mtel‘ APPLICATION AP-59
NOTE

September 1979

2 Inie| Corporation, 1579

The following are trademarks of Intel Corporation and may be used only to describe
Intel products: Intel, Insie, Inteliec, Library Manager, Megachassis, Microamp,
Multibus, PROMPT, AMXE0, UPI, Intelevision, uScope, Promware, MCS, ICE, iSBC,
BXP, IC5, and the combination of MCS, ICE, ISBC or ICS with a numerical suffis.

The material in this Application Hote is for informational purposes only and i3 subject
to change without nofice. Intel Corporation has made an effort to wenly that the
materal in this document is correct. However, Intel Corporation does not assums any
rasponsibility for errors that may appear in this document.

Using the 8259A
Programmable
Interrupt Controller

Contents
INTRODUCTION ittt e iaa e inran e 1
GO B S & i L e e e L e B S L R B 1
MCSB0T™-B259A OVEIvIEW,oveieineinnannns 2
MCSB5™-8250A Overview.oviiaiiiannnns 3
MCs86/88™.8250A Overview 4
FUNCTIOMAL BLOCK DIAGRAM. oiiiiannn. 6
Interrupt Registers and ControlLegic.0vieies 5]
Other Functional Blocks............... b aiaaeaaa T
Pin Functions.oitinni e iiniieiisnasannnns 7
OPERATION OF THEB259A.covirinnnanncean. B
Inerrupt Veotoning. ... viuiiiinivirirs s vns i s e s B
MCS80/85 Mode. R T A AT B B
MCSBE/BE Mode. ... ieeeininnn. e g
InterrUpt PHOrIHES . . v i i s v ima s ew s sy i 9
FullyNestedMode.ccicviiiinnnnnirns i
End Ol I6Eartunk. . conas i sriaie s wmiosde i 10
Automatic Rotation. . - ..o vviviaiiiinaiinaniavanins 11
Specific Rotation........... e NI A S NS 12
Interrupt Masking.o vrrercesiniennresrmaes 12
Interrupt TNQQering. ... ccvvevrnvessasaarsanssansnaas 13
Level Triggered Mode........ T A e 13
Edga THQOered MO, . v wmemiim v s o 14
I D BRI ¢« i sn v om0 nms e i e T .14
Reading Interrupt Registers.c.... 14
Poll Command.ccvcveivrrrensssnsnannsasanias 15
Interrupt Cascading. ... o cviveienemenoserenannneeesin: 15
Cascade Mode. S S A R A 15
Special Fully NestedMode.c.... i 16
Buffered Mode.t iiimiiiiieinnnnnas 17
PROGRAMMING THE B258A. i ecinnrnnnns 17
Initialization Command Words (ICWs). 17
Operational Command Words (OCWS). 20
APPLICATION EXAMPLES......... s i AR 21
Power FaillAuto Start with Battery Back-Up RAM. 21
78 Level Interrupt Structure. i 24
Timer Controlled Interrupts. i iiiiiias 27
DO ML LIBIOINS . v v i o e o e s o i MR 30
APPENDIX A. ittt enranr s 3
APPENDDUE: s s e B e Sl b i 32

Intal Garporation Assumas Mo Responsibility for the Use of Any Gircuilty Other Than Cirguilty Embadied in an ntel Product. Mo Other Cireuit Patent Licenses are Impliad,

INTRODUCTION

The Intel 8259A is a Programmable Interrupt Controller
(PIC) designed for use in realtime interrupt driven
microcomputer systems. The B259A manages eight
levels of interrupts and has built-in features for expan-
sion up to 64 levels with additional B259A's. |ts versatile
design allows it to be used within MCS5-80, MCS-85,
MCS-86, and MGCS5-88 microcomputer systems. Being
fully programmable, the 8259A provides a wide variety of
modes and commands to tailor 82594 interrupt process-
ing for the specific needs of the user. These modes and
commands control a number of interrupt oriented func-
tions such as interrupt priority selection and masking of
interrupts. The B259A programming may be dynamically
changed by the software at any time, thus allowing com-
plete interrupt control throughout program execution.

The 82594 is an enhanced, fully compatible revision of
its predecessor, the 8258, This means the B250A can use
all hardware and software originally designed for the
8259 without any changes. Furtharmore, it provides ad-
ditional modes that increase its flexibility in MCS-80
and MCS-85 systems and allow it to work in MCS-86 and
MCS-B8 systems. These modes are:

MCS-86/88 Mode

Automatic End of Interrupt Mode
Level Triggered Mode

Special Fully Nested Mode
Buffered Mode

Each of these are covered in depth further in this appli-
cation note.

This application note was written to explain completely
how to use the B259A within MCS-80, MCS-85, MCS-86,
and MCS-88 microcomputer systems. It is divided into
five sections. The first sectlon, “"Concepts", explains
the concepts of interrupts and presents an overview of
how the B259A works with each microcomputer system
mentioned above. The second section, “Functional
Block Diagram”, describes the internal functions of the
B8259A In block diagram form and provides a detalled
functional description of each device pin. “Operation of
the 8259A", the third section, explains in depth the
operation and use of each of the 82594 modes and com-
mands. For clarity of explanation, this section doesn't
make reference to the actual programming of the B259A,
Inatead, all programming is covered in the fourth sec-
tion, “Programming the B258A". This section explains
how to program the 8259A with the modes and com-
mands mentioned in the previous section. These two
sactions are referenced in Appendix A. The fifth and
final section “Application Examples”, shows the B259A
in three typical applications. These applications are
fully explained with reference to both hardware and soft-
ware.

" = 8 & ®

The reader should note that some of the terminclogy
used throughout this application note may differ
slightly from existing data sheets. This is done to better
clarify and explain the operation and programming of
the B259A.

1. CONCEPTS

In microcomputer systems there is usually a need for
the processor to communicate with various Input/Qut-

put (IO} devices such as keyboards, displays, sensors,
and other peripherals. From the system viewpoint, the
processor should spend as little time as possible servic-
ing the peripherals since the time required for these 110
chores directly affects the amount of time available for
other tasks. In other words, the system should be
designed so that I/O servicing has little or no effect on
the total system throughput. There are two basic
methods of handling the /O chores in a system: status
polling and interrupt servicing.

The status poll method of /O servicing essentially in-
volves having the processor “ask™ each peripheral if it
needs servicing by testing the peripheral's status line, If
the peripheral requires service, the processor branches
to the appropriate service routine; if not, the processor
continues with the maln program. Clearly, there are
several problems In Implementing such an approach.
First, how often a peripheral is polled is an important
constraint. Some idea of the “frequency-of-service”
required by each peripheral must be known and any soft-
ware written for the system must accommodate this
time dependence by “scheduling” when a device is
polled. Second, there will obviously be times when a
device is polied that is not ready for service, wasting the
processor time that it took to do the poll. And other
times, a ready device would have to wait until the proc-
essor “"makes its rounds"” before it could be serviced,
slowing down the peripheral.

Other problems arise when certain peripherals are more
important than others. The only way to implement the
“priority" of devices is to poll the high priority devices
more frequently than lower priority ones. It may even be
necessary to poll the high priority devices while in a low
priority device service routine. It is easy to see that the
polled approach can be inefficient botH time-wise and
software-wise. Overall, the polled method of I/O servic-
ing can have a detrimental effect on system throughput,
thus limiting the tasks that can be performed by the
processor.

A more desirable approach in most systems would allow
the processor to be executing its main program and only
stop to service the /O when told to do so by the /O
itself. This is calied the interrupt service method. In
effect, the device would asynchronously signal the proc-
essor when It required service. The processor would
finish its current instruction and then vector to the
service routine for the device requesting service, Once
the service routine is complete, the processor would
resume axactly where it left off. Using the Interrupt ser-
vice method, no processor time is spent testing devices,
scheduling is not needed, and priority schemes are
readily implemented. It is easy to see that, using the in-
terrupt service approach, system throughput would in-
crease, allowing more tasks to be handled by the
Processor,

However, to Implement the interrupt service method
between processor and peripherals, additional hardware
is usually required. This is because, after interrupting
the processor, the device must supply information for
vactoring program execution. Depending on the proc-
essor used, this can be accomplished by the device tak-
ing control of the data bus and “jamming” an instruc-
tion(s) onto it. The instruction(s) then vectors the pro-

gram to the proper service routine. This of course re-
guires additional control logic for each interrupt re-
questing device. Yet the implementation so faris only in
the most basic form. What if certain peripherals ara to
be of higher priority than others? What if certain inter-
rupts must be disabled while others are to be enabled?
The possible variations go on, but they all add up to one
theme; to provide greater flexibility using the interrupt
service method, hardware requirements increase.

S0, we'ré caught in the middle, The status poll method
is a less desirable way of servicing VO in terms of
throughput, but its hardware requirements are minimal.
On the other hand, the interrupt service method |s most
desirable in terms of flexibility and throughput, but
additional hardware is requirad.

The perfect situation would be to have the flexibility and
throughput of the interrupt method in an implementa-
tion with minimal hardware requirements. The B259A
Programmable Interrupt Controller (PIC) makes this all
possible.

The B259A Programmable Interrupt Controller (PIC) was
designed to function as an overall manager of an inter-
rupt driven system. No additional hardware is required.
The B259A alone can handle eight prioritized interrupt
levels, controlling the complete interface between pe-
ripherals and processor. Additional 8259A°s can be
“cascaded"” to increase the number of interrupt levels
processed. A wide variety of modes and commands for
programming the 8258A give it enough flexibility for
almost any interrupt controlled structure. Thus, the
B259A is the feasible answer to handling I/O servicing in
microcomputer systems.

Mow, before explaining exactly how to use the 82594,
let's go over interrupt structures of the MCS5-80, MCS-85,
MCS-86, and MCS-88 systems, and how they interact
with the B259A. Figure 1 shows a block diagram of the
82594 interfacing with a standard system bus. This may
prove useful as reference throughout the rest of the
"Concapts" section.

li ADDRESS BUS
5 o CONTROL BUS
S "

U

i

17OR |ﬁurm1 INT A
DATA BUS
) r)
I
i
—_— '
5 A 0
-t AL ¥ D-" o
CASCADE CAS 1 E2ESA,

LINES

- CAL2 IRQ ARG IRG IRQ 1RGO FRG IR 1RG
SFEM 7 & & 4 i 2 1 0

T

slave |
PROGIENABLE INTERRLFT

BUFFER REQUESTS

Figure 1. 82594 Interface to Standard Sysiem Bus

1.1 MCS-80™—g259A OVERVIEW

In an MCS-80—8259A interrupt configuration, as in
Figure 2, a device may cause an interrupt by pulling one
of the 8259A's Iinterrupt request pins (IRO-IRT) high. If
the B259A accepts the interrupt request (this depends
on its programmed condition), the 8259A°s INT (inter-
rupt) pin will go high, driving the B0BOA's INT pin high,

The BOBOA can receive an interrupt request any time,
since its INT input is asynchronous. The BOB0A, how-
ever, doesn'l always have to acknowledge an interrupt
request immediately. It can accept or disregard re-
quests under software control using the El (Enable Inter-
rupt) or DI (Disable Interrupt) instructions. These in-
structions either set or resat an internal interrupt enable
flip-flop. The ocutput of this flip-flop controls the state of
the INTE (Interrupt Enabled) pin. Upon reset, the 8080A
interrupts are disabled, making INTE low.

At the end of each instruction cycle, the BOBOA exam-
ines the state of its INT pin. If an interrupt request is
present and interrupts are enabled, the 8080A entars an
interrupt machine cycle. During the interrupt machine
cycle the B0OB0A resets the internal interrupt enable flip-
flop, disabling further interrupts until an El instruction
is executed. Unlike normal machine cycles, the interrupt
machine cycle doesn't increment the program counter.
This ensures that the BOB0A can return to the pre-
interrupt program location after the interrupt is com-
pleted. The B8080A then Issues an INTA (Interrupt
Acknowledge) pulse via the 8228 System Controller Bus
Driver. This TNTA pulse signals the 8259A that the B0B0A
is honoring the request and is ready to process the inter-
rupt.

The B259A can now vector program execution to the cor-
responding service routine. This is done during a se-
quence of the three INTA pulses from the 80BOA via the
8228. Upon receiving the first INTA pulse the 8259A
places the opcode for a CALL instruction on the data
bus. This causes the contents of the program counter to
be pushed onto the stack. In addition, the CALL instruc-
tion causes two more INTA pulses to be issued, allow-
ing the 8259A to place onto the data bus the starting
address of the corresponding service routine. This
address is called the Interrupt-vector address. The lower
B bits (LSB) of the interrupt-vector address are released
during the second INTA pulse and the upper 8 bits
(MSB) during the third INTA pulse. Once this sequence
is completed, program execution then vectors to the
service routine at the interrupt-vector address.

If the same registers are used by both the main program
and the interrupt service routine, their contents should
be saved when entering the service routine. This In-
cludes the Program Status Word (PSW) which consists
of the accumulator and flags. The best way to do this is
to “PUSH" each register used onto the stack. The ser-
vice routine can then “POP" each register off the stack
in the reverse order when it is completed. This prevents
any ambiguous operation when returning to the main
program.

Once the service routine is completed, the main
program may be re-entered by using a normal RET
(Return) instruction. This will “POP" the original con-

tents of the program counter back off the stack to
resume program execution where it left off. Note, that
because interrupts are disabled during the interrupt
acknowledge sequence, tha El| instruction must be
executed either during the service routine or the main
program before further interrupts can be processed.

For additional information on the BOBOA interrupt siruc-
ture and operation, refer to the MCS-80 User's Manual.

1.2 MCS-85™—g250A OVERVIEW

An MCS-85—825%A configuration processes interrupts
in much the same format as an MCS-80—B8259A config-

uration. When an interrupt occurs, a sequence of three

INTA pulses causes the 8259A Lo release onto the data

bus a CALL instruction and an interrupt-vector address
for the corresponding service routine, Other events that
occur during the BOBOA interrupt machine cycle, such as
disabling interrupts and not incrementing the program
counter, also occur in the BOB5A Interrupt acknowledge
machine cycle. Additionally, the instructions for saving
registers, enabling or disabling of interrupts, and return-
Ing from service routines are literally the same.

The 8085A, however, has a different interrupt hardware
scheme as shown in Figure 3. For one, the 8085A sup-
plies its own INTA output pin rather than using an addi-

— INTE Ag 14 ADORESS BUS >m MEMORY AND 10
g
—=| HOLD INT | 4BV
k40 1K
| ‘ SELECT
GPFEN
s 1T N | W e [[IR0 fa—
[" i DEIN DEIM e —] &y i l—
— ol . HLDA ~+{HLDA '_I INT i) il
T iroR RD IR3 e | INTERRUPT
s B224 READY READY Dg-7 uq ; poag TOW ~|WR masoa | REQUEST
RD TR ——— . [oy INPUTS
RESIN ol aa Lot STSTE |: —
NENME IR =
ETETH SYMNC f—=] SYNC |
HEPI'H' DB T#A = [
n-7 DATHA BLS LT CASg.s
il
_T-u HEH'IJH‘F Sy TOSLAVE B283AS
>TD MEMORY AND UD
Figure 2. MCS5-80 B253A Basic Conliguration Example
TO0 MULTIPLEXED
MCESS FAMILY
X3 H:EE-ET cl_rt | |
] HESEJ W OuT TO STANDARD MEMORY
AB15 A AND OTHER 1O
—] HoLD |-ﬁ'ﬂ
=—4 HLDA& Ayt |
o 00, _; £3 EZ E1 AZ A1 AD
ALE 5T E2&2 OE EPOG
—=| TRAP anmsa __L
— Dlg-r _ B Ell Gy 0g Oy O Op
i P |
. U SELECT | -
T ETANDARD MEMD
ek Abg MULTIPLEXED il.'r{:l:HESS.IIJ.kTA BUS bphddsslonf
—1 INTA I . B
WR RO
1K
s wmms]
a
TO UG & MEMORY BISGA SELECT BHEN i
GUALIFIED BY I10/M CS T
P IR2 =—
I D7 pagas 3 f=— | INTERRUET
et (Y, I s vfq fe— { PEQUEST
] . e R INPUTE
- INTA RS f=—
INT CASs 2 IRT
% TO SLAVE E2588

Figurs 3. MCS-85"™ 82594 Basic Conliguration Example

3

tional chip, as the BOBOA uses the B228 System Con-
troller Bus Driver. Another hardware difference is the
B085A has five hardware interrupt pins: INTR, RST 7.5,
RST6.5, AST 5.5, and TRAP. The INTR (Interrupt Request)
pin is the equivalent to the BOBDA's INT pin. The RST
{Restart) pins and TRAP pin are all restart interrupts
which vector program execution to an individual dedi-
cated address when asserted. The important factor
associating these interrupts Is their relative priority, as
shown below:

TRAP Highest Priority
RST 75
RST 6.5
HST 5.5
INTR Lowest Priority

The INTR pin has lowest priority among the other 80B5A
hardware interrupts. Thus, precautions to prevent inter-
rupting 8259A service routines may be necessary, This,
of course, depends on how the BOB5A interrupts are
being used in a particular application. Such precautions
can be implemented, however, by masking the RST pins
using the SIM instruction. The TRAP pin on the other
hand is non-maskable; all interrupt pins but TRAP can
be controlled by the El (Enable Interrupt) and DI (Disable
Interrupt) instructions.

For a complete description of the B085A interrupt struc-
ture, refer to the MCS-85 User's Manual.

1.3 MCS-86/88™ —8259A OVERVIEW

Operation of an MGS-86/86—8258A conliguration has
basic similarities of the MCS-B0/85—8259A configura-

tions. That is, a device can cause an interrupt by pulling
one of the B259A’s interrupt request pins (IR0-IRT) high.
If the 8259A honors the reguest, its INT pin will go high,
driving the BOBG/B0BE's INTR pin high. Like the BOSBOA
and BOB5A, the INTR pin of the 8085/8088 is asynchro-
nous, thus it can receive an Interrupt any time. The
B0BE/B80E8 can also accept or disregard requests on
INTR under software control using the STI (Set Interrupt)
or CLI {Clear Interrupt) instructions. These instructions
set or clear the interrupt-enabled flag IF. Upon
8086/8088 reset the IF flag is cleared, disabling external
interrupts on INTR. Beside the INTR pin, the B0BG/8028
provides an NMI (Non-Maskable Interrupt) pin. The NMI
functions similar to the BOB5A's TRAP; it can't be dis-
abled or masked. NMI has higher priority than INTR.

Figure 4 shows an MC5-86 MAX Mode system Interfac-
ing with an B2594A on the local bus. This MCS-86—82504
configuration is also representative of an MCS-88—
B8259A configuration except for the data bus which is 16
bits for 8086 and 8 bits for 8088. In the MCS-86 system
the B259A must be on the lower 8 bits of the data bus.
Note that the 8259A could also be interfaced on the
system bus.

Although there are some basic similarities, the actual
processing of interrupts with an 8086/8088 is different
than an BOBOA or 80B5A. When an interrupt request is
present and interrupts are enabled, the B0B6/B08B enters
its interrupt acknowledge machine eycle. The interrupt
acknowledge machine cycle pushes the flag registers
onto the stack (as in a PUSHF instruction). It then clears
the IF flag which disables interrupts. The contents of

3
1K

ADly DOgy

EYSTEM ADDRESE BUS & BAE > 10 MEMORY
A1 o

e L FL
aTHE

TO MEMORY

SYSTEM DATA BUS AND UG

AENZ
—=| M
| Rorz e
CLK &2B4 - ST
| e READY
| RESET AEMT +
CEYMNC Pl
J—_ J_—
|
REBET A4t - =
=] READY E—S———

e CLK Ave1a

B ADg.1s MULTIPLEXED ADDRESSIDATA BLES

——=d RQIGTI

== TEST BOAS
r MK LOCK = 45
1r;
CEN
—= BN ’ : ,
o |STATUS W&, AR
IHTA ALE

__>Jln.? 8o
- B28E
—| T
I

|
[

] oTR
a88
s p-—
Ta |- MRDE Llw
MEMORY | =—] ANTWE BITWE
B HTA
J:— To D

1K '
Ay 0E
: SHFEH A f=—
TR f=—
:
ADar Do IR |=—
- TR [INTERRUPT
L —— REGUEST
——| Wi i fe— | mpuTs
IS fo—
- L =
= INTA -
INT *
CASgg

G TOSLAVEB25SA

Figure 4. MSC-88"™ 82594 Basic Conliguration Example (8086 in Max. Mods)

both the code segment and the instruction pointer are
then also pushed onto the stack. Thus, the stack retains
the pre-interrupt flag status and pre-interrupt program
location which are used to return from the service
routine. The BOBG/B08S then issues the first of two INTA
pulses which signal the 8259A that the BOBG6/B0BS has
honored its Interrupt request. If the 8086/8088 is used in
its "MIN Mode" the INTA signal is available from the
B8086/8088 on its INTA pin. If the B0B&/8088 is used in the
“MAX Mode" the TNTA signal is available via the 8288
Bus Controller INTA pin. Additionally, in the “MAX
Mode" the B0BG/8088 LOCK pin goes low during the in-
terrupt acknowledge sequence. The LOCK signal can be
used to indicate to other system bus masters not to gain
control of the system bus during the interrupt acknow!-
edge sequence. A "HOLD" reguest won't be honored
while LOCK is low.

The 8259A is now ready to vector program execution to
the corresponding service routine. This is done during
the sequence of the two INTA pulses issued by the B086/
BOES. Unlike operation with the B080A or B085A, the
8259A doesn't place a CALL instruction and the starting
address of the service routine on the data bus. Instead,
the first INTA pulse is used only to signal the 82504 of
the honored request. The second INTA pulse causes the
B259A to place a single interrupt-vector byte onto the
data bus. Not used as a direct address, this interrupt-
vector byle pertains to one of 258 interrupt "types’ sup-
ported by the BOBG/B0BE memory. Program execution is
vectored to the corresponding service routine by the
contents of a specified interrupt type.

All 256 interrupt types are located in absolute memory
locations 0 through 3FFH which make up the 8086/
B088's interrupt-vector table. Each type in the interrupt-
vector table requires 4 bytes of memory and stores a
code segment address and an instruction pointer ad-
dress. Figure 5 shows a block diagram of the interrupt-
vector table. Locations 0 through 3FFH should be
reserved for the interrupt-vector table alone. Further-
more, memory locations 00 through 7FH (types 0-31) are
reserved for use by Intel Corporation for Intel hardware
and software products. To maintain compatibility with
present and future Intel products, these locations
should not be used.

When the B0BG6/808B8 receives an interrupt-vector byte
from the 8259A, it multiplies its value by four to acquire
the address of the interrupt type. For example, if the
interrupt-vector byte specifies type 128 (B0H), the vec-
tored address in B0BE/B0BE memory is 4 x B0H, which
equals 200H. Program execution is then vectored to the
sarvice routine whose address is specified by the code
segment and instruction pointer values within type 128
located at 200H. To show how this is done, let’s assume
interrupt type 128 is to vector data to 8086/8088 memory
location 2FF5FH. Figure 6 shows two possible ways to
sat values of the code segment and instruction pointer
for vectoring to location 2FF5FH. Address generation
by the code segment and instruction pointer is ac-
complished by an offset (they overlap). Of the total
20-bit address capability, the code segment can desig-
nate the upper 16 bits, the instruction pointer can
designate the lower 16 bits.

C5[MSE) 2FH iFFH
CS(LSE) FOH 1FEH
IP MSE) 00H tfon | T
1P (LSE) SFH 1FCH
L 4
= =|'=
CSiMSE) | 20H 1FFH
CELER) 00H tFEH
P (M5B FFH 1FoH | TYPE1E
IP{LEB) 5FH 1FCH
= ==

Figure 6. Two Examples of BOBE/B0BS Interrupt Type 128 Vecloring
to Location 2FF5FH

#FFH

ERAUPT TYPE 255
i AFCH

JFBH

IMTERRUPT TYPE 254
IFEH

1

Ji
1

L]
BH

INTERRUPT TYFE I
BH

TH

INTERRUPT TYPE 1
4H
3H
INTERRURPT TYPE O

Figure 5. 8086/8088 Intarrupt Vector Table

When entering an Interrupt service routine, those regis-
ters that are mutually used between the main program
and service routine should be saved. The best way to do
this is to “PUSH" each register used onto the stack im-
mediately. The service routine can then “POP" each
register off the stack in the same order when it is com-
pleted.

Once the service routing is completed the main program
may be re-entered by using a IRET (Interrupt Return) in-
struction. The IRET instruction will pop the pre-interrupt
Instruction pointer, code segment and flags off the
stack. Thus the main program will resume where it was
interrupted with the same flag status regardless of
changes in the service routine. Note especially that this
inciudes the state of the IF flag, thus intarrupts are re-
enabled automatically when retuming from the service
routine.

Beside external interrupt generation from the INTR pin,
the BOBG/BOBA is also able to invoke interrupts by soft-
ware. Three interrupt instructions are provided: INT, INT
(Type 3), and INTO. INT is a two byte instruction, the sec-
ond byte selects the Interrupt type. INT {Type 3) is a one
byte instruction which selects interrupt Type 3. INTO Is
a conditional one byte interrupt instruction which
salects interrupt Type 4 if the OF flag (trap on overflow)
is set. All the software interrupts vector program execu-
tion as the hardware interrupts do.

For further information on B0868/8088 interrupt operation
and intemnal interrupt structure refer to the MCS-B6
User's Manual and the 8086 System Design application
note.

2. B259A FUNCTIONAL BLOCK DIAGRAM

A block diagram of the B250A is shown in Figure 7. As
can be seen from this figure, the B259A consists of eight
major blocks: the Interrupt Request Register (IRR), the
In-Service Register (ISR), the Interrupt Mask Register
(IMR), the Priority Resolver (PR), the cascade buffer/
comparator, the data bus buffer, and logic blocks for
control and readiwrite. We'll tirst go over the blocks
directly related to interrupt handling, the IRR, ISR, IMR,
PR, and the control logic. The remaining functional
blocks are then discussed.

2.1 INTERRUPT REGISTERS AND CONTROL LOGIC

Basically, Interrupt requests are handled by three “cas-
caded’ registers: the Interrupt Request Register (IRR) is
use to store all the interrupt levels requesting service;
the In-Service Register (ISH) stores all the levels which
are being serviced; and the Interrupt Mask Register
(IMR) stores the bits of the interrupt lines to be masked.
The Priority Resolver (PR) looks at the IRR, ISR and IMR,
and determines whether an INT should be issued by the
the control logic to the processor.

Figure 8 shows conceptually how the Interrupt Request
(IR) input handles an Interrupt request and how the
various interrupt registers interact. The figure repre-

sents one of eight “daisy-chained” priority cells, one for
each IR input.

The best way to explain the operation of the priority cell
is to go through the seguence of internal events that
happen when an interrupl request occurs. However,
first, notice that the input circullry of the priority call
allows for both level sensitive and edge sensitive IR in-
puts, Deciding which method (o use is dependent on tha
particular application and will be discussed in more
detall later,

When the IR input is in an Inactive state (LOW), the edge
sense latch is set. |t adge sensitive triggering Iis
selected, the “Q" output of the edge sense latch will
arm the input gate to the request latch. This input gate
will be disarmed after the IR input goes active {(HIGH)
and the interrupt request has been acknowledged. This
disables the input from generating any further inter-
rupts until It has returned low to re-arm the edge sense
latch. If level sensitive triggering Is selected, the "Q"
output of the edge sense latch Is rendered useless. This
means the level of the IR input Is in complete control of
interrupt generation; the input won't be disarmed once
acknowledged.

When an interrupt occurs on the IR input, it propagates
through the request latch and to the PR (assuming the
input isn't masked). The PR looks at the incoming re-
guests and the currently in-service interrupts to ascer-
tain whether an interrupt should be issued to the proc-
essor. Let's assume that the request is the only one in-
coming and no requests are presently in service. The PR
then causes the control logic to pull the INT line to the
processor high.

PIN CONFIGURATION
— -

-
]

I Ve
4,

] INTA

(-18
wit
AG []

BLOCK DIAGRAM

INTA

vt

nlLE
24 [ing
JinG

B, C

0]

B258A 1iRa

HUFFER

GATA

CONTROL LOGH
s

71 [ira
(] IR2
19 @1
] 1o
] INT
] ERER
[CcAS 2

Elﬂﬂhl-ﬂ'ﬁldﬂ

anD [

s 18

PIN NAMES
DATA BUS (BI-DIRECTIONAL

READ INPUT
WRITE INPUT
COMMAND SELECT ADDRESS

1{

s ————

SLAVE Fﬂﬂﬂmi BUFFER

INTERRUFT ACKNOWLEDGE Hfl.l'l'_.
INTERAUFT REQUEST INFUTE

o Y

INTERRLFT] ot

PRICRAITY REQUEST [=—1M3
FROLVE N L[]

|l [l

SEAVICE
HEG
(1S

REG
(IRRAY

| A%

INTFRALFT MASKE AEG
L]

e

T LRAAL B

-

Figura 7. 82594 Block Diagram and Pin Configuration

B8

LTIM BT
= EDGE

T OTHER FRIOATY CELLS

CLA ISA

1= LEVEL

I5H Bat

FRIORITY
AESOLVER

CONTHOL
Lo

INTERAMAL

WRITE MASK

TR U

MASTER CLA
RMEAD 1WA

1. MASTER CLEAR ACTIVE DMLY DURING ICW1
¥, FREETE! IS ACTIVE DURING TNTR! AND POLL SEQUEMCES ONLY
1, TRUTH TABLE FOR D-LATCH

ﬂi n |]
1 (1] ol
o i Gn —

OFERATION

1

FOLLOW

HLRL B

Figure 8. Priority Cell

When the processor honors the INT pulse, i1 sends a se-
quence of INTA pulses to the B259A (three for BOBOA/
B085A, two for 8086/8088). During this sequence the
state of the request latch is frozen (note the INTA-freeze
request timing diagram). Priority is again resolved by the
PR to determine the appropriate Interrupt vectoring
which is conveyed to the processor via the data bus.

Immediately after the interrupt acknowledge sequence,
the PR sets the corresponding bit in the ISR which
simultaneously clears the adge sense latch. if edge san-
sitive triggering is used, clearing the edge sense latch
also disarms the request latch. This Inhibits the
possibility of a still active IR input from propagating
through the priority cell. The IR input must return to an
inactive state, setting the edge sense laich, before
another interrupt request can be recognized. Il level sen-
sitive triggering is used, however, clearing the edge
sense latch has no affect on the request latch, The state
of the request latch is entirely dependent upon the IR in-
put level. Another interrupt will be generated iImmedi-
ately If the IR level Is lefl active after its ISR bit has been
resel. An ISR bit gets resel with an End-ofInterrupt (EOI)
command Issued In the service routine. End-of.
interrupts will be covarad in more detall later,

2.2 OTHER FUNCTIONAL BLOCKS

Data Bus Buifer

This three-state, bidirectional 8-bit buffer Is used to In-
terface the B250A to the processor system data bus (via

DBO-DB7). Control words, status information, and
interrupt-vector data are transferred through the data
bus buffer.

Read/Write Control Logic

The function of this block is to control the programming
of the 8258A by accepting OUTput commands from the
processor. It also controls the releasing of status onto
the data bus by accepting INput commands from the
processor. The initialization and operation command
word registers which store the various control formats
are located in this block. The RD, WR, A0, and CS
pins are used to control access to this block by the
processor.

Cascade Buffer'lComparator

As mentioned earlier, mulliple B259A's can be combined
to expand the number of interrupt levels. A master-slave
relationship of cascaded 8259A's is used for the expan-
sion. The SP/EN and the CAS0-2 pins are used for oper-
ation of this block. The cascading of B259A's is coverad
in depth in the “Operation of the 8258A" section of this
application note.

2.3 PIN FUNCTIONS

Name Pin# /0 Function

28 |
14 |

+ 5V supply
Ground

\F'm;
GND

Name Pin# /O Function

CS 1 | Chip Select: A low on this pin en-
ables RD and WR communication be-
tween the CPU and the 8259A. TNTA
functions are independent of CS.

WHR 2 | Write: A low on this pin when CS is
low enables the 8258A to accept
command words from the CPU.

AD 3 | Read: A low on this pin when CS is
low enables the B8259A to release
status onto the data bus for the CPU.

D7-D0 4-11 WO Bidirectional Data Bus: Control,
status and interrupt-vector informa-
tion is transferred via this bus.

GASO- 12,13, 11O Cascade Lines: The CAS lines form a

CAS2 15 private 8258A bus to control a multi-
ple 8259A structure. These pins are
outputs for a master 8259A and in-
puts for a slave 8259A.

SPIEN 18 1D Slave Programi/Enable Buffer: This is
a dual function pin. When In the buf-
fered mode it can be used as an out-
put to control buffer transceivers
(EN). When not in the buffered mode
it is used as an input to designate a
master (SP = 1) or slave (SP=0)

INT 17 O Interrupt: This pin goes high when-
ever a valid interrupt request is as-
serted. It is used to interrupt the
CPU, thus it is connected to the
CPU's interrupt pin.

IRD- 18-25 | Interrupt Requests: Asynchronous in-

IR7 puts. An interrupt request can be
generated by raising an IR input (low
to high) and holding it high until it is
acknowledged (edge triggered mode),
or just by a high level on an IR input
{level triggered mode).

INTA 26 | Interrupt Acknowledge: This pin is
used to enable 8258A interrupt-vector
data onto the data bus. This is done
by a sequence of interrupt acknowl-
edge pulses issued by the CPU.

AD 27 | AO0Address Line: This pin acts in con-
junction with the CS, WR, and RD
pins, It is used by the 8259A {o de-
clpher between various command
words the CPU writes and status the
CPU wishes to read. It is typically
connected to the CPU A0 address
line (A1 for BOBG/8088).

3. OPERATION OF THE 8259A

Interrupt operation of the 8259A falls under five main
categories: vectoring, priorities, triggering, status, and
cascading. Each of these categories use various modes
and commands. This section will explain the operation
of these modes and commands. For clarity of explana-
tion, however, the actual programming of the B259A isn't

covered in this section but in “Programming the 8253A".
Appendix A is provided as a cross reference between
these two sections.

3.1 INTERRUPT VECTORING

Each IR input of the B259A has an Individual interrupt-
vector address in memory associated with it. Designa-
tion of each address depends upon the initial program-
ming of the B258A. As stated earlier, the interrupt
sequence and addressing of an MCS-80 and MCS-85
system differs from that of an MCS-86 and MCS-88
system. Thus, the 82594 must be initially programmed
in either a MCS-B0/85 or MCS-86/88 mode of operation to
insure the correct interrupt vectoring.

MCS-80/85™ Mode

When programmed in the MCS-80/85 mode, the 82504
should only be used within an 80B0A or an BOB5A
system. In this mode the BOBOA/BOSSA will handle inter-
rupts in the format described In the “MCS-80—B259A or
MCS-85—8259A Overviews.”

Upon interrupt request in the MCS-80/85 mode, the
8259A will output to the data bus the opcode for a CALL
instruction and the address of the desired routine. This
is in response to a sequence of three INTA pulses
issued by the BOBOA/BOBSA after the B259A has raised
INT high.

The first INTA pulse to the B259A enables the CALL
opcode "CD." onto the data bus. It also resolves IR pri-
orities and effects operation in the cascade mode,
which will be covered later. Contents of the first
interrupt-vector byte are shown In Figure 9A.

During the second and third TNTA pulses, the B259A
conveys a 16-bit interrupt-vector address to the 80804/
B085A. The interrupt-vector addresses for all eight levels
are selected when initially programming the B250A.
However, only one address is needed for programming.
Interrupt-vector addresses of IR0-IRY are automatically
set at equally spaced intervals based on the one pro-
grammed address. Address intervals are user definable
to 4 or 8 bytes apart. If the service routine for a device is
short it may be possible to fit the entire routine within
an 8-byte interval. Usually, though, the service routines
require more than 8 bytes. So, a 4-byte interval is used to
store a Jump (JMP) instruction which directs the B0B0A/
8085A to the appropriate routine. The 8-byte interval
maintains compatibility with current 8080A/8085A
Restart (RST) instruction software, while the 4-byte in-
terval is best for a compact jump table. If the 4-byte in-
terval is selected, then the 8259A will automatically
insert bits AD-A4. This leaves A5-A15 to be pro-
grammed by the user. If the 8-byte interval is selected,
the B258A will automatically insert bits AO-AS. This
leaves only AB-A15 to be programmed by the user.

The LSB of the interrupt-vector address is placed on the
data bus during the second INTA pulse. Figure 9B
shows the contents of the second interrupt-vector byte
for both 4 and 8-byte intervals.

The MSB of the interrupt-vector address is placed on the
data bus during the third INTA pulse. Contents of the
third interrupt-vector byte is shown in Figure 8C.

Df M B0 M B 0oF D DO

el cope | T @ ¥ & 8 & |]

A, FIRST INTERRUPT VECTOR BYTE. MCSM0/ME MODE

" _g—u]
|| Br M b B A @ > W
r ar s 13 i i L]]
W | ar ma an % T & 8 B
W | AT MM Kb " T B N
P | & o a i] "]
3 | Ar M k@ T 1 " @ |
11 & M & & 1 & & 8
i | e M s @] i & » |
o | A&7 M M 8 8 8 8 8
- . - _HI. j
B o oM M oM@ o og |
F | a1 M b 1 [P s 8
i | & " i] B "
i | & s P % 8]
i ik [1.9 [} [] .-;- . .|- :
P | oar " b i B & 0 |
'} = ;E-] a i -} ﬂ- - [-] q--
AT 8 B 8 o
| 0 | ar a 8 8w] n

B. SECOND INTERRUPT VECTOR DYTE, MCEMME MODE

[L TR R N
[Janao]jaajm[an]w]a

€. THIRD INTERRUPT VECTOR BYTE, MCSA0IIS MODE

Figurs 8. 8A=-C. Interrupi-Vector Byles lor 82564, MCS B0/BS Moda

MCS-86/88™ Mode

When programmed in the MCS.86/88 mode, the B250A
should only be used within an MCS-868 or MCS-88
system. In this mode, the BOBG/BOBE will handle inter-
rupts In the formal describad earller in the "825%A—
8086/8088 Overview''.

Upon interrupt In the MCS-B6/88 mode, the B259A will
output a single Interrupt-vector_byte to the data bus.
This Is In response to only two INTA pulses issued by
the BOBG/BOBA after the B259A has ralsed INT high.

The first INTA pulse Is used only for set-up purposes in-
ternal to the 8250A. As in the MCS-80/85 mode, this sat-
up includes priority resolution and cascade mode oper-
ations which will be covered later. Unlike the MCS-80/85
mode, no CALL opcode is placed on the data bus.

The second INTA pulse is used to enable the single
interrupt-vector byte onto the data bus. The B08&/8088
uses this interrupt-vector byte to select one of 258 inter-
rupt “types” in B0OB6/80B8 memory. Interrupt type selec-
tion for all eight IR levels is made when initially pro-
gramming the B250A. However, reference to only one in-
terrupt type is needed lor programming. The upper 5 bits
of the interrupl veclor byte are user delinable. The lower
3 bits are automatically inserted by the B250A depend-
ing upon the IR level.

Contents of the interrupt-vector byte for BOBE/B0ES t
selection Is put on the data bus during the second INTA
pulse and is shown in Figure 10,

[TH [OF

TTTATETE T
T T8 T8 T4 TR
T 70 T8 T4 TO
TH T& Td T3
W TA T Td T
TF TBE TH T4 TA
™" T8 T8 Ta TH

:

A0 T = = D —=

il — i —= S — =

i =i RS L e IO~
-l
-l
lI'..'-l:lu'.'.'IlI:l-----|

Figurs 10. Intermupt Vecior Byts, MCS aa/8a™ Mode

3.2 INTERRUPT PRIORITIES

A variety of modes and commands are available for con-
trolling interrupt priorities of the B258A. All of them are
programmable, that is, they may be changed dynamic-
ally under software control. With these modes and com-
mands, many possibilities are concelvable, giving the
user enough versatility for almost any interrupt con-
trolled application.

Fully Nested Mode

The fully nested mode of operation is a general purpose
priority mode. This mode supports a multilevel-interrupt
structure in which priority order of all eight IR inputs are
arranged from highest to lowest.

Unless otherwise programmed, the fully nested mode is
entered by default upon initialization. At this time, IR0 is
assigned the highest priority through IR7 the lowest.
The fully nested mode, however, is not confined to this
IR structure alone. Once past initialization, other IR in-
puts can be assigned highest priority also, keeping the
multilevel-interrupt structure of the fully nested mode.
Figure 11A-C shows some variations of the priority
structures in the fully nested mode.

IR LEVELS [IRT IRG /RS IR4 1IR3 IR (A1 1RO
PRICRITY [7 B & 4 1

IR LEVELS [TA7 IRG (RS (A4 IR (A2 (R |AG)
PRIORITY [4 3 & 1 0 7 B B
L

IR LEVELS [IR7 iRé (RS R4 [R3 1F2 A1 IR0
PRIORITY [1 0 T B & & 3 2

c

Figura 11. A-C. Soma Variations of Priority Structure In the
Fully Nestad Mode

Further explanation of the fully nested mode, in this
section, is linked with information of general B259A in-
terrupt operations. This is done to ease explanation o
the user in both areas.

In general, when an interrupt is acknowledged, the
highest priority request is determined from the IRR (In-
terrupi Reguest Register). The interrupt vector Is then
placed on the data bus. In addition, the corresponding
bit in the ISR (In-Service Register) is set to designate the
routine in service. This ISR bit remains set until an EQI
(End-Of-Interrupt) command is issued to the B259A.
EOI's will be explained in greater detail shortly.

In the fully nested mode, while an ISR bit is set, all fur-
ther requests of the same or lower priority are inhibited
from generating an interrupt to the microprocessor, A
higher priority request, though, can generate an inter-
rupt, thus vecloring program execution lo ils service
routine. Interrupts are only acknowledged, however, If
the microprocessor has previously executed an “Enable
Interrupts” instruction. This is because the interrupt
request pin on the microprocessor gets disabled auto-
matically after acknowledgement of any Interrupt. The
assembly language instructions used to enable Inter-
rupts are “EI"" for B0BOA/BDB5A and “STI" for BOBG/BOAS.
Interrupts can be disabled by using the instruction *'DI"
for 8080A/ BOB5A and “CLI" for BOBG/B0BB. When a
routine is completed a “return” instruction s executed,
"RET" for BOBODA/BOASA and “IRET" for BD86/8088.

Figure 12 illustrates the correct usage of interrupt
related Instructions and the interaction of interrupt
levels in the fully nested mode.

Assuming the IR priority assignment for the example in
Figure 12 is IR0 the highest through IR7 the lowest, the
sequence is as follows. During the main program, |IR3
makes a request. Since interrupts are enabled, the
microprocessor is vectored to the IR3 service routine.
During the IR3 routine, IR1 asserts a request. Since IR
has higher priority than |IR3, an interrupt is generated.
However, it is not acknowledged because the micro-
processor disabled interrupts in response to the |R3 in-
terrupt. The IR1 interrupt is not acknowledged until the
“"Enable Interrupts” instruction is executed. Thus the
IR3 routine has a “protected” section of code over
which no interrupts (except non-maskable) are allowed.
The IR1 routine has no such “protectad” section since
an “Enable Interrupts” instruction is the first one in its
sarvice routine. Note that in this example the IR1 re-
quest must stay high until it is acknowledged. This Is
covered in more depth In the “Interrupt Triggering”
section.

MilN PROGRAM

IR3 SEAVICE
ROUTINE

IR
INTER:
RUPT

IRt SERVICE

JR00 - B0

RET OR IRET

Figure 12. Fully Nestsd Mods Exampie (MCS 80/85™™ or MCS Ba/ss")

What is happening to the ISR register? While in the main
program, no ISR bits are set since there aren't any inter-
rupts in service. When the IR3 interrupt Is acknowl-
edged, the ISR3 bit iz set. When the IR1 interrupt is
acknowledged, both the ISR1 and the ISH3 bits are sel,
indicating that neither routine is complete. At this time,
only IR0 could generate an interrupt since it is the only
input with a higher priority than those previously in ser-
vice. To terminate the IR1 routine, the routine must
inform the 8259A that it is complete by resetting its ISR
bit. It does this by execuling an EQl command. A
“return’’ instruction then transfers execution back to

10

the IR3 routine. This allows IR0-1R2 to interrupt the IR3
routine again, since ISR3 |s the highest ISR bit set. No
further interrupts occur in the example so the EQIl com-
mand resets ISR3 and the “return” instruction causes
the main program to resume at its pre-interrupt location,
ending the example.

A single B259A |s essentially always in the fully nested
mode unless certain programming conditions disturb it.
The following programming conditions can cause the
8259A to go out of the high to low priority structure of
the fully nested mode.

* The automatic EOI mode
* The special mask mode

» A slave with a master not in the special fully nested
mode

These modes will be covered in more detail later,
however, they are mentioned now 50 the user can be
aware of them. As long as these program conditions
aren't inacted, the fully nested mode remains undis-
turbed.

End of Interrupt

Upon completion of an interrupt service routine the
8259A needs to be notified so its ISR can be updated.
This is done to keep track of which interrupt levels are in
the process of being serviced and their relative priori-
ties. Three different End-Of-Interrupt (EOI) formats are
available for the user. These are: the non-specific EQI
command, the specific EOl command, and the auto-
matic EOl Mode, Selection of which EOI to use is depen-
dent upon the interrupt operations the user wishes to
perform.

Non-Specific EQI Command

A non-specific EOl command sent from the microproc-
essor lets the B259A know when a service routine has
been completed, without specification of its exact inter-
rupt leval. The B259A automatically determines the inter-
rupt level and resets the correct bit in the I1SR.

To take advantage of the non-specific EOI the B259A
must be in a mode of operation in which it can predeter-
mine in-service routine levels, For this reason the non-
specific EOl command should only be used when the
most recent level acknowledged and serviced is always
the highest priority level. When the 8259A receives a
non-specific EOl command, it simply resets the highest
priority ISR bit, thus confirming to the 82594 that the
highest priority routine of the routines in service Is
finishead.

The main advantage of using the non-specitic EQl com-
mand is that IR level specification isn't necessary as in
the “Specific EOI Command'', covered shortly.
However, special consideration should be taken when
deciding to use the non-specific EOl. Here are two pro-
gram conditions in which it is best not used:

* LUsing the set priority command within an intarrupt
sarvice routine.

* LUsing a special mask mode.

These conditions are covered in more detall in their own
sections, but are listed here for the users reference.

Specific EOl Command

A specific EOl command sent from the microprocessor
lets the B259A know when a service routine of a particu-
lar interrupt level is completed. Unlike a non-specific
EOQI command, which automatically resets the highest
priority ISR bit, a specific EQl command specifies an
axact ISR bit to be reset. One of the eight IR levels of the
B259A can be specified in the command.

The reason the specific EOl command is needed, is to
reset the ISR bit of a completed service routine when-
ever the 8259A Isn't able to automatically determine it.
An example of this type of situation might be if the
priorities of the interrupt levels wera changed during an
interrupt routine (“Specific Rotation'). In this case, if
any other routines were in service at the same time, a
non-specific EOlI might reset the wrong ISR bit. Thus the
specific EQl command is the best bet in this case, or for
that matter, any time in which confusion of interrupt
priorities may exist. The specific EQl command can be
used in all conditions of 8259A operation, including
those that prohibit non-specific EQl command usage.

Automatic EOI Mods

When programmed in the automatic EQl mode, the
microprocessor no longer needs to 1ssue a command to
notify the 8258A it has completed an interrupt routine.
The B259A accomplishes this by performing a non-
specific EOl automatically at the trailing edge of the last
INTA pulse (third pulse in MCS-BO/B5, second in
MCS-86).

The obvious advantage of the automatic EOl mode over
the other EQl command is no command has to be
iIssued. In general, this simplifies programming and
lowers code reguirements within interrupt routines.

However, special consideration should be taken when
deciding to use the automatic EOl mode because it
disturbs the fully nested mode. In the automatic EOI
mode the ISR bit of a routine in sarvice is reset right
after it's acknowledged, thus leaving no designation in
the ISA that a sevice routine is being executed. If any in-
terrupt request occurs during this time (and interrupts
are enabled) it will get serviced regardless of its priority,
low or high. The problem of "over nesting” may also
happen in this situation. “Over nesting” is when an IR
input keeps interrupting its own routine, resulting in un-
necessary stack pushes which could fill the stack in a
worst case condition. This Is not usually a desired form
of operation!

So what good is the automatic EOI mode with problems
like those just covered? Well, again, like the other EQIs,
selection is dependent upon the application. If inter-
rupts are controlled at a predetermined rate, so as not to
cause the problems mentioned above, the automatic
EOI mode works perfect just the way It is. However, if in-
terrupts happen sporadically at an indeterminate rate,
the automatic EOl mode should only be used under the
following guideline:

* When using the automatic EOl mode with an inde-
terminate interrupt rate, the microprocessor should
keep Its interrupt regquest input disabled during
execution of service routines.

1

By doing this, higher priority interrupt levels will be ser-
viced only after the completion of a routine in service.
This guideline restores the fully nested structure in
regards to the IRR; however, a routine in-service can't be
interrupted.

Automatic Rotation — Equal Priority

Automatic rotation of priorities serves in applications
where the interrupting devices are of equal priority,
such as communications channels. The concept is that
once a peripheral Is serviced, all other equal priority
peripherals should be given a chance to be serviced
before the original peripheral is serviced again. This is
accomplished by automatically assigning a peripheral
the lowest priority after being serviced Thus, in worst
case, the device would have to wait until all other
devices are serviced before being serviced again.

There are two methods of accomplishing automatic
rotation. One is used in conjunction with the non-
specific EOI, “rotate on non-specific EOl command”,
The other is used with the automatic EOI mode, “rotate
in automatic EQl mode".

Rotaie on Non-Specific EOl Command

When the rotate on non-specific EOl command is
issued, the highest ISR bit is reset as [n a normal non-
specific EQl command. After it's reset though, the cor-
rasponding IR level is assigned lowest priority. Other IR
priorities rotate to conform to the fully nested mode
based on the newly assigned low priority

Figures 13A and B show how the rotate on non-specific
EOl command effects the interrupt priorities. Let's
assume the |R priorities were assigned with IR0 the
highest and IR7 the lowest, as in 13A. IR6 and IA4 are
already In service but neither is completed. Being the
higher priority routine, IR4 is necessarily the routine
baing executed. During the IR4 routine a rotate on non-
specific EQl command is executed. When this happens,
bit 4 in the ISR is reset. IR4 then becomes the lowest
priority and IR5 becomes the highest as in 13B.

I5T 156 155 |54 K53 152 151 150
I's 1 & 1 @ 0 0 o

7= B 4 3 3 1 0

BEFORE
COMMAMND

I5H STATUS
PRIGAITY

A

LUWEST FHILAITY HIGHEST PRIDRITY

IST |56 155 154 153 152 151 (50

g R STATUS a 1 0 60 a 0 0 0 AFTER
PRICRITY £ 1 0 F 6 &% 4 3§ COMMAND
1. i
| |
HIGHEST PRIGRITY LOWEST PRIDRITY

Figura 13. A-B. Rotate on Non-specific EQl Command Exampla

Rotate in Automatic EOl Mode

The rotate in automatic EOl mode works much like the
rotate on non-specific EQl command. The main differ-
ence is that priority rotation is done automatically after

the last INTA pulse of an interrupt request. To enter or
exil this mode a rotate-in-automatic-EQl set command
and rotate-in-automatic-EQI clear command is provided.
After that, no commands are neaded as with the normal
automatic EOlI mode. However, it must be remembered,
when using any form of the automatic EOl mode, spe-
cial consideration should be taken. Thus, the guideling
for the automatic EQl mode also stands for the rotate in
automatic EQOI mode.

Specitfic Rotation — Specific Priority

Specific rotation gives the user versatile capabilities in
interrupt controlled operations, It serves in those ap-
plications in which a specific device's interrupt priority
must be altered. As opposed to automatic rotation
which automatically sels pricrities, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive lowest or highest
priority. This can be done during the main program or
within interrupt routines. Two specific rotation com-
mands are available to the user, the “set priority com-
mand” and the “rotate on specific EOl command.”

Set Priority Command

The set priority command allows the programmer to
assign an IR level the lowest priority. All other interrupt
levels will conform to the fully nested mode based on
the newly assigned low pricrity.

An example of how the set priority command works is
shown In Figures 14A and 14B. These figures show the
status of the ISR and the relative priorities of the inter-
rupt levels before and after the set priority command.
Two Interrupt routines are shown to be in service In
Figure 14A. Since IR2 is the highest priority, It Is
necessarily the routine being executed. During the IR2
routine, priorities are altered so that IR5 is the highest.
This is done simply by issuing the set priority command
to the B259A. In this case, the command specifies IR4 as
being the lowest priority. The result of this set priority
command is shown in Figure 14B. Even though IRT now
has higher priority than IR2, it won't be acknowledged
until the IR2 routine is linished (via EOI). This is because
priorities are only resolved upon an interrupt request or
an interrupt acknowledge sequence. If a higher priority
requast occurs during the IR2 routine, then priorities are
resolved and the highest will be acknowledged.

is

a 'SA STATUS 1
PRIORITY T
L

52 151
1 a
F 1

HIGHEST PRICRITY

Figura 14, A=B. Saot Priority Command Exampla

12

When completing a service routing in which the set
priority command is used, the correct EOl must be
issued. The non-specific EQOl command shouldn't be
used in the same routine as a set priorily command.
This Is because the non-specific EOl command resets
the highest ISR bit, which, when using the set priority
command, is not always the most recent routine in ser-
vice. The automatic EQOl mode, on the other hand, can be
used with the set priority command. This Is because it
automatically performs a non-specific EQO| before the
sel priority command can be issued, The specific EOI
command is the best bet in most cases when using the
set priority command within a routine. By resetting the
specific ISR bit of a routine being completed, confusion
|8 aliminated.

Rotate on Specific EOl Command

The rotate on specific EOl command Is literally a com-
bination of the set priority command and the specific
EQI command. Like the set priority command, a speci-
fied IR level is assigned lowes! priority. Like the specific
EOI command, a specified level will be reset in the ISR.
Thus the rotate on specific EOl command accomplishes
both tasks in only one command.

It it Is not necessary to change IR prioritias prior to the
end of an interrupt routine, then this command is advan-
tageous. For an EOl command must be executled any-
way (unless in the automatic EOl mode), so why not do
both at the same time?

Interrupt Masking

Disabling or enabling interrupts can be done by other
means than just controlling the microprocessor's inter-
rupt request pin. The 8259A has an IMR (Interrupt Mask
Register) which enhances interrupt control capabilities.
Rather than all interrupts being disabled or enabled at
the same time, the IMR allows individual IR masking.
The IMR is an B-bit register, bits 0-7 directly correspond
to IRD-1R7. Any IR input can be masked by writing to the
IMR and setting the appropriate bit. Likewise, any IR in-
put can be enabled by clearing the correct IMR bit.

There are various uses for masking off individual IR in-
puts. One example is when a portion of a main routine
wishes only to be interrupted by specific interrupts.
Another might be disabling higher priority interrupts for
a portion of a lower priority service routine, The possi-
bilities are many.

When an interrupt occurs while Its IMR bit |s set, it isn't
necessarily forgotten. For, as slated earlier, the IMR
acts only on the output of the IRR. Even with an IR input
masked it is still possible to set the IRR. Thus, when
resetting an IMR, if its IRR bit is set it will then generats
an interrupt. This is providing, of course, thal other
priority factors are taken into consideration and Lhe IR
request remains active. If the IR request is removed
before the IMR is reset, no interrupt will be acknowl-
edged.

Special Mask Mode

In various cases, it may be desirable to enable interrupts
of a lower priority than the routine In service, Or, in other
words, allow lower priority devices to generate inter-
rupls. However, in the fully nestad mode, all IR levels of

priority below the routine in service are inhibited. So
what can be done to enable them?

Well, one method could be using an EQl command
before the actual completion of a routine in service. But
beware, doing this may cause an “over nesting” prob-
lem, similar to in the automatic EOl mode. In addition,
resetting an ISR bit is irreversible by software control,
so lower priority IR levels could only be later disabled by
setting the IMHA.

A much better solution is the special mask mode. Work-
ing in conjunction with the IMR, the special mask mode
enables interrupts from all levels except the level in ser-
vice. This is done by masking the level that is in service
and then issuing the special mask mode command.
Once the special mask mode is set, it remains in effect
until reset.

Figure 15 shows how to enable lower priority interrupts
by using the Special Mask Mode (SMM). Assume that
IRD has highest priority when the main program is inter-
rupted by IR4. In the IR4 service routine an enable inter-
rupt instruction is executed. This only allows higher
pricrity interrupt requests to interrupt IR4 in the normal
fully nested mode. Further in the IR4 routine, bit 4 of the
IMR is masked and the special mask mode is enfered.
Priority operation is no longer in the fully nested mode.
All interrupt levels are enabled except for IR4. To leave
the special mask mode, the sequence is execuled in
reverse.

BAIN PROGRAM

El OR 5T1
R4 SEAVICE
ROUTINE
IR] —=
: ¥
I EI OR 5TI
' |
IA0-3 ENABLED
IA4-TF DISABLED
; |
MASK IR4
1 ¥
SET SMM
IR0-3, 5-7 ENABLED
IR DISABLED
RESET SMM
UNMASE IR4
IR0-3 ENABLED
|R4-7 DISABLED
EOI
—{ RET OR IRET

Figume 15. Special Mask Mode Example (MCS 80/85" ™ or MCS 8&/88" ™)

13

Frecautions must be taken when exiting an interrupt
sarvice routine which has used the special mask mode,
A non-specific EQl command can't be used when in the
special mask mode. This is because a non-specific
won't clear an ISR bit of an interrupt which is masked
when in the special mask mode. In fact, the bit will ap-
pear invisible. If the special mask mode is cleared
bafore an EOl command is issued a non-specific EOI
command can be used. This could be the case in the ex-
ample shown in Figure 15, but, to avoid any confusion
it's best to use the specific EOl whenever using.the
special mask mode.

It must be remembered that the special mask mode ap-
plies to all masked levels when set. Take, for instance,
IR1 interrupting IR4 in the previous example. If this hap-
pened while in the special mask mode, and the IR1
routine masked itself, all interrupis would be enabled
gxcept IR1 and IR4 which are masked.

3.3 INTERRUPT TRIGGERING

There are two classical ways of sensing an active inter-
rupt request: a level sensitive input or an edge sensitive
input. The 82594 gives the user the capability for either
method with the edge triggered mode and the level trig-
gered mode. Selection of one of these interrupt trigger-
ing methods is done during the programmed initializa-
tion of the 82594,

Lavel Triggered Mode

When in the level triggered mode the B259A will recog-
nize any active (high) level on an IR input as an interrupt
request. If the IR input remains active after an EOIl com-
mand has been issued (resetting its ISR bit), another in-
terrupt will be generated. This is providing of course, the
processor INT pin is enabled. Unless repetitious inter-
rupt generation is desired, the IR input must be brought
to an inactive state before an EQl command is issued in
its service routine. However, it must not go inactive so
soon that it disobeys the necessary fiming require-
ments shown in Figure 16. Note that the request on the
IR input must remain until after the falling edge of the
first INTA pulse. If on any IR input, the requesl goes
inactive before the first INTA pulse, the B259A will
respond as if IRT was active. In any design in which
there's a possibility of this happening, the IR7 default
feature can be used as a safeguard. This can be accom-
plished by using the IR7 routine as a "clean-up routine”
which might recheck the B259A status or merely return
program execution to its pre-interrupt location.

Depending upon the particular design and application,
the level triggered moda has a number of uses. For one,
it provides for repetitious interrupt generation, This is
useful in cases when a service routine needs to be con-
tinually executed until the interrupt request goes inac-
tive. Another possible advantage of the level triggered
mode is it allows for "wire-OR'ed” interrupt requests.
That Is, a number of interrupt requests using the same
IR input. This can't be done in the edge triggered mode,
for if a device makes an interrupt request while the IR in-
put is high {from another request), its transition will be
“shadowed'. Thus the B259A won't recognize further in-
terrupt requests because its IR input is already high.
Note that when a "wire-0OR'ed" scheme is used, the ac-

N\ _

/

- \aVav=

LATCH® EARLIEST 1R
ARMED CAN BE REMOVED

ju
Ve

LATCH"
"EDGE TRIGGERED MODE ONLY ARMED

Figura 16. IR Triggering Timing Reguiremeants

tual requesting device has to be determined by the sofl-
ware in the service routine.

Caution should be taken when using the automatic EQI
mode and the level triggered mode together. Since in
the automatic EQl mode an EOI is automatically per-
formed at the end of the interrupt acknowledge se-
quence, if the processor enables interrupts while an IR
Input ia still high, an interrupt will occur immediately. To
avold this situation interrupts should be kept disabled
until the end of the service routine or until the IR input
raturns low.

Edge Triggered Mode

When in the edge triggered mode, the B259A will only
recognize interrupts if generated by an inactive (low) to
active (high) transition on an IR inpul. The edge trig-
gered mode incorporates an edge lockout method of
operation, This means that after the rising edge of an
Interrupt request and the acknowledgement of the re-
quest, the positive level of the IR input won't generate
further interrupts on this level, The user needn’t worry
about quickly removing the request afler acknowledge-
ment In fear of generating further interrupis as might be
the case in the level triggered mode. Before another in-
terrupt can be generated the IR input must return to the
inactive state.

Referring back to Figure 16, the timing requirements for
interrupt triggering is shown. Like the level triggered
mode, in the edge triggered mode the request on the IR
input must remain active until after the falling edge of
the first INTA pulse for that particular interrupt, Unlike
the level triggered mode, though, after the interrupt
request is acknowledged Its IRRA latch is disarmed. Only
after the IR input goes inactive will the IRR latch agaln
bacome armed, making it ready lo receive another inter-
rupt request (in the level triggered mode, the IRR latch is
always armed). Because ol the way the edge triggered
mode functions, it is best to use a positive level with a
negative pulse to trigger the IR requests. With this type
of input, the trailing edge of the pulse causes the inter-
rupt and the maintained positive level meets the neces-
sary timing requirements (remalning high until after the
interrupt acknowledge occurs). Note that the IRT default

14

feature mentioned in the "level triggered mode” section
also works for the edge triggered mode.

Depending upon the particular design and application,
the edge triggered mode has various uses. Because of
its edge lockout operation, it is best used in those
applications where repetitious interrupt generation isn't
desired. It is also very useful in systems where the Inter-
rupt request is a pulse (this should be in the form of a
negative pulse to the B258A), Another possible advan-
tage is that it can be used with the automatic EQl mode
without the cautions in the level triggered mode. Over-
all, in most casas, the edge triggered mode simplities
operation for the user, since the duration of the interrupt
request at a positive level is not usually a factor.

3.4 INTERRUPT STATUS

By means of software control, the user can interrogata
the status of the 8258A. This allows the reading of the
internal interrupt registaers, which may prove uselul for
interrupt control during service routines. It also pro-
vides for a modified status poll mathod of device moni-
toring, by using the poll command. This makes the
status of the internal IR Iinputs avallable to the usar via
software control. The poll command offers an alterna-
tive to the interrupt vector method, especially for those
casas when more than 84 interrupts are needed.

Reading Interrupt Registers

The contents of each B-bit interrupt register, IRR, ISR,
and IMR, can be read to updale the user's program on
the present status of the B250A. This can be a versalile
tool in the decision making process of a service routine,
glving the user more control over interrupt operations.
Bafore delving into the aclual process of reading the
registers, let's briefly review their general descriptions:

IRR (Interrupt Specifies all interrupt levels re-
Request Registen quasting service.

ISR (In-Service Specifies all interrupt levels
Registar) which are being serviced,

IMR {Interrupt Specifies all interrupt levels that
Mask Register) are masked,

To read the contents of the IRR or ISR, the user must
first Issue the appropriate read register command (read
IRA or read ISA) to the B259A. Then by applying a RD
pulse to the B259A (an INput instruction), the contents
of the desired register can be acquired. There is no nead
to Issue a read register command every time the IRR or
ISR is to be read. Once a read register command is
received by the B2594, it “remembers” which register
has been selected. Thus, all that is necessary to read
the contents of the same ragister more than once is the
RD pulse and the correct addressing (A0=0, explained
in "Programming the 8253A"). Upon initialization, the
selection of registers defaults to the IRR. Some caution
should be taken when using the read register command
In a system that supports several levels of Interruplts. I
the higher priority routine causes an interrupt between
the read register command and the actual input of the
register contents, there's no guarantee that the same
register will be selected when it returns. Thus it is best
in such cases to disable interrupts during the operation.

Reading the contents of the IMR is different than read-
ing the IRR or ISR. A read register command s not
necessary when reading the IMR. This is because the
IMR can be addressed directly for both reading and
writing. Thus all that the B259A requires for reading the
IMR is a RD pulse and the correct addressing (A0=1,
explained in "Programming the B259A™).

Poll Command

As mentioned towards the beginning of this application
note, there are two methods of servicing peripherals:
status polling and interrupt servicing. For most applica-
tions the interrupt service method is best. This is
because it requires the least amount of CPU time, thus
increasing system throughput. However, for certain ap-
plications, the status poll method may be desirable.

For this reason, the B259A supports polling operations
with the poll command. As opposed to the conventional
method of polling, the poll command offers improved
device servicing and increased throughput. Rather than
having the processor poll each peripheral in order to
find the actual device requiring service, the processor
polls the 8253A. This allows the use of all the praviously
meantioned priority modes and commands. Additionally,
both polled and interrupt methods can be used within
the same program.

To use the poll command the processor must first have
its interrupt request pin disabled. Once the poll com-
mand is issued, the B258A will treat the next (CS quali-
fied) RD pulse issued to it (an INput instruction) as an in-
terrupt acknowledge. It will then set the appropriate bit
in the ISR, if there was an interrupt request, and enable a
speclal word onto the data bus. This word shows
whether an interrupt request has occurred and the
highest priority level requesting service. Figure 17
shows the contents of the “poll word” which is read by
the processor. Bits WO-W2 convey the binary code of
the highest priority level requesting service. Bit | desig-
nates whether or not an interrupt request Is present. If
an interrupt request is present, bit | will equal 1. If there
isn't an interrupt request at all, bit | will equal 0 and bits
WO-W2 will be set to ones. Service to the requesting
device is achieved by software decoding the poll word
and branching to the appropriate service routine. Each

15

time the BZ259A is to be polled, the poll command must
be written before reading the poll word.

The poll command is useful in various situations. Forin-
stance, it's a good alternative when memory is very
limited, because an interrupt-vector table isn't needed.
Another use for the poll command is when more than 64
interrupt levaels are neaded (64 is the limit when cascad-
ing 8259's). The only limit of interrupts using the poll
command is the number of 8259's that can be addressed
in a particular system. Still another application of the
poll command might be when the INT or INTA signals
are not available. This might be the case in a large
system where a processor on one card needs to use an
B259A on a different card. In this instance, the poll com-
mand is the only way to monitor the interrupt devices
and still take advantage of the B258A's prioritizing
features. For those cases when the 82584 is using the
poll command only and not the interrupt method, each
8259A must recelve an initialization sequence {interrupt
vector), This must be done even though the interrupt
vactor features of the B259A are not used. In this case,
the interrupt vector specified in the initialization
saequence could be a “fake".

Lil-1-1-]- [welwijwd)
LL

= WIW2=BIMNARY CODE OF HIGHEST
PRIDRITY LEVEL AEQUESTING SERVICE

== |=1IF &N INTERRUPT DCCURRED

Figura 17. Poll Word

3.5 INTERRUPT CASCADING

As mentioned earlier, more than one B259A can be used
to expand the priority interrupt scheme to up to 64 levels
without additional hardware. This method for expanded
interrupt capability is called “cascading”. The B253A
supports cascading operations with the cascade mode.
Additionally, the special fully nested mode and the buf-
fered mode are available for increased flexibility when
cascading 8259A°s in cerlain applications.

Cascade Mode

When programmed In the cascade mode, basic opera-
tion consists of one 8259A acting as a master to the
others which are serving as slaves. Figure 18 shows a
system containing a master and two slaves, providing a
total of 22 interrupt levels.

A specific hardware set-up is required to establish
operation in the cascade mode. With Figure 18 as a ref-
erence, note that the master is designated by a high on
the SP/EN pin, while the SP/EN pins of the slaves are
grounded (this can also be done by software, see buf-
fered mode). Additionally, the INT output pin of each
slave is connected to an IR input pin of the master. The
CAS0-2 pins for all 8259A's are paralleled. These pins
act as outputs when the 82584 is a master and as inputs
for the slaves. Serving as a private B259A bus, they con-
tral which slave has control of the system bus for inter-
rupt vectoring operation with the processor. All other
pins are connected as in normal operation (each 8258A
receives an INTA pulse).

{ ; . ADOREES BUS (1l !

|;I CONTROL Bk {I
INT BED
]
1 DATA BUS (81 \
—_— —— == - — — — — A [
i
£ [[w] u [[l
= & D7 IRTA T = a, D87 (RTA iyt = A, D7 NTA T
CALd CASE CAYD
A LE S B [B i
ELAVE & A BLAVE W """‘""'r CAR1 WMARTER
CAS P Ca5 T |= [= 1)
[T & 5 4 2 1 @ 7 4 §F 4 3 2 1 @ M7 AR D MG Y D
G aso Yee |9]
- i
T &8 & 4 3 18 T & 0O 4 3 2 1 a i 4 (3-2 1 @

]
INTERALUPFT AROUNETE

Figure 18. Cascaded B258A'S 22 Inlerrupl Levels

Besides hardware set-up requiremeants, all 8259A"'s must
be software programmed to work in the cascade mode.
Programming the cascade mode is done during the in-
itialization of each 8259A. The B259A that is selected as
master must receive specification during its initializa-
tion as to which of its IR Inputs are connected to a
slava’'s INT pin. Each slave B250A, on the other hand,
must be designated during its initlalization with an ID (0
through 7) corresponding to which of the master's IR in-
puls its INT pin is connected to. This is all necessary so
the CASD-2 pins of the mastera will be able to address
each individual slave. Nole that as in normal operation,
each B2509A must also be initialized to give its IR inputs
a unique interrupt vector. More detail on the necessary
programming of the cascade mode is explained in “Pro-
gramming the B259A".

Now, with background information on both hardwara
and software for the cascade mode, let's go over the
sequence of events that occur during a valid interrupt
request from a slave. Suppose a slave IR input has
received an interrupt request. Assuming this request is
higher priority than other requests and in-service levels
on the slave, the slave's INT pin is driven high. This
signals the master of the request by causing an inter
rupt request on a designaled IR pin of the master. Again,
assuming that this request to the master is higher priori-
ty than other master requesis and in-service levels
(possibly from other slaves), the master's INT pin is
pulled high, interrupting the processor.

The Interrupt acknowledge sequence appears to the
processor the same as the non-cascading interrupt
acknowledge sequence; however, it's different among
the B250A's. The first INTA pulse is used by all the
8258A’'s for internal sel-up purposes and, if in the
BOBO/B0OBS mode, the master will place the CALL opcode
on the data bus. The first INTA pulse also signals the
master to place the requesting slave's ID code on the
CAS lines. This turns control over to the slave for the
rest of the interrupt acknowledge sequence, placing the

16

appropriate pre-programmed interrupt vector on the
data bus, completing the interrupl request.

During the interrupt acknowledge sequence, the cor-
responding ISR bit of both the master and the slave get
set, This means two EOI commands must be issued (if
not in the automatic EOl mode), one for the master and
ona for the slave.

Special consideration should be taken when mixed
interrupt requests are assigned to a master B259A; that
is, when some of the master's IR inputs are used for
slave interrupt requests and some are used for individ-
ual Interrupt requests. In this lype of structure, the
master's IR0 must not be used for a slave. This is
because when an IR input that isn't initialized as a slave
recelves an interrupt request, the CAS0-2 lines won't be
activated, thus slaying In the default condition address-
ing for IRCQ (slave IR0). If a slave is connected to the
master's IR0 when a non-slave inlerrupt occurs on
another master IR inpul, erroneous conditions may
resull. Thus IR0 should be the lasl choice when assign-
ing slaves to IR inputs.

Special Fully Nested Mode

Depending on the application, changes in the nested
siructure of the cascade mode may be desired. This is
because the nested structure of a slave B259A differs
from that of the normal fully nested mode. In the cas-
cade mode, if a slave recelves a higher priority interrupt
raquest than one which Is in service (through the same
slave), it won't be recognized by the master. This is
because the master's ISR bit is set, ignoring all requests
of equal or lower priority. Thus, in this case, the higher
priority slave interrupt won't be serviced until after the
master's ISR bit is reset by an EOl command. This is
most likely after the completion of the lower priority
routine.

Il the user wishes to have a truly fully nested structure
within a slave B259A, the special fully nested mode
should be used. The special fully nested mode Is pro-

grammed in the master only, This is done during the
master's initialization, In this mode the master will
ignore only those interrupt requests of lower priority
than the set ISR bit and will respond to all requests of
equal or higher priority. Thus if a slave receives a higher
priority request than one in service, It will be recognized.
To insure proper interrupt operation when using the
special fully nested mode, the software must determine
if any other slave inlerrupts are still in sarvice belfore
issuing an EQI command Lo the master. This is done by
reselting the appropriate slave ISR bit with an EQ| and
then reading its ISR. If the ISR contains all zeros, there
aren't any other interrupts from the slave in service and
an EOl command can be sent to the master. If the ISR
isn't all zeros, an EQI command shouldn't be sent 1o the
master. Clearing the master's ISR bit with an EOl com-
mand while there are still slave interrupls in service
would allow lower priority interrupts to be recognized at
the master. An example of this process is shown in the
second application in the “Applications Examples” sec-
tion.

Butfered Mode

The buffered mode is useful in large systems where buf-
fering is required on the data bus. Although not limited
to only 8258A cascading, it's most pertinent in this use.
In the bufferad mode, whenever the B258A’s data bus
output is enabled, ils ﬁIEM pin will go low, This signal
can be used lo enable data transfer through a buffer
transceiver in the required direction.

Figure 19 shows a conceptual diagram of three B259A's
in cascade, each slave |s controlling an individual 8286
8-bit bidirectional bus driver by means of the buffered
mode. Note the pull-up on the SPF/EN. It is used to
enable data transfer to the B259A for ils initial program-
ming. When data transfer is to go from the 8259A 1o the
processor, SPIEN wlill go low; otherwise, it will be high.

A question should arise, however, from the fact that the
SP/EN pin is used to designate a master from a slave;

how can it be used for both master-slave selection and
buffer control? The answer to this is the provision for
software programmable master-siave selection when in
the buffer mode. The buffered mode is selected during
each B259A's initialization. At the same time, the user
can assign each individual 8258A as a master or slave
(see “Programming the 8259A").

4. PROGRAMMING THE 8259A

Programming the 8259A is accomplished by using. two
types of command words: Initialization Command
Words (ICWs) and Operational Command Words
{OCWs). All the modes and commands axplainad in the
previous section, “Operation of the B250A", are pro-
grammabie using the ICWs and OCWs (see Appendix A
for cross reference). The ICWs are issued from the proc-
essor in a sequential format and are used to set-up the
B259A in an initial state of operation. The OCWs are
issued as needed to vary and control B258A operation.

Both ICWs and OCWs are sent by the processor to the
B259A via the data bus (8259A CS=0, WR=0). The
B259A distinguishes between the different ICWs and
OCWs by the state of its AD pin (controlled by processor
addressing), the sequence they're issued in (ICWs only),
and some dedicated bits among the ICWs and OCWs.
Those bits which are dedicated are Indicated so by llxed
values (0 or 1) in the corresponding ICW or OCW pro-
gramming formats which are covered shortly. Note,
when issuing either ICWs or OCWs, the interrupt
request pin of the processor should be disabled.

4.1 INITIALIZATION COMMAND WORDS (ICWs)

Before normal operation can begin, each 8250A in a
system must be initialized by a sequence of two to four
programming bytes called ICWs (Initialization Com-
mand Words). The ICWs are used to set-up the neces-
sary conditions and modes for proper B259A operation.

SYSTEM DATA BUS

ae—— DT PR

LOCAL DATA BUS |

A A e DEN
iK
EMEN Do
MASTER .
S358 iNT INTR
IR A INTA CASy.p
9
INTE

Figure 18, Cascade-Buffered Mode Example

17

Figure 20 shows the initialization flow of the B259A.
Both ICW1 and ICW2 must be issued for any form of
B259A operation. However, ICW3 and ICW4 are used
only If designated so in ICW1. Delermining the neces-
sity and use of each ICW is covered shortly in individual
groupings. Mote that, once intialized, if any program-
ming changes within the ICWs are to be made, the entire
ICW sequence must be reprogrammed, not just an indi-
vidual ICW.

Certain internal set-up conditions occur automatically
within the B250A after the first ICW has been issued.
Thesa are:;

A. Sequencerloglc is sat to acceplt the remaining ICWs
as designated In ICW1,

The ISR (In-Service Register) and IMR (Interrupt Mask
Register) are both cleared.

The special mask mode is resel.
. The rotate in automatic EOl mode tlip-llop is cleared.

The IRR (Interrupt Reguest Reglister) Is selected for
the read reglster command,

F. If the IC4 bit equals O in ICW1, all functions in ICW4
are cleared; B0B0/BOBS mode is selected by default.

G. The fully nested mode is enlered with an initial prior-
ity assignmen! of IR0 highest through IRT lowest.

H. The edge sense latch of each IR priority cell is
cleared, thus requiring a low to high transition to
generate an Iinterrupt {(edge triggered mode effected
only).

mo o

i ICW3

YES (IC4 = 1)

ICWd |

READY TD ACCEPT
INTERRUPT REQUESTS

Figura 20. Initialization Flow

18

The ICW programming format, Figure 21, shows bit
designation and a short definition of each ICW. With the
ICW format as reference, the functions of each ICW will
now be explained individually.

By
i

+ . el
0= W0 ks S EDED

1= BNGLE
0 = CASCAOE KOOE

Tl WIEAVAL
1= INTIRY AL OF 4
2= Ty vAL OF B

fe il THIDRISNED RPJT
§ = B TR GCENED maru

Ay = g OF RTERRUPT WVECTOR
ALEFICEE INECIELTE MO0

L
F

A O B O B, B O
L]

r
@ o |

By - g B IR RBLFY WECTOR
EAUEE DR TR PR e T

Py - Ty i i Eldaid g vl
PRGN pOhr

W (RRARTE R O VEC I
B, B By N B B By B

rinls|slu|n|n|nls

LR N T P T
Wl iy Dl DT R
& v
LWl L Aw D weld
by 8, B, 0y Hy by 12y B, B,
I i 3 R O OO T T
(]
i i) e
afrfalalafsfulr
I-hl tjalije]ofm]r
Bimivlofmp@yn)
OO0 enno
L T]
&5 Dr ©Os D g @5 By Dy Op
]] I] o |sEws] gl | osee [sE00] e
1+ M0 RRE MO E

ERC B B B

| —L
L

KON BUFFERED MODE
BLIFFERED BO0E SLaF
BLFFERED sODE MARVEN

i+ AdFNER B
- AL IO

i
B
I

= —

1« BPECLAR FULLY MESTED
Lon]ely

F o Rl BFECIAL FULL'Y BESTED
L l=]]

—

HIOTE b S AvE i 1S Al FEl Fell COEEE JPORCHSG MASTE RN | | MFu)
WFTE 7w anaern B e -t | AR

| BOME OF THE TERMINOLDGY HIEH'I' FFER SLIGHTLY FROM EXSTING EXS5
| DATA SHEETS. THIS 15 DONE T0 BETYER CLARIFY AND EXPLAIN THE FRODORAN-
|m OF THE 2504, THE OPERATIONAL RESULTS REMAIN THE SAML

Figure 21. Initialization Command Words (ICWS) Programming Format

ICW1 and ICW2

Issuing ICW1 and ICW2 is the minimum amount of pro-
gramming needed for any type of 8259A operation. The
majority of bits within these two ICWs are used to desig-
nate the interrupt vector starting address. The remain-
ing bits serve various purposes. Description of the ICW1
and ICW2 bits is as follows:

IC4: The IC4 bit is used to designate to the B250A
whether or not ICW4 will be issued. If any of
the ICW4 operations are to be used, ICW4
must equal 1. If they aren't used, then ICW4
needn’'t be issued and IC4 can equal 0. Note
that if IC4 = 0, the 8259A will assume operation

in the MCS-80/85 mode.

SNGL: The SNGL bit is used to designate whether or
not the 8259A is to be used alone or in the cas-
cade mode. If the cascade mode Is desired,
SMGL must equal 0. In doing this, the B250A
will accept ICW3 for further cascade mode pro-
gramming. If the 8259A is to be used as the
single B259A within a system, the SNGL bit
must equal 1; ICW3 won't be accepted.

ADI: The ADI bit is used to specify the address in-
terval for the MCS-80/85 mode. If a 4-byte ad-
dress interval is to be used, ADI must eqgual 1,
For an 8-byte address interval, ADI must equal
0. The state of ADI is ignored when tha B259A

ig in the MCS-86/B8 mode.

The LTIM bit is used to select between the two
IR input triggering modes, If LTIM = 1, the lavel
triggered mode is selected. If LTIM=0, the
edge triggered mode is selected.

LTIM:

The A5-A15 bits are used to select the inter-
rupt vector address when in the MCS-BO/B5
mode. There are two programming formats
that can be used to do this. Which one is Im-
plemented depends upon the selected address
interval (ADI). It ADI is set for the 4-byte inter-
val, then the B259A will automatically insert
AD-A4 (AD, A1=0 and A2, A3, Ad=IR0O-7).
Thus A5-A15 must be user selected by pro-
gramming the A5-A15 bits with the desired ad-
dress. |f ADI is set for the B-byta interval, then
AD-AS5 are automatically inserted (AD, A1,
A2=0 and A3, A4, A5=IR0-7). This leaves
AB-A15 to be selected by programming the
AB-A15 bits with the desired address. The
state of bit 5 is ignored in the latter format.

AS-A15:

T3-TT: The T3-TT bits are used to salect the interrupt
type when the MCS-86/88 mode is used. The
programming of T3-T7 selects the upper 5
bits. The lower 3 bits are automatically in-
serled, corresponding to the IR level causing
the interrupt. The state of bits A5-A10 will be
Ignored when in the MCS-86/88 mode. Estab-
lishing the actual memory address of the inter-

rupt Is shown in Figure 22,

19

ZRnnm T TURLPT TYRE TR PROGAAMMES)

i ;

i 1

Rt e 8 1M o LEWER
: T AUTOMATICALLY MSESTED BY 52554
]
:

Tr) Ta| TaTa| 7a] | 74| To| == cOMPLETE soasmom iTERRDFT TTRE

- p—

N 0 I 2)) S T R I D gty

Figure 22. Esiablishing Memory Address of B08B/B0BS Interrupl Type

ICW3

The 8259A will only accept ICW3 if programmed in the
cascade mode (ICW1, SNGL=0). ICW3 Is used for
specific programming within the cascade mode. Bit
definition of ICW3 differs depending on whether the
8250A is a master or a slave. Definition of the ICW3 bils
is as follows:

S0-7 If the B259A is a master (either when the

(Master): SP/EN pin is tied high or in the buffered
mode when MIS =1 In ICW4), ICW3 bit defi-
nition is S0-7, corresponding to “slave 0-7".
These bits are used to establish which IR in-
puts have slaves connected to them. A 1
designales a slave, a 0 no slave. For exam-
ple, if a slave was connected to IR3, the 53
bit should be set to a 1. (S0) should be last
choice for slave designation.

If the 82594 Is a slave (either when the SF/EN
pin is low or in the buffered mode when
MIS = 0 in ICW4), ICW3 bit definition is used
to establish Its individual identity. The ID
code of a particular slave must correspond
to the number of the masters IR input it is
connected to. For example, if a slave was
connected to IR6G ol the master, the slaves
|D0-2 bits should be set to IDO=0, ID1=1,
and ID2=1.

IDO-1D2
(Slave):

ICW4

The 82594 will only accept ICW4 if it was selected in
ICW1 (bit IC4=1). Various modes are offered by using
ICW4. Bit definition of ICW4 |s as follows:

uPM: The uPM bit allows for selection of either the
MCS-80/85 or MCS-B6/88 mode. If sel as a 1 the
MCS-86/88 mode is selected, if a 0, the
MCS-80/85 mode Is salected.

The AEQI bit is used to select the automatic
end of interrupt mode. I AEOI=1, the
automatic end of interrupt mode Is selected. If
AEOI=0, it isn't selected; thus an EOl com-
mand must be used during a service routine.

The M/S bil is used in conjunction with the buf-
fered mode. If in the buffered mode, MIS
defines whether the B258A is a master or a
slave. When MIS is sel to a 1, the B259A
operates as the master, when MIS Is 0, it
operates as a slave, If nol programmed in the
buffered mode, the state of the M/S bit is
ignared.

AEQI:

MIS:

BUF: The BUF bit is used to designate operation in
the buffered mode, thus controlling the use of
the SPIEN pin. If BUF is set toa 1, the buffered
mode is programmed and SP/EN is used as a
transceiver enable output. If BUF is 0, the buf-
fered mode isn't programmed and SP/EN is
used for master/slave selection. Note if ICW4
isn't programmed, SP/EN is used for master/
slave selection.

The SFMM bit designates selection of the
special fully nested mode which is used In
conjunction with the cascade mode. Only the
master should be programmed in the special
fully nested mode to assure a truly fully nested
structure among the slave IR inputs. If SFNM
is set to a 1, the special fully nested mode is
salected; if SFNM is 0, it is not selected.

SFMNM:

4.2 OPERATIONAL COMMAND WORD (OCWs)

Once initlalized by the ICWs, the B259A will most likely
be operating in the fully nested mode. At this point,
operation can be further controlled or modified by the
use of OCWs (Operation Command Words). Three
OCWSs are available for programming various modes and
commands. Unlike the ICWs, the OCWs needn't be in
any type of sequential order. Rather, they are issued by
the processor as needed within a program.

Figure 23, the OCW programming format, shows the bit
designation and shorl definition of each OCW. With the
OCW format as reference, the functions of each OCW
will be explained individually.

oCcwi1

OCW1 is used solely for 8259A masking operations. It
provides a direct link to the IMR {Interrupt Mask Regis-
ter). The processor can write to or read from the IMR via
OCW1. The OCW1 bit definition is as follows:

MO=-M7: The MO-M7 bits are used to control the mask-
ing of IR inputs. If an M bit is set to a 1, it will
mask the corresponding IR Input. A 0 clears
the mask, thus enabling the IR input. These
bits convey the same meaning when being
read by the processor for status update.

ocwa2

QCW?2 is used for end of interrupt, automatic rotation,
and specific rotation operations. Associated commands
and modes of these operations (with the excepfion of
AEOQI initialization), are selected using the bits of OCW2
in a combined fashion. Selection of a command or
mode should be made with the corresponding table for
OCW2 in the OCW programming format (Figure 20),
rather than on a bit by bit basis. However, for com-
pleteness of explanation, bit definition of OCW2 is as
follows:

LO-LZ: The LO-L2 bits are used to designate an inter-
rupt level (0-7) to be acted upon for the opera-
tion selected by the EQI, SL, and R bits of
QCW2. The level designated will either be
used to reset a specific ISR bit or to set a
specific priority. The L0O-L2 bits are enabled or

disabled by the 5L bit.

20

INTERALPE AL
i e SE SEF
&+ anfs RESFET

4 B B, B f. B, B 0, 0
1]
oA |8 || a | @ o
4
Pl LEEL i HE AT LRGN
a] Ea x LI L] bl
G g1 |afafal
i oflala| o [ejali]
' blolofalcfofe]s
L] RN SRICIF D B0 DORSRGA I
e A0 OF S TORAUFT
] r ! TFECIFIC B MR
Tfajg EOTATT 0N MNIK-SHCFFIC [0 DOWARARD
1|0 & FITATE 06 AUTIWATIC [0 BCOT SETT ALT O & Tal AOTATID
ojoj|o FOTATE I AUTORLATIC ED8 WODE oCLLAR
1 | J FITATE 0N PPLCIFIC DO CONR ARD
.
1 1] AT PRI ATy Do ball } EFefok G ROTE TN
E ' (1] Fill O B A TN
“LE-L32 BME UEED
0]
4 B, L moB B, ow BB
T
a B ioeni| S | @ i | AR 4
ARAD SIGEETER OO MEEND
—| ®] i
L
Al &l L] 4T e]
v 1R AR i AE
f oacTipe |DRREST (ONRERS
RO MU SR | ND Pl B
b~
0o P L GRS
e 3+ KO P L COMMAND
WILIAL MANE ML
T
] bl [°] i
L e L] 1 |]
- ——
R =ERET T
AOTEIM FRECI&L | SFEChAL
i1l 1 E IErEa L D T CaAg L] BALER
|

SOME OF THE TERMINOLOGY USED MAY DIFFER SLIGHTLY FROM EXISTING 82504
DATA SHEETS. THIS IS DONE TO BETTER CLARIFY AND EXPLAIN THE PROGRAM-
MING OF THE 82504, THE OPERATIONAL RESULTS REMAIN THE SAME

Figure 23. Operational Command 'Words (OCWs} Programming Formal

EQI; The EOI bit is used for all end of interrupt com-
mands (not automatic end of interrupt mode).
If set to a1, a form of an end of interrupt com-
mand will be executed depending on the state
of the SL and R bits. If EOl is 0, an end of inter-

rupt command won’'t be axecuted.

SL: The SL bit is used to select a specific level for
a given operation. If SL is setto a 1, the LO-LZ
bits are enabled. The operation selected by the
EQl and R bits will be executed on the
specified interrupt level. If SL is O, the LO-L2

bits are disabled.

R: The R bit is used to control all B259A rotation
operations. If the R bit is set to a 1, a form of
priority rotation will be executed depending on
the state of SL and EOI bits. If B is 0, rotation
won't be executed.

OCw3

OCWa3 is used to issue various modes and commands o
the 8259A. There are two main categories of operation
associated with OCW3: interrupt status and interrupt
masking. Bit definition of OCW3 is as follows:

RIS: The RIS bit is used to select the ISR or IRR for
the read register command. If RIS is set to 1,
ISR is selected. If RIS is 0, IRR is selected. The
state of the RIS is only honored if the RR bit Is
anl.

RR: The RR bit is used to execute the read register
command. If AR is set to a 1, the read register
command is issued and the state of RIS deter-
mines the register to be read. If RR Is 0, the

read register command isn'l issued.

P: The P bit is used to issue the poll command. If
P is sat toa 1, the poll command is issued. If it
is 0, the poll command isn'l issued. The poll
command will override a read register com-
mand if set simultaneously.

The SMM bit is used to set the special mask
mode. If SMM is set to a 1, the special mask
mode is selected. If it is 0, it is not selected.
The state of the SMM bit is only honored if it is
anabled by the ESMM bit.

The ESMM bit is used to enable or disable the
effect of the SMM bit. If ESMM is set to a 1,
SMM |s enabled. If ESMM is 0, SMM I8 dis-
abled. This bit is useful to prevent interference
of mode and command selections in OCWa3,

SMM:

ESMM:

5. APPLICATION EXAMPLES

In this section, the B259A is shown in three different ap-
plication examples. The first is an actual design imple-
mentation supporting an B0OB0A microprocessor syslem,
“Power Fall/Auto Start with Battery Back-Up RAM". The
sacond is a concaptual example of incorporating more
than 64 interrupt levels in an BOBOA or BOB5A system,
“78 Level Interrupt System™. The third application is a
conceptual design using an 80B6 system, “Timer Con-
trolled Interrupts”. Although specific microprocessor
systems are used In each example, these applications
can be applied to either MCS5-80, MCS-85, MCS-86, or
MCS-88 systems, providing the necessary hardware and
software changes are made. Overall, these applications
should serve as a useful guide, illustrating the varlous
procadures In using the B259A.

5.1 POWER FAIL/AUTO-START WITH BATTERY
BACK-UP RAM

The first application illustrates the B259A used in an
BOBOA system, supporting a battery back-up scheme for
the RAM (Random Access Memaory) in a microcomputer
system. Such a scheme is important in numerical and
procesas control applications. The entire microcomputer
system could be supporied by a battery back-up
scheme, however, due to the large amount of current
usually required and the fact that most machinery Is not
supported by an auxiliary power source, only the state
of calculations and variables usually need to be saved.
In the event of a loss of power, if thesa items are nol
already stored in RAM, they can be transterrad thare and
saved using a simple battery back-up system.

21

The wehicle used in this application is the Intel®
SBC-80/20 Single Board Computer. An B259A is used in
the SBC-80/20 along with control lines helpful in imple-
menting the power-down and automatic restart se-
quence used in a battery back-up system. The SBC-80/20
also contains user-selectable jumpers which allow the
on-board RAM to be powered by a supply separate from
the supply used for the non-RAM components. Also, the
output of an undedicated laich |s avallable 1o be con-
nected to the IR inputs of the 8250A (the latch is cleared
via an output port). In addition, an undedicated, buffered
input line is provided, along with an input to the RAM
decoder that will protect memory when asserted.

The additional circultry to be described was con-
structed on an SBC-905 prototyping board. An SBC-635
power supply was used to power the non-RAM section
of the SBC-80/20 while an external DC supply was used
to simulate the back-up battery supplying power to the
RAM. The SBC-635 was used since it provides an open
collector ACLO output which indicates that the AC
input line voitage is below 103/206 VAC (RMS).

The following is an example of a power-down and restart
sequence that introduces the various power fail signals.

1. An AC power failure occurs and the ACLO goes high
(ACLO is pulled up by the battery supply). This indi-
cates that DC power will be reliable for al most 7.5
ms. The power fail circutry generates a Power Fail In-
terrupt (PFI) signal, This signal sets the PFI latch,
which is connected to the IR0 input of the 82594, and
sets the Power Fail Sense (PFS) latch. The state of
this latch will indicate to the processor, upon reset,
whather it is coming up from a power failure (warm
start) or if it is coming up initially (celd start).

2. The processor is interrupted by the 8250A when the
PFIi latch is sel. This pushes the pre-power-down pro-
gram counter onto the stack and calls the service
routine for the IR0 input. The IR0 service routine
saves the processor status and any other needed
variables. The routine should end with a HALT
Instruction to minimize bus transitions.

3. After a predetermined length of time (5 ms in this ex-
ample) the power fall circuliry generales a Memory
Protect (MPRO) signal. All processing for the power
failure (including the interrupt response delays) must
be completed within this 5 ms window, The MPRO
signal ensures that spurious transitions on the sys-

. tem control bus caused by power going down do not
alter the contents of the RAM.

4. DC power goes down,

5. AC power returns. The power-on reset circuitry on the
SBC-80/20 generates a system RESET.

6. The processor reads the state of the PFS line to
deiermine the appropriate star-up sequence. The
PFS latch is cleared, the MPRO signal is removed,
and the PFI latch driving IR0 is cleared by the Power
Fail Sense Reset (PFSR) signal. The system then con-
tinues from the pre-power-down location for a warm
start by restoring the processor status and popping
the pre-power-down program counter off the stack.

Figure 24 illustrates this timing.

POWER DDA

d 1

EEETART

ACLO

NG

i

FFER .

FEFRLD

o\

(81

|
I L _\

[0
1

d 1

POWER FAIL
RORITIME

PYWER UP
AT ERE

Figure 24. Power Down Restart Timing

Figure 25 shows the block diagram for the system.
MNotice that the RAM, the RAM decoder, and the power-
down circulitry are powered by the battery supply.

The schematic of the powerdown circuitry and the
SBC-80/20 interface is shown in Figure 26. The design is
very straightforward and uses CMOS logic to minimize
the battery current requirements. The cold start switch
is necessary to ensure that during a cold start, the PFS
line is indicating "cold start” sense (PFS high). Thus, for

a cold start, the cold start switch is depressed during
power on, After that, no further action is needed. Notice
that the PFI signal sets the on-board PFI latch. The out-
put of this latch drives the 8259A IR0 input. This latch is
cleared during the restart routine by executing an OUT-
put D4H Instruction. The state of the PFS line may be
read on the least significant data bus line (DBO) by exe-
cuting an INput D4H instruction. An B255 port (8255 #1,
port G, bit 0) is used to control the PFSR line.

BATTERY SUPPLY

L,

ACLD
L _
. #3 PFSA
| POWER DOWN
CIRCLNTRY
l CoLD
cE e FFS FsTarT
ROM - R A0 E
-| — IROD
r
BOR0A | INT
DECODER DECODER crRoup 1 82589 8265
CONTROL BUS l l
DATA BUS ——r—e— — & -
ADDRESS BUS —%0————#— » e - —

Figura 25. Block Diagram of SBC 80420 wilh Powear Down Clreuit

FOWER DO CIRou i THY

ABL B0

E:
Ao — B BATT
£ 19 L =
L1 5
- alt can
i HATT
n
T
l —]
=1}
.]
— L= H —= &M CE
i '3
+5 BATT ERATT
- FEM
s ?m DECDDER
T [|
| e &n — I L
o . . |= Ky
! = |
coun | L
sTanT " | I b
L = o
#io | PomT
— 1"
At WEAMGEE A2 MOTH0NE AT MCIAIID

Figura 36. Power Down Clreutl - SBC 8020 Interface

The fully nested mode for the 8259A is used In Its initial
state to ensure the IR0 always has the highest priority.
The remaining IR inputs can be used for any other pur-
pose in the system. The only constraint is that the ser-
vice routines must enable interrupts as early as possi-
ble. Obviously, this is to ensure that the power-down in-
terrupt does not have to wait for service. If a rotating
priority scheme |s desired, another 8259A could be
added as a slave and be programmed to operate in a
rotating mode. The master would remain in the initial
state of the fully nested mode so that the IRO still re-
mains the highest priority input.

The software to support the power-down circultry is
shown in Figure 27. The flow for each label will be
discussed.

After any system reset, the processor starts execution
at location 0000H (START). The PFS stalus is read and
execution is transferred to CSTART if PFS indicates a
cold start (i.e,, someone is depressing the cold start
switch) or WSTART if a warm start is indicated (PFS
LOW). CSTART is the start of the user's program. The
Stack Pointers (SP) and device initialization were in-
cluded just to remind the reader that these must occur.
The first El instruction must appear after the 8259A has
received its initialization seguence. The B259A (and
other devices) are initialized in the INIT subroutine.

When a power failure occurs, execution is vectored by
the B250A to REGSAV by way of the jump table at
JSTART. The pre-power-down program counter is placed
on the stack. REGSAV saves the processor registers
and flags in the usual manner by pushing them onto the
stack. Other items, such as output port status, program-

23

mable peripheral states, etc,, are pushed onto the stack
at this time. The Stack Pointer (SP) could be pushed on-
to the stack by way of the register pair HL bul the top of
the stack can exist anywhere in memory and there is no
way then of knowing where that is when in the power-up
routine. Thus, the SP is saved at a dedicated location in
RAM. It isn’t really necessary to send an EOI command
to the B259A In REGSAY since power will be removed
from the B2594A, but one is included for completeness.
The final instruction before actually losing power is a
HALT. This minimizes somewhat spuricus transitions
on the various busses and lets the processor die
gracefully.

On reset, when a warm start is detected, execution is
transferred to WSTART. WSTART activates PFSR by
way of the 8255 (all outputs go low then the 82355 is ini-
tialized). In the power-down circuitry, PFSR clears the
PFS latch and removes the MPRO signal which than
allows access to the RAM. WSTART also clears the PFI
latch which arms the 82584 IR0 input. Then the B259A is
re-initialized along with any other devices. The 3P is
retrieved from RAM and the processor registers and
flags are restored by popping them off the stack. Inter-
rupts are then enabled. Now the power-down program
counter is on top of the stack, so executing a RETurn in-
struction transfers the processor to exactly where it left
off before the power failure.

Aside from illustrating the usefulness of the B259A (and
the SBC-80/20) In Iimplementing a power failure pro-
tected microcomputer system, this application should
also point out a way of preserving the processor status
when using interrupts.

[E. =y] =u S LANTTRENT o D AN GTHER IO ESLAZAT IUNS HEEE
B 1
E . o v =0 LE
2 PORER [OMN FAD PESIRTT B0 TIE SEL 29.7R 'f'
_;' : i - FOER L0 DOOTEE 10 57 EfuisiDis S8 STenL
3 (EWEIER DoEnsee :.
oa §FTHR O oM &3 FORT MITH Fet W o B A M g At & LI FLREC
e T prisk o LOw - L] HIET POET MITH P=f WaIT T &l fiEH . T
sl #PHKT B G 1 AMTEL PR e T MEl i e o
BEE SRt O R XTI RL FIRT C pao o b PEn @ P
e 1§ SR O R F Ml “F_ CTE el [a | L] R T P
e Em Ll W oF L5 M AR D i e SF L
a3 WEE Jeenn W Ll iy TR L
E PHTMEELIME R TR It ‘ SR A EIPLLY AECED G IMOLMEL 1 LR
£ IIE:. : 159] Wil E{""' - L] -_-_:_-rl -:1:1.-.‘|.||. |_.-:.:
PERE LLTA AT I RE® TF5 STHILS E.. ;.LW o :':" i &:'_ n':':., ';,1':1 n;r:ru
. AF & K RS R DB MH W O iy i '
BT DR » X CS1ART PRl IIEH b CTTET .
: ' THIPE = I T | Ao b e o H] = et R
_EJ (WCTIRT LOCRTT0N PRi-sp THEN WRA Sipel ,;; '
g: il il . (] i, :
oo, 1 XWTHT M %) ¥ L T AT RO i gy b O 4
e LIEY g D. e T LMTEIL PRT. SRS GES Li B O3 H T g 'l
e PR L 'k ; Hi 5 wif
J.: aﬁm*:i&-% B4 LOH BHIH: CESIRES WPl D ::E}BE :’f E A :
i i 3 1= ~
B o om ouE e e n o ow
BBEE [0 T ol B .r'.‘-.:ﬁ1 1 LATEN :ﬂ E“F : ; - e
P18 oL g G IR B BHIVIRLIZE ERERY I11IHG W14 T 5 =
Mim X o ceKemom mw % w
L =1 i - '
mas @ = o auw 5w
19 EL 4 5 :IE'!II.FE n :_11:: E:m f';. :: R e
A FL 48 P (&} BERCORE 0 PLUS LIRS e
el 3 a s P PO O . 8 TP O S i
afciera® ’ - 188 (LT STRET LOGATIEE ICER"S PepeEym CWIEE 11
:: : SECEEE TO N ig
il plrir e wak |y
:ir SIMITILEE 0N BTIRE R LETST D0 L350 B UBERS (b EC Sl 'ﬂ: !m'g ﬂ ol :;'_L "HJTWH :::..‘:-I.::[[F1 TR LLLE
A ! L3 s 165 (7T . T P r;lﬂg:p}_
mE I N M am s o
Bzl At 'l-; Hel K1 :I'rII_ﬂ' JUrF TrEL: S0d m WES FROGRTH STA Wi
W oDe 2 [F B Pl A7S PEkT MiTH Aeep 1 o0 E
Figure 27. Power Down and Restart Software
5.2 78 LEVEL INTERRUPT SYSTEM
The second application illustrates an interrupt structure mAS oS .
with greater than 64 levels for an 8080A or BOB5A sys- i
tem. In the cascade mode, the B259A supports up to 64 sal |—
levels with direct vectoring to the service routine. Ex- e
tending the structure to greater than 64 levels requires g s -
polling, using the poll command. A 78 level interrupt - [
structure is used as an illustration; however, the prin- Ao INT T
ciples apply to systems with up to 512 levels. |
P PRy ¥ P — I =
To implement the 78 level structure, 3 tiers of B2504A's e — gAi0 aF INTA |— smon
are used. Nine B259A’s are cascaded in the master-slave " T
scheme, giving B4 levels at tier 2. Two additional A S - —
8259A's are connected, by way of the INT outputs, to = =
two of the 64 inputs. The 16 inputs at tier 3, combined MASTER | =
with the 62 remaining tier 2 inputs, give 78 total levels, i T AT INT —
The fully nested structure is preserved over all levels, . A=
although direct vectoring is supplied for only the tier 2 i e
inputs. Software is required to vector any tier 3 re- W = A0 ' B
guests. Figure 28 shows the tiered structure used in this - -
example. Notice that the tier 3 82594's are connected to =™ —|wm w |
the bottom level slave (SAT). The master-slaves are inter- — s —--
connected as shown in “Interrupt Cascading”, while the w7 o [sar s E i

tier 3 B259A's are connected as “masters’; that is, the
SP/EN pins are pulied high and the CAS pins are left un-
connected. Since these B259A’s are only going to be
used with the poll command, no TNTA is required, there-
fore the INTA pins are pulled high.

24

Figure 28. T8 Level Interrupl Structure

The concept used to implement the 78 levels is o LOCATION 6258 CODE COMMENTS

directly vector to all tier 2 input service routines. If a tier 1008 H SAD IMP SA00 5800 SERVICE ROUTINE
2 input contains a tier 3 8259A, the service routine for :
that input will poll the tier 3 B259A and branch to the tier 01E H JMP_ SAT . SAGT SERVICE ROUTINE
3 input service routine based on the pol| word read after 1020 H 541 IMP SATD . SA1D SERVICE ROUTINE
the poll command. Figure 29 shows how the jump table :
Is organized assuming a starting location of 1000H and e MP_ 3A17 . BAIT SERVICE ROUTINE

contiguous tables for all the tier 2 8259A"s, Note that
“SA35" denotes the IRS input of the slave connected to

; SA20-SAETY SERVICE ROUTIMNES

the master IR3 input. Alsc note that for the normal tier 2 10ED H AT BP - SATO : SATD SERVICE ROUTINE
inputs, the jump table vectors the processor directly to :
the service routine for that input, while for the tier 2 in- 10F8 H WP SED SB0 POLL ROUTINE

- = ! 10FE M P 581 : BR1 POLL BOUTINE
puts with B259A's connected to their IR inputs, the proc- e T T T ER05 SEWVICE AOUTINE
gssor is vectored to a service routine {i.e., SBO) which :
will poll to determine the actual tier 3 input requesting S MP SBO? . 5807 SERVICE ROUTINE
service. The polling routine utilizes the jump table start- 1220 H 581 WP SB10 ~ 5810 SERVICE ROUTINE
ing at 1200H to vector the processor to the correct tier 3 ;
sarvice routine. 1230 H MP S8BT . 8817 SERVICE ROUTINE

Each B259A must receive an initialization sequence
regardless of the mode. Since the tier 1 and 2 8259A’'s
are in cascade and the special fully nested mode is used
(covered shortly), all ICWs are required. The tier 3
B250A's don't require ICW3 or ICW4 since only polling
wlill be used on them and they are connected as masters
not in the cascade mode. The initialization sequence for

Figure 28. Jump Table Organization

i IMTIALIZATION SEQUENCE FOR 78 LEVEL INTERRUFT STRUCTURE

each tier is shown in Figure 30. Notice that the master is i INITIALIZE MASTER
initialized with a “"dummy" jump table starting at 00H CMINT MVE ASSH KOWI, LTM=0, ADI=1,5=0, ICH= 1
s}nqe all ver_:mﬂr_lg is done by the slaves. The tier 3 ﬁ,: i ;EEEE}EE;:E“
il T MPTE ; M =1
{_Evmea also receive “dummy”’ tables since only polling R DR MASITHLERE
I5 used aon tier 3. oUT MPTB . MASTER PORT AD=1
m A, OH o BEWA, SFNM =1
MFTE i MASTER PORT Al=1
As explained in “Interrupt Cascading”, to preserve a IMITIALIZE 54 S5LAVES - X DENOTES SLAVE |D(SEE KEY)
truly fully nested mode within a slave, the master B259A CBAXKINT: MVI An | SEE KEY FOR ICW1, LTM= 0, ADiw 1, Swp, G421
should be programmed In the special fully nested mode. . A s e
This allows the master to acknowledge all interrupts at o Lo LS B il LB
and above the level in service disregarding only those of QUT SAXPTH SA"X" PORT A0 =1
lower priority. The special fully nested mode is pro- R N A

grammed In the master only, so it only affects the im- | REPEAT ABOVE FOR EACH SA SLAVE
mediate slaves (tier 2 not tier 3). To implement a fully ;

nested structure among tier 3 slaves some EI]EGiHJ ;IHITIAtEEEBELA\‘EE-II:IEHEI'I'EEIJUH:{IEIEED..HEFEATFQHEE‘I:I

i i =N e - I FEAINT MV A, JEH i IO, LTM =0, ARl =1, =1, IC4=10
housekeeping software is required In all the tier-2-with OUT SBXPTA . SB"X" FORT A0=D
tier-3-slave routines. The software should simply save MW ABOH ; ICW2, DUMMY ADDRESS

the state of the tier 2 IMR, mask all the lower tier 2 inter- CUT sRXEIR s smTRORT An=n

rupts, then issue a spacific EOI, resetting the ISR of the
tier 2 interrupt level. On completion of the routine the [SA INITIALIZATION KET
IMR is restored.

- - - TerT—— — —_— = |
T _w (IC¥1) JUmP TABLE START (M)

o 1% A0
Figure 31 shows an example flow and program for any 2 5 240
tier 2 service routine without a tier 3 B259A. Figure 32 i : ;ﬁ
shows an example flow and program for any tier 2 ser- ‘ 3 \ o Lt
vice routine with a tier 3 82584, Notice the reading of the 7 __F5 WER

ISR in both examples; this is done to determine whether
or not to issue an EQl command to the master (refer to
the section on “Special Fully Nested Mode™ for further

detalls). Figure 30. Initialization Sequence for 78 Level Interrupt Struciure

SAVE PROCELITOA
ETATUS
FMARLE
INTERRLFTS
ERVICE
ICEUTING
l , BAvE” ROUTINL - GENERAL INTEREUIFT SERVICE 0y Timg
FDR TIER 2 INTERBUSTS WITHOUT TIER § G88kA
DESABLE
INTERRIFFTS 4] 8 PUSH D : BAYE DF
J. PLIEH B . BANE BL
PLSH W BRI HL
- FUSH PEw ; BAYE A, FLAGE
EDI T BAX" Er : EMANLE MTERRUFTE
| { GERVICE ROUTINE S5ES HERED
. o | DISABLE INTERRUPTE
B Ay i DEWE HON-BPESIFE POl
T SAXFTA . BA“K" POAT Al =0
[CH]] A.uf, ; DOWL READ REQIATER, 180
ouT BANFTA SAr BOAT A =0
i SAXFTA Sa~E" FORT A0« 0, R4~0" (59
&M FFy TEST FOR TERD
AN BARESE W NOT TR0, SERTORE §TATUE
M m' OO, Ml A T L0l
oy & ASTER BOSET A=
SATRER PO P RESTONS A §i&ES
B - - BESTORE ML
O -] . RESTONE BC
BaOeF -] . BESTORE DE
1] . PRARLE waTrEEyFTE
- . BETuil

Ce==)

Flgure 31, Example Service Routine lor Tier 2 Interrupt (SA"X") withoul Tier 3 B250A (SB"X")

I I . BACET ROUTINE - SpEVECE SOy TNl ROR fige §
; INTESRAUFTS WiTH THER § iShad
PROCESSOR DrRaBLE SEr MEMb LAVE D4
ETATS ETEREEFTE -8 . BAVL BC
. B . AV L
] l i W . RAVE A FLAGE
- - = ; uum- : AEAD BAET P
Ll T Ol TO T] A KRy | AN BATES LOWER .
1 | o BAEFTE | BASE" FOMT &f=1
e ; OCWE BEPCING U0 8471
WARE LOWER ELRD iBA aut | BATET EOET A=
INTERRUPTE OF SA~X" oF B LI MEINGy | J¥MF TANLE FTANY
M B0y ; CLEAR B
1 B A5, |Smtucme
i - =
-I'.'I;::-:l.?'m 1] SHERTA | GFT POLL WORD
BN 05 | LIMIT TER B WITE
l ND npo & | QT TADLE OFFEET
ADD & i
oY .8 COFFRET TO C
POLL BB nan B . HL HAS TABLE ADDALSS
.I. 2] . EMARLE tRTERRUPTS
YER 7
i #BVXTRET ROUTINE - FOS E04 AND MANK MESTOAE
I'ii:-.l‘-ﬂl-:“ Jukik WON BFEEIFIE : AFTER SR T~ AOUTING
S0RESS £ TO MagTER :
SOAMET [| DERANLE INTERRUFTS
M A0y | DCWT, BON BFECIFIC EON
ENARLE oyt SEXPTA | RACN" PORT Al
& RACET PORT A0=D
I -::“_ 15 SEIFTA | BA™X™ FOAT 0w B MM
= A=y T L1 TEST FOR JERD
FUMP TO BERICE - s SEERER i e R TOEE R
: :‘r MASFTA | WAETEN FORT &= s
EETTORE BROCEER0R . =
F1aTy EENNESE WOV 0 0D . BEETORE L~T" i
- o SLEFTE [SASE" FOET &=
i o= FEW BEETORE & FLAGE
P PO H | BEETDRE =
roe & | EEAFDEE BE
INTERRUPTE MF D i REETONE B
l El ; BERTOSE DE
0ET | METURE

Figure 32. Example Service Routine lor Tier 2 Interrupt (SAX™) with Tier 3 82504 (SB"X")

26

5.3 TIMER CONTROLLED INTERRUPTS

In a large number of controller type microprocessor
designs, certain timing requirements must be imple-
mented throughout program execution. Such time
dependent applications include control of keyboards,
displays, CRTs, printers, and various facets of industrial
control. These examples, however, are just a few of
many designs which require device servicing at specific
rates or generation of time delays. Trying to maintain
these timing requirements by processor control alone
can be costly in throughput and software complexity.
So, what can be done to alleviate this problem? The
answer, use the 8259A Programmable Interrupt Con-
troller and external timing to interrupt the processor for
time dependant device servicing.

This application example uses the 8259A for timer con-
trolled interrupts in an B0B6 system. External timing is
done by two 8253 Programmable Interval Timers. Figure
33 shows a block diagram of the timer controlled inter-
rupt circultry which was built on the breadboard area of
an SDK-86 (system design kit). Besides the 8259A and
the 8253's, the necessary /0 decoding is also shown.
The timer controlled interrupt circuitry interfaces with
the SDK-B86 which serves as the vehicle of operation for
this design.

A short overview of how this application operates s as
follows. The 8253's are programmed to generate inter-
rupt requests at specific rates to a number of the 82584
IR inputs. The B253A processes these requests by inter-
rupting the 8086 and vectoring program execution to the
appropriate service routing. In this example, the
routines use the SDK-86 display panel to display the
number of the interrupt level being serviced. Thesa
routines are merely for demonstration purposes to show
the necessary procedures to establish the user's own
rautines in a timer controlled interrupt scheme.

Let's go over the cperaticn starting with the actual inter-
rupt timing generation which is done by two 8253 Pro-
grammable Interval Timers (8253 #1 and 8253 #2). Each
8253 provides three individual 16-bit counters (counters

0-2) which are software programmable by the proc-
essor, Each counter has a ¢lock input (CLK), gate input
(GATE), and an cutput (OUT). The output signal is based
on divisions of the clock input signal. Just how or when
the output occurs is determined by one of the 8253's six
programmable modes, a programmable 16-bit count,
and the state of the gate Inpul.

Figure 34 shows the 8253 timing configuration used for
generating interrupts to the B259A. The SDK-B6's PCLK
(peripheral clock) signal provides a 400 ns period clock
to CLKO of 8253 #1. Counter 0 is used in mode 3 (square
wave rate generator), and acts as a prescaler to provide
the clock inputs of the other counters with a 10 ms
period sguare wave. This 10 ms clock period made it
easy to calculate exact timings for the other counters.
Counter 2 of the 8253 #1 is used In mode 2 (rate gener-
ator), it is programmed to output a 10 ms pulse for every
200 pulses it receives (every 2 sec). The output of
counter 2 causes an interrupt on |IR1 of the B259A. All
the B253 #2 counters are used in mode 5 (hardware trig-
gered strobe) in which the gate Input initiates counter
operations. In this case the output of 8253 #1 counter 2
controls the gate of each B253 #2 counter. When one of
the B253 #2 counters receive the 8253 #1 counter 2 out-
put pulse on its gate, it will output a pulse (10 ms in
duration) after a certaln preprogrammed number of
clock pulses have occurred. The programmed number of
clock pulses for the 8253 #2 counters is as follows: 50
pulses (0.5 sec) for counter 0, 100 pulses (1 sec) for
countar 1, and 150 pulses (1.5 sec) for counter 2. The
outputs of these counters cause interrupt requests on
IR2 through IR4 of the 8259A. Counter 1 of 8253 #1 is
used In mode 0 (interrupt on terminal count). Unlike the
other modes used which initialize operation auto-
matically or by gate triggering, mode 0 allows software
controlled counter initialization. When counter 1 of 8253
#1 is set during program execution, it will count 25
clocks (250 ms) and then pull its output high, causing an
interrupt requeast on IR0 of the B259A. Figure 35 shows
the timing generated by the 8253's which cause inter-
rupt request on the B259A IR inputs.

] - "_|) CONTHOL BUS j_
m:l l-r_n[|FE]l_u] [ﬁ il'il'l'.l.l mrt o |ih
|[ADDRESS DUS (25 _{
| | | ml |i.= l A T 1 | A1'| Mg .i%'s[ﬁulm"a]'inéli.'iimﬂ A!l Aul M’l A J.:l ul O
) T DATABUS [t i ' |
| " e L l l l l‘ _‘L]
E |] E Pali TaLE
i ' [[J N T
AD ¥R L1 Al WA AR B HO WA Al
cLE2 -—| — T T
CLED CLRY _1 Tk L TR |
FHE] CUmé —=loLKD A2S3
—GATES L —almares [F} ouTa o B BZAFA =
+5uv—|: GATE T2 g GATH aum = iR SFIEN [4 5V =
Ly ATED . ST —=lnATED = e s exl |
B o —0, Aff—— 1
] (13 Anp———
SE— T i e an
1' # | |7Eh.l:HEIEI'II:E'|'n.;-1-1J-I'.‘]Hﬂ=—_L

Figure 33. Timer Controlled Interrupt Circuit on SDK 86 Breadboard Area

ourw %

ETVEL
CLE Eﬂl.ll:wl'l QT 1*,
. i e .
HTHT 5V I:I..H.'I'EIT 5 pEo I
shen, aEEd 251 B :
by Lk ouT 0 CLmd oute il
ILL“]_'E— counTeRn |t el counren 2 !
aATED :
A !
— N) countens |2V 3
OO 1
GATE1 i
CLEA ﬁ:iﬂll I“” , jeum “."
WL & |
GATEZ i
a363 az |
LR} counterz [CNTEL 4
NDDE §
Figure 34 8253 Timing Configuration for Timer Controlled Interrupts
1 1
AT O o I T o O o e O o O ™
i i1
i
COUNTEN 3 "_“ | ll a1
1 41
28 as
COUNTERD l.I —I.I “ iy
i 1
3 ey
EOLMTES 1 u I.I " 1
B "
m: “ 1' il £

| N - Ll L1 & 1

Lt 1 ¢ 1 1 /N N [— =

IS0 s PN DOV RGN
(BACH FHALL PULSE IH 10 ma IN DURATION)

Figure 35. 8259A IR Input Signal From 82535

There are basically two methods of timing generation
that can be used in a timer controlled interrupt struc-
ture: dependent timing and independent timing. Depen-
dent timing uses a single timing occurrence as a refer-
ence to base other timing occurrences on. On the other
hand, independent timing has no mutual reference be-
tween occurrences. Industrial controller type applica-
tions are more apt to use dependent timing, whereas in-
depandent timing is prone to individual device control.

Although this application uses primarily dependent tim-
ing, independent timing is also incorporated as an
example. The use of dependent timing can be seen back
in Figure 34, where timing for IR2 through IR4 uses the
IR1 pulse as reference. Each one of the 8253 #2 counters
will generate an Interrupt request a specltic amount of
times after the IR1 interrupt request occurs. When using
the dependent method, as in this case, the |IR2 through
IR4 requests must occur before the next IR1 request.
Independant timing Is used to contrel the IR0 interrupt
request. Note that its timing isn't conirolled by any of
the other IR requests, In this timer controlled interrupt
configuration the dependent timing Is Initially set to be
salf running and the independent timing is software
initialized. However, both methods can work either way
by using the various 8253 modes to generate the same
interrupt timing.

The B259A processes the interrupts generated by the
8253's according to how it is programmed. In this appli-
cation it is programmed to operate in the adge triggered
mode, MCS-86/88 mode, and automatic EOl mode. In the
edge triggered mode an interrupt request on an B259A

IR input becomes active on the rising edge. With this in
mind, Figure 35 shows that IR0 will generate an inter-
rupt every half second and IR1 through |R4 will each
genarale an interrupl avery 2 seconds spaced apart at
hall second intervals. Interrupt vectoring In the
MCS-B6/88 mode is programmed so IR0, when activated,
will select interrupt type 72, This means |R1 will select
interrupt type 73, IR2 interrupt type 74, and so on
through IR4. Since IRS through IRT aren't used, they are
masked off. This prevenis the possibility of any acci-
dental interrupts and rids the necessity to tie the
unused IR inputs to a steady level. Figure 36 shows the
B258A IR levels (IR0-1R4) with their corresponding Infer-
rupt type in the B0OB6 interrupt-vector table. Type 77 in
the lable is selected by a software “INT" Instruction
during program execution. Each type Is programmed
with the necessary code segment and Instruction
pointer values for vectoring to the appropriate service
routine. Since the 8259A is programmed In the aulo
matic EOl Mode, it doesn’t require an EOl command to
designate the completion of the service routine,

e
g P

T34 TYPEIT SOFTWARE INT
ey TYPE 76 R4

120y TYPE TG IRl

g YPE 74 IRZ | B2SEA
124 il 5 ik

ity TYPE 17 1RO

- o

Figure 36. Interrupt “Type™ Designation

As mentioned earlier, the interrupt service routines in
this application are used merely to demonstrate the
timer controlled interrupt scheme, not to implement a
particular design. Thus a service routine simply displays
the number of its interrupting level on the SDK-86 dis-
play panel. The display panel is controlled by the 8272
Keyboard and Display Controller. It is initialized to
display "Ir'" in its two left-most digits during the entire
display sequence. When an interrupt from IR1 through
|R4 occurs the corresponding routine will display its IR
number via the 8279. During each IR1 through |1R4 serv-
ice routine a software "INT77" instruction is executed.
This instruction vectors program execution to the serv-
ice routine designated by type 77, which sets the B253
counter controlling IR0 so It will cause an interrupt in
250 ms. When the IR0 interrupt occurs its routine will
turn off the digit displayed by the IR1 through IR4
routines, Thus each IH level {(IR1-1R4) will be displayed
for 250 ms followed by a 250 ms off time caused by IRD.
Figure 37 shows the entire display sequence of the
timer controlled interrupt application.

elel |
[ELE]L]
[rie] |

[1 [r]m
| [[Jwo
mERL
Lled [][[Jme
L] [[[3]] e
R SR
[i]e] |
il 1] 1

Figure 37. SDK Display Sequence for Timer Controlled Inlerrupis
Program {Each Display Block Shown is 250 msec
im Duration)

Now that we've covered the operation, let's move on to
the program flow and structure of the timer controlled
interrupt program. The program flow Is made up of an
initialization section and six interrupt service routines.
The initialization program flow is shown in Figure 38. It
staris by initializing some of the B086's registers for pro-
gram operation; this includes the extra segment, data
segment, stack segment, and stack pointer. Next, by
using the extra segement as reference, interrupt types
72 through 77 are sel to vector Interrupts to the appro-
priate routines. This is done by moving the code seg-
ment and instruction pointer values of each service
routine into the corresponding type location. The 8253
counters are then programmed with the proper mode
and count to provide the interrupt timing mentioned
earlier. All counters with the exception of the B253 #1,
counter 1 are fully initialized at this point and will start
counting. Counter 1 of 8253 #1 starts counting when its
counter is loaded during the “INTR77" service routine,
which will be covered shortly, Next, the B259A Is issued
ICW1, ICW2, ICW4, and OCWA1, The ICWs program the

29

e rrn

B259A for the edge triggered mode, automatic EOI
mode, and the proper interrupt vectoring (IR0, lype 72).
OCW1 is used to mask off the unused IR inputs
{IR5-IR7). The 8279 Is then set to display “IR" on its two
left-most digits. After that the BOBE enables interrupts
and a “dummy” main program is executed to wait for in-
terrupt requests.

(START J

INITIALIZE REGISTERS

1

IMITIALIZE INTERRUEPT
“TYPES" T2-T7

SET MODES & COUNTS OF
BOTH B253's

SET E259A I0Ws & DOWs

CHEPLAY =ir" VIA 8378

l EMABLE INTERRUFTS

DUMMY MAIN FROGRAM
(WAIT FOR INTERRUPT)

|

Figure 38. Initialization Frogram Flow for Timer Controlled Interrupts

There are six different interrupt service routines used in
the program. Five of these routines, "INTRY2" through
"INTR76", are vectored to via the B259A. Figure 39A-C
shows the program flow for all six service routines. Note
that “INTR73" through “INTR76" (IR1-1R4) basically use
the same flow. These four similar routines display the
number of its interrupting IR level on the SDK-86 display
panel. The “INTR77" routine is vectored to by software
during each of the previously mentioned routines and
sets up interrupt timing to cause the "INTR72" (IR0}
routine to be executed. The “INTR72" routine turns off
the number on the SDK-BE display panel.

i INTRATZ |

CaLL CALL SET 253
NEANVEY "SAVE" TIME DELAY
| FOR “INTRTE™
L]
TUAN OFF TUAM QM L
LED DISPLAY LED DISPLAY
CALL SOFTWARE
“HESTORE"™ “INTH 7T
[RETURN I CALL
"RESTORE"

B INTERRUPT OM
FE5RA IR1-1R4

C. SOFTWARE BNVOKED
INTERRUFT

& INTERRUPT OM
aasan IR

Figure 38. A-C. Interrupts Service Routine Flow for
Timer Controlied Interrupts.,

To best explain how these service routines work, let's
assume an interrupt occurred on IR1 of the 8259A. The
associated service routine for IR1 is “INTR73". Entaring
“INTRT73", the first thing done is saving the pre-interrupt
program status. This isn't really necessary in this pro-
gram since a “dummy’’ main program is being executed,
howevear, It is done as an example to show the oparation.
Rather than having code for saving the registers in each
separate routine, a mutual call routine, "SAVE", is used.
Thia routine will save the register status by pushing it
on the stack. The next portion of “INTR73" will display
the number of its IR level, 1", in the first digit of the
SDK-86 display panel. After that, a software INT instruc-
tion is executed to veclor program execution to the
“INTR77" service routine. The “INTRT7T" service routine
simply sets the 8253 #1 counter 1 to cause an interrupt
on IR0 in 250 ms and then returns to “INTR73". Once
back in "INTR73", the pre-interrupt status is restored by
a call routine, "RESTORE". It does the opposite of
“SAVE", returning the register status by popping It off
the stack. The "INTR73" routine then returns to the
“dummy " main program. The flow for the “INTR74"
through “INTR76" routines are the same except for the
digit location and the IR level displayed.

30

After 250 ms have elapsed, counter 1 of 8253 #1 makes
an interrupt request on IR0 of the B253A. This causes
the “INTR72" service routine lo be executed. Since this
routine interrupts the main program, it also uses the
“SAVE" routine to save pre-imterrupt program status. It
then tums off the digit displaying the IR level. In the
case of the "INTR73" routine, the “1" is blanked out.
The pre-interrupt status |s then restored using the
“"RESTORE" routine and program execution returns to
the “dummy"” main program.

The complete program for the timer controlled inter-
rupts application is shown in Appendix B. The program
was executed in SDK-86 RAM starting at location 0500H
{code segment = 0050, instruction pointer= 0).

CONCLUSION

This application note has explained the B259A in detail
and gives three applications lllustrating the use of some
of the numerous programmable features available. It
ghould be evident from these discussions that the
B250A is an extremaly flexible and easily programmable
member of the Intel® MCS-80, MCS-85, MCS-86, and
MCS-88 families.

APPENDIX A

This table is provided merely for reference information between the “Operation of the 8259A" and “Programming the
B259A'" sections of this application note. It shouldn't be used as a programming reference guide (see "Programming

the B259A").

Operational
Description

MCS-80/85™ Mode

Address Interval for MCS-80/85 Mode
Interrupt Vector Address for MCS-80/85 Mode
MCS-B6/88 Mode

Interrupt Vector Byte for MCS-86/88 Mode
Fully Mested Mode

Non-Specific EOl Command

Specific EQl Command

Automatic EOl Mode

Rotate On Non-Specific EOl Command
Rotate In Automatic EOl Mode
Set Priority Command

Rotate on Specific EQl Command
Interrupt Mask Register

Special Mask Mode

Level Triggered Mode

Edge Triggered Mode

Read Register Command, IRR
Read Register Command, ISR
Read IMR

Poll Command

Cascade Mode

Special Fully Nested Mode
Buffered Mode

*Only needed If ICWY is vsed lor purposes ofher than «P mode set.

Command
Words Bits

ICW1, IC\W4* IC4, uPM*

ICW1 ADI

ICW1, ICW2 AB=-A15

ICW1, ICW4 IC4, uPM

ICGW2 T3-T7

OCW-Default —

OCwW2 EOQI

oCcwW2 SEQI, EQL,
LO-L2

ICW1, ICW4 IC4, AEQI

OCwW2 EOQI

oCw2 R, SEQI, EQI

OCw2 LO=-L2

oCcw2 R, SEOQI, EQI

0CWA1 MO-M7T

OCcwW3a ESMM-5SMM

ICW1 LTIM

1CW1 LTIM

OCW3 ERIS, RIS

OCW3 ERIS, RIS

OCWA1 MO-M7T

OCW3 P

ICW1, ICW3 SNGL, 50-7,
ID0-2

ICW1, ICW4 IC4, SFNM

ICW1, ICW4 IC4, BUF,
MIS

31

APPENDIX B

MC5-86 HSSEMBLER TCISS9A

IS15-11 ACS-B6 AGSCMBLER Wi @ ASSEMBLY OF MODULE TCIS9A
OBJECT MODULE FLRCED IN -F1:TCIS5AR 0BJ
HSSERBLER INVOKED BY: :F1:ASH86 F1.TCISSA. SRC

LOC O8J LIKE SOURCE
1 Fdebebkddddbdbibeddeid TINER CONTROLLED INTERRUPTS dekobobkicioiciobolhdidoboky
2
3
4
= R EXTRR SEGNENT DECLRRATIONS
6
—— 7 TRA SEGHEN]
8
6128 9 ORG 1204
6128 2481 18 TP72IP [INTE?E ; TYFE 72 INSTRUCTION POINTER
glzz2 v 11 TP7eCs DM ? sTYPE 72 CODE SEGRENT
#1124 1861 12 TP7EIP DM INTKYZ ; TYPE 72 INSIRUCTIUN POINTER
Blzp 7292 13 TPVCS DM ? s TYPE v3 CODE SEGHENT
Bl 3861 14 TP4IP Dk INTRY4 (TYPE 74 INSTRUCTION POINTER
Bl2n 7777 15 TP74C5 DK z : TYPE ¥4 COUDE SEGHENT
Bi2C 4881 16 TPVSIF e INTR?S i TYFE V3 INSTRUCTION POINTER
BL2E 7777 17 TP73CS DM ? i TYPE VS CODE SEGHENT
Bi:8 elBl 18 TP7eIF W INIR7 i 1YFE ¥6& INSTRUCTION POINTER
|32 79%7 15 TP7eCS DW ? ; TWFE 76 CODE SEGMENT
B4 7881 28 TPY7IP DM INTRYY i TYPE 77 INSTRUCTION PUINTER
#lie 7277 21 TPY7CS DM 7 s TYPE 77 CODE SEGHEN
22
— 21 EXTRA ENDS
24
2 i DATA SEGMENT DECLARATIONS
26
—— Z7 DATR SEGHENT
28
Bogg 7Y 29 STRCKL D ; i YARTRELE TO SAVE CALL ALDRESS
ddEz Ty 3 ANTEMF DW ? i VRARIRELE TO SAYE AW REGISTER
BeBg 77 3 DIGIT DB ? (WARIRBLE TO SAVE SELECTIED DIGIT
2
-— 23 DATR ENDS
4
3 i CODE SEGMEMT DECLARATION
B
s if CODE SLGMENWT
i+
3% ASSUME ES:EXTRA. DS-DATA. €5 CODE
44
41 INITIRLIZE REGISTERS
4
H088 Boda0e 43 STRRT: HWOY AX BH s EXTRA SCGHENT AT 8H
BegE3 SECH 44 oY ES: AKX
Hoe) BE76e8 43 g H» 78H i DATA SEGHENY A1 /0BH
Bads BEDS 46 Ay D% HX
BBBA bo788 47 WY A 7EH i STRACK SEGKENT AT Yo8H
BeED SEDE 45 Moy 55: A
BAEF BCabAE 45 WY GP, 88H s STHCK POINTER AT SdH (STRCK=806H)

32

APPENDIX B (continued)

MCS-86 ASSERBLER
Loc 0BJ

Bai2 Booded
G610 JoHz2eel
8819 2eSCHEZZE1
BH4E BE15A1
Be2l 26AZ2461
W25 26ECEE26R1
#02A BEZAE1
oo Vs e
B2l 2e8CBEZRBL
B35 Ba4omEl
LR e
BesD 2edCBEESL
Bi42 Boeoal
BBds 26H330E
Be49 268CEEI201
BE4E BE7EEL
AE51 2eniidel
B85 JefCHE GEL

BU5H BREEFF
gash BAZ6
agaF EE
@B6n BEvl
BB62 EE
BB63 BEES
@965 EE
BBce BRESFF
BB6S BOAG
Wi ELC
aBel BAG1
BaskE EE
BacF BRECFF
@ar2 bedd
Here EE
Be7S bad2
Be7y EE
BE7E BA1GFF
He7E BB
7D EE
BE7E bBA7E
épea EE
gual EAER
48g3 EE
BEEd BRIGFF
gagy Besa
HaES EE
BEGH bady
Wasl EE
bee BR1ZFF
Be%e BoEo

TCIS5A

LINE

58
3l
9
33
4
33
96
=Ty
o8
39
6@
£l
62
X
&4
B3
BE
&7
68

CSENFEFREORNRECETFGTELR

e e
$EEEE
[o=

SOURCE

2

¥

TYPES:

SETas2:

SE AR RRit

SRR SRR SR EREER

LOAD INTERRUPT VECTOR TRBLE

A, OFFSET
1P72IF; R
TP7205, LS
A, OFFSET
TP7ZIP. AX
TP7305. LS
A OFFEET
TP741P, HX
TP74C5. C5
fix: OFFSET
TPTSIF: AX
TPALS. G
R, OFFSET
TP76IP, AX
TP76LS. C5
X, OFFSET
TP77IF, AX
1PTPCS: 05

8233 INITIALIZATION

DX, BFFBEH
AL. 35H
. AL

AL, 71H

D AL

AL, BESH
D AL

[k, BFFEH
AL, BfEH
[: AL

AL. 61H

Dk AL

U, BFFBCH
AL, B84

D AL

AL, B2H

D, AL

D BFF1EH
AL, 3BH
D AL

AL 7BH
D AL

AL, BEEH
D AL

DX, BFF18H
AL: 38H

D AL

AL, BEH

L. AL

D, BFF12H
AL, BB

(INTRT2)

CINTRYZ)

CINTR74)

CINTETS)

(INTR7G)

CINTRFY)

;LORD TYPE v2

;LDAD TYFE 73

iLORD TYPE 74

iL0AD TYPE 75

;LOAD TYPE 76

iLOHD TYFE 7¢

8253 %1 CONTROL WORD
;CUUNTER @, MODE 3, BINARY

;COUNTER 1. MODE @, ECD
; COUNTER 2. MODE 2, BCD

;LOADG COUNTER @ C189%)
(LB

+HSE

s LURD COUNTER 2 (25EC)
iLSH

i M5B

8251 2 CONIROL WORD
; COUNTER 0, WODE 5, BCD

s COUNTER 1. MODE 5. ECD
; COUNTER 2. WMODE 50 BCD

sLORD COUNTER @ « SSECY
sLSE

sMSE

;LOARD COUNTER 1 (4SEC)
iLSB

APPENDIX B (continued)

MC5-86 ASSEMBLER

LoC OBJ

32 EE
B#9: Beal
8855 EE
#8996 BRAL4FF
#8993 pase
@89g EE
Ba9C pHal
Ga% EE

BASF BAOBFF
Bz peis
BBR4 EE
BB BRAZFF
BaRE Bads
BOAA EE
80AE BOas
B8R0 EE
BEAE BOED
8868 EE

BBB1 BRERFF
8684 BabA
B8BE EE
Bag? EC
Bess pece
BEBA 72FB
BOEC BBEY
BOBE EE
BEEF BRESFF
BBC2 EoBe
BeC4 EE
BBCS BHEAFF
C
B8CA EE
BECE BREGFF
BaCE Bace
vaDe EE
gdin FE

88Dz EBFE

@84 AZA209
eap? 58
Ba0s A2A088
BelB R1B269
BEDE @
BaF 32

LINE

183
186
187
188
169
i1e
111
112
113
114
115
116
117
118

121

121
124
125
126
127

FEYRHTPEE

SOURCE

SETS9A

SET79:

WRITYS:

ouT

KOV
QuT
MOy
oul

MOV
ouT
MOV

S2E2ES

ZESSE52ISR=EE2T

T=EE2Z2E23
s s

JHP

MDY
POp
HOY
PRy
PUSH
PUSH

D AL

AL, 81H
D% AL

D BFF14H
HL, 58H
D AL

AL B1H

D, AL

8239R INITIRLIZATION

D, BFF&eH
AL 13H
DX, AL

DX, BFFEZH
AL q'a"l
DX AL

AL: #H
Dk AL

AL. BEBH
DR AL

8279 INITIRLIZATION

D¥. BFFERH
AL, BDeH
Dids AL

HL. DX
AL.-1
WRIT?S

AL. 87H
D AL

Lk, BFFESH
AL, B&H
B AL

D, BFFERH
AL, BeH
DX, AL

DX, BFFESH
AL, 58H
Dids AL

DUFMY PROGRRN

DUFEY

FXTEMF . A
L H
STRCK1 A4
A ARTEMP
L h
BX

FRGE

i M5B

i LDAD COUNTER 2 (1 55EC)
LSB

;: W5

i BZ59A Ae=9
i ICWL-LTIM=8, 5=1. IC4=1

i 82990 Fb=1
: ICH2-INTERRUPT TYPE v (120H)

» [CH4-SFNM=8, BUF =0, AEDT=1 MPH=:

; OCWL-MASK RS, &, 7 (NOT USED)

i 8279 COMRAND WORDS HND STRTUS
i CLEAR D1SPLAY

i RERD STATUS

"DUT BIT TO CARRY

i JUMP IF DISFLAY IS UNRYRILAELE
iDIGIT 8

18273 DATA WORD
; CHRRACTER "1"

8279 CORRAND WORD
iDIGIT 7

+82¢3 DATA WORD
: CHARACTER *R*

i ENRELE [NTERRUPTS

sHALT FOR [NTERRUPT

+ SHYE HA

P POP CALL RETURN RDDRESS
i SAYE CALL RETURN ADODRESS
: RESTORE AY

: GAVE PROCESSOR STATUS

34

APPENDIX B (continued)

MC5-8e RLSERELER

LOoC 08J

BaER 31
BEE] 52
BeE2 35
BBEZ D6
aBE4 57
BOES 1E
BOEE 6
agEy Alea6s
BEER 58
BEEB C3

BEEC 59
BEED AZAA0E
BoFa &y
BoF1 1F
B2 SF
BEF: 3E
aaF4 o0
B0F3 SH
HEFE 59
agFy SE
@eFe 58
UBF9 A3E2e
vEFL Alooesd
BUFF 58
6188 RiG208
818z C3

B184 EBCDFF
9167 BRERFF
B16A Resqad
g1e0 EE
@16E BREBFF
4111 bees
#1153 EE
#114 EEDOFF
ed1v CF

8118 EBGIFF
#4118 BYEAFF
B11E Ea8d
#4120 A2e468
8123 EE
8124 BAEBFF
H127 Bas
@19 EE
912A CD4D
H12C ESBDFF
B2+ CF

168
lel
162
163
164
165
166
167
168
169
178
171
172
173
174
173
176
1v?
178
179
189
181
1582

LINE SOURCE

RESTUR:

INTR?3:

PUSH

PUSH
PLSH
PUZH
FUSH

PUZH
RET

POP
POP
MOY

FUSH
MoV
RET

: CHLL

MOV
Mo
auT
MOy
MOV
ouT
CHLL
IRET

CALL
HOY
noy
Moy
out
Moy

INT

IRET

T RN

51
oI
05

A%, STRCKL s RESTORE CALL RETURN RDDRESS
AR PUSH CALL RETURN RUDRESS

X i POP CALL RETURN RDDRLSS
STRCKL, AX i SAYE CALL RETUEN RDDRESS
ES s RESTORE PROCESSOR STRTUS

AATEMF, HX i SAVE RX

Hes STRLKL ;RESTORE CALL RETURN ADDRESS
HA sPUSH CRLL RETURN RDDRESS
X, AXTERP s RESTORE A

INTERRUFT 72, CLERR DISPLAY. IR@ 8239

SAVE ;RUUTINE TO SAVE PROCESSOR S1ATUS
Dk, BFFERH i8S COMAAND WORD

AL DIGIT +SELECTED LED DIGIT

s AL

DX BFFESH 1 8279 DRTA

AL, B8H s BLANK OUT DIGIT

D AL

RESTOR ;ROUTINE TO RESIORE PROCESSOR STHIUS

s RETURN FleOH INTERRUFT

INTERRUPT 73, IR1 8259A

SAVE sROUTINE 70 SAYE PROCESSOR STRIUS
D¥, BFFERH ;8279 COMFAND WORD

AL, 58H i LED DISPLAY DIGIT 1

PIGIT. AL

D, AL

DX, WFFESH ;8¢9 DATA

AL, B6H ; CHRRACIER "1™

Dk AL

77 ;1 IMER DELAY FOR LED ON TIME

RESTOR ;ROUTINE 10 RESTORE PROCESSOR STATUS

s RETURN FROM INTERRUPT

35

APPENDIX B (continued)

MCS-B6 ASSEMBLER

LOC OBJ

9139 EGRIFF
8133 BRERFF
#1356 BASL
#1358 AZod0d
8138 EE
B13C BHEBFF
#13F BESB
#9141 EL
#142 CD4D
9144 ESASFF
8147 CF

B148 ESSSFF
@148 BHEAFT
g14c Beg2
8158 A2D468
#1352 EE
@134 BREBFF
8157 BE4F
8139 EE
B15A CO4D
@15, EBCDFF
813 CF

8168 ESFIFF
@163 BRERFF
Bic6 Bea3
dic8 A2a488
9168 EE
#iel BRESFF
eleF Boee
@171 EE
72 CheD
8174 EBTIFF
eLv? CF

Biv8 BABAFF
ei7e BA2S
el/D EE
¥17E bhbg
glc8 EE
8181 CF

LINE

BEEE

T T

B

PHRERBEENRNENRES

B == e TEi e

ZEARBRHR

SOURCE

NTR74:

INTRYY

CALL
MOV
MoV
MOV
auT
MOV
MOV
ouT
INT
CALL
IRET

i
LUt

auT
IRET

PAGE

INTERRUPT 74, IR2 8255R

SHYE ; ROUTINE TO SAVE FROCESSOR STATUS
DX, BFFERH i 8273 COMPAND WORD

AL 81H : LED DISFLAY DIGIT 2

DIGIT. AL

DX AL

DX, 8FFESH i 8279 DATA

AL, 5B ; CHARACTER "2"

DX AL

[i TIMER DELAY FOR LED ON TIME

RESTOR s ROUTINE TO RESTORE PROCESSOR STATUS

s RETURN FROM INTERRUPT

INTERRUPT 73. 1IR3 B235A

SHVE ; ROUTINE TO SAVE PROCESSOR STATUS
D, BFFERH i 8273 COHHAND WORD

AL, B2H LED DISFLAY DIGLT 3

DIGIT. AL

DA AL

D BFFESH ;8279 DATA

AL, 4FH i CHARACTER "3"

D%, AL

‘7 ; TIMER DELHY FOR LED ON TIME

RESTOR ; ROUTINE TO RESTORE PRUCESSOR STATUS

s EETURN FROM LN1ERRUPT

INTERRUFT 7&. IR BZ259H

SHYE i ROUTINE TO SAYE PROCESSOR S1ATUS
D, 8FFEAH i 8279 COMFAND WORD

AL: 33H :LED DISPLAY DIGIT 4

DIGIT, AL

e

D BFFEEH : B2¥9 DATA

AL, 66H ; CHARACTER "4"

D AL

i : TIHER DELAY FOR LED ON 11ME

RESTOR s ROUTINE TD RESTORE PROCESSOR S1ATUS

s RETURN FROM INTERRUPT

INTERRUPT 77. TIMER LELRY, SOFTWARE CONTROLLED

D BFFBRH LOAD COUNTER 1 8252 #1 (258 MSkC)
AL, 254 iLsB

Dias AL

AL, 88K i HEB

[AL

sRETURN FROM INTERRUPT

36

APPENDIX B (continued)

MCS-86 ASSEMBLER TCIS9A

LoC o8l LINE SOURLE

L S
24
Bae 273 END STRRT

SYMBOL TRELE LISTING

VALUE ATTRIBUTES

NWE TYPE
77SEG . SEGMENT SIZE=g8eaH PARA PUBLIC
¥ NORD BeE2H DATA

SEGMENT SIZE=B182H PARA
DATR SEGMENT SIZE=8865H PARA
DIGIT . ¥V BYTE #@addH DATA
DUMNY L NERR @802H CODE
EXTRA . SEGMENT CIZE=8138H FARRA
INTR72 L NERR @184H CODE
INTR72. L NEARR @11BH CODE
INTR74. L NEWE ©130H CODE
INTRTS L MNERR #148H CODE

INTR?6 L NERR @debH CODE
INTR7? L NERR @473H CODE
RESTUR. L NEAR @0ECH CODE
SAVE L NEAR @8D4H CODE
SETS3L L MERR 0eGAH CODE
SETS32 L MERR @87eH CDE
SETS9A L NERR @@5FH CODE
SETT9 L NERR OQEBlH COIE
STRCKL ¥ WORD @edeH DATA
STRRT . L MEAR (eaeH CODE
TPP2CS ¥ WORD @122H EXTRA
TP7ZIP ¥ WORD B128H EXTRA
TP7ICS. ¥ MORD @126H EXTRA
TP7IIP. ¥ WORD @124H EXTRA
TP74CS ¥ WURD @12AH EXTRA
TP741P. ¥ WORD @128H EXTRA
TPTSCS W WORD @12EH EXTRA
TPTSIP. ¥ WORD @12CH EXTRA
TP76CS. V MORD @32H EXTRA
TP7EIP ¥ MORD @li8H EXTRA
TP77CS. ¥ NORD @l36H EXTRA
TE7TIP. V WORD @134H EXTRA
TYFES L NERR ©B0LH CODE
WAIT?S L NERR @8ETH CODE

37

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

