Modules-Display Module Names

MODULE<cr>

Change Symbols-Change Value of a Symbol

[.. modu{eJ.symbo{[.symbo{ ... J ••• = change-exp [OF memory-typeJ<cr>

where

module is the name of the program module in which symbol is located.

symbol is the name of an existing symbol that references a location in the sym
bol table.

change-exp is a numeric expression of a pointer value to be assigned to symbol
and represents either the address of statement labels or variables, or the value of
a constant.

OF memory-type specifies the memory type of symbol: BYTE, WORD,
SINTEGER, INTEGER, or POINTER.

F-7

DEBUG-86 Commands Series III Operating Instructions

F-8

Remove Symbols Command

{

[.. mo d u l e] . 5 ymb 0 l [. 5 ymb 0 l ...] 1 9 , ...}
REMOVE SYMBOL

MODULE .. module [, .. module] ...

where

<cr>

module is the name of an existing program module in the symbol table. Up to 19
modules can be listed at one time.

symbol is the name of an existing symbol in the symbol table. Up to 19 symbols
can be listed at a time.

SYMBOL is a command modifier that deletes the entire current DEBUG-86
symbol table.

MODULE is a command modifier that deletes all the symbols and lines of the
named module from the symbol and statement number tables.

Set Domain Command

DOMAIN .. module<cr>

where

DOMAIN is a command keyword that establishes a default module for source
statement number references.

module is the name of an existing program module in the statement number
table and is prefixed by two periods (..).

Compound Commands

REPEAT Command

REPEAT<cr>

[
COmmand<cr>]
WHILE booiean-expression<cr>
UNTIL booiean-expression<cr>

END<cr>

COUNT Command

COUNT arithmetic-expression<cr>

[
COmmand<cr>]
WHILE booiean-expression<cr>
UNTIL booiean-expression<cr>

END<cr>

Series III Operating Instructions

IF Command

IF boolean-expression [THEN]<cr>
[command<cr>] ...

rORIF boolean-expression [THEN]<cr~
[command<cr>] ... J

rE LS E <c r>]
L [command<cr>] ...
END<cr>

DEBUG-86 Commands

F-9

Summary of Error Messages Series III Operating Instructions

0-2

NOTE
When error 24 occurs, an additional message is displayed:

STATUS=OOnn
D=x T=yyy S=zzz

where x represents the drive number, yyy the track address, zzz the sector
address, and where nn has the following meanings:

For flexible disks:

01 Deleted record
02 Data field CRC error
03 Invalid address mark
04 Seek error
08 Address error
OA ID field CRC error
OE No address mark
OF Incorrect data address mark
10 Data overrun or data underrun
20 Attempt to write on Write Protect
40 Drive has indicated a Write error
80 Drive not ready

For hard disks:

01 ID field miscompare
02 Data field CRC error
04 Seek error
08 Bad sector address
OA ID field CRC error
OB Protocol violations
OC Bad track address
OE No 10 address mark or sector not found
OF Bad data field address mark
10 Format error
20 Attempt to write on write-protected drive
40 Drive has indicated a write error
80 Drive not ready

RUN Program Error Messages (8086 Execution Mode)

101. HARDWARE NOT RESPONDING (fatal error)
102. INVALID SYNTAX
1ro.COMMANDLINETOOLONG
104. INSUFFICIENT MEMORY TO LOAD
105. MISMATCHED SOFTWARE/FIRMWARE
106. ERROR 106 USER PC mmmm

where mmmm is the contents of the program counter
107. ILLEGAL LOAD ADDRESS
108. INVALID OBJECT FILE
117. UNRESOLVED SYMBOLS (warning)
118. RAM FAILURE (warning)
119. ROM CHECKSUM ERROR (warning)

DEBUG-86 Error Messages (8086 Execution Mode)

120. Syntax error
121. Invalid token
122. No such line

Series III Operating Instructions Summary of Error Messages

123. Inappropriate number
124. Partition bounds error
125. Symbol already exists
126. Symbol does not exist
127. Memory failure
133. Nul1 string error
134. Memory overflow
135. Stack overflow
136. Command too complex
137. Module does not exist
139. Excessive data
141. Unsuitable execute file
142. Line too long
143. Too many partitions
147. Pointer value required
148. Integer value required
149. Differing bases

Console Command Interface Errors (8080/8085
Execution Mode)

201. Unrecognized switch
202. Unrecognized delimiter
203. Invalid syntax
206. Illegal disk label
208. Checksum error
209. Relo file sequence error
210. Insufficient memory
211. Record too long
212. Illegal relo type
213. Fixup bounds error
214. Illegal SUBMIT parameter
215. Argument too long
216. Too many parameters
217. Object record too short
218. Illegal record format
219. Phase error
220. No EOF record in object module file
221. Segment overflow during LINK operation
222. Unrecognized record in object module file
223. Fixup record pOinter is incorrect
224. Illegal record sequence in object module file in LINK
225. Illegal module name specified
226. Module name exceeds 31 characters
227. Command syntax requires left parenthesis
228. Command syntax requires right parenthesis
229. Unrecognized control specified in command
230. Duplicate symbol found
231. File already exists
232. Unrecognized command
233. Command syntax requires a TO clause
234. Filename illegally duplicated in command
235. File specified in command is not a library file
236. More than 249 common segments in input files
237. Specified common segment not found in object file
238. Illegal stack content record in object file
239. No module header in input object file
240. Program exceeds 64k bytes

G-3

APPENDIX H
MODEL 800 START-UP AND
SHUT -DOWN PROCEDURES

Operation of 'Systems Containing Flexible Disk
Drives Only

Model 800 Flexible Disk System Start-Up Procedure

The following procedure defines system start-up from power application through
loading and execution:

1. Apply power to the system, disk drive, and terminal.

2. Insert an ISIS-II system diskin drive 0 (write protect slot first).
3. Close the drive door.

4. Press the top of the BOOT switch.

5. Press and release the top of the RESET switch.
6. Observe that the INTERRUPT 2 light goes on to indicate loading of ISIS-II. (Be

sure INTERRUPT 2 is on before proceeding.)

7. Press the space bar of the terminal keyboard to select the console.

8. Observe that the INTERRUPT 2 light goes off to indicate receipt of the space
bar entry.

9. Press the bottom of the BOOT switch to execute ISIS-II.

The -system displays the ISIS-II sign-on message and prompt character (a
hyphen):

ISIS-II, Vx.y

(x.y is the version and release number of ISIS-II).

10. The system is now ready to accept a command from the terminal.

NOTE
After you perform step 9, the ISIS-II prompt (a hyphen) should be
displayed .. If the prompt displayed is a period (indicating that the
Monitor is still in control), check for one of the following conditions: a
non-system disk in drive 0, an incorrectly installed disk, or a discon
nected drive.

Model 800 Flexible Disk System Shut-Down Procedure

When you are ready to turn off the system, follow these steps:

1. Remove all flexible disks.

2. Turn off the power switch on the external disk drive unit.

3. Turn off the power switch on the terminal.

4. Turn off the power switch on the system control panel.

H-l

Model 800 Start-up Series III Operating Instructions

H-2

Operation of Systems Containing Hard Disk Drives

Hard Disk Subsystem Controls

The front panel of the hard disk drive includes four backlighted operating switches
and two status indicators (see figure H-l and table H-l). A brush indicator and two
cartridge holddown arms are mounted on the top of the disk drive. Two circuit
breakers are positioned on the back panel.

Table H-l. Hard Disk Drive Controls and Indicators

Control or Indicator Function

MAIN Circuit Breaker (CB1) Applies main ac to disk drive.

+34 VOLT Circuit Breaker (CB2) Applies dc voltage to disk drive electronics; not
accessible to operator (covered by switch plate).

START/STOP Switchllndicator Alternate-action switch with indicator. When pressed,
applies power to spindle motor and initiates the first
seek mode; indicator lights to indicate power is applied
to spindle motor and spindle is rotating. When pressed
the second time, removes power to spindle motor; indi
cator remains lighted until spindle stops rotating.

READY Indicator

ACTIVE Indicator

FAULT Switchllndicator

WRITE PROTECT /CART
Switch/Indicator

WRITE PROTECT /FIXED
Switch II nd icator

Brush Indicator

Cartridge Holddown Arms

Care of Hard Disks

NOTE

The first seek mode is completely automatic
and requires approximately 65 seconds to com
plete. In the event of a fault during this time,
heads will automatically go to emergency
retract and spindle wit! stop.

Lights when spindle is up to speed, heads are loaded,
and disk drive is ready for use.

Lights when disk drive is actively engaged in any mode:
direct seek (forward or reverse), return-to-zero seek, or
read/write/ erase.

Lights when any fault (except power failure) exists.
Pressing switch resets fault logic.

Alternate-action switch with indicator. Prohibits writing
or eraSing on cartridge disk. Indicator lights to indicate
that cartridge is protected.

Alternate-action switch with indicator. Prohibits writing
or erasing on fixed disk. Indicator lights to indicate that
fixed disk is protected.

Indicates position of brush motor. Allows brush to be
manually moved.

Hold disk cartridge in place. Interlock circuits prevent
arms from being lifted as long as spindle is rotating.

The hard disk drive assembly is extremely sensitive to contaminants on the hard disk
platter surface. The head does not make contact with the disk platter, but rides
about 1.14 microns above it. If contaminants such as a human hair (100 microns in
diameter), a smoke palticle (6.35 microns), fingerprints, or dust come between the
disk drive head and the platter surface, the contact will usually destroy both the head
and the disk.

Series III Operating Instructions Model 800 Start-up

Figure H-l. Hard Disk Drive Subsystem 121609-6

Follow these precautions to ensure proper operation and maintain data integrity:

• Clean any dust or dirt from the cartridge cover and drive chassis with a lint-free
cloth.

• Allow nothing to touch the disk surface.

• Inspect the disk surfaces periodically with a bright, directional light. If the disk
is dirty or scratched, it must be serviced by your Intel service representative.

• Keep liquids away from the hard disk drive.

• Do not smoke in the hard disk drive area.

• When you first bring a cartridge into a new operating environment, allow at
least one hour for the cartridge temperature to stabilize.

H-3

Model 800 Start-up

H-6

HANDLE

HOLDDOWN
ARM

COVER RELEASE
BUTTON

Figure H-2. Hard Disk Cartridge Installation

Series III Operating Instructions

943-01

Series III Operating Instructions Model 800 Start-up

Hard Disk Cartridge Removal

To remove a hard disk cartridge, follow these steps:
1. Check that MAIN circuit breaker (CBl) is on and that the blower motor is on.

NOTE
If the MAIN circuit breaker is on but the blower motor is not, the
cartridge must be removed by a service representative.

2. Check that the START/STOP indicator is not lit.
3. Check that the brush indicator slot is aligned with the black line. If not, align it

with a coin or similar object.
4. Raise the disk drive cover.

S. Lift the cartridge holddown arms.

(If the arms are locked, the previous steps may not have been completed prop
erly, or the drive may have malfunctioned. In the latter case, the cartridge must
be removed by an Intel Service Representative.)

6. Remove cartridge dust cover and set aside.

7. Hold the cover release button, lift the cartridge handle, and lift the cartridge
clear of the disk drive spindle.

8. Place the dust cover in position on disk cartridge and release the cover release
button.

NOTE
To prevent dust and foreign objects from entering the disk drive, never
leave the unit open without a cartridge in place for an extended period
of time.

Hard Disk Subsystem FAULT Operation

The F AUL T indicator comes on when a nondamaging fault exists, such as when
more than one head is selected.

If a momentary power failure occurs, the FAULT indicator does not come on. In
such an event, the hard disk heads go into emergency retract and the unit stops. The
unit automatically restarts when power returns to normal.

If the FAULT indicator is lit, follow these steps:

I. Check that the system flexible disk is in drive 4.
2. Press the FAULT switch. If the FAULT indicator goes out, and remains out,

resume normal operation. If not, continue with step 3.

3. Press the START/STOP switch to remove power from the spindle. Allow the
spindle to stop, then press the START/STOP switch again. Allow the spindle to
reach operating speed.
If the FAULT indicator goes out, resume normal operation. If not, proceed to
step 4.

4. Press the START/STOP switch to remove power from the spindle, and contact
a service representative.

H-7

Model 800 Start-up Series III Operating Instructions

H-8

Model 800 Hard Disk System Power-down Procedure

To power-down the system, follow these steps:

1. Remove all flexible clisks.

2. Press the START/STOP switch. The following occurs:

• The READY indicator extinguishes.

• The heads retract.

• The START indicator goes out after the spindle stops rotating.

• The cartridge hold-down arm interlocks open.

3. Turn off power to the external disk drive unit.

4. Turn off the power switch on the terminal.

5. Turn off the power switch on the system control panel.

Note that the main power (CB1) to the hard disk subsystem is not turned off.

Model 800 Hard Disk System Subsequent Start-up Procedure

Once you have completed the cold-start procedure, you can follow the simplified
start-up procedure given in this section for your day-to-day operations. This start-up
procedure assumes the following:

• The flexible disk to be inserted in drive 4 and the fixed hard disk platter in drive
o are both system disks and contain the same version of ISIS-II.

If they do not contain the same version of ISIS-II, follow the instructions in the
ModelSOO Hard Disk System Cold Start section.

• The main power to the hard disk subsystem (CB1) is left on 24 hours a day.

The day-to-day start-up procedure is as follows:

1. Apply power to the system and to the terminal.

2. Apply power to the external flexible disk drive unit.

3. Insert a system flexible disk in drive 4.

4. Press the START/STOP switch on the hard disk subsystem.

5. When the READY indicator is lit, press the top of the BOOT switch.

6. Press and release the top of the RESET switch.

7. When the INTERRUPT 2 indicator is lit, press the space bar of the terminal.

S. Press the bottom of the BOOT switch.

9. The system displays the ISIS-II sign-on message and prompt character (a
hyphen):

ISIS-II, Vx.y

(x.y is the version and release number of ISIS-II.)

10. The system is now ready to accept a command from the terminal. For example,
to format the removable hard disk cartridge as a non-system disk, enter the
following command:

FORMAT :F1:NONSYS.DSK<cr>

For further information concerning disk formatting, see Chapter 4. For further
information concerning the hard disk subsystem, see the Model 740 Hard Disk
Subsystem Operation and Checkout Manual.

SOSO/SOS5 execution mode, 1-3,4-29
S086 execution mode, 1-3,4-34
> (angle bracket)

RUN prompt, 4-35
& (ampersand)

continuation lines, 4-35,6-3
* (asterisk)

DEBUG-86 prompt, 6-1
wild card character, 4-17

(pound sign)
line-editing, 3-6
Monitor, 5-4
statement line number, 6-43

? (question mark)
wild card character, 4-17

- (hyphen)
ISIS-II prompt, 4-2

A command, 5-8
A switch (FORMAT), 4-7
aborting commands, 1-6, 3-7
accessing

devices, 3-1
files, 3-1

ACTIVE indicator, 2-7, H-2
AND operator, 6-14
appending files, 4-20
arithmetic

expressions, 6-4
operators, 6-10
rules, 6-15

arrow keys, 1-5
ASCII codes, 6-10, C-l
ASM form, 6-34
Assign (A) command, 5-S
A TTRIB command, 4-28
attributes, 3-4

B switch (COPY), 4-20
BACKUP switch (HDCOPY), 4-23
basic disk

non-system disk, 4-3
system disk, 4-3

basic system, 1-2
BATCH,5-8
:BB:, 3-2
binary operators, 6-12
blocks, 3-4
boolean expressions, 6-37
breakpoints

DEBUG-86,6-22
Monitor, 5-5

BR,6-22
brush indicator, 2-7
BYTE,6-6
byte bucket, 3-2

INDEX I

C switch (COPY), 4-20
calls, system, 3-1
care of disks

flexible disks, 2-1
hard disks, 2-7, H-2

carriage return key, 1-5
cartridge hold down arms, 2-7, H-2
CBl,2-7
Change Memory command, 6-27
Change Port command, 6-30
Change Register command, 6-26
Change Symbols command, 6-46
checksum errors (Monitor), 5-5
:CI:, 3-2
CNTL key, 1-5
CNTL-C,3-S
CNTL-D,3-S
CNTL-E, 4-33
CNTL-P, 3-6
CNTL-Q,3-7
CNTL-R,3-6
CNTL-S, 3-7
CNTL-X, 3-6
CNTL-Z, 3-6
:CO:, 3-2
code conversion commands, 4-2
comment lines

DEBUG-86, 6-3
ISIS-II

S080/8085 mode, 4-2
SOS6 mode, 4-35

concatenation, 4-20
compound commands, 6-4S

COUNT command, 6-50
IF command, 6-51
nesting of, 6-52
REPEAT command, 6-4S

configurations, drives, I-S
console commands,

see ISIS-II console commands
console device, 3-2, 5-8
console, system, 3-6
content operator, 6-13
continuation lines, 6-3
control characters, 1-3

CNTL-C, 3-8
CNTL-D,3-8
CNTL-E,4-33
C'NTL-P, 3-6
CNTL-Q,3-7
CNTL-R,3-6
CNTL-S, 3-7
CNTL-X, 3-6
CNTL-Z, 3-6

control panel, 1-6
converting

absolute object code to hexadecimal, 4-2
decimal to hexadecimal, B-1
hexadecimal to absolute object code, 4-2
hexadecimal to decimal, B-1

Index-l

Index

COPY command, 4-20
copying a disk file, 4-20

hard disk, 4-20, 4-23
COUNT command

DEBUG-86, 6-50
FIXMAP, 4-13

creating and managing files, 3-1
CREDIT text editor, 4-2
CRT terminal, 1-4
CS file (SUBMIT), 4-33
CSD file (SUBMIT), 4-33
cursor, 1-4

D command, 5-10
DATE command, 4-38
DEBUG command

DEBUG-86, 6-17
Monitor, 4-30

DEBUG-86,6-1
DEBUG-86 commands

Change commands
Memory, 6-27
Port, 6-30
Register, 6-26
Symbols, 6-46

COUNT command, 6-50
DEBUG command, 6-17
Define symbol command, 6-40
Display commands

Boolean, 6-37
Lines, 6-43
Memory, 6-32
Memory (ASM form), 6-34
Modules, 6-44
Port, 6-36
Registers, 6-31
Stack, 6-38
Symbols, 6-42

Evaluate command, 6-38
EXIT command, 6-19
GO command, 6-21
GO Register command, 6-24
GR command, 6-24
IF command, 6-51
LOAD command, 6-20
Remove Symbols command, 6-46
REPEAT command, 6-48
Set Domain command, 6-47
STEP command, 6-24

debugging programs
DEBUG-86, 6-1
Monitor, 4-1

decimal-to-hexadecimal conversions, B-1
Define Symbol command, 6-40
DELETE command, 4-26
deleting

characters, 1-5, 3-6
file from directory, 4-26

:device:, 3-1
device/file accessing, 3-1
device names, 3-1
directory

contents, 3-4
listing, 4-18

Index-2

Series III Operating Instructions

DIR command, 4-18
disk drive units, 1-7
disk insertion (flexible disk), 2-2
disk installation (hard disk), 2-10, H-5
disk removal

flexible disk, 2-2
hard disk cartridge, 2-12, H-7

disks
addressing, 3-2
back-up, 2-5
care of, 2-1,2-7, H-4
directory, 3-4, 4-18
drives, 1-7
flexible, 1-8
formatting, 2-5.4-3
hard disk, 1-8
non-system, 1-9
recording characteristics, 1-8
system, 1-9
types, 1-9

display, 1-4
Display (D) command, 5-10
Display Boolean command, 6-37
Display Lines command, 6-43
Display Memory (ASM form), 6-34
Display Memory command, 6-32
Display Modules command, 6-44
Display Port command, 6-36
Display Register command, 6-31
Display Stack command, 6-38
Display Symbols command, 6-42
DOMAIN, 6-47
double density disks, 1-8
DQGETARGUMENT,6-3
drive configurations, 1-8
drive units, 1-7

E command, 5-16
editing

characters, 3-6
files, 4-2
lines, 3-6

END clause, 6-48
End-of-File command, 5-16
error messages, 7-1

console command interface, 7-8
DEBUG-86,7-7
ISIS-II, 7-3
RUN, 7-6

ESC key, 1-5
Evaluate command, 6-38
Execute (G) command, 5-5
executing programs

8080/S085 programs, 4-31
80S6 programs, 4-35

execution modes, 1-2
EXIT commands

DEBUG-S6,6-19
FIXMAP, 4-15
RUN,4-34

expressions, 6-4
extensions, 3-3
external disk drive units, 1-7

Series III Operating Instructions

F attribute, 3-S, 4-2S
F command, S-11
F switch, 4-1S
FO (A TTRIB), 4-29
Fl (ATTRIB), 4-29
fatal errors, 7-1
FAULT

operation, 2-12, H-7
switch/indicator, 2-7, H-2

filenames (program execution)
SOSO/SOS5 mode, 4-31
SOS6 mode, 4-35

filenames, 3-2
files

accessing, 3-1
characteristics, I-S
copying, 4-20
creating and editing, 4-2
deletion, 4-26
executing, 1-3, 4-30
extensions, 3-3
name format, 3-2
names, wild card, 4-17
types, 1-9

Fill (F) command, S-11
FIXMAP command, 4-9

Count command, 4-13
Free command, 4-11
List command, 4-12
Mark command,4~10
Quit command, 4-14
Record command, 4-14

flexible disk, I-S
care of, 2-1
formatting of, 2-5
insertion, 2-2

. removal, 2-2
FLAG, 6-31
:Fn:, 3-3
FOREVER, 6-21, 6-23
format (F) attribute, 3-S, 4-29
format files, 3-S, 4-4
FORMAT command, 2-3, 4-4, 4-7
Formatting of disks

Back-up disk, 2-5
Flexible disk, 2-S
FORMAT,4-7
Hard disk, 2-9,4-5,4-7,4-23, H-4
HDCOPY, 4-23
IDISK,4-5
non-system disk, 2-5
single drive system, 2-6

Free command (FIXMAP), 4-11
front panel, 1-6

G command, S-S
Go command, 6-21
Go Register command, 6-23
GR command, 6-23

H command, S-17
hard disk cartridge

care of, 2-7, H -2
cartridge, 1-9
installation, 2-10, H-S

removal, 2-12, H-7
hard disk system

controls, 2-7, H-2
power-down, 2-13, H-S
start-up, cold, 2-9, H-4
start-up, subsequent, 2-13, H-S

HDCOPY command, 4-23
hexadecimal

command, S-17
paper tape format, A-I
to decimal conversion, B-1

HOME key, 1-5
:HP:, 3-2
:HR:, 3-2

1 attribute, 3-S, 4-2S
1 switch (DIR), 4-1S
IO (A TTRIB), 4-27
II (A TTRIB), 4-27
IDISK command, 2-4, 4-3, 4-S
IF command, 6-S1
initial system console, 3-6
initiation of

disks, see FORMAT, 4-7
disks, see IDISK, 4-S
system, see Monitor, S-1

INTEGER, 6-6
integers, 6-4
integrated disk drive; 1-1
Intellec terminal, 1-4
interactive mode

DEBUG-S6,6-1S
loading programs, 6-1S
RUN,4-3S

interfaces, peripherals, 1-1
interrupt switches, 1-6
interrupting program execution

80S0/808S mode, 3-7
80S6 mode, 3-S
DEBUG-S6, 6-4

invisible (I) attribute, 3-S, 4-2S
110 interface, 1-1,4-1
110 Ports, 6-29
ISIS-II console commands

A TTRIB, 4-28
COPY, 4-20
DEBUG (Monitor), 4-31
DELETE,4-26
DIR,4-1S
filename, 4-31
FIXMAP, 4-9
FORMAT,4-7
HDCOPY, 4-23
IDISK,4-S
RENAME,4-27
RUN,4-34
SUBMIT,4-32
VERS, 4-32

keyboard, I-S
keyword references, 6-4

Librarian, 4-2
Linker, 4-2

Index

Index-3

Index

LINE,6-43
line editing, 3-6
line feed, 1-5
line terminators, intermediate, 6-3
lines, display of, 6-14
List command (FIXMAP), 4-12
list device, 5-8
LOAD command, 6-20
Locator, 4-2
logical device names, 3-1
logical operators, 6-14
looping commands, 6-48
:LP:, 3-2

M command, 5-11
main circuit breaker, 2-7, H-2
Mark command (FIXMAP), 4-10
memory (8086) •

ASM form, 6-34
change contents of, 6-27
display contents of, 6-32
keywords, 6-6
references, 6-6
types, 6-7

memory control commands
(8080/8085), 5-9

messages, error, 7-1
MOD (modulo reduction), 6-11
Model 800, H-l
MODULE, 6-44, 6-46
module references, 6-9
modules, display of, 6-44
Monitor, 5-1
Monitor commands

A command, 5-8
Assign command, 5-8
D command, 5-10
Display command, 5-10
E command, 5-16
End-of-File command, 5-16
Execute command, 5-5
F command, 5-11
Fill command, 5-11
G command, 5-5
H command, 5-17
Hexadecimal command, 5-17
M command, 5-11
Move command, 5-11
N command, 5-17
Null command, 5-17
Q command, 5-9
Query command, 5-9
R command, 5-15
Read command, 5-15
Register command, 5-13
S command, 5-12
Substitute command, 5-12
W command, 5-16
Write command, 5-16
X command, 5-13

Move (M) command, 5-11

N command, 5-17
N switch (COPY), 4-20
Nesting compound commands, 6-52
NOLINE, 6-20

Index-4

Series III Operating Instructions

non-fatal errors, 7-1
noninteractive mode

DEBUG-86,6-17
Loading programs, 6-18
RUN,4-35
SUBMIT,4-31

NOSYMBOL, 6-20
NOT operator, 6-14
Notational conventions, iii
Null command, 5-17
Numeric constants, 6-5

o switch (DIR), 4-18
Operator-controlled pauses, 3-7
operators

arithmetic, 6-10
content, 6-13
logical,6-14
relational, 6-12

OR operator, 6-14

P switch
COPY, 4-20
DELETE, 4-26
DIR,4-19
IDISK,4-5

paper tape punch, 5-7
parameters, formal, 4-32
pathnames, 3-1
peripherals, 1-4, 4-1
POINTER, 6-6
pointers, 6-4
ports (8086)

change contents, 6-29
display contents, 6-31

POWER ON switch, 1-6
prompt characters, 1-4
PUNCH,5-7

Q command, 5-9
Q switch

ATTRIB,4-28
COPY, 4-20
DELETE, 4-26

Query (Q) command, 5-9
Query mode

A TTRIB, 4-28
COPY, 4-20
DELETE, 4-26

Quit command (FIXMAP), 4-14

R command, 5-15
Read (R) command, 5-15
READER,5-8
READY indicator, 2-7, H-2
Record command (FIXMAP), 4-14
REGISTER,6-31
Register (X) command, 5-13
register keywords, 6-7
registers (8086)

change contents, 6-26

Series III Operating Instructions

display contents, 6-31
keywords, 6-7
references, 6-7
types, 6-7

Remove Symbols command, 6-46
RENAME command, 4-27
REPEAT command, 6-48
Repeat key, 1-5
RESET switch, 1-6
RETURN key, 1-5
RPT key, 1-5
RUBOUT key, 1-5, 3-6
rules, arithmetic, 6-12
RUN command, 4-35
RUN indicator, 1-6

S attribute, 3-6, 4-29
S command, 5-12
S switch

COPY, 4-20
FORMAT,4-7
IDISK,4-5

SO (A TTRIB), 4-29
S 1 (A TTRIB), 4-29
Set Domain command, 6-47
Shut-down

flexible disk system, 2-4
hard disk systems, 2-13, H-7
Model 800, H-l

single-density disks, 1-8
single drive mode

COPY, 4-20
DELETE, 4-26
DIR,4-18
IDISK, 2-6, 4-5

SINTEGER, 6-6
software components, 1-1
START-STOP switch/indicator, 2-7, H-2
start-up of system

flexible disk systems, 2-2
hard disk systems

cold start, 2-9, H-4
subsequent start-up, 2-13. H-8

Model 800, H-l
statement number references, 6-9
statement number table, 6-8
STEP command, 6-24
string constants, 6-10
SUBMIT command, 4-32
Substitute command, 5-12
suffix, 6-5
SYMBOL, 6-42, 6-46
symbol table, 6-8
symbolic debugging, 6-1
symbolic references, 6-8
SYMBOLICALLY, 6-38
Symbols

change command, 6-44
DEFINE command, 6-40
Display command, 6-42
Remove command, 6-46

system calls, 3-1
system console, 3-2, 3-6

changing system console, 3-6
current console, 3-6
initial console, 3-6

System disk
basic, 2-3, 4-3
flexible, 2-3,4-3

system files, 3-6,4-3
system (S) attribute, 3-5,4-28
system software, 1-1

T switch (FIXMAP), 4-10
table, symbol, 6-8
teletype, 5-8
text editor, 4-2
:TI:, 3-2
TILL clause, 6-21
:TO:, 3-2
:TP:, 3-2
TPWR key, 1-5
:TR:, 3-2
TTY, 5-8
Typewriter key, 1-5

U switch (COPY), 4-20
unary operators, 6-12
UNTIL clause, 6-48

VERS command, 4-30
version number display, 4-30
:VI:, 3-2
video screen, 1-4
:VO:, 3-2

W attribute, 3-5,4-28
W command, 5-16
WO (ATTRIB), 4-28
WI (A TTRIB), 4-28
WHILE clause, 6-48
Wild card filenames, 4-17

A TTRIB, 4-28
COPY, 4-20
DELETE, 4-26
DIR,4-18

WORD,6-8
WORK command, 4-37
work files, 4-37

Index

write-protect (W) attribute, 3-5, 4-28
WRITE PROTECT indicator/switch, 2-7
write-protect slot, 2-5
Write (W) command, 5-16

X command
Display form, 5-14
Modify form, 5-14

XOR operator, 6-10

Z switch (DIR), 4-18

Index-5

Intellec Series III Microcomputer Development System
Console Operating Instructions

121609-003

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

._------ -_._._ .. - .. _---

- ----_._ __ _------------

.----------- --_ - ... __ ._ .. _----_._._--_. __ . __ .. _---_._----_

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating) ...

NAM E ___ ... _._ .. __ .. __________ .. _. ___ __ ._ ... __ ._. __ . __ ... ___ . __ . ____ _ __ ... _ DATE _

TITLE _____________________ .. __________ ... ___ ... _

COMPANY NAME/DEPARTMENT

ADDRESS __ _ -... - --- .. _-----_._-_ _ .. -_ .. _--_ - -----

CITY ___ ._. ___________ .. __ ... _ ___ . __ .. __ ___ . __ STATE __ .. _ ... _ .. ZIP CODE __

(COUNTRY)

Please check here if you require a written reply. L]

WE'D LIKE YOUR COMMENTS ••.

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

III " I NO POSTAGE
NECESSARY
IF MAILED

IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18

