
GETTING STARTED WflTH THE
[ICE-51™ IN-CIRCUIT EMULATOR

GETTING STARTED WITH THE
ICE-51" IN-CIRCUIT EMULATOR

Manual Order Number: 121595-001 Rev. A

Copyright © 1981 by Intel Corporation
] Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel’s software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP Intel Megachassis
CREDIT Intelevision Micromap

Intellec Multibus
ICE iRMX Multimodule
iCS iSBC PROMPT
im iSBX Promware
Insite Library Manager RMX/80
Intel MCS System 2000

UPI
pScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

n | A299/181/10K DP |

PREFACE

This manual provides a hands-on introduction to the main features of the ICE-51™
in-circuit emulator for the 8051 microcontroller. It is intended for the user with little
or no previous experience with Intel’s in-circuit emulators. This manual shows how
the emulator commands operate, using a short sample program that you enter with
the emulator’s one-line assembler. Although you are not required to use the ASM51
assembler for this manual, it is assumed that you are familiar with the 8051 and its
assembler as described in the following manuals:

• Intel MCS-51™ Family User’s Manual, Manual Order No. 121517.

• MCS-57™ Macro Assembler User’s Guide, Manual Order No. 9800937.

This manual assumes that you have installed the emulator hardware in the
development system. The manual shows how to invoke the emulator system, and
how to enter commands. Operation of the commands is illustrated through
examples with a minimum of discussion. For installation procedures, details on
commands, and other information on the emulator system, please refer to the
following manuals:

• ICE-51™ Operating Instructions, Manual Order No. 9801004.
• ICE-51™ Command Dictionary, Manual Order No. 9801005.

For information on the ISIS-II operating system, refer to the following manual:

• ISIS-II User’s Guide, Manual Order No. 9800306.

iii

CONTENTS

Page
Introduction ... 1
Demonstration Program Listing ... 3
Session One ... 5
Session Two ... 13
Session Three ... 23
Session Four ... 33

iv

INTRODUCTION

This manual contains practical examples of many typical ICE-51 emulator
commands. These examples are designed to get you started with a minimum of
explanation. To use this manual as a hands-on learning guide, install the emulator
hardware in the development system, and attach the crystal power accessory for
stand-alone operation. Power up the development system and the disk drives, and
insert an ISIS-II system diskette in drive 0. Insert the emulator software diskette in
drive 1.

In this manual, lines that begin with asterisks (*) are the user commands; the
asterisk is the emulator system prompt. Lines with no prompts are the displays
produced by the emulator system. To make these lines stand out, they are set in a
typeface different from the standard text; for example:

*MAP ;This is the command you enter.
MAP=0000H,1000H ;This is the display that results.

Some lines contain comments to help explain the commands and displays. Each
comment begins with a semicolon (;), as in the examples shown above. Enter the
commands as shown, omitting the comments. Press the RETURN (CR) key at the
end of each command line.

The following controls are useful for correcting commands as they are being
entered (that is, before the CR):

RUBOUT Delete last character typed; repeat RUBOUT to delete more than
one character.

CTRLX
ESC
CTRLR

Delete current line of command being entered.
Delete entire command being entered.
Echo command line being entered.

CR
LF

Carriage return ends command line.

Line feed also ends command line.

Once a command line has been ended with CR or LF that line can no longer be
corrected. The following additional controls are used to pause and continue during
lengthy displays:

CTRLS Pause console display.
CTRLQ Continue console display.

This manual is organized into four “sessions”. Session one presents a basic orienta­
tion, display of memory and registers, and use of the one-line assembler. The
program entered in session one is saved on diskette file for use in the later sessions.
Session two illustrates loading code from file, and demonstrates the emulation and
trace controls. Session three shows how to define macros to automate all or part of
the debugging process. The macros defined in session three are saved on diskette
for use in session four. Session four shows how to exercise the system using
command sequences brought in from diskette file.

NOTE
Several displays in this manual contain “random” values that will
differ each time the examples are executed. These displays are screened
to emphasize that your result can be different from that shown.

1/2

DEMONSTRATION PROGRAM LISTING

The examples in this manual involve the sample program described in this section.
The listing shows the label (if present), the address, and the instruction mnemonic
for each instruction.

The program is organized in three blocks: START, LOOP, and TIMOUT. START
initializes the program, a demonstration of on-chip timer (Timer 1) in auto-reload
mode. When initialization is complete, START starts the timer and jumps to LOOP.
LOOP marks instruction time by incrementing the accumulator. To allow us to
trace this activity, the accumulator is written out to a port on each iteration of the
loop. The Data Pointer (DPTR) is used to count overflows from the accumulator.
TIMOUT is the timer interrupt service routine. This routine outputs the characters
A through Z repetitively to a port. The character hold time is determined by the
auto-reload value of the timer. The program comments give further details.

Note that the program listing uses the emulator system’s version of symbolic
reference (.START for the label START, for example).

In session one you will be shown how to enter this program, labels and all.

(NOTE: The first three instructions, ADD MOV, and JNC, require a total of four cycles
or four microseconds to execute. Thus, 256 times through this loop represents
approximately 1 millisecond.)

LABEL LOG INSTRUCTION COMMENTS

.RESET 0000H AJMP .START ;Reset vector to initializa­
tion routine.

.TIMER1 001BH AJMP .TIMOUT ;Timer 1 interrupt vector
;to service routine.

.START 01 OOH CLR A ;Clears accumulator, carry
0101H CLR C ;flag, data pointer, and
0102H MOV DPTR, #0000H ;port 1 used by the main
0105H MOV .P1, #00H jloop.
0108H MOV .P2, #00H ;Clears ports 2 and sets RO
010BH MOV RO, #41H ;to letter ‘A’, both for timer

;service routine.
010DH MOV .TMOD, #20H ;Set timer 1 in auto-reload

;mode.
011 OH MOV .TOON, #00H ; Clear all timer control bits.
0113H MOV ■TL1, #F4H ;Timer 1 initial value.
0116H MOV .TH1, #F4H ;Timer 1 reload value.
0119H MOV .IP, #08H ;Set timer 1 interrupt to

;priority 1.
011CH MOV .IE, #88H ;Enable timer 1 interrupt.
011FH SETB .TR1 ;Start timer 1.

.ENDSTART 0121H AJMP .LOOP ;End of initialization.

.LOOP 0130H ADD A, #01H ;Loop counter.
0132H MOV .P2, A ;Output the counter.
0134H JNC -LOOP ;The carry is set when the

jaccumulator overflows.
0136H INC DPTR /‘Millisecond” counter.
0137H CLR C ;Set up for next 256

iterations.
.ENDLOOP 0138H SJMP .LOOP ;Restart the loop.

3

Demo Program Listing ICE-51

.TIMOUT 0140H CLR .TR1 ;Stop the timer while we
jservice the interrupt.

0142H PUSH .PSW ;Save the carry flag for the
;main loop.

0144H MOV .P1, RO ;Output current character.
0146H INC RO ;Next character.
0147H CJNE RO, #5BH,.MIDOUT ;Character ‘Z’ = 5AH should

;be the last in the series.
014AH MOV R0,#41H ;Start at ‘A’ again.

.MIDOUT 014CH POP .PSW ;Restore the carry flag.
014EH SETB .TR1 ;Start the timer again.

.ENDOUT 0150H RETI ;End of interrupt.

(NOTE: The CJNE instruction sets the carry flag if RO is less than 5BH. This is the
reason for saving and restoring the carry flag in this routine.)

4

SESSION ONE

In session one you learn how to invoke the emulator system, display and change
the contents of memory and registers, obtain help at the console, operate the one-
line assembler, save a program from code memory to disk file, and exit the emulator
system.

To invoke the emulator system, boot the ISIS-II system and obtain the ISIS-II
prompt. Enter the command:

>:F1:ICE51
ISIS-II ICE-51 Vn.n
FOR COMMAND ENTRY ASSISTANCE, TYPE HELP
★

The asterisk (*) is the emulator system prompt; the system is waiting for a
command. (Before the prompt appears, the system requires a few moments to down­
load system software to the emulator hardware; the red light on the buffer box is on
during the download.)

We wish to record this session on a file, so we enter:

‘LIST :F1:NOV12A.LOG

Let’s look at code memory, starting with the emulator’s code memory map; enter:

‘MAP
MAP = 0000H.1000H

This shows the initial location of the emulator’s two 4K blocks of code memory. You
can move these blocks around to serve the need for emulating from higher memory
locations, but for these sessions we leave them as is.

To display or change code memory bytes as numeric values, use the CBYTE
commands:

‘CBYTE 0 TO 4K = 0 ;Clear the low block.
‘CBYTE 0 ;Display the contents of address 0.
CBYTE 0000H=00H
‘CBYTE 0 TO 1FH ;Display a partition of addresses.

0000H=00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH
O01OH=OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

To display or change the contents of the on-chip data memory, use the DBYTE
commands:

‘DBYTE 0
DBYTE 0000H=14H

‘DBYTE 0 TO 7FH = 0
★
‘DBYTE 0 TO 1FH

;Display contents of address 0.
initially the contents are ‘random’.

;Clears the entire on-chip data memory.

;Display a partition of bytes.

0D00H=00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH
0D10H=00H OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH OOH

5

Session One ICE-51

To display or change the contents of the on-chip special function registers, use the
RBYTE commands. You can use the numeric address of the register:

‘RBYTE 81H
RBYTE 0081H=07H

Or, you can use the system symbol for the register. The emulator requires you to
precede the name of the symbol with a period (.) to distinguish it from other kinds of
entries:

‘RBYTE .SP
RBYTE 0081H=07H
*
‘RBY .PSW
RBYTE 00D0H=00H

;Stack Pointer register.

;Program Status Word register

To display or change the values of the bit-addressable memory and registers, use
the RBIT commands:

‘RBIT 0
RBIT 0000H=0

‘RBIT 0 TO 1FH
0000H=0 000000000000000
0010H=0 000000000000000

‘RBIT ,CY
RBIT 00D7H=0

;Using a system symbol for the bit
jaddress.

‘RBIT .PSW+7
RBIT 00D7H=0

;Accessing a bit-addressable register by
;register name and bit number.

Certain registers can be displayed without using DBYTE or RBYTE:

‘REGISTERS
PC ACC B SP DPTR R0 R1 PSW
0000H OOH OOH 07H 0000H OOH OOH 00000000Y

‘R0
R0=00H
*R1
R1=00H
*R7
R7=00H

;Working registers in current bank.

*RBS
RBS=00H

;Bank select for R0 through R7.

*RBS = 3
*R0
R0=00H
*R0=55H
‘R0
R0=55H
‘RBS = 0
*R0
R0=00H

;Change to bank 3.

‘STACK
SP STACK

;Display the stack and stack pointer.

07H OOH ;07H is the initial stack pointer, so this
06H OOH
(Display continues on next page.)

jdisplay means the stack is empty.

6

ICE-51 Session One

05H OOH
04H OOH
03H OOH
02H OOH
01H OOH
OOH OOH
‘INTERRUPT

EA
IIPO
IIP1
IE 0
IP
*

‘PC
PC=0000H
*
*DPTR
DPTR=0000H

SINT
0
0
0
0

TIMER1
0
0
0
0

;Display interrupt flags.
EXTI1 TIMERO

0 0
0 0
0 0
0 0

EXTIO
0
0
0
0

;Program Counter

;Data Pointer

We’ll examine some of these displays further in later sessions.

Here are some commands that control the number bases used for console input and
display:

‘SUFFIX
H
★
‘GBYTE 1F
CBYTE 001FH=00H
★
‘SUFFIX = T
‘CBYTE 10
CBYTE 00AH=00H
‘CBYTE 1F
CBYTE 1F#
ERR 81:INVALID TOKEN
★
‘SUFFIX = H

‘CBYTE 0 = 48H,45H,4CH,4CH,4FH
‘BASE
H
‘BASE = ASCII
‘CBYTE 0 TO F
OOOOH=HELLO
*
‘BASE = H
*
‘EVALUATE 44H + 273T +3450
100011101OY 1072Q 570T 23AH 023AH

;SUFFIX controls the console input
initially hexadecimal.

;With SUFFIX=H we can omit the H from
jnumbers entered in hex at the console.

;Switch to decimal (T) suffix.
;Now numbers without suffixes are
jassumed to be decimal.
;A11 digits must be valid for the current
jsuffix, otherwise use an explicit suffix.

;The suffix can be set to hex (H),
;decimal (T), octal (Q), or binary (Y).

;Sets up for next example.
;BASE controls the console displays.
jlnitially hexadecimal.
;BASE can be H, T, Q, Y, or ASCII.

jDisplays bytes as ASCII characters.

jEVALUATE does calculations.

The following two reset commands are useful for program control and error
recovery:

‘RESET ICE ;Resets emulator hardware and MAP.

‘RESET CHIP ;Resets emulation processor.

7

Session One ICE-51

To generate real data for the registers, we need a program to emulate. The remain­
der of session one shows you how to enter the demonstration program listed earlier
in the manual. Let’s start with the program labels. To define a symbol for an
address, type:

‘DEFINE .TEMP = FFFFH

To display and change the symbol, once defined:

‘.TEMP
,TEMP=FFFFH

‘.TEMP = ABCDH
‘.TEMP
,TEMP=ABCDH
*
‘SYMBOLS ;Display symbols.
,TEMP=ABCDH

To remove any user-defined symbol:

‘REMOVE .TEMP ;Remove one symbol.
*
‘REMOVE SYMBOLS ;Remove all symbols.
‘SYMBOLS ;Table is empty.

Now let’s define the seven symbols to be used as labels in the demo program:

‘DEFINE .START = 100H
*DEF .ENDSTART = 0121H
‘DEF .LOOP = 0130H
‘DEF .ENDLOOP = 138H
‘DEF .TIMOUT = 0140H
‘DEF .MIDOUT = OUCH
*DEF .ENDOUT = 150H
*
‘SYMBOLS
.START=0100H
.ENDSTART=0121H
.LOOP=0130H
,ENDLOOP=0138H
,TIMOUT=0140H
,MIDOUT=014CH
,ENDOUT=0150H

;Refer to Program Listing.

;Displays the entire user symbol table.

The emulator lets you display and change code memory using the assembly
language mnemonic instructions. To display code memory as disassembled
instructions, type:

10H
A,RO
A,4CH
A,R4
A,R7

‘DASM 0 TO
OOOOH=ORL
0001H=ORL
0003H=ORL
0004H=ORL
0005H=NOP
0006H=NOP
0007H=NOP
0008H=NOP
0009H=NOP
(Display continues on next page.)

8

ICE-51 Session One

OOOAH=NOP
OOOBH=NOP
OOOCH=NOP
OOODH=NOP
OOOEH=NOP
OOOFH=NOP
0010H=NOP

The first four instructions are the characters ‘HELLO’ (entered to show BASE
ASCII in an earlier example) interpreted as opcode and operand bytes. We want to
use the one-line assembler to enter the “real” program. To get assistance in using
the one-line assembler, ASM, we use the HELP command:

‘HELP
Help is available for the following items. Type HELP followed by the item name. The
help items cannot be abbreviated. (For more information, type HELP HELP or HELP
INFO.)
Emulation: Trace Collection: Misc: <address>
GO GR SYO TR QR QRO QR1 SY1 BASE <CPU$keyword>
BR BRO BR1 DISABLE <exor>
STEP Trace Display: ENABLE <ICE51 $keyword>

TRACE MOVE PRINT ERROR Cidentif ier>
OLDEST NEWEST EVALUATE <instruction>

HELP <masked$constant>
Change/Display/Define/Remove: INFO <match$cond>
<CHANGE>■ REMOVE GBYTE RBIT <LIGHTS> <numeric$constant>
<DISPLAY> SYMBOL DBYTE DASM LIST <partition>
REGISTER RESET PBYTE ASM LOAD <string>
SECONDS WRITE RBYTE MAP SAVE <string$constant>
DEFINE STACK XBYTE SY SUFFIX <symbolic$ref>

SYMBOLIC <system$symbols>
Macro: Compound <trace$reference>
DEFINE DIR Commands: <unlimited$match$cond>
DISABLE ENABLE COUNT <users$symbols>
INCLUDE PUT IF
<MACRO$DISPLAY> REPEAT
<MACRO$INVOCATION>

‘HELP ASM
ASM — Command to assemble instructions into 8051 code memory.

(1) To display the current value of the assembly program counter, type:
ASM

(2) To change the value of the assembly program counter, type:
ASM ORG <address> (EX: ASM ORG 400H)

(3) To assemble an instruction into 8051 code memory at the address in the
assembly program counter, type:
ASM <instruction> (EX: ASM MOV A,RO)
After the instruction has been assembled into memory, the updated
assembly program counter will be displayed.

Now begin entering the program:

‘ASM ORG 0
0000H
‘ASM
0000H
‘A AJMP .START
0002H
‘A ORG .TIMER1
(Display continues on next page)

;Start assembly at 0.

;Display ASM pointer.
initially 0.
;User-defined label.
;ASM pointer increments.
;System-defined label.

9

Session One ICE-51

001BH
*A AJMP .TIMOUT
001DH
*
*A ORG .START
01 OOH
‘A CLR A
0101H
*A CLR C
0102H
*A MOV DTPR,#0000H
A MOV DTPR#
ERR 80:SYNTAX ERROR
‘ASM
0102H
‘A MOV DPTR,#0000H
0105H
‘A MOV .P1, #00H
0108H
*A MOV .P2, #00H
010BH
‘A MOV R0,#41H
010DH
*A MOV .TMOD, #20H
011 OH
‘A MOV .TOON, #00H
0113H
‘A MOV .TL1, #F4H
0116H
‘A MOV .TH1, #F4H
0119H
‘A MOV .IP, #08H
011CH
*A MOV .IE, #08H
011FH
‘A SETB .TR1
0121H
‘A AJMP .LOOP
0123H

Let’s display the program so far:
★
‘DASM .START TO .ENDSTART
.START
0100H=CLR A
0101H=CLR C
0102H=MOV DPTR,#0000H
0105H=MOV .P1,#00H
0108H=MOV .P2,#00H
010BH=MOV R0,#41H
010DH=MOV .TMOD,#20H
0110H=MOV .TCON,#OOH
0113H=MOV .TL1,#F4H
0116H=MOV .TH1,#F4H
0119H=MOV .IP,#08H
011CH=MOV .IE,#08H
011FH=SETB .TRI
.ENDSTART
0121H=AJMP .LOOP

;Note the abbreviation of ASM to A.

initialization routine.

;Clear accumulator.

;Clear carry flag.

;Clear data pointer.

;Oops, should be DPTR, not DTPR.

;Note pointer not changed.
;Re-enter instruction.

;Clear port Pl.

;Clear port P2.

;Character ‘A’.

;Auto-reload timer mode.

;Clear timer control.

;Initial timer value.

;Timer reload value.

;Timer 1 priority 1.

;Enable timer 1 interrupt.

;Start timer.

;Jump to main loop.

;Oops!

10

ICE-51 Session One

In scanning the instructions, we notice the error at location OUCH. Although the
instruction assembled without error, we wanted “#88H”, not “08H”. To correct this
error, type:

*A ORG OUCH
011CH
*A MOV .IE,#88H
011FH
★

Note that the display has picked up our user-defined labels .START (0100H) and
.ENDSTART (0121H). Continue entering the program:
★
*A ORG .LOOP
0130H
‘A ADD A, #01H
0132H
*A MOV .P2, A
0134H
‘A JNC .LOOP
0136H
*A INC DPTR
0137H
*A CLR C
0138H
*A SJMP .LOOP
013AH
*
*D .LOOP TO .ENDLOOP ;Note abbreviation of DASM to D.
.LOOP
0130H=ADD
0132F=MOV
0134H=JNC
0136H=INC
0137H=CLR
.ENDLOOP
0138H=SJMP

A,#01H
.P2,A
.LOOP
DPTR
C

.LOOP

*A ORG .TIMOUT
0140H
‘A CLR .TR1
0142H
*A PUSH .PSW
0144H
*A MOV .P1, RO
0146H
*A INC RO
0147H
‘A CJNE RO, #5BH, .MIDOUT
014AH
*A MOV RO, #41H
OUCH
*A POP .PSW
014EH
*A SETB .TR1
0150H
*A RETI
0151H
(Display continues on next page)

11

Session One ICE-51

‘D .TIMOUT TO .ENDOUT
.TIMOUT
0140H=CLR •TR1
0142H=PUSH .PSW
0144H=MOV .P1,R0
0146H=INC RO
0147H=CJNE RO,#5BH,.MIDOUT
014AH=MOV R0,#41H
.MIDOUT
014CH=POP .PSW
014EH=SETB .TR1
.ENDOUT
0150H=RETI

Now that the program has been entered, save it in a file for use in the next session:

‘SAVE :F1:DEMO.HEX 0 TO 150H
*

The SAVE saves the code in the partition 0 through 150H, and our symbol table.
This is the end of session one. To exit the emulator system and return to ISIS-II,
type:

‘EXIT

12

SESSION TWO

To begin, invoke the emulator as before:

In session two you learn how to load a program from disk, emulate in real time and
single step, and display the trace information collected during emulation. You will
encounter the basic forms of emulation and trace controls, emphasizing techniques
to maximize the amount of useful information captured in the buffer.

>:F1:ICE51
ISIS-II ICE-51 Vn.n
FOR COMMAND ENTRY ASSISTANCE, TYPE HELP

‘LIST :F1:NOV18A.LOG ;This LIST command preserves a
jrecord of the session.

Next, load the program entered in session one:

‘LOAD :F1:DEMO.HEX

Verify that the program and its symbol table have been loaded correctly:

‘DASM .START TO .ENDOUT
.START
0100H=CLR
0101H=CLR
0102H=MOV
0105H=MOV
0108H=MOV
010BH=MOV
010DH=MOV
0110H=MOV
0113H=MOV
0116H=MOV
0119H=MOV
011CH=MOV
011FH=SETB
.ENDSTART
0121H=AJMP
0123H=NOP
0124H=NOP
0125H=NOP
0126H=NOP
0127H=NOP
0128H=NOP
0129H=NOP
012AH=NOP
012BH=NOP
012CH=NOP
012DH=NOP
012EH=NOP
012FH=NOP
.LOOP
0130H=ADD
0132H=MOV
0134H=JNC

A
C
DPTR,#0000H
.P1,#00H
,P2,#00H
R0,#41H
,TMOD,#20H
.TCON,#OOH
.TL1,#F4H
,TH1,#F4H
,IP,#08H
.IE,#88H
.TR1

.LOOP

A,#01H
,P2,A
.LOOP

(Display continues on next page)

13

Session Two ICE-51

0136H=INC
0137H=CLR
.ENDLOOP
0138H=SJMP
013AH=NOP
013BH=NOP
013CH=NOP
013DH=NOP
013EH=NOP
013FH=NOP
.TIMOUT
0140H=CLR
0142H=PUSH
0144H=MOV
0146H = INC
0147H=CJNE
014AH=MOV
.MIDOUT
014CH=POP
014EH=SETB
.ENDOUT
0150H=RETI

DPTR
C

.LOOP

.TR1

.PSW

.P1,R0
RO
RO, #5BH,. MIDOUT
R0,#41H

.PSW

.TR1

Here are the initial values of the registers and displays we shall be using during
session two:

‘TM1
TM1=0000H

The high and low bytes of Timer 1 are both OOH.

*R
PC ACC B SP
0000H OOH OOH 07H

DPTR RO R1 PSW
0000H FFH 89H OOOOOOOOY

The REGISTERS display (abbreviation: R) shows the program counter PC at
0000H, the accumulator (ACC) at OOH, stack pointer at 07H, RO and R1 with
‘random’ values, and the program status word all zeros. Our program does not use
the multiply register (B), initialized at OOH.

*INT
EA SINT TIMER1 EXTI1 TIMERO EXTIO

IIPO 0 0 0 0 0
IIP1 0 0 0 0 0
IE 0 0 0 0 0 0
IP
*

0 0 0 0 0

The INTERRUPTS display (abbreviation: INT) shows the interrupt priority
register (IP) cleared (all interrupts are priority zero). The interrupt enable register
(IE) is likewise cleared; no interrupts are enabled. No interrupts are in progress;
IIPO is the interrupt-in-progress flag for priority zero interrupts, and IIP! refers to
priority one interrupts in progress. Note that the EA (Enable All interrupts) bit is
part of the IE register.

‘RBYTE .TCON
RBYTE 0088H=00H
★
‘RBYTE .TMOD
‘RBYTE 0089H=00H

14

ICE-51 Session Two

*RBY .P1
RBYTE 0090H=FFH
*
*RBY .P2
RBYTE OOAOH=FFH

Using the RBYTE commands (abbreviation: RBY), we display the initial values of
the timer control register, the timer mode register, port Pl, and port P2. The two
timer registers are initially OOH, and ports are initialized to FFH.

Here are the initial values of the emulation and trace controls we will be using in
session two:

‘GR
GR=FOREVER
BRO = RESET
BR1 = RESET

The “GO register” (GR) shows the breakpoints that are currently enabled to halt
real-time emulation. Initially, no breakpoints are enabled. Once begun, emulation
continues until we press the ESC key.

*TR
TR=FOREVER
QRO = RESET
QR1 = RESET

The “trace register” (TR) shows the factors that are enabled to control trace
collection during real-time emulation. Initially, no factors are enabled. Every cycle
of every instruction executed will be collected in the trace buffer.

‘BUFFERSIZE
BUFFERSIZE=OT
★
‘SECONDS
0 MICROSECONDS

The BUFFERSIZE register shows the number of valid frames of trace information
in the trace buffer (initially 0, maximum 1000T). The SECONDS register shows the
value of the real-time emulation timer, initially 0.

Now we’re ready to start emulating. The simplest emulation command is the GO
command:

‘GO :Press the ESC key to halt.
EMULATION BEGUN
EMULATION TERMINATED, PC^.TIMOUT
PROCESSING ABORTED

Let’s look at some results of emulation (the results you obtain will be different)

‘SECONDS
2,801,981 MICROSECONDS *
‘BUFFERSIZE ;The buffer has overflowed
3UFFERSIZE=1000r
*
*R
PC ACC B SP DPTR RO R1 PSW
0140H 04H OOH OSH 023EH 4OH C8H 00000001Y
(Display continues on next page)

15

Session Two ICE-51

*TM1
TM1=F4FBH

*INT
EA SINT TIMER1 EXTI1 TIM ERO EXTIO

IIPO 0 0 0 0 0
IIP1 0 1 0 0 0
IE i 0 1 0 0 0 A
IP 0 1 0 0 0

The INTERRUPTS display reminds us that the .TIMOUT interrupt in progress
flag may still be set. This will prevent any interrupts from happening if we start
over. One way to clear this flag, is:
‘RESET CHIP

‘INT
EA SINT TIMER1 EXTI1 TIMERO EXTIO

IIPO 0 0 0 0 0
IIP1 0 0 0 0 0
IE 0 0 0 0 0 0
IP 0 0 0 0 0

The simplest sequence is GO ... ESC. This sequence allows the buffer to overflow, so
that we retain the most recent 1000 frames. However, these may not be the frames
with the most interest to us. The remainder of this chapter explores ways to emulate
and trace, retaining the maximum amount of useful information.

First, we can restrict the number of instructions emulated, using a command like:

‘GO FROM .START TILL .LOOP
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP+0002H
*
‘BUF
BUFFERSIZE=100T
To see these frames, type:
*
‘PRINT ALL
FRAME
.START
0000:

LOC

01 OOH

OBJ

E4

INSTRUCTION P1

FFH

P2

FFH

P0

FFH

TOVF

0CLR A
0004: 0101H C3 CLR C FFH FFH FFH 0
0008: 0102H 900000 MOV DPTR,#0000H FFH FFH FFH 0
0016: 0105H 759000 MOV ,P1,#00H FFH FFH FFH 0
0024: 0108H 75A000 MOV .P2,#00H FFH FFH FFH 0
0032: 010BH 7841 MOV R0,#41H OOH FFH FFH 0
0036: 010DH 758920 MOV .TMOD,#20H OOH OOH FFH 0
0044: 011 OH 758800 MOV .TCON,#00H OOH OOH FFH 0
0052: 0113H 758BF4 MOV ,TL1,#F4H OOH OOH FFH 0
0060: 0116H 758DF4 MOV .TH1,#F4H OOH OOH FFH 0
0068: 0119H 75B808 MOV .IP,#08H OOH OOH FFH 0
0076: OUCH 75A888 MOV .IE,#88H OOH OOH FFH 0
0084: 011FH D28E SETB .TR1 OOH OOH FFH 0
.ENDSTART
0088: 0121H 2130 AJMP .LOOP OOH OOH FFH 0
.LOOP
0096:
*

0130H 2401 ADD A,#01H OOH OOH FFH 0

16

ICE-51 Session Two

In the display, the number at the left is the frame number; the buffer holds 1000
(decimal) frames. There are four frames for each cycle; all these instructions are
either one or two cycles. The columns marked LOG, OBJ, and INSTRUCTION are
the opcode address, hexadecimal value, and mnemonic disassembly of each
instruction. Pl, P2, and P0 are the ports. TOVF is the trace buffer overflow flag (0
for the first 1000 frames, 1 thereafter).

This example shows the effect of the FROM and TILL clauses in the GO command.
The clause FROM .START caused emulation to begin at 0100H. The clause TILL
.LOOP caused emulation to break after executing the instruction at 0130H. Since
that’s all we emulated, that’s all we traced.

Another way to keep trace from overflowing (and losing the first instructions
emulated) is to use a “trace trigger”:

‘TR=AFTER 0
*
*TR
TR=AFTER QR0
QR0 = LOCATION IS 0000H
QR1 = RESET

;Executing address 0 turns
;trace on for 1000 frames.
;Display the trace register.
;The trigger mode uses one of
;the two qualifier registers.

Now we’ll emulate for one millisecond, using TILL .ENDLOOP as the breakpoint:

*RESET CHIP ;Turn off the timer.
‘GO FROM 0 TILL .ENDLOOP
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP
★

Let’s see the most recent 25 instructions in the buffer:

‘NEWEST

(This command really isn’t necessary since the “display pointer” is already at
NEWEST, the most recent instruction, after emulation breaks.)

‘PRINT -25
FRAME LOG OBJ INSTRUCTION P1 P2 P0 TOVF
0843: 0132H F5A0 MOV ,P2,A 48H 0CH FFH 0
0847: 0134H 50FA
WARN CC:UNEXPECTED
.LOOP

JNC
TRACE

.LOOP 48H 0CH FFH 0

0855: 0130H 2424 ADD A,#24H 48H 0DH FFH 0
0863: 001BH
.TIMOUT

2140 AJMP .TIMOUT 48H 0DH FFH 0

0871: 0140H C28E CLR .TR1 48H 0DH FFH 0
0875: 0142H C0D0 PUSH .PSW 48H 0DH FFH 0
0883: 0144H 8890 MOV .P1,R0 48H 0DH FFH 0
0891: 0146H 08 INC R0 48H 0DH FFH 0
0895: 0147H
.MIDOUT

B85B02 CJNE R0,#5BH,.MIDOUT 49H 0DH FFH 0

0903: 014CH DODO POP .PSW 49H 0DH FFH 0
0911: 014EH
.ENDOUT

D28E SETB .TR1 49H 0DH FFH 0

0915: 0150H
.LOOP

32 RETI 49H 0DH FFH 0

0923: 0130H 2401 ADD A,#01H 49H 0DH FFH 0
0927: 0132H F5A0 MOV ,P2,A 49H 0DH FFH 0
(Display continues on next page)

17

Session Two ICE-51

0931: 0134H 50FA JNC .LOOP 49H 0DH FFH 0
WARN CC:UNEXPECTED
.LOOP
0939: 0130H 2424

TRACE

ADD A,#24H 49H 0EH FFH 0
0947: 001BH 2140 AJMP .TIMOUT 49H OEH FFH 0
.TIMOUT
0955: 0140H C28E CLR .TR1 49H 0EH FFH 0
0959: 0142H C0D0 PUSH .PSW 49H OEH FFH 0
0967: 0144H 8890 MOV ,P1,R0 49H OEH FFH 0
0975: 0146H 08 INC R0 49H OEH FFH 0 4
0979: 0147H B85B02 CJNE R0,#5BH,.MIDGUT 4AH OEH FFH 0
.MIDOUT
0987: OUCH DODO POP .PSW 4AH OEH FFH 0 «
0995: 014EH D28E SETB .TR1 4AH OEH FFH 0
.ENDOUT
0999: 0150H
*

32 RETI 4AH OEH FFH 0

ewe
The warning messages have no effect on the command operation. See
“Frame Mode Trace Displays” in chapter 6 of the Operating Instruc­
tions for an explanation.

Now let’s see if the first instruction (at address 0) is still in the buffer:

‘OLDEST
★
‘P 1
FRAME LOC OBJ INSTRUCTION P1 P2 P0 TOVF
.START
0007H 01 OOH E4 CLR A OOH OOH FFH 0
★

But it is not. The reason is that we were using a qualifier register match to trigger
trace on, and the match turns trace on starting with the next frame after the one
that matched. Since we lost this first frame of the instruction at 0, the instruction is
not displayed in the INSTRUCTION mode. Note that the first instruction in the
buffer starts at frame number 7, not frame 0.

Let’s try another trigger mode, this time to turn trace off at a point of interest, and
retain the 1000 frames prior to that point. First, however, we’d better turn off the
timer:

‘RESET CHIP ;Turn off timer.

Here’s the trigger mode:

‘TR = TILL .ENDOUT
*
‘TR
TR=TILL QR0
QR0 = LOCATION IS 0150H
QR1 = RESET

;Halt trace at the end of the
;first interrupt.

‘GO FROM 0
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP

;The system will remember our
breakpoint, .ENDLOOP.

18

ICE-51 Session Two

*GR
GR=TILL BRO
BRO = LOCATION IS 0138H
BR1 = RESET

;Here it is, just as a reminder.

*P ALL
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
0000: 0000H 2100 AJMP .START FFH FFH FFH 0
.START
0008: 01 OOH E4 CLR A FFH FFH FFH 0
0012: 0101H C3 CLR C FFH FFH FFH 0
0016: 0102H 900000 MOV DPTR,#0000H FFH FFH FFH 0
0024: 0105H 759000 MOV .P1,#00H FFH FFH FFH 0
0032: 0108H 75A000 MOV .P2,#00H FFH FFH FFH 0
0040: 010BH 7841 MOV R0,#41H OOH FFH FFH 0
0044: 010DH 758920 MOV .TMOD,#20H OOH OOH FFH 0
0052: 011 OH 758800 MOV .TCON,#00H OOH OOH FFH 0
0060: 0113H 758BF4 MOV .TL1.F4H OOH OOH FFH 0
0068: 0116H 758DF4 MOV ■TH1,#F4H OOH OOH FFH 0
0076: 0119H 75B808 MOV .IP,#08H OOH OOH FFH 0
0084: 011 CH 75A888 MOV .IE,#88H OOH OOH FFH 0
0092: 011FH D28E SETB .TR1 OOH OOH FFH 0
.ENDSTART
0096: 0121H 2130 AJMP .LOOP OOH OOH FFH 0
.LOOP
0104: 0130H 2401 ADD A,#01H OOH OOH FFH 0
0108: 0132H F5A0 MOV .P2,A OOH OOH FFH 0
0112: 0134H 50FA JNC .LOOP OOH OOH FFH 0
.LOOP
0120: 0130H 2401 ADD A,#01H OOH 01H FFH 0
0124: 0132H F5A0 MOV .P2,A OOH 01H FFH 0
0128: 0134H 50FA JNC .LOOP OOH 01H FFH 0
.LOOP
0136: 0130H 2401 ADD A,#01H OOH 02H FFH 0
0140: 0132H F5A0 MOV ,P2,A OOH 02H FFH 0
0144: 0134H 50FA JNC .LOOP OOH 02H FFH 0
WARN CC:UNEXPECTED TRACE
.LOOP
0152: 0130H 2424 ADD A,#24H OOH 03H FFH 0
0160: 001BH 2140 AJMP .TIMOUT OOH 03H FFH 0
.TIMOUT
0168: 0140H C28E CLR •TR1 OOH 03H FFH 0
0172: 0142H C0D0 PUSH .PSW OOH 03H FFH 0
0180: 0144H 8890 MOV .P1.R0 OOH 03H FFH 0
0188: 0146H 08 INC R0 OOH 03H FFH 0
0192: 0147H B85B02 CJNE R0,#5BH,.MIDOUT 41H 03H FFH 0
.MIDOUT
0200: 014CH DODO POP .PSW 41H 03H FFH 0
0208: 014EH D28E SETB .TR1 41H 03H FFH 0
.ENDOUT
0212: 0150H 32 RETI 41H 03H FFH 0

*INT
EA SINT TIMER1 IEXTI1 TIMER0 EXT IO

IIP0 0 0 0 0 0
IIP1 0 0 0 0 0
IE 1 0 1 0 0 0
IP
★

0 1 0 0 0

19

Session Two ICE-51

Do you have time for just one more trace magnification technique? This one allows
the buffer to overflow, but it maximizes the number of instructions in the buffer. An
instruction is displayed in INSTRUCTION mode if its first (LOC) frame is in the
buffer. To maximize the number of LOC frames, the command is:

*TR = VALUE IS XXH

*TR
TR=QR0
QRO = VALUE IS XXXXXXXXY
QR1 = RESET

♦RESET CHIP ;Turn off timer.
*GO FROM 0
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP
★
♦PRINT -10
FRAME LOC OBJ INSTRUCTION P1 P2 P0 TOVF
.TIMOUT
0978: 0140H C28E CLR .TR1 56H OOH FFH 1
0979: 0142H C0D0 PUSH .PSW 56H OOH FFH 1
0982: 0144H 8890 MOV .P1,R0 56H OOH FFH 1
0985: 0146H 08 INC R0 56H OOH FFH 1
0986: 0147H B85B02 CJNE R0,#5BH,MIDOUT 57H OOH FFH 1
.MIDOUT
0989: 014CH DODO POP .PSW 57H OOH FFH 1
0992: 014EH D28E SETB ,TR1 57H OOH FFH 1
.ENDOUT
0993: 0150H 32 RETI 57H OOH FFH 1
0996: 0137H C3 CLR C 57H OOH FFH 1
.ENDLOOP
0997: 0138H 80F6 SJMP .LOOP 57H OOH FFH 1

Let’s see that in FRAME mode:

♦TRACE = FRAMES
*
♦PRINT -10
FRAME TYPE ADDR DATA INSTRUCTION P1 P2 P0 TOVF
0990: VLO 014DH 57H OOH FFH 1
0991: VLO 014DH 57H OOH FFH 1
0992: LOC 014EH (D2H) (SETB - - -) 57H OOH FFH 1
.ENDOUT
0993: LOC 0150H (32H) (RETI) 57H OOH FFH 1
0994: VLO 0151H 57H OOH FFH 1
0995: VLO 0151H 57H OOH FFH 1
0996: LOC 0137H (C3H) (CLR C) 57H OOH FFH 1
.ENDLOOP
0997: LOC 0138H (80H) (SJMP - - *) 57H OOH FFH 1
0998: VLO 0139H 57H OOH FFH 1
0999: VLO 013AH 57H OOH FFH 1

(In the column labeled “TYPE”, LOC and OPC frames are the opcode address and
the opcode byte, respectively, and VLO and VAL frames are the operand address
and operand values, respectively.)

Each instruction occupies a maximum of three frames, compared to a maximum of
eight without this control. The buffer thus can contain between 300 and 1,000
instructions.

20

ICE-51 Session Two

To return to INSTRUCTION mode of display, type:

*TRACE=INSTRUCTION

In addition to real-time emulation (GO), you can execute your program one instruc­
tion at a time, breaking between each instruction. Let’s get back to the beginning of
the program:

‘RESET CHIP
*

‘PC
PC=0000H

Now, to execute one instruction, type:

‘STEP
EMULATION BEGUN
EMULATION TERMINATED, PC=.START

Here are some of the results of this emulation:

‘PRINT -1
FRAME LOO OBJ
0000: 0000H 2100

INSTRUCTION P1
FFH

P2
FFH

P0
FFH

TOVF
0AJMP .START

‘SECONDS
0 MICROSECONDS

‘REGISTERS
PC ACC B SP
01 OOH OOH OOH 07H

DPTR
0000H

R0 R1
OOH C8H

PSW
00000000Y

Trace is always collected during single step (you can’t turn it on and off); the emula­
tion timer (SECONDS) is inoperative. The REGISTERS display shows every
register still reset except the program counter, since the instruction did not affect
these registers.

We’ll present more examples of STEP in the next session. This is the end of session
two:

‘EXIT

21/22

SESSION THREE

In session three you will learn how to create compound commands and macro
command blocks to assist in program development and to automate system testing.

NOTE
Errors used in compound commands and macro definitions can be
corrected by using the BACKSPACE key as described in the Introduc­
tion to this manual, but only until the RETURN key for a given line has
been pressed. After a line has been terminated, you cannot correct any
errors in that line. A macro definition can be saved on a file, as
described in session four, and edited off-line. During session three,
however, if you find an error in a previous line while you are within a
compound command or macro definition, you should press the ESC key
to abort the command entry and start over.

To begin, invoke the emulator as before:

>:F1:ICE51
ISIS-II ICE-51 Vn.n
FOR COMMAND ENTRY ASSISTANCE, TYPE HELP

‘LIST :F1:NOV19A.LOG ;Record the session, if desired.

‘LOAD :F1:DEMO.HEX ;Load sample program

To introduce the concept of compound commands, enter the following command
sequence:

‘STEP
EMULATION BEGUN
EMULATION TERMINATED, PC=.START
‘PRINT -1
FRAME LOC OBJ INSTRUCTION PI P2 P0 TOVF
0000: 0000H 2100 AJMP .START FFH FFH FFH 0
‘REGISTERS
PC ACC B SP DPTR R0 R1 PSW
01 OOH OOH OOH 07H 0000H S1H OOH 00000000Y

This sequence of STEP, PRINT, REGISTERS can be repeated indefinitely by
entering the following compound command:

‘REPEAT ;REPEAT starts the compound command
sequence.

.‘STEP

.‘PRINT -1

.‘REGISTERS

;The period (.) before the prompt
;shows that we are within the compound
jcommand. End each inner line with a
RETURN.

.‘END ;END terminates the block and starts
execution.

EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0001H

(Display continues on next page)

23

Session Three ICE-51

PROCESSING ABORTED

FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
.START
0008: 01 OOH E4 CLR A FFH FFH FFH 0
PC ACC B SP DPTR RO R1 PSW
0101H OOH OOH 07H 0000H 51H OOH 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0002H
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
0012: 0101H C3 CLR C FFH FFH FFH 0
PC ACC B SP DPTR R0 R1 PSW
0102H OOH OOH 07H 0000H 51H OOH 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0005H
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
0016: 0102H 900000 MOV DPTR,#0000H FFH FFH FFH 0
PC ACC B SP DPTR R0 R1 PSW
0105H OOH OOH 07H 0000H 51H 00H 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0008H
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
0024: 0105H 759000 MOV .P,#00H FFH FFH FFH 0
PC ACC B SP DPTR R0 R1 PSW
0108H OOH OOH 07H 0000H 51H OOH 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+000BH
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
0032: 0108H 75A000 MOV .P2,#00H OOH FFH FFH 0
PC ACC B SP DPTR R0 R1 PSW
010BH OOH OOH 07H 0000H 51H OOH 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+000DH
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
0040: 010BH 7841 MOV R0,#41H OOH OOH FFH 0
PC ACC B SP DPTR RO R1 PSW
010DH OOH OOH 07H 0000H 41H OOH 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0010H
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
0044: 010DH 758920 MOV ,TMOD,#20H OOH OOH FFH 0
PC ACC B SP DPTR RO R1 PSW

Because this repeat loop does not terminate automatically, we press the ESC key to
abort processing.

To make the loop terminate on condition, we can use an UNTIL clause:

‘RESET CHIP
‘REPEAT
.‘STEP
.‘UNTIL PC
.‘END
EMULATION
EMULATION
EMULATION
EMULATION
EMULATION
EMULATION
EMULATION

= .TIMOUT

BEGUN
TERMINATED,
BEGUN
TERMINATED,
BEGUN
TERMINATED,
BEGUN

;Start of command block.
;Execute one instruction.
;Check the program counter.
;End of loop.

PC=.START

PC=.START+0001H

PC=.START+0002H

24

ICE-51 Session Three

EMULATION TERMINATED, PC=.START+0005H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0008H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+000BH
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+000DH
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0010H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0013H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0016H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0019H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+001CH
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+001FH
EMULATION BEGUN
EMULATION TERMINATED, PC=.ENDSTART
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP+0002H
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP+0004H
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP
EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP+OOQ2H
EMULATION BEGUN
EMULATION TERMINATED, PC=001BH
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT

Another way to terminate a loop automatically is to use COUNT instead of
REPEAT:

‘RESET CHIP

‘COUNT 5 ;Loop to execute five steps.
.‘STEP
.‘END
EMULATION BEGUN
EMULATION TERMINATED, PC=.START
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0001H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0002H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0005H
EMULATION BEGUN
EMULATION TERMINATED, PC=.START+0008H

We’ll see more of REPEAT and COUNT later in the session. A third kind of com­
pound command, the IF command, produces conditional execution of commands.
To show how the IF command works, we’ll introduce another new command, the
WRITE command:

25

Session Three ICE-51

‘WRITE 'HOW ABOUT THAT?'
HOW ABOUT THAT?
★

WRITE allows you to create console displays. Now for the IF command:

‘IF PC > 0 THEN
.‘WRITE 'I AM SOMEWHERE'
.‘ELSE
.‘WRITE 'I AM NOWHERE'
.‘END
I AM SOMEWHERE

Instead of “PC > 0” you can use any expression. When the expression after IF is
“true” (i.e., when the result has a 1 in the least significant bit), the commands after
the IF are executed. When the IF expression is “false”, the commands after the
ELSE are executed instead.

REPEAT, COUNT, and IF are the basic compound commands. Now we are ready
to create some command macros and “automate” some of our debugging tasks.
Here's the first one:

‘DEFINE :S1
.‘REPEAT
.‘STEP
.‘PRINT -1
.‘REGISTERS
.‘END
.‘EM

;This macro is named :S1.
;The period shows we are “within” the
;macro.

;END terminates the REPEAT loop.
;EM terminates the macro definition.

Note that the macro does not begin to execute immediately. To have the macro
execute, we must call it by name. Let’s use it to look at the beginning of the
TIMOUT routine:

‘RESET CHIP
*GO FROM .START TILL .TIMER1
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT
*
*:S1 ;This is the macro call.

EMULATION TERMINATED, PC=.TIMOUT+0002H
EMULATION BEGUN

FRAME LOC OBJ INSTRUCTION P1 P2 P0 TOVF
.TIMOUT
0160: 0140H C28E CLR .TR1 OOH 03H FFH 0
PC ACC B SP DPTR RO R1 PSW
0142H 03H OOH 09H 0000H 41H A1H 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0Q04H
FRAME LOC OBJ INSTRUCTION P1 P2 P0 TOVF
0164: 0142H C0D0 PUSH .PSW OOH 03H FFH 0
PC ACC B SP DPTR RO R1 PSW
0144H 03H OOH OAH 0000H 41H Hi 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0006H
FRAME LOC OBJ INSTRUCTION P1 P2 P0 TOVF
0172: 0144H 8890 MOV .P1,R0 OOH 03H FFH 0

26

ICE-51 Session Three

PC ACC B SP DPTR RO R1 PSW
0146H 03H OOH OAH OOOOH 41H A1H 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0007H
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
0180: 0146H 08 INC RO 41H 03H FFH 0
PC ACC B SP DPTR RO R1 PSW
0147H 03H OOH OAH OOOOH 42H A1H 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.MIDOUT
FRAME LOC OBJ INSTRUCTION
PROCESSING ABORTED

When we call the :STEP macro, the sequence of STEP, PRINT, REGISTERS begins
to repeat indefinitely. We press ESC to halt the loop. Here’s another macro; this one
is based on the COUNT command:
*DEF :S5
.‘COUNT 5
.‘STEP
.‘REGISTERS
.‘END
.‘PRINT -5
.‘EM

;This macro is named :S5
;Begins COUNT loop (five times).
;Execute one instruction.
;Display registers after each one.
;END of the COUNT loop.
;Display five instructions from trace.
;EM ends the macro definition.

Let’s look at TIMOUT again:

‘RESET CHIP
‘GO FROM .START TILL .TIMER1
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT
*
*:S10
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMEOUT+0002H
PC ACC B SP DPTR RO R1 PSW
0142H 03H OOH 09H OOOOH 41H A1H 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0004H
PC ACC B SP DPTR RO R1 PSW
0144H 03H OOH OAH OOOOH 41H A1H 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0006H
PC ACC B SP DPTR RO R1 PSW
0146H 03H OOH OAH OOOOH 41H A1H 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0007H
PC ACC B SP DPTR RO R1 PSW
0147H 03H OOH OAH OOOOH 42H A1H 00000000Y
EMULATION BEGUN
EMULATION TERMINATED, PC=.MIDOUT
PC ACC B SP DPTR RO R1 PSW
014CH 03H OOH OAH OOOOH 42H A1H 10000000Y
FRAME LOC OBJ INSTRUCTION P1 P2 PO TOVF
.TIMOUT
0160: 0140H C28E CLR .TR1 OOH 03H FFH 0
0164: 0142H C0D0 PUSH .PSW OOH 03H FFH 0
0172: 0144H 8890 MOV ,P1,R0 OOH 03H FFH 0
0180: 0146H 08 INC RO 41H 03H FFH 0
0184: 0147H B85B02 CJNE RO,#5BH,.MIDOUT 41H 03H FFH 0

27

Session Three ICE-51

Macro :S5 works all right, but suppose we want to execute some number of steps
other than five? Rather than creating a separate macro for each desired number of
steps, the next macro uses a parameter in the definition so that we can change the
number each time we call the macro:

‘DEFINE :S
.‘COUNT %0
.‘WRITE ' '
.‘STEP
.‘WRITE ' '
.‘REGISTERS
.‘END
.‘WRITE ’ '
.‘PRINT -%0

.‘EM

;This macro is named :S.
;“%0” is the parameter.
; WRITE a blank (puts a blank line in the
jdisplay.)

;END terminates the COUNT loop.

;PRINT the same number that we
;COUNT.
;EM terminates the macro definition.

In order to see more clearly how the parameter operates, we turn on the display of
the macro “expansion”:

‘ENABLE EXPANSION
*

One more time, let’s look at TIMOUT:

‘RESET CHIP
‘GO FROM .START TILL .TIMER1
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT

*:S 6 ;We call the macro with parameter = 6.
.‘COUNT 6 ;The 6 is substituted wherever “%0”
..‘WRITE ' ' jappears in the definition.
..‘STEP ;The periods show that we’re within
..‘WRITE ' ' ;two blocks (COUNT inside a macro
..‘REGISTERS definition).
..‘END ;END of count loop.
.‘WRITE ' ' ;
.‘PRINT -6 ;Parameter 6 goes here too.
.‘EM ;End of macro expansion, execution

; begins.
EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0002H

PC ACC B SP DPTR RO R1 PSW
0142H 03H OOH 09H 0000H 41H MB OOOOOOOOY

EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0004H

PC ACC B SP DPTR RO R1 PSW
0144H 03H OOH OAH 0000H 41H OOH OOOOOOOOY

EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0006H

PC ACC B SP DPTR RO R1 PSW
0146H 03H OOH OAH 0000H 41H |$fi OOOOOOOOY

EMULATION BEGUN
EMULATION TERMINATED, PC=.TIMOUT+0007H

PC ACC B SP DPTR RO R1 PSW
0147H 03H OOH OAH 0000H 42H OOOOOOOOY

(Display continues on next page.)

28

ICE-51 Session Three

EMULATION BEGUN
EMULATION TERMINATED, PC=.MIDOUT

PC ACC B SP DPTR RO R1 PSW
014CH 03H OOH OAH 0000H 42H OOH 10000000Y

EMULATION BEGUN
EMULATION TERMINATED, PC=.MIDOUT+0002H

PC ACC B SP DPTR R0 R1 PSW
014EH 03H OOH 09H OOOOH 42H m 00000000Y

FRAME LOG OBJ INSTRUCTION P1 P2 P0 TOVF
.TIMOUT
0160: 0140H C28E CLR .TR1 OOH 03H FFH 0
0164: 0142H C0D0 PUSH .PSW OOH 03H FFH 0
0172: 0144H 8890 MOV .P1,R0 OOH 03H FFH 0
0180: 0146H 08 INC R0 41H 03H FFH 0
0184: 0147H B85B02 CJNE R0, #5BH,. MIDOUT 41H 03H FFH 0
.MIDOUT
0192: 014CH DODO POP .PSW 41H 03H FFH 0

With macro expansion displayed on the screen, we can see how the parameter “6”
we gave in the macro call is substituted wherever we used “%0” in the macro
definition. After the substitutions have been made, the resulting commands are
executed. The only command we entered was “:S 6”, and the system does the rest.
You can leave macro expansion enabled, or you can turn it off with:

‘DISABLE EXPANSION

To see the names of the macros we have defined so far, type:

‘DIR
S1
S5
S

To review the definition of a macro (say, :S5), type:

‘MACRO :S5
DEFINE :S5
COUNT 5
STEP
REGISTERS
END
PRINT -5
EM

To remove a macro definition, type:

‘REMOVE :S1

To remove all macro definitions, type:

‘REMOVE MACROS

These basic forms of macros are all we need to create our own “design aids” and
diagnostic tests. Let’s continue with a macro to initialize the emulator:

29

Session Three ICE-51

‘DEFINE :INIT
.‘RESET CHIP
.‘RESET ICE
.‘REMOVE SYMBOLS
.‘LOAD :F1:DEMO.HEX
,‘DBYTE 0 TO 7FH = 0
.‘WRITE 'ALL SET & READY TO GO'
.‘EM
★
*:INIT
ALL SET & READY TO GO

Any time we want to start over, we can call :INIT.

This next macro uses a “trace reference” to locate a frame in the trace buffer that
contains a value of interest to us. Here’s how a trace reference to port Pl works.
Suppose the buffer is at OLDEST, so that the PRINT command displays frame
0000:
‘STEP FROM 0 ;Put one instruction in buffer.
*
‘OLDEST

‘PRINT 1
FRAME LOG OBJ
0000: 0000H 2100

INSTRUCTION
AJMP .START

P1 P2 P0 TOVF
FFH FFH FFH 0

Now, to reference the value of Pl from this frame, we use a trace reference, FRAME
Pl. This reference is not a command, however, so we need to use EVALUATE to see
the value:

‘EVALUATE FRAME P1
1111111111111111Y 177777Q 65535T FFH ' ' OOFFH

Here’s the macro to look through the buffer for a value we seek (such as Pl = 41H);
the parameter %0 lets us specify what we’re looking for each time we call the macro:

‘DEFINE :FIND
.‘OLDEST
.‘TRACE = FRAMES
.‘COUNT BUFFERSIZE
.‘MOVE 1
.‘IF FRAME %0
.‘PRINT 1
,‘ENDIF
.‘UNTIL FRAME %0
.‘ENDCOUNT
.‘TRACE = INSTRUCTIONS
.‘EM

Before we run this macro, let’s put something in the buffer:

*TR = AFTER 0
‘GO FROM 0 TILL .ENDLOOP

EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP

Now let’s find the frame that records when Pl first equals 41H (the character ‘A’):

30

ICE-51 Session Three

*:FIND P1 = 41H
FRAME TYPE ADDR DATA INSTRUCTION P1 P2 PO TOVF
0188: OPC 08H (INC RO) 41H 03H FFH 0

(This macro takes several seconds to execute.)

Now we can combine these two macros to simulate an automated test. This final
macro, :TEST, shows how one macro can call another.

‘DEFINE TEST
.*:INIT
.‘WRITE ' '
.*TR = AFTER 0
.‘GO FROM 0 TILL .ENDLOOP
.‘WRITE ' '
.*:FIND P1=41H
.‘WRITE ' '
,*:FIND P1=42H
.‘WRITE ' '
.‘WRITE 'END OF TEST'
.‘WRITE ' '
.‘EM

;Calls :INIT.

;Emulate and trace.

;Find ‘A’.

;Find ‘B’.

;That’s the test.

To see the names of the macros you have defined, type:

‘DIR
INIT
FIND
TEST

The earlier macros (:S1, :S5, and :S) were removed, so they are no longer in the table.

We are going to save these macro definitions in a file for use in the last session.
Type:

PUT :F1 TEST.MAC MACROS

Instead of “TEST.MAC”, you can use any filename you wish.

This is the end of session three.

‘EXIT

31/32

SESSION FOUR

In session four you will learn how to include a file with macro definitions, and run
the test created in session three. To begin, invoke the emulator as before:

>:F1:ICE51
ISIS-II ICE-51 Vn.n
FOR COMMAND ENTRY ASSISTANCE, TYPE HELP

‘LIST :F1:NOV24A.LOG ;If desired to record the session.

First we read in the macro definitions from the file TEST.MAC that we created in
session three.

‘INCLUDE :F1:TEST.MAC
‘DEFINE :INIT
.‘RESET CHIP
.‘RESET ICE
.‘REMOVE SYMBOLS
.‘LOAD :F1:DEMO.HEX
.‘DBYTE 0 TO 7FH = 0
.‘WRITE 'ALL SET & READY TO GO'
.‘EM
‘DEFINE FIND
.‘OLDEST
.‘TRACE = FRAMES
.‘COUNT BUFFERSIZE
.‘MOVE 1
.‘IF FRAME %0
.‘PRINT 1
.‘ENDIF
.‘UNTIL FRAME %0
.‘ENDCOUNT
.‘TRACE = INSTRUCTIONS
.‘EM
‘DEFINE .-TEST
,‘:INIT
.‘WRITE ' '
,‘TR = AFTER 0
.‘GO FROM 0 TILL .ENDLOOP
.‘WRITE ' '
.‘FIND P1=41H
.‘WRITE ' '
.‘FIND P1=42H
.‘WRITE ' '
.‘WRITE 'END OF TEST'
.‘WRITE ' '
.‘EM

;This is all you type.
;The system reads in
;the macro definitions.

33

Session Three ICE-51

Now we ready to run the test. Type:

*:TEST
ALL SET & READY TO GO

EMULATION BEGUN
EMULATION TERMINATED, PC=.LOOP

FRAME
0188:

TYPE
OPC

ADDR DATA
08H

INSTRUCTION
(INC RO)

P1
41H

P2
03H

P0
FFH

TOVF
0

FRAME TYPE ADDR DATA INSTRUCTION P1 P2 P0 TOVF
0272: OPC 08H (INC RO) 42H 04H FFH 0

END OF TEST

With the “successful” run of our automated test, we conclude session four. You may
calculate the character hold times for the tests, if you wish.

‘EXIT

We hope you have enjoyed getting started with the ICE-51 emulator.

34

WE’D LIKE YOUR COMMENTS . .

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Parkway
Hillsboro, Oregon 97123

M.C.S.0. Technical Publications

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

ft

intel
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

