iSBC 215™ WINCHESTER DISK CONTROLLER HARDWARE REFERENCE MANUAL

Order Number: 121593-002

SBC-215B-1 uses 144580-001 in U87 and 144581-001 in U88

> iSBC-215B-1 is special version for MDX-750 Winchester Peripheral for MDS Series-II/III. Also,

SYP86384AA, 144856.U87, 144587.U88

REVISION HISTORY	PRINT DATE
Original Issue	1/81
Manual updated for minor corrections.	9/81
	Original Issue

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

BXP	Intelevision	Micromap
CREDIT	Intellec	Multibus
i	iRMX	Multimodule
ICE	iSBC	Plug A-Bubble
iCS	iSBX	PROMPT
im	Library Manager	Promware
INSITE	MCS	RMX/80
Intel	Megachassis	System 2000
Intel	Micromainframe	ŬРІ
50		(Scope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

PREFACE

This manual provides information regarding the installation, programming, operation, and servicing of the iSBC 215™ Winchester Disk Controller.

Related documents include:

- The 8086 Family User's Manual, Order No. 9800722
- Intel MULTIBUS™ Specifications, Order No. 9800683
- Intel 8080/8085 Assembly Language Reference Manual, Order No. 9800301
- MCS-86™ MACRO Assembly Language Reference Manual, Order No. 900640
- MCS-86/85™ Family User's Manual, Order No. 121506
- 8089 Assembler User's Guide, Order No. 9800938
- *iSBX*TM Bus Specification, Order No. 142686
- iSBX 218[™] Flexible Disk Controller Hardware Reference Manual, Order No. 121583

CONTENTS

CHAPTER 1		-
GENERAL INFORMATION	Page	Page
Introduction	1-1	Execute iSBX I/O Program 3-16
Description	1-2	I/O Transfer Through iSBX Bus 3-16
Specifications	1-3	Buffer I/O 3-17
		Diagnostic 3-18
CHAPTER 2		Posting Status 3-18
PREPARATION FOR USE		Transfer Error Status 3-19
Introduction	2-1	Interrupts 3-20
Unpacking and Inspection	2-1	Controlling Data Transfer
Board Installation Considerations	2-1	Through the iSBX Bus 3-20
Power Requirement	2-2	I/O Transfers Using iSBC 215
Cooling Requirement		Controller Resident Firmware 3-20
Multibus Connector		Data Transfer Using User Written
Switch/Jumper Configurations		I/O Transfer Programs 3-20
Wake-Up Address Selection		Example Controller I/O Program 3-23
Wake-Up I/O Port Address Selection		Enample Convious 17 C 1 regram (VIIII) C 10
System Data Bus Selection		CHAPTER 4
Interrupt Priority Level		PRINCIPLES OF OPERATION
Any Request Selection		Introduction 4-1
Common Bus Request		Schematic Interpretation 4-1
Winchester Drive Interface		Functional Overview 4-2
-5-Volt Selection		Detailed Functional Description
(8" Shugart/Quantum Drives Only)	2.8	Controller to Host Communications 4-6
Cabling Requirements		Multibus Interface
Drive Installation		8089 I/O Processor (IOP)
iSBX Multimodule Interface		Clock Circuit
iSBX 218 Board Installation		Bus Arbiter 4-7
Power Up/Down Considerations		Bus Controller Logic 4-8
Diagnostic Check		Multibus Interface
Diagnostic Oneck		Data Transfer Logic 4-8
CHAPTER 3		Controller Initialization 4-8
PROGRAMMING INFORMATIO	N	Wake-Up Address Comparator 4-9
Introduction		Controller Reset and Clear
Programming Options		Establishing A Link With
Disk Organization		I/O Communications Blocks 4-10
Track Sectoring Format		Interrupt Priority Logic
Controller I/O Communications Blocks		Local Memory Map 4-11
Host CPU-Controller-Disk Drive Interaction		ROM 4-11
Wake-Up I/O Port		RAM 4-11
Wake-Up Block		Local Memory Mapped I/O Ports
Channel Control Block		and iSBX I/O Ports 4-11
Controller Invocation Block		Controller to Disk Drive Communications 4-12
I/O Parameter Block		Controller to Winchester
Typical Controller Operations		Disk Drive Interface 4-12
Initializing the Controller		Control Cable Signals 4-13
		Read/Write Cable Signals
Track Formatting		Controller to iSBX Connector Interface 4-14
Data Transfer and Verification		Controller to Disk Drive Interface Timing 4-15
Read Sector ID		DMA Mode
Read Data	· · · · · · · · · · · · · · ·	
Read Data Into Controller Buffer and V		Disk Formatting 4-16 Write Data Transfer 4-18
Write Data		Read Data Transfers
Write Data from Controller Buffer to Di		SER/DES Logic 4-20
Initiate Track Seek		Sync Byte Comparator Logic
IIIIIIaic Hack Deek	9-19	bytic byte Comparator Logic 4-21

CONTENTS (Continued)

Page	Page
32-Bit ID Comparator Logic4-21ECC Generator Logic4-21Status Register Logic4-21Line Drivers and Receivers4-22	Service and Repair Assistance5-1Self Diagnostic5-1Replaceable Components5-1
CHAPTER 5 SERVICE INFORMATION Introduction	APPENDIX A HANDSHAKE SEQUENCES AND EXAMPLE HOST PROCESSOR DISK CONTROL PROGRAM

TABLES

Table	Title	Page	Table	Title	Page
1-1.	Board Specifications		3-4.	iSBC 215 Controller RAM	
1-2.	Winchester Disk Drive			Available for Program and	
	Characteristics	1-5		Parameter Storage	3-22
2-1.	Multibus Connector P1		3-5.	8089 Handshake and Control Lines	
	Pin Assignment	2-2		on the iSBX Bus	3-22
2-2.	iSBC 215 Controller/Multibus		3-6.	Control and Status Lines	
	Interface P1 Signal Descriptions	2-3		on the iSBX Interface	3-23
2-3.	iSBC 215 Controller/Multibus		3-7.	Jumper Connections Allowing Optic	on
	Interface Signal Characteristics	2-6		Lines to be Driven	3-23
2-4.	Configuration Jumpers and Switches	2-7	4-1.	8089 Status Line Decodes	4-8
2-5.	Interrupt Priority Level Selection	2-7	4-2.	Host Wake-Up Commands	4-9
2-6.	Winchester Drive		4-3.	Local I/O Ports	4-12
	Manufacturer Selection	2-8	4-4.	iSBX Bus I/O Port Addresses	4-12
2-7.	-5-Volt Selection	2-9	4-5.	Control Cable Line Functions	4-13
2-8.	J3 and J4 Pin Assignments	. 2-22	4-6.	Read/Write Cable Line Functions .	4-14
2-9.	iSBX Bus Control Jumper Pins	. 2-24	4-7.	iSBX Bus Mnemonics-to-Controller	
3-1.	Error Status Buffer	. 3-20		Line Name	4-15
3-2.	Bit Functions in Hard and		4-8.	Status Register Bits	4-22
	Soft Error Bytes	. 3-21	5-1.	Code for Manufacturers	
3-3.	iSBX Bus I/O Port Addresses	. 3-22	5-2.	Controller Board Electrical Parts Li	

ILLUSTRATIONS

Figure	e Title	Page	Figur	e Title	Page
1-1.	Typical Multiple Drive System		3-12.	Read Data	
	Using Winchester Disk Drives	1-1	3-13.	Read Data into Controller Buffer	
1-2.	Typical Multiple Drive System			and Verify	3-14
	Using Flexible Disk Drives and		3-14.	Write Data	3-15
	iSBX 218 Flexible Disk Controller	1-2	3-15.	Write Data from Controller Buffe	r
1-3.	Automatic Error Checking			to Disk	3-15
	and Correction,	1-3	3-16.	Initiate Track Seek	3-16
2-1.	Serial Priority Resolution		3-17.	Execute iSBX Interface I/O Prog	ram . 3-16
2-2.	Master Command Access Timing	2-4	3-18.	I/O Transfers Through iSBX Into	erface 3-17
2-3.	8" Shugart/Quantum Drive Interconne	cting	3-19.	Buffer I/O	3-18
	Cable Requirements		3-20.	Diagnostic	3-19
2-4.	Fujitsu 2300/Memorex/14" Shugart Dr		3-21.	Transfer Error Status	3-19
	Interconnecting Cable Requirements	2-12	3-22.	Execution of iSBX Bus	
2-5.	Pertec Drive Interconnecting			I/O Program from RAM	3-23
	Cable Requirements	. 2-14	4-1.	Logic Conventions	4-1
2-6.	Priam Drive Interconnecting		4-2.	Simplified Block Diagram	
	Cable Requirements	. 2-16		of iSBC 215 Controller	4-2
2-7.	5¼" RMS Drive Interconnecting		4-3.	iSBC 215 Controller Functional	
	Cable Requirements	. 2-18		Block Diagram	4-3
2-8.	Control Data Corporation Drive Inter-		4-4.	Bus Arbitor and Bus Controller I	Logic 4-7
	connecting Cable Requirements	. 2-19	4-5.	Data Transmission Between Mult	tibus
2-9.	Control Data Corporation Drive Inter-			Interface and Controller Data	
	connecting Cable Requirements	. 2-20		Transceivers	4-9
2-10.	Controller to Drive Interfacing	. 2-21	4-6.	Wake-Up Address Logic	4-10
2-11.	Installing the iSBX 218 Board on		4-7.	Address Fetches in	
	the iSBC 215 Controller Board	. 2-23		Initialization Sequence	4-11
3-1.	Disk Drive Organization and		4-8.	Local Memory Map	4-11
	Terminology	3-1	4-9.	Timing Diagram for RDY Signal	4-16
3-2.	Sector Data Format	3-2	4-10.	Timing Diagram for Disk	
3-3.	Host CPU-Disk Controller-			Formatting Sequence	4-17
	Interaction Through the		4-11.	Timing Diagram for Write Data	
	I/O Communications Block	3-3	4-12.	Timing Diagram for	
3-4.	Wake-Up Block	3-5		Read Data Transfer	4-20
3-5.	Channel Control Block	3-5	5-1.	iSBC 215 Controller Jumpers	
3-6.	Controller Invocation Block	3-6		and Switch Locations	5-5
3-7.	I/O Parameter Block Description	3-7	5-2.	iSBC 215 Winchester Disk	
3-8.	I/O Communications Blocks Linking			Controller Parts Location Diag	ram 5-7
3-9.	Track Formatting	3-11	5-2.	iSBC 215 Winchester Disk	
3-10.	Alternate Track Formatting	. 3-12		Controller Schematic Diagram	5-9
3-11.	Read Sector ID	. 3-13			

CHAPTER 1 GENERAL INFORMATION

1-1. INTRODUCTION

The Intel iSBC 215™ Winchester Disk Controller allows up to four Winchester technology disk drives (see Table 1-2 for disk specifications) to be interfaced with any Intel MultibusTM interface compatible computer system. It supports drives that use either open loop head positioning (Shugart SA600, SA1000 and SA4000, Quantum Q2000 or Fujitsu 2300, RMS 500, CDC Finch or Memorex 101) or closed loop head positioning (Pertec D8000 or Priam 3350 and 3450). It's design is based on the Intel 8089 I/O Processor, which allows Direct Memory Access (DMA) transfers, error detection and correction, and data management. The controller can operate in a multiprocessor environment and is fully compatible with all Intel 8-bit and 16-bit computers. The number of tracks per surface, sectors per track, bytes per sector and alternate tracks per surface are software selectable for each drive unit. (In addition, the Memorex, 14" Shugart and Priam drives require that the sector size be set internally as shown in Chapter 2.) The single board assembly also features automatic error recovery and retry, transparent data error correction and multiple sector transfers. Seek operations on multiple drives can be overlapped with a read/write operation on another drive. The iSBC 215 controller is fully compatible with Intel 8086 CPU 20-bit addressing.

A typical multiple drive system using four Winchester disk drives and the iSBC 215 controller is shown in Figure 1-1. The controller also provides two Intel iSBX™ Bus connectors, J3 and J4, which allow other storage devices such as floppy disk drives or magnetic tape cartridge drives to be interfaced with Multibus interface compatible systems. The Intel iSBX 218™ Flexible Disk Controller, for example, attaches to one iSBX™ Connector, J4, allowing the controller to be interfaced with up to four double-density floppy disk drives. Figure 1-2 shows a typical multiple drive system using four 5½″ or 8″ floppy disk drives, the iSBC

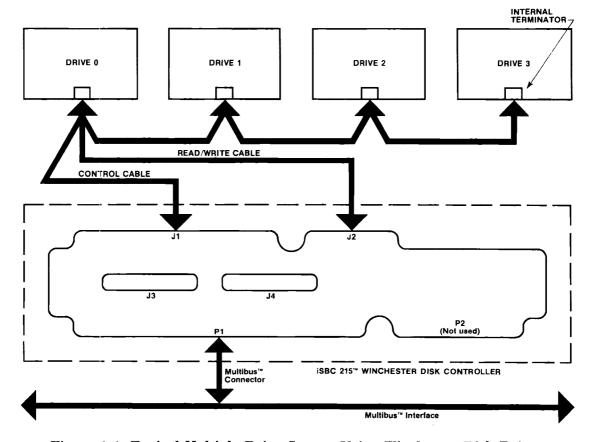


Figure 1-1. Typical Multiple Drive System Using Winchester Disk Drives

General Information iSBC 215

215 controller and the iSBX 218 Flexible Disk Controller. It should be noted that the controller can interface concurrently with Winchester disk drives through connectors J1 and J2, and with other storage devices through the iSBX $^{\text{TM}}$ Connectors, J3 and J4.

1-2. DESCRIPTION

The iSBC 215 Winchester Disk Controller is a single board assembly. It may reside in any Intel backplane or in a custom-designed configuration that is physically and electrically compatible with the Intel Multibus interface.

The host Central Processing Unit (CPU) communicates with the Disk controller via four blocks of information in host memory. Once the controller is initialized, a CPU I/O write to the controller Wake-Up Address initiates disk activities. The controller accesses the four blocks in the host memory to determine the specific operation to be performed, fetches the required parameters and completes the specified operation without further CPU intervention.

The controller board generates all drive, control and data signals and receives the drive status and data signals required to perform the entire disk drive interfacing task. During a disk read operation, the controller accepts serial data from the disk, interprets synchronizing bit patterns, verifies validity of the data, performs a serial-to-parallel data conversion, and passes parallel data or error condition indications to host memory. During a disk write operation, the controller performs parallel-to-serial data conversion and transmits serial write data and the write clock to the drive. As part of the disk format and write function, the controller appends an Error Checking Code (ECC) at the end of each ID and data field. Using this ECC, the controller hardware can detect errors of up to 32 bits in length; controller firmware can correct errors of up to 11 bits in length (see Figure 1-3).

The Intel 8089 I/O Processor provides optimum performance with minimum CPU overhead. An Intel 8288 Bus Controller and 8289 Bus Arbiter control access to the Multibus interface. Intel 2732 EPROMs provide on-board storage of the controller I/O control program and a resident diagnostic exerciser, and 2114 Static RAMs provide local memory for data buffering and for temporary storage of read/write parameters.

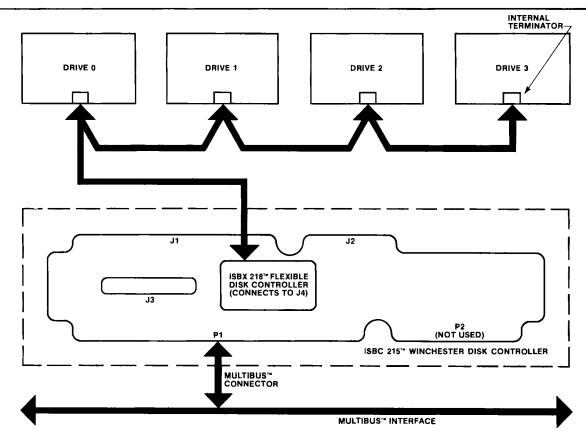


Figure 1-2 Typical Multiple Drive System Using Flexible Disk Drives and iSBX 218™ Flexible Disk Controller

iSBC 215 General Information

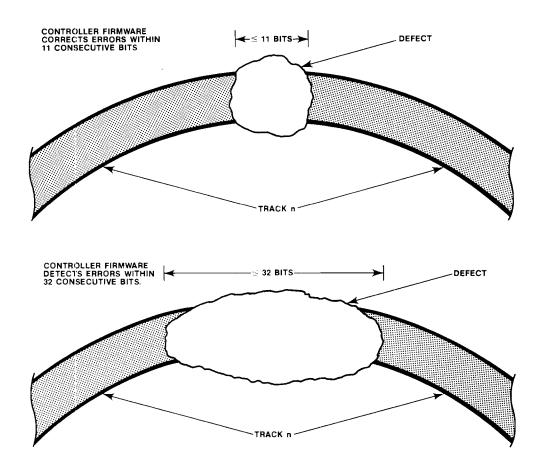


Figure 1-3. Automatic Error Checking and Correction

1-3. SPECIFICATIONS

Table 1-1 lists the physical and performance specifications of the iSBC 215 Winchester Disk Controller;

Table 1-2 lists typical characteristics of the Winchester disk drives that are compatible with the iSBC 215 controller.

Table 1-1. Board Specifications

COMPATIBILITY	
CPU:	Any Intel mainframe or any Multibus™ interface compatible CPU. The controller can operate with either 16- or 20-bit addresses and with either 8- or 16-bit data bus widths.
Disk Drive:	Winchester disk drives (see Table 1-2); both open-loop and closed-loop head positioning types.
	Two versions of controller firmware (located in ROMs U87 and U88) are available, one for use with open-loop type drives and one for closed-loop drives.
	Flexible disk drives through on-board iSBX™ Connector (see iSBX 218™ Flexible Disk Controller specifications)

Table 1-1. Board Specifications (Continued)

DATA ORGANIZATION AND CAPACITY

Bytes per Sector and Sectors per Track:

Bytes/	SECTORS 1							
Sector	51/4" Rotating Memory Systems	14" Shugart	Fujitsu 2300/ Memorex	Pertec	8" Priam	14" Priam		
128	54	96	64	69	70	104		
256	31	57	38	42	42	62		
512	17	31	21	24	23	34		
1024	9	16	11	12	12	18		

Formatted Disk Capacity:

Bytes	FORMATTED CAPACITY/DRIVE ²						
Sector	5¼" Rotating Memory Systems	Control Data Corp	8" Shugart/ Quantum	14" Shugart			
128	8.40 MBytes	29.25 MBytes	7.08 MBytes	19.86 MBytes			
256	9.65 MBytes	28.03 MBytes	8.12 MBytes	23.58 MBytes			
512	10.58 MBytes	24.98 MBytes	8.91 MBytes	25.65 MBytes			
1024	11.21 MBytes	19.50 MBytes	9.43 MBytes	26.48 MBytes			

Bytes	FORMATTED CAPACITY/DRIVE ² (Cont.)					
Sector	Fujitsu/ Memorex	Pertec	8" Priam	14" Priam		
128	7.99 MBytes	12.35 MBytes	23.29 MBytes	22.40 MBytes		
256	9.49 MBytes	15.03 MBytes	27.94 MBytes	26.71 MBytes		
512	10.49 MBytes	17.17 MBytes	30.62 MBytes	29.29 MBytes		
1024	10.98 MBytes	17.18 MBytes	31.95 MBytes	31.02 MBytes		

Drives per Controller:

Winchester Disk Drives — Up to four 8" Shugart, Quantum, Pertec or Priam drives through connectors J1 and J2 (see Table 1-2); up to two Memorex drives or 14" Shugart drives.

Flexible Disk Drives — Up to four 51/4" or 8" drives through the iSBX 218 Flexible Disk Controller connected to the iSBC 215™ board's iSBX™

connector, J4.

Error Detecting and Correction:

The controller hardware can detect errors of up to 32 bits in length; controller firmware can correct errors of up to 11 bits in length (see figure 1-3).

CONTROLLER CHARACTERISTICS

Mounting:

Occupies a card slot in iSBC 604/614 Modular Cardcage/Backplane or equivalent Multibus™ backplane connector.

Physical Characteristics:

Width: Length: Height: Weight:

17.2 cm (6.8 inches) 30.5 cm (12.0 inches) 1.3 cm (0.5 inches) 0.54 kg (19 ounces)

Power Requirements:

 \pm 5 Volts \pm 5% @ 3.25 amperes maximum; -5 Volts $\pm 5\%$ @ 0.15 amperes maximum.

NOTE

Jumper and on-board voltage regulator allow -5 Volts or -12 Volts from Multibus™ connector to be used as voltage source for -5 Volt.

Environmental:

Temperature:

0°C to +55°C, operating (+32°F to +131°F).

-55°C to +85°C, non-operating (-67°F to +185°F).

Humidity:

Up to 90%, non-condensing.

¹Maximum allowable for corresponding selection of Bytes per Sector.

Applies to the following drive models: 51/4" RMS 512, Control Data Corp 9410-32, 8" Shugart SA1004, Quantum Q2010, 14" Shugart SA4008, Memorex 101, Fujitsu 2301, Pertec D8000, 8" Priam 3450 and 14" Pram 3350.

Table 1-2. Winchester Disk Drive Characteristics

	Rotating Memory Systems 5121	Control Data Corp 9410-32 ²	Shugart SA1004¹/ Quan- tum Q2010	Fujitsu 2301¹ Memorex 101	Pertec D8020 ²	Priam 3450²
Capacity (Unformatted)	12.7 MBytes	31.89 MBytes	10.6 MBytes	11.7 MBytes	20.13 MBytes	34.94 MBytes
Read/Write Surfaces	8	4	4/2 ³	4	3	5
Tracks/Surface	153	595	256	244	466	520
Bytes/Track	10.4 KBytes	13.4 KBytes	10.4 KBytes	12 KBytes	14.4 KBytes	13.4 KBytes
Transfer Rate	625 KBytes/sec	806 KBytes/sec	524 KBytes/sec	593 KBytes/sec	864 KBytes/sec	806 KBytes/sec
Average Access Time	70 msec	50 msec	70 msec	70 msec	50 msec	50 msec
Rotational Latency	8.33 msec	8.33 msec	9.6 msec	10.1 msec	8.34 msec	8.3 msec
Track to Track	3 ms	10 ms	19 msec	20 msec	12 msec	10 msec

Open loop step positioner.

²Closed loop servo voice coil technology.

Quantum Q2010 has 2

CHAPTER 2 PREPARATION FOR USE

2-1. INTRODUCTION

This chapter provides information for use in preparing and installing the iSBC 215 Winchester Disk Controller. Included are instructions for unpacking and inspection, installation, setting switches, installing jumpers, and interfacing the controller board with the Multibus connector and disk drives.

2-2. UNPACKING AND INSPECTION

On receipt of the iSBC 215 controller from the carrier, immediately inspect the shipping carton for evidence of damage. If the shipping carton is damaged or water-stained, request that the carrier's agent be present when the carton is opened; if the carrier's agent is not present at the time of opening, keep the carton and packing materials for subsequent agent inspection.

For repairs or replacement of an Intel product damaged during shipment, contact Intel Technical Support Center (refer to Chapter 5) to obtain a Return Authorization Number and further instructions. A copy of the Purchase Order should be submitted to the carrier with the claim.

Carefully unpack the shipping carton and verify that the following items are included:

- iSBC 215 Winchester Disk Controller Printed Wired Assembly
- iSBC 215 Winchester Disk Controller Schematic Diagram

2-3. BOARD INSTALLATION CONSIDERATIONS

The iSBC 215 controller can be installed in any Intel cardcage/backplane or any user-designed backplane that is compatible with the Multibus interface and meets the controller's power and Multibus connector dimensional requirements. The controller occupies one backplane slot.

When installing the controller in a serial priority environment (e.g., within any of the Intel system chassis), wiring modifications are required to support serial priority; a daisy-chain technique, see Figure 2-1, establishes priority, The priority input (BPRN/) of the highest priority master is tied to ground. The priority output (BPRO/) of the highest priority master is then connected to the priority

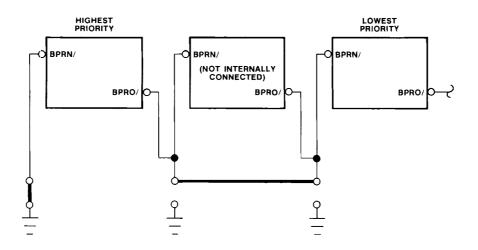


Figure 2-1. Serial Priority Resolution

input (BPRN/) of the next lowest priority master, and so on. ("/" following the signal name indicates an active low). This technique can accommodate a limited number of masters due to gate delays through the daisy-chain.

2-4. POWER REQUIREMENT

The board requires a +5 Volt $\pm 5\%$ power supply at a maximum current of 3.25 amperes, supplied through the Multibus connector. When interfacing with 8" Shugart/Quantum drives, an additional -5 Volt ±5% source at 150 milliamperes maximum is required. This -5-Volt supply can be obtained directly from the Multibus connector or from an on-board regulator that uses either the -10 or -12-Volt source from the Multibus connector (refer to Paragraph 2-14). When interfacing with an iSBX Bus through J3 or J4, additional voltage sources of +12 Volts, -12 Volts or both may be required, also supplied through the Multibus connector. (See individual iSBX Board specifications for tolerances and current requirements of these supplies.) Before installing the controller in a system chassis, make certain that the associated power supplies can supply the additional current that the controller board requires.

2-5. COOLING REQUIREMENT

When the controller is installed in a high temperature environment, make certain the ambient operating temperature does not exceed $\pm 55^{\circ}$ C.

2-6. MULTIBUS™ CONNECTOR

The controller communicates with the CPU and other boards via the Multibus interface. Table 2-1 lists the Multibus connector pin assignments; Table 2-2 describes the controller Multibus interface signals. Figure 2-2 provides a diagram of the controller/Multibus interface timing signals and a table of the timing requirements. Table 2-3 gives current requirements and other characteristics related to the controller/Multibus interface.

The controller is connected to the Multibus interface through connector P1, an 86-pin, double-sided, printed circuit edge connector with 3.96 mm (0.156 in) contact centers. Connector P2 is not used.

2-7. SWITCH/JUMPER CONFIGURATIONS

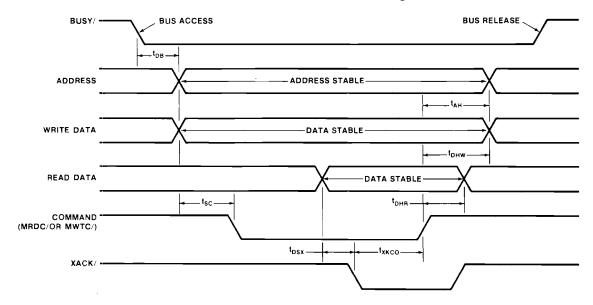
A number of switches and jumpers (see Table 2-4) are provided on the controller board that allow the user to conveniently set the controller for the system environment in which it is to operate (8-bit or 16-bit system data bus, 8-bit or 16-bit I/O addressing, etc.) and for the type of drive to which it is to be interfaced (Shugart/Quantum, Memorex, etc., or iSBX board). Figure 5-1 shows the location of these switches and jumpers on the board. They should be set, as described in the following paragraphs, prior to installing the board in a cardcage or backplane.

Table 2-1. Multibus™ Connector P1 Pin Assignment

		P1 (Component Side)			P1 (Circuit Side)	
	Pin	Mnemonic*	Description	Pin	Mnemonic*	Description
	1	GND	Signal GND	2	GND	Signal GND
	3	+5V	+5Vdc	4	+5V	+5Vdc
Power	5	+5V	+5Vdc	6	+5v	+5Vdc
Supplies	7	+12V	+12Vdc	8	+12V	+12Vdc
	9	-5V	−5Vdc	10	−5V	−5Vdc
	11	GND	Signal GND	12	GND	Signal GND
	13	BCLK/	Bus Clock	14	INIT/	Initialize
	15	BPRN/	Bus Pri. In	16	BPRO/	Bus Pri. Out
Bus	17	BUSY/	Bus Busy	18	BREQ/	Bus Request
Controls	19	MRDC/	Mem Read Cmd	20	MWTC/	Mem Write Cmd
	21	IORC/	I/O Read Cmd	22	IOWC/	I/O Write Cmd
	23	XACK/	XFER Acknowledge	24	INH1/	Inhibit 1 disable RAM
D	25		Reserved	26	INH2/	Inhibit 2 disable PROM or ROM
Bus	27	BHEN/	Byte High Enable	28	ADR10/	THIRDIT 2 GISGDIC THOM OF HOM
Controls	29	CBRQ/	Common Bus Request	30	ADR11/	Address
and	31	CCLK/	Constant Clk	32	ADR12/	Bus
Address	33	INTA/	Intr Achknowledge	34	ADR13	200

Table 2-1. Multibus™ Connector P1 Pin Assignment (Continued)

			P1 (Component Side)			P1 (Circuit Side)		
	Pin	Mnemonic*	Description	Pin	Mnemonic*	Description		
Interrupts	35 37	INT6/ INT4/	Parallel Interrupt	36 38	INT7/ INT5/	Parallel Interrupt		
merupis	39 41	IN'T2/ IN'T0/	Requests	40 42	INT3/ INT1/	Requests		
,	43	ADRE/		44	ADRF/			
	45 47	ADRC/ ADRA/		46 48	ADRD/ ADRB/			
Address	49	ADR8/	Address	50	ADR9/	Address		
/100/000	51	ADR6/	Bus	52	ADR7/	Bus		
	53 55	ADR4/ ADR2/		54 56	ADR5/ ADR3/			
	57	ADR0/		58	ADR1/			
	59	DATE/		60	DATF/			
	61 63	DATC/		62 64	DATD/ DATB/			
D - 4 -	65	DAT8/	Data	66	DAT9/	Data		
Data	67	DAT6/	Bus	68	DAT7/	Bus		
	69	DAT4/		70	DAT5/			
	71 73	DAT2/ DAT0/		72 74	DAT3/ DAT1/			
	75	GND	Signal GND	76	GND	Signal GND		
	77		Reserved	78		Reserved		
Power	79	-12V	−12Vdc	80	-12V	-12Vdc		
Supplies	81	+5V +5V	+5Vdc	82	+5V	+5Vdc		
	83 85	GND	+5Vdc Signal GND	84 86	+5V GND	+5Vdc Signal GND		
* "/" follow	ving th	e signal n a m	e indicates an active low.		L	<u> </u>		


Table 2-2. iSBC 215™ Controller/Multibus™ Interface P1 Signal Descriptions

Signal	Functional Description
ADR0/, ADRF/ ADR10/-ADR13/	Address. These 20 lines transmit the address of the memory location or I/O port to be accessed. For memory access, ADR0/ (when active) enables the even byte bank (DAT0/-DAT7/) on the Multibus¹w connector; i.e., ADR0/ is active for all even addresses. ADR13/ is the most significant address bit.
BCLK/	Bus Clock. Used to synchronize the bus contention logic on all bus masters.
BHEN/	Byte High Enable. When active low, enables the odd byte bank (DAT8/~DATF/) onto the Multibus™ connector.
BPRN/	Bus Priority In. When low indicates to a particular bus master that no higher priority bus master is requesting use of the bus. BPRN/ is synchronized with BCLK/.
BPRO/	Bus Priority Out. In serial (daisy chain) priority resolution schemes, BPRO/ must be connected to the EPRN/ input of the bus master with the next lower bus priority.
BREQ/	Bus Request. In parallel priority resolution schemes, BREQ/ indicates that a particular bus master requires control of the bus for one or more data transfers. BREQ/ is synchronized with BCLK/.
BUSY/	Bus Busy. Indicates that the bus is in use and prevents all other bus masters from gaining control of the bus. BUSY/ is synchronized with BCLK/.
CBRQ/	Common Bus Request. Indicates that a bus master wishes control of the bus but does not presently have control. As soon as control of the bus is obtained, the requesting bus controller raises the CBRQ/ signal.
DAT0/-DATF/	Data. These 16 bidirectional data lines transmit and receive data to and from the addressed memory location or I/O port. DATF/ is the most-significant bit. For data byte operations, DATO/-DAT7 is the even byte and DAT8-DATF/ is the odd byte.

Table 2-2. iSBC 215™ Controller/Multibus™ Interface P1 Signal Descriptions (Continued)

Signal	Functional Description
INIT/	Initialize. Reset the entire system to a known internal state.
INTO/-INT7/	Interrupt Request. These eight lines transmit interrupt requests to the appropriate interrupt handler. INTO/ has the highest priority.
IÓWC/	I/O Write Command. Indicates that the address of an I/O port is on the Multibus™ connector address lines and that the contents on the Multibus™ connector data lines are to be accepted by the addressed port.
MRDC/	Memory Read Command. Indicates that the address of a memory location is on the Multibus™ connector address lines and that the contents of that location are to be read (placed) on the Multibus™ connector data lines.
MWTC/	Memory Write Command. Indicates that the address of a memory location is on the Multibus™ connector address lines and that the contents on the Multibus™ connector data lines are to be written into that location.
XACK/	Transfer Acknowledge. Indicates that the address memory location has completed the specified read or write operation. That is, data has been placed onto or accepted from the Multibus™ connector data lines.

Master Command Access Timing

Slave Command Timing

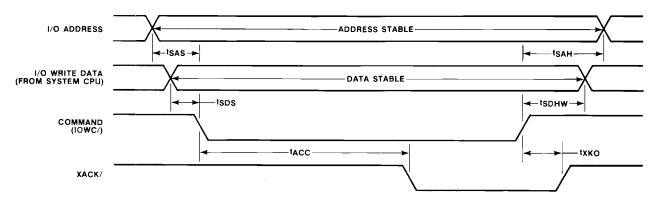
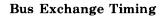
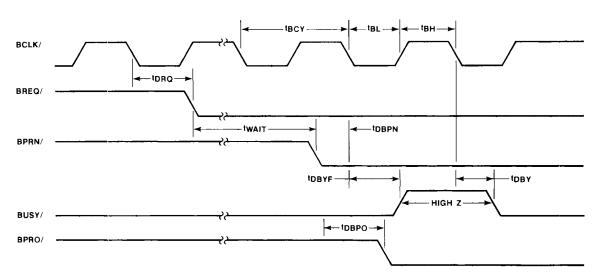




Figure 2-2. Master Command Access Timing

Parameter	Time in Na	noseconds	Description			
Parameter	Minimum	Maximum	Description			
tsas	50		Address Setup Time to I/O Command			
tsds	0		Data Setup Time to I/O Command			
^t SAH	15		Address Hold Time from I/O Command			
tsDHW	30		Data Hold Time from I/O Command			
tACC	1	8000	I/O Access Time			
txko	100		XACK/Hold Time from I/O Command			
tBCY	125		Bus Clock Cycle Time			
tBL	65		Bus Clock Low			
tBH	35		Bus Clock High			
tDRQ		35	Bus Request Delay			
tDBY		60	Bus Busy Turn On Delay			
tDBYF		35	Bus Busy Turn Off Delay			
†DBPN	15		Priority Input Setup Time			
tDBPO		25	BPRO/Serial Delay from BPRN/			
tWAIT		∞	Requesting Master Bus Access Time			
tDB	50		Busy to Address/Data Delay			
tsc	50		Address/Data Setup to Command			
txKCO		750	XACK/ to Command Turn Off			
tah	50		Address Hold Time			
tDHW	50		Data Hold Time			
tDHR	0		Read Data Hold Time			
tDSX	0		Data Setup Time Before XACK/			

Figure 2-2. Master Command Access Timing (Continued)

Table 2-3. iSBC 215[™] Controller/Multibus[™] Interface Signal Characteristics

			Driver 1, 3			Receive	r 2, 3		
Bus	Location	Type	I _{OL}	Гон	c _o	Location	I _{IL}	I _{IH}	Cı
Signals			Min _{ma}	Min $_{\mu a}$	Min _{pf}		Max _{ma}	$\mathbf{Max}_{\mu\mathbf{a}}$	Max _{pf}
DAT0/- DATF/ (16 lines)	Masters	TRI	32	-5000	300	Masters and Slaves	-0.5	125	18
ADR0/- ADR13/, BHEN/ (21 lines)	Masters	TRI	32	-5000	300	Slaves	-0.8	90	18
MRDC/, MWTC/	Masters	TRI	32	-5000	300	Slaves	-0.7	50	18
IOWC/						Slaves	-0.4	20	5
XACK/	Slaves	TRI	48	-2000	300	Masters	-1.2	60	18
BCLK/						Master	-0.5	60	18
BREQ/	Each Master	TTL	10	-400	60				
BPRO/	Each Master	TTL	10	-400	60				
BPRN/						Master	0.5	60	18
BUSY/, CBRQ	All Masters	O.C.	20	-	250	All Masters	-0.5	60	18
INIT/						All	-0.5	60	18
INTO/- INT7/ (8 lines)	Slaves	O.C.	40	-	300				

Notes:

1. Driver Requirements:

IOH = High Output Current Drive IOL = Low Output Current Drive Co = Capacitance Drive Capability

TRI = 3-State Drive

O.C.= Open Collector Driver TTL = Totem-pole Driver

2. Receiver Requirements:

 I_{IH} = High Input Current Load I_{IL} = Low Input Current Load

C₁ = Cap Active Load

3. Low and High Voltage Requirements:

Receiver:

 $0 \le V_{IL} \le 0.8V$

 $2.0V \le V_{IH} \le 5.5V$

Driver:

 $0 \le V_{OL} \le 0.5V$

 $2.4V \le V_{OH} \le 5.5V$

2-8. WAKE-UP ADDRESS SELECTION

The controller communicates with the host CPU through four I/O communications blocks located in the host memory. When the controller is to receive instructions, it goes to the beginning address of the first I/O communication block. This address is called the wake-up address (WUA). The WUA may be at any address in host memory. Sixteen WUA

switches (S1-1 through S1-8 and S2-3 through S2-10, see Figure 5-1) are provided on the controller board that allow the user to set the controller for the selected wake-up address. The function of each switch is shown in the table in Figure 5-1. Any switch set to ON represents a logical 1.

The controller multiplies the settings of the WUA switches by 2⁴ (shifts the number four places to the

left) to create a 20-bit WUA. Note that due to this shift, the four least-significant bits of the selected WUA must be zeros. When accessing host memory, the controller transmits the entire 20-bit WUA through the Multibus interface. If the host memory uses 16-bit addressing, the four most significant bits of the 20-bit WUA must be zero. This is accomplished by setting the four most significant bits of the WUA switches (S1-1 through S1-4) to zero.

Table 2-4. Configuration Jumpers and Switches

Function	Pin or Switch
Wake-Up Address	S1-1 through S1-8 S2-3 through S2-10
8-Bit or 16-Bit System Data Bus Capability	S2-1
8-Bit or 16-Bit Host Processor I/O Port Addressing	S2-2
Interrupt Priority Level	W19-C to W19-0 through W19-7
Any Request	W18
Common Bus Request	W23
Voltage Selection	W20- and W21
Winchester Drive Manufacturer Selection	W1, W2, W5, W6 through W10 W13 through W17, W22
iSBX Bus Control	W3, W4, W11 and W12, W24

2-9. WAKE-UP I/O PORT ADDRESS SELECTION

The host processor communicates with the controller through an I/O port. The WUA switches also set the address of this I/O port. For a host processor with 8-bit I/O port addressing, bits 0 through 7 of the unshifted WUA determine the wake-up I/O port address; for a host processor with 16-bit I/O port addressing, bits 0 through F determine the address.

I/O Address Selection switch S2-2 on the controller board (see Figure 5-1) determines the type of I/O port addressing the host processor uses: ON for 16-bit addressing; OFF for 8-bit addressing.

2-10. SYSTEM DATA BUS SELECTION

System data bus selection switch S2-1 on the controller board (see Figure 5-1) sets the controller for the type of system data bus with which the controller is to interface: ON for 16-bit bus, OFF for an 8-bit bus. This switch allows the controller to use its 16-bit data transfer mode to access the system bus (if the system memory supports 16-bit accesses), even though the host processor only supports 8-bit accesses.

2-11. INTERRUPT PRIORITY LEVEL

The controller's internal interrupt request signal can be assigned to any of eight interrupt priority levels (INT0/ to INT7/) on the Multibus connector. To select the interrupt request priority level, place a jumper link as shown in Table 2-5 and Figure 5-1.

Table 2-5. Interrupt Priority Level Selection

Duinuitu	Wire Wrap					
Priority Level Selected	From Pin	To Pin				
0	W19-C	W19-0				
1	W19-C	W19-1				
2	W19-C	W19-2				
3	W19-C	W19-3				
r	W19-C	W19-4				
5	W19-C	W19-5				
6	W19-C	W19-6				
7	W19-C	W19-7				

2-12. ANY REQUEST SELECTION

The *any request* function allows the controller to be set to relinquish control of the Multibus interface following a request from:

- A higher priority device only (jumper between pins W18-1 and W18-2 on the controller board).
- 2. Any device, lower or higher priority, (jumper between pins W18-1 and W18-3).

Figure 5-1 shows the location of the selection pins.

2-13. COMMON BUS REQUEST

The common bus request function allows the controller to take advantage of higher bus transfer rates by arbitrating for the use of the bus only when other bus controllers have access requests pending. The controller will:

- Arbitrate for the bus on every access, (jumper between pins W23-1 and W23-2 on the controller). This mode is used when other bus controllers do not implement common bus request.
- 2. Arbitrate for the bus to acquire the bus for the first access and rearbitrate only when another bus controller requests use of the bus.

2-14. WINCHESTER DRIVE INTERFACE

The iSBC 215 Winchester Disk Controller has been designed to communicate with any of four unique

	MANUFACTURER													
Jumper No.	51/4" From		Quan	tum	Memo 14" Sh Fujitsu From	ugart 2300	Perl	lec To	Pria From		CD From	C To		Function
W1	1	3	1	3	1	3	1	2	1	2	1	3	Open/Cios	sed Head Positioning
W2	-			_	1	2	_	_	1	2	1	2	Vendor Se	elect
W5	1	2	1	3	1	2	1	2	1	2	1	3	RD —	
W6	1	2	1	3	1	2	1	2	1	2	1	3	RD+	Level
W7	1	2	1	3	1	2	1	2	1	2	1	3	RDCL+	Select
W8	1	2	1	3	1	2	1	2	1	2	1	3	RDCL-)
W9	_	_	1	2	l —	_	_	_		_	1	2	Shugart T	ri-State Select
W10	1	2	1	2	_	_	1	2	1	2	1	2	Radial Sel	ect
W13	1	2	1	2	1	3	1	2	1	3	1	3	Hard/Soft	Sectoring

2

3

1

Table 2-6. 8" Winchester Drive Manufacturer Selection

NOTE

W14

W15

W16

W17

W22

means not installed

2

2

1

1

The iSBX bus control jumpers, W3, W4, W11 and W12, are factory wired for the configuration required when the iSBX Bus is not being used. See Paragraph 2-17 and Table 2-9 for a description of the use of these jumpers.

2

2

2

2

3

2

1

1

Winchester technology disk drive interfaces: 8" Shugart/Quantum, Memorex/14" Shugart, Pertec and Priam. The Shugart, Quantum and Memorex drives use a stepper motor for head positioning (called open-loop head positioning); the Pertec and Priam drives use a linear positioner coupled with a servo surface on one disk for position feedback (closed-loop head positioning).

2

2

2

1

The manufacturer's models with which the controller interfaces are: 8" Shugart (Models SA1002 and SA1004), Quantum (Models Q2010, Q2020, Q2030 and Q2040), Memorex (Models 101 and 102), 14" Shugart (Models SA4004 and SA4008), Pertec (Model D8000), Rotating Memory Systems (Models 506 and 512) and Control Data Corporation (Models 9410 24 and 32), Priam (Models 570, 1070, 2050, 3350 and 3450).

The controller can control up to four 8" Shugart, Quantum, Pertec or Priam drives, or up to two Memorex or 14" Shugart drives. It cannot control drives of different manufacturers concurrently.

The jumpers listed in Table 2-6 allow the controller to be set for the selected drive type. In addition, two versions of the controller firmware (located in ROMs U87 and U88) are available, one for use with open-loop type drives and one for closed-loop drives. Boards configured for use with open-loop drives come from the factory with open-loop firmware installed and with jumpers preset for 8" Shugart/Quantum drives; boards configured for closed-loop

drives come with closed-loop firmware and with jumpers preset for Pertec drives. Converting the controller from the 8" Shugart/Quantum interface to a Memorex/14" Shugart interface or from Pertec to Priam merely requires changing the connections of some of the jumpers as shown in Table 2-6 and Figure 5-1. Converting the controller from an openloop interface to a closed-loop interface, and vice versa, requires the ROMs to be changed in addition to changing jumpers.

Shugart AM Control

Shugart GAP Control

Pertec RD Clock Select

Hard/Soft Sectoring

INDEX Select

3

2

3

2

2

Interface cables must also be constructed and installed according to the type of drive being used as described in Paragraph 2-15.

2-15. -5-VOLT SELECTION (8" SHUGART/ QUANTUM CDC DRIVES ONLY)

Figure 5-1 shows the location of the Voltage Selection pins for the -5 Volt power supply. Install jumpers as described in Table 2-7 to select -5 volts either from the Multibus connector or from the on-board regulator and to select the voltage source for the regulator.

2-16. CABLING REQUIREMENTS

Interface cables between the controller and the disk drives must be fabricated according to the type of drive being used and the number of drives. Figures 2-3 through 2-7 show the connector pin assignments for the controller and for each type of drive. A 50-pin mass-terminated socket connector 3M 3425/6050 or

equivalent, is recommended for mating with J1 of the controller board. A 40-pin 3M 3417-6040 or equivalent connector is recommended for mating with J2. The mass-terminated sockets are easily attached to flat ribbon cable using the jig that the connector manufacturer supplies. The Control Cable that connects to J1 requires a 50-conductor ribbon cable; the Read/Write cable that connects to J2 requires one or two 20-conductor ribbon cables, depending on the drive configuration (refer to Paragraph 2-16). Cable length for the control cable cannot exceed a total length of 10 feet; total length for any Read/Write cable must not exceed 10 feet. See the respective service manual for the type of connectors required for the cable end that connects to the drives.

Each of the cables shown in Figures 2-3 through 2-7 require a number of wire cross-overs "scrambling" between the controller connectors and the drives. It is suggested that the scrambling be done at the drive interface connector.

NOTE

The cabling and drive interconnecting information given in Paragraphs 2-15 and 2-16 and in Figures 2-3 through 2-6, reflect the specifications at the time this manual was printed. Before proceeding with construction of interconnecting cables, check the drive's hardware reference manual for current pin assignments and interface requirements.

2-17. DRIVE INSTALLATION

The requirements for connecting the controller to the disk drive or drives varies between drive types. The following discussion and Figure 2-10 describes the specific interconnection requirements for each drive type.

Shugart SA1000 or Quantum Q2000. When connecting the controller to a single 8" Shugart/Quantum drive, a Shugart SA1200 Data Separator and three interconnecting cables are required (see Figure 2-10. One control cable and one NRZ read/write cable are required to interface the controller with the drive and data separator, respectively. A

separate MFM read/write cable is then required to transmit read/write information between the data separator and the drive.

When controlling multiple drives, Drive 0 (which is called the master and is equipped with the data separator) allows control and read/write data to be routed to and from up to three additional slave drives. The control cable for multiple drive configurations is daisy-chained from the master to the slave drives. Physically, the cable consists of a ribbon cable with an in-line connector for each drive. One MFM read/write cable is required from each slave drive to the master drive.

Memorex 101 and 102 or Shugart SA4000. The controller can drive one or two Memorex/14" Shugart drives. When connecting the controller to a single drive, both a control and a read/write cable are required. When controlling two drives, a single cable, such as the control cable described for the Shugart/Quantum drives, is required that daisy-chains the control information to both drives as shown in Figure 2-10. A split (bifurcated) cable is required to route NRZ read/write data to and from the two drives.

Pertec D8000 and Priam 570, 1070, 2050 and 3450. The connector on the Pertec and Priam drives transmit both control and read/write data. When connecting the controller to a single drive, a bifurcated (split) cable that combines the control lines and the read/write lines from the controller is requires as shown in Figure 2-10. When controlling multiple drives, a cable such as the control cable described for the Shugart drives is required that daisy-chains the control and read/write information between the four drives.

RMS 500. When connecting the controller to a single RMS drive, an RMS Data Separator and three interconnecting cables are required. See Figure 2-8 similar to Shugart SA1000 and Quantum Q2000 above.

Table 2-7. -5-Volt Selection

Jumper	From	То	Function
W21	1	2	Select -5 volts from Multibus™ connector
	1	3	Select -5 volts from regulator (requires jumper to be set on W20)
W20	1	2	Select -10 volts from Multibus™ connector as source for -5 Volt regulator
	1	3	Select -12 volts from Multibus™ connector as source for -5 Volt regulator

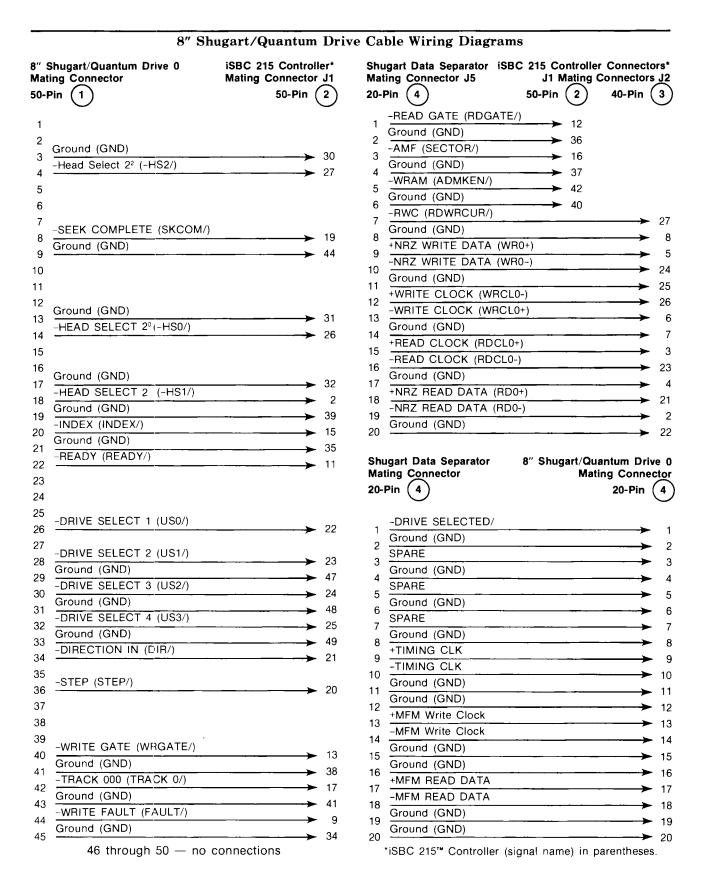


Figure 2-3. 8" Shugart/Quantum Drive Interconnecting Cable Requirements

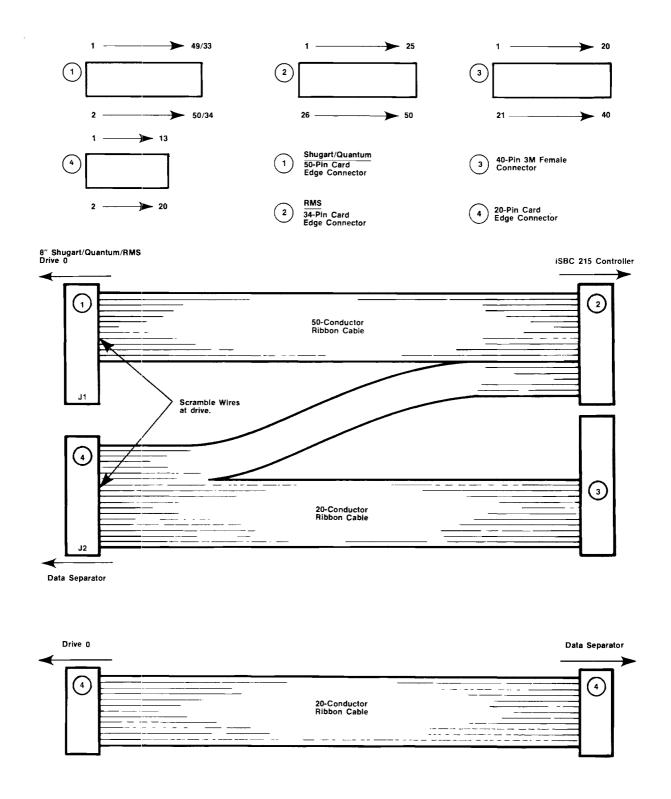
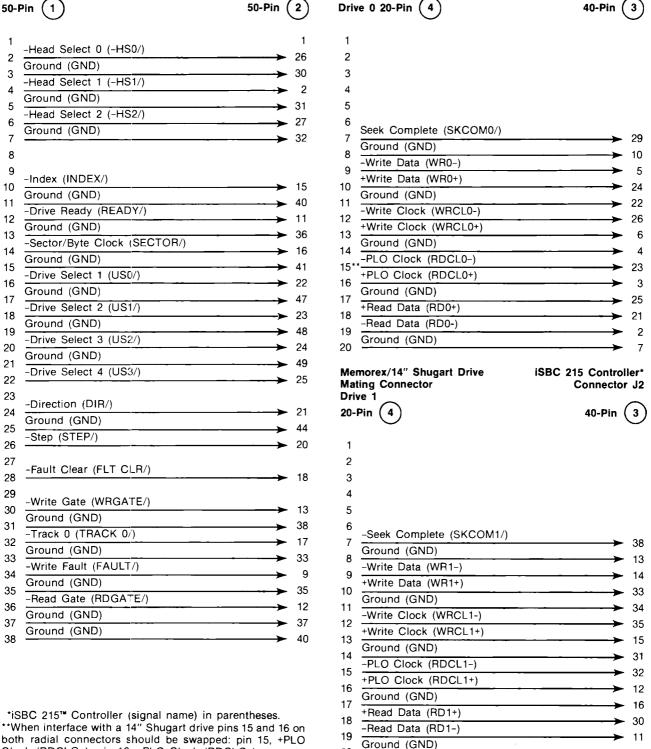



Figure 2-3. 8" Shugart/Quantum Drive Interconnecting Cable Requirements (Continued)

36

Fujitsu 2300/Memorex/14" Shugart Drive Cable Wiring Diagram iSBC 215 Controller* Memorex/14" Shugart Drive iSBC 215 Controller* Memorex/14" Shugart Drive Connector J1 Mating Connector Connector J2 Mating Connector 50-Pin Drive 0 20-Pin (2

both radial connectors should be swapped: pin 15, +PLO Clock (RDCLO+); pin 16, -PLO Clock (RDCLO-).

Figure 2-4. Fujitsu 2300/Memorex/14" Shugart Drive Interconnecting Cable Requirements

Memorex/14" Shugart Drive 1

Scramble Wires at drive.

Memorex/14" Shugart Mating Connectors

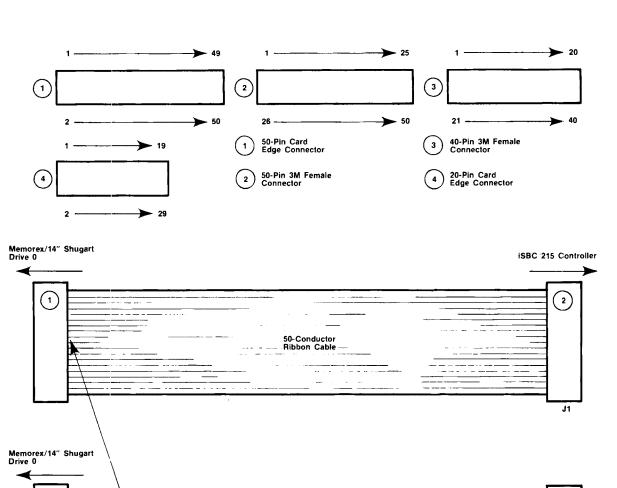
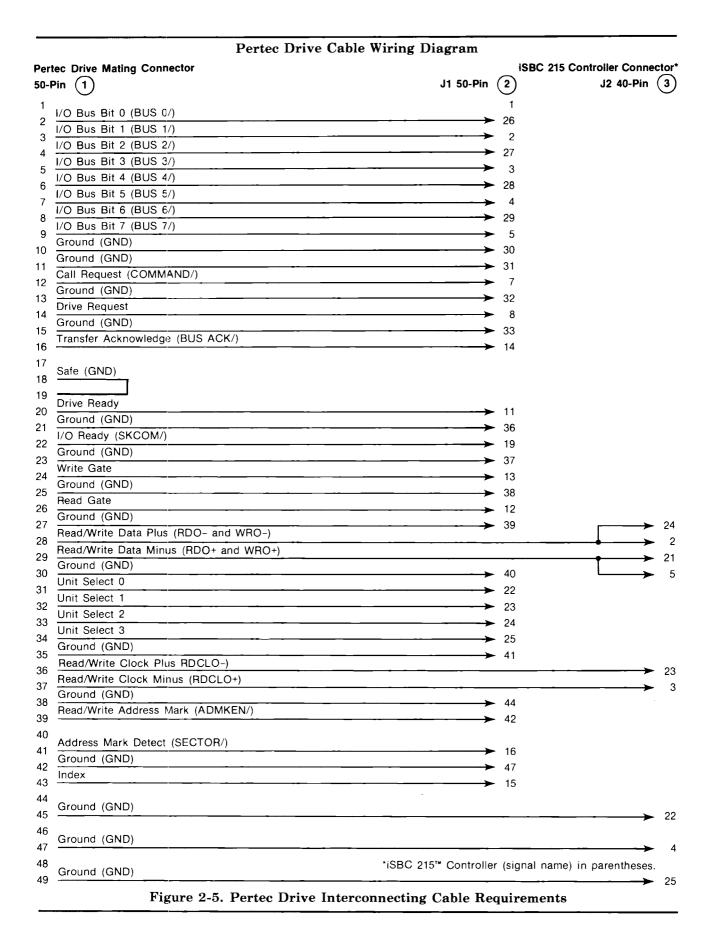



Figure 2-4. Fujitsu 2300/Memorex/14" Shugart Drive Interconnecting Cable Requirements (Continued)

(3)

40-Conductor Ribbon Cable

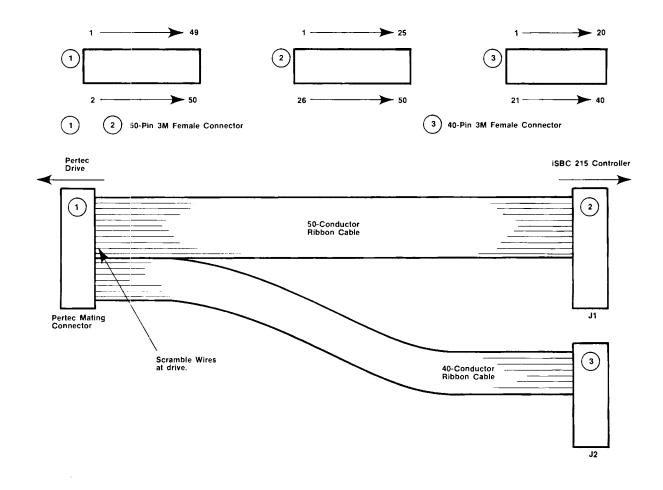
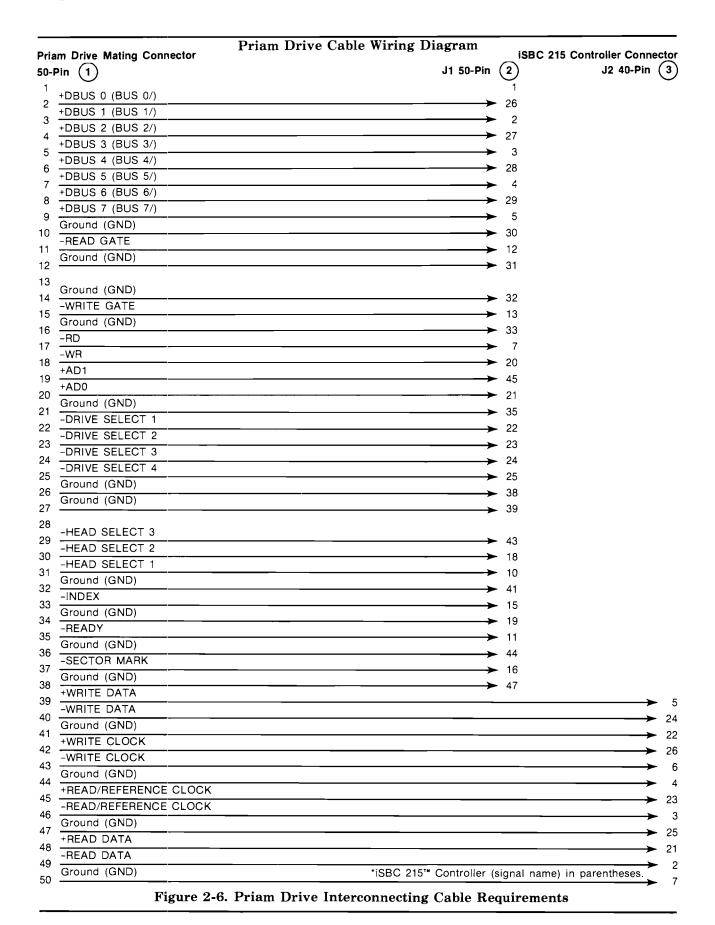



Figure 2-5. Pertec Drive Interconnecting Cable Requirements (Continued)

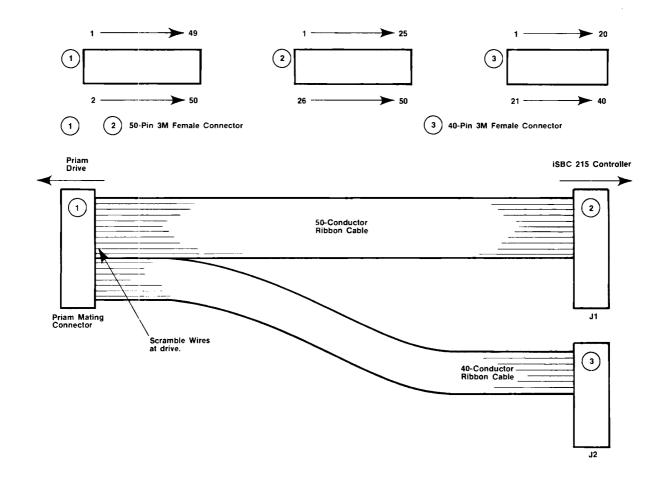


Figure 2-6. Priam Drive Interconnecting Cable Requirements (Continued)

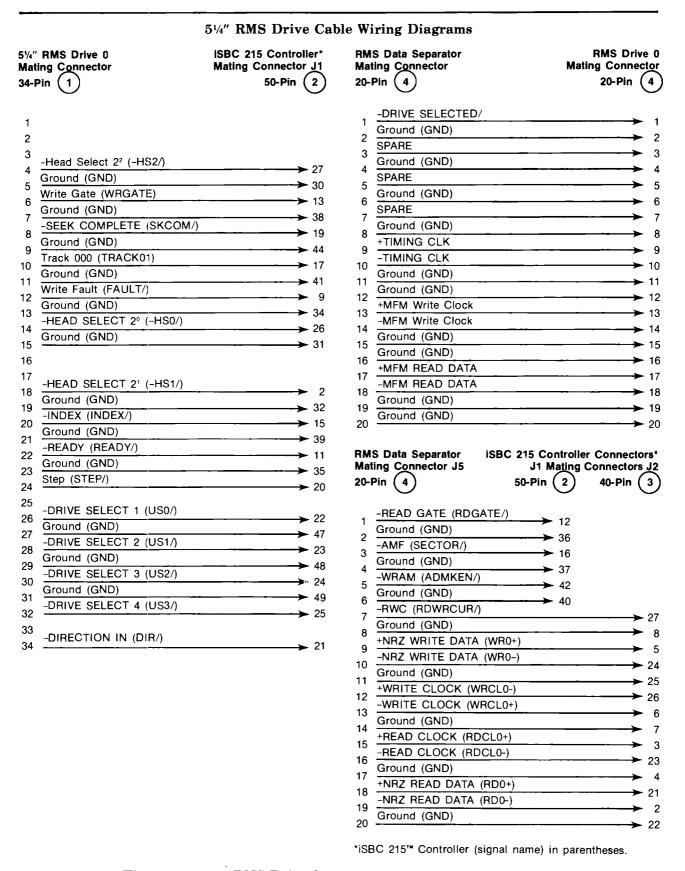


Figure 2-7. 51/4" RMS Drive Interconnecting Cable Requirements

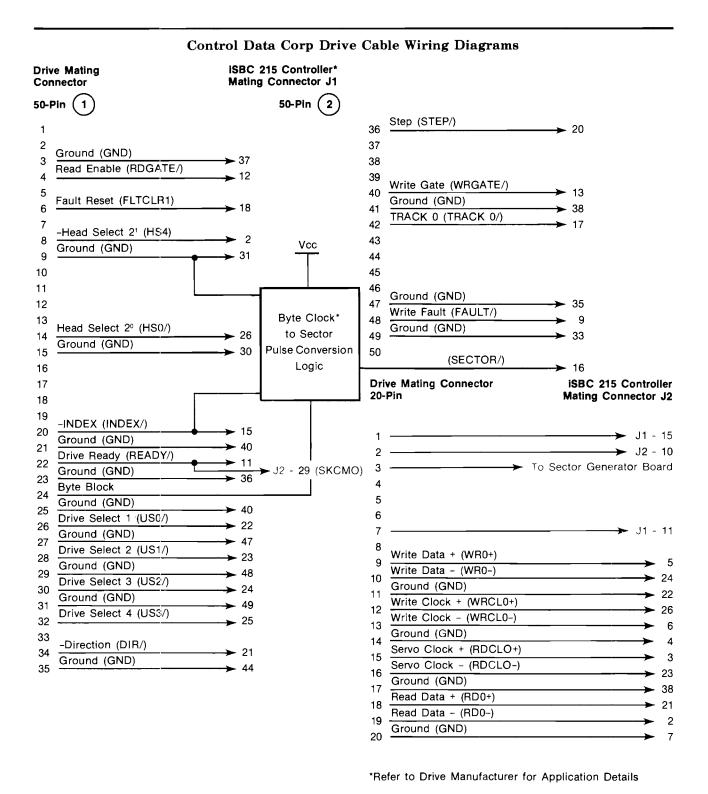


Figure 2-8. Control Data Corporation Drive Interconnecting Cable Requirements

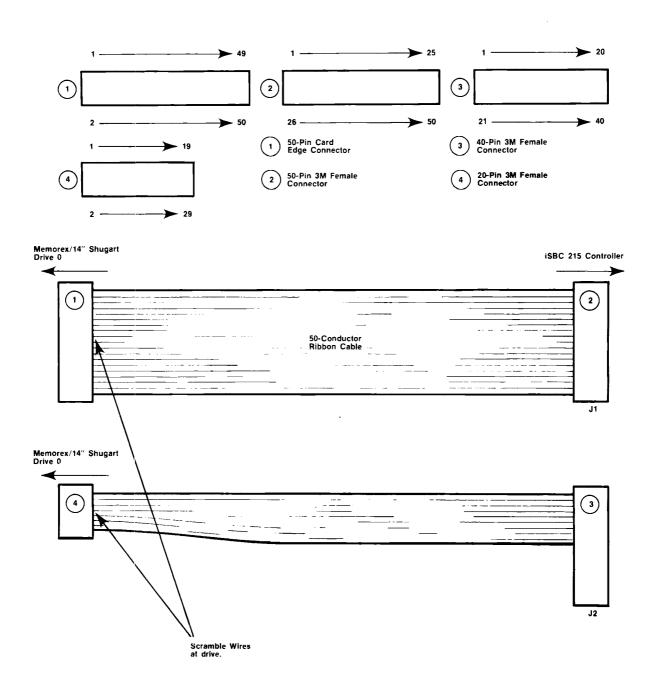
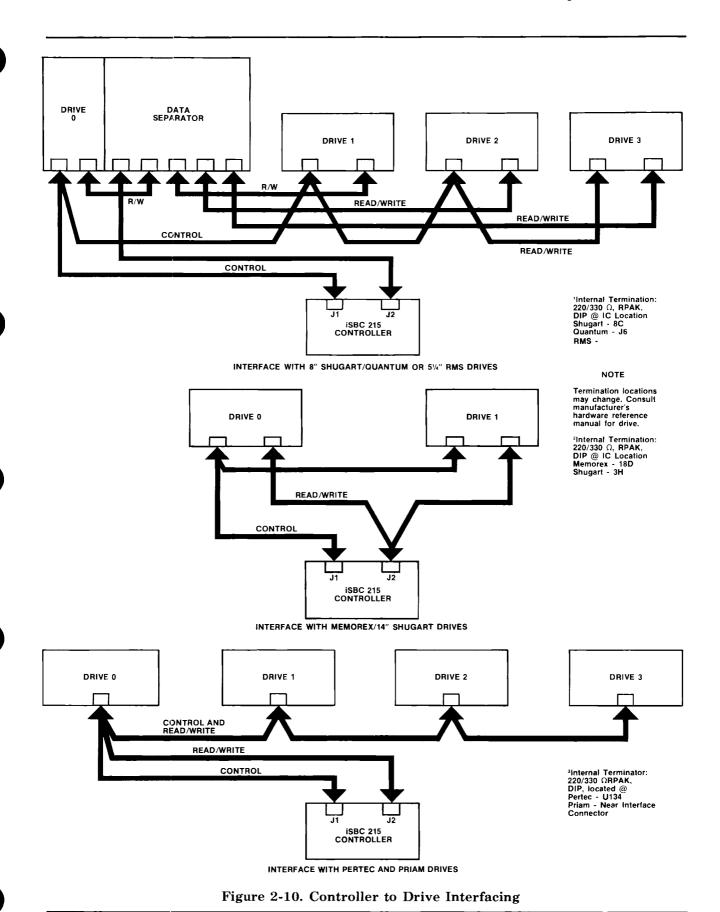



Figure 2-9. Control Data Corporation Drive Interconnecting Cable Requirements

2-21

Table 2-8. J3 and J4 Pin Assignments

Pin	Mnemonic	Description	Pin	Mnemonic	Description
43	MD8	MDATA Bit 8	44	MD9	MDATA Bit 9
41	MDA	MDATA Bit A	42	MDB	MDATA Bit B
39	MDC	MDATA Bit C	40	MDD	MDATA Bit D
37	MDE	MDATA Bit 3	38	MDF	MDATA Bit F
35	GND	Signal Ground	36	+5V	+5 Volts
33	MD0	MDATA Bit 0	34	MDRQT	M DMA Request
31	MD1	MDATA Bit 1	32	MDACK/	M DMA Acknowledge*
29	MD2	MDATA Bit 2	30	ОРТ0	Option 0
27	MD3	MDATA Bit 3	28	OPT1	Option 1
25	MD4	MDATA Bit 4	26	RDMA	Terminate DMA
23	MD5	MDATA Bit 5	24		Reserved
21	MD6	MDATA Bit 6	22	MCS0/	M Chip Select 0
19	MD7	MDATA Bit 7	20	MCS1/	M Chip Select 1
17	CND	Signal Gnd	18	+5V	+5 Volts
15	IORD/	I/O Read Cmd	16	MWAIT/	M Wait
13	IOWRT/	I/O Write Cmd	14	MINTR0	M Interrupt 0
11	MA0	M Address 0	12	MINTR1	M Interrupt 1
9	MA1	M Address 1	10		Reserved
7	MA2	M Address 2	8	MPST/	iSBX Multimodule Board Present
5	RESET	Reset	6	MCLK	M Clock
3	GND	Signal Gnd	4	+5V	+5 Volts
1	+12V	+12 Volts	2	-12V	-12 Volts
All und	defined pins are re	eserved for future use.	*The is	SBC 215 does not	drive this signal.

2-18. iSBX MULTIMODULE™ INTERFACE

Controller board connectors J3 and J4 have each been designed to interface with Intel iSBX I/O controllers or other I/O modules designed to meet the Intel iSBX Bus Specifications. The Intel iSBX 218 Flexible Disk Controller connects to the J4 connector and provides an interface between the iSBC 215 controller board and up to four 5¼" or 8" double density flexible (floppy) disk drives. The iSBX 218 controller interfaces directly with the iSBC 215 software as described in Chapter 3. Instructions for installing the iSBX 218 controller on iSBC 215 board are given in Paragraph 2-18.

I/O modules that interface the iSBC 215 controller with other storage devices such as magnetic tape cartridge drives or bubble memories can also be designed and connected to J3, J4 or both, (see Table 2-8). The device select function of the iSBC 215 software allows the controller to be interfaced with up to 256 devices through an iSBX connector, J3 and J4. Note that DMA Acknowledge Pin 32 is not connected on the iSBC 215. A more detailed description of the iSBX Bus is given in the *Intel iSBX Bus Specification* manual, Order No. 142686.

The iSBX bus control pins, W3, W4, W11, W12 and W24 (see Table 2-9), control the External Terminate,

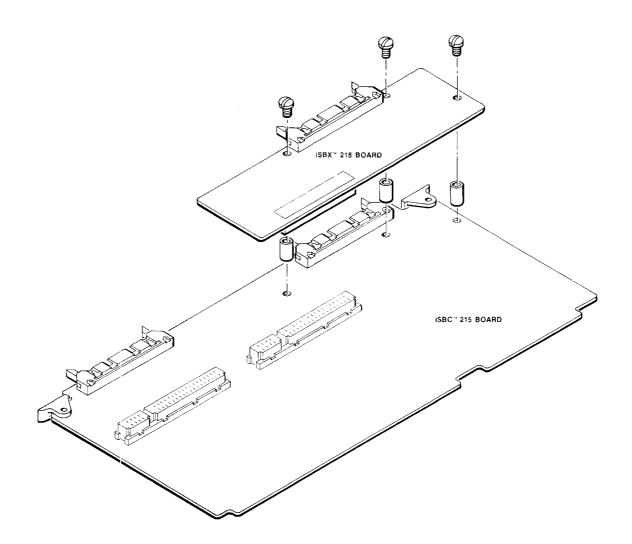


Figure 2-11. Installing the iSBX 218™ Board on the iSBC 215™ Controller Board

and *DMA* request lines on the iSBX bus. (See Figure 5-1 for the location of these pins on the controller board.) The asterisks in Table 2-9 indicate the required jumper configuration for these pins when the iSBX bus is not to be used. Information on the use of these pins for user designed iSBX bus interfaces is given in Paragraph 3-32.

Instructions for writing controller-to-drive interface software for I/O modules designed to the iSBX Bus Specifications are given at the end of Chapter 3.

2-19. iSBX 218™ BOARD INSTALLATION

The iSBX 218 board connects to J4. Six screws and three threaded spacers secure the Multimodule board to the controller board as shown in Figure 2-9. Before installing the iSBX 218 board, install a jumper wire between pins W12-1 and W12-3 and between pins W4-1 and W4-2 on the iSBX 215 board. A single cable that transmits both control and read/write information is required to connect the iSBX 218 controller to the flexible disk drives as shown in Figure 1-2. Refer to the $iSBX 218^{\text{TM}}$ Flexible Disk Controller Hardware Reference Manual, Intel Order No. 121583, for further installation details and operating information.

Table 2-9. iSBX™ Bus Control Jumper Pins

Pins	Pin Connection	Function
W3	1-2*	External Terminate (J3) terminated on controller board.
	_	External Terminate (J3) driven by iSBX I/O Controller
W4	1-2*	External Terminate (J4) terminated on controller board
İ		External Terminate (J4) driven by iSBX I/O controller
W11	1-2	OP00 (J3) driven
	1-3	OP01 (J4) driven
	*	OP00 and OP01 receiving
W12	1-2	OP10 (J3) driven
ļ	1-3	OP11 (J4) driven
	_*	OP10 and OP11 receiving
W24	1-2	The iSBX I/O controller on J4 uses DMA request and the iSBX i/O controller on J3 does not use DMA request or is not installed.
	1-3	The iSBX I/O controller on J3 uses DMA request and the iSBX I/O controller on J4 does not use DMA request or is not installed.
	_*	Either both iSBX I/O controllers are not installed or both use the DMA request or neither use the DMA request.

^{*}Required configuration when either the external terminate function or when the iSBX™ Bus is not being used (factory wired).

2-20. POWER UP/DOWN CONSIDERATIONS

If power is applied to, or removed from, the system while a drive is READY, a spurious disk write operation could occur. To prevent this from happening always ensure that the drives are not spinning when system power to the controller is switched on or off.

2-21. DIAGNOSTIC CHECK

A PROM-resident self-diagnostic may be used to verify the controller operation. Instructions for execution of the diagnostic are given in Chapter 3.

CHAPTER 3 PROGRAMMING INFORMATION

3-1. INTRODUCTION

This chapter describes the programming conventions that must be followed to initiate and monitor the transfer of data between the host memory and a disk drive (or the iSBX connector). Included in this section are a discussion of: disk organization, track sectoring format, disk controller communications protocol, interrupt handling, the use of disk control functions, and special instructions for programming I/O transfers through the iSBX interface.

3-2. PROGRAMMING OPTIONS

The iSBC 215 Winchester Disk Controller has been designed to interface with Winchester technology disk drives as specified in Chapters 1 and 2. The board also has two iSBX connectors that allow it to communicate with other I/O devices through an iSBX I/O Controller such as the iSBX 218 Flexible Disk Controller.

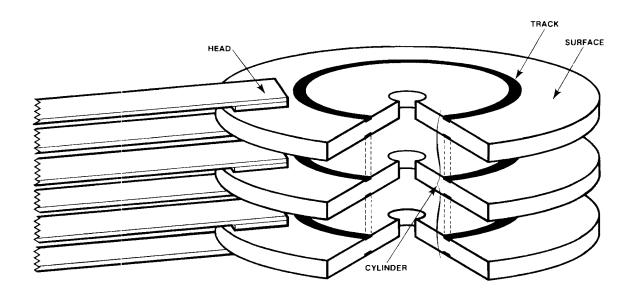
The iSBC 215 controller contains a ROM resident I/O transfer program, designed to control data transfers between the controller and Winchester drives as well as between the controller and flexible disk drives connected to the iSBX 218 controller. Paragraphs 3-5 through 3-30 provide instructions for using the iSBC 215 controller firmware.

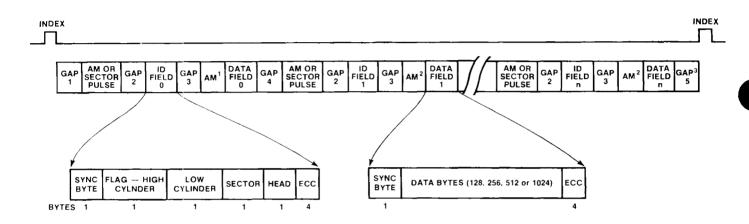
In addition, the iSBC 215 controller can also execute programs that the user has written in 8089 assembler code to control other I/O devices through the iSBX bus on the board. Instructions for writing and using these programs are provided in Paragraphs 3-31 and 3-32.

3-3. DISK ORGANIZATION

In the following discussion, a head is assumed to be associated with a single disk surface. Each surface can have up to 4096 tracks (circular data paths numbered 0 through 4095). The set of tracks on multiple recording surfaces at a given head position or location is referred to as a "cylinder" (see Figure 3-1). A drive that has 4096 tracks per surface thus has 4096 cylinders.

Each track is divided into equal-sized sectors. Each of these sectors includes a sector identification block with error checking information and a data block, also with error checking information. The iSBC 215 controller allows the user to select the size of the data block; the size of the data block then determines the maximum number of sectors permitted per track (as shown in Table 1-1).




Figure 3-1. Disk Drive Organization and Terminology

3-4. TRACK SECTORING FORMAT

The controller generates the format of the sector identification block, the data block and the error checking fields of each sector of the disk, one track at a time. Figure 3-2 shows how the controller organizes this information for 8" Winchester drives. Refer to Paragraph 3-14 and 3-15 for further information on track formatting. Refer to the *iSBX 218*TM Flexible Disk Controller Hardware Reference Manual for information on flexible disk track formatting.

3-5. CONTROLLER I/O COMMUNICATIONS BLOCKS

The host processor and the disk controller use four blocks of host memory and one host I/O port to exchange instructions and status. The I/O communications blocks are titled: Wake-Up Block, Channel Control Block, Controller Invocation Block and I/O Parameter Block. Sixty-eight bytes of host memory must be dedicated to the I/O communications blocks.

GAP AND FIELD SIZES IN BYTES				
FIELD	8" SHUGART/RMS/ QUANTUM	FUJITSU 2300/ MEMOREX/ 14" SHUGART CDC 9410 - 32	PERTEC	PRIAM
GAP 1	11	0	11	0
ADDRESS MARK OR SECTOR PULSE	1	02	3	O ²
GAP 2	0	12	14	12
ID FIELD	9	9	9	9
GAP 3	12	14	20	20
ADDRESS MARK (Beginning of Data Field)	11	0	0	0
DATA FIELD Bytes/Sector				
128	133	133	133	133
256	261	261	261	261
512	517	517	517	517
1024	1029	1029	1029	1029
GAP 4	17	8	22	8

^{18&}quot; Shugart/Quantum drives only.

Figure 3-2. Sector Data Format

²Sector Pulse

³GAP 5 is of indeterminate length. It is residual unused space.

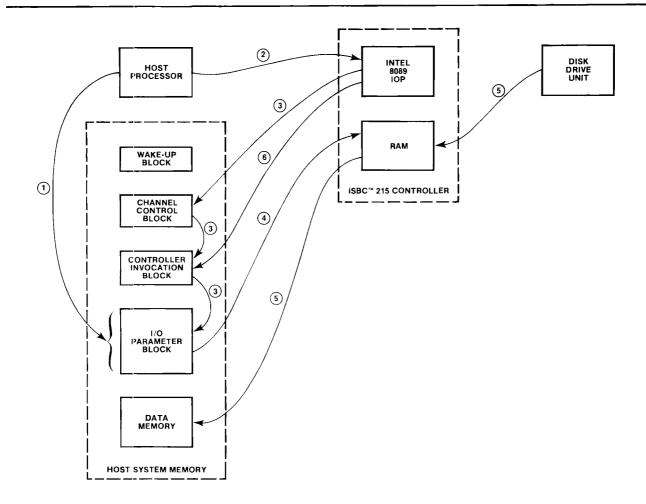


Figure 3-3. Host CPU-Disk Controller Interaction Through the I/O Communications Block

NOTE

Following the initialization of the controller, the Wake-Up Block, Channel Control Block and Controller Invocation Block must be maintained at their assigned locations. The location of the I/O Parameter Block can be changed providing that the I/O Parameter Block Pointer in the Controller Invocation Block is changed to correspond to the new location.

The controller uses these blocks to perform three basic functions: initialize the controller, check and transmit status, and obtain user selected disk access functions and parameters. In addition to these I/O communications blocks, certain controller functions (such as track formatting) also require data/parameter buffers in host memory. Dedicated locations in host memory, however, are not required for these buffers. One I/O port in the host processor's address-

able I/O space is also required. The host uses this port, called the Wake-Up I/O Port, to initiate controller activity.

The sequence in which the controller accesses these blocks varies with the type of operation being performed, but for general data transfers (reads or writes), the blocks are accessed as follows:

- 1. The host loads the I/O Parameter block in system memory with a command and parameters for the function the controller is to perform (for example read data). See Figure 3-3.
- 2. The host then transmits a wake-up command (01H) to wake-up I/O port, signaling the controller to go to I/O communications blocks for instructions.
- 3. The controller goes to the Channel Control Block and links its way through the Controller Invocation Block to the I/O Parameter Block. (The Wake-Up Block is used only during controller initialization and by 8089 firmware.)

- 4. At the I/O Parameter Block, the controller reads the command and parameter data into its RAM and begins the data transfer function.
- 5. The controller reads data from the selected drive into its RAM, then performs a DMA transfer of the data from RAM into system memory.
- 6. When the data transfer is complete, the controller posts the status in the Controller Invocation Block, sends an interrupt to the host and awaits further instructions.

These I/O communications blocks are accessed in a similar manner when performing a write function.

A detailed description of these blocks and the data required in each is provided in Paragraphs 3-7 through 3-11. Refer to Paragraphs 2-7 through 2-10 for a discussion of selecting the wake-up address, wake-up I/O port address and 8-bit or 16-bit host.

3-6. HOST CPU-CONTROLLER-DISK DRIVE INTERACTION

Figure 4-2 shows a simplified block diagram of the major hardware sections of the host CPU, host memory, controller and disk drives. The host system memory contains all the controller I/O communications blocks, as well as the data buffers. The host initiates controller activity through the wake-up I/O port, which it addresses through the Multibus interface. The Intel 8089 I/O processor (IOP) handles all communications between the host CPU, host memory and disk drives, once the host has initiated controller activity. Controller operations software is contained in on-board PROM. RAM on the controller board facilitates intermediate data storage between the host and the disk drive. The iSBX bus provides a second I/O transfer path between the controller and an I/O controller such as the iSBX 218 Flexible Disk Controller.

3-7. WAKE-UP I/O PORT

To invoke controller activity, the host CPU transmits a wake-up command byte to the controller through the wake-up I/O port. Three wake-up commands are allowed:

H00	CLEAR INTERRUPT — Controller to host interrupt is reset; controller reset is cleared.
01H	START OPERATION — Instructs controller to start the operation that the elements of the I/O parameter block define.

02H

RESET CONTROLLER — Performs hardware reset of controller. A clear interrupt (00H) must be initiated following this command. (Each time the controller is reset, the communications link between the controller and the host must be re-established through the Initializing function.)

03H through FFH Reserved.

The sixteen wake-up address switches on the controller board determine the address of the wake-up I/O port as described in Paragraph 2-9.

3-8. WAKE-UP BLOCK

The Wake-Up Block is the first of the I/O communications blocks (see Figure 3-4). It is used to establish a link between the controller and the I/O communications blocks in host system memory.

3-9. CHANNEL CONTROL BLOCK

The controller uses the Channel Control Block to indicate the status of the internal processor (the Intel 8089 I/O Processor) and to invoke processor program operations. The Channel Control Block requires 16 bytes (see Figure 3-5). Except for the BUSY 1 flag (byte 1) and the Controller Invocation Block address (bytes 2 through 5), the information contained in this block is used to invoke controller operations that are transparent to the host.

3-10. CONTROLLER INVOCATION BLOCK

The controller uses the Controller Invocation Block (CIB) to post status to the host CPU and to locate the starting address for the controller's on-board disk interface program. The status semaphore byte (byte 3) has a special purpose. The host uses this byte to indicate to the controller whether it has read the current contents of the status byte and is ready for a status update. The Controller Invocation Block requires 16 bytes (see Figure 3-6).

3-11. I/O PARAMETER BLOCK

The I/O Parameter Block (IOPB) contains the controller operating commands, which define the function the controller is to perform (read, write, etc.), and the parameters of the function (memory address, disk head and cylinder, etc.). The I/O Parameter Block requires 30 bytes of host memory space. Figure 3-7 describes the function of each byte.

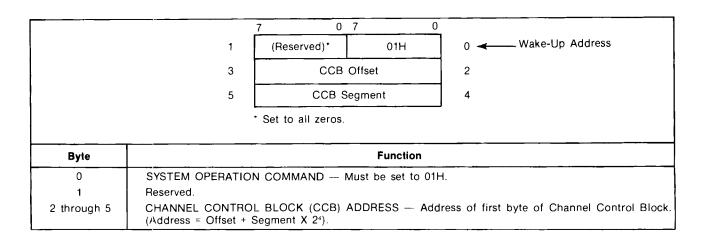


Figure 3-4. Wake-Up Block

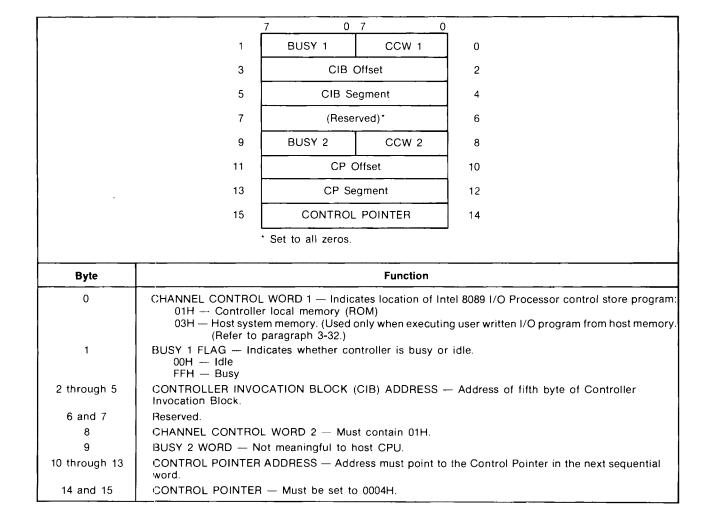


Figure 3-5. Channel Control Block

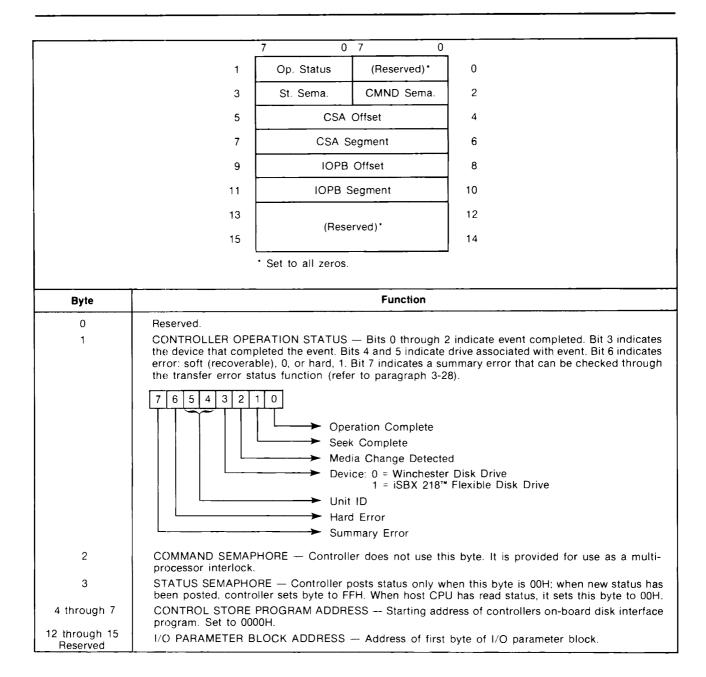


Figure 3-6. Controller Invocation Block

3-12. TYPICAL CONTROLLER OPERATIONS

The following section describes how to set up the I/O communications blocks in the host memory, how to initialize the controller and how to perform the various data transfer operations. It is assumed that the controller board has been properly installed as described in Chapter 2.

3-13. INITIALIZING THE CONTROLLER

The controller must be initialized before any data transfer activities between the host system memory and the disk drives can be initiated. Initialization of the controller involves:

 Establishing a link between the 8089 and the I/O communications blocks in host system memory.

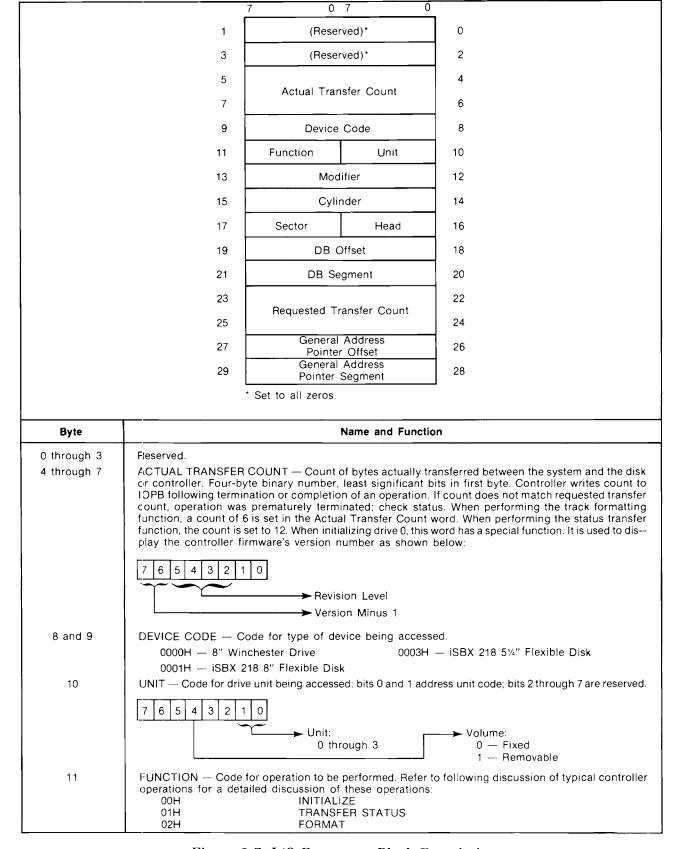


Figure 3-7. I/O Parameter Block Description

	03H 04H 05H 06H 07H 08H 09H - 0BH 0CH 0DH 0EH	READ SECTOR ID READ DATA READ TO BUFFER AND VERIFY WRITE DATA WRITE BUFFER DATA INITIATE TRACK SEEK Reserved ISBX EXECUTE ISBX TRANSFER BUFFER I/O DIAGNOSTIC	
12 and 13	MODIFIER — Code to modi Bit 0 Bit 1 Bit 2 Bits 3 through 15	ify function codes. Suppresses interrupt on command completion when set to 1. Automatic retries for error recovery are inhibited when set to 1. Allows READ DATA, READ TO BUFFER AND VERIFY, WRITE DATA and WRITE BUFFER DATA functions to be modified to read or write deleted data, respectively, through the iSBX 218™ I/O controller: 0 = Normal Data; 1 = Deleted Data. Reserved.	
14 and 15	CYLINDER — Binary numbe	er specifying logical cylinder code; bit 0 is least significant bit of number.	
16	· · · · · · · · · · · · · · · · · · ·	ecifying logical head code; bit 0 is least significant bit of number.	
17	SECTOR — Binary number specifying logical sector code; bit 0 is least significant bit of number.		
18 through 21	DATA BUFFER ADDRESS — Address of first byte in host system memory data (parameter) buffer.		
22 through 25	REQUESTED TRANSFER COUNT — Count of bytes requested to be transferred between the system and the disk or controller. Four-byte binary number, least significant bits in first byte. See description of ACTUAL TRANSFER COUNT, bytes 4 through 7 in IOPB.		
26 through 29	GENERAL ADDRESS POIN	TER — General purpose address pointer.	

Figure 3-7. I/O Parameter Block Description (Continued)

2. Reading the parameters that describe the disk drives with which the controller is to interface into the controller's RAM buffer, using the Initialize function (FUNCTION = 00H).

This initialization must be performed following a:

- 1. Power-on event.
- 2. Controller reset (02H written to the wake-up I/O port).

After the controller has been initialized, any of the data transfer functions described in Paragraphs 3-14 through 3-25 can be performed in any sequence. (Refer to Paragraphs 4-12 through 4-15 for a detailed explanation of controller initialization.)

The following procedure gives the sequence in which the controller initializing activities must be performed. Prior to initializing the controller, check that the system data bus switch (S2-1), the host system I/O address switch (S2-2), the wake-up address switches (S1-1 through S1-8 and S2-3 through S2-10), and the interrupt level jumper have been set as described in the procedure titled Switch/Jumper Configurations in Chapter 2.

NOTE

When the system is first powered-on, the Pertec or Priam drives will not spin until each has received an initialize command. For each drive, the initialize command thus cannot be completed until the drive has reached its operating speed and entered the ready state. This spin-up time varies from approximately 20 seconds for the Priam drives to 90 seconds for the Pertec drives.

The Shugart and Memorex drives spin-up as soon as power is applied. If an initialize command is issued to a unit that has not yet reached operating speed, a not ready error is posted.

To initialize the controller, the host CPU must perform the following steps:

1. Establish addresses for the four I/O communications blocks in host memory:

Wake-Up Block	6 Bytes
Channel Control Block	16 Bytes
Controller Invocation Block	16 Bytes
I/O Parameter Block	30 Bytes

Remember that the address of the first byte of the Wake-Up Block must be equal to the wake-up address set in the controller's wake-up address switches times 24. For example, if the switches are set to 0673H, the address of byte 0 of the Wake-Up Block is:

06730H 20-Bit Addressing 6730H 16-Bit Addressing

- 2. Set up the shaded bytes in the Wake-Up Block (see Figure 3-8).
- 3. **Set BUSY 1 flag (Optional).** Set the BUSY 1 flag (byte 1 of the Channel Control Block) to non-zero (FFH). This allows the host to monitor the BUSY 1 flag to find out when the initialization procedure is complete.
- 4. **Reset the controller.** Host writes a 02H to the wake-up I/O port.
- 5. Clear the reset. Host writes a 00H to the wake-up I/O port.
- 6. Establish the host-controller communications link. Write a 01H to the wake-up I/O port. The controller goes to the Wake-Up Block in host memory and records the address of the Channel Control Block, then goes to the Channel Control Block and clears the BUSY 1 FLAG. On all subsequent 01H commands to the wake-up I/O port, the controller will go to the Channel Control Block.
- 7. Set up the shaded bytes in the Channel Control Block as shown in Figure 3-8.
- 8. Set up the shaded bytes in the Controller Invocation block as shown in Figure 3-8. Be sure the STATUS SEMAPHORE, byte 3, is set to 00H.
- 9. Set up the shaded bytes in the I/O Parameter Block as shown in Figure 3-8. Be sure the UNIT, byte 10, is set for the correct unit number and the FUNCTION, byte 11, is set for the Initialize function (FUNCTION = 00H). Initialize unit 0 first.
- 10. **Establish parameter buffer.** Set up a disk drive parameter data buffer with the parameters for the drive to be initialized as shown in Figure 3-8. Be sure the data buffer address in the I/O Parameter Block points to the first address of this data buffer.
- 11. Start initialize function. Poll the BUSY 1 flag (Byte 1 of the CCB) and write a 01H to the wake-up I/O port when the flag is zero. The controller goes to the Channel Control Block, then links its way through the Controller Invocation Block and I/O Parameter Block and reads the disk drive parameters for the unit specified.
- 12. Respond to and process the resulting interrupt or status or both.

- 13. **Reset I/O Parameter Block.** Set the UNIT, byte 10, for the next unit to be initialized and set the data buffer address, byte 18 through 21, for the beginning address of the unit's disk parameters.
- 14. Repeat steps 9 through 12 for each drive unit. Note that the initialization procedure MUST BE PERFORMED FOR ALL FOUR DRIVE UNITS, starting with unit 0, even if one or more of the drives do not exist. Initialize all unattached drives with all zeros.
- 15. **Initialize flexible disk drive units.** If an iSBX 218 controller is installed on the iSBX 215 controller board, repeat steps 9 through 14 for all four flexible disk drive units.

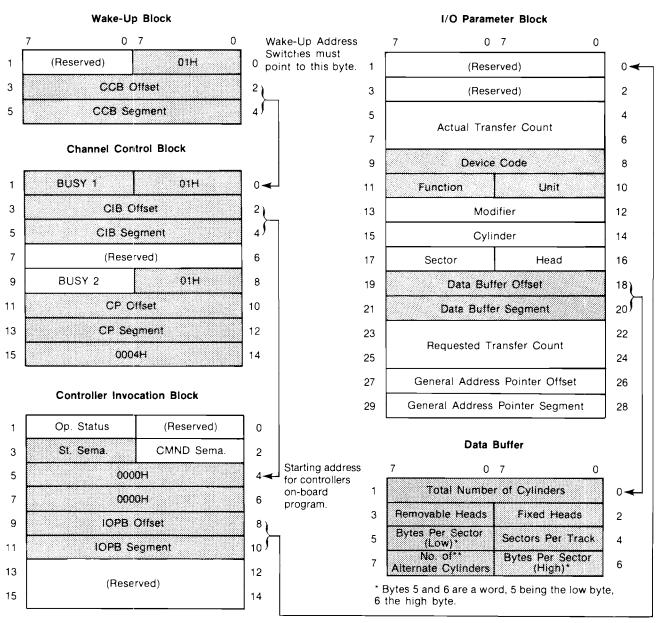
NOTE

The Winchester disk drive units must be initialized before initializing the flexible disk drive units.

The controller is now initialized. This procedure need not be repeated except after a power-on or a controller reset. For all subsequent disk activities, the host communicates with the controller through the Channel Control Block, the Controller Invocation Block and the I/O Parameter Block.

3-14. TRACK FORMATTING

The Format Track function (FUNCTION = 02H) writes the gaps, sector headers and data fields (see Figure 3-2) on a track — one track per command. A track can be designated as a normal, assigned alternate or defective track. A defective track always points to an assigned alternate track. Refer to the discussion of alternate and defective track handling in Paragraph 3-15.


Use the following procedure to format a track.

- 1. Set up the I/O Parameter Block as shown in Figure 3-9.
- 2. Set up a 6-byte data buffer for the type of track to be formatted as shown in Figure 3-9. A track can be designated as a data track, assigned alternate track or defective track. The user pattern is repeated throughout the data field of every sector. In the case of a defective track, the user pattern is a pointer to the alternate track. If the alternate track is defective, it can not be used to point to another alternate. An interleave factor of 1 corresponds to consecutive sectors.

- 3. Initiate the format operation. Write a 01H to the wake-up I/O port.
- 4. Respond to and process the resulting interrupt or status or both.

NOTE

Always format the last track on head 0 as a data track. This track should then be reserved for use by the on-board diagnostic.

Note: Set up the shaded bytes in each of the I/O communications blocks and in the data buffer.

**This byte defines the bit encoding scheme when initializing a flexible disk unit connected to the iSBX 218TM controller: 00H for FM (single density) and 01H for MFM (double density). The iSBX 218TM controller does not support 128 bytes per sector in the MFM mode.

Figure 3-8. I/O Communications Blocks Linking

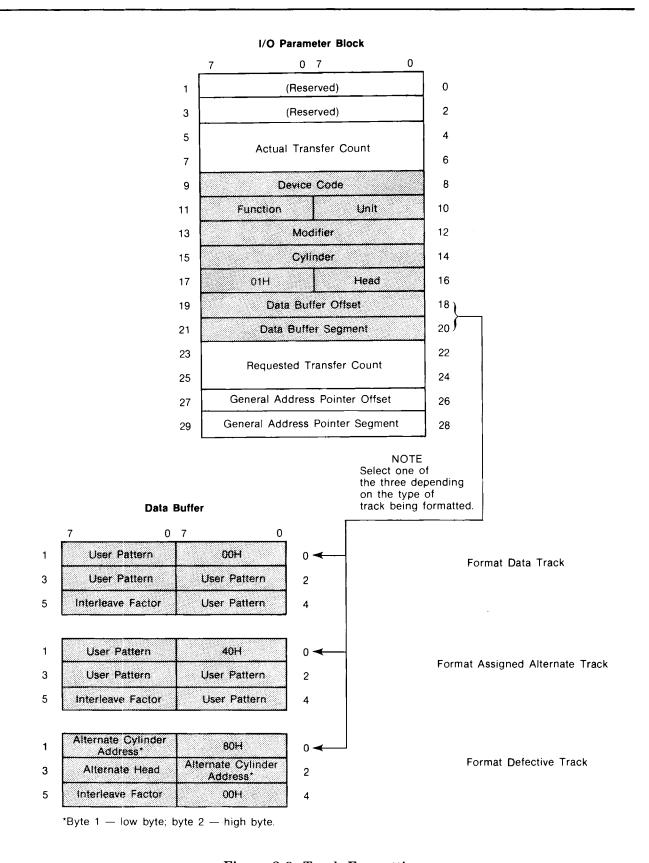


Figure 3-9. Track Formatting

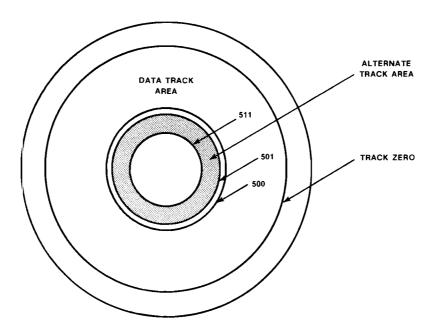


Figure 3-10. Alternate Track Formatting

3-15. ALTERNATE AND DEFECTIVE TRACK HANDLING

It is suggested that each disk surface be divided into two areas (see Figure 3-10), the data track area and the alternate track area. The user assigns the number of tracks in the alternate track area, typically 1 - 2% of the total number of available tracks on the surface. If a disk surface has 512 tracks, tracks 0 through 500 would constitute the data track area and tracks 501 through 510 would constitute the alternate track area. The last track at Head 0 must be reserved for the diagnostic program.

When a track within the data track area is deemed defective, the host reformats the track, giving it a defective track code and entering the address of the next available alternate track in the data fields. The alternate track that is selected must be formatted as an assigned alternate track.

When the controller accesses a track that has been previously marked defective, it will automatically invoke a seek to the assigned alternate track and use the alternate as if it were in the data track area. This operation is automatic and is invisible to the user, except for the added time required to complete the operation.

3-16. DATA TRANSFER AND VERIFICATION

Nine data transfer and verification command functions are allowed, selected through the FUNC-TION byte in the I/O Parameter Block: Read Sector ID, Read Data, Read Data to Buffer and Verify, Write Data, Write Data from Buffer, Initiate Track Seek, Execute iSBX I/O Program, I/O Transfer through iSBX Bus, and Buffer I/O.

NOTE

All data transfers between the host system memory and a disk drive unit are buffered through the controller's on-board RAM buffer. During a write, the controller performs a DMA transfer of a one-sector block of data from the host system memory to the RAM buffer. It then transfers the sector serially from the RAM buffer to the disk in two byte increments. When reading from the disk, the controller performs a serial transfer of a sector of data from the disk to the RAM buffer in two byte increments. When the entire sector has been read into the RAM and all error checking has been completed, the controller then performs a DMA transfer of the one-sector block from the RAM to host system memory.

The controller contains a burst error checking code (ECC) computing circuit that creates an error checking code for each sector ID and each data block written into disk memory. When reading data from the disk, the controller verifies the sector ID and the information in the data blocks using these error checking codes. If errors are detected that can be corrected (occur within an eleven-bit burst or less), they are corrected and the remainder of the operation is completed. If the error cannot be corrected, the sector is re-read. If after 3 retries the errors remain uncorrectable, the operation is terminated and a Hard Error is indicated in the operation status byte (byte 1) of the Controller Invocation Block. To obtain detailed information on the nature of the error, perform the Transfer Error Status function (refer to Paragraph 3-28).

Each of the data transfer and verification functions is described in detail in the following paragraphs. To use any one of these functions, the host CPU must perform the following steps:

- Set up the I/O parameter block as shown in the paragraph describing the function.
- Initiate the operation. Write a 01H to the wake-up I/O port.

I/O Parameter Block

3. Respond to and process the resulting interrupt or status or both.

3-17. READ SECTOR ID

The Read Sector ID function (FUNCTION = 03H) searches for the first error free sector ID on the selected track and writes the contents of the sector ID field into a 5-byte data buffer in host memory (see Figure 3-11). An implied seek, head select or volume change, is not performed. The Read Sector ID is performed on the cylinder, volume and head that the previous function selected. One use of this function is to search the alternate track area for tracks that have not been assigned as alternates.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-11, and reserve a 5-byte data buffer in host system memory.

3-18. READ DATA

The Read Data function (FUNCTION = 04H) reads data from the disk into host system memory. It begins reading with the first byte of the selected

1 (Reserved) 0 3 (Reserved) 2 5 4 Actual Transfer Count 7 6 Q. Device Code 8 11 Function Unit 10 Modifier 13 12 15 Cylinder 14 17 Sector Head 16 19 **Data Buffer Offset** 18 21 Data Buffer Segment 20 23 22 Requested Transfer Count 25 24 General Address Pointer Offset 27 26 29 General Address Pointer Segment 28

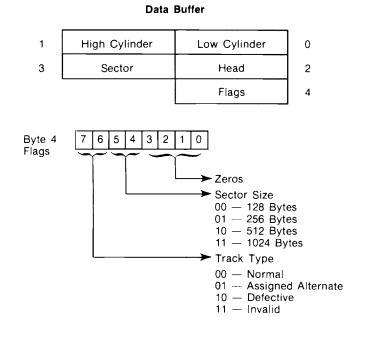


Figure 3-11. Read Sector ID

sector and ends reading when the requested byte count is reached, end of media is reached or a hard failure is detected. If multi-sector data transfers are requested the controller automatically seeks to the next sector, the next head and the next cylinder, in that order. Automatic head increments are supported only within the volume, fixed or removable, but not between volumes, for example, fixed across to removable. The last sector, head and track address in the data track area defines the end of media. An implied seek is invoked if the current head position is different from the specified track identification. The DATA BUFFER address set in the I/O parameter block is the address in host system memory where the first data byte read from the disk is to be transferred. Since the data being transmitted from the disk drive is buffered in the controller's RAM. data overruns cannot occur. To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-12.

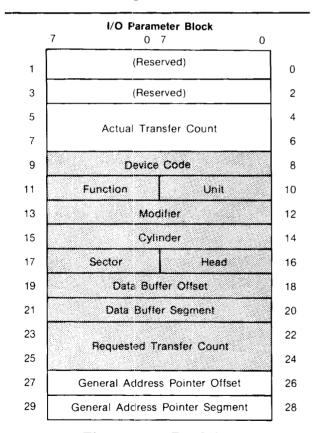


Figure 3-12. Read Data

3-19. READ DATA INTO CONTROLLER BUFFER AND VERIFY

The Read Data into Controller Buffer and Verify function (FUNCTION = 05H) reads data from the disk into the controller on-board RAM and checks the ECCs to verify the sector ID and data fields for all sectors affected. It begins reading with the first

byte of the selected sector and ends reading when the requested byte count is reached, end of media is reached or a hard failure is detected. The multisector data verification is supported through the auto-sector, auto-head, auto-cylinder protocol described for Read Data function. End of media and implied seek are also supported as described for the Read Data functions.

The Read Data into Controller Buffer and Verify function has three applications:

- 1. Allows data to be verified after it has been written from host system memory to the disk.
- 2. Allows data to be transferred from one disk location to another by coupling this function with the Write Data from Controller Buffer function.
- 3. Allows data to be transferred from an Winchester disk to a device connected to the iSBX bus. To perform this operation, the Read to Buffer and Verify command is coupled with either the iSBX Execute command or the Write Buffer Data command (iSBX 218 controller is specified to receive the data).

To perform the Read Data into Controller Buffer and Verify function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-13.

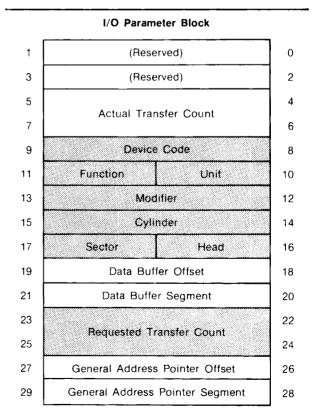


Figure 3-13. Read Data into Controller Buffer and Verify

3-20. WRITE DATA

The Write Data function (FUNCTION = 06H) writes data from host system memory onto the disk. It begins reading from the specified host data buffer address and writes to the first byte of the selected sector. It ends writing when the requested byte count is reached, end of media occurs or a hard failure is detected. When writing to more than one sector, the sector selection is automatic as described for the Read Data function. Auto-head increments and implied seek are also supported as described for the Read Data function. If writing ends in the midst of a sector, the remaining area of the sector is filled with zeros.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-14.

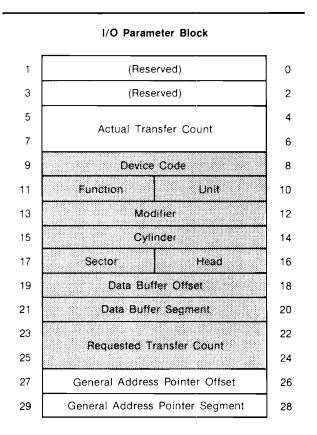


Figure 3-14. Write Data

3-21. WRITE DATA FROM CONTROLLER BUFFER TO DISK

The Write Data from Controller Buffer to Disk (FUNCTION = 07H) writes data from the controller on-board RAM onto the disk. It begins reading from the first address of the controller's data buffer

(4010H) and writes to the first byte of the selected disk sector. It ends writing when the requested byte count is reached, end of media occurs or a hard failure is detected. When writing to more than one sector, the sector selection is automatic as described for the Read Data function and the data in the buffer is repeated for each sector written. Auto-head increments, implied seek and end of media are also supported as is described for the Read Data function. If writing ends in the midst of a sector, the remaining area of the sector is filled with zeros.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-15.

I/O Parameter Block 1 (Reserved) 0 3 (Reserved) 2 5 4 Actual Transfer Count 7 6 9 Device Code 8 **Function** Unit 10 11 13 Modifier 12 Cylinder 14 15 17 Sector Head 16 19 Data Buffer Offset 18 21 Data Buffer Segment 20 23 22 Requested Transfer Count 25 24 27 General Address Pointer Offset 26 29 General Address Pointer Segment 28

Figure 3-15. Write Data From Controller Buffer to Disk

3-22. INITIATE TRACK SEEK

The Initiate Track Seek function (FUNCTION = 08H) positions the read/write head on a specified track, if the head is not already on that track. When issued sequentially to several drives, this command allows multiple disk drives to perform concurrent (overlapping) seeks. If a seek to a cylinder beyond the end of media, including alternates, is initiated, the drive automatically performs a rezero operation

and posts invalid address error. If an operation complete interrupt is enabled, it is invoked when the seek command has been initiated and a seek complete interrupt (which is always enabled) is invoked when the seek is completed. The operation complete interrupt allows a function to be initiated on a second drive while the seek is being performed on the first drive.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-16.

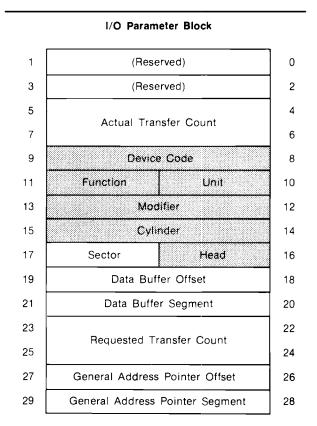


Figure 3-16. Initiate Track Seek

3-23. EXECUTE iSBX™ I/O PROGRAM

The Execute iSBX I/O Program function (FUNC-TION = 0CH) transfers program control to a program stored in the controller on-board RAM memory. This program must be coded in 8089 assembler code. It is loaded into RAM using the Buffer I/O function (FUNCTION I/O = 0EH). Program control is transferred to the RAM address specified in the General Address Pointer, bytes 26 through 29 in the I/O parameter block. Upon completion of the program, the program must exit to ROM location 00C5H. The programs, which this function activates, are written to perform I/O transfers to peripheral devices through the iSBX bus (refer to Paragraphs 3-31 and 3-32 for more information concerning the use of this function).

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-17. The outlined bytes are optional. Their use depends on the requirements of the user written I/O program.

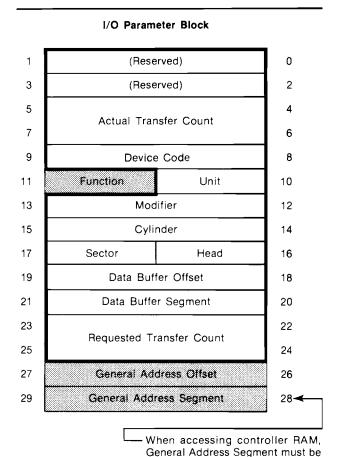


Figure 3-17. Execute iSBX™ Interface I/O Program

set to 0000H.

3-24. I/O TRANSFER THROUGH iSBX™BUS

The I/O Transfer Through iSBX Bus function (FUNCTION = 0DH) transfers a block of data between host system memory and the iSBX bus ports. The beginning address in host system memory and the number of bytes to be transferred is specified in the respective locations in the I/O parameter block. The iSBX bus port address, width of the port (8 bit or 16 bit), direction of transfer and mode of transfer are specified in the cylinder and head locations of the I/O parameter block (Refer to Paragraphs 3-31 through 3-32 for more information concerning the use of this function.)

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-18.

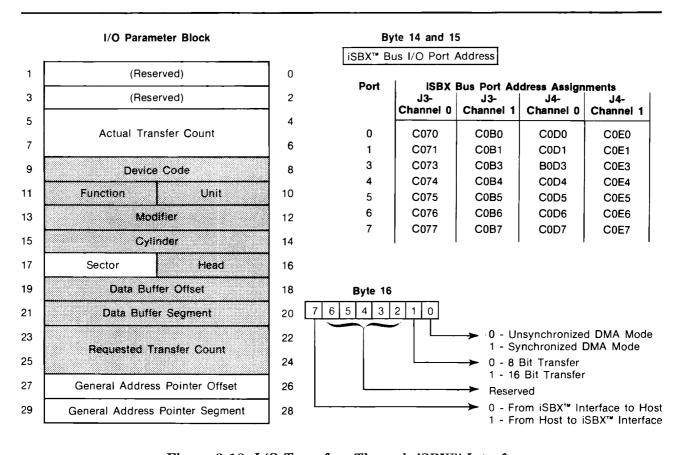


Figure 3-18. I/O Transfers Through iSBX™ Interface

3-25. BUFFER I/O

The Buffer I/O function (FUNCTION = 0EH) transfers data between the host system memory and controller on-board RAM. Beginning addresses in the host system memory and controller buffer memory are specified. Data transfer begins at these addresses and ends when the requested byte count is reached. Since the controller has only 64K bytes of local memory address space, the most significant bytes of the REQUESTED TRANSFER COUNT (bytes 24 and 25) are ignored.

CAUTION

Data transfers from the host system memory to the controller-buffer must be written to addresses within the range of 4000H to 4600H.

The beginning address in controller memory and the direction of data transfer are specified in the CYLINDER and HEAD fields, respectively:

Bytes 14 and 15 Starting controller memory address:

Bytes 14 and 15 Starting controller memory address:

Byte 15 — High Byte

Byte 14 — Low Byte

Byte 16 Direction of data transfer:

00H — From controller to host

FFH — From host to controller

The Buffer I/O function has three applications. Its primary purpose is for use with the diagnostic program. It also allows memory-to-memory transfers with a minimum of host overhead. In addition, it allows down-loading of user written, I/O transfer control programs from system memory to controller memory. Such programs allow 8089 control of I/O transfers through the iSBX bus as discussed in Paragraph 3-23.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-19.

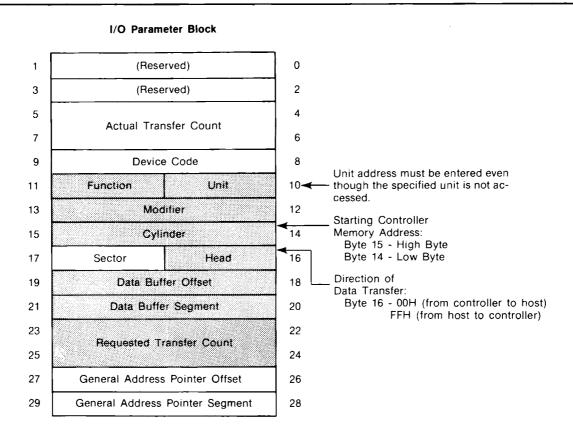


Figure 3-19. Buffer I/O

3-26. DIAGNOSTIC

The diagnostic function (FUNCTION = 0FH) causes the controller to perform a go/no-go self-diagnostic test that verifies internal data and status electronics and checks position and read/write electronics in the disk units. The diagnostic test program is contained in the controller's on-board PROM.

The diagnostic track is always located on a drive unit's last (highest number) track of head 0. When allocating memory space for the disk unit, this track must be dedicated to the diagnostic program. When initiating the diagnostic program, the head and cylinder are selected automatically, the user selects the drive unit. The diagnostic test is divided into three parts. The upper byte of the MODIFIER field (byte 13) determines the part of the diagnostic test that is executed:

Byte 13 Function Executed

OOH Controller seeks the designated diagnostic track, performs a read ID and verifies the track position. It then writes and reads sector 0 with a

55AAH data pattern and verifies that the data read matches the data written.

01H Controller performs a ROM checksum test to verify the contents of ROM.

02H to Controller recalibrates the drive. FFH

Any errors in the reading or writing are posted in the error status registers.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-20.

3-27. POSTING STATUS

When the controller has completed an operation (read data, seek track, etc.), it posts the operation status in byte 1, the OPERATION STATUS byte, of the controller invocation block, using the following procedure:

I/O Parameter Block

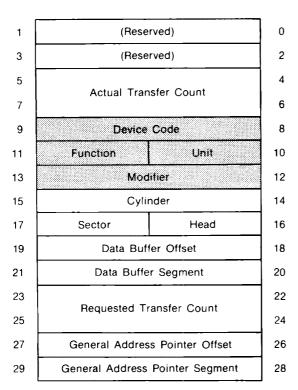


Figure 3-20. Diagnostic

- 1. The controller checks the STATUS SEMA-PHORE byte (byte 3 of the controller invocation block) for 00H.
- 2. If the STATUS SEMAPHORE byte is non-zero, it indicates that the host CPU has not checked the OPERATION STATUS byte for the last status posted. When the host CPU does check the operation status, it sets the STATUS SEMAPHORE byte to 00H and clears the interrupt.
- 3. When the controller reads 00H in the STATUS SEMAPHORE byte, it posts the current status in the OPERATING STATUS byte, sets the STATUS SEMAPHORE byte back to non-zero and sets an interrupt if enabled (see MODIFIER, bytes 12 and 13, in Figure 3-7).
- 4. The host CPU in turn, either polls the STATUS SEMAPHORE byte periodically for a non-zero or is interrupted, indicating that new status is present.

The status posted includes: operation complete, seek complete, media change detected and errors detected. If an error was detected, the unit on which the error occurred and an indication of whether the error was a hard error or a summary error is posted (see Figure 3-6). A more detailed description of the error is

recorded in the error status buffer in the controller memory. To examine this error status the user transfers the information in the error status buffer from the controller to host system memory using the transfer error status function (FUNCTION = 01H) described in Paragraph 3-28.

It should be noted that error status information is not cumulative. The error status buffers are cleared at the beginning of each new command operation, except the Transfer Error Status Command.

3-28. TRANSFER ERROR STATUS

The Transfer Error Status function (FUNCTION = 01H) transfers error status from the 12-byte error status buffer in the controller memory to a data buffer in the host system memory. The user can then examine the status bits to determine the cause of the error. Table 3-1 shows the information stored in each byte of the error status buffer. Table 3-2 describes which kind of errors are indicated by the setting of the hard (unretrievable) error and soft (retrievable) error bits in bytes 0 through 2. To perform the Transfer Error Status function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-21.

I/O Parameter Block

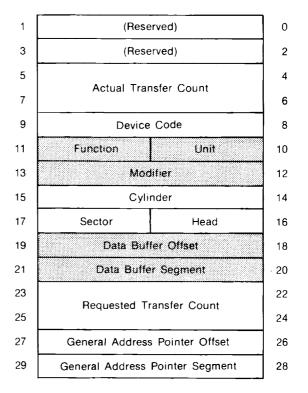


Figure 3-21. Transfer Error Status

Table 3-1. Error Status Buffer

Byte	Function	
0 and 1	HARD ERROR STATUS — See Table 3-2.	
2	SOFT ERROR STATUS — See Table 3-2.	
3 and 4	DESIRED CYLINDER	
5	DESIRED HEAD AND VOLUME	
6	DESIRED SECTOR	
7 and 8	ACTUAL CYLINDER AND FLAGS*	
9	ACTUAL HEAD AND VOLUME	
10	ACTUAL SECTOR	
11	NUMBER OF RETRIES ATTEMPTED	
*Flags located in bits 4 through 7 of byte 8.		

3-29. INTERRUPTS

The controller normally posts interrupts to the host on three conditions:

- 1. Command complete
- 2. Seek complete
- 3. Media change (change disk pack)

The interrupt on command complete can be disabled by entering a one in bit 0 of the Modifier word in the I/O parameter block (bytes 12 and 13). The seek complete and media change interrupts can not be disabled. To clear an interrupt, the host writes a 00H to the Wake-Up I/O port.

Pins on the controller board allow the interrupt priority level of the controller to be set from 0 to 7. Refer to the discussion of interrupt priority level selection in Chapter 2.

3-30. CONTROLLING DATA TRANSFER THROUGH THE ISBX™ BUS

Two iSBX connectors, J3 and J4, are provided on the iSBC 215 board, which allow access to the controller's iSBX bus. The iSBX bus is an Intel standard I/O interface (refer to the *Intel iSBX*TM *Bus Specification*, Manual Order No. 142686 for detailed information on this standard). It provides 16 data lines and three address lines, providing a total of eight 16-bit I/O ports per connector. Using both J3 and J4, the iSBC 215 controller can thus communicate through the iSBX bus with up to 16 separate peripheral ports.

The iSBX 218 Flexible Disk Controller connects to iSBX connector J4 and allows communication with up to four flexible disk drives. In addition, users can design I/O controller devices that interface with the iSBX bus and use the 8089 to control data transfer.

Two methods are available to control the transfer of data between the iSBC 215 controller and a device connected to the iSBX interface:

- Commands from the iSBC 215 controller ROM based I/O program.
- 2. User written I/O program.

The iSBX 218 Flexible Disk Controller uses the ROM based I/O program to control data transfers to and from the flexible disk drives, as described in Paragraphs 3-5 through 3-29. The following paragraphs describe how data can be transferred between the iSBC 215 controller and a user designed I/O controller connected to the iSBX bus, using either the ROM based I/O program or a user written I/O program.

3-31. I/O TRANSFERS USING ISBC 215™ CONTROLLER RESIDENT FIRMWARE

As has been described at the beginning of this chapter, the controller has a ROM based I/O transfer program that is designed to control Winchester drives through the on-board drive interface or flexible disk drives through an iSBX 218 board, which has been attached to iSBX connectors J4. The iSBX TRANSFER command in this program can also be used for general data transfer between the host system memory and a user designed I/O controller, which has been connected to the iSBX bus.

The iSBX TRANSFER command allows the transfer of data between the host memory and the iSBX bus in the same manner as with the WRITE DATA or READ DATA commands. In this case, however, the user must provide the necessary interface hardware between the iSBX connector(s) and the I/O device with which the controller is to communicate. This interface can be very simple, involving data buffers and limited handshaking capability, or as sophisticated as the disk drive interface circuitry used in the iSBX 218 and iSBC 215 controllers. The complexity of the interface will depend on the type of I/O device being interfaced with and the desired data transfer rate.

3-32. DATA TRANSFER USING USER WRITTEN I/O TRANSFER PROGRAMS

A second method of initiating and controlling data transfer between the host and the iSBX interface is through a user designed program written in 8089 assembler code. This method is more difficult to implement, but also more flexible. Such programs can be executed either from host memory or from the iSBC 215 controller on-board RAM.

Table 3-2. Bit Functions in Hard and Soft Error Bytes

Byte	Bit	Function
0	0 through 2	Reserved for future use.
	3	RAM ERROR — Controller RAM error was detected.
	4	ROM ERROR — Controller ROM error was detected.
	5	SEEK IN PROGRESS — Indicates a seek was already in progress for a unit when another disk operation was requested.
	6	ILLEGAL FORMAT TYPE — Both alternate track and defective alternate track flag set indicating an attempt to create an alternate track for a defective alternate track, which is not allowed, or an attempt to access an unassigned alternate track.
	7	END OF MEDIA — End of media was encountered before requested transfer count expired.
1	8	ILLEGAL SECTOR SIZE — Sector size read from the sector ID field conflicts with sector size information that controller specified in initialization command.
Ì	9	DIAGNOSTIC FAULT — Micro-diagnostic fault detected.
	Α	NO INDEX — Controller did not detect index pulse.
	В	INVALID COMMAND — Invalid function code detected.
	С	SECTOR NOT FOUND — Desired sector could not be located on selected track.
	D	INVALID ADDRESS — Invalid address was requested.
	Е	SELECTED UNIT NOT READY — Selected unit is not ready, not connected, or not responding to unit connect request.
	F	WRITE PROTECTION FAULT — An attempt has been made to write to a write protected unit.
2	0 through 2	Reserved for future use.
	3	DATA FIELD ECC ERROR — Error has been detected in the data field of a sector. If bit 6 in Controller-Invocation status byte (byte 1) is set, error is hard and uncorrectable. If bit 6 is not set, error is soft and correctable.
	4	ID FIELD ECC ERROR — Error has been detected in the ID field of a sector. If bit 6 in Controller-Invocation status byte (byte 1) is set, error is hard and uncorrectable. If bit 6 is not set, error is soft and correctable.
	5	DRIVE FAULT — Hardware fault detected in selected drive unit. Fault characterized by: read/write fault, positioner fault, power fault or speed fault.
	6	CYLINDER ADDRESS MISCOMPARE — ID field contains a cylinder address different from the expected cylinder address.
	7	SEEK ERROR — Hardware seek error was detected.

Executing the program from host memory is inherently slower than executing the program from onboard RAM, because it requires constant access of the Multibus interface. This method, however, allows the size of the program to be virtually unlimited. The procedure for executing a program from host memory is much the same as for executing a program stored in controller local memory:

- 1. I/O communications blocks are established in host system memory.
- 2. The Wake-Up Address switches in the controller are set for the address of the first byte of the wake-up block.
- 3. The host initiates program execution with 01H written to the wake-up I/O port.

There are two important differences in the set up of the I/O communications blocks when executing I/O programs from host system memory.

- 1. Byte 0 of the channel control block must be set to 03H to indicate to the controller that the I/O program is located in host memory.
- 2. The controller invocation block becomes the I/O parameter block. Refer to the 8086 Family User's Manual, Manual Order No. 9800722 for detailed information on setting up an I/O parameter block when the I/O program is to be executed from host system memory.

Executing the program from on-board RAM presents space limitations, but allows data transfers to be performed at the 8089's full program execution speed. To overcome some of the limited RAM space problems, the program can be divided into shorter routines, which are stored in the host memory and read into RAM as needed. Separate routines might thus be written for disk formatting, checking status, writing and reading. The iSBX EXECUTE com-

mand, allows an I/O transfer routine or program that is stored in iSBC 215 controller RAM to be started from a host program. When writing an I/O transfer program, the following software and hardware considerations should be noted.

I/O PORT ADDRESSING

The eight iSBX bus ports reside in the controller's memory mapped I/O space, with each I/O port being given two addresses: one to connect it to connector J3 and another for J4. Table 3-3 shows these addresses. To access any of these ports for a data transfer, the 8089 merely executes a write or a read to the address of the selected port.

Table 3-3. iSBX™ Bus I/O Port Addresses

Port	iSBX Bus Port Address Assignments			
	J3- Channel 0	J3- Channel 1	J4- Channel 0	J4- Channel 1
0	C070	C0B0	CODO	C0E0
1	C071	C0B1	C0D1	C0E1
3	C073	C0B3	B0D3	C0E3
4	C074	C0B4	C0D4	C0E4
5	C075	C0B5	COD5	C0E5
6	C076	C0B6	COD6	C0E6
7	C077	C0B7	C0D7	C0E7

RAM SPACE ALLOCATION

The controller RAM is used for a variety of purposes, and as such, only a portion of it is available for storage of an iSBX bus I/O program and its parameters. The available RAM space is shown in Table 3-4. Note that enough space has been reserved in the data buffer to store an entire 1024 byte disk sector of data. If the sectors are to be smaller or if for some other reason less data buffer space is needed, some of this space can be used for program storage.

Table 3-4. iSBC 215^{TM} Controller RAM Available for Program and Parameter Storage

Description	Address Range
Data Buffer*	4000 to 440F
Program Storage	4410 to 45FF 46C0 to 473A
Scratch PAD*	4600 to 46BF
Variable Storage**	47B0 to 47CF 47E0 to 47FF

PROGRAM STRUCTURE

In writing a program in 8089 assembly code, reference to the 8089 Assembler User's Guide, Manual Order number 9800938 and the 8086 Family User's Manual, Manual Order No. 9800722 is essential. The 8089 offers a number of techniques for implementing handshaking between the 8089 and the iSBX bus, including the user of wait states and DMA transfers (essentially an interrupt driven mode) of whole blocks of data. These and other interfacing techniques are discussed in this user's guide.

HARDWARE CONSIDERATIONS

There are two groups of interface control lines between the 8089 and the iSBX bus. The first group includes handshake and control lines; the second group includes program lines.

Table 3-5 lists the first group of lines. The 8089 uses these lines directly to control data transfer through the iSBX bus.

Table 3-5. 8089 Handshake and Control Lines on the iSBX™ Bus

J3 or J4 Pin	Description	iSBX Bus Mnemonic
34	Request DMA Transfer	MDRQT
32	Acknowledge DMA Transfer	MDACK/
16	Initiate Wait State	MWAIT/
6	Multibus Clock	MCLK
15	I/O Read	IORD/
13	I/O Write	IOWRT/
26	Terminate DMA Activity	TDMA

The second group of lines are used for control and status. The 8089 accesses these lines through a read to memory mapped I/O address 8000H for connector J3 and 8008H for connector J4. Table 3-6 lists these lines, their pin assignments and bit assignments.

Jumpers can be connected on the iSBC 215 controller to allow the 8089 to also write bits onto the Option lines (as shown in Table 3-7). The option lines on only one of the interface connectors may be driven at a time. To drive the lines, the 8089 writes to memory mapped I/O port 8018H. Bit 1 drives OP00 or OP01, but not both at one time, bit 2 drives OP10 and OP11, but not both at one time. All other bit positions in the data word must be set to zero when driving the Option lines.

Connector 1 J3	Address 8000H	Connector 2 J4	Address 8008H	Pin No.	Description	iSBX Bus Mnemonic
OP00	Bit B	OP01	Bit 3	30	Option 0	OPT0
OP10	Bit C	OP11	Bit 4	28	Option 1	OPT1
INTR00	Bit 9	INTR01	Bit 1	14	Interrupt 0	MINTRO
INTR10	Bit A	INTR11	Bit 2	12	Interrupt 1	MINTR1
M0PST/	Bit 8	M1PST/	Bit 0	8	iSBX Board Present	MPST/

Table 3-6. Control and Status Lines on the iSBX™ Interface

Table 3-7. Jumper Connections Allowing Option Lines to be Driven

Line	iSBX Connector	Jumper Connection
OP00	J3, OP0	W11, 1-2
OP11	J4, OP0	W11, 1-3
OP10	J3, OP1	W12, 1-2
OP11	J4, OP1	W12, 1-3

NOTE

If an iSBX controller is not installed on the iSBC 215 board, or if an iSBX controller that has been installed on a particular iSBX connector does not drive its respective Terminate DMA Activity line, the connector's corresponding jumper (W3 1-2 or W4 1-2) must be installed.

PROGRAM EXECUTION

When loading and executing a user written I/O transfer program or routine, the following procedure is used:

- Load the program or routine into RAM using the BUFFER I/O command from the iSBC 215 controller firmware.
- 2. Execute the iSBX EXECUTE command to start the program. Note that the General Address Pointer in the I/O parameter block for this command must point to the address of the start of the program in on-board RAM (see Figure 3-22). Also, upon entering the program, the following 8089 registers are defined as:

GA: 7E00H Scratch Pad Stack

IX: 0 to 3 Unit Number

Exit from the program must always be to ROM location 00C5H and the 8089 BC register must be set to FFH and the 8089 GC register must be set to 7F3BH.

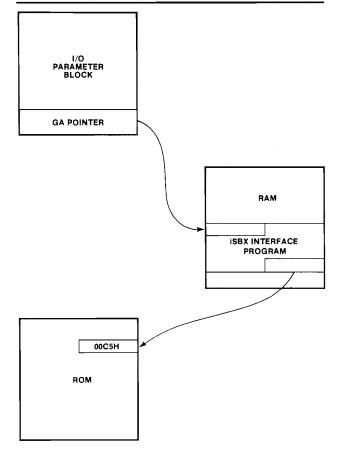


Figure 3-22. Execution of iSBX™ Bus I/O Program From RAM

3-33. EXAMPLE CONTROLLER I/O PROGRAM

Appendix A provides an example of a host processor program to initiate data transfers between the host system memory and disk drives through the iSBC 215 controller.

.

CHAPTER 4 PRINCIPLES OF OPERATION

4-1. INTRODUCTION

This chapter provides a functional description of the iSBC 215 Winchester Disk Controller circuit operation. The discussion assumes that the reader has a working knowledge of digital electronics and has access to the individual component description of each integrated circuit used on the board. As a prerequisite, the reader should be familiar with the programming conventions discussed in Chapter 3 of this manual, and the functional operation of the Intel 8089 I/O processor and the Multibus interface. Familiarity with the disk drive's operation and interface specifications will also prove beneficial in understanding the controller operation.

4-2. SCHEMATIC INTERPRETATION

A set of schematic diagrams for the controller board (Figure 5-3) and a component location diagram (Figure 5-2) are included in Chapter 5 of this manual.

The schematics are drawn to standard drafting conventions with input signals entering from the left and output signals exiting to the right. Input and output signals between individual sheets of a schematic include a location coordinate code immediately preceeding (input signals) or following (output signals) the signal name. This code defines the location of the origin or destination of the signal

within the schematic diagrams. The first digit of the code is the schematic sheet number, and the last two characters specify the zone defined by the horizontal and vertical grid coordinates, which are printed around the perimeter of each schematic sheet. For example, the code "7B8" indicates that the origin or destination of the associated signal appears on sheet 7 of the schematic set within the zone defined by grid coordinates "B" and "8".

An "X" for one of the grid coordinates indicates an entire vertical column or horizontal row on the schematic sheet. For example, the code "7BX" indicates the entire "B" zone on sheet 7.

The logic symbols used in this manual are drawn as specified in ANSI Standards 14.15 and Y32.14. Standard definitions are used for symbols and active line levels on inputs and outputs (see Figure 4-1). A small circle on the input of a logic element indicates that a relative low level is needed to activate the element. The absence of a circle indicates that a relative high level is needed to activate the element. Output levels are indicated in the same manner. Logic gating symbols are drawn according to their circuit function rather than the manufacturer's definition. For example, the gate, which the truth table in Figure 4-1 defines, can be drawn in one of the two configurations shown, depending on its circuit application.

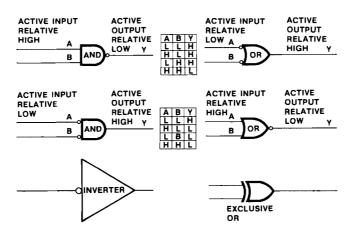


Figure 4-1. Logic Conventions

In addition to the inversion symbol convention, signal nomenclature also follows an active state convention. When a signal (or level) is active in its low state, the signal name is followed by a virgule or "slash" (e.g., XACK/); when a signal is active in its high state, the slash is omitted from the signal name, (e.g., XACK). This convention corresponds to putting a bar over a signal name to indicate it is active in its low state (e.g., XACK).

4-3. FUNCTIONAL OVERVIEW

General. The function of the iSBC 215 Winchester Disk Controller board is to allow the host system to access any location on a specific disk of a selected disk drive and either:

- 1. Transfer data to that disk location from system (host) memory (write operation), or
- Transfer data from that disk location to system memory (read operation).

To accomplish this task, the controller circuitry is divided into two sections (see Figure 4-2):

 Logic that controls communications and data transfer between the host processor and the controller through the Multibus interface, and Logic that controls data transfer between the controller and the disk drive(s) through the disk interface, and between the controller and the iSBX bus through the iSBX bus interface.

The Intel 8089 I/O processor (IOP) controls the data transfer process, using a program stored in on-board ROM. It receives instructions from the host processor through four I/O communications blocks in system memory. Once the host instructs the controller to begin a data transfer, the 8089's internal processor makes a DMA transfer to or from system memory, independent of the host processor.

2K bytes of RAM are included on the board for intermediate storage of data and to allow on-board error checking. This data buffer allows DMA transfer to be made between the controller and host system memory, which minimizes Multibus™ overhead and eliminates disk drive overruns.

Communicating with the host. Figure 4-3 provides a detailed block diagram of the controller. The Bus Arbiter and the Bus Controller manage the transfer of data between system memory and controller through the Multibus interface. The Bus Arbiter negotiates with the current bus master for control of the Multibus interface. The Bus Controller generates control signals that gate data transfers

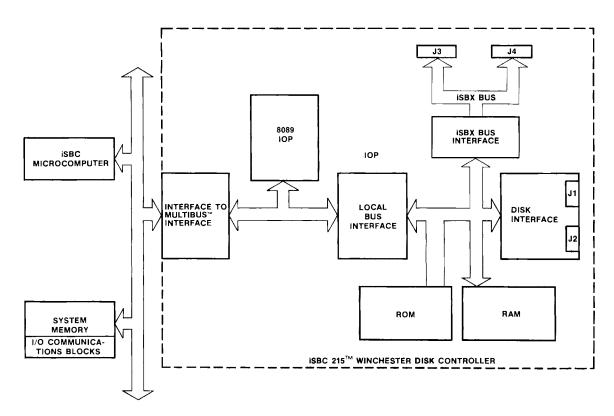


Figure 4-2. Simplified Block Diagram of iSBX 215™ Controller

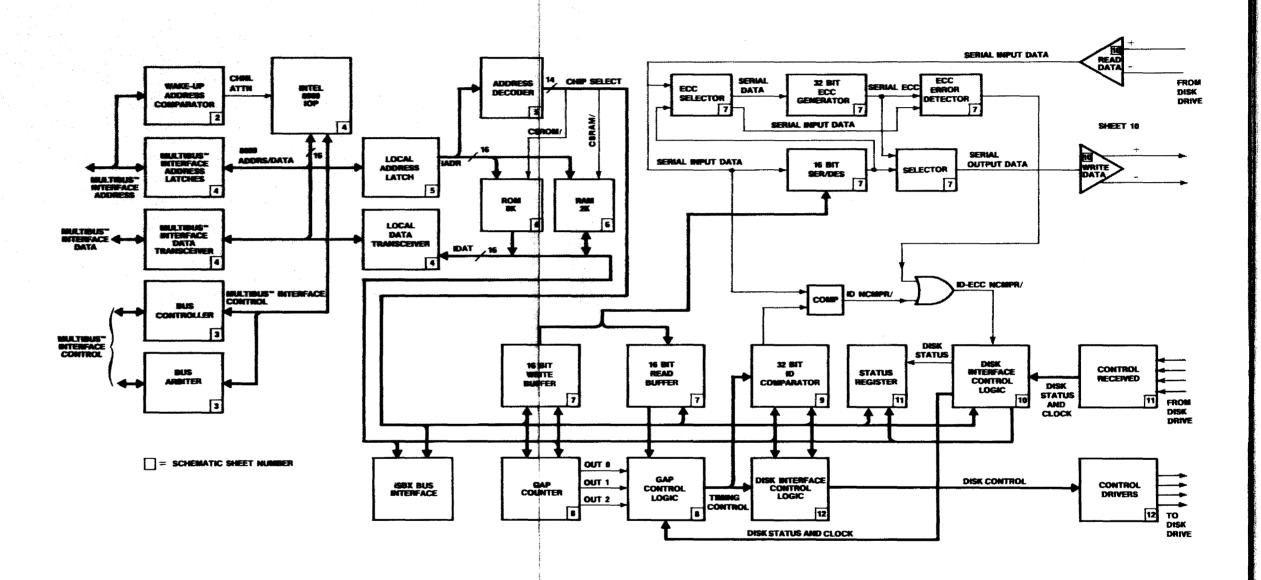


Figure 4-3. iSBC 215™ Controller Functional Block Diagram

between system memory and the on-board RAM. It also controls the transfer of data from RAM to the disk communication circuitry.

The Multibus interface Address Latches transmit 20-bit addresses to system memory via the Multibus interface. The Multibus interface Data Transceiver transmits data either to or from system memory via the Multibus Interface. The controller data bus is 16-bits. The Data Transceiver uses a byte-swap technique to allow data transfer with either an 8-bit or 16-bit system memory.

The Wake-Up Address Comparator is used to assign the controller a host system I/O port address and to set up a communications link between the 8089 IOP and the I/O communications blocks in system memory. (A detailed discussion of the controller initialization procedure is given in Chapter 3 and in Paragraphs 4-12 through 4-15 in this section.)

Communicating with the disk. The 8089 IOP treats the ROM, RAM, iSBX I/O ports and disk communications side of the controller circuitry as local memory. The Local Address Latches transmit 16-bit addresses to local memory. The Local Data Transceiver transmits data either to or from local memory. Some of the addresses in local memory provide access to local I/O ports (see Paragraph 4-20 for a detailed discussion of local I/O ports). The Address Decoder decodes these addresses and generates chip select or enable signals that control the transfer of data to and from the disk. For example, the address 8028H enables the 16-Bit Write Buffer to receive a data word from the local memory. The ROM and RAM are also assigned specific ranges of addresses in local memory.

The 16-Bit SER/DES (Serializer/Deserializer) performs the serial-to-parallel and parallel-to-serial conversion required to transfer data between the disk and system memory. The 16-Bit Write Buffer and the 16-Bit Read Buffer provide intermediate storage for a single 16-bit parallel word between the RAM and the SER/DES. On a write operation, a 16bit word is transferred from RAM to the write buffer. The SER/DES then converts the word from parallel to serial and transmits it to the disk through the write data driver. On a read operation, a 16-bit serial word is transmitted from the disk through the Read Data Receivers to the SER/DES. The SER/DES then performs a serial-to-parallel conversion and stores the resulting parallel word in the read buffer. The Write Data Driver and the Read Data Receivers are designed to generate and read the differential NRZ drive signals.

The 32-Bit ID Comparator determines when the selected sector on the disk is found during the search

for sector ID operation that precedes a write or read function. When a write or read is initiated, the 32-bit sector identification (cylinder, head and sector number) is loaded in the 32-Bit ID Comparator. Sector IDs from the disk are then read and compared with the selected sector ID. When the selected sector is found, data transfer is initiated.

The 32-Bit ECC Generator creates an error checking code (ECC) that is appended to the end of each sector ID field and to each data field (see Figure 3-2). This ECC is used for error checking and correction of data errors. It allows all the errors in a burst of up to 11 bits to be corrected, and allows errors in a burst of 32 bits to be detected.

The Gap Control Logic controls the spacing of data within a sector. Three programmable Counters, which count disk clock pulses, provide timing for the Gap Control Logic. The ability to program the Counters allows the disk(s) to be formatted for a number of different record sizes and gap lengths.

The Disk Control Logic transmits disk control information to the disk drive units through the Control Line Drivers. The Input Control Logic receives status information from the disk drive units and controls the sequencing of the controller read and write operations.

The iSBX Interface provides the ability to connect Intel iSBX Multimodule devices to the controller board in order to control other I/O devices such as flexible disk drives or magnetic tape cartridge drives. The iSBX interface is discussed in more detail in Paragraph 4-25.

A more detailed overview of the read and write operations is given in Paragraph 4-29 through 4-33.

4-4. DETAILED FUNCTIONAL DESCRIPTION

The detailed functional description of the iSBC 215 Winchester Disk Controller circuitry is divided into two major sections: Controller to Host Communications and Controller to Disk Communications. Within each of these sections, the following subjects are discussed:

Controller to Host Communications:

- Multibus™ Interface
- 8089 IOP
- Bus Arbiter
- Bus Controller
- Multibus™ Data Transfer Logic

- Controller Initialization
- Wake-Up Address Comparator
- Controller Reset and Clear
- Establishing a Link with I/O Communications Blocks
- Interrupt Priority
- Memory Map
- ROM
- RAM
- I/O Port Decode Logic

Controller to Disk Communications

- Controller to Disk Drive Interface
- DMA Mode
- Disk Formatting
- Write Data Transfer
- Read Data Transfer
- SER/DES Logic
- Sync Byte Comparator Logic
- 32-Bit ID Comparator Logic
- ECC Generator Logic
- Status Register Logic
- Line Drivers and Receivers

4-5. CONTROLLER TO HOST COMMUNICATIONS

The following discussion provides a detailed functional description of the section of the iSBC 215 Winchester Disk Controller that communicates with the host through the Multibus interface.

4-6. MULTIBUS™ INTERFACE

The 8089 IOP communicates with the host processor and the system memory through the Multibus interface. The Multibus interface signal description and pin configurations are explained in Chapter 2. A detailed description of the Multibus interface operation can be found in the *Intel Multibus*TM Specification Manual Order Number 9800683.

4-7. 8089 I/O PROCESSOR (IOP)

The 8089 IOP, U84 (4X4), is a microprocessor device that has been designed specifically to perform high speed I/O transfers of data between system memory

and mass storage devices such as disk drives. Its ability to perform DMA data transfers independent of the host processor allows it to carry out most system memory-to-disk transfers of data simultaneously with other host processor operations. Refer to *The 8086 Family User's Manual*, Manual Order Number 9800722 for a detailed explanation of the 8089 and supporting IC devices.

A number of 8089 control lines have important functions in the controller design. The PWR-RST line (4D1), when pulled high, resets the 8089 to the beginning of its internal firmware control program. Channel Attention line CA (4B4) allows the host to gain the attention of the 8089. On the first channel attention following a reset, the 8089 fetches the contents of address FFFF6H and begins an internal initialization procedure. On subsequent channel attentions, the 8089 looks to the I/O communications blocks in system memory for further instructions. Refer to Paragraphs 4-12 through 4-15 for a detailed discussion of the controller initialization procedure and the use of the CA line.

The Bus Interface Unit (BIU) in the 8089 controls the controller local data bus cycles, transferring instructions and data between the 8089 IOP and external memory or the disk. Every bus access is associated with a register tag bit that indicates to the BIU whether the host system memory or local memory is to be addressed. The BIU outputs the type of bus cycle on status lines S0/, S1/ and S2/. The 8288 Bus Controller decodes these lines and provides signals that selectively enable one bus or the other.

The 8089 is a 16-bit processor, but it is capable of making both single-byte fetches (8-bit system memory) or two-byte fetches (16-bit system memory). The address zero line, IADR-0 (5B7), controls the byte swapping facility of the controller when communicating with an 8-bit system memory.

4-8. CLOCK CIRCUIT

The clock circuit consists of U55, an 8284A Clock/Driver (4C6), and a 15 MHz crystal. The 8284A divides the crystal output by three to produce the 5 MHz CLK necessary to drive the 8089 IOP. The 8284A produces a reset signal (RST), which is used on power-up to reset the 8089, Interrupt Latch U56 (3B5) and the Read/Write Control logic. In addition to the reset signal, the 8284A also produces a synchronized ready (RDY) input to the 8089. A high on the RDY line received from the addressed device (XACK/ from external memory or the iSBX interface, or RDY from the on-board read/write port), indicates that the memory or read/write port has accepted data during a write operation or data is ready to be read during a read operation.

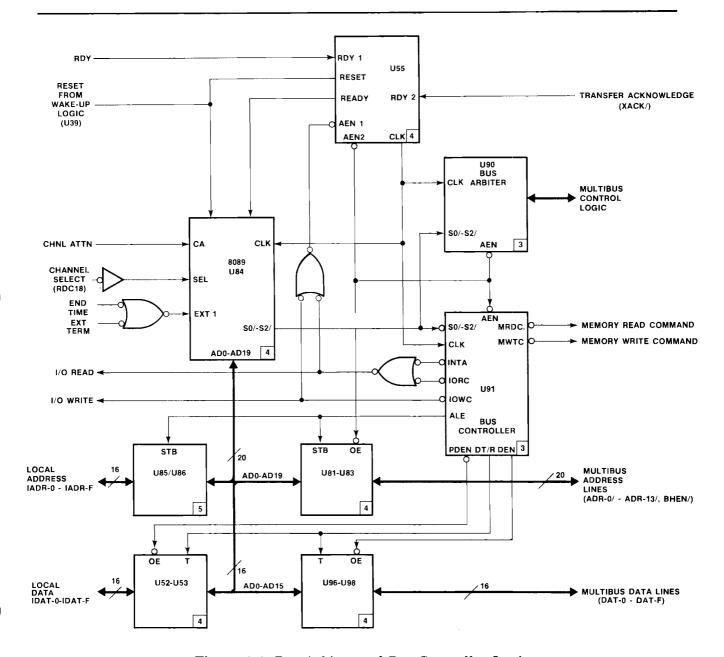


Figure 4-4. Bus Arbiter and Bus Controller Logic

4-9. BUS ARBITER

The 8289 Bus Arbiter, U90 (3D6), controls the 8089 IOP's access to the Multibus interface (see Figure 4-4). The 8289 monitors the 8089's status lines (S0/, S1/ and S2/). When the lines indicate that the 8089 needs a Multibus interface cycle, and the 8089 does not presently control the bus, the 8289 activates a bus request (BREQ/). The low on BREQ/ is transmitted to the bus priority resolving circuitry in the host processor, which returns a low on Bus Priority

In line BPRN/, giving the 8089 access to the Multibus interface. Having received access to the Multibus interface, the 8289 activates its busy signal (BUSY/), indicating to the other masters on the system that the Multibus interface is in use. The 8289 then activates the address enable signal (AEN/), which is transmitted to the 8288 Bus Controller, U91 (3C4), to enable its command outputs, to the 8284A Clock Generator, U55 (4C6), to enable its bus ready logic, and to the System Address Latches, U81, U82 and U83 (4X2), to allow an address to be gated on to the Multibus interface.

Jumper pins W18-1, 2 and 3 allow the user to select the Any Request option. A jumper installed between pins W18-1 and 2 causes the controller to relinquish control of the Multibus interface following a request from a higher priority device only. A jumper installed between pins W18-1 and 3 causes the controller to relinquish control of the Multibus interface following a request from any device, higher or lower priority.

4-10. BUS CONTROLLER LOGIC

The 8288 Bus Controller, U91 (3C4), decodes the status line outputs (S0/, S1/ and S2/) from the 8089 IOP and generates the appropriate bus cycle signal. Table 4-1 shows the different signals generated for each configuration of the IOP's status lines.

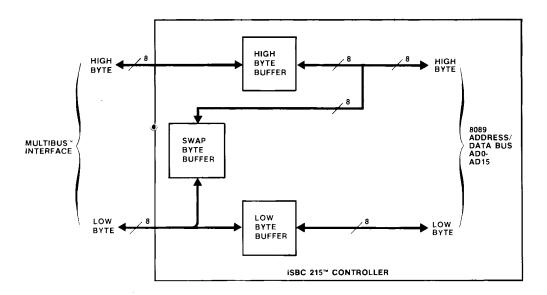
Table 4-1. 8089 Status Line Decodes

Sta S2/	itus In		CPU Cycle	8288 Command
0	0	0	Instruction Fetch, Local	INTA/
0	0	1	Read Memory, Local	IORC/
0	1	0	Write Memory, Local	IOWC/, AIOWC/
0	1	1	Halt	None
1	0	0	Instruction Fetch, System	MRDC/
1	0	1	Read Memory, System	MRDC/
1	1	0	Write Memory, System	MWTC/, AMWC/
1	1	1	Passive	None

These bus cycle signals can be divided into two groups: those which allow the 8089 to access system memory (MWTC/ and MRDC/) and those which allow the 8089 to access local memory (I-AIOWC/ and I-IORC/). The 8089 uses the I/O Read (I-IORC/) and I/O Write (I-AIOWC/) signals to read information from the local ROM, U87 and U88, (6X7), or to read from or write to the local RAM, U99 through U102, (6X4). The 8089 also uses I-IORC/ and I-AIOWC/ to gate on the Read and Write Function Decoders, U35 and U36 (5B2 and 5A2). The function decoders are explained further in Paragraph 4-20.

The 8288 Bus Controller also generates a group of signals that control address and data flow throughout the iSBC 215 controller. The Address Latch Enable line (ALE) is used to strobe addresses from the 8089 into both the system Address Latches, U81-U83 (4X2), and the Local Address Latches, U85-U86 (5X7).

Data Transmit/Receive (DT/R), Data Enable (DEN), and Peripheral Data Enable (PDEN/) control the data flow through the controller. DT/R controls the direction of data transmission through the Multibus interface and local transceivers. If DT/R is high. data is transmitted either on to the Multibus interface through transceivers U96, U97 and U98 (4X7) or on to the local bus through transceivers U52 and U53 (4X6). If DT/R is low, the data transfer is in the opposite direction, into the 8089 through one of the two sets of transceivers. DEN and PDEN controls the selection of the transceivers. If DEN is high the Multibus interface transceivers U96, U97 and U98 are enabled, and if PDEN/ is low (indicating a peripheral cycle) local transceivers U52 and U53 are enabled.


4-11. MULTIBUS™ INTERFACE DATA TRANSFER LOGIC

The controller has three sets of Multibus interface data transceivers: low-byte transceiver U97, which buffers DAT-0/ through DAT-7/, high-byte transceiver U96, which buffers DAT-8/ through DAT-F/, and swap-byte transceiver U98, which takes the data from DAT-0/ through DAT-7/ on the Multibus interface and switches it to high-byte data bus lines AD8 through AD15 on the controller board (see Figure 4-5). This byte-swap is performed only when the controller is interfacing with a 16-bit system memory in byte mode. In this case, every odd address read from system memory is transmitted to the high-byte data lines of the controller. The procedure is reversed when writing to the 8-bit system memory. Three signals control the transceiver: ENBL HI BYTE/ (5C1), which controls the high-byte transceiver; ENBL LO BYTE/(5C1), which controls the low-byte transceiver (derived from ADRO/); and ENBL SWAP BYTE/ (5C1), which controls the swap byte transceiver. Figure 4-5 shows when each of the control signals is active.

4-12. CONTROLLER INITIALIZATION

Before data can be transferred between system memory and the controller, the controller must be initialized. The initialization procedure, which is described in Paragraph 3-12, involves:

- 1. Resetting the 8089 IOP.
- 2. Clearing the reset.
- Establishing a communication link between the 8089 and the I/O communications blocks in system memory.
- 4. Reading the disk drive parameters from system memory to the controller on-board RAM.

	8-BIT SYSTEM MEMORY			16-BIT SYSTEM MEMORY		
	I-ADR0/ L	I-ADR0/ H	I-ADR0/ L	I-ADRO/ H		
ENBL LO BYTE/	L	Н	*	L		
ENBL SWAP BYTE/	н	L	*	н		
ENBL HI BYTE/	н	Н	*	L		
*NOT APPLICABLE						

Figure 4-5. Data Transmission Between Multibus™ Interface and Controller Data Transceivers

The following paragraphs describe the hardware operations that take place during this initialization procedure. (See Figure 4-6.)

4-13. WAKE-UP ADDRESS COMPARATOR

For the purpose of resetting the controller, clearing the reset or getting the attention of the 8089 IOP (raising CA), the host addresses the controller as an I/O port in its system I/O space. To perform one of these functions it writes a one byte command to the specified I/O port called the wake-up I/O port. Table 4-2 shows the three possible commands. The user determines the address of the I/O port at which the controller is to reside (called the "Wake-Up Address") and sets the address on the Wake-Up Address switches S1-1 through S1-8 and S2-3 through S2-10 (2X6), on the controller board. When the host issues a write command (IOWC/) to the Wake-Up Address in system I/O space, U77 through U80 (2X5) on the controller compare the address with the switch settings. If they agree, WAKEUP/ is pulled low, enabling the controller to decode the command on the Multibus interface data lines and determine the action to be taken.

The host may use 8-bit or 16-bit I/O port addressing. The user sets switch S2-2 (2A7) to indicate to the controller the type of addressing that is being used. When S2-2 is open (8-bit addressing), pin 9 of U75 is held high, creating a "don't care" situation for the outputs of High-Byte Wake-Up Address Comparators U77 and U78.

Table 4-2. Host Wake-Up Commands

Command	Description
00H	Clear Interrupt and Clear Reset
01H	Channel Attention (Start 8089 IOP)
02H	Reset 8089 IOP

As it is discussed in Chapter 3, the controller also uses the setting of the Wake-Up Address switches to calculate the address of the first byte of the Wake-Up Block, which is the first I/O communications block in system memory.

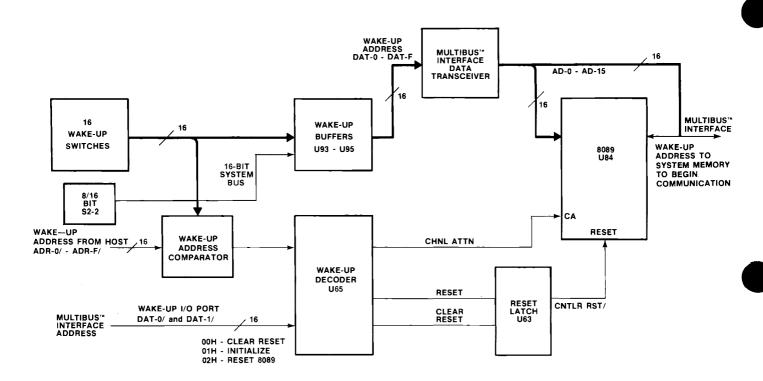


Figure 4-6. Wake-Up Address Logic

4-14. CONTROLLER RESET AND CLEAR

The first operation that must be performed during the initialization of the controller is a reset of the 8089 IOP. To reset the 8089, the host processor writes an 02H to the wake-up address. The WAKE-UP/line goes low and gates the 02H (DAT-9/ high and DAT-1/ low) into the Wake-Up Decoder, U65 (3B7), producing a low on the controller reset (CNTLR RST/) line. A low on CNTLR RST/ resets the 8089 (4X4), resets Read/Write Control Logic U42 (sheet 8) and clears Control Register U3 (12B5). Once the controller has been reset, the host processor writes a 00H (Clear Interrupt) to the wake-up address, which clears the reset. The Wake-Up Decoder U65 decodes the highs on DAT-0/ and DAT-1/ to raise CNTLR RST/.

4-15. ESTABLISHING A LINK WITH I/O COMMUNICATIONS BLOCKS

Following a power-up event or a software reset (02H written to the wake-up I/O port), the link between the controller and the I/O communications blocks in system memory must be established. To establish this link, a clear reset (00H) is written to the wake-up I/O port followed by a channel attention (01H). The 01H is gated into U65, producing a high on CHNL

ATTN, which in turn raises the CA input to the 8089 IOP (4C4).

Being the first Channel Attention following reset, the 8089 begins an internal initialization process. The first step of this process is to do a fetch of address FFFF6H. The address is transmitted on the 8089 Address/Data lines (AD0-AD15) to latches U85 and U86 (5B7). Gates U66 and U72 through U76 (5D4) decode the output of these latches. The output of U76 enables U89 (5D3), gating the status of the 16bit SYS BUS switch (S2-1) through Data Bit 0 line (DAT-0/) to the 8089. Switch S2-1 on (16 Bit SYS BUS/ low) indicates that the host memory system supports 16-bit data transfers and S2-1 off indicates 8-bit data transfers. Inverter U89 also generates Transfer Acknowledge (XACK/), which is sent to the 8089 (through the 8284A) indicating that the operation has been completed.

After determining the width of the system bus (8-bit or 16-bit) the 8089 fetches the addresses shown in Figure 4-7 as part of the initialization sequence.

Fetching addresses FFFF8/9H gates zeros into the 8089. Fetching addresses FFFFA/BH causes the GATE SWS/ line (5C1) to go low. GATE SWS/ gates the settings of the wake-up address switches, S1-1

through S1-8 and S2-3 through S2-10 through buffers U93, U94 and U95 (2X3) and into the 8089. The 8089 multiplies the settings of the wake-up switch by 2⁴, to determine the 20-bit address of the wake-up block, the first I/O communications block in system memory. The 8089 then uses this address to fetch the wake-up block and establish a link with the I/O communications blocks. On subsequent channel attentions (host writes 01H to the wake-up I/O port), the 8089 skips the wake-up block and goes directly to the channel control block, the second I/O communications block. The 8089 uses the channel control block to obtain the starting address of the controller's ROM resident I/O transfer program (also called the channel control program). From this point on, this firmware program directs the controller activities. One of the first operations of the firmware is to again fetch the starting address of the wake-up block. It then links its way through the channel control block and the controller invocation block to the I/O parameter block where it obtains instructions and parameters for a specific I/O operation.

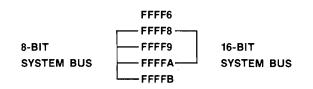


Figure 4-7. Address Fetches In Initialization Sequence.

4-16. INTERRUPT PRIORITY LOGIC

Wire wrap pins W19-C and W19-0 through W19-7 (3B2) allow the user to select the interrupt priority of the controller with respect to other peripherals in the system. To issue an interrupt to the host, the 8089 IOP writes an 0100H to local I/O port 8010H. A high on data line BDAT-8 and a low on write decoder line WDC10/ is then generated, causing interrupt latch U56 (3B5) to pull its output high and pull the selected interrupt line to the Multibus interface low. A 00H written to the system I/O port wake-up address, clears the interrupt (refer to Paragraph 4-14).

4-17. LOCAL MEMORY MAP

As was discussed in the Functional Overview, the 8089 IOP addresses the ROM, RAM, iSBX I/O ports and the disk communications side of the controller circuitry as local memory. Figure 4-8 shows a map of this local memory. The following paragraphs discuss the ROM, RAM and I/O ports.

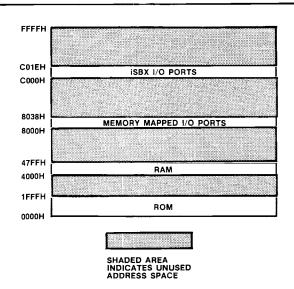


Figure 4-8. Local Memory Map

4-18. ROM

The controller ROM, which contains the 8089 IOP's disk control program, consists of two (4K x 8-bit) ROM devices, U87 and U88 (6X7). On any read from local memory in the range of 0000H to 1FFFH, chip select decoder U65 (5B4) decodes address lines IADR-E and IADR-F and pulls ROM chip-select line CSROM/ low, enabling the ROM devices.

4-19, RAM

The controller RAM consists of four (1K x 4-bit) RAM devices, U99 through U102 (6X4). On any read or write to local memory in the range of 4000H to 47FFH, chip select decoder U65 (5B4) pulls RAM chip-select line CSRAM/low, enabling the RAM devices.

4-20. LOCAL MEMORY MAPPED I/O PORTS AND ISBX™ I/O PORTS

The 8089 IOP views the controlling devices in the disk control circuitry (such as ID comparators, counters, write buffer, read buffer, etc.) and the iSBX bus ports as local I/O ports, each with an address in local memory space. To enable one of the disk control devices, the 8089 executes a read or a write to the devices respective address. On any read or write to local memory in the range 8000H through 8038H, chip select decoder U65 (5B4) pulls its pin 10 low.

Table 4-3. Local I/O Po	rts
-------------------------	-----

Address	Read (U33 Enabled)		Write (U32 Enabled)		
	Enable Line	Function	Enable Line	Function	
8000H	RDC00/	Read Disk Status	WDC00/	Write control data to disk drive and en- able AM SEARCH/, RDGATE and WRT GATE.	
8008H			WDC08/	Clear index and ID not compare latches	
8010H			WDC10/	Write to disk control register.	
8018H	RDC18/	Raise 8089 Ch 2 CA input.	WDC18/	Write to Unit Select and Control register	
8020H	RDC20/	Read contents of counter 2	WDC20/	Load counter 0	
8022H	RDC20/	Read contents of counter 1	WDC20/	Load counter 1	
8024H	RDC20/	Read contents of counter 2	WDC20/	Load counter 2	
8026H			WDC20/	Write mode word	
8028H	RDC28/	Read contents of read buffer	WDC28/	Write data to write buffer	
8030H			WDC30/	Write sector ID to high comparator, start track format operation.	
8038H			WDC38/	Write sector ID to low comparator	

When this low on pin 10 of U65 is accompanied by a low on I/O read line I-IORC/, read I/O port address decoder U36 (5B2) is enabled; when the low on pin 10 of U65 is accompanied by a low on I/O write line I-AIOWC/, write I/O port address decoder U35 (5A2) is enabled. When enabled, U35 or U36 decode local memory address lines IADR-3 through IADR-5 to select the desired disk control device. Table 4-3 shows the address of each local I/O port and its function.

The two iSBX bus connectors, J3 and J4, on the iSBC 215 board provide access to the controller's iSBX bus. The iSBX bus provides 16 data lines and three address lines, providing a total of sixteen 16-bit I/O ports per connector. Each of these I/O ports has an address in local memory space (see Table 4-4).

Table 4-4. iSBX™ Bus I/O Port Addresses

Port	ISBX Bus Port Address Assignments			
	J3- Channel 0	J3- Channel 1	J4- Channel 0	J4- Channel 1
0	C070	C0B0	C0D0	C0E0
1	C071	C0B1	C0D1	C0E1
3	C073	C0B3	B0D3	C0E3
4	C074	C0B4	C0D4	C0E4
5	C075	C0B5	C0D5	C0E5
6	C076	C0B6	C0D6	C0E6
7	C077	C0B7	C0D7	C0E7

When the 8089 executes a read or a write to one of these ports, chip select decoder U65-9 (5B4) activates the CSMMIO/ line. Gates U30 (13C3) and inverter U31 (13C4) decode the CSMMIO/ and IADR-4 lines to select either J3 or J4. Address lines IADR-1, IADR-2 and IADR-3 are transmitted to connectors J3 and J4, pins 11, 9 and 7, respectively (5C1), to select the I/O port on the selected connector.

4-21. CONTROLLER TO DISK DRIVE COMMUNICATIONS

The following discussion provides a detailed functional description of the section of the iSBC 215 controller that communicates with the disk drive through the Winchester drive interface, and a description of the controllers interface with the iSBX bus through iSBX connectors, J3 and J4. The discussion is broken into four areas: (1) description of the disk interface and iSBX bus signals; (2) explanation of how the controller formats a disk prior to performing the read and write functions; (3) explanation of how writes and reads are performed; and (4) descriptions of the various circuits that perform the data transfer.

4-22. CONTROLLER TO WINCHESTER DISK DRIVE INTERFACE

All the signals that are transmitted between the controller board and the 8" Winchester disk drives are transmitted through either the Control Cable (J1) or the Read/Write Cable (J2). The physical configuration of these cables is described and illustrated in Chapter 2. All the signals transmitted between the drives except for the read, write and clock signals are TTL level. The read, write and clock signals are transmitted as differential signals.

The interface signals that the controller supports are described in the following paragraphs. Each of the drive manufacturers, Shugart/Quantum, Memorex, Priam and Pertec, use the available lines differently. For the specific use of the lines being employed, consult Figure 2-3 through 2-6 and the drive manufacturer's user manual.

4-23. CONTROL CABLE SIGNALS

Control and status information is exchanged between the controller and the drive through the Control Cable. Output signals are defined as those signals that the controller transmits and input signals as those the controller receives. The Control Cable is connected to J1 on the iSBC 215 board and goes to the first drive and up to three subsequent drives in a daisy chain fashion as shown in Figure 2-7. The functions of the 37 Control Cable lines can be divided into five categories:

- 1. Device Select (Output)
- 2. Head Select (Output)
- 3. General Purpose Data Bus (Bidirectional Priam and Pertec Only)
- 4. Control (Output)
- 5. Status (Input)

Table 4-5 describes the function of each of the lines transmitted through the Control Cable.

Table 4-5. Control Cable Line Functions

Line Name	Function	Description	
		DEVICE SELECT	
US0/-US3/	Unit Select	Four lines; each selects one of four disk drive units.	
_		HEAD SELECT	
HS0/-HS3/	Head Select	Four binary coded lines select one of sixteen heads in selected drive.	
	GENERAL	PURPOSE DATA BUS (Priam and Pertec Only)	
BUS0/-BUS7/	Data Bus	Eight-bit, bi-directional data bus transmits command and status information between controller and drives. Data transmitted includes head and cylinder data.	
·		COMMAND DATA	
WRGATE/	Write Select	Enables the write circuitry in drive, permitting write data that is sent to the drive through the Read/Write cable to be written on the selected disk surface. Used with AD MK EN/ line to write address mark on soft sectored disk.	
RDGATE/	Read Select	Enables the read circuitry in drive, permitting data to be read from the selected sector of the disk. Used with AD MK EN/ to read address mark from soft sectored disk.	
DIR/	Direction	Controls direction in which head is moved (Low = in, High = out) when stepping head positioner.	
STEP/	Step Head	Initiates movement of head in direction that DIR/ has specified.	
COMMAND/	Command Data	Indicates command data is present; used in bus cycle handshaking.	
PARAMETER/	Parameter Data	Indicates parameter data is present; used in bus cycle handshaking.	
DRIVE REQ/	Status Data	Indicates status data is present; used in bus cycle handshaking.	
BUS ACK/	Bus Acknowledge	Acknowledges a bus cycle; used in bus cycle handshaking with command parameters and status.	
AD MK EN/	Address Mark Enable	Enables writing or detecting of address marks (beginning of sectors) when us in conjunction with WRGATE/ and RDGATE/, respectively. Refer to SECTO under status data.	
FLT CLR/	Fault Clear	Clears FAULT/ line in selected drive. Signal has no effect if fault condition has not been corrected.	
SAFE/	Controller Power Condition	Indicates to drive that power condition of controller is safe.	
BA0/ and BA1/	Bus Address	Two binary coded lines specify source or destination register in selected drive for bus data.	
		STATUS DATA	
INDEX/	Index	Pulse received from selected disk drive once every disk revolution.	
SECTOR/	Beginning of Sector	Signal indicates beginning of a sector: address mark for soft sectored disk sector pulse for hard sectored disks.	
FAULT/	Fault Condition	Indicates to controller that an unsafe condition has been detected in the selecte drive, which would make the reliability of read/write operation questionable Normally, logic in drive disables the read, write and positioning circuitry untrezero operation, fault clear or operator intervention occurs.	
ILL ADR/	Illegal Address	Indicates drive has received an illegal cylinder address.	
SK COM/	Seek Complete	Indicates to controller that selected drive has successfully completed the initia head load, seek operation, or rezero operation within drive specified time limits	
READY/	Drive Ready	Indicates that drive is powered up and is ready to receive or transmit data.	

Table 4-5.	Control	Cable	Line	Functions	(Continu	ıed)
	T					

Line Name	Function	Description				
	STATUS DATA (Continued)					
WR PRO/	Write Protected	Indicates that the selected drive is set for write protected operation. Controller is then inhibited from writing to the drive.				
TRACK 0/	Track Zero	Indicates that heads of selected drive have been positioned to cylinder (track) zero.				

4-24. READ/WRITE CABLE SIGNALS

Read Data, Write Data, Clocks, and two status lines constitute the information exchanged over the Read/Write cables. Output signals are defined as those signals that the controller transmits to the disk drives, and input signals those that the controller receives. For the Memorex or 14" Shugart drives, the Read/Write cables are connected from the controller to the disk drive in radial fashion, that is one cable from the controller to each of the drives. J2 provides read, write and clock signals for two drives. for example, RD0 (+ and -) and RD1 (+ and -). One of these signals goes to physical address 0 and the other to physical address 1. When using 8" Shugart, Quantum, Priam or Pertec drives, only the signals associated with physical address 0 are used. These signals are then daisy chained between drive units allowing the controller to communicate with up to four drives. Chapter 1 describes the cabling requirements for the various drive manufacturers. The physical configuration of these cables is explained and illustrated in Chapter 2. Table 4-6 describes the function of each of the lines transmitted through the Read/Write Cables. Note that the read, write and clock signals are differential signals, requiring two lines in the cable; the status lines are TTL level signals.

4-25. CONTROLLER TO ISBX™ CONNECTOR INTERFACE

All the signal and control lines transmitted between the controller and the iSBX bus are transmitted both through connectors J3 and J4. These lines are discussed only in general in this manual as they pertain to the remainder of the discussion of the controller interface with the Winchester drives. For a more detailed discussion of these lines refer to the *Intel iSBX*TM *Bus Specification*, Manual Order No. 142686.

It should be noted that the controller does not support any parallel-to-serial or serial-to-parallel conversion of data for transmission through the iSBX connectors. It interfaces with any device connected to these connectors through an 8 or 16-bit parallel bus and a number of control and handshake lines. The interface thus resembles the read/write port, made up of the write buffer and the read buffer, that is used in the controller interface to the Winchester drives.

The names in the schematic diagrams for the signal and control lines from the iSBC 215 Controller that are connected to iSBX connectors J3 and J4 often differ from the respective line name from the iSBX bus specifications. Table 4-7 lists both the iSBX bus mnemonic and the controller line name for each line in the iSBX bus that the controller supports.

Table 4-6. Read/Write Cable Line Functions

Line Name	Function	Description
WR0 and WR1 (+ and -)	Write Data	Write Data line pairs transmit serial NRZ data from the controller to the drive for recording on the disk surface. Write Clock synchronizes data transfer.
WRCL0 and WRCL1 (+ and -)	Write Clock	Write Clock line pairs transmit clock signal to drive that is used to synchronize write data transmission. Write Clock is derived from Read Clock, which the controller receives from the selected drive. Since the Read Clock is obtained from the rotating disk, it reflects any speed variations and thus ensures the proper bit rate transmission when writing as well as when reading.
RD0 and RD1 (+ and -)	Read Data	Read Data line pairs transmit serial NRZ data from the disk drive to the controller. The controller converts the differential signal into TTL levels for transmission to the host memory. The Read Clock synchronizes Read Data transfer.
RDCL0 and RDCL1 (+ and -)	Read Clock	Read Clock line pairs transmit clock signal to controller that is used to synchro- nize read data transmission and as a timing signal for the controller disk interface circuitry. Read Clock is derived from rotating disk.
SECT0/ and SECT1/	Beginning of Sector	Same as SECTOR/ signal transmitted to controller through Control Cable, one signal from each physical address.
SKCOM0/ and SKCOM1/	Seek Complete	Same as SKCOM/ signal transmitted to controller through Control Cable, one signal for each physical address.
RD WR CUR/	Reduced Write Current	Output signal used to control the write electronics for the inner tracks with higher bit densities.

	iSBX Bus				iSBX Bus		
Pin	Mnemonic	J3	J4	Pin	Mnemonic	J3	J4
43	MD8	IDAT-8	IDAT-8	44	MD9	IDAT-9	IDAT-9
41	MDA	IDAT-A	IDAT-A	42	MDB	IDAT-B	IDAT-B
39	MDC	IDAT-C	IDAT-C	40	MDD	IDAT-D	IDAT-D
37	MDE	IDAT-E	IDAT-E	38	MDF	IDAT-F	IDAT-F
35	GND	GND	GND	36	+5V	+5V	+5V
33	MD0	IDAT-0	IDAT-0	34	MDRQT	DREQ0	DREQ1
31	MD1	IDAT-1	IDAT-1	32	MDACK/	N/C	N/C
29	MD2	IDAT-2	IDAT-2	30	OPT0	OP00	OP01
27	MD3	IDAT-3	IDAT-3	28	OPT1	OP10	OP11
25	MD4	IDAT-4	IDAT-4	26	TDMA	EXTR0	EXTR1
23	MD5	IDAT-5	IDAT-5	24			
21	MD6	IDAT-6	IDAT-6	22	MCS0/	CSMMIO0/	CSMMIO2/
19	MD7	IDAT-7	IDAT-7	20	MCS1/	CSMMIO1/	CSMMIO3/
17	GND	GND	GND	18	+5V	+5V	+5V
15	IORD/	I-IORC/	I-IORC/	16	MWAIT/	MWAIT0/	MWAIT1/
13	IOWRT/	I-AIOWC/	I-AIOWC/	14	MINTR0	INTR00	INTR01
11	MA0	IADR-0	IADR-0	12	MINTR1	INTR10	INTR11
9	MA1	IADR-1	IADR-1	10			
7	MA2	IADR-2	IADR-2	8	MPST/	M0PST/	M1PST/
5	RESET	PWR RST	PWR RST	6	MCLK	CCLK	CCLK
3	GND	GND	GND	4	+5V	+5V	+5V
1	+12V	+12V	+12V	2	-12V	-12V	-12V
All under	ined pins are rese	rved for future i	use.				

Table 4-7. iSBX™ Bus Mnemonic-to-Controller Line Name

4-26. CONTROLLER TO DISK DRIVE INTERFACE TIMING

The following paragraphs provide a detailed discussion of the inter-circuit timing that occurs when formatting a disk, writing to a disk or reading from a disk. The discussion is provided to describe the interaction of the timing logic shown on Sheet 8 of the Schematic Diagram, with the disk drive interface receivers and drives shown on sheets 9 through 12 and the other data transfer circuitry described in Paragraphs 4-31 through 4-36.

4-27. DMA MODE

In general, when the controller is performing a read or a write function it locates the area of the disk where the read or write is to be performed, then enters its DMA mode to perform the actual transfer. (The process of locating the area to be read or written to is discussed in the following paragraphs.) In the DMA mode, the 8089 IOP (see Figure 4-2) controls the transfer of data between the local RAM block and the write and read buffers (called the read/write port). The data transfer circuitry on the controller board controls the transfer of data between the read/write port and the disk.

The RDY (Ready) line (8D1) is used for hand shaking between the 8089 and the data transfer circuitry. When RDY is low, the 8089 is quiescent; when RDY is high, the 8089 performs a DMA transfer of data either from local RAM to the write buffer (block-toport) or from the read buffer to local RAM (port-to-block). Gates U40, U41 and U12 (8D3) control the RDY line.

To perform a write or a read, the 8089 executes firmware to set up data (write only) and condition the hardware for the selected operation. It then enters the DMA mode and attempts to transfer data. At this time: the TIME OUT line (8D8) is low; the MWAIT/ line is high; the R/W GATE line (8D1) is high (see Figure 4-9); U21-8 (8D3) is high, held so by the low on the ENBL XFER line (8D1); and the R/WDC 28 line, the output of U11-11 (8D7), is low. The low on R/WDC 28 is thus keeping RDY activated. On this first attempt to transfer data in the DMA mode, the 8089 activates either RDC 28/ or WDC 28/(8D8), depending on whether a read or a write is being performed, respectively (refer to Paragraph 4-31). When RDC 28/ or WDC28/ is activated, the R/WDC 28 lines is activated, lowering RDY and putting the 8089 into its quiescent (wait) state. When the controller's data transfer circuitry has found the area on the disk where the read or write is to begin, it activates ENBL XFER (8D1). On

the next occurance of a Bit Ring-0 pulse, BR-0 (8D1), following the activation of ENBL XFER, U21-8 (8D3) is activated, activating RDY. The 8089 then immediately performs the data transfer (writes a word into the write buffer or reads a word from the read buffer) and lowers R/WDC 28. On the next clock into U21-11, U21-8 is raised. On the 8089's next attempt to perform a data transfer, R/WDC 28 is also raised, lowering RDY. The data transfer does not occur and the 8089 goes into its wait state. During this time, the SER/DES either transfers the word from the write buffer to the disk or reads another word from the disk into the read buffer. Then on the next BR-0 pulse, RDY is again activated and the next DMA data transfer occurs. The 8089 continues in this DMA mode until the R/W GATE line is lowered.

Note that two other lines have potential control over the RDY line. The TIME OUT line (8D8) is provided to allow the 8089 to be activated if a sector cannot be found on a cylinder. While the drive is searching for a sector, the RDY line is held low. If after two revolutions, the drive does not locate a sync byte, the time out line is raised. U41 (8D3) gates the TIME OUT signal through to U12 (8D1) and activates RDY.

The MWAIT/ line (8D8) is an iSBX Interface control line, derived from MWAIT0/ and MWAIT1/ (13D8).

MWAIT/ exercises the same control over the RDY line as U40 (8D3) and can thus be used to set up a handshaking arrangement between an I/O controller connected to one of the iSBX interface connectors (J3 or J4) and the 8089. Refer to the discussion of the 8089 in the 8086 Family User's Manual for a more detailed explanation of the various uses of the 8089 wait states.

4-28. DISK FORMATTING

Before the surfaces of a disk can be used for the writing and reading of data, the disk must be formatted. Formatting is the operation of writing all the address fields, gaps, ID headers, etc. for the complete disk. The controller performs this operation under software control. The software routine that controls this disk formatting operation allows only a single track to be formatted for each Format command. The host thus issues a new Format command to the controller board for each track to be formatted until the formatting of the entire disk is complete.

The implementation of the Format command is divided into two operations. During the first operation, address marks (soft sectored disks only), gaps and ID fields are written during a single disk revolution. During the second operation, data fields

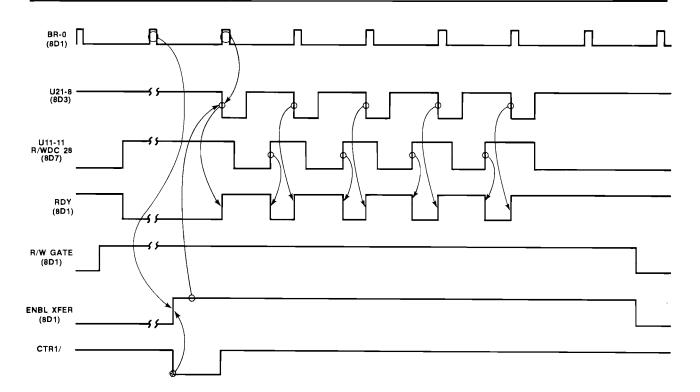


Figure 4-9. Timing Diagram for RDY Signal

are written (using the write data sequence described in Paragraph 4-31) with user supplied data. The second operation requires two disk revolutions, one to write the odd physical data fields (1, 3, 5, ...) and one to write the even physical data fields (0, 2, 4, ...). Three disk revolutions are thus required to format a single track. The hardware execution portion of the format operation is discussed in the following paragraphs. This discussion pertains to the formatting of a soft sectored disk. The iSBC 215 controller supports both soft and hard sectored disks. The formatting procedure, however, is essentially the same. The differences are described at the end of this section, along with the slight differences in the sector format used with the Shugart/Quantum drives. When the Format command is issued to the controller, the 8089 IOP performs a seek to the desired track (cylinder) to begin the format operation.

A soft sectored disk (as used in Shugart/Quantum and Pertec drives) requires an address mark to be written at the beginning of each sector during the formatting operation. Hard sectored disks (as used in Memorex and Priam drives) provide a sector pulse at the beginning of each sector, thus address marks do not need to be written.

When the heads are positioned over the selected track, the 8089 writes a C0H (for unit 0), a C8H (for unit 1), a D0H (for unit 2) and a D8H (for unit 3) to I/O port 8018 (decoded as WDC 18/). The activation of WDC18/ enables U3 (12A5) and activates the WRT GAT-F and FORMAT lines (12B1) and WRT GATE (12C1) (see Figure 4-10). WRT GAT-F and FORMAT enable the controller format control circuitry. The controller then writes all zeros to the drive while the 8089 waits for the receipt of the first INDEX/ pulse (11D8).

The receipt of INDEX/ sets latch U34 (11D6), which in turn sets bit F of the Status Register, U44 (11D5). To monitor the Status Register, the 8089 polls (reads) I/O port 8000H bit F (decoded as RDC 00/). Upon detecting Index, the 8089 writes a XXXXH to I/O port 3030H (decoded as WDC 30), which triggers U63 (8B7), activating the WRT AM/ line (8B1) and causing the first address mark to be written on the disk through the ADMKEN/ line (12D1).

The time that the 8089 allows between the detecting of Index and the activating of U63 (8B7) is approximately 11 byte times, which is the time the controller requires to perform a number of firmware steps in preparation for writing the first address mark and ID field, (see Figure 3-2 for a pictorial representation of the track format). During this time, the 8089

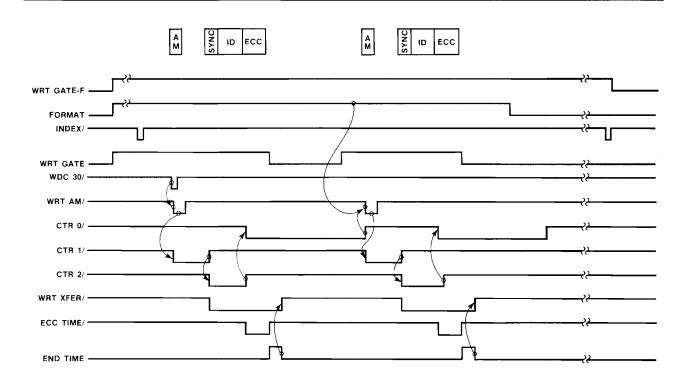


Figure 4-10. Timing Diagram for Disk Formatting Sequence

writes the sync byte (0019H) to the write buffer, U46 and U49 (7C7 and 7D7), by writing to I/O port 8028H (decoded as WDC 28/). It performs this operation in preparation for writing the ID field on the track.

The activation of WRT AM/ also starts counter 1, CTR 1 of U69 (8A7). (The 8089 preset the counters in U69 at the beginning of the format operation.) When CTR 1 times out at the end of 11 byte times, it activates the WRT XFER/line through U63-7 (8C3), and starts CTR 2. The activation of WRT XFER/ initiates the 8089's DMA mode (as discussed in Paragraph 4-27), during which time the sync byte and the sector ID are written onto the disk. CTR 2 times out at the end of the ID field, starting CTR 0 and activating the ECC TIME line (8B1). During the ECC TIME, the ECC code from the ECC generator is written following the ID field (refer to Paragraph 4-34 for a description of the operation of the ECC generator). At the end of ECC TIME, the END TIME line is enabled, which lowers the WRT XFER/ line and takes the 8089 out of the DMA mode. After the last ID field is written, the FORMAT line is deactivated. which inhibits the writing of any additional address marks.

CTR 0 is set for a time equal to the ECC+G3+DATA+G4, which the 8089 sets according to the sector size selected for the drive. When CTR 0 times out, it activates WRT AM/ and CTR 1, which begins the formatting of the second sector. This procedure is repeated until the 8089 determines that the last ID field has been formatted. The 8089 then begins searching for the Index pulse. Upon receipt of Index, the RST FRMT/ line is activated, resetting WRITE GATE-F and FORMAT, and inhibiting the writing of the next address mark. The 8089 then continues through the Format routine to the second operation, which is the writing of the data fields with user supplied data. The write data function, discussed in Paragraphs 4-29, describes the write data operation.

For hard sectored disks, a jumper is connected between terminals W16 1-3 (8B8). The formatting of the first sector thus begins when the first SECTOR/pulse from the disk following the INDEX/ is received, rather than when WDC 30/ is activated. When the SECTOR/ line (11B8) is activated, it activates the INDEX-SECTOR/ line (11C1), which starts CTR 1. Formatting then continues in the same manner as with soft sectored disks, except that the beginning of the next sector occurs at the receipt of the next SECTOR/ pulse rather than at the timing out of CTR 0.

The 8" Shugart/Quantum drive sector format differs in two ways from that of the other three drive types. In the 8" Shugart/Quantum drives, an address mark is placed before both the ID field and the data field,

with no gap between the address mark and the sync byte. In addition, a D9H is used for the sync byte in the data field rather than a 19H. When the controller sync byte detector circuit, U54, U68 and U73 (7B5), detects a sync byte (19 or D9) following an address mark and, the SR-6 (7B1) line is activated, (D9 only detected), the DATA SYNC and IDNCMPRL lines are activated through latch U37 (9A6). DATA SYNC and IDNCMPRL then set bits 3 and 6, respectively, of status register U10 (11C5) indicating to the controller the presence of the data field instead of an ID field. In the Memorex, 14" Shugart, Pertec and Priam drives, a data field is assumed to follow an ID field without an intervening address mark.

A second difference between the 8" Shugart/Quantum drive and the other three drives is that with the 8" Shugart/Quantum drives, a 4EH pattern is written in the gaps rather than zeros. Inverters U58 and U17 (8D6) and gates U19 (8D5) creates the 4EH pattern. U40 and U60 (8A3) gate the pattern through to the SER/DES when the SHUGART and WRT GAT-F lines are activated during a format.

4-29. WRITE DATA TRANSFER

The write operation is divided into two steps: (1) read sector ID and (2) write data. When a write is initiated, the 8089 IOP writes 0006H to I/O port 8000H (decoded as WDC00). Latch U24 (12C5) then: activates the AM SEARCH/, ADMKEN/ and RD GATE/ lines, which enables the drive to search for the address mark and enables the controllers read circuitry (see Figure 4-11).

The 8089 has previously written to I/O port 8020H (decoded as WDC20/) to load counters 0, 1 and 2 of U69 (8A7). It also writes to I/O ports 8030H and 8038H (decoded as WDC30/ and WDC38/), loading the ID of the sector to be written to, into the 32-bit ID comparator logic.

When the address mark (or sector pulse) is detected, SECTOR/ is activated, which activates the AMFND-SECTOR/ line (11B1). The low on AMFND-SECTOR/ resets U34 (8C7) and deactivates the ID FIELD line. The low on the ID FIELD line, deactivates the AMMKEN/ line and activates the ALW SYNC SRCH, initiating the search for the sync byte. (Note that with the Shugart drives, the sync byte follows the address mark directly. The activating of AM FND-SECTOR/ thus activates ALW SYNC SRCH directly through jumper W14 1-2 (12C3).)

In searching for the sync byte, serial data from the disk is read into the SER-DES. Sync byte comparator U73 and U54 (7B5) monitors the outputs of the SER-DES and pulls the SYNC BYTE/ line (7B1) low

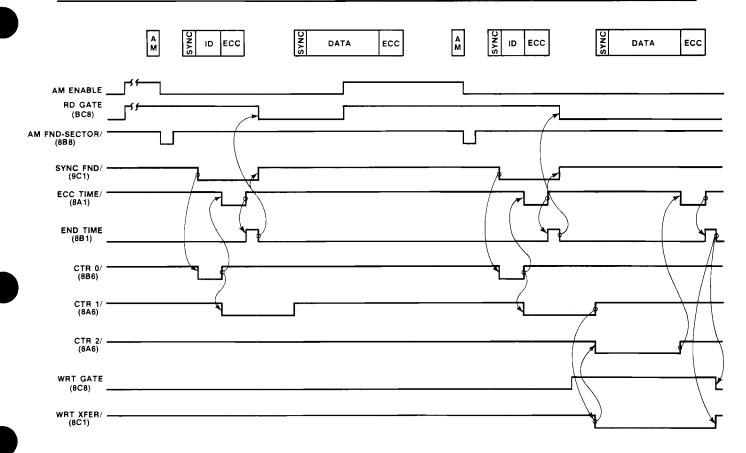
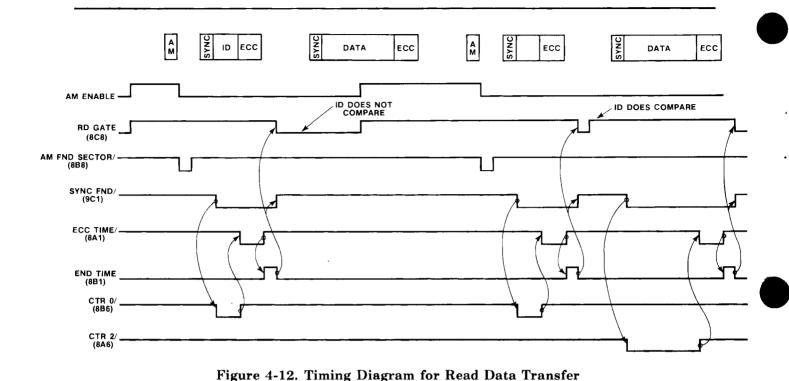


Figure 4-11. Timing Diagram for Write Data

when 19H — the sync byte — is detected. The enabling of SYNC BYTE/, enables the SYNC FND/lines (9C1), which in turn activates the ID comparator U1, U2, U22 and U23 (9DX) and word clock U20 (8D7). (See the discussion of the Sync Byte Comparator Logic in Paragraph 4-32.)


SYNC FND/ also raises the ENBL XFER line, (8C1), which enables the ECC Generator logic (7AX) and Ready Latch U21 (8D4), and gates on counter 0 of U69 (8A7).

The 32-bit comparator (see Paragraph 4-33) compares the ID read from the disk with the ID of the selected sector. At the end of the ID time, counter 0 times out, pulling the ECC TIME/ line (7A8) low and initiating the ECC compare (see Paragraph 4-34). If the ID and the ECC are valid, bit 6 of the controller status register U10 (11C5) is reset. At the end of ECC time, U42-10 (8B2) activates the END TIME line which resets RD GATE. The 8089 then checks bit 6 of control status register U10 (11C5). If the bit is inactive, the 8089 continues with the write operation. If the ID or ECC are not valid (bit 6 active), the AM ENABLE and RD GATE lines are then reasserted

and the controller searches for the next address mark.

To begin the second step of the write operation, the 8089 writes a 01H to I/O port 8000H (decoded WDC00/) and enables the write gate (WRT GATE), through U24 (12B5), enabling the drive's write circuitry. When counter 0 times out, counter 1 is started. Counter 1 is set for a time interval equivalent to the ECC time plus GAP 2. When counter 1 times out, counter 2 is started and the U63-7 (8C3) is set, activating WRT XFER/. WRT XFER/ enables write buffers U46 and U49 (7C7) and the ECC comparator logic (7AX), and raises the RDY line high indicating to the 8089 that the write buffer is ready to receive data.

The 8089 then enters its DMA mode to write data from local RAM to the disk (see the discussion of the DMA mode in Paragraph 4-27). The controller continues transferring data to the disk in this manner until Counter 2 times out, indicating the end of the data field, and raises the ECC TIME line. With the ECC TIME line activated, the ECC generated during the data transfer is written to the disk. END TIME then terminates the write operation.

4-30. READ DATA TRANSFERS

The read operation is divided into two steps: (1) read sector ID and (2) read data. The reading of the sector ID is performed in the same manner as for the write operation (see Figure 4-12).

When the desired sector is located, the RD GATE is again raised to search for the sync byte of the data field. When SYNC FND/ is activated, counter 2 is started through U61-8 (8C4) and U59 (8B6), the ECC generator is enabled and the RDY line is activated, initiating the DMA read data transfer mode. Data is then transferred from the disk to local RAM for the duration of counter 2.

When counter 2 times out, ECC TIME is activated. Following ECC TIME, END TIME is raised, terminating the read operation.

4-31. SER/DES LOGIC

The serial/deserialize logic performs two functions: (1) converts parallel data words into a serial string of bits to be sent to the disk drive during a write operation, and (2) converts a serial string of bits into 16-bit words during a read operation. The SER/DES logic is made up of Write Buffer U46 and U49 (7C7), SERializer/DESerializer U47 and U50 (7C5), Read Buffer U48 and U51 (7C4), and Selector U70 (7A7).

During a write operation (WRT XFER/ low), the 8089 IOP writes to I/O port address 8028H. Write I/O port address decoder U35 (5A2) decodes this address and pulls WDC28/ low, clocking the data to be written to the disk (BDAT-0 through BDAT-F) into write buffer U46 and U49 (7C7). A high on load serial register line LDSR (7C6), derived from word clock U20 (8C7) loads the contents of the write buffer (SR-0 through SR-F) into the SER/DES (7C5). Read/write clock R/W CLK-B (7B8) then clocks the data bit by bit through the QH' output of U50 (7D5), and through selector U70 (7A7) to the WRT DATA line. R/W CLK-A clocks the serial data string on WRT DATA through U18 (10C3) to the selected drive.

During a read operation, the R/W CLK-B (10B1) gates the serial data string (RD DATA) from the disk drive through U18 (10B4) and selector U70 (7A7) and into the SI input of U47 (7C5), creating a 16-bit parallel word. Bit ring-0 line BR-0 (7B8) then clocks this word into read buffer U48 and U51 (7C4). BR-0 is derived from word clock U20 (8C7). With the read buffer loaded, the 8089 initiates a read to I/O port address 8028H. Read I/O port address decoder U36 (5B2) decodes this address and pulls RDC28/ low, which clocks the data word from the read buffer onto internal data bus IDAT-0 through IDAT-F.

4-32. SYNC BYTE COMPARATOR LOGIC

The sync byte comparator detects the presence of a sync byte during a read operation and synchronizes word clock U20 (8C7) with the data. A sync byte is written preceding each sector ID and each data field to indicate to the controller that data to be read is forthcoming (see Figure 3-2). The sync byte value is always 19H except for the Shugart/Quantum drives, which use a D9H for data fields.

During a read operation, sync byte decoder U54 and U73 (7B5) monitors the output of the SER/DES, U47 and U50 (7C5). When a 19H is detected, SYNC BYTE/ goes low indicating the presence of the sync byte. SYNC BYTE/ and the next output of R/W CLK-B set the SYNC FND flip-flop, U57 (9C6). SYNC FND activates word clock U20 (8C6), and activates the read/write logic (sheet 8). A further explanation of the sync byte logic can be found in Paragraphs 4-29 through 4-31.

4-33. 32-BIT ID COMPARATOR LOGIC

The 32-bit ID comparator logic compares the sector ID of the record being searched for with the sector ID being read from the disk drive. The sector ID is made up of the flags, cylinder number, sector number and head address.

To load the sector ID of the record being searched for into 32-bit ID comparator U1, U2, U22 and U23 (9DX), the 8089 IOP writes to I/O ports 8030H, enabling the WDC30/ and WDC38/ lines, respectively. WDC30/ and WDC38/ initiate the loading of the sector ID into the ID comparator. This loading occurs prior to performing either a read or write data operation. The ID compare operation begins after the sync byte of an ID field has been detected (SYNC FND). R/W CLK-B clocks the ID information, which is stored in the ID comparator, out of U22 (pins 7 and 9) bit by bit. U26 (9D2) compares the serial string of bits with the sector ID from the disk drive (RD-DATA). If the two sector IDs differ, ID no-compare line ID NCMPR/ is activated; if they are the same, ID NCMPR/ is raised. Selector U70 (7A7) ORs the ID NCMPR/ and the ECC NCMPR/ lines (see Paragraph 4-37). The resulting ID-ECC NCMPR/ lines is latched into U37 (9B6). The Q/output of U37, ID NCMPR-L, is transmitted to bit 6 of status register U10 (11C5). The 8089 IOP then reads the contents of the status register and checks the condition of bit 6. Bit 6 being set high indicates that the record read from the disk was either not the record being searched for or had an ECC error; conversely, bit 6 being set low indicates that the ID field compared and that there was not an ECC error. The 8089 IOP can then read or write the data portion of the record.

4-34. ECC GENERATOR LOGIC

The error checking code (ECC) logic performs two functions: (1) during a write operation, it generates a four byte ECC polynomial that is appended to the ID field (format operation only) and the data field (normal write) of a record (see Figure 3-2), (2) during a read operation, it regenerates the ECC polynomial and compares it to the ECC field read from the disk record to ensure that the correct data was read from the drive.

During a write operation, serial data (either an ID field or a data field) is transmitted from the SER/DES (7C5) through selector U70 (7A7) and into the ECC generator through pins 1 and 2 of U103 (7A6), where the ECC polynomial is generated. At the same time a high on the WRT XFER DLYD line (7B8), transmitted through gate U68 (7B4), enables the serial data to be transmitted through U71 (7A2) and selector U70 (7A7) to the WRT DATA line, where it is transmitted to the disk. At ECC time (end of data field), WRT XFER DLYD goes low, inhibiting write data from being transferred through gate U68 (7B4). The ECC TIME/ line goes low, causing the ECC polynomial to be written onto the disk through U71 (7A3), U70 (7A7) and the WRT DATA line.

During a read operation, serial data (again either a sector ID or a data field) is read into the ECC generator through selector U70 (7A7) and into the SER/DES through U71 (7A3) and U70. At ECC time, U71 compares the ECC polynomial from the ECC generator bit by bit with the ECC polynomial from the disk and transmits the difference through U70 to the SER/DES for storage in RAM. If the difference is zero, the ID-ECC NCMPR/ line is pulled high indicating correct data or sector ID (Paragraph 4-33). If the result of the comparison is non-zero, the difference is called the error syndrome. The 8089 uses syndrome to correct errors in a sector ID or data field (if correctable).

4-35. STATUS REGISTER LOGIC

Status register U10 and U44 (11X5) and U9 (11B3) transmit status information from the selected disk drive, the iSBX interface and various lines within the controller disk interface circuitry to the controller. When the 8089 IOP issues a Read Status command, or checks status as an internal operation, read decode enable lines RDC 00/ and RDC 08/ are acticated, causing the contents of status registers U10 and U4, and U9, respectively to be transferred onto the internal bus (IDAT-8 through IDAT-F). The 8089 then analyzes the status information and either uses it for an internal operation or communicates the

Table 4-8. Status Register Bits

Bits	8000H (Upper Byte) U44 (11D5)	Function 8000H (Lower Byte) U10 (11C5)	8008H (Lower Byte) U9 (11B3)
F	Index		
E	Drive Request		
D	Illegal Address		
С	Option Bit 10*		
в	Option Bit 00*		
Α	Interrupt 10*		
9	Interrupt 00*		
8	iSBX Board Present at J3*		
7		Time Out	Write Protected
6		ID No Compare	Track Zero
5		Bus Acknowledge	Vendor
4		Fault	Option Bit 11*
3		Data Sync	Option Bit 01*
2		Seek Complete	Interrupt 11*
1		Ready	Interrupt 01*
0		0	iSBX Board Present at J4*

status of the data transfer operation to the host processor through system memory (Controller Invocation Block). Table 4-8 lists the status register bits. Refer to Chapter 3 for information on the status information transmitted to the host.

4-36. LINE DRIVERS AND RECEIVERS

All the serial data and high speed clock signals transmitted between the controller and the disk drive use differential pair line drivers and receivers. The polarity on these lines is positive true logic i.e., when the + side of the line is more positive than the - side of line, a positive logic "1" is being transmitted.

The controller's differential drivers, U16 (10X3) are referenced to 0 volts and +5 volts. The controller's receivers that receive differential signals from the Memorex, 14" Shugart, Pertec and Priam drives, U13 (10X6), are also referenced to 0 volts and +5 volts. The receivers for the 8" Shugart and Quantum drives receive differential signals, U15 (10X5), are referenced to -5 volts and +5 volts.

CHAPTER 5 SERVICE INFORMATION

5-1. INTRODUCTION

This chapter provides service and repair assistance instructions, service diagrams, a complete electronic parts list for the printed circuit board assembly and a reference to the controller's self diagnostic.

5-2. SERVICE DIAGRAMS

The controller board jumper and component locations, and schematic diagrams (Figure 5-1 through 5-3) are included at the end of this chapter. Note that these diagrams are intended only for reference; they reflect the iSBC 215 controller design at the time this manual was printed. The schematics and component location diagrams packaged with the controller reflect the design version shipped and thus supercede the diagrams in this manual.

5-3. SERVICE AND REPAIR ASSISTANCE

United States customers can obtain service and repair assistance from Intel by contacting the Intel Product Service Hotline in Phoenix, Arizona. Customers outside the United States should contact their sales source (Intel Sales Office or Authorized Distributor) for service information and repair assistance.

Before calling the Product Service Hotline, you should have the following information available:

- a. Date you received the product.
- b. Complete part number of the product (including dash number). On boards, this number is usually silk-screened onto the board. On other MCSD products, it is usually stamped on a label.
- c. Serial number of product. On boards, this number is usually stamped on the board. On other MCSD products, the serial number is usually stamped on a label.
- d. Shipping and billing addresses.
- e. If your Intel Product warranty has expired, you must provide a purchase order number for billing purposes.
- f. If you have an extended warranty agreement, be sure to advise the Hotline personnel of this agreement.

Use the following numbers for contacting the Intel Product Service Hotline:

Telephone:

All U.S. locations, Except Alaska, Arizona, & Hawaii

(800) 528-0595

All other locations: (602) 869-4600

TWX Number:

910 - 951 - 1330

Always contact the Product Service Hotline before returning a product to Intel for repair. You will be given a repair authorization number, shipping instructions, and other important information which will help Intel provide you with fast, efficient service. If you are returning the product because of damage sustained during shipment or if the product is out of warranty, a purchase order is required before Intel can initiate the repair.

5-4. SELF DIAGNOSTIC

A self diagnostic is provided with the iSBC 215 controller, stored in the on-board PROM. It performs a go/no-go test of the controller hardware and firmware. If the controller passes the test, it indicates with a high degree of certainty that the controller is operating properly. See the discussion of the diagnostic in Chapter 3 for a description of the program and instructions for initiating the operation.

5-5. REPLACEABLE COMPONENTS

This section contains the information necessary to procure replacement components directly from commercial sources. Component manufacturers have been abbreviated in the parts list with a two to five character code. Table 5-1 cross-references the manufacturer's code with the name and location of the prime commercial source. Table 5-2 lists all the replaceable components on the controller board. Note that the components that are available commercially are listed in the "MFR CODE" column as "COML" and that they are ordered by description (OBD). Procure commercially-available components from a local distributor whenever possible.

Table 5-1. Code for Manufacturers

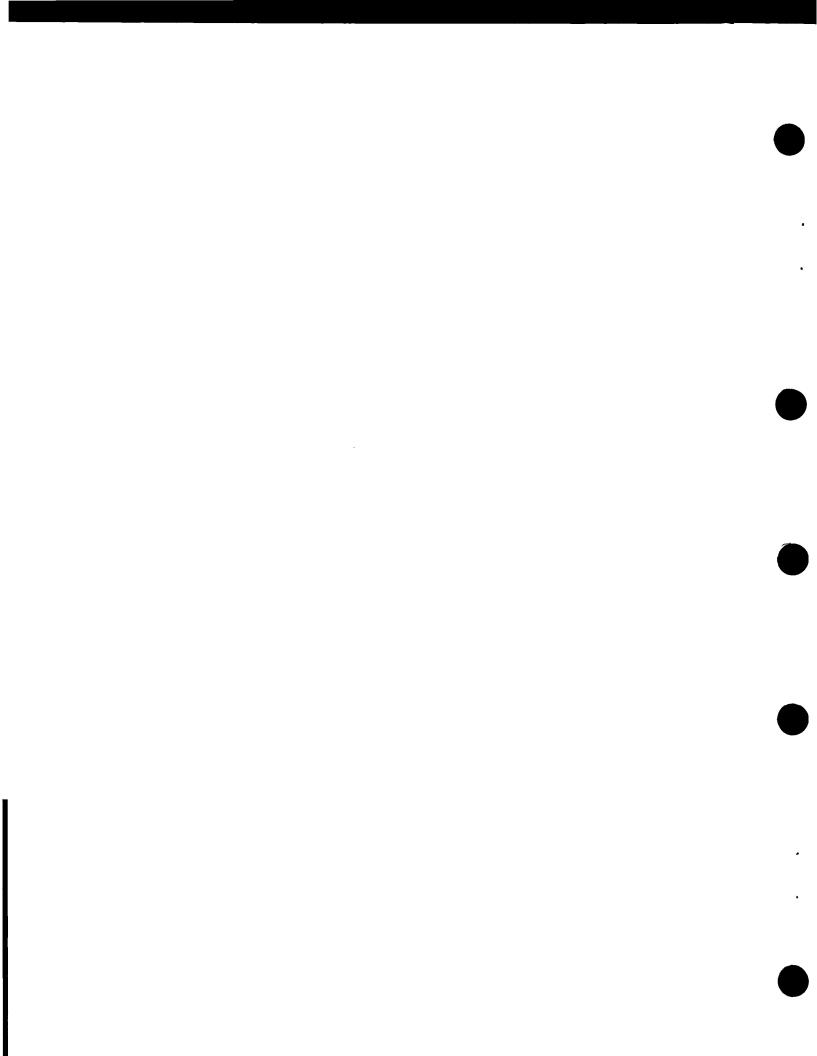

Mfr. Code	Manufacturer	Location
BECK	Beckman Instruments Inc.	Fullerton, CA
BOUR	Bourns, Inc.	Riverside, CA
CRYST	Crystek	Ft. Meyers, FL
CTSK	CTS Keene, Inc.	Paso Robles, CA
DALE	Dale Electronics	Columbus, NE
FAI	Fairchild Semiconductor	Mt. View, CA
INTEL	Intel	Santa Clara, CA
мот	Motorola	Phoenix, AZ
SNGMO	Sangamo-Weston, Inc.	Pickens, SC
SPEC	Spectrol Electronics Corp.	City of Industry, CA
SPRG	Sprague Electronic Co.	Adams, MA
3M	ЗМ Со.	St. Paul, MN
TI	Texas Instruments	Dallas, TX
VIK	Viking Industries, Inc.	Chatsworth, CA
COML	Any Commercial Source; Orde (OBD)	r By Description

Table 5-2. Controller Board Electrical Parts List

Reference Designation	Description	Mfr. Part No.	Mfr. Code	Qty.
C1, C2	Capacitor, 22µF, Tant, ±10%, 15V	150D226X9015B2	SPRG	2
C3	Capacitor, 2.2 μ F, Tant, \pm 10%, 20V	150D225X9020A2	SPRG	1
C4	Capacitor, 0.33µF, Cer. Z5U	OBD	COML	1
C5	Capacitor, 10 μ F, Tant, \pm 10%, 20V	150D106X9020B	SPRG	1
C6	Capacitor, 10pF, Mica, ±5%,	D15-5C100J03	SNGMO	1
C7 through C12 C14 through C44	Capacitor, 0.10μF, Cer. Z5U	OBD	COML	37
J1	Connector, Header 50 Pin	3433-1302	3M	1
J2	Connector. Header 40 Pin	3432-1302	3M	1
J3, J4	Connector, 44 Pin	68-369	VIK	2
RP1 RP3	Resistor Pack, 220/330 Ω, 10 Pin Resistor Pack, 100 Ω, 8 Pin	765-5-R220/330 764-3-R100	BECK BECK	1 1
RP4	Resistor Pack, 56 Ω, 6 Pin	763-1-R56	BECK	1
RP5, RP7 through RP13	Resistor Pack, 10 kΩ, 8 Pin	764-1-R10K	BECK	8
RP6	Resistor Pack, 220/330 Ω, 8 Pin	764-5-R220/330	BECK	1
R1, R4, R7 through R9, R13, R14	Resistor, Carb., 10 KΩ, ¼W, ±5%	OBD	COML	7
R2, R3, R6, R12, R15, R16	Resistor, Carb., 270 Ω, ¼W, ±5%	OBD	COML	6
R5	Resistor, Carb, 100 kΩ, ¼W, ±5%	OBD	COML	1
R10, R11	Resistor, Carb, 680 Ω, ¼W, ±5%	OBD	COML	2
S1	Switch, 8 Position, DIP	206-08LPST	CTSK	1
S2	Switch, 10 Position, DIP	206-10LPST	CTSK	1
U1, U2, U22, U23	IC, 8 Bit Shift Reg.	SN74LS165N	TI	4
U3	IC, Octal, D Type, Flip-Flop	SN74LS273N	ΤI	1
U4 through U6, U81 through U83	IC. Octal Latch, Inverting	8283	INTEL	6
U7, U27	IC, Quad Driver, Inverting, OC	7438		2
U8	IC, Dual 4 to 1 Selector/MUX	SN74LS153N	TI	1
U9, U85, U86	IC, Octal D Type Latch	SN74LS373N	TI	3

Table 5-2. Controller Board Electrical Parts List (Continued)

Reference Designation	Description	Mfr. Part No.	Mfr. Code	Qty.
U10, U44, U46, U48, U49, U51	IC. Octal D Type Flip-Flop	SN74LS74N	TI	6
U11, U61, U68,	IC Quad 2 Input NAND	SN74LS00N	TI	3
U12, U29, U59, U72	IC, Quad 2 Input AND	SN74LS08N	TI	4
U13	IC, Quad Line Receiver	3486		1
U14	IC, Dual Line Receiver	75107A	ΤI	1
U15, U89	IC, Quad 3 State Buffer	SN74LS125N	TI	3
U16	IC, Quad Line Driver	3487	TI	1
U17	IC. Hex Inverter	SN74S04N	TI	1
U18	IC, Dual Pos. Edge Trig. Flip-Flop	SN74S4		1
U19, U26	IC, 2 Wide, 3 in, 2 in, AND-OR-INV	SN74LS51N	TI	2
U20	IC, 4 Bit Binary Counter	SN74LS161N	TI	1
U21, U37, U56. U57, U62	IC, Dual Pos Edge Trip. Flip-Flop	SN74LS74N	ΤI	6
U24	IC, Quad D Type Flip-Flop	SN74LS175N	Τţ	2
U25. U28	IC. Hex Inverter	SN74LS04N	TI	2
U30. U32. U38, U41. U67. U76. U9 2	IC. Quad Input OR	SN74LS32N	TI	7
U31	IC, Hex Schmidt Trigger	SN74LS14N	TI	1
U33. U73	IC. Quad 2 Input NOR	SN74LS02N	TI	2
U34. U63	IC. Quad R-S Type Latch	SN74LS279N	TI	2
U35. U36	IC, 3 to 8 Decoder	SN74LS138N	TI	2
U40. U75	IC, Tri 3 Input NAND	SN74LS10N	ΤI	2
U42	IC. Hex Type Flip-Flop	SN74LS743N	TI	1
U43. U45. U93 through U95	IC. Octal Three State Buffer	SN74LS244N	TI	5
U47. U50	IC. 8 Bit Shift/Storage Register	SN74LS299N	TI	2
U52. U53	IC. Octal Bus Transceiver	8286	INTEL	2
U54	IC. Dual 4 Input NAND	SN74LS20N	TI	1
U55	IC. Clock Generator	8284A	INTEL	1
U58. U74	IC. Hex Inverting Buf/Drvr	SN74LS06N	TI	2
U60	IC. Quad 2 Input NOR	SN74S02N	TI	1
U65	IC. Dual 2 to 4 Line Decoder	SN74LS139N	TI	1
U 6 6	IC. 13 Input NAND	SN74LS133N	ΤI	1
U69	IC. Programmable Counter/Timer	82 53-5	INTEL	1
U70	IC, Quad 2:1 MUX	SN74LS257N	TI	1
U71	IC. 9 Bit Parity Generator	SN74LS280N	TI	1
U77 through U80	IC. Quad 2 Input XNOR OC	SN74LS266N	TI	4
U84	IC. Input/Output Processor	8089	INTEL	1
∪87	IC. PROM	Open Loop (Low Byte)	INTEL ¹	1
U88	IC. PROM	Closed Loop (Low Byte)	INTEL ¹	1
		Open Loop (High Byte) Closed Loop (High Byte)	INTEL ¹	1 1
U90	IC. Bus Arbiter	8289	INTEL	1
U91	IC. Bus Controller	8288	INTEL	1
U96 through U98	IC. Octal Bus Transceiver, Invert.	8287	INTEL	3
U99 through U102	IC. Static RAM	2114-5	INTEL	4
U103 through U106	IC. 8 Bit Shift Register	SN74LS164N	TI	4
VR1	Voltage Regulator, -5V	MC7905CT	MOT	1
Y1	Crystal, 15.000 MHz	Type 44 Miniature HC454	CRYST	1

CAUTION: These schematic diagrams may have been revised, See "Service Information" chapter for details,

Figure 5-3. iSBC 215TM Winchester Disk Controller Schematic Diagram (Sheet 14 of 14)

Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 13 of 14)

CAUTION: These schematic diagrams may have been revised. See "Service Information" chapter for details.

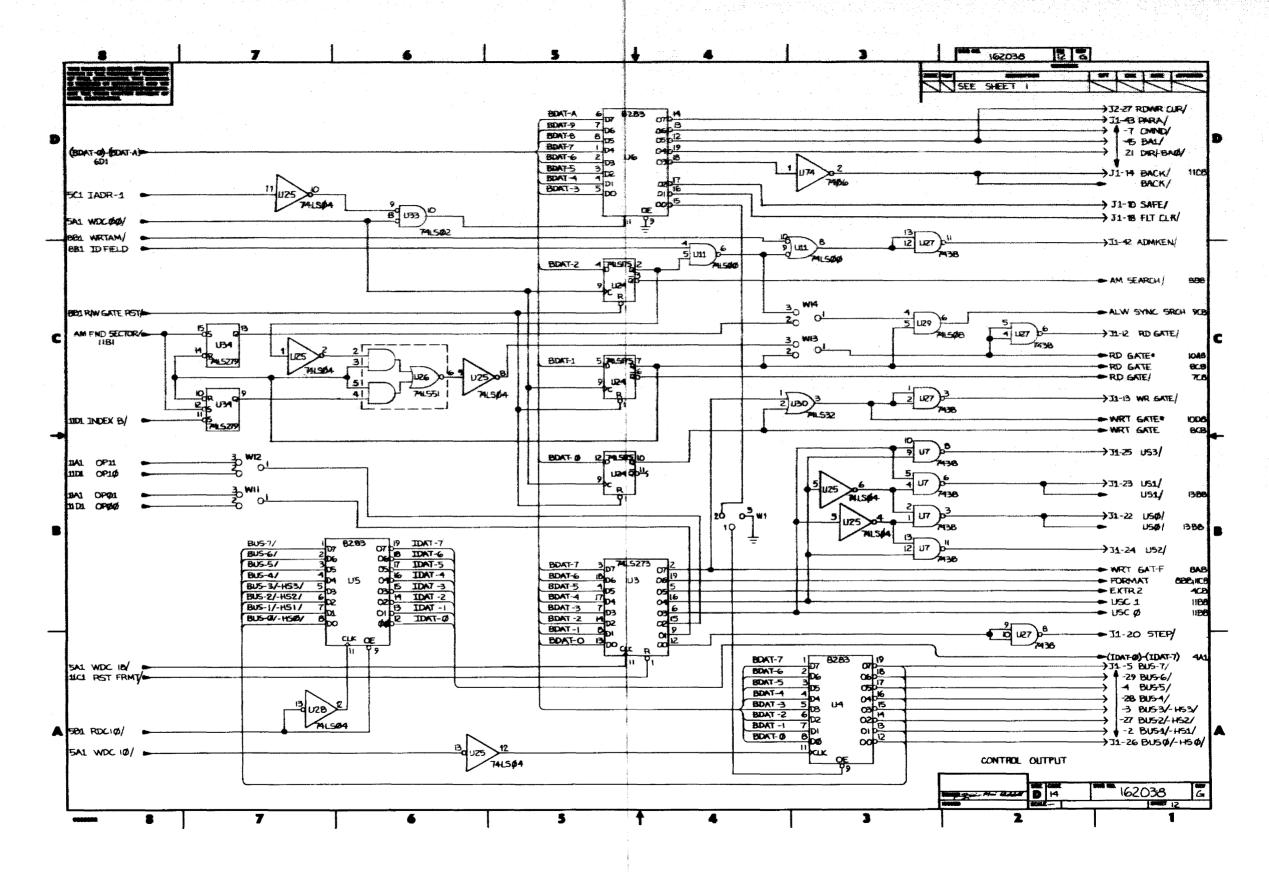


Figure 5-3, iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 12 of 14)

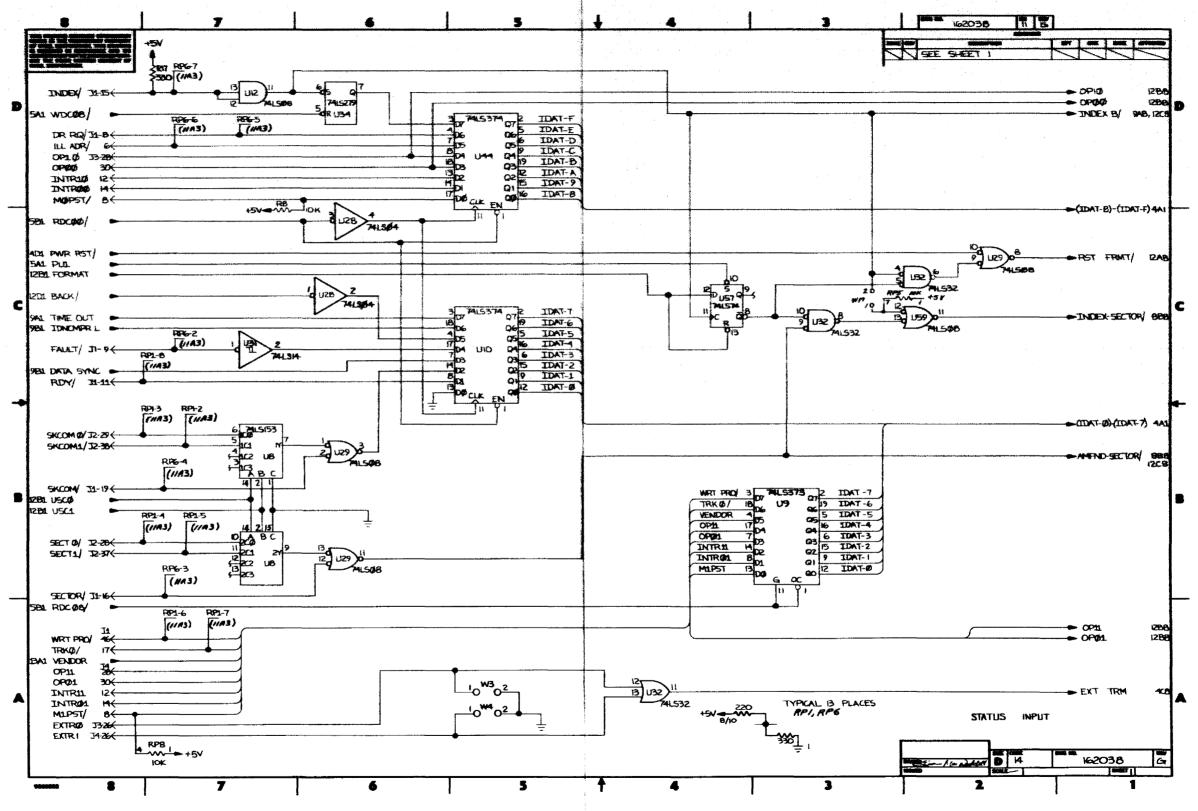


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 11 of 14)

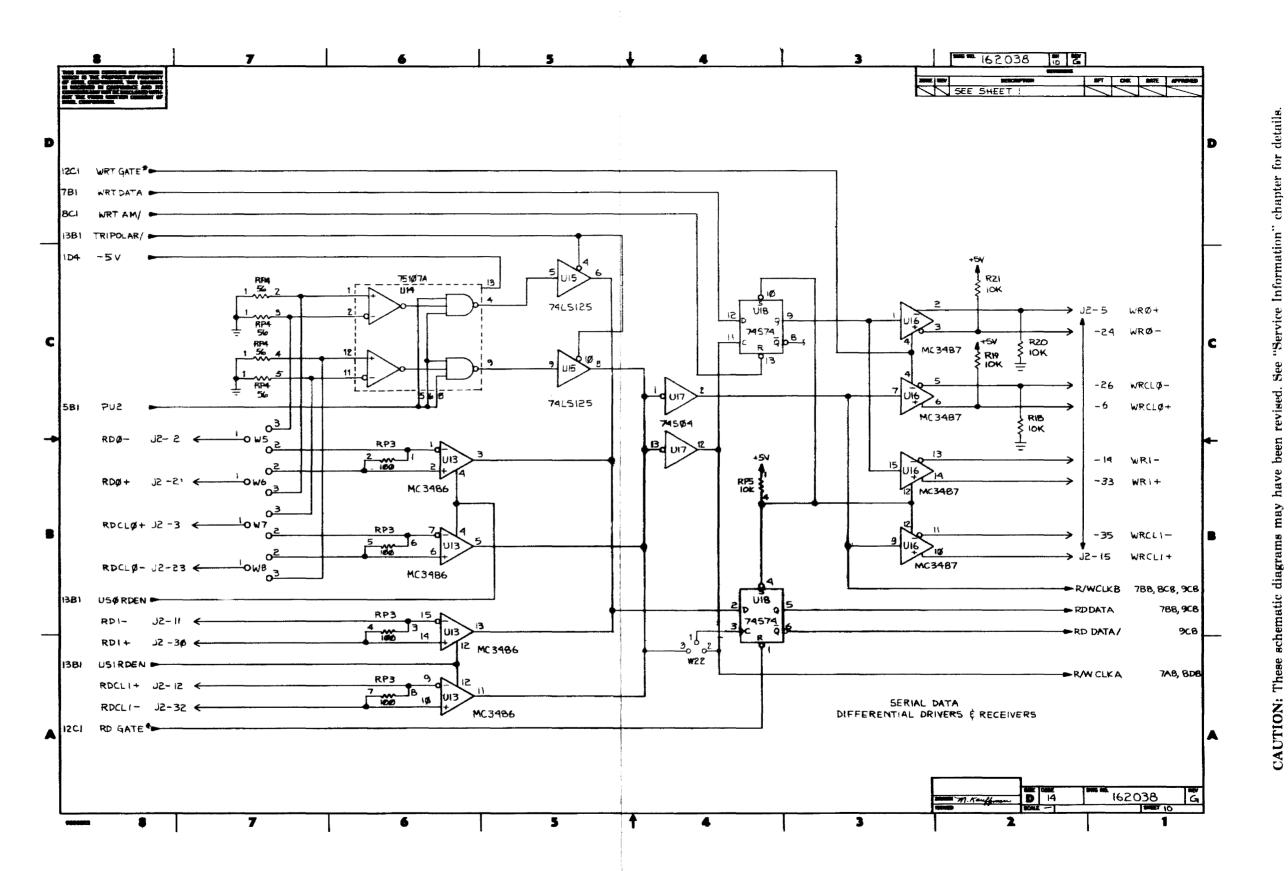


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 10 of 14)

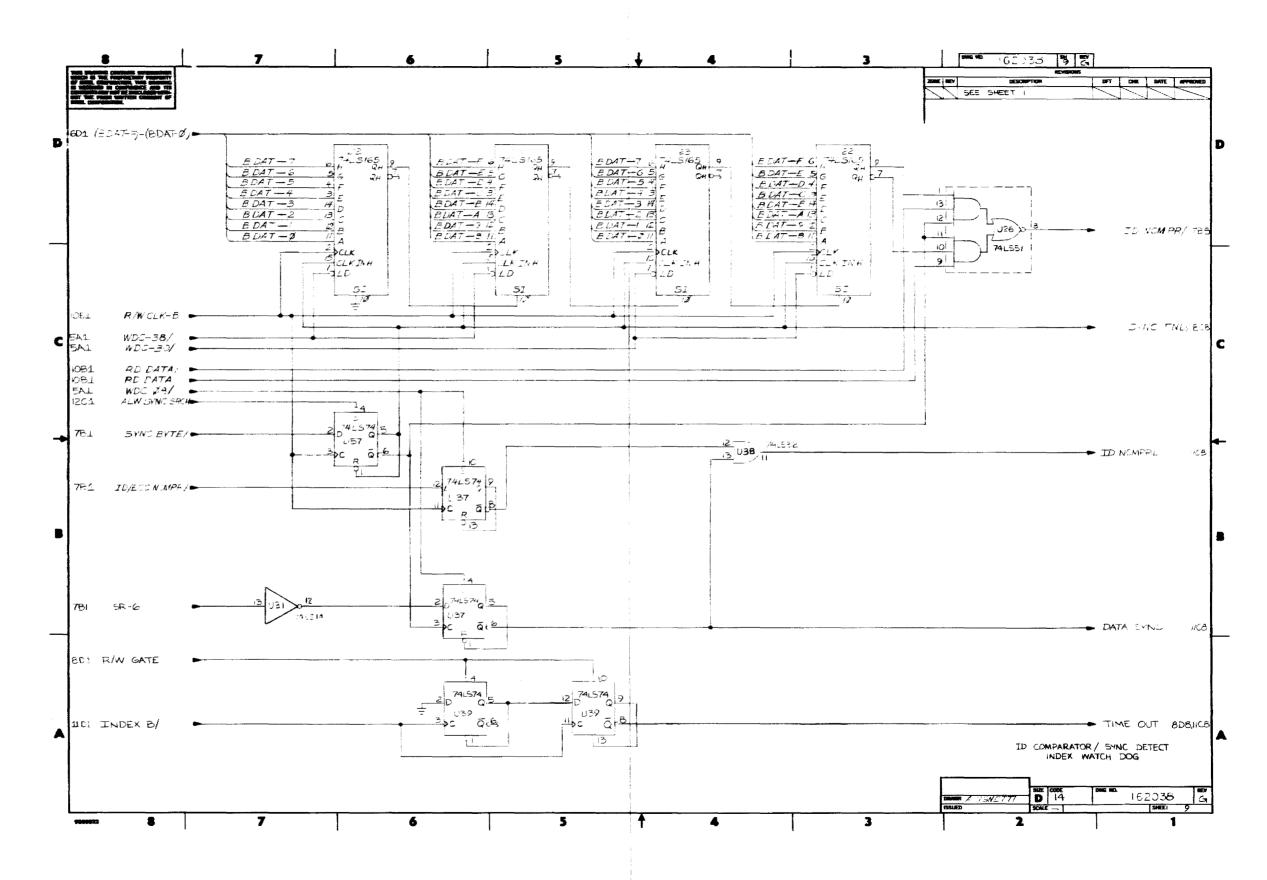


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 9 of 14)

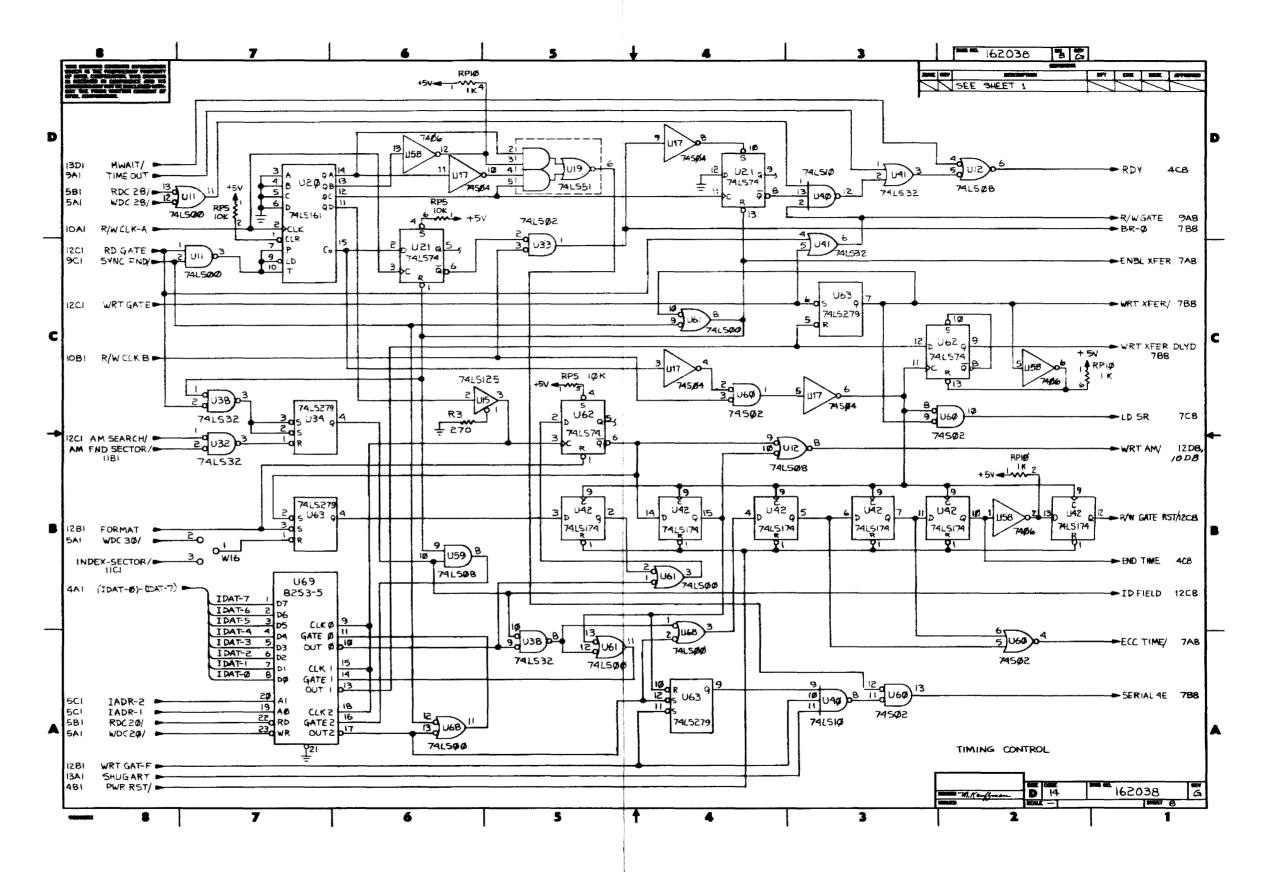


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 8 of 14)

"Service Information" chapter for details.

schematic diagrams may

CAUTION: These

Figure 5-3. iSBC 215TM Winchester Disk Controller Schematic Diagram (Sheet 7 of 14)

details.

"Service Information" chapter for

See

been revised.

diagrams may

schematic

CAUTION:

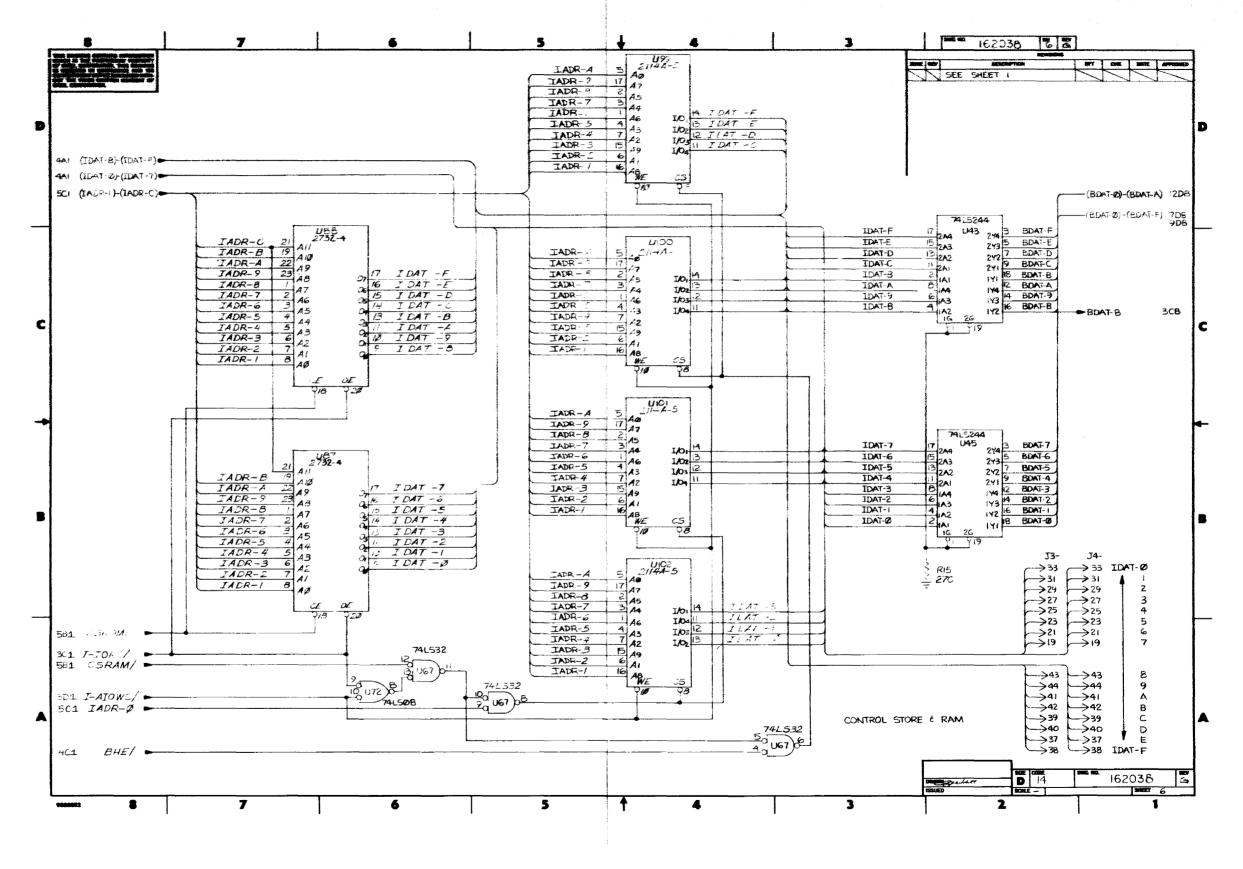


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 6 of 14)

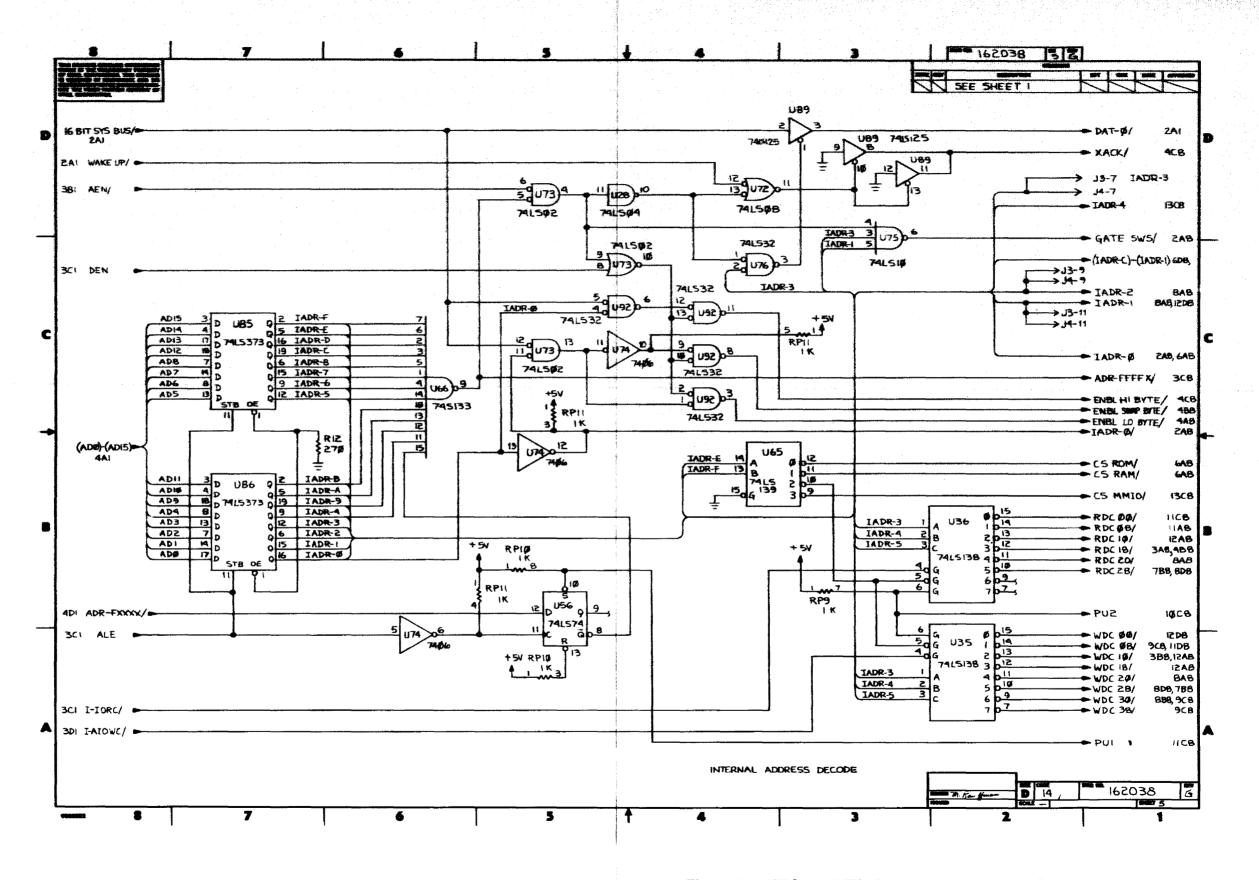


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 5 of 14)

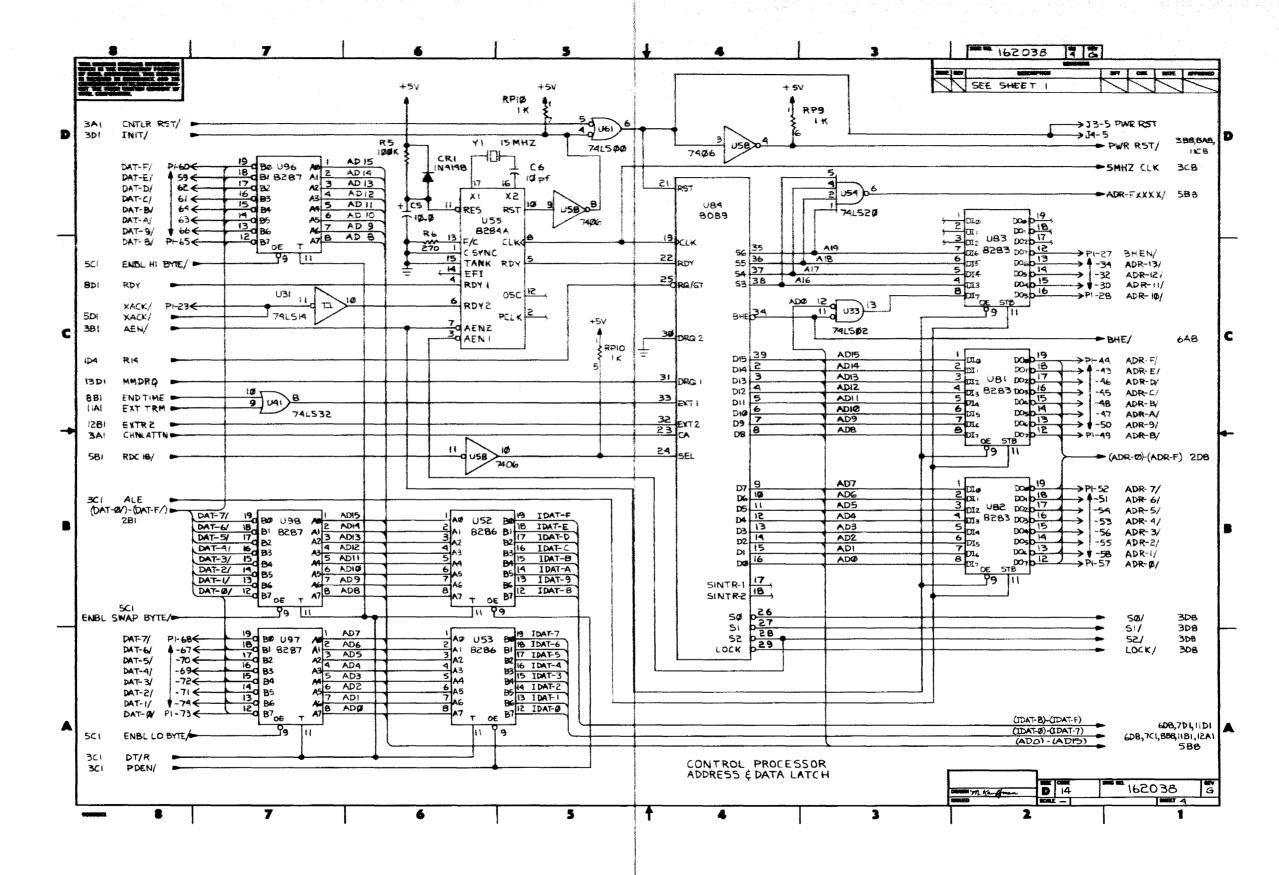


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 4 of 14)

CAUTION: These schematic diagrams may have been revised. See "Service Information" chapter for details.

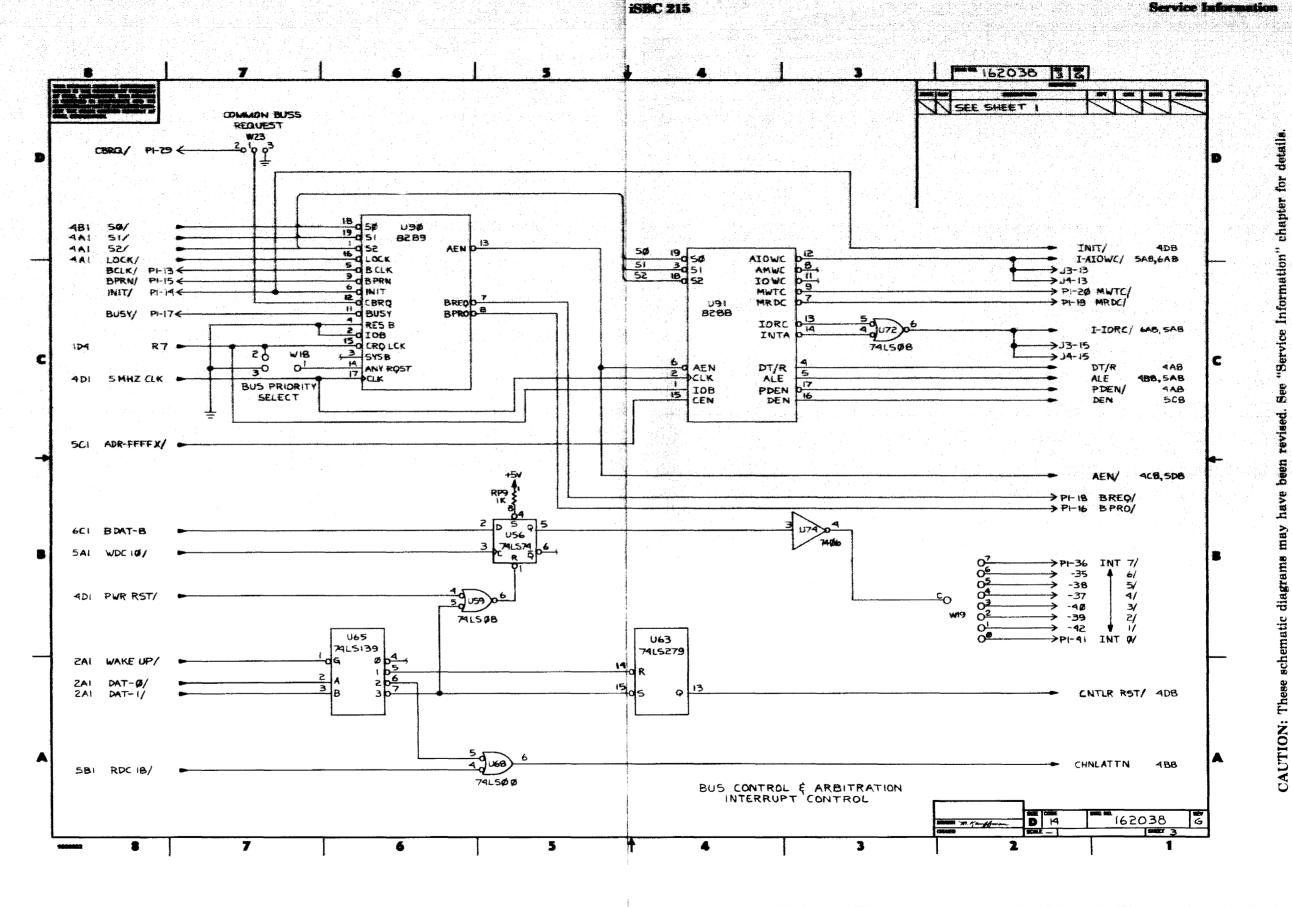


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 3 of 14)

chapter for details.

 \mathbf{S} ee

CAUTION: These schematic diagrams

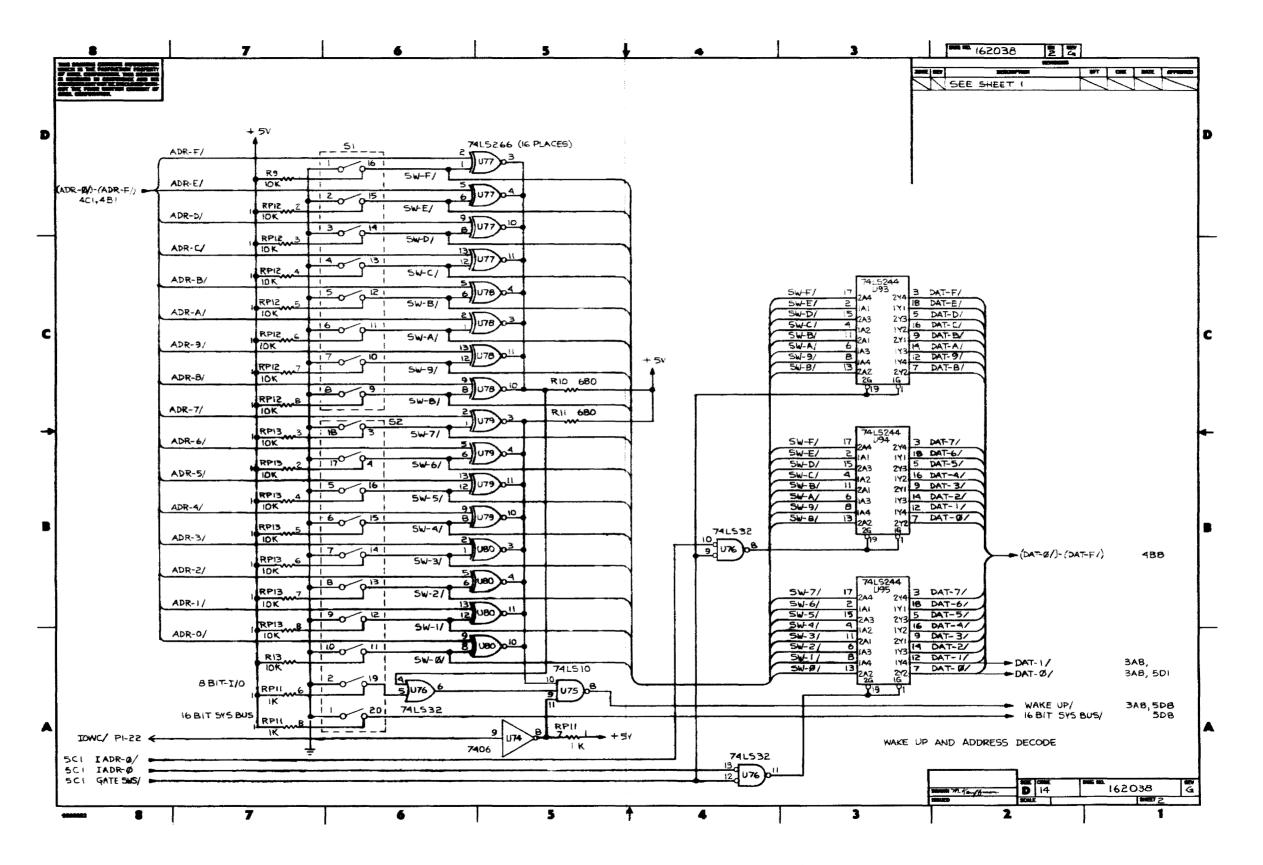


Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 2 of 14)

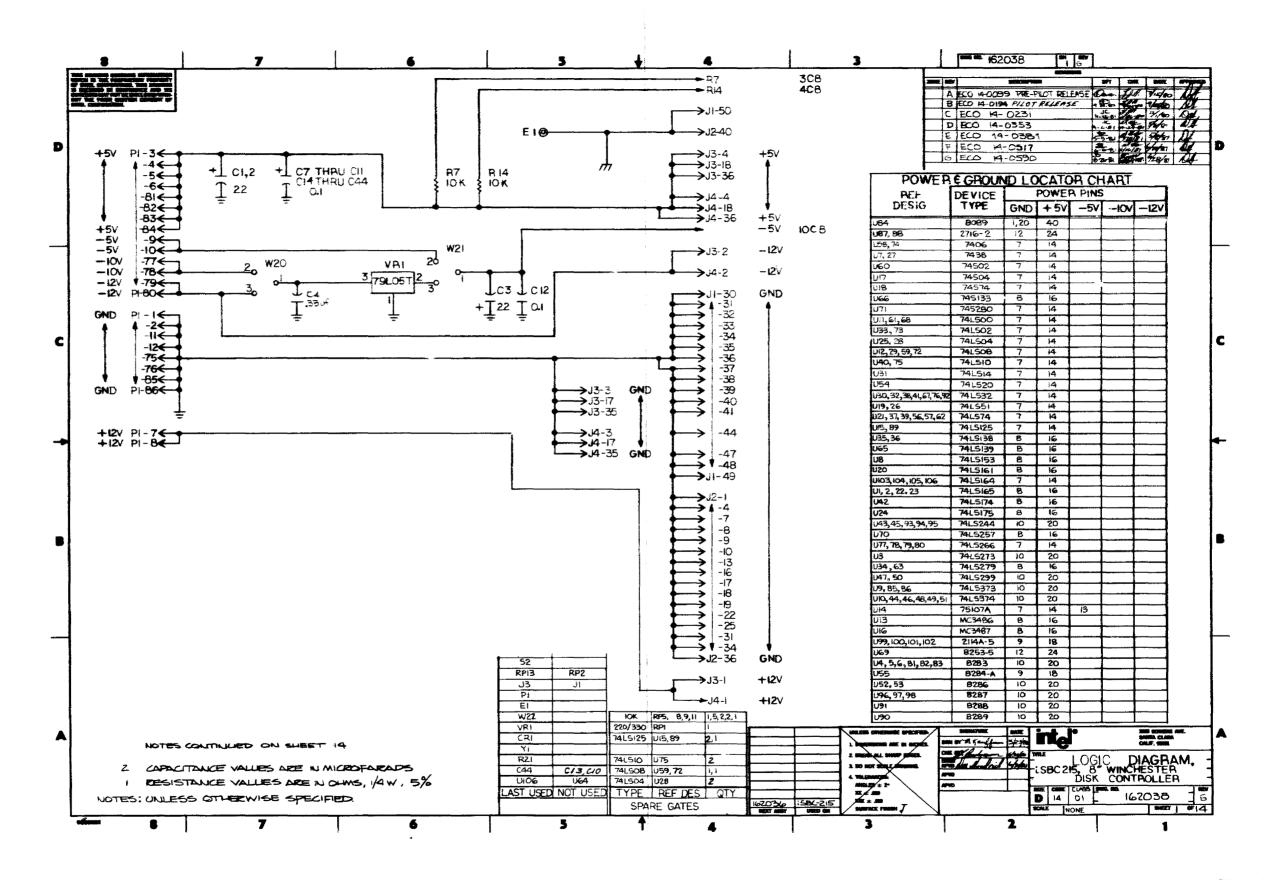
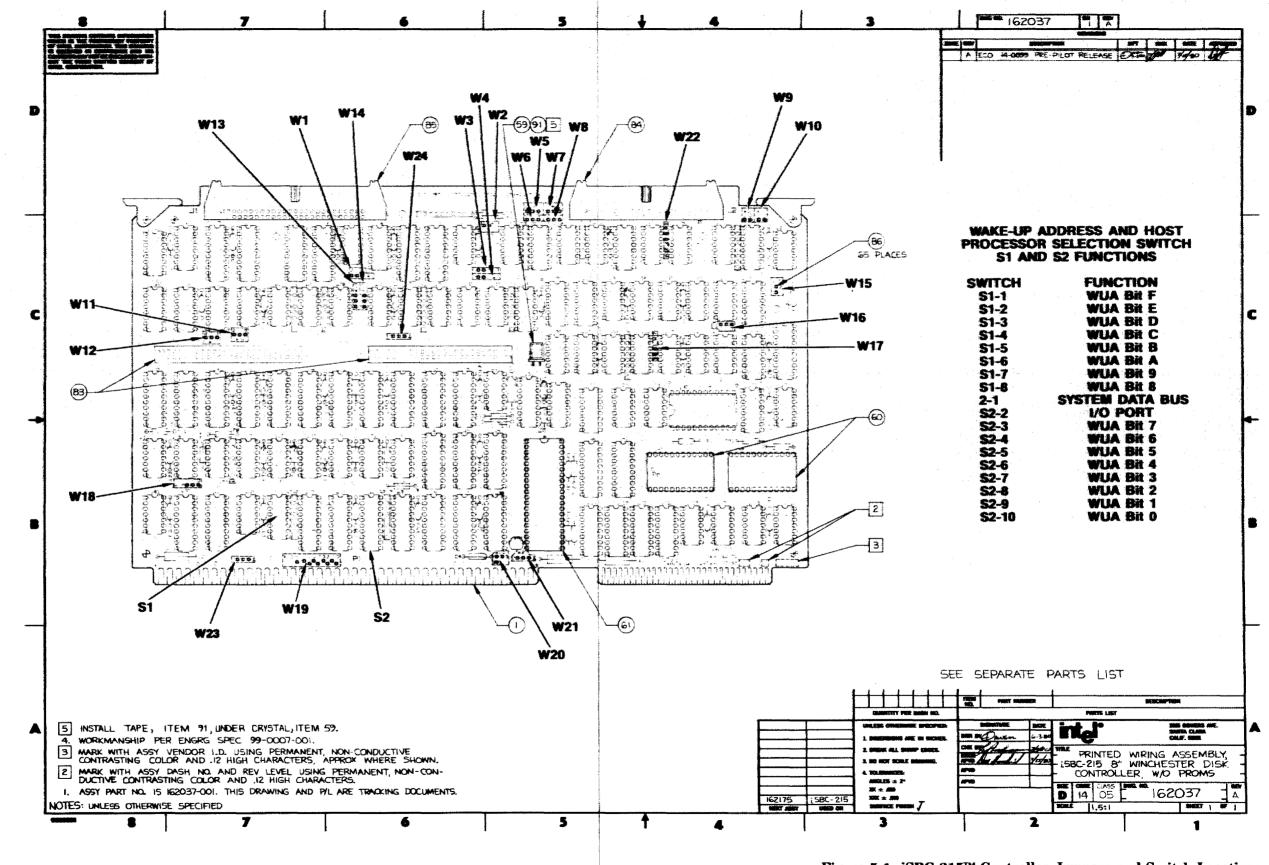



Figure 5-3. iSBC 215™ Winchester Disk Controller Schematic Diagram (Sheet 1 of 14)

Figure 5-2. iSBC 215™ Winchester Disk Controller Parts Location Diagram

APPENDIX A HANDSHAKE SEQUENCES AND EXAMPLE HOST PROCESSOR DISK CONTROL PROGRAM

INTRODUCTION

The information contained in this appendix is provided to illustrate various methods of implementing data transfers between one or more host processors and the iSBC 215 controller. The flow charts illustrate the handshake procedures required between a host processor and the controller. User sequences are shown both for single and multi-user processing environments. A sequence for initiating overlapped seeks is also given.

The program listing provides an example program that a host processor would run to direct data transfer between the host and the iSBC 215 controller. The program is written in MCS-86™ Macro Assembler language. It illustrates the data structures that the iSBC 215 controller requires and shows a few simple disk operations drivers.

SINGLE USER SEQUENCE

The flow chart in Figure A-1 shows the handshake sequence between a single host processor and the controller for basic data transfer operations (with no overlapping seeks). Note that communication between the host and the controller is through the Status Semaphore and Operation Status bytes of the Controller Invocation Block.

SINGLE USER SEQUENCE WITH OVERLAPPING SEEKS

The flow chart in Figure A-2 shows the handshake sequence between a single host processor and the controller for data transfer operations that user overlapping seeks.

MULTI-USER SEQUENCE

The flow chart in Figure A-3 shows the handshake sequence between a host processor and the controller when more than one processor is transferring data between the disk drives through the same controller (multi-processor environment). Note that in this case the Command Semaphore byte in the Controller Invocation Block is also used. Overlapping seeks in a multi-processor environment are implemented the same as in single processor environments.

EXAMPLE HOST PROCESSOR DISK CONTROL PROGRAM

The following program example is for a single user environment. Some of the techniques illustrated in the flow charts in this appendix are implemented in this program, but not all.

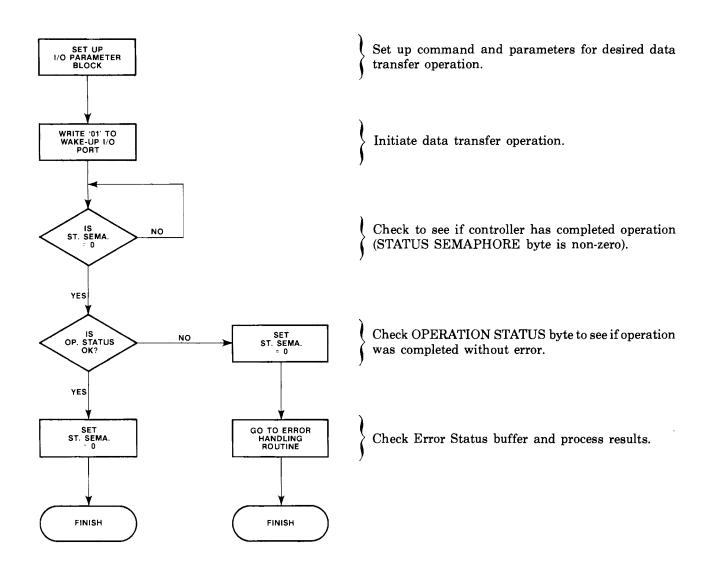


Figure A-1. Flow Chart for Single User Handshake Sequence Without Overlapping Seeks

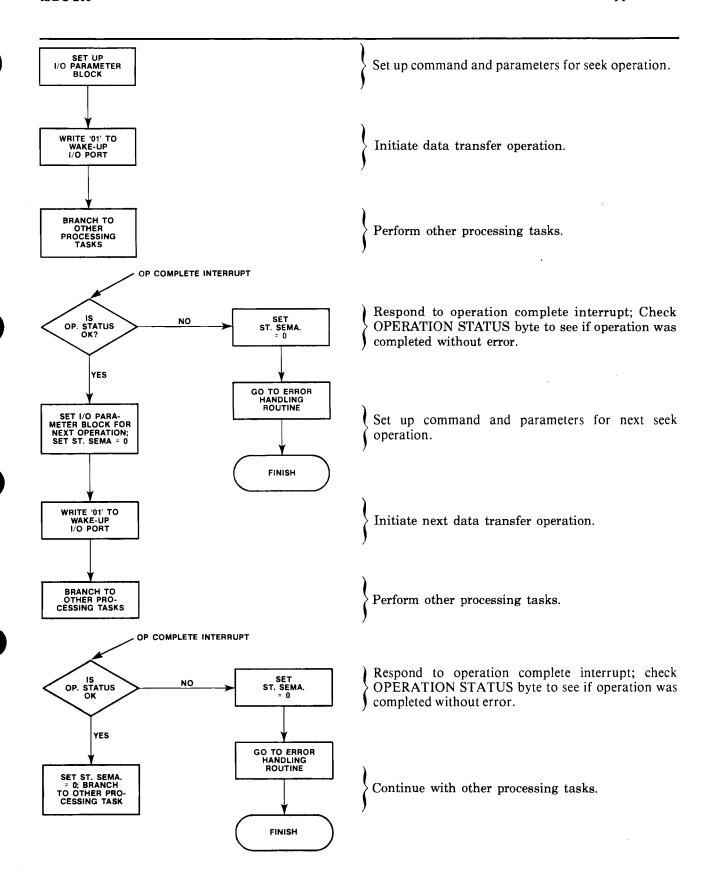


Figure A-2. Flow Chart for Single User Handshake Sequence With Overlapping Seeks

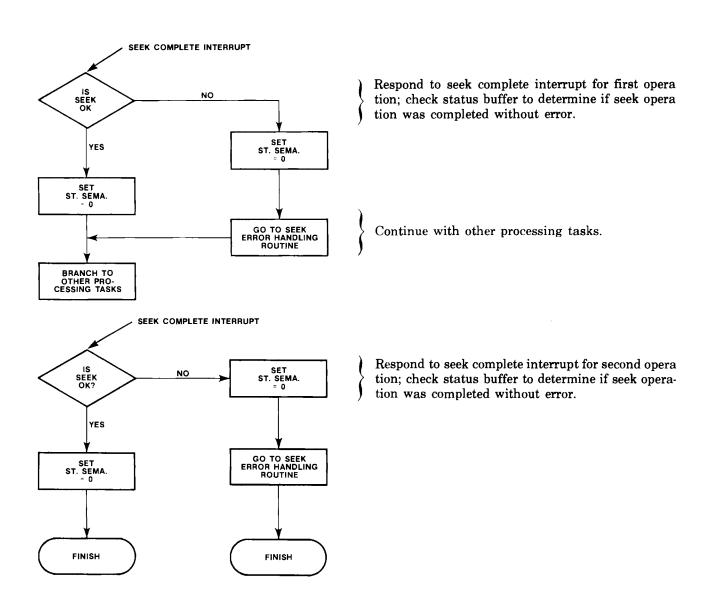


Figure A-2. Flow Chart for Single User Handshake Sequence With Overlapping Seeks (Continued)

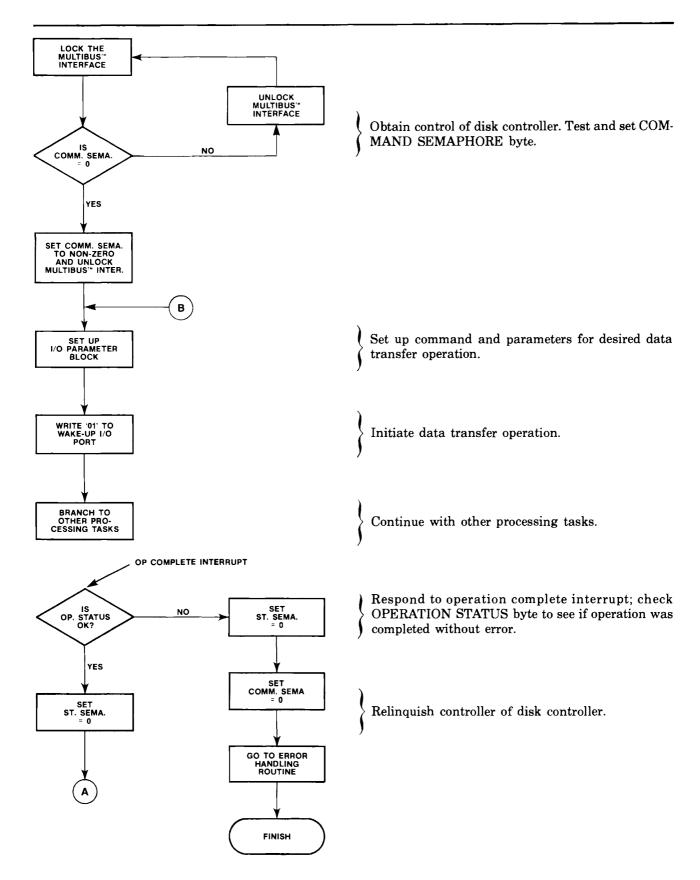


Figure A-3. Flow Chart for Multi-User Handshake Sequence

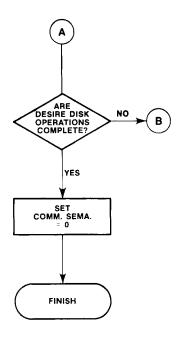


Figure A-3. Flow Chart for Multi-User Handshake Sequence (Continued)

1

MCS-86 MACRO ASSEMBLER 1SBC 215 8" WINCHESTER DISK CONTROLLER PROGRAMMING EXAMPLE

10/27/80 PAGE

ISIS-II MCS-86 MACRO ASSEMBLER V2.1 ASSEMBLY OF MODULE EXMPRG OBJECT MODULE PLACED IN :F1:EXMPRG.OBJ ASSEMBLER INVOKED BY: ASM86 :F1:EXMPRG.MMD DATE(10/27/80) XREF DEBUG

```
SOURCE
LOC OBJ
                              LINE
                                         $PAGELENGTH(85) PAGEWIDTH(115) TITLE(1SBC 215 8" WINCHESTER DISK CONTROLLER PROG
                                  ì
                                         RAMMING EXAMPLE) XREF
                                          ; ##
                                          ; ##
                                                   iSBC 215 DISK CONTROLLER PROGRAMMING EXAMPLE
                                           ; THIS PROGRAM ILLUSTRATES THE DATA STRUCTURES REQUIRED BY THE 1SBC 215
                                 10
                                          ; DISK CONTROLLER. A FEW SIMPLE DISK OPERATION DRIVERS ARE ALSO SHOWN.
                                 1.1
                                  12
                                          ; THE HARDWARE CONFIGURATION SUPPORTED IS:
                                 13
                                                        1SBC 86/12A HOST CPU
                                  14
                                                        20 BIT SYSTEM MEMORY ADDRESS WIDTH
                                  15
                                                   3. 16 BIT SYSTEM DATA BUS WIDTH
                                  17
                                                        16 BIT SYSTEM I/O ADDRESS WIDTH
                                 18
                                                   5. iSBC 215
                                                             a. WAKE UP ADDRESS ( WUA ) AT I/O PORT 0635H
b. INTERRUPT 5
c. -12 VOLTS INPUT
                                  19
                                 20
21
                                 22
                                                             d. RELINQUISH BUS CONTROL ON ANY REQUEST
                                 23
                                          ; FOR (2), PROGRAMMING OF DATA TRANSFERS MUST TAKE THIS INTO ACCOUNT, e.g. THERE
                                  24
                                                       IS NO WRAPAROUND IN SEGMENTS IF MORE THAN 64K BYTES ARE TRANSFERRED.
                                 26
                                          ; 1SBC 215 SWITCH AND JUMPER SETTINGS:
                                 27
                                 28
                                         ; FOR (3), SWITCH S2-1 IS CLOSED.
; FOR (4), SWITCH S2-2 IS CLOSED.
; FOR (5a), SWITCHES S1-6,S1-7,S2-5,S2-6,S2-8, AND S2-10 ARE CLOSED, THE
; REMAINING ADDRESS SELECT SWITCHES ARE OPEN.
; FOR (5b), W19-C CONNECTS TO W19-5; INTERRUPT VECTORS MUST BE SET UP PROPERLY.
; FOR (5c), W21-1 CONNECTS TO W21-3
; FOR (5d), W2-1 CONNECTS TO W2-2.
                                  29
                                  30
                                  31
                                  33
                                  34
                                  36
                                          $INCLUDE(:F1:COMBLK.MMD)
$EJECT TITLE(1SBC 215 COMMUNICATION BLOCKS)
                                  37 + 1
```

Appendix A iSBC 215

MCS-86 MACRO ASS	EMBLER	iSBC 215	COMMUNIC	CATION BI	OCKS		10/27/80 PAGE 2
LOC OBJ		LINE	SOURCE				
	= l	39	;				
	= 1	40	; 1			l l	
	= 1	41	;	COMMUNI	CATION BLOCK	S I	
	= 1	42	;			1	
	= 1 = 1	43 44	;				
	= 1	45	,				
	= 1	46	,	SCB			
	= Î	47					
	= 1	48	;				
	= 1	49	;				SBC 215 THE WIDTH OF THE 8089's LOCAL
	= 1	50	;	BUS AND	POINTS TO T	HE CCB.	
	= 1	51	;				*********
	= 1 = 1	52 53	;				
	= 1	5 4	:	*			B IS EQUAL TO THE I/O WAKE-UP ADDRESS * iSBC 215 MULTIPLIED BY 16. *
	= 1	55	;	*****			****************
	= 1	56	;				
0635	= <u>1</u>	57	,	WUA	EQU 063	5 H	; WAKE-UP ADDRESS I/O PORT NUMBER
	= 1	58	;		·		
	= 1	59	SCBSEG	SEGMENT	AT WUA		; PUTS SCB AT ADDRESS 06350H
	= 1	60	;				
0000	= 1	61	SCB	LABEL	FAR 01H		. TELL SOSO IT TO ON A 16 DIT LOCAL DUC
0000 01 0001 00	=1 =1	62 63	SOC	D B D B	00H		; TELL 8089 IT IS ON A 16 BIT LOCAL BUS ; RESERVED
0001 00	R = 1	64	CCBPTR	DD	CCB		; POINTER (SEGMENT + OFFSET) TO CCB
0002 0000	k -1 ≈1	65	;	DD	ССВ		, TOTALER (SEGMENT COTTSET) TO COB
	= 1	66	SCBSEG	ENDS			
	≂ 1	67	;				
	= 1	68	,		=		
	= 1	69		CCB			
	= 1 = 1	70 71	; =====		=		
	=1	7 2	:	тите вт	OCK CONTAINS	THE CONTROL	BYTES, BUSY FLAGS, AND POINTERS TO THE
	= 1	73					EL PROGRAMS FOR THE 8089.
	= 1	7.4	;	DIMETER	O NEEKLOOLO	or ran outline	and the other transfer of the other transfer
	= 1	7.5	CCBSEG	SEGMENT			; CCB MUST BE CONTIGUOUS
	= 1	76	;				
0000	= 1	77	CCB	LABEL	FAR '		
0000 01	≈ 1	78	CCW1	DB DB	01H		; START CH. 1 PROGRAM IN LOCAL MEMORY
0001 00 0002 0400	= l R = l	79 80	BSYFLG1 CH1PTR		00H CH1PC		; CH. 1 BUSY FLAG
0002 0400	- i	81	CHIPIK	עע	CHIPC		; POINTER TO FIFTH BYTE OF CIB, WHICH ; CONTAINS STARTING ADDRESS OF CH. 1
	= 1	82					; FIRMWARE PROGRAM
0006 0000	= 1	83		DW	0000н		RESERVED
0008 01	= 1	84	CCW2	DB	01H		; START CH. 2 PROGRAM IN LOCAL MEMORY
0009 00	= 1	8.5	BSYFLG2	DВ	00н		; CH. 2 BUSY FLAG
000A 0E00	R = i	86	CH2PTR	DD	CH2PC		; POINTER TO LAST WORD OF CCB, WHICH
	= 1	8 7					; CONTAINS STARTING ADDRESS OF CH. 2
000E	= 1 = 1	88 89	CHORC	TADET	PAD		; FIRMWARE PROGRAM
000E 0400	= 1	90	CH2PC	LABEL DW	FAR 0004H		; STARTING ADDRESS OF CH. 2 PROGRAM
0000 0400	=1	91	:	D 14	0004 n		, SIARIING ADDRESS OF CR. 2 PRUGRAM
	= 1	92	CCBSEG	ENDS			
	= 1	93	;	•			
	= 1	94 +1	\$EJECT				

iSBC 215 Appendix A

MCS-86 MACRO ASSEN	MBLER	iSBC 215	COMMUNI	CATION B	LOCKS		10/27/80 PAGE 3
LOC OBJ		LINE	SOURCE				
	= 1	95	: =====	2222222	22		
	= l	96	: 111	. CIB			
	= 1	97			==		
	= l	98	;				
	= 1	99	;				SE COMMAND AND STATUS BYTES, SEMA-
	= 1	100	;				USE OF THE 1SBC 215 IN A MULTI-
	= 1	IOI	;	PROCESS	OR/MULTI-PROCESS	ING SYSTEM	
	= 1	102	;	2 = 2 × = × =			OT A WIGH DE CONTINUE
	= 1	103	CIBSEG	SEGMENT		;	CIB MUST BE CONTIGUOUS
0000	= 1	104	;	CARRI	T.A.D.		
0000 0000 00	≠ 1 = 1	105 106	CIBCMD	LABEL DB	FAR OOH		CIB COMMAND BYTE NOT USED BY ISBC 215
0000 00	= 1	107	OPSTS	DB DB	00H	,	CIB STATUS BYTE IS USED BY 1SBC 215
0001 00	= 1	107	CMDSEM	D B	00H		COMMAND BYTE SEMAPHORE
0003 00	= 1	109	STSSEM	D B	00H		STATUS BYTE SEMAPHORE
0004	= 1	110	CHIPC	LABEL	FAR	,	
0004 00000000	= 1	111	01.110	DD	0000н	:	STARTING ADDRESS OF CH. I PROGRAM
0008 0000	= 1	112	IOPBOFF		OFFSET LOPB		POINTER TO LOPB
000A	R = 1	113	IOPBSG	DW	IOPBSEG	•	
0000 00000000	= 1	114		DD	0000Н	;	RESERVED
	= 1	115	;				
	= 1	116	CIBSEG	ENDS			
	= 1	117	;				
	= 1	118	; =====		2.2		
	= 1	119		IOPB			
	= 1	120	; =====		:==		
	= 1	121	;				
	= 1 = 1	122	;			DEATOR DE	PENDENT CONTROL INFORMATION FOR THE
	= 1	123 124	;	1580 21	5 CONTROLLER.		
	=1	125	TOPRSEG	SEGMENT	,		IOPB MUST BE CONTIGUOUS
	= 1	126	•	SECTION 1		,	TOTA MOUT BE CONTIGUOUS
0000	= 1	127	IOPB	LABEL	FAR		
0000 00000000	= 1	128		DD	0000н	:	RESERVED
0004 00000000	= 1	129	ACTONT	DD	0000н		ACTUAL TRANSFER COUNT (32 BIT INTEGER)
0008 0000	= 1	130	DEVCOD	DW	0000н	;	DEVICE CODE (OH-WINCHESTER OIH-FLOPPY)
000A 00	= 1	131	UNIT	DB	00H	;	UNIT NUMBER (0 <= UNIT <= 3)
000в 00	= 1	132	FUNC	D B	00H	;	FUNCTION CODE (0 <= FUNCTION <= OFH)
0000 0000	= 1	133	MODIFY	DW	0000н		MODIFIER WORD
000E 0000	= 1	134	CYLNDR	DW	0000н		CYLINDER NUMBER
0010 00	= 1	135	HEAD	DB	00н		HEAD NUMBER
0011 00	= 1	136	SECTOR	DB	00H		SECTOR NUMBER
0012 0000	= 1	137	BUFOFF	DW	0000H	;	POINTER TO DATA BUFFER
0014 0000	= 1 = 1	138	BUFSEG	DW DD	0000H	_	DEGULECTED TRANCEED COUNT (INTROSE)
0016 00000000 001A 00000000	= 1	139 140	REQCNT	D D D D	0000H 0000H		REQUESTED TRANSFER COUNT (INTEGER)
JOIN JUJUUUU	= 1 = 1	141		עע	000011	;	RESERVED
	= 1	142	IOPBSEG	ENDS			
	•	143	:	LHDU			
		144 +1	\$ INCLUD	E(:FI:IN	IITBL.MMD)		
	= 1	145 +1	\$EJECT	TITLE(DI	SK DRIVE INITIAL	IZATION TA	BLES)

MCS-86 MACRO ASSEMBLER	DISK DRI	ISK DRIVE INITIALIZATION TABLES 10/27/80 PAGE				
LOC OBJ	LINE	SOURCE				
≠1	146	;				
= 1	147	; 1				
= 1	148	; DISK DRIVE INITIALIZATION PARAMETER TABLES				
= 1 = 1	149 150	:				
-1 ≠1	151	;				
= 1	152	; THIS SEGMENT CONTAINS THE DRIVE CONFIGURATION DATA T	ABLES THAT ARE USED			
= 1	153	; BY THE INITIALIZATION ROUTINE. THEY MUST BE MODIFIE				
=1	154	; PARTICULAR DRIVES BEING USED WITH THE 1SBC 215 DISK	CONTROLLER.			
=1 =1	155 156	; - IF A DRIVE IS NOT PRESENT, ITS INITIALIZATION TABLE MUST	BE ALL ZEROES			
=1	157	i a brite to not income, its initialization rable hour	BE ALL SUROES.			
= 1	158	;				
= 1	159	; 8 " WINCHESTER HARD DISK DRIVES	1			
⇒1 =1	160 161	, number per enemon . MANIMUM enemone per makey	:			
=1	162	; BYTES PER SECTOR MAXIMUM SECTORS PER TRACK	- -			
=1	163	54	i			
= 1	164	; 1 256 31	1			
= 1	165	; [512] 17	1			
≖1 ±1	166 167	; 1024 9				
=1	168					
- =1	169					
==1	170	INITBLSEG SEGMENT				
=1	171	;				
=1 =1	172 173	; DRIVE #0SHUGART MODEL SA1004 (10.6 MEGABYTES STORAGE)				
0000 0001 =1	174	DW 256 ; NUMBER OF CYLINDER	S			
0002 04 =1	175	DB 4 ; NUMBER OF FIXED RE				
0003 00 =1	176	DB O ; NUMBER OF REMOVABL				
0004 1F =1	177	DB 31 ; NUMBER OF SECTORS				
0005 0001 =1 0007 05 =1	178 179	DW 256 ; NUMBER OF BYTES PE DB 5 ; NUMBER OF ALTERNAT				
=1	180	; NUMBER OF ALIERNAL	E CILINDERS			
=1	181	; DRIVE #1SHUGART MODEL SA1002 (5.3 MEGABYTES STORAGE)				
=1	182	;				
0008 0001 =1	183	DW 256 ; NUMBER OF CYLINDER				
000A 02 =1 000B 00 =1	184 185	DB 2 ; NUMBER OF FIXED RE DB 0 • ; NUMBER OF REMOVABL				
0000 11 =1	186	DB 17 ; NUMBER OF SECTORS				
000D 0002 =1	187	DW 512 ; NUMBER OF BYTES PE	R SECTOR			
000F 05 =1	188	DB 5 ; NUMBER OF ALTERNAT	E CYLINDERS			
=1 =1	189 190	; DRIVE #2 NONEXISTENT				
=1	191	, DRIVE "E NONEXISTENT				
0010 0000 =1	192	DW 0000H ; NUMBER OF CYLINDER				
0012 00 =1	193	DB OOH ; NUMBER OF FIXED RE				
0013 00 =1 0014 00 =1	194 195	DB 00H ; NUMBER OF REMOVABL DB 00H ; NUMBER OF SECTORS				
0014 00 =1	196	DW 0000H ; NUMBER OF BYTES PE				
0017 00 =1	197	DB OOH ; NUMBER OF ALTERNAT				
- 1	198	;				
=1	199	; DRIVE #3 NONEXISTENT				
=1 0018 0000 =1	200 201	DW 0000H ; NUMBER OF CYLINDER				
0018 0000 =1	201	DB 00H ; NUMBER OF FIXED RE				
001B 00 =1		DB OOH ; NUMBER OF REMOVABL				
001C 00 =1	204	DB OOH ; NUMBER OF SECTORS	PER TRACK			
001D 0000 =1	205	DW 0000H ; NUMBER OF BYTES PE				
001F 00 =1 =1		DB OOH ; NUMBER OF ALTERNAT	E CYLINDERS			
-1 -1	208 +1	\$EJECT				
-						

MCS-86 MACRO ASSEMBLER	DISK DRI	VE INITIALIZATION TABLES	10/27/80 PAGE
LOC OBJ	LINE	SOURCE	
= 1	209	•	
-1 ≈1	210		
=1	211	8" FLEXIBLE DISK DRIVES	• •
	212	; ····································	
=1	213	BYTES PER SECTOR MAXIMUM SECTORS PER TRACK	1
= 1	214		- i
= 1	215	; 128 26 (FM)	i
±1	216	; 256 26 (MFM)	1
= 1	217	; 512 15 (MFM)	I
= 1	218	; 1024 8 (MFM)	1
= 1	219	• • • • • • • • • • • • • • • • • • • •	• •
= 1	220	;	
= 1	221	;	
= 1	222	; DRIVE #0SHUGART MODEL 850 (1.0 MEGABYTES STORAGE)	
= 1 0020 4D00 = 1	223 224	; DW 77 : NUMBER OF CYLINDER	n.a
0022 00 =1	225	,	
0022 00 =1	226	DB 0 ; NUMBER OF FIXED RIDB 2 ; NUMBER OF REMOVABI	
0024 1A = 1	227	DB 26 ; NUMBER OF SECTORS	
0025 0001 =1	228	DW 256 ; NUMBER OF BYTES PI	
0027 01 =1	229	DB 01 ; MFM(1) OR FM(0) RI	
= 1	230	,,	
= 1	231	; DRIVE #1SHUGART MODEL 850 (1.0) MEGABYTES STORAGE)	
= 1	232	;	
0028 4000 =1	233	DW 77 ; NUMBER OF CYLINDER	
002A 00 =1	234	DB 0 ; NUMBER OF FIXED RE	
0028 02 =1	235	DB 2 ; NUMBER OF REMOVABI	
002C 1A =1	236	DB 26 ; NUMBER OF SECTORS	
002D 8000 =1 002F 00 =1	237 238	DW 128 ; NUMBER OF BYTES PI DB 00 ; MFM(1) OR FM(0) RE	
= 1	239	DB 00 ; MFM(1) OR FM(0) RE	ECORDING MODE
=1	240	; DRIVE #2 NONEXISTENT	
= 1	241	, brite "2" RONDAISIERI	
0030 0000 =1	242	DW 0000H ; NUMBER OF CYLINDER	RS
0032 00 =1	243	DB OOH ; NUMBER OF FIXED RE	
0033 00 =1	244	DB OOH ; NUMBER OF REMOVABI	
0034 00 =1	245	DB OOH ; NUMBER OF SECTORS	PER TRACK
0035 0000 =1	246	DW 0000H ; NUMBER OF BYTES PE	ER SECTOR
0037 00 ≈1	247	DB 00H ; $MFM(1)$ OR $FM(0)$ RE	ECORDING MODE
= 1	248	;	
= 1	249	; DRIVE #3 NONEXISTENT	
=1	250	1	
0038 0000 =1 003A 00 =1	251 252	DW 0000H ; NUMBER OF CYLINDER DB 00H : NUMBER OF FIXED RE	
0038 00 =1	253	,	
0030 00 =1	254	DB 00H ; NUMBER OF REMOVABI DB 00H ; NUMBER OF SECTORS	
0030 0000 =1	255	DW 0000H ; NUMBER OF BYTES PE	
=1	25 6	; DB 00H ; MFM(1) OR FM(0) RE	
= 1	257	,(1) ok 11(0) ki	
=1	258 259	INITBLSEG ENDS:	
		\$INCLUDE(:F1:DATSEG.MMD)	
= 1		\$EJECT TITLE(DATA SEGMENT)	

MCS-86 MACRO ASSEMBLER	DATA SEC	GMENT					10/27/80	PAGE	6
LOC OBJ	LINE	SOURCE							
= 1	262	;							
= 1	263	i 1		1					
= 1	264	; 1	DATA SE	GMENT					
= 1	265	;		1					
= 1 = 1	266 267	;							
	268	DATASEG	SEGMENT						
=1	269	;							
= 1	270	į	THIS SE	GMENT CONTAIN	S VARIOUS DA	ATA THAT ARE USED BY	THE 1SBC 2	15 DRIV	VER
= 1		;	SOFTWAR	E .					
= 1		;	F7 400 1	DE 255 DV 5V5	THE PRINT	TERUTOR ROUGENER AND			,
= 1 = 1						SERVICE ROUTINE, AND L5. THE ROUTINES TH			
- 1 = 1		;		IBLE FOR CLEA			AI USE IRE	FLAGS F	IKE
= 1		;							
= 1	277	;							
= 1	278		PUBLIC	OPCMP, SKCMP,	PKCHG, ERRST	S			
= l		;							
= 1		;	OPERATI	ON COMPLETE F	LAGS				
= 1 0000 = 1		; OPCMP	LABEL	BYTE					
0000 00 = i		OPCMP0	DB	00H		; OPERATION COMPLET	יד או וואוד ()	
0001 00 =1		OPCMPI		00 H		; OPERATION COMPLET			
0002 00 =1		OPCMP2		00н		; OPERATION COMPLET			
0003 00 =1		OPCMP3	DB	00H		; OPERATION COMPLET			
= 1		;							
= 1 = 1		;	SEEK CC	MPLETE FLAGS					
0004 = 1		; SKCMP	LABEL	BYTE					
0004 00 =1		SKCMP0		00H		; SEEK COMPLETE ON	UNIT O		
0005 00 =1		SKCMP1		00н		; SEEK COMPLETE ON			
0006 00 =1		SKCMP2		00H		; SEEK COMPLETE ON	UNIT 2		
0007 00 =1		SKCMP3	DB	00н		; SEEK COMPLETE ON	UNIT 3		
= 1 = 1		;	DACK OF	LANCE BLACC					
- I = 1		;	PACK C	IANGE FLAGS					
0008 =1		, PKCHG	LABEL	BYTE					
0008 00 =1		PKCHG0		00H		; PACK CHANGE ON UN	IT 0		
0009 00 =1			DB	00H		; PACK CHANGE ON UN			
000A 00 =1		PKCHG2	DB	00H		; PACK CHANGE ON UN			
000B 00 =1 =1			DB	00н		; PACK CHANGE ON UN	IIT 3		
= 1 = 1		;	FRROR S	TATUS BLOCK					
= 1		;		FROM CONTROL	LER BY ERROI	R HANDLER)			
= 1		;	(=	•					
000C 0000 = i		ERRSTS	DW	0000н		; ERROR STATUS WORD			
000E 00 =1		SFERST		00H		; SOFT ERROR STATUS	BYTE		
000F 0000 =1		DESCYL		0000Н		; DESIRED CYLINDER			
0011 00 =1		DESHD	DB DB	00H		; DESIRED HEAD			
0012 00 =1 0013 0000 =1		DESSEC ACTCYL		00н 000о н		; DESIRED SECTOR ; ACTUAL CYLINDER +	FIAC RITS		
0015 00 =1		ACTHD	DB	00н		; ACTUAL HEAD	ILAG DIIS		
0016 00 =1			D B	00н		; ACTUAL SECTOR			
0017 00 =1		NMRTRY	DB	0011		; NUMBER OF RETRIES	MADE		
= 1		;							
= 1		;		ERATION COMPL					
= 1 = 1		;	COPIED	FROM CIB BY	walT215)				
0018 00 =1		; LSTSTS	DB	00н					
=1		;	2.0	0011					
0019 90 =1		•	EVEN						
= 1	323	;							
001A = 1		ENDDAT	LABEL	FAR		; END OF DATA SEGME	NT		
= L		;	n w n o						
= 1	326 327	DATASEG	ENDS						
		; \$INCLUD	E(:F1:US	ER.MMD)					
= 1				STEM DEPENDEN	T INITIALIZ	ATION)			

MCS-86 MACRO ASSEM	BLER	SYSTEM	DEPENDENT	INITIAL	IZATION		10/27/80 PAGE
LOC OBJ		LINE	SOURCE				
	= 1	330	;				
	= 1	331	;	CV CECH	DEDENDENE INTELLIZACION	. !	
	= 1 = 1	332 333	; 1 ; 1	SYSTEM	DEPENDENT INITIALIZATION	1	
	= 1	334					
	⇒ I	335	;				
	= 1 = 1	336 337	;		UTINE SETS UP THE INTERS UNDER THE 1SBC 957A INT		
	= 1	338	;	KUMMING	ONDER THE TODE 7574 IN	ERPACE, CASCOTTON TAC	(AGE:
	= 1	339	; - THE		TERRUPT CONTROLLER AND	OTHER INITIALZATIONS A	ARE PERFORMED
	= 1 = 1	340 341	;	BY THE	isbc 957a FIRMWARE.		
	= 1	342	;				
	= 1	343	;				
	= 1	344 345	;		PT VECTOR DEFINITION		
	= 1 = 1	345	;				
0005	= 1	347	,	INTRPT	EQU 5	; iSBC 220 INTERRUPT	r number
	= 1	348	;				
	= 1 = 1	349 350	SEGOOOO	SEGMENT	AT 0000H	; INTERRUPT VECTORS	
	= l	351	;			; ADDRESSES 00000	JR TO OUFFOR
0094	= Î	352	,	ORG	80H + 4*INTRPT	; LOCATION OF INTER	RUPT VECTOR WITH
000/ 0000	= 1	353	T. 17 #F = T =		0000	; iSBC 957A FIRM	JARE .
0094 0000 0096 0000	= 1 = 1	354 355	INTRIP INTRCS		0000H	; - INSTRUCTION POIN ; - CODE SEGMENT	NTER
0070 0000	= 1	356	inings	D #	0000h	, - CODE SEGMENT	
	= 1	357	SEG0000	ENDS			
	= I ≠ 1	358 359	;				
	= 1	360	;		LLOCATION		
	= Î	361	;		========		
	= 1	362	;				
	= 1 ≈ 1	363 364	STACK ;	SEGMENT		; STACK SEGMENT	
0000 (64	= 1	365	,	DB	64 DUP(00H)	; ALLOW 64 BYTES FOR	RSTACK
00							
)	= 1	366					
0040	= 1	367	, ENDSTK	LABEL	FAR		
	= 1	368	;				
	= 1 = 1	369 370	STACK	ENDS			
	= 1	371	;	======			
	= 1	372	;	STACK A	ND INTERRUPT CONFIGURATI	ION ROUTINE	
	= l	373	;	*****			
	= 1 = 1	374 375	; USERSEG	SEGMENT			
	= 1	376	;	DEGILERI			
	= I	377			CONFIG		
	= 1 = 1	378 379	-	ASSUME	DS:SEG0000		
0000	= 1	380	CONFIG	PROC FA	R		
	= 1	381	;				
0000 FA	= I	382		CLI	A.W. G.W.A.G.V.	; DISABLE INTERRUPTS	WHILE SETTING UP
0001 B8 0004 8ED0	R = 1 = 1	383 384		MOV MOV	AX,STACK SS,AX	;;; SET UP STACK	
0006 BC4000	= 1	385			SP,OFFSET ENDSTK	;;;	
0009 B80000	= 1	386		MOV	AX,0000H	;;; GET POINTER TO S	SEGMENT 0000H
000C 8ED8 000E C70694003D02	= 1 = 1	387 388		MOV MOV	DS,AX INTRIP,OFFSET INT215	;;;	* UPCTOD
0014 C7069600	R = 1	389		MOV	INTRCS, SEG INT215	;;; SET UP INTERRUP1	. VECTOR
001A E4C2	= 1	390		IN	AL,0C2H	;;; INPUT INTERRUPT	
001C 24DF	= 1 - 1	391		AND	AL,11011111B	;;; ENABLE INTERRUPT	
001E E6C2 0020 FB	= 1 = 1	392 393		OUT STI	OC2H,AL	;;; WRITE NEW MASK C ;;; ENABLE INTERRUPT	
0021 CC	= 1	394		INT	3	;;; GO TO MONITOR	
	= 1	395	;				
	= 1 = 1	3 9 6 397	CONFIG	ENDP			
***	= 1	398	USERSEG	ENDS			
		3 9 9	;				
		400	SBC215D1	RIVER	SEGMENT		
		401 402	;	ASSUME	CS:SBC215DRIVER		
		403	;				
	_	404 +1			SET.MMD)		
	= 1	405 +1	\$EJECT ?	ritle(co	NTROLLER RESET ROUTINE)		

PAGE

8

10/27/80

MCS-86 MACRO ASSEMBLER

CONTROLLER RESET ROUTINE

480 +1 \$EJECT

LOC OBJ LINE SOURCE = 1 406 407 408 CONTROLLER RESET ROUTINE = 1 409 411 **=** 1 412 RES215 SETS UP THE COMMUNICATION BLOCKS FOR THE 1SBC 215, LINKS THEM TOGETHER AND GIVES A RESET, CLEAR RESET, CHANNEL ATTENTION SEQUENCE TO THE CONTROLLER. THIS CAUSES THE 8089 ON THE CONTROLLER TO SET UP ITS INTERNAL POINTER TO THE CCB BY THREADING DOWN THE LINKS STARTING WITH THE SWITCHES ON THE CONTROLLER. SUBSEQUENT CA'S WILL CAUSE THE 8089 TO FETCH ITS POINTERS STARTING AT THE CCB. 413 414 415 = 1 416 SUBSEQUENT CA's WILL CAUSE THE 8089 TO = 1 417 418 - IF THE CH. 1 BUSY FLAG IS NOT CLEARED WITHIN A "REASONABLE" AMOUNT OF TIME, THEN THE 1SBC 215 IS PROBABLY NOT RESPONDING TO THE CHANNEL ATTENTION. ON THE CONTROLLER: CHECK SWITCH SETTINGS; VOLTAGES; RESET, CLEAR RESET, CHANNEL ATTENTION SIGNALS; READY INPUT TO 8089; 8089 STATUS LINES; R/W 419 420 421 422 = 1 423 STROBES. 424 425 ; - THE SYSTEM INTERRUPT LOGIC AND VECTORS FOR THE CONTROLLER ARE ASSUMED TO BE = 1 426 427 CONFIGURED BY AN EXTERNAL PROGRAM. = 1 428 INPUT DATA: 429 NONE 430 **=** 1 431 OUTPUT DATA: = 0 IF RESET OKAY = 1 432 CARRY FLAG: 433 = 1 IF CH. 1 BUSY FLAG NOT RESET (NOT RESPONDING) = 1 434 435 436 PUBLIC RES215 437 0000 438 RES215 PROC FAR 439 0000 50 440 PUSH : SAVE REGISTERS 441 0001 53 PUSH вχ 0002 51 442 PUSH CX 0003 52 443 PUSH DX 0004 1E 444 PUSH DS 445 446 SET UP LINKS BETWEEN COMMUNICATION BLOCKS 447 448 SCB 449 450 ASSUME DS:SCBSEG 0005 B83506 451 MOV AX,SCBSEG : GET POINTER TO SCB 452 0008 8ED8 DS, AX 000A C70600000100 453 MOV WORD PTR SOC,0001H ; SET SOC BYTE AND CLEAR RESERVED BYTE 0010 070602000000 MOV WORD PTR CCBPTR, OFFSET CCB; SET POINTER TO CCB MOV WORD PTR CCBPTR+2, SEG CCB 454 455 0016 C7060400----456 = 1 457 ; CCB 458 001C C5060200 459 LDS AX, CCBPTR ; GET POINTER TO CCB = 1 460 ASSUME DS:CCBSEG 461 MOV WORD PTR CCW1,OFFOIH ; SET CCW1 AND CH. 1 BUSY FLAG MOV WORD PTR CHIPTR,OFFSET CHIPC; SET POINTER TO FIFTH BYTE OF CIB 0020 C706000001FF 0026 C70602000400 462 MOV WORD PTR CHIPTR+2, SEG CHIPC; (HAS STARTING ADDRESS FOR CH. 1)
MOV WORD PTR CCW2,0001H; SET CCW2 AND CLEAR CH. 2 BUSY FLAG
MOV WORD PTR CH2PTR, OFFSET CH2PC; SET POINTER TO CH. 2 STARTING ADDRESS 002C C7060400----R = 1 463 0032 C70608000100 464 0038 C7060A000E00 465 003E C7060C00----R = 1 466 MOV WORD PTR CH2PTR+2, SEG CH2PC 0044 C7060E000400 467 MOV WORD PTR CH2PC,0004H ; SET CH. 2 STARTING ADDRESS 468 ; CIB 469 470 471 ASSUME DS:CIBSEG 004A B8----472 R = 1 MOV AX,CIBSEG ; GET POINTER TO CIB 004D 8ED8 473 MOV DS.AX 004F C70600000000 0055 C70602000000 474 475 MOV WORD PTR CIBCMD,0000H MOV WORD PTR CMDSEM,0000H MOV WORD PTR CHIPC,0000H ; CLEAR CIB COMMAND AND CIB STATUS BYTES ; ...AND SEMAPHORES ; SET CH. 1 STARTING ADDRESS ; SET IOPB POINTER 005B C70604000000 0061 C70608000000 0067 C7060A00----477 IOPBOFF, OFFSET IOPB R = 1 478 MOV IOPBSG, SEG IOPB

MCS-	86 MACRO ASSE	MBLER	CONTROLI	ER RESET	ROUTIN	E		10/27/80	PAGE	9
LOC	ОВЈ		LINE	SOURCE						
		= 1	481	;	CLEAR	OUT DATA SEGMENT				
		= 1	482	;						
		= 1	483		ASSUME	DS:DATASEG				
	B8	R = 1	484		MOV	AX, DATASEG	; GET POINTER T	O DATA SEGMENT		
	8ED8	= 1	485		MOV	DS, AX				
	B90D00	≈ <u>1</u>	486		MOV	CX,(OFFSET ENDDAT)/2	; GET COUNT (#	WORDS IN DATA :	SEGMENT)	
	BB0000	= 1	487		MOV	вх,0000н	; CLEAR INDEX R	EGISTER		
	C7070000	= 1	488	CLRLP:		RD PTR [BX],0000H	; CLEAR NEXT WO	RD IN DATA SEGI	(ENT	
007C		= 1	489		INC	BX	; POINT TO NEXT	WORD		
007D		= 1	490		INC	BX				
007E	EOF8	= 1	491		LOOPNE	CLRLP	; DONE?			
		= 1	492				; NOCLEAR ANOT			
		= 1	493				; YESINITIALIZ	ZE COMMUNICATIO	N LINKS	
		= 1	494	;						
		= 1	495	;	OUTPUT	RESET/CLEAR RESET/CHANN	EL ATTENTION TO CO	ONTROLLER		
0000	DA 2 5 0 6	= 1	496	;	MOII	DV 11114		/o nonm		
	BA3506 B002	= 1 = 1	497 498		MOV MOV	DX,WUA AL,O2H		O PORT ADDRESS	i.	
0085		= 1	499		OUT	· ·	; GET RESET COMM			
	B000	= 1	500		MOV	DX,AL AL,00H	; OUTPUT TO WAKE	ET COMMAND BYTE		
0088		= 1	501		OUT	DX,AL	; OUTPUT TO WAKE			
	B001	= 1	502		MOV	AL,01H		TTENTION COMMAN	IN BVTF	
008B		= 1	503		OUT	DX,AL	; OUTPUT TO WAR		DITE	
0000		= 1	504		ASSUME	DS:CCBSEG	, COTTOT TO WAR	CE-OF I/O FORI		
0080	B8	R = 1	505		MOV	AX,CCBSEG	; GET POINTER TO	CCB		
	8ED8	= 1	506		110 V	DS, AX	, obi ioinibk i	, 608		
		= 1	507			,	; (OTHER IMPLEME	ENTATIONS OF RE	S215 COL	JLD
		= 1	508				; INITIALIZE OTH			
		= 1	50 9				; iSBC 215 DOES			(E)
0091	B90010	= 1	510		MOV	СХ,1000Н	; SET TIME-OUT (COUNTER		
0094	F8	= 1	511		CLC		; CLEAR CARRY FI	LAG		
0095	F6060100FF	= 1	512	RESLP:	TEST	BSYFLG1,00FFH	; CHECK CH. 1 Bt	JSY FLAG:		
		= 1	513				; ZERO FLAG =	BSYFLG1 & FFH	I	
00 9A	7403	= 1	514		JZ	RESDN	; BUSY FLAG CLEA	ARED?		
		= 1	515				; YESRETURN CA	ARRY CLEAR		
009C	EOF7	= 1	516		LOOPNE	RESLP	; NODECREMENT			
	_	= 1	517				; IF $CX = 0$, THE			
009E		= 1	518		STC) SET CARRY FLA	.G	
009F		= 1	519	RESDN:	POP	DS	; RESTORE REGIST	ERS		
00A0		= 1	520		POP	DX				
00A1		= l	521		POP	CX				
00A2 00A3		= 1 = 1	522		POP	BX				
00A3		= 1 = 1	523 524		POP RET	AX	. Demilow			
00A4	O.D.	- 1 = 1	525		KE I		; RETURN			
		= 1	526	, RES215	ENDP					
		•	527	:	.,,,,,,,					
			528 +1	SINCLUDI	E(:F1:IN	NITEX.MMD)				
		= 1	529 +1			ITIALIZATION ROUTINE)				
						•				

Appendix A iSBC 215

10/27/80 PAGE MCS-86 MACRO ASSEMBLER INITIALIZATION ROUTINE 10 LOC OBJ SOURCE LINE ; -----530 531 INITIALIZATION ROUTINE 533 534 INIT215 INITIALIZES THE 1SBC 215 CONTROLLER BY LOADING PERTINENT INFORMATION ABOUT THE DISK DRIVE(S) ATTACHED. 536 537 - IF A DRIVE THAT IS SPECIFIED AS PRESENT WILL NOT RESPOND, INIT215 RETURNS IMMEDIATELY WITH THE CARRY FLAG SET. = 1 = 1 539 540 541 542 INPUT DATA: 543 DISK DRIVE INITIALIZATION TABLES, IN SEGMENT "INITBLSEG". = 1 545 OUTPUT DATA: = 0 IF CONTROLLER INITIALIZED SUCCESSFULLY 546 CARRY FLAG = 1 547 = 1 IF INITIALIZATION ERROR 549 = 1 550 PUBLIC INIT215 ASSUME DS: IOPBSEG 551 00 A 5 INIT215 PROC =] 553 FAR 554 00A5 50 00A6 1E 00A7 B8----= 1 = 1 ; SAVE REGISTERS PUSH 556 PUSH DS MOV AX, IOPBSEG ; GET POINTER TO 10PB ; PUT IN DS REGISTER
; WINCHESTER DRIVES INITIALIZED FIRST
; SET IOPB FUNCTION BYTE = INITIALIZE 00AA 8ED8 00AC C70608000000 558 559 MOV DS,AX DEVCOD,OOH ≖ Î MOV 00B2 C6060B0000 560 MOV FUNC, OOH ; CLEAR MODIFIER (ENABLE RETRIES AND ; INTERRUPT ON COMPLETION) ; PUT INITIALIZATION TABLES' SEGMENT IN ; IOPB DATA BUFFER POINTER 00B7 C7060C000000 561 ${\tt MOV}$ MODIFY,0000H 562 00BD C7061400----MOV BUFSEG, INITBLSEG 564 ; IOPB DATA BUFFER POINTER;
START INITIALIZE WITH UNIT O
; CLEAR UNIT COUNTER
; POINT TO NEXT DRIVE'S INITIALIZE TABLE
; PUT UNIT INTO IOPB
; DO INITIALIZE 00C3 C7061200F8FF BUFOFF.-8 MOV = 1 565 00C9 B000 566 MOV AL.OOH 00CB 8306120008 567 INITLP: ADD BUFOFF,8 00D0 A20A00 568 MOV UNIT, AL GO215 00D3 E8EC00 569 CALL (RETURNS CARRY FLAG SET OR CLEAR)
UNIT INITIALIZED?
NO--TERMINATE WITH CARRY BIT SET 00D6 7214 571 JС INITON 572 ; NO--TERMINATE WITH CARRY BIT SET ; YES--INCREMENT UNIT COUNTER ; CHECK UNIT COUNTER (CLEARS CARRY) ; LAST DRIVE INITIALIZED? ; NO--INITIALIZE NEXT DRIVE 0008 40 INC 00D9 3C04 00DB 75EE 574 CMP 575 JNZ INITLP 00DD A10800 577 MOV AX, DEVCOD ; YES--FLOPPIES INITIALIZED YET? 00E0 3C00 00E2 7508 00E4 C70608000100 578 CMP AL,0 INITON ; YES--INITIALIZE FUNCTION FINISHED ; NO---INITIALIZE FLOPPY DRIVES = 1 580 MOV DEVCOD,01 OOEA EBDF 581 JMP INITLP 00EC 1F 00ED 58 582 INITON: POP ; RESTORE REGISTERS = 1 583 POP ΑX OOEE CB 584 ; RETURN RET 585 INIT215 ENDP = 1 586 588 +1 \$INCLUDE(:FI:FORMAT.MMD)

589 +1 \$EJECT TITLE(FORMAT TRACK ROUTINE)

\$EJECT TITLE(READ DATA ROUTINE)

Appendix A **iSBC 215**

10/27/80

PAGE

MCS-86 MACRO ASSEMBLER READ DATA ROUTINE 12 LOC OBJ LINE SOURCE 662 = 1 664 READ DATA 665 667 RD215 SETS UP THE IOPB FOR A READ OPERATION, AND 668 669 670 INVOKES THE 1SBC 215 TO PERFORM THE OPERATION. ; INPUT DATA: 671 BP + 13 => BP + 11 => 672 DEVICE CODE 673 BYTE COUNT HIGH WORD $BP + 9 \Rightarrow$ $BP + 7 \Rightarrow$ BYTE COUNT LOW WORD DATA BUFFER SEGMENT 674 675 676 DATA BUFFER OFFSET 677 678 BP + 4 => SECTOR BP + 3 => HEAD CYLINDER 680 UNIT 681 ; OUTPUT DATA: 682 = 0 IF TRANSFER OCCURRED WITH NO OR RECOVERABLE ERROR = 1 IF UNRECOVERABLE ERROR OCCURRED FILLED WITH DATA FROM DISK IF NO UNRECOVERABLE ERROR 683 CARRY FLAG 684 DATA BUFFER 686 687 688 PUBLIC RD215 689 ASSUME DS: IOPBSEG 690 012E 691 RD215 PROC FAR 692 PUSH 012E 50 693 ; SAVE REGISTERS 012F 1E 0130 B8----694 PUSH DS 695 AX, IOPBSEG ; GET POINTER TO IOPB 0133 8ED8 0135 8B460D 696 697 DS, AX AX, [BP+13] MOV MOV ; GET DEVICE CODE INTO IOPB 0138 A30800 DEVCOD, AX 013B 8A4600 013E A20A00 699 700 MOV MOV AL,[BP] UNIT,AL ; GET UNIT INTO IOPB 0141 884601 701 ; GET CYLINDER INTO IOPB 0144 A30E00 0147 8B4603 7 0 2 MOV CYLNDR, AX MOV AX,[BP+3] MOV WORD PTR HEAD,AX 703 ; GET HEAD AND SECTOR INTO IOPB 014A A31000 704 014D 884605 0150 A31200 705 MOV AX,[BP+5] BUFOFF,AX ; GET DATA BUFFER POINTER INTO IOPB 706 MOV AX,[BP+7] BUFSEG,AX 0153 884607 707 MOV 0156 A31400 0159 8B4609 708 MOV 709 MOV AX, [BP+9] ; GET BYTE COUNT INTO IOPB 015C A31600 710 MOV WORD PTR REQUNT, AX 015F 8B460B 0162 A31800 $\begin{smallmatrix}7&1&1\\7&1&2\end{smallmatrix}$ MOV AX,[BP+11] MOV WORD PTR REQCNT+2,AX 0165 C7060C000000 713 MOV MODIFY,0000H ; CLEAR MODIFIER (ENABLE INTERRUPT ON ; COMPLETION AND RETRIES) 714 ; SET FUNCTION = READ DATA 016B C6060B0004 715 MOVFUNC,04H 0170 E84F00 CALL ; START FUNCTION AND WAIT FOR COMPLETION 717 (RETURNS CARRY FLAG SET OR CLEAR) 0173 1F 0174 58 POP ; RESTORE REGISTERS DS 718 719 POP 720 721 0175 CA0D00 RET 13 ; POP PARAMETERS OFF STACK AND RETURN 7 2 **2** ŔD215 ENDP 723 \$EJECT TITLE(WRITE DATA ROUTINE)

724 +1

MCS-86 MACRO ASSEMBLER

WRITE DATA ROUTINE

789 +1

SOURCE LOC OBJ LINE = 1 726 727 WRITE DATA 728 729 = 1 730 731 WRT215 SETS UP THE IOPB FOR A WRITE OPERATION, AND 732 INVOKES THE ISBC 215 TO PERFORM THE OPERATION. 733 734 ; INPUT DATA: BP + 13 => BP + 11 => 735 DEVICE CODE BYTE COUNT HIGH WORD BYTE COUNT LOW WORD 736 BP + 9 =>737 BP + 7 => BP + 5 => DATA BUFFER SEGMENT 739 DATA BUFFER OFFSET BP + 4 => BP + 3 => 740 SECTOR HEAD 742 743 BP + 1 => CYLINDER = 1 ВР UNIT 745 DATA BUFFER CONTAINS INFORMATION TO BE WRITTEN TO DISK = 1 746 ; OUTPUT DATA: 748 CARRY FLAG = 0 IF TRANSFER OCCURRED WITH NO OR RECOVERABLE ERROR 749 = 1 IF UNRECOVERABLE ERROR OCCURRED = 1 750 PUBLIC WRT215 ASSUME DS:IOPBSEG = 1 752 753 WRT215 PROC 0178 = 1 755 FAR 756 0178 50 757 PUSH ; SAVE REGISTERS 0179 IE **=** 1 758 PUSH DS 017A B8----759 MOV AX, IOPBSEG ; GET POINTER TO IOPB DS, AX
AX, [BP+13]
DEVCOD, AX
AL, [BP] 017D 8ED8 760 MOV 017F 8B460D 761 MOV ; PUT DEVICE CODE IN IOPB 0182 A30800 0185 8A4600 762 MOV Nov ; GET UNIT INTO IOPB 0188 A20A00 0188 8B4601 764 765 UNIT, AL AX, [BP+1] MOV MOV ; GET CYLINDER INTO IOPB 018E A30E00 766 MOV CYLNDR, AX ; GET HEAD AND SECTOR INTO IOPB 767 768 MOV AX,[BP+3] MOV WORD PTR HEAD, AX 0191 884603 0191 8B4603 0194 A31000 0197 8B4605 MOVAX,[BP+5] ; GET DATA BUFFER POINTER INTO IOPB 019A A31200 019D 8B4607 770 771 MOV BUFOFF, AX AX,[BP+7] BUFSEG,AX MOV 01A0 A31400 772 MOV 773 774 01A3 8B4609 моч AX,[BP+9] ; GET BYTE COUNT INTO IOPB MOV WORD PTR REQCNT, AX 01A6 A31600 01A9 8B460B 775 AX,[BP+11] 01AC A31800 776 777 MOV WORD PTR REQCNT+2,AX 01AF C7060C000000 MODIFY,0000H ; CLEAR MODIFIER (ENABLE INTERRUPT ON MOV 778 COMPLETION AND RETRIES) ; SET FUNCTION = WRITE DATA ; START 1SBC 215 AND WAIT FOR DONE 01B5 C6060B0006 779 MOV FUNC,06H 01BA E80500 780 CALL G0215 781 (RETURNS WITH CARRY SET OR CLEAR) 01BD 1F 782 POP DS ; RESTORE REGISTERS 783 01BE 58 POP ΑX OlbF CAODOO ; POP PARAMETERS OFF STACK AND RETURN RET 785 WRT215 ENDP = 1 786 787 788 +1 \$INCLUDE(:F1:CORE.MMD)

\$EJECT TITLE(START FUNCTION AND WAIT FOR COMPLETION)

10/27/80 PAGE

13

iSBC 215

MCS-86 MACRO ASSEMBLER	START F	UNCTION AND	WAIT FOR COMPLI	ETION	10/27/80 PAGE 14
LOC OBJ	LINE	SOURCE			
= 1	790	:			
= l	791	. 1			
= l	792	; i s:	CART FUNCTION AN	ND WAIT FOR COMPLETION	1
= 1	793	; [İ
= 1	794	;			
= l		;			
= 1					(WAKE-UP) TO THE 1SBC 215 AND
= 1					THE CALLING PROCEDURE) TO FINISH.
= 1		; []	AN ERROR OCCUI	RRED, THE ERROR HANDLE	R IS INVOKED.
= 1		;			
=1		; INPUTS:			
= 1		; NO	ONE		
= 1		;			
= 1 = 1		OUTPUTS		- 0 IE NO EDDOD OD 4 D	ECOVERABLE ERROR OCCURRED
= 1 = 1		; 62		= 0 1F NO ERROR OR A R = 1 IF UNRECOVERABLE E	
- 1 = 1		,		- 1 IF UNKECOVERABLE E	RRUK UCCURRED.
= 1					
01C2 =1		G0215 PI	ROC NEAR		
=1		;	too HEAR		
01C2 50 =1			JSH AX	: SAVE	REGISTERS
01C3 52 =1	811	PI	USH DX	•	
01C4 BA3506 =1	812	Mo	OV DX,WUA	; GET	ADDRESS OF WAKE-UP I/O PORT
01C7 B001 =1	813	Mo	OV AL,OIH	; GET	WAKE-UP COMMAND BYTE
01C9 EE =1	814	01	JT DX,AL	; GIVE	WAKE-UP TO 1SBC 215
01CA E80800 =1		C/	ALL WAIT215	; WAIT	FOR FUNCTION COMPLETE
01CD 7303 =1		Jì	NC DONE	; ERRO	
= 1				; NO	
01CF E82900 =1		C.F	ALL ERROR		-CALL ERROR HANDLER (RETURNS WITH
=1					ARRY FLAG SET OR CLEAR)
01D2 5A =1			OP DX	; REST	ORE REGISTERS
01D3 58 =1		PC			- W
01D4 C3 =1 =1		RI	5 T	; RETU	KN
= 1 = 1		; GO215 EN	NDP		
= 1 = 1			\UP		
- <u>- 1</u> = 1		SFIRCT TT	FI.E (WATT FOR PID	CTION COMPLETE ROUTIN	F
-1	020 11	ÇEGECT II.	. DE (WALL TOK TO!	COMILIED ROUTIN	<u>.</u> ,

iSBC 215 Appendix A

WAIT FOR FUNCTION COMPLETE ROUTINE

MCS-86 MACRO ASSEMBLER

LINE SOURCE 827 828 829 WAIT FOR FUNCTION COMPLETE = 1 830 = 1 831 832 NORMALLY, THIS WAIT ROUTINE WOULD TRAP TO THE SYSTEM DISPATCHER/
SCHEDULER TO ALLOW ANOTHER TASK TO EXECUTE WHILE THE 1SBC 215 COMPLETED
ITS FUNCTION. HOWEVER, FOR THIS EXAMPLE, THE ROUTINE SIMPLY WAITS FOR
THE INTERRUPT SERVICE ROUTINE TO LOAD THE OPERATION COMPLETE STATUS
FROM THE CLB OPERATION STATUS INTO THE DATA SECMENT. IF AN ERROR = 1 = 1 833 834 = 1 835 = 1 836 837 838 OCCURRED, THE STATUS IS AVAILABLE THERE FOR SUBSEQUENT PROCESSING BY = 1 839 AN ERROR HANDLER. 840 ; INPUT DATA: 841 OPERATION COMPLETE STATUS FROM THE CIB, COPIED INTO THE DATA SEGMENT 842 843 BY THE INTERRUPT ROUTINE = 1 ; OUTPUT DATA: ; OPERATION COMPLETE BYTE ≃] 845 CLEARED 846 = 0 IF NO ERROR = 1 IF ERROR OCCURRED IN "LSTSTS" IF ERROR OCCURRED CARRY FLAG 848 = 1 849 COPY OF CIB OPERATION STATUS = 1 850 851 (OPERATION COMPLETE BYTE AND "LSTSTS" ARE IN SEGMENT "DATASEG") 852 853 = 1 854 = 1 ASSUME DS:DATASEG 855 856 WAIT215 PROC 0105 NEAR 857 ; 01D5 50 858 PUSH ; SAVE REGISTERS 01D6 53 01D7 1E = 1 859 PUSH ВХ 860 PUSH DS 01D8 BB----861 MOV BX,DATASEG ; GET POINTER TO DATA SEGMENT 01DB 8EDB = 1 862 MOV DS,BX Oldd BBFFFF = 1 863 MOV ; INITIALIZE INDEX REGISTER BX . - 1 O1EO FB MAKE SURE INTERRUPT CAN GET THROUGH ***** WAIT FOR INTERRUPT ***** 864 STI 01E1 F4 865 HLT 01E2 43 866 WAITLP: INC ; GET INDEX FOR NEXT UNIT 01E3 81E30300 867 AND вх,0003н MASK UPPER BITS MASK UPPER BITS

OPERATION COMPLETE STATUS = 00H?

(SICN FLAG = BIT 7 OF OP. STATUS,
TEST INSTR. CLEARS CARRY FLAG)

STATUS <> 00H (OPERATION COMPLETE)?

NO--CHECK NEXT UNIT BYTE PTR [BX], OFFH 01E7 F607FF 868 TEST 869 870 01EA 74F6 871 J2 WATTLP 872 01EC 7906 873 JNS WAITON YES -- ERROR OCCURRED DURING FUNCTION? NO--RETURN WITH CARRY FLAG CLEAR = 1 874 01EE 8A07 875 ; YES--SAVE CIB OP. STATUS IN "LSTSTS" MOV AL. [BX] 01F0 A21800 LSTSTS, AL ; SET CARRY FLAG TO INDICATE ERROR ; CLEAR OPERATION COMPLETE BYTE 01F3 F9 = 1 877 STC 01F4 C60700 878 MOV WAITDN: BYTE PTR [BX],00H 01F7 1F 879 POP ; RESTORE REGISTERS DS 01F8 5B 880 POP ВX 01F9 58 = 1 881 POP ΑX 01FA C3 RET ; RETURN 883 WAIT215 ENDP 884 885 SINCLUDE(:FI:ERROR.MMD) 886 +1

887 +1 SEJECT TITLE(ERROR HANDLER)

10/27/80 PAGE 15

Appendix A iSBC 215

MCS-86 MACRO ASSEMI	BLER	ERROR F	ANDLER			10/27/80 PAGE 16
LOC OBJ		LINE	SOURCE			
	= 1	888	:			
	= 1	889	; 1		l	
	≈ 1	890	; 1	ERROR !	HANDLER	
	= 1	891	; 1		1	
	= 1	892	;			
	= 1	893	;	#W.T.C. D.	NUMBER OF STREET	THE THE WALL DVANDED WHE BROOK THROS
	∞ l = l	894 895	;			PENT. IN THIS EXAMPLE, THE ERROR INFOR- READ INTO SOFTWARE REGISTERS IN DATASEG,
	=1	896	;			RE SOPHISTICATED SYSTEMS MIGHT LOG THE
	= 1	897	;			ACK IS GOING BAD, FOR EXAMPLE.
	= 1	898	;			
	≃ 1	899			ER STATUS FUNCTION WILL	
	= 1	900	; - THE			T CHANGED, SO THAT THE OPERATION COMPLETE
	= 1 = 1	901	į			S FUNCTION WILL BE POSTED AGAINST THE SAME
	= 1	902 903	•	UNII A	S CAUSED THE ERROR.	
	=1	904	: INPUT	DATA:		
	= 1	905	;		ERATION STATUS IN "L	STSTS" IN DATA SEGMENT
	= 1	906	;			
	= 1	907	; OUTPU	T DATA:		
	= 1 = 1	908 909	;		STATUS FROM CONTROLLER	
	= 1 = 1	919	•	CARRY	ERATION STATUS	IN "LSTSTS" IN DATA SEGMENT = O IF SOFT (RECOVERABLE) ERROR
	= 1	911	;	CARRI	LAG	= 1 IF HARD (UNRECOVERABLE) ERROR
	= 1	912	;			- I II HARD (ONRECOVERABLE) ERROR
	= 1	913	•			
	= 1	914		ASSUME	DS: IOPBSEG	
	= 1	915	;			
01FB	= 1 = 1	916	ERROR	PROC	NEAR	
01FB 50	= 1	917 918	;	PUSH	AX	; SAVE REGISTERS
OlfC 1E	= 1	919		PUSH	DS	, onve Rediviend
01FD B8	R = 1	920		MOV	AX, IOPBSEG	; GET POINTER TO IOPB
0200 8ED8	= 1	921		MOV	DS, AX	
0202 A11200	= 1	922		MO V	AX, BUFOFF	; SAVE IOPB DATA BUFFER POINTER
0205 50 0206 A11400	= 1 = 1	923		PUSH	AX	
0209 50	= 1	924 925		MOV PUSH	AX,BUFSEG AX	
020A C70612000C00	= 1	926		MOV	BUFOFF, OFFSET ERRSTS	; GET POINTER TO DATA SEGMENT ERROR
0210 C7061400	R = 1	927		MOV	BUFSEG, DATASEG	; STATUS REGISTERS
0216 C6060B0001	= 1	928		MOV	FUNC,01H	; SET FUNCTION = TRANSFER STATUS
021B C7060C000000	= 1	929		MOV	MODIFY,0000H	; CLEAR MODIFIER (ENABLE INTERRUPT ON
0221 E89EFF	= 1 = 1	930 931		0477	20215	; COMPLETION AND RETRIES)
0224 58	= 1 ≠ 1	931		CALL POP	G 0 2 1 5 A X	; START FUNCTION AND WAIT FOR COMPLETE ; RESTORE IOPB DATA BUFFER POINTER
0225 A31400	= 1	933		MOV	BUFSEG, AX	, ADDIONE LOID DAIR DUFFER FOIRIER
0228 58	= 1	934		POP	AX	
0229 A31200	= 1	935		MOV	BUFOFF, AX	
022C B8	R = 1	936		VOM	AX, DATASEG	; GET POINTER TO DATA SEGMENT
022F 8ED8 0231 F8	= 1 = 1	937 938		MOV	DS,AX	
0232 A01800	= 1	938		CLC MOV	AL, DS: LSTSTS	; CLEAR CARRY FLAG
0235 2440	= 1	940		AND	AL, 40H	; GET OLD (ERROR) CIB OPERATION STATUS ; CHECK HARD ERROR BIT
0237 7401	= 1	941		JZ	SFTERR	; HARD ERROR BIT SET?
	* 1	942				; NOLEAVE CARRY FLAG CLEAR
0239 F9	= 1	943	CDECO	STC		; YES SET CARRY FLAG
023A 1F 023B 58	= 1 = 1	944 945	SFTERR:	POP POP	DS AX	; RESTORE REGISTERS
023C C3	= 1	945		RET	no.	
	= 1	947	;			
	= 1	948	ERROR	ENDP		
		949	; 			
	= 1	950 +1 951 +1			TRPT.MMD) TERRUPT SERVICE ROUTIN	E)

INTERRUPT SERVICE ROUTINE

MCS-86 MACRO ASSEMBLER

SOURCE LOC OBJ LINE = 1 = 1 953 954 INTERRUPT SERVICE ROUTINE 956 =1 957 THIS ROUTINE SERVICES THE INTERRUPT GENERATED BY THE 1SBC 215 UPON OPERATION COMPLETE, SEEK COMPLETE, OR DISK PACK CHANGE. IT COPIES THE CIB OPERATION STATUS INTO ONE OF FOUR BYTES ASSOCIATED WITH EACH OF THESE EVENTS. IT IS ASSUMED THAT SYSTEM PROGRAMS MAKE USE OF THE INFORMATION TO RESUME TASKS, HANDLE ERROR LOGGING/RECOVERY, AND KEEP TRACK OF DIRECTORY INFORMATION. FOR THIS PROGRAMMING EXAMPLE, ONLY THE OPERATION COMPLETE BYTES ARE USED. 959 = 1 960 961 963 = 1 964 ; - THE SYSTEM INTERRUPTS ARE CONFIGURED BY EXTERNAL PROGRAMS. = 1 966 = 1 967 PUBLIC INT215 = 1 969 = 1 970 023D 971 INT215 PROC = 1 972 973 023D FB ;;; ENABLE HIGHER PRIORITY INTERRUPTS STI 023E 50 974 PUSH ;;; SAVE REGISTERS 023F 53 = 1 975 PUSH вх 0240 52 976 = 1 PUSH DΧ PUSH DS = t 978 ASSUME DS:CIBSEG 0242 B8----R = 1 979 MOV AX,CIBSEG DS,AX ; GET POINTER TO CIB 0245 8ED8 0247 A00100 980 MOV 981 MOV AL, OPSTS ; GET CIB OPERATION STATUS 024A 8AD0 982 **=**] MOV DL,AL ; SAVE IT ; CLEAR CIB STATUS SEMAPHORE ; MOVE IT TO INDEX REGISTER 024C C606030000 983 MOV STSSEM, OOH 0251 8AD8 0253 81E33000 984 MOV вх,0030н = 1 985 $A\,N\,D$; MASK ALL BITS EXCEPT UNIT NUMBER 0257 D1EB 986 SHR BX,1 BX,1 ; SHIFT UNIT NUMBER TO BITS O AND 1 0259 D1EB 987 025B D1EB 988 SHR BX,1 025D D1EB 989 SHR BX . 1 025F 250600 990 AX,0006H AND ; MASK ALL BITS EXCEPT SEEK COMPLETE 991 AND PACK CHANGE ; SHIFT LEFT TO GET OFFSET INTO PROPER ; BYTE IN DATA SEGMENT ; COMBINE WITH UNIT IN INDEX REGISTER 0262 D1E0 SHL 992 AX.1 0264 03D8 = 1 994 ADD BX,AX ASSUME DS:DATASEG = 1 995 0266 B8----R 996 AX, DATASEG DS, AX MOV ; GET POINTER TO DATA SEGMENT 0269 8ED8 = 1 997 026B 8817 [BX],DL DX,WUA*16 ; MOVE OPERATION STATUS TO DATA SEGMENT ; GET POINTER TO I/O WAKE-UP ADDRESS ; GET CLEAR INTERRUPT COMMAND BYTE 998 MOV 026D BA5063 MOV 0270 B002 **≖** 1 1000 MOV AL,02H 0272 EE 1001 OUT DX,AL ; OUTPUT TO ISBC 215 1002 0273 1F = 1 1003 POP DS : RESTORE REGISTERS 0274 5A 0275 5B = 1 1004 POP DΧ 1005 POP ВX 0276 FA = 1 1006 ; DISABLE INTERRUPTS FOR RESTORE ; (RESTORATION OF INTERRUPT LOGIC STATE ; IS SYSTEM DEPENDENT. THIS EXAMPLE USES ; THE 1SBC 86/12A CPU.) = 1 = 1 1007 1008 = 1 1009 0277 B020 = 1 1010 MOV A1.. 20H ;;; GET END-OF-INTERRUPT COMMAND 0279 E6C0 1011 OUT ;;; OUTPUT EOI COMMAND TO 8259 OCOH, AL 027B 58 1012 027C CF = 1 1013 IRET ;;; INTERRUPT RETURN ENABLES INTERRUPTS 1014 1015 INT215 ENDP 1016 1017 SBC215DRIVER ENDS ; END OF ISBC 215 DRIVER CODE 1019 +1 STITLE (SYMBOL TABLE AND CROSS REFERENCE) 1020 1021 : END OF PROGRAMMING EXAMPLE

10/27/80 PAGE

17

MCS-86 MACRO ASSEMBLER SYMBOL TABLE AND CROSS REFERENCE

10/27/80 PAGE 18

XREF SYMBOL TABLE LISTING

```
TYPE
                                              VALUE ATTRIBUTES, XREFS
NAME
??SEG . . . SEGMENT
                                                                SIZE=0000H PARA PUBLIC
ACTCNT. . . V DWORD 0004H IOPBSEG 129#
ACTCYL . . V WORD 0013H DATASEG 312#
ACTHD . . . V BYTE 0015H DATASEG 313#
                                                              DATASEG 313#
DATASEG 314#
CCRSEG 79# 512
CCBSEG 85#
IOPBSEG 137# 565 567 646 647 706 770 922 926 935
IOPBSEG 138# 563 648 708 772 924 927 933
CCBSEG 64 77# 454 455
SCBSEG 64 77# 454 455
SCBSEG 64# 454 455 459
STEPROGULAR PARA 77# 92 460 504 505
ACTSEC. . . V BYTE
BSYFLG1 . . V BYTE
BSYFLG2 . . V BYTE
                                                0016H
0001H
                                                0009н
BUFOFF. . . V WORD
BUFSEG. . . V WORD
                                                0012H
BUFSEG. . . . V WORD 0014H
CCB . . . L FAR 0000H
CCBPTR. . . V DWORD 0002H
CCBSEG. . . SECMENT
CCW1. . . V BYTE 0000H
CCW2. . . V BYTE 0008H
CH1PC. . L FAR 0004H
CH1PTR. . V DWORD 0002H
CH2PC . L FAR 000EH
CH2PTR . V DWORD 000AH
CLB . . L FAR 0000H
                                                0014H
                                                                SIZE=0010H PARA
                                                                                                      75# 92 460 504 505
                                                                                78# 461
84# 464
                                                                CCBSEG
                                                                CCBSEG
                                                                                80 110# 462 463 476
                                                                CIBSEG
                                                                CCBSEG
                                                                                80# 462 463
                                                                                86 89# 465 466 467
86# 465 466
                                                                CCBSEG
                                                               CCBSEG
CIB . . . . L FAR
CIBCMD. . . V BYTE
CIBSEG. . . SEGMENT
                                                 0000н
                                                                                105#
                                                 0000H
                                                                CIBSEG
                                                                                106# 474
                                                                SIZE=0010H PARA
                                                                                                        103# 116 471 472 978 979
                                                                SBC215DRIVER 488# 491
CIBSEG 108# 475
CLRLP . . L NEAR
CMDSEM . . V BYTE
CONFIG . . L FAR
CYLNDR . . V WORD
DATASEG . SEGMENT
DESCYL . V WORD
                                                0078H
                                                0002н
                                                               USERSEG PUBLIC 377 380# 396
IOPBSEG 134# 643 702 766
                                                 HO000H
                                                000EH
                                                                SIZE=001AH PARA 268# 326 483 484 854 861 927 936 995 996
                                                               DATASEG 309#
DATASEG 310#
DATASEG 311#
IOPBSEG 130# 559 577 580 639 698 762
                                                 000FH
DESHD . . . V BYTE
DESSEC. . . V BYTE
DEVCOD. . . V WORD
                                                 0011H
                                                 0012H
                                                 0008н
                                                               SBC215DRIVER 816 820#
DATASEG 324# 486
DONE. . . . L NEAR ENDDAT. . . L FAR ENDSTK. . . L FAR
                                                 01D2H
                                                 001AH
                                                               DATASEG 324# 406
STACK 367# 385
SBC215DRIVER 818 916# 948
DATASEG PUBLIC 278 307# 926
SBC215DRIVER PUBLIC 629 632# 658
                                                 0040H
 ERROR . . . L NEAR ERRSTS . . . V WORD FMT215 . . . L FAR
                                                 OIFBH
                                                 ОООСН
FMT215. . . . L FAR
FMTDN . . . L NEAR
FWTDN . . . V BYTE
G0215 . . . L NEAR
HEAD. . . V BYTE
INIT215 . . L FAR
INITBLSEG . SEGMENT
INITDN . . L NEAR
INITDP . . L NEAR
INT215 . . L FAR
INTRCS . . V WORD
INTRIP . . V WORD
INTRIP . . V WORD
INTRIPT . . NUMBER
IOPB . . L FAR
                                                 OOEFH
                                                               SBC215DRIVER 654#
IOPBSEG 132# 560 649 715 779 928
SBC215DRIVER 569 652 716 780 808# 824 931
IOPBSEG 135# 645 704 768
SBC215DRIVER PUBLIC 550 553# 586
                                                 0129H
                                                 000вн
                                                 0\,1\,C\,2\,H
                                                 0010H
                                                                SIZE=003FH PARA 170# 25
SBC215DRIVER 571 579 582#
SBC215DRIVER 567# 575 581
                                                                                                       170# 258 563
                                                OOECH
                                                 ООСВН
                                                                SBC215DRIVER PUBLIC 388 389 969 971# 1015
SEG0000 355# 389
SEG0000 354# 388
                                                023DH
0096H
                                                 0094H
                                                               347# 352
IOPBSEG 112 127# 477 478
CIBSEG 112# 477
                                                 0005H
 IOPB. . . . L FAR
IOPBOFF . . . V WORD
IOPBSEG . . SEGMENT
                                                 0000н
                                                 0008н
                                                                SIZE=001EH PARA
                                                                                                       113 125# 142 551 557 630 636 689 695 753 759 914 920
IOPBSG. . . . V WORD
LSTSTS. . . . V BYTE
MODIFY. . . . V WORD
                                                               CIBSEG 113# 478
DATASEG 320# 876 939
IOPBSEG 133# 561 650 713 777 929
                                                OOOAH
                                                 0018H
                                                 000CH
NMRTRY. . . . V BYTE OPCMP . . . V BYTE OPCMPO. . . . V BYTE
                                                0017H
                                                               DATASEG 315#
DATASEG PUBLIC 278 282#
                                                 0000н
                                                 0000Н
                                                                DATASEG 283#
OPCMP1...V BYTE OPCMP2...V BYTE OPCMP3...V BYTE
                                                 0001H
                                                                DATASEG
                                                                                  284#
                                                               DATASEG 285#
DATASEG 286#
                                                 0002H
                                                 0003н
OPCMP3. . . V BYTE
OPSTS . . . V BYTE
PKCHG . . . V BYTE
PKCHGO . . . V BYTE
PKCHG1 . . V BYTE
PKCHG2 . . V BYTE
PKCHG3. . . V BYTE
PKCHG3. . . V BYTE
RD215 . . L FAR
REQCNT . . V DWORD
RES215 . . L FAR
                                                 0001H
                                                                CIBSEG 107# 981
                                                 H8000
                                                                DATASEG PUBLIC 278 298#
                                                 0008н
                                                                                  299#
                                                                DATASEG
                                                 0009н
                                                                DATASEG
                                                 000AH
                                                                DATASEG
                                                                                  301#
                                                 000вн
                                                                DATASEG 302#
                                                                SBC215DRIVER PUBLIC 688 691# 722
                                                 012EH
                                                               TOPBSEG 139# 710 712 774 776
SBC215DRIVER PUBLIC 436 438# 526
SBC215DRIVER 514 519#
SBC215DRIVER 512# 516
SIZE=027DH PARA 400# 402 1017
SCRSFC 61#
                                                0016н
RES215. . . L FAR
RESDN . . . L NEAR
RESLP . . . L NEAR
SBC215DRIVER. SEGMENT
                                                 0000н
                                                0095H
SCB . . . . L FAR SCBSEG. . . SEGMENT
                                                                SCBSEG 61#
                                                                SIZE=0006H PARA ABS 59# 66 450 451
SECTOR. . . V BYTE
SEG0000 . . SEGMENT
                                                0011H IOPBSEG 136#
                                                                SIZE=0098H PARA ABS 349# 357 378
```

MCS-86 MACRO ASSEMBLER SYMBOL TABLE AND CROSS REFERENCE

10/27/80 PAGE 19

NAME T	TYPE VALUE	ATTRIBUTES, XREFS
SFERST V	BYTE OOOEH	DATASEG 308#
SFTERR L	L NEAR 023AH	SBC215DRIVER 941 944#
SKCMP V	V BYTE 0004H	DATASEG PUBLIC 278 290#
SKCMPO V	V BYTE 0004H	DATASEG 291#
SKCMP1 V	7 BYTE 0005H	DATASEG 292#
SKCMP2 V	V BYTE 0006H	DATASEG 293#
SKCMP3 V	/ BYTE 0007H	DATASEG 294#
soc v	BYTE 0000H	SCBSEG 62# 453
STACK S	SEGMENT	SIZE=0040H PARA
STSSEM V	V BYTE 0003H	CIBSEG 109# 983
UNIT V	BYTE 000AH	IOPBSEG 131# 568 641 700 764
USERSEG S	SEGMENT	SIZE=0022H PARA 375# 398
WAIT215 L	L NEAR 01D5H	SBC215DRIVER 815 856# 884
WAITDN L	L NEAR 01F4H	SBC215DRIVER 873 878#
WAITLP L		SBC215DRIVER 866# 871
WRT215 L		
WUA N		57# 59 497 812 999

ASSEMBLY COMPLETE, NO ERRORS FOUND