
DB86 SOFTWARE DEBUGGER
USER S GUIDE

Order Number: 481850-001

REV. REVISION HISTORY DATE

-001 Original Issue. 12/88

Copyright © 1988, Intel Corporation, All Rights Reserved
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

In the United States, additional copies of this manual or other Intel literature may be obtained from:

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales office. For
your convenience, international sales office addresses are printed on the last page of this document.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this
document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other
circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject
to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government, in accordance with
the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel Corporation.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products. (Registered
trademarks are followed by a superscripted ® .)

Above iLBX Intellink MICROMAINFRAME Ripplemode
B1TBUS im® iOSP MULTIBUS® RMX/80
COMMputer iMDDX iPAT MULTICHANNEL RUPI
CREDIT iMMX iPDS MULTIMODULE Seamless
Data Pipeline Inboard iPSC ONCE SLD
ETOX Insite iRMK OpenNET SugarCube
FASTPATH Intel® iRMX® OTP UPI
Genius intel® iSBC® PC BUBBLE VLSiCE
Ai Intel376 iSBX Plug-A-Bubble 376
i® Intel386 iSDM PROMPT 386
i2ic e intelBOS iSXM Promware 386SX
ICE Intel Certified KEPROM QueX 387
iCEL Intelevision Library Manager QUEST 387SX
iCS Inteligent Identifier MAPNET Quick-Erase 4-SITE
iDBP Inteligent Programming MCS® Quick-Pulse Programming
iDIS Intellec® Megachassis

IBM, PC AT, Personal System/2, and PS/2 are registered trademarks and PC XT is a trademark of International Business Machines
Corporation.

Copyright © 1988, Intel Corporation, All Rights Reserved

11

Contents

Preface...vii

Chapter 1 Introduction
1.1 Overview of Debugger Capabilities.. 1-1

1.1.1 Debugging Features... 1-2
1.1.2 Human Interface Features.. 1-3

1.2 The Application Development Process... 1-4
1.3 Compatibility Issues...1-7
1.4 Trademarks... 1-7
1.5 A Quick Tour of DB86..1-8

1.5.1 Invoking the Debugger..1-8
1.5.2 The Debugger Screen..1-9
1.5.3 Entering Commands and Getting Help.............................. 1-12
1.5.4 Scrolling through Source Code..1-16
1.5.5 Setting a Breakpoint..1-18
1.5.6 Executing the Program..1-20
1.5.7 Showing User Output..1-22
1.5.8 Exiting from the Debugger.. 1-24

Chapter 2 Debugging with DB86
2.1 Preparing a Program for Debugging... 2-2
2.2 Invoking the Debugger... 2-6
2.3 Loading a Program.. 2-8
2.4 Setting Breakpoints... 2-10

2.4.1 Tracepoints... 2-10
2.4.2 Breakpoints... 2-12
2.4.3 Breaking on Access to Data...2-13
2.4.4 Other Breakpoint Commands...2-14

2.5 Executing a Program... 2-15
2.6 Observing the Output of a Program... 2-19
2.7 Examining and Modifying the Program...2-19
2.8 Examining and Modifying Data...2-22

2.8.1 Simple Ways to Display Data...2-22
2.8.2 Advanced Techniques for Displaying Data.......................2-23
2.8.3 Modifying Data..2-26

2.9 Configuring the Debug Environment... 2-27
2.10 Finding a Bug...2-28

iii

Chapter 3 DB86 Menu System
3.1 Introduction..3-1

3.1.1 Starting the Menu System..3-2
3.1.2 Selecting Commands from the Menus..................................3-2
3.1.3 Exiting from the Menu System... 3-3

3.2 The Debug Menu (Alt-D)...3-4
3.3 The Window Menu (Alt-W)..3-7
3.4 The Go Menu (A lt-G)..3-11
3.5 The Set Menu (A lt-S)...3-15
3.6 The View Menu (Alt-V)...3-17
3.7 The Browse Menu (Alt-B)..3-19
3.8 The Help Menu (A lt-H)...3-23

Chapter 4 DB86 Keyboard Controls
4.1 Introduction..4-1
4.2 Navigational Key Controls... 4-1
4.3 Line-editing Key Controls.. 4-3
4.4 Function Key Controls..4-5
4.5 Other Keyboard Controls..4-8

Chapter 5 DB86 Command Language Encyclopedia
5.1 How to Use this Chapter..5-1
5.2 Functional Overview of Commands..5-3
Alphabetical Entries... 5-10

Appendix A DB86 Installation
A.l Installing the DB86 Debugger Software...A -l
A.2 Modifying the System Configuration... A-3
A.3 Setting Environment Variables..A-3
A. 4 Keyboard Templates...A-4

Appendix B DB86 Invocation
B. l Syntax.. B-l
B.2 Controls... B-l
B.3 Examples...B-4

Appendix C Shortcuts and Tips
C.l Setting up a Second Monitor...C -l
C.2 Using RAM Disk for the Virtual Symbol Table Buffer.......................C-2
C.3 Shortcut for Setting SPATH..C-3
C.4 Hints on Naming Modules... C-3
C.5 Using the Debug Control in ASM86 Programs.. C-4
C.6 Debugging Programs with Overlays... C-4
C.7 Using the SWAP Control... C-4
C.8 Tips on Variable Names and Reserved Words......................................C-5
C. 9 Tips on Clearing Breakpoints..C-5

Appendix D Language Support
D J iC-86.. D -l
D. 2 PL/M -86..D -l
D.3 ASM86...D-2
D.4 Fortran-86...D-2
D.5 Pascal-86..D-2

Appendix E Error Messages

Appendix F Reserved Words

Appendix G ASCII Codes

Glossary

Index

Service Information... Inside Back Cover

v

Figures
1-1 Initial DB86 Screen...1-1
1-2 The Application Development Process.. 1-5
1- 3 The Debugger Screen... 1-10
2 - 1 DB86 Screen with EXAMPLE Program Loaded......................................2-1
2-2 DOS Batch File for EXAMPLE Program..2-3
2 - 3 Link Response File for EXAMPLE Program.. 2-5
3 - 1 Debugger Screen with Help Menu... 3-1
5-1 DB86 Command Language Help Screen..5-1

Tables
5-1 DB86 Control Constructs...5-4
5-2 DB86 Debug Environment Commands..5-4
5-3 DB86 Processor Status Commands.. 5-5
5-4 DB86 Source Display Commands... 5-6
5-5 DB86 Memory Access Commands.. 5-6
5-6 DB86 Execution and Watch Commands...5-7
5-7 DB86 Topical Entries... 5-8
5-8 DB86 Breakpoint Commands.. 5-17
5-9 DB86 Command-line Editing... 5-26
5-10 Display Output Control Keys..5-27
5-11 DB86 Control Constructs...5-28
5-12 DB86 User-program Types..5-33
5-13 DB86 mtypes and their Language-specific Names..............................5-41
5-14 Operators.. 5-54
5-15 Types and their Valid Operators.. 5-55
5-16 Disparate Types and their Valid Binary Operators............................... 5-56
5-17 Type Conversions in Expressions... 5-58
5-18 Type Conversions in Assignments.. 5-60
5-19 Special Character Delimiters... 5-78
5-20 8086/8088 Registers... 5-96
5-21 8087 Registers..5-100
G -l ASCII Code L ist.. G -l
G-2 ASCII Control Code Definition... G-3

Preface

This manual describes the DB86 debugger and how to operate it on a
DOS-host computer. DB86 is an interactive software debugger for
finding logical errors in programs. It works with programs in Intel
OMF86 format bound with LINK86.

This manual is written for programmers who use Intel compilers or
assemblers, such as iC-86, PL/M-86, ASM86, Fortran-86, or
Pascal-86, to write their applications software. To use this product,
you should also be familiar with PC-DOS Version 3.0 or later.

Chapters 1 and 2 of this manual introduce the debugger and provide
examples that illustrate tactics for using the debugger. Chapters 3
through 5 provide reference material on the menu system, keyboard
controls, and debugger commands. The appendixes provide additional
reference material, e.g., installation instructions and invocation
instructions.

Manual Organization

The manual is organized as follows.
Chapter 1

Chapter 2

Chapter 3
Chapter 4

introduces the debugger and describes how it fits into
the application development process. It also includes a
short sample session that gets you started with the
debugger.
provides numerous examples of using the debugger,
showing how related commands work together to do
specific debugging tasks.
is a reference guide to the debugger menu system,
is a reference guide to the debugger keyboard controls.

Chapter 5 is a reference guide to the debugger command
language. The entries in the command encyclopedia
are alphabetized for quick reference and include both
command descriptions and debugger topics.

vii

Appendix A contains the installation instructions.
Appendix B describes the invocation controls and the DOS

command line for invoking the debugger.
Appendix C provides shortcuts and tips for setting up and using the

debugger more efficiently.
Appendix D describes the level of symbolic support for each

supported language.
Appendix E lists error messages with brief descriptions of the

causes and suggested actions for recovery.
Appendix F lists reserved words.
Appendix G is an ASCII code table.

Related Publications

DB86 is part of Intel’s 8086 and 80186 family of software
development tools. The family consists of compilers, assemblers,
software utilities, and debuggers for developing programs that can be
run on 8086- and 80186-based systems, operating in real mode.

Refer to the following publications for related information on
compilers and assemblers, utilities, and architecture:

AEDIT Manual Set for DOS Systems, order number 122716.

ASM86 Assembly Language Reference Manual, order number 122386

ASM86 Macro Assembler Operating Instructions, order number
122391.

iAPX 86, 88 Family Utilities User’s Guide, order number 122396

Operating System Interface Libraries Manual, order number 122401.

8087 Support Support Library Reference Manual, order number
122406.

An Introduction to ASM86, order number 121689.

viii

iC-86 Compiler User's Guide for DOS Systems (in two parts), order
number 480561 for the general compiler reference section and 480564
for the DOS-specific operation section; and iC-86 Binder/Slipease,
order number 480588.

CLIB-86 Supplement, order number 481690.

C: A Reference Manual [Harbison-Steele/Tarton Labs, Prentice Hall],
order number 555107.

Fortran-N86 Compiler User's Guide for DOS Systems (in two parts),
order number 480986 for the general compiler reference section and
480987 for the DOS-specific operation section; and
Fortran-86/186/286 Binder/ Slipcase, order number 481160.

Fortran 77 [Katzen, Van Nostrand Reinhold], order number 481199.

PL/M Programmer’s Guide, order number 452161; DOS Supplement
to the PL/M Programmer’s Guide, order number 452162; and PL/M
Programmer’s Guide Binder/Slipease, order number 452160.

Pascal-86 User’s Guide, order number 122426.

iAPX 86/88, 186/188 User’s Manual Programmer’s Reference, order
number 210911.

iAPX 86/88, 186/188 User’s Manual Hardware Reference, order
number 210912.

8086/8088 16-Bit Microprocessor Primer, [Morgan and Waite], order
number 555094.

The 8086 Microprocessor Architecture, Software and Interfacing
Techniques, [Singh and Triebel], order number 555953.

The 16-Bit Microprocessor, [Goody], order number 555104.

The 8087 Primer, [Palmer and Morse], order number 555694.

IX

Contents
Chapter 1 Introduction

1.1 Overview of Debugger Capabilities...1-1
1.1.1 Debugging Features...1-2
1.1.2 Human Interface Features.. 1-3

1.2 The Application Development Process... 1-4
1.3 Compatibility Issues...1-7
1.4 Trademarks... 1-7
1.5 A Quick Tour of DB86... 1-8

1.5.1 Invoking the Debugger..1-8
1.5.2 The Debugger Screen..1-9
1.5.3 Entering Commands and Getting Help.............................. 1-12
1.5.4 Scrolling through Source Code..1-16
1.5.5 Setting a Breakpoint..1-18
1.5.6 Executing the Program..1-20
1.5.7 Showing User Output..1-22
1.5.8 Exiting from the Debugger.. 1-24

Chapter 1
Introduction

This chapter introduces the DB86 source-level debugger. It contains
an overview of debugger capabilities, an overview of the application
development process, and a sample debugging session. Compatibility
issues are also discussed.

1.1 Overview of Debugger Capabilities

DB86 is a source-level, symbolic debugger with a windowed
human-interface that includes pulldown menus as well as a
command-line interpreter for controlling debugging.

Figure 1-1 Initial DB86 Screen

With DB86, you can find logical errors in your application software
by scrolling and browsing through your source code; by controlling
the execution of the program; by examining data, memory, and
processor registers during execution; and by observing the output of
your program.

1.1.1 Debugging Features

DB86 provides the following debugging features:
• Source-level Display. Source code for high-level languages is

displayed in the View Window. The debugger can also display
the disassembled code for each high-level language statement.
You can scroll through the source and browse from module to
module in your program or browse to any executable point in the
source.

• Breakpoints. You can define locations in your program at which
execution is to be halted under control of the debugger. These
points can be defined as temporary, fixed, or conditional
breakpoints. Breakpoints can be defined symbolically using
module names, procedure names, and line numbers. You can also
set tracepoints at program locations to display an announcement
when execution reaches that location.

• Single-step. You can execute your program a step at a time,
stepping through an assembly-language instruction, a high-level
language statement or through a function or procedure.

• Assembly/Disassembly. You can display memory using assembler
mnemonics and you can patch programs by assembling
instructions into memory.

• Memory Access. You can display and modify memory formatted
as common data types.

• Register Access. You can examine and modify registers,
including math coprocessor registers.

• Symbolic Support for Data Access. You can use program symbols
to display and modify memory.

• Watch Expressions. You can define watch expressions and
observe them in the Watch Window as the program executes.

1-2 Introduction

1.1.2

• Screen Flipping. You can flip to the display screen of the
application program to observe the output of the program during
execution.

• Coprocessor Support. You can execute numeric processor
instructions on an 8087 emulator or on an 8087 math processor.

• Transparent Overlay Support. Symbolic overlay support is built
into the debugger. You can set breakpoints in overlays and not
be concerned, during subsequent debugging, about when the
overlay is resident.

Human Interface Features

The debugger provides a windowed human interface with several
ways to issue commands.
• The menu system lets you select items from a menu to issue

commands while you are still learning how to use the debugger.
• Many debugging functions in DB86 can be performed with single

key controls. In other words, pressing a single key starts the
function immediately. This responsive level of control combines
with the source-level display of the application program to
provide a point-and-shoot model for debugging.
First, you point at the source code shown in the View Window by
scrolling to a location in the program. Then, you fire off
debugging commands using the function keys.

• At the command line, you can control debugging with a powerful
set of debugging commands. These include control constructs,
automated execution of commands from a file, expression
evaluation, and a DOS shell command. When entering commands,
you can edit the command line or re-issue commands from the
history buffer.

On-line help is available throughout the debugger and includes
extended help on error messages.

The debugger can also keep track of the commands issued during a
session by logging them to a list file.

Introduction 1-3

1.2 The Application Development Process

DB86 is part of a family of products aimed at easing the development
of applications for the 8086 family of microprocessors. Figure 1-2
shows how DB86 fits in the development process.

In the program-development cycle for 8086 and 80186 applications,
object files are created from separately translated modules following
these steps.
• Using an editor that generates pure ASCII files, such as Intel’s

AEDIT, create the source text. See step 1 in Figure 1-2.
• Invoke a compiler or assembler to translate the source text into

object code. See step 2 in Figure 1-2.
• Compile and test parts of your application before other parts are

written by separating your source text into several files (i.e.,
modules) and specifying only one or some of the source files in
each compilation.

• Include source text from several files or from a set of alternate
files by specifying the appropriate compiler controls and
preprocessor directives in a single compilation.

• Call functions written in different Intel languages, including
iC-86, PL/M-86, ASM86, Fortran-86, or Pascal-86.

To organize some of your object modules into libraries, use LIB86.
Later, when you link a program to a library, the linker extracts only
those library modules that the program needs. Libraries are good
places to store commonly used procedures. See step 3 in Figure 1-2.

Use LINK86 to link your modules together. LINK86 can produce a
relocatable module or a module for incremental linking. LINK86 is
part of the ASM86 package. See step 4 in Figure 1-2.

After producing linked modules, use DB86 to test and debug your
program. Correct errors in the source text, translate the source text
again, and link it again until you are satisfied that the program is
reliable. See step 5 in Figure 1-2.

1-4 Introduction

CREATE AND
MAINTAIN
LIBRARIES WITH

Figure 1-2 The Application Development Process

Introduction 1-5

After software debugging and testing, you load the object code into
system memory for execution and final debugging using one of the
following processes:
• Configure the object code for DOS. You can use the /EXE

option of LINK86, linking in the C libraries, to generate a .EXE
file suitable for execution on DOS. Or you can use the
operating-system-interface utility called UDI2D0S. This utility
adds the DOS runtime support to linked object modules,
transforming them into .EXE files that are suitable for execution
on DOS. UDI2D0S is part of the ASM86 package. See step 6 in
Figure 1-2. (The debugger requires .86 files and cannot use the
.EXE files produced in this step.)

• Load the object code into a target system with an in-circuit
emulator, such as the I2ICE™ in-circuit emulator or the
ICE™ -186 in-circuit emulator. You can also use Intel’s iPAT ™
Performance Analysis Tool for symbolic performance and code
coverage analysis. Assign absolute addresses with L0C86 before
loading your code into an in-circuit emulator. See step 7 in
Figure 1-2.

• Program it into ROM using LOC86 to assign absolute addresses to
the object module generated by LINK86. The object code can be
formatted by the compiler or assembler to be programmed into a
PROM device using Intel’s iPPS PROM programming software
and the iUP-200 PROM Programmer. Or you can invoke OH86
to convert the absolute code into hexadecimal format as required
by most PROM programming equipment. See step 8 in
Figure 1-2.

1-6 Introduction

1.3 Compatibility Issues

The DB86 debugger runs under DOS Version 3.0 or later. See
Appendix A for detailed host-system requirements. Also, see
Appendix C for tips on improving debugger performance on the host
system.

The debugger works with OMF86 modules produced with Intel’s
LINK 86, using one o f the following Intel compilers or assemblers:

iC-86 (Version 4.0)
PL/M-86 (Version 3.1)
ASM86 (Version 3.1)
Fortran-86 (Version 3.0)
Pascal-86 (Version 3.1)

See Appendix D for a detailed description of the level of support
provided for each of these languages.

1.4 Trademarks
o

ICE, I ICE, Intel, and iPAT are trademarks of Intel Corporation.

IBM and IBM Personal System/2 are registered trademarks of
International Business Machines Corporation.

Introduction 1-7

1.5 A Quick Tour of DB86

This section contains an example session to help you get started with
the debugger. The sample session describes the debugger screen
display and covers the following preliminary information:
• invoking the debugger
• getting help
• scrolling through source code
• setting a breakpoint
• executing the program
• showing user output
• exiting from the debugger

By going through this example, you will learn three ways to issue
commands to the debugger.

Before running this example, you must install the debugger software
following the instructions in Appendix A.

1.5.1 Invoking the Debugger

To invoke the debugger, change to the directory containing the
debugger and example programs. Assuming that the debugger
directory is named DB86, type:

Ocd \db86

Once you are in the debugger directory, use the batch file,
TRYIT.BAT, to invoke the debugger.

C:\DB86>tryit

1-8 Introduction

The TRY IT batch file contains a command that not only invokes the
debugger, but also loads the EXAMPLE program and runs it under
debugger control. The individual steps for invoking the debugger are
described in more detail in Chapter 2. For now, use the batch file
provided to get started quickly. The resulting screen looks like the
following:

Debug Wi nriou Go Uieu Brouse Help
238
239
240
241
242

return(key);

uoid far nainO

/ * return uith iten nunber selecte

244
245
246
247
240
249
250
251
252
253

/*=====================fWiii================================
This is the nain entry point for the entire EXAMPLE
progran. If you are uieuing this uith the DB86 debugger
try using the Grey- and Grey* keys to scroll the source
file in the uieu uindou. Grey* will restore the uieu
back to the current execution point (hori2ontal bar).
The FI key brings help. Alt-<firstletter> for nenu.

lnt ni-'
int done = FALSE;

Copyright 1983,1988 INTEL CORPORATION
•spath = .'i.Ci.1st
*load exanple.86
ago til nain
[Break at :MEMUtt243)

Mod: riEMU Proc: MAIM Line: 1)243

1.5.2 The Debugger Screen

This section takes a short digression from the tour with the EXAMPLE
program to describe the major elements of the debugger screen. The
debugger screen is divided into at most seven framed areas called
windows. See Figure 1-3. Some of these windows are optional;
others are always present. Each window is used for a different
purpose by the debugger. Only one window is active at any given
time; commands can be issued in the active window. The active
window is highlighted on color monitors; on monochrome monitors,
the blinking cursor is shown in the active window. At sign-on, the
active window is the command window.

Introduction 1-9

(T) MENU BAR

@ WATCH WINDOW

(4) VIEW WINDOW

(?) COMMAND
WINDOW

(?) STATUS LINE

(I) PULLDOWN MENU

QQQQ0000
OQQQ

FFFF

3.30 (&M-D) DB86 Ul.B yrlght 1903,1900 INTEL CODPORATIOd
=hase

DBB6U1.0
-(7) REGISTER

WINDOW

2951

Figure 1-3 The Debugger Screen

The numbered elements of Figure 1-3 are:
1. The top line of the screen is called the menu bar. The menu bar

lists seven menu names, each of which can be used to select a
pulldown menu.
The menu bar can be turned off if you do not need it. See
Appendix B for further information on the no-menu-bar
(NOMB) control.

2. The Help Menu has been selected. Each pulldown menu has a
list of commands on it. You can select commands from the list.
Only one menu can be pulled down at a time. See Chapter 3 for
further information on the menu system.

1-10 Introduction

3. A Watch Window is open on the second line of the screen. The
debugger automatically creates a Watch Window large enough to
display all currently defined watch expressions. You can toggle
the presence of the Watch Window by typing sF2, that is, hold
down the Shift key while pressing the F2 key. Watch expressions
allow you to observe data in your program. They can contain
symbolic references from your program or debug variables (as
shown in Figure 1-3). The current value of the watch expression
is shown and is updated as your program executes.

4. The View Window contains the source code of the currently
loaded program. The View Window is always present. The Break
Status column is the leftmost column of the View Window. This
column indicates where breakpoints are set and also contains the
thumbmark, a pointer to the current line. When the View
Window is active, the blinking cursor is attached to the
thumbmark indicating the current line.

5. The Command Window is the area where you enter debugger
commands at a command-line prompt. The Command Window is
always present.
You can make the Command Window larger and the View
Window smaller by typing the Ctrl-PgUp key; you can make the
Command Window smaller and the View Window larger by typing
the Ctrl-PgDn key.

6. The status line contains the current location in the program that
is currently loaded and the reason for the last break in execution
of that program. Debugger messages are also sometimes displayed
on the status line. The status line is always present.

7. The Register Window contains the current value of the processor
registers and flags. It can be toggled on and off by pressing the
F2 key.

Introduction 1-11

1.5.3 Entering Commands and Getting Help

There are three ways to enter commands in the debugger:
• Using the menu system, you can select the command that you

want to execute. See Chapter 3 for more information on the
menu system.

• You can immediately initiate common tasks with single key
controls like function keys, navigational keys, or line-editing
keys. See Chapter 4 for more information on single key controls.

• You can enter debugging commands at the prompt in the
Command Window. See Chapter 5 for more information on
debugging commands.

On-line help is available for each of these three groups of commands.

Continuing with the example, you have just invoked the debugger
using the TRY IT batch file. Now, you can follow these steps to get
help.

Press these keys To do this:
in sequence:

Alt-H Pulls down the Help Menu. This menu allows
you to get help on any other menu in the menu
system. Additionally, you can get help on
single key controls, debugger commands, and
error messages.

D Displays a help screen for the commands you
can select from the Debug Menu.

1-12 Introduction

Here is what the help screen looks like:

Debug Hindoo Go Uieu Browse

=========================== DEBUG NEHU HELP ===========================
Load Program Prompts for the name of the object file to be loaded

and loads that program for debugging. Vou mag
specify driue and pathname before the file name.
Normal line editing functions are available when you
are typing the program name.

Reload Clears all defined breakpoints! tracepointsi and
uatch expressions and then reloads the most recently
loaded object file.

Source Path Prompts for the pathname of the subdirectory in
which DB86 should search for source display files.
Vou nay also specify up to ten file extensions!
which DB86 uses when looking for source display
files. For example: Vnysourcedirj.Cj.1st

DOS Shell Temporarily exits DB86 and goes to a loaded DOS
shell at which you nay issue normal DOS commands.
To return from DOS to DB861 type the EXIT command.

Exit DB86 Exits DB86 and returns to DOS.

=== PRESS ANV KEV TO CONTINUE ===

Nod= nENU Proc= MAIN Line: 1J243

Press these keys To do this:
in sequence:

spacebar
I

Enter
spacebar

Pressing any key returns to the Help Menu.
You can also select items on a menu with the
uparrow (t) and downarrow (I) keys.
Downarrow (I) moves the highlight bar down
one item to select the Window Menu item.
Displays the help screen for the Window Menu.
Pressing any key returns to the Help Menu.

You can continue displaying help screens for the menu system by
pressing G, S, V, and B to get help on the Go, Set, View, and Browse
Menus respectively. Press any key after each help screen is displayed
to return to the Help Menu.

Introduction 1-13

You can also get help on single key controls from the Help Menu by
selecting Function Keys, Navigation Keys, or Edit Keys. If you try
any of these, be sure to press a key after each help screen to return to
the Help Menu.

The Help Menu also contains an overview of debugger commands.
Select the Command Window item in the Help Menu to display this
help screen.

You should be at the Help Menu now.

Press these keys
in sequence:

To do this:

Esc Exits from the Help Menu. The debugger
returns to the Command Window with the
cursor blinking at the prompt awaiting a
command. The Esc key can be used to exit
from any menu.

FI The FI function key displays a screen of help
on all the function keys. The function key help
screen is the same as the function key help
screen on the Help Menu.

spacebar Pressing any key returns to the Command
Window at the command-line prompt.

Ctrl-PgUp (14
times)

Continue typing Ctrl-PgUp to expand the
Command Window to its maximum size.

Enter the HELP command (type help at the prompt and press the Enter
key): *

*hel p

1-14 Introduction

The debugger displays a list of topics on which you can get help:

Debug Hindoo Go Set Uieu Brouse Help
| 238

239 return(key): /* return with iten nunber selectefj

•help

HELP is available for:

ASH BASE BREAKPOINT BROUSEHENU CALLS CMDWINDOU
COMMANDS COMMENTS CONSTRUCTS COUNT CSTEP DEBUGHENU
DEFINE DEREFERENCE DIR DISPLAY DO EDIT
ENTRY EXCEPTIONS EXIT GO GOMENU HELP
IF INCLUDE INUOCATION ISTEP KEYBOARD LABELS
LINES LIST LOAD LSTEP MENU MODIFY
MODULES OBJECTS OPERATORS PORT PROCEDURES PSTEP
REALS REGISTERS REPEAT RSTEP SCOPE SETNENU
SOURCE
*

STACK TYPES UARIABLES UIEUMENU UINDOUMENU

nod: MEMU Proc: MAIM Line: U243 BRK

To get help on any of these subjects enter the HELP command again
followed by the subject. For example, to get help on the HELP
command enter the following command line at the prompt:

*belp help

The debugger displays help on the HELP command in the Command
Window and awaits another command at the prompt. If the help
information does not fit in the Command Window, the debugger
pauses after displaying the text that does fit. You can press F to
continue the output with no further pausing; L to display one line of
output at a time; or P to continue displaying a page of text at a time.

Introduction 1-15

1 .5 .4 S cro llin g th ro u g h S o u rce C o d e

The next part of the example illustrates scrolling through source code.

Press these keys To do this:
in sequence:

Ctrl-PgDn (14 Expands the View Window to its normal size.
times)

At this point, the screen looks like the following:

Debug Uindou Uieu Brouse Help

return(key):

raid far nainO

/* return with iten number selecte

/*==================;:==HAIM===============================:
This is the nain entry point for the entire EXAMPLE
program. If you are viewing this uith the DB86 debugger
try using the Grey- and Grey* keys to scroll the source
file in the uieu window. Grey* will restore the uiew
back to the current execution point (hori2ontal bar).
The FI key brings help. Alt-<firstletter> for menu.

int mi:
int done = FALSE:

IF
LINES
MODULES
REALS
SOURCE

INCLUDE
LIST
OBJECTS
REGISTERS
STACK

INUOCATION
LOAD
OPERATORS
REPEAT
TYPES

ISTEP KEYBOARD LABELS
LSTEP MENU MODIFY
PORT PROCEDURES PSTEP
RSTEP SCOPE SETHENU
UARIABLES UIEWMENU UINDOUHENU

Mod: MENU Proc: MAIN Line: B2d3

The source code for the MAIN procedure is currently in the View
Window. As shown on the status line at the bottom of the screen, the
current module is the MENU module; the current procedure is MAIN; and
the current line number is 243. The current execution point, line
number 243, is highlighted.

1-16 Introduction

Press these keys
in sequence:

To do this:

Grey - (several
times)

Scrolls the View Window up a line at a time to
go back through the source code in the current
module. Note that the thumbmark in the Break
Status Column indicates the current line as you
scroll through the source code.

Grey + (several
times)

Scrolls the View Window down a line at a time
to move forward through the source code in the
current module.

PgUp (several
times)

Scrolls the View Window up to go back through
the source a screen at a time. Press this key
several times to scroll to the start of the menu
module, examining the source code as you do.

PgDn (several
times)

Scrolls the View Window down to go forward
through the source a screen at a time. Press
this key several times to scroll to the end of the
menu module, examining the source as you do.

Grey * Returns the source view and thumbmark to the
current execution point (line 243 in this
example).

F6 Switches to the View Window as the active
window. (The Cycle Window item on the
Window Menu also switches the active window;
you would type Alt-W C to switch using the
menu.) Several more keys are available for
scrolling when the View Window is active.
Notice that the blinking cursor is now attached
to the thumbmark in the Break Status Column.
The B appearing next to line 243 indicates that
a breakpoint has been set on line 243. The
breakpoint was set by the macro file
EXAMPLE.MAC when you invoked the debugger.
(The GO TIL MAIN line in the macro file
actually set this breakpoint.) If you have a
color monitor, the active window is indicated
by the highlight color as well as the cursor.
The Break Status Column is now highlighted
instead of the Command Window.

Introduction 1-17

Press these keys
in sequence:

To do this:

Home Jumps to the beginning of the current module.

End Jumps to the end of the current module.

t (several times) Moves the cursor up to go back through the
source a line at a time.

1 (several times) Moves the cursor down to go forward through
the source a line at a time.

-* (several times) Scrolls the View Window right by one column.

* (several times) Scrolls the View Window left by one column.

Ctrl--* Scrolls the View Window right by 10 columns.

Ctrl-* Scrolls the View Window left by 10 columns.

Besides scrolling through a single module, you can also browse to
different source modules and then scroll through them as well. See
Chapters 3 and 4 for a description of browse commands and browse
keys (Ctrl-Home and Ctrl-End). See Chapter 2 for an example of
browsing. Pressing the Grey * returns you home to the current
execution point.

1.5.5 Setting a Breakpoint

Press these keys To do this:
in sequence:

Grey * Returns to line 243, the current execution point.
PgDn and 1 (until
the cursor blinks
on line 269)

Scrolls the View Window and moves the cursor
until the second case statement at line 267
appears on the screen and the cursor lines up
with line 269.

1-18 Introduction

The screen appears as follows:

Debug Window Go Set Uiew Brouse Help ..
254
255
256
257

/*--
Begin Nain Menu Key in Loop. 1
while(fdone) /* loop in nain nenu until done

258 <
259 /* get nenu iten number selected * /
260 mi = nenu_select(naintxtjnainitens):
261
262 switch (mi)
263
264 case NENU_ ITEH-ONE:
265 info_nenu()> /* shou EXANPLE information screen
266 break*
267 case NENU-ITEN-TWO=
268 blimp_f lyO*' /* fly a blimp for fun and profit H
269 break* !

IF INCLUDE INUOCATIOH ISTEP KEYBOARD LABELS j
LINES LIST LOAD LSTEP NENU HODIFY
NODULES OBJECTS OPERATORS PORT PROCEDURES PSTEP
HEALS REGISTERS REPEAT RSTEP SCOPE SETNENU
SOURCE
*

STACK TVPES UARIABLES UIEWNENU UINDOUNENU 1

dad: MENU Proc = NAIN Line: U243 BRK

Press these keys To do this:
in sequence:

Alt-S B Sets a breakpoint at line 269. Note that the F9
key is listed next to Breakpoint item on this
menu. The most often used menu commands
can be issued directly with a single key, as a
shortcut to using the menu system. The single
key is listed next to the corresponding menu
item, so you can easily learn the more direct
single key controls.

F9 (even number Does the same thing as using the menu in the
of times) previous step. Toggles the breakpoint on and

off. Be sure to leave it toggled on as shown in
the screen below. The letter B appears in the
Break Status Line next to line 269.

Introduction 1-19

The screen appears as follows:

Debug Uindou Go Set Uieu Brouse Help
254
255
256
257

Begin Ha in Nenu Keyin Loop. |

uhile(fdone) /* loop in nain nenu until done
258 < 1
259 /* get nenu iten number selected */ I
260 ni = nenu_select(naintxt>nainitens): H
261 H
262 suitch Cni) H
263 < H
264 case HENU_ITEH_0NE: 1
265 info_nenu(): /* show EXANPLE information screen1
266 break• 1
267 case NEHU-ITEH_TW0: H
268 blinp_fly(); /* fly a blinp for fun and profit

B 269 break■ 1

IF INCLUDE INUOCATION ISTEP KEYBOARD LABELS H
LINES LIST LOAD LSTEP NENU HOD IFY 1
NODULES OBJECTS OPERATORS PORT PROCEDURES PSTEP H
REALS REGISTERS REPEAT RSTEP SCOPE SETNENU |
SOURCE* STACK TVPES UARIABLES UIEW1ENU U1ND0UNENU |

Mod: MENU Proc: NA1N Line: 0243 BRK

See Chapters 3, 4, and 5 for descriptions of other ways to set
breakpoints. Also see Chapter 2 for further examples of setting
breakpoints.

1.5.6 Executing the Program

Press these keys To do this:
in sequence:

F5 Executes the EXAMPLE program until the
breakpoint set at line 269. (The Go Til
Breakpoint item on the Go Menu also does this
function; you would type Alt-G G to execute
the EXAMPLE program using the menu.)

1-20 Introduction

The screen is now controlled by the EXAMPLE program (i.e., the
program loaded for debugging). The EXAMPLE program displays the
following introductory screen and menu:

UELCONE to the DB86 Debugger Exanple Progran!

This EXAMPLE progran uses several separately conpiled and linked
nodules that illustrate the DB86 debugger's ability to perfom source
leuel debugging across several different progran nodules. The basic
idea is to use this EXAMPLE progran itself as the object of a DB86
tryout session. Firsti read all the info screens in this progran and
then exit back to DOS and try out DB86 by typing TRVIT. The nanes of
the nodules help to indicate the najor functions of the EXAMPLE progran
that are selected fron the nain EXAMPLE nenu. The MENU nodule contains
the nain nenu selection functions and the hex nenory dunp function.
The IMFO nodule contains functions to select and display various info
screens. The BLIMP nodule contains the function to fly a blinp on the
screen. The EXAMPIO nodule contains the I/O prinitive functions.

1 - Show Uarious DB86 Information Screens
2 - Fly a Blinp
3 - Dunp Menory in Hex
4 - Exit this EXAMPLE Progran

Press the nunber of your selection1

Press these keys To do this:
in sequence:

Selects the Fly a Blimp example from the menu.
This example displays an animated blimp with a
message about the debugger.

spacebar Pressing any key continues the EXAMPLE
program once the blimp message is done. But
the next step for the EXAMPLE program is line
269 where you had set the breakpoint. The
debugger takes control and returns to the
debugger screen display with the highlight bar
at line 269, the current execution point. At this
point, execution of the EXAMPLE program is
suspended, and the debugger is back in control.

Introduction 1-21

The screen appears as follows:

Debug Window Go View Browse Help
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

Begin Main Menu Begin Loop.

uhile(fdone){
/* get nenu iten nunber selected * /
ni = nenu_select(naintxtinainitens)'

switch (ni)

case HEMU_ITEn_OME =
info_nenu();
break;

case HENU-ITEN-TWO;
blinp_fly();

/* loop in nain nenu until done */

/ * shou EXAHPLE information screen

/* fly a blinp for fun and profit
g 269 break;

IF INCLUDE INVOCATION ISTEP KEYBOARD LABELS
LINES LIST LOAD LSTEP NENU NOD IFY
NODULES OBJECTS OPERATORS PORT PROCEDURES PSTEP
REALS REGISTERS REPEAT RSTEP SCOPE SETHENU
SOURCE
*

STACK TYPES VARIABLES VIEWNENU UINDOUNENU

1.5.7 Showing User Output

Press these keys To do this:
in sequence:

F4 You can switch between the debugger screen
and the screen from the program you are
debugging. This way, you can observe output
from the user program. (The Flip Screen item
on the Window Menu also switches the screens;
you would type Alt-W F to flip the screen
using the menu.)

1-22 Introduction

The screen appears as follows when it is flipped to the EXAMPLE
program:

* * * * * * * * * * * *

< The Bug Killer? >

I-:

==== Press any Key to Continue ====

I DB86!? :

* * * * * * * * * * * *

Press these keys To do this:
in sequence:

F4 Returns to the debugger screen.

The debugger also has an extensive set of features for examining
program data as the user program executes. See Chapter 2 for
examples of these features and Chapters 3, 4, and 5 for descriptions
of these commands.

Introduction 1-23

1.5.8 Exiting fro m th e D eb u g g e r

Press these keys To do this:
in sequence:

F6 Switches back to the Command Window.

At the prompt, enter the EXIT command to return to the operating
system:

*exit

You can also exit using the Exit DB86 item on the Debug Menu by
typing Alt-D E.

This command concludes the quick tour of the debugger. Chapter 2
has more extensive examples of debugger features, including a session
where you will track down a bug in the EXAMPLE program you have
just toured.

A DOS-executable version of the EXAMPLE program is provided in the
EXAMPLE.EXE file on the distribution disk. You can run it by entering
EXAMPLE at the DOS prompt:

C:\DB86>example

You may wish to run the program to see if you can notice what the
bug is. Hint: The bug is not in the Fly-a-Blimp procedure.

1-24 Introduction

Contents
Chapter 2 Debugging with DB86

2.1 Preparing a Program for Debugging...2-2
2.2 Invoking the Debugger...2-6
2.3 Loading a Program.. 2-8
2.4 Setting Breakpoints.. 2-10

2.4.1 Tracepoints...2-10
2.4.2 Breakpoints...2-12
2.4.3 Breaking on Access to D ata...2-13
2.4.4 Other Breakpoint Commands.. 2-14

2.5 Executing a Program...2-15
2.6 Observing the Output of a Program... 2-19
2.7 Examining and Modifying the Program.. 2-19
2.8 Examining and Modifying Data...2-22

2.8.1 Simple Ways to Display D ata.. 2-22
2.8.2 Advanced Techniques for Displaying Data....................... 2-23

2.8.2.1 Watch Expressions..2-24
2.8.2.2 Dereferencing Pointers..................................... 2-24
2.8.2.3 The EVAL Command....................................... 2-25
2.8.2.4 Dumping Memory... 2-25
2.8.2.5 Assembly-level Display of D ata..................... 2-26

2.8.3 Modifying Data... 2-26
2.9 Configuring the Debug Environment...2-27
2.10 Finding a Bug.. 2-28

Chapter 2
Debugging with DB86

This chapter describes typical debugging tasks and strategies for using
the debugger to accomplish these tasks. Examples are included
throughout to illustrate the steps involved. The tasks include:
• Preparing a program for debugging
• Invoking the debugger
• Loading a program
• Setting breakpoints
• Executing a program
• Observing the output of a program
• Examining and modifying a program
• Examining and modifying data
• Configuring the debug environment
• Finding a bug in a program

Figure 2-1 DB86 Screen with EXAMPLE Program Loaded

As shown in Figure 1-2 (see Chapter 1), the first three steps in
preparing a program for debugging are editing the source file,
compiling it, and linking it. If there is just a small amount of source
text, you can place it all in a single file, compile it (using the
compiler’s DEBUG control), and link it (using the linker’s BIND control).

Most often though, the source code is too elaborate to place in a
single source file. In this case, edit separate source files, compile
each one separately using the DEBUG control, and then link them
together using the BIND control. Typically, a make file or a batch file
can be used to automate the separate compiles and the linking.

2.1 Preparing a Program for Debugging

To illustrate this process, see Figure 2-2. The batch file shown here
compiles and links the EXAMPLE program used in the quick tour in
Chapter 1. The EXAMPLE program consists of several modules:
sysi nt is a low-level, interface subroutine written in ASM86.

It provides an interface to the DOS system interrupts
and connects the I/O functions in the exampio module
to the operating system.

exampi o provides a set of I/O services which the other modules
use to do screen and keyboard I/O.

The remaining modules make up the parts of the program that the
user sees:
menu is the main module and provides the C function main.

This module includes the menu selection for each
subroutine in the example. It also includes the
subroutines called to do the memory dump (menu item
3) and to exit from the EXAMPLE program (menu item
4) .

info is called to display various information screens about
the debugger (menu item 1).

bl imp is called to display the blimp on the screen (menu
item 2).

Each module of EXAMPLE is a separate source file that is compiled or
assembled as illustrated in Figure 2-2.

2-2 Debugging with DB86

echo off
rem
r e m --
rem MAKEIT.BAT - This batch file performs the necessary compiles
rem and links to make the EXAMPLE.86 and EXAMPLE.EXE files for
rem debugging with the DB86 source-level, symbolic debugger. This
rem batch file assumes that you have the Intel ASM86, iC-86,
rem LINK86, and UDI2D0S utilities available in the current DOS
rem path and that you have the source files for all the example
rem modules in the current DOS directory,
rem
rem Do the Assembly-language module:
rem

echo on
rem ================================= asm86 sysint.a86
asm86 sysint.a86 object(sysint.obj) debug
echo off
if errorlevel 1 goto end

rem
rem Do the C module compiles:
rem
rem The compiler invocation controls have the following meaning:
rem object - means produce an object file with the specified name,
rem ex - means extended keywords are recognized,
rem la - means compile with large memory model.
rem debug - means produce object file with debug information in it.
rem
echo on

rem ====================================== ic86 exampio.c
ic86 exampio.c object(exampio.obj) ex la debug
if errorlevel 1 goto end

rem ====================================== ic86 menu.c
ic86 menu.c object(menu.obj) ex la debug
if errorlevel 1 goto end

rem ====================================== ic86 info.c
ic86 info.c object(info.obj) ex la debug
if errorlevel 1 goto end

rem ====================================== ic86 blimp.c
ic86 blimp.c object(blimp.obj) ex la debug
if errorlevel 1 goto end
echo off

Figure 2-2 DOS Batch File for EXAMPLE Program: Part 1

Debugging with DB86 2-3

rem
rem Now link all the object files together,
rem

echo on
rem ====================================== link86
link86 cal 1 main.obj, & <example.lrf
echo off

rem
rem Finally, make a DOS-executable file,
rem

echo on
udi2dos example.86

rem
:end

Figure 2-2 DOS Batch File for EXAMPLE Program: Part 2

The batch file includes a step that illustrates linking the modules
together with LINK86.

In the batch file, note that list files are not produced by the C
compiler. For PL/M-86, Fortran-86, and Pascal-86 compilers, the
debugger gets its source code for the View Window from the .LST
file. So, when compiling with these languages, include the PRINT
control and create a . LST file. The debugger can use C source files
directly, so the debugger does not need the . LST files. The . LST
extension is the default when the debugger attempts to find the source
files. Thus, if you want to use the C source files during debugging,
change the default extension to .C (or whatever extension you use for
C source files). Use the Source Path entry in the Debug menu or use
the SPATH command to make this change. See the EXAMPLE.MAC file
for an example of using the SPATH command with C source files.

Another technique to note in the batch file is the use of a Link
Response File (LRF). See Figure 2-3. The LINK86 command line
from the batch file is as follows:

link86 cal 1 main.obj, & <exaniple.lrf

2-4 Debugging with DB86

sysint.obj,
exampio.obj,
menu.obj,
info.obj,
blimp.obj
to example.86

& /* system interface function */
& /* screen & keyboard I/O functions */
& /* main menu module for example program */
& /* show selected help info */
& /* fly a blimp */
bind ss(memory(+5000), stack(+5000))

Figure 2-3 Link Response File for EXAMPLE Program

The file CALLMA1N.0BJ is the first object file to be linked. CALLMAIN
contains a single instruction of startup code (i.e., a call to the main
procedure).

The file EXAMPLE.LRF contains the remainder of the LINK86
command line including the rest of the files to be linked, the output
file specification, and the LINK86 controls BIND, SS, and STACK.

The BIND control tells the linker to produce a loadable program file
(EXAMPLE.86) as output.

The SS and STACK controls make a larger stack segment. The default
size of the stack segment created by LINK86 is sometimes not large
enough if the C program makes use of I/O (e.g., as provided in the C
libraries).

Do not use the N0TYPE control during compiles, assemblies, or links.
Do not use the PURGE control during links. These controls make
user-program symbols and data inaccessible during debugging.

The latest version of LINK86 can produce DOS-executable (.EXE)
files directly. Thus, the UDI2D0S step shown in the batch file can also
be accomplished with another invocation of the linker. Note that the
.EXE files produced by the linker cannot be loaded and debugged with
DB86.

If your program uses overlays, you must specify the N0G0 (No Group
Overlay) control on the final link.

Now that EXAMPLE.86 has been compiled and linked, it is ready to be
debugged.

Debugging with DB86 2-5

2.2 Invoking the Debugger

The next step in debugging the program is to invoke the debugger.

There are a number of command-line controls for the debugger. See
Appendix B for more information on these controls. This section
contains several typical examples of debugger invocation lines.

The simplest way to invoke the debugger is to enter the command
name at the DOS prompt:

C:\DB86>db86

Then, use the menu system to load user programs to be debugged.

You can also invoke the debugger and load the user program from the
command line:

C:\DB86>db86 myprog.86 cmdoptl cmdopt2

Note that CMD0PT1 and CMD0PT2 are not debugger controls; they are
controls for the MY PROG program. Collectively, they are referred to as
the load file tail for the program being debugged. The load file tail is
ignored by the debugger and preserved for use by the program being
debugged. Thus, debugger controls must be specified on the
command line before the filename of the loadable program. The
name of the loadable program and its load file tail are the last items
that can appear on the command line:

db86 db86opt userprog load_file_tail

The first token on the command line that is not identifiable as a
debugger control is interpreted as the name of the user program to be
loaded. All tokens after that are interpreted as the load file tail for
the user program.

2-6 Debugging with DB86

In the next example, a program is loaded from the command line and
the debugger is set up for use with a 43-line EGA video adapter.

C:\DB86>db86 143 example.86

The L43 control requires an EGA video adapter; otherwise, it is
ignored. With this option, the debugger displays 43 lines allowing you
to see more source lines in the View Window. In this command line,
the program EXAMPLE.86 is loaded.

In the next example, the M0N2 debugger control sets up the debugger
to use a second monitor: one for debugger screens and the other for
user-program output. See Appendix C for more information on using
a second monitor.

C:\DB86>db86 mon2 macro(example.mac)

The macro file EXAMPLE.MAC is also included on the command line in
this example. It contains debugger commands that are automatically
executed as if they had been entered at the prompt in the Command
Window. Note that a load program is not specified on the command
line. In fact, the EXAMPLE.MAC file has the LOAD command line in it.
Macro files provide a convenient way to set up a debugging
environment that is unique to a given program. In this case,
EXAMPLE.MAC contains the following commands:

spath = .\,.c,.lst
load example.86
go til main

The SPATH command sets the source path to the current directory (.\)
and defines two source file extensions (.C and .LST). The LOAD
command loads the EXAMPLE program, and the GO command implicitly
sets a breakpoint at the mai n function and begins executing the
EXAMPLE program until that breakpoint is reached.

If a macro file is not specified on the command line, the debugger
automatically looks for a default macro file named DB86.MAC. If this
file is present, the debugger executes it as if it had been specified on
the command line. The default macro file provides a convenient way
to set up a global debugging environment that is not unique to a given
program (e.g., commands to define the number base or to set the
overlay break flag).

Debugging with DB86 2-7

The default macro file can be disabled by using the NOMR control on
the debugger command line:

C:\DB86>db86 nomr

2.3 Loading a Program

Previous examples have illustrated how to load a program directly on
the debugger command line and indirectly by including the load
command in a macro file that is specified on the command line.

Once the debugger has been invoked, you can still load a program to
be debugged using the LOAD command at the debugger command-line
prompt.

You can also load a program using the menu system by selecting the
Load item from the Debug Menu (press Alt-D L).

First, invoke the debugger as follows:

C:\DB86>dbS6

Press these keys To do this:
in sequence:

Alt-D L Pulls down the Debug Menu and selects the
Load item.

A pop-up menu is displayed on the screen for entering the name of
the file to be loaded. Enter the filename EXAMPLE.86 as shown in the
following screen. While you are entering the name, you can use a
standard set of editing controls. See Chapter 4 for more information
on line-editing key controls.

2-8 Debugging with DB86

Uindou Go Set Uieu Brouse He)p

r-E
m
Inter File Mane of Progran to Load:-
xanple.86

DOS 3.38 (844-D) DB86 U1.0
Copyright 1983,1988 INTEL CORPORATION
K

<No Progran Loaded>

The EXAMPLE program is loaded. Note that if the program you are
loading requires a load file tail, you can type it after the load
filename.

Another way to load programs once you have invoked the debugger is
to select the Reload item from the Debug Menu. This command
(press Alt-D R) reloads the most recently loaded program. The most
recent load file tail is preserved.

Press these keys To do this:
in sequence:

AJt-D E Exits the debugger and returns to DOS.

Debugging with DB86 2-9

Debugging involves controlling the execution of the user program:
running it, stopping it, examining data while it is stopped, and then
running it again.

To help with these activities, the debugger provides tracepoints,
breakpoints, and watchpoints.

2.4 Setting Breakpoints

2.4.1 Tracepoints

A tracepoint is a location in the user program. When execution
reaches that location, the program momentarily returns control to the
debugger, which then displays an announcement in the Command
Window. Then, the debugger resumes execution of the user program.
Every time execution reaches the tracepoint, the announcement is
displayed in the debugger Command Window.

A tracepoint can be defined using the menu system, using function
keys, or using a command line. The Tracepoint item in the Set Menu
(press Alt-S T) sets a tracepoint at the current source line. Scroll
through the source moving the thumbmark until you reach the line
where you want to set a tracepoint. Then, press Alt-S T to set it.
The sF9 function key also sets a tracepoint at the current source line.
The letter T appears in the Break Status Column next to the source
line where the tracepoint is set.

In the Command Window, the TR command can be used to set a
tracepoint at a specified location. With the TR command, you can also
define an expression that is evaluated every time the tracepoint is
reached. The result of the expression is included as part of the trace
announcement. For example, invoke the debugger using the TRYIT
batch file:

C:\DB86>tryit

2-10 Debugging with DB86

Enter the following command at the Command Window prompt to set
a tracepoint:

*tr0=:menu#265,'nri = ‘,:menu.main.mi

In this example, the tracepoint is set at line 265 in the MENU module.
This line is the first case in a switch statement. The variable mi is the
menu item chosen; this item is used to select one of the cases. In
other words, if the first menu item is selected, the variable mi is set
to 1 and the first case in the switch statement is executed.

Press these keys To do this:
in sequence:

Begins executing the program.
1 Selects the subroutine that shows various

information screens.
Esc Escapes from the subroutine.

In the Command Window, the string mi = is displayed as part of the
trace announcement followed by the value of the variable mi. The
trace announcement displayed in this case follows:

*[Trace at :menu#265] mi= +1

At a more advanced level, you can log Command Window activity to
a file using the LIST command and, thus, capture the trace
announcements, including the results of any expressions, for later
examination. See the LIST command in Chapter 5 for more
information.

Press these keys To do this:
in sequence:

Alt-D E Exits the debugger and returns to DOS.

Debugging with DB86 2-11

2 .4 .2 B reakp o in ts

A breakpoint is a location in the user program. When execution
reaches that location, the program stops executing and control is
restored to the debugger.

The debugger provides several kinds of breakpoints: temporary
breakpoints, fixed breakpoints, and conditional breakpoints.

Temporary breakpoints support the point-and-shoot technique of
debugging. Usually, they are set by scrolling to the source line where
the breakpoint is to be set and then pressing the F9 key to set it. The
F9 key also toggles a temporary breakpoint off if one is already set on
the current source line. A temporary breakpoint is indicated by the
letter B in the Break Status Column next to the source line where the
breakpoint is set.

Using the menu system, you can set a temporary breakpoint by
selecting the Breakpoint item in the Set Menu (press Alt-S B).
Temporary breakpoints are cleared by the next GO TIL command.

The debugger provides more powerful control over the execution of a
user program through fixed breakpoints and conditional breakpoints.
Both of these kinds of breakpoints are set using commands in the
Command Window.

A fixed breakpoint is defined with the FB command. These named
breakpoints are debug objects and are permanently set. They can be
enabled and disabled with the ENABLE and DISABLE commands. A
fixed breakpoint is indicated by the letter F in the Break Status
Column.

A conditional breakpoint is defined with the CB command. Like the
fixed breakpoint, it is a named debug object. It also has a boolean
expression defined with it to determine if the breakpoint is taken or
not. If the specified expression is true when execution reaches the
breakpoint, then the breakpoint is taken, and control is restored to the
debugger. If the expression is false when execution passes the
breakpoint, the breakpoint is not taken and user-program execution
continues. A conditional breakpoint is indicated by the letter C in the
Break Status Column.

2-12 Debugging with DB86

For example, if you set the following conditional breakpoint at line
268 of the MENU module, a breakpoint is taken only if the program
variable mi is equal to 2. Otherwise, execution continues and the
breakpoint is not taken.

*cbl = :menu#268,nri==2

All breakpoints can be cleared by selecting the Remove All item in
the Set Menu.

2.4.3 Breaking on Access to Data

The other breakpoint commands are associated with a location in
memory, which you must specify when you set the breakpoint.

Often, however, there is a need to stop execution of the user program
when a variable has reached a certain value. In this case, you
typically do not know in advance the memory address or
source-program location when this event occurs. In fact, most often,
you are trying to find the program location where the data is being
changed.

The debugger provides a strategy for breaking on access to data by
combining a conditional breakpoint with auto stepping. This feature
is commonly called a watchpoint.

A watchpoint is a way to stop program execution when a data item
that you are interested in reaches a value that you specify.

First, set a conditional breakpoint defining an expression that returns
a true if the data has a specified value and a false if the data does not
have that value. For example, if you want to know when a variable is
greater than 0, you would define a Boolean expression that returns a
true when the variable is greater than 0 (e.g., var > 0).

Typically, you would set the breakpoint at the a location that is
within the scope of the variable. For example, if it is a global
variable, you can set the breakpoint at the start of the module; if it is
a local variable, you can set the breakpoint at the start of the
procedure where the variable is defined. The auto step feature is
used for program execution. During auto stepping, the conditional
breakpoint is evaluated at every step.

Debugging with DB86 2-13

Then, select the Auto Step item from the Go Menu (press Alt-G A).
When the auto stepping begins, the conditional expression is evaluated
at every step. If the expression is true, a breakpoint is taken; if the
expression is false, the user program continues auto stepping.

Thus, you can discover where in your program the data is changed to
the specified value.

2.4.4 Other Breakpoint Commands

Temporary breakpoints can be cleared with the Clear At Cursor item
or the Remove All item, both on the Set menu. The F9 key
alternately sets and clears a breakpoint at the current line.

A temporary breakpoint is implicitly set by the GO TIL command after
all other temporary breakpoints are cleared.

Fixed breakpoints, conditional breakpoints, and tracepoints can be
enabled with the ENABLE command and disabled with the DISABLE
command.

The Break Status Column in the View Menu displays any breakpoints
that are currently set. This same information is provided by the DIR
command.

The debugger has several built-in breakpoints. First, it can
automatically break whenever an overlay is loaded, depending on the
value of the OBREAK flag. See Chapter 5 for more information on the
OBREAK flag.

The other built-in breakpoints are controlled by the value of the
SYSINT flag. See Chapter 5 for more information on SYSINT. For
example, the debugger can automatically break whenever the user
program attempts to exit and return to the operating system. Thus,
you can reload the program and continue debugging. Another
built-in breakpoint controlled by SYSINT is the SysReq key. Pressing
SysReq provides a way to break a runaway program. For instance, if
the program is in an infinite loop, press SysReq to stop it and return
to the debugger. The Ctrl-Break key does the same thing as the
SysReq key.

See Chapter 5 for more information on FB, CB, TR, and GO TIL.

2-14 Debugging with DB86

Besides setting breakpoints, the most common debugging activity is
executing a user program.

The Go Menu contains many of the go and step commands for
executing a program. Most of these commands have corresponding
function keys as well.

In the Command Window, you can use a more powerful version of the
GO command. Various forms of step commands are available as well.

The most commonly used commands for executing a user program are
the commands to step and to execute the program until the current
line is reached (go til cursor).

With one debugging strategy, you scroll and browse through the
source code in the View Window examining the code. At some point
during scrolling and browsing, you read a source line that is a good
candidate for the error. You then back up to a previous line and
press the F7 key to execute to a point just before the point where the
bug might appear. Following this strategy, you sequence through the
program getting closer and closer to the point where the bug actually
is.

The F7 key is the same as the Til Cursor Line item on the Go Menu
(i.e., Go Til Cursor Line).

With another debugging strategy, you scroll and browse through the
source code setting temporary breakpoints at several locations by
pressing the F9 key. Then, you execute the program with the F5 key
(the same as Go Til Breakpt item on the Go Menu). If execution
reaches any of the breakpoints set in the source code, the program
stops and returns to the debugger. At this point, you can check data
and program output to determine if the bug has occurred yet,
gradually closing in on the bug. This strategy is more of a shotgun
approach. You start out with widely separated breakpoints and
gradually narrow down to the bug by reducing the separation of the
breakpoints.

The debugger supports both of these techniques; usually both
strategies are combined when debugging a program.

2.5 Executing a Program

Debugging with DB86 2-15

The F8 key (line step) executes a single line of source at a time and
the F10 key executes a single procedure at a time. Both of these
commands are also used frequently during debugging.

If you are executing a program that gets caught in a loop or does not
pass through a breakpoint location, you can always stop execution and
return to the debugger with the SysReq key (or Ctrl-Break).

Type the following command at the DOS prompt to invoke the
debugger:

C:\DB86>tryit

This command loads the EXAMPLE program and runs it until the
temporary breakpoint at the main procedure is reached.

Press these keys To do this:
in sequence:

Grey + (to line
272)
F9
F5

3

00000400

Esc

F5
3
B0008000

Scrolls the View Window until the thumbmark
is set on line 272.
Sets a temporary breakpoint at this line.
Executes the program until the breakpoint is
reached.
Selects the third menu item to Dump Memory
in Hex.
Specifies the address of 0000:0400 as the
starting location of the memory dump.
Exits from the memory dump subroutine and
takes the breakpoint returning to the debugger.
Executes the program again.
Selects the Dump Memory in Hex menu item.
Specifies the address of B000:8000 as the
starting location of the memory dump. (This
location is the address of the memory used by
the CGA video adapter under DOS.)

2-16 Debugging with DB86

Note that the screen display now looks like this:

£2CDXItIIItII flenory Dunp = = = =

0000:8000 6C 05 E8 69 C6 E8 C4 F8 F8 C6 06 CF 02 00 C6 06 1— i — ...— —
0000:8010 D0 02 FF C6 06 05 03 00 8F 06 16 05

GO 06 1C 05 __ ___
0000=8020 8E IE BE 02 BE 16 30 00 8B 26 2E 00 E8 6E BC 2E
0000=8030 63 IE 05 58 58 58 B8 02 F2 50 2E FF 36 1C 05 2E -- XXX--------P ,-6— .
0000:8040 FF 36 16 05 2E 61 IE 05 CF 50 B8 FE 0D 2D EE 0D .6_______P______
0000:8050 3B CO 8B C7 73 07 2E 86 85 EE 0D 32 E4 2E 63 D2 i i/j i i I

0000:8060 02 58 56 BE 9E 0D E8 78 BD 5E C3 26 81 7E 0D F6 -XU----------- X - " - * - " —

0000:8070 0F 73 0B 81 FB F0 0F 74 04 81 FB F8 0F C3 83 FB -s— — t -----------------------

0000=8080 F8 C3 26 3B 5E 0D 77 26 E8 B6 00 72 IE 8B 3D 7S --------r— =u
0000:8090 0E 26 BB 76 0D 81 FE F6 0F 72 0C 0B FF EB 0C D1 - S - u -----r-----------------

0000:8080 EF D1 EF D1 EF D1 EF 81 E7 FF 0F 16 IF C3 26 C7
0000:80B0 46 IE FF FF 50 B4 88 36 C6 06 F7 02 08 BF FF 0F F— P— 6— ■■■■■■
0000:88C0 E8 06 FE 3C 03 F8 75 81 F9 58 C3 E8 77 B0 72 DB — <— u— X— u-r-
0000:8000 8B 35 74 0C 51 B1 04 D3 E2 59 81 E6 0F 00 EB 14 _5t-Q— v------
0000:80E0 26 81 7E 0D F6 0F 73 06 81 E6 00 F0 81 E2 FF 0F S* ■— S — — —
B000:80F0 EB 02 33 F6 0B F2 89 35 36 CS 36 74 05 80 4C 05 — 3----56-6 t-L-

==== H - Mext Screen; P - Preuious Screen; ESCape:

Notice that the memory addresses being displayed do not correspond
to the addresses specified; the addresses shown are in the lower 64K
bytes of memory. If you want to, you can continue pressing F5 to
run the program, select item 3, and try typing various address values
to confirm this bug.

Press these keys To do this:
in sequence:

Esc

Grey - (to line
103)
F7

3

Exits from the memory dump subroutine and
takes the breakpoint returning to the debugger.
Scrolls back to line 103 in the source module.

Executes the program until the current line (103
in this case).
Selects item 3 from the menu.

Debugging with DB86 2-17

Press these keys
in sequence:

To do this:

F0008000 Specifies memory address F000:8000 as the
starting address for the memory dump. (This
location is in the BIOS ROM on the PC
computer.)

The value entered (F000:8000) is stored in a variable called p tr. You
can further confirm the bug by typing the name of the variable in the
Command Window:

*ptr
OQO0H:8OOOH

The debugger responds by displaying the value of p tr. Note that,
although you entered F000:8000, the value of p tr is 0000:8000.

This is definitely a bug. Finding this bug is the topic of the last
section of this chapter. First, there are a few more commands to
cover.

Press these keys To do this:
in sequence:

Alt-D E Exits the debugger and returns to DOS.

2-18 Debugging with DB86

The user program that is being debugged may produce screen displays
as output. The debugger provides a way to share the screen with the
user program and avoid direct conflicts by allowing you to flip
between the user program screen and the debugger screen.

The F4 key alternately flips between the debugger screen and the user
program screen. The Flip Screen item on the Window Menu also
accomplishes this function.

Screen flipping is accomplished by the debugger in different ways
depending on the video adapter used in the system. See Appendix B
for more information.

You can also run the debugger with two video adapters and two
separate monitors. With this setup, you can simultaneously show the
user program screen on one monitor and the debugger screen on the
other. See Appendix C for more information.

2.6 Observing the Output of a Program

2.7 Examining and Modifying the Program

The two main debugger commands for examining the source program
are browsing and scrolling.

With scrolling, you can navigate through the current source module.
See Chapter 4 for complete information on all the navigation keys.

With browsing, you change to another source module. You can
browse through the set of all the modules in the program or you can
browse according to the modules on the callstack.

Debugging with DB86 2-19

Invoke the debugger with the TRY IT batch file:

C:\DB86>tryit

Press these keys To do this:
in sequence:

Ctrl-End (5 times) Starts browsing through the set of modules.
Note that the status line changes to reflect the
module that you are currently browsing
through. Stop when you get to the exampio
module. Ctrl-Home browses back through the
module set in case you miss it.

Grey + (to line Scrolls to line 116.
116)

At this point, the screen looks like the following:

Debug. Hindoo Go Set Uieu Brouse Help
111
112
113
114
115
ns
117
118
119
120
121
122
123
124
125
12S

REGSTRUCT reg:

reg.bx = 0* *
reg.dx = (rou « 8) + col;
reg.ax = UIDEO_PUTCUR;
uideoCSreg):

/* register structure */

/* uideo urite char c * /

clear screen.

uoid far clsC){
REGSTRUCT reg:

reg.bx = 0x0700:

/* register structure * /

Copyright 1983,1988 INTEL CORPORATION
•spath = .c,.1st
*load example.86
•go til main
(Break at =HENU#243 l

tBrousing] Nod: EXAHPIO Proc= TOUPPER Line: iJ24

2-20 Debugging with DB86

Press these keys
in sequence:

To do this:

F7 Executes the program until line 116 of the
exampio module.

Alt-V C Displays the current callstack. Note that the
program is currently executing several levels
deep in the callstack.

spacebar Pressing any key continues.
Alt-B C Turns on callstack browsing. Note that the

status line at the bottom of the screen displays a
message indicating that callstack browsing is
turned on.

Ctrl-End (several
times)

Browses through the modules in order as they
appear on the callstack. Note that as you
browse from module to module the module
name on the status line changes. Note also that
the View Window thumbmark is set to the
returning location. Thus, you can easily back
out of a series of calls and set a breakpoint to
stop after those calls have completed and
returned. Pressing Ctrl-Home takes you back
through the callstack modules.

Grey * Returns to the current execution point from
browsing or callstack browsing.

Alt-D E Exits from the debugger.

The Browse Menu also contains three search items (Find, Next Find,
and Previous Find). The debugger searches the current source module
for the specified string.

The Scope item on the Browse Menu allows you to browse directly to
the module and procedure or line number that you specify instead of
using the Ctrl-Home and Ctrl-End navigation keys.

Debugging with DB86 2-21

At a more advanced level, you may need to debug at the
assembly-language-instruction level. The debugger provides the
ability to view source with disassembled code by pressing the F3 key.
In addition to showing disassembled code, you can toggle on the
Register Window and display the processor registers by pressing the
F2 key.

Using the Command Window, you can enter the ASM command to
dump memory as disassembled code. This command provides a
similar view of your code as toggling on the disassembled display in
the View Window.

To modify and patch the program, use the ASM command to assemble
directly into memory. See Chapter 5 for more information on this
powerful feature.

2.8 Examining and Modifying Data

Examining and modifying data are important aspects of debugging.
Many different ways of looking at data are provided by the debugger.

2.8.1 Simple Ways to Display Data

At the simplest level, the Expanded Calls item on the View Menu
provides a way to look at the local variables in procedures that appear
on the callstack. The Locals item on the View Menu lists the values
of variables in the current procedure.

In the Command Window, you can enter the symbol name and the
debugger shows its value in the current number base. If the variable
is not in the currently executing procedure, you may have to qualify
the reference by prefixing the module name and/or procedure name.

2-22 Debugging with DB86

You can prefix the variable name with the dot operator to show the
address of the variable as opposed to its value.

For example, if sysreg is the name of a structure in a C program
with a tag of REGSTYPE, then the following command shows the value
of that structure:

*sysreg
REGSTYPE (s tru c tu re

AX 0200
BX 0000
CX 4848
DX 0000
SI 47D1
DI 0010
DS 1446
ES 4540

)

With the dot operator, the debugger returns the address of the sysreg
structure:

* sysreg
4540H:1426H

The DIR command entered at the command line shows symbol names
and types.

2.8.2 Advanced Techniques for Displaying Data

As described earlier, watchpoints and tracepoints both help you to
monitor data. Watchpoints, using the conditional breakpoint and auto
step features of the debugger, allow you to break when an expression
is evaluated to true thus providing a further level of control over
examining data. Tracepoints defined in the Command Window with
an expression as part of the announcement provide yet another way to
examine user-program data.

Debugging with DB86 2-23

2.8.2.1 Watch Expressions

Watch expressions, defined at the command line with the WA command
and then viewed in the Watch Window, provide an effective way to
observe program data. The watch expression can contain program
variables or conditions and is evaluated at every breakpoint, every
step, and at every tracepoint. The value is automatically updated and
displayed in the Watch Window, so you can monitor and observe
changes in the program data.

2.8.2.2 Dereferencing Pointers

One of the most important advanced methods of displaying program
data uses the technique of dereferencing a pointer. For example, if
you wanted to view the sysreg structure, but did not know its name,
you might still be able to display it using the dereferencing operator.

If you knew that a pointer named regp pointed to the sysreg
structure, you could dereference the pointer to display the structure:

*regp
4741H:0157H
*regpA
REGSTYPE (structure
AX 0200
BX 0000
CX 4848
DX 0000
SI 47D1
DI 0010
DS 1446
ES 4540

)
ic

The first command displays the value of the pointer (i.e., an address).
The second command (regp^) displays the structure pointed to by the
pointer.

The dereferencing operator can be used as part of expressions to
provide a powerful method for displaying program data.

2-24 Debugging with DB86

Dereferencing can be combined with other operations to select and
view data. For example, if you want to display the value of a
member of a structure but do not know the structure name, you can
dereference a pointer to the structure and still access the structure
member:

*regpA."ax
0600

In this example, the value of ax, a member of a structure pointed to
by regp is displayed. Note that the double quotes before ax are used
to access ax from the user program instead of the reserved word AX
which is the name of a processor register. Normally, the double
quotes are not needed. See Appendix F for a list of reserved words.

2.8.2.3 The EVAL Command

Another advanced command for displaying data is the EVAL command.
This command evaluates an expression that you specify and displays
its value in all number bases and as a string. The expression can
contain debug objects as well as program symbols and variable names.
If you evaluate an address, the EVAL command displays the module
and procedure the address is in. See Chapter 5 for more information.

2.8.2.4 Dumping Memory

Another feature that the debugger provides for examining data is the
ability to dump memory through its mtype commands. By specifying
a type, followed by an address (or symbol name that evaluates to an
address), followed by a length, you can display blocks of memory
using the mtype as a template for displaying the memory. For
example, the following command displays eight bytes of memory as
bytes starting at the address of line 168:

*byte #168 length 8

The following command displays three pointers from memory:

*pointer argv length 3

See Chapter 5 for more information on mtype commands.

Debugging with DB86 2-25

2.8.2.5 Assembly-level Display of Data

At times, it may be necessary to debug at the assembly-language level.
The debugger provides the F3 key to toggle disassembly display. And
you can toggle on the Register Window (F2) to display registers and
flags.

2.8.3 Modifying Data

The debugger provides an assignment command so that you can
modify data in the program you are debugging.

For example, you can assign a new value to a loop counter. The new
value might reset the counter to start the loop over again, or it might
change the value so that the loop ends. In the Command Window,
enter the symbol name followed by an equal sign and the new value.
In the following example, i is a loop counter and you want to assign a
new value to i so you can get out of the loop and continue executing
elsewhere:

*i=9999

In another case, you can find a bug in a program where you have
used the wrong pointer variable. By reassigning the correct value to
the pointer, you can confirm the bug.

You can also change the values of registers since the debugger has
built-in names for them. Note, however, that changing register values
can produce unexpected results (e.g., if you change the instruction
pointer or reset the stack pointer).

2-26 Debugging with DB86

2.9 Configuring the Debug Environment

The debugger includes many features for configuring the debug
environment. Macro files allow you to set up a global debug
environment or to customize the environment for debugging a
particular program.

Include files serve the same purpose as macro files. They are text
files that contain debug commands. When you use the INCLUDE
command to process one of these files, the commands are executed as
if they were entered in the Command Window. With this facility, you
can automate portions of the debugging effort.

The LIST command lets you save the Command Window screen
display so you can keep a record of the debug session. You save the
display to a text file which you can examine later. The logging
feature also allows you to save trace announcements in a file to be
examined later.

The debug environment can be further configured with command-line
(invocation) controls that allow you to set preferences and take
advantage of additional video adapters. See Appendix B for more
information.

Debugging with DB86 2-27

2.10 Finding a Bug

In this section, you can follow along with the steps taken to find the
bug in the EXAMPLE program.

As discovered in a previous example, the bug is in the Dump Memory
subroutine. No matter what you specify as the selector part of the
address, the subroutine uses 0000. Thus, you cannot dump memory
above the first 64K bytes.

First, invoke the debugger:

C:\DB86>tryit

Press these keys To do this:
in sequence:

Grey + (to line Scrolls to line 271. Keep pressing the Grey +
271) until the thumbmark is at line 271.
F7 Executes the EXAMPLE program starting at the

current execution point until the current line
(271 in this case) is reached. The program
displays the main menu before the breakpoint is
reached.
Another way to execute to line 271 involves
two steps. First, use the F9 key to set a
temporary breakpoint at the current line and,
second, use the F5 key to execute to the
breakpoint. The F7 key combines these two
steps, setting a temporary breakpoint at the
current line and then executing the program.

3 Selects the memory dump subroutine from the
menu. Then, the program reaches line 271 and
breaks.

2-28 Debugging with DB86

At this point, the screen looks like the following:

Debug Window Go Set Uieu Brouse He 1p
266 break:

1 267 case HENU_ITEN-TWO: U
268 blinp_fly(): /* fly a blinp for fun and profit
269 break: |
278 case HENILITEN-THREE: 1

ii] 271 nenu_nendunp(): /* dunp nenory in hex */ |
272 break:
273 case HENU_ITEH_FOUR:
274 case MENU-EXIT: /* ESCape key pressed *✓
275 done = TRUE: /* exit back to DOS »/
276 break:
277 default:
278 beep(): /* inualid selection) so beep */
279 break: II
288 > 1
281 > 1■*

Copyright 1983,1988 INTEL CORPORATION
■spath = .V,.Ci.1st
■load exanple.86
■go til nain
[Break at :NEMU#243 1
*
nod: MENU Proc: NAIN Line: #271 BRK

Press these keys To do this:
in sequence:

F9 (several times
leaving the
breakpoint off)

F8

Toggles the temporary breakpoint off and on.
As the breakpoint is toggled on and off, the
letter B appears and disappears in the Break
Status Column next to line 271. Note that the
Break Status Column is to the left of the View
Window.
Steps to the next source line in the program
which is inside the menujnemdump subroutine.
The F10 key also steps, but it steps over a
procedure and not into it. The F10 key
executes the called subroutine and breaks after
it returns while F8 breaks at the first
instruction inside the subroutine.

Debugging with DB86 2-29

The View Window is updated to display the new current location:

I

Debug Hindoo Go Set Uieu Brouse Help
86 u
87 /*------------------------------------ ----------------------------- 1
88 nenu_nendunp - ask for start paragraph and dunp nenory in hex.

1 89
98 uoid nenu_nendunp() 1

K 9
92 int done = FALSE: |
93 char *ptr: 1
94 unsigned int key:
95 1
96 cls(): 1
97 putcur(12,5): 1
98 stout("==== HEX/ASCII Henory Dunp ==:==");
99 putcur(13j5): 1
100 stoutCEnter Starting Address in Hex (eg, 0000:0000): "):
101 ptr = inptr(): *

Copyright 1983,1988 INTEL CORPORATION
*spath = v,.Cj.1st
f#load exanple.86
kgo til main
£ Break at, :NENU#243 1 J
Hod: riENU Proc: nENUJIENDUNP Line: jjgi STEP

Press these keys To do this':
in sequence:

Alt-V C

spacebar
sFI

spacebar
F8

Displays the current callstack. Note that, in
this case, the program is not inside the
menu_memdump procedure yet. Thus, the
callstack is empty and the debugger returns a
brief error message.
Pressing any key continues.
Displays additional help on the last error
message. In most cases, this command provides
a more extensive help message than the message
shown when the error occurs. In effect, this
command is a way to ask for more help on the
most recent error. It is the same as selecting
the Last Error item on the Help Menu.
Pressing any key continues.
Steps again to line 92.

2-30 Debugging with DB86

Press these keys
in sequence:

To do this:

F10 Steps to line 96.
Alt-V C Displays the callstack again. This time, there

are several procedures listed on the stack.

The callstack screen looks like the following:

Debug Window Go Set Uieu Brouse Help

C0J :HEMUfl% HEflUJIEHDUttP
(1) :nEMU»272 HAIM
(2) :CALLnAIt«5

'

=== PBESS AMV KEY TO COMTIMUE ===

Hod: HEMU Proc = flEMUJIEfIDUnP Line: 11%

Press these keys To do this:
in sequence:

spacebar Pressing any key continues.
F10 (2 times) Steps over subroutines that clear the screen and

position the cursor. There is no need to step
through these since they probably have nothing
to do with the bug.

Debugging with DB86 2-31

Press these keys
in sequence:

To do this:

Scrolls the thumbmark to line 101, past a few
more lines of code that are not relevant to the
bug. Line 101 contains an assignment to the
variable ptr. The p tr variable contains the
starting address that you specify for the
memory dump subroutine. This line may be
related to the bug that was discovered.

F7 Executes until the current line (line 101) is
reached.

F4 Flips to the user-program screen to show that
the menu screen has been cleared and now a
prompt for a starting memory address is being
displayed. You have not yet typed the start
address value and the assignment to the variable
p tr has not been done yet.

Grey + (3 times to
line 101)

The memory dump screen looks like the following:

==== HEX/ASC11 Henory Dunp ====
Enter Starting Address in Hex (egj 0000:0000):

2-32 Debugging with DB86

Press these keys
in sequence:

To do this:

F4 Flips back to the debugger screen.
Grey + (2 times to
line 103)
Alt-G T

Scrolls the thumbmark to line 103, the next
source line.
Uses the menu system to execute the user
program until the current line (line 103) is
reached (the same as the F7 key used above).
An alternate way to execute to line 103 involves
two steps. First, set a breakpoint at line 103
and, second, execute until the breakpoint is
reached. The Breakpoint item on the Set Menu
can be used to set the breakpoint at line 103,
and the Go Til Breakpt item on the Go Menu
can be used to execute until that breakpoint is
reached (the same as using the F9 key followed
by the F5 key).

At this point in the example, the user program is in control. The user
program displays the prompt for the starting address and waits for
you to enter the starting address for the hexadecimal memory dump.

Press these keys
in sequence:

To do this:

B0008000 Specifies the address of B000:8000 as the
starting address of the memory dump. The user
program then reaches line 103 and returns
control to the debugger.

At this point, the p tr variable should have been assigned the start
address that you specified (B000:8000). Type the following command
at the prompt in the Command Window to display the value of the
p tr variable: *

* p t r
0000H:8000H

Debugging with DB86 2-33

Note that even though you specified B000 as the segment selector, the
p tr variable contains 0000 for this value. So, the bug must occur at
line 101 of the source code:

101 p tr = in p t r () ;

This line assigns the p tr variable the value returned by the function
inp tr. Somewhere within the irip tr function, the value that you
specified is getting lost.

To find out where the in p tr function is, type the following command
at the prompt in the Command Window:

eval .inptr procedure
:EXAMPI0.INPTR

As shown, irip tr is in the exampio module. To take a look at the
source code, browse to this module. Instead of using the Ctrl-End
navigation key, use the Scope item on the Browse Menu; it lets you
browse to a known location.

Press these keys To do this:
in sequence:

Alt-B S Selects the Scope item on the Browse Menu.
This item prompts for the name of a module
and procedure.

:exampio.inptr Browses to the specified module and procedure.
Enter

2-34 Debugging with DB86

The screen display looks like the following:

Debug Uindou Go Set Uieu Brouse Help
315
316 /,===========.==
317 inptr - input a seg:off pointer fron user and return it to caller.31B =================̂ ===

»ptr
a n n n u * q qqqu□uDon • oooori
«eual .inptr procedure
:EXAHPI0.INPTR
*
[Brousing3 Hod = EXflMPIO Proc= IHPTR Line: 8320

319 char *inptr()
320 {
321 char *ptr:
322 unsigned long du*‘
323
324

unsigned int nib:

325 nib = inhnibO:
326 du = (long)(nib « 20):
327 nib = inhnibC):
328 du := (longHnib « 24):
329 nib = inhnibC):
330 du := (long)(nib « 20):

You can scroll through the code from line 316 to line 346 to see what
the in p tr subroutine is doing. First, it inputs a segment:offset
address (8 characters long) a character at a time in the nib variable
and accumulates these characters in the dw variable by shifting them
left. Then, at the end, the dw variable is converted to a pointer and
assigned to the p tr variable. This p tr value is then returned to the
caller.

The next step in finding the bug is to start executing this subroutine.

Debugging with DB86 2-35

Grey + or Grey - Scrolls the thumbmark to line 326.
(tc line 326)
F7 Executes the memory dump program until line

326, starting where it left off before at line 103
in the menu module. At that point, you had
typed in the starting memory address. Now,
the memory dump program displays the
memory at that location.

The user program is now in control and the screen display looks like
the following:

Press these keys To do this:
in sequence:

==== Hexidecinal/ASCII
0000:8000 6C 05 E8 69

Menory Dunp
C6 E8 C4 F8 FA C6 06 CF 02 80 C6 06 j__j_______________________

0000:8010 D0 02 FF C6 06 05 03 00 8F 06 10 05 8F 06 1C 05 ______________________ - _____

0000-8020 8E IE DE 02 8E 16 30 00 8B 26 2E 00 E8 6E BC 2E ------0— a,— n-.
0000:8030 83 IE 05 58 58 58 B8 02 F2 50 2E FF 36 1C 05 2E — XXX— P , -6— .
0000:8040 FF 36 1A 05 2E 01 IE 05 CF 50 B8 FE 0D 2D EE 0D -6------ P------
0000:8050 3B F8 8B C7 73 07 2E 80 85 EE BD 32 E4 2E A3 D2 i — s- • — — 2- ■—
0000:8060 02 58 56 BE 9E 0D E8 78 BD 5E C3 26 81 ?E BD F6 -xu—
0000:8070 0F 73 0B 81 FB F0 0F 74 04 81 FB F8 0F C3 83 FB —s--------------1-----------------------

0000:8080 FB C3 26 3B 5E 8D 77 26 E8 BA 00 72 IE 8B 3D 75 — a :^-u8-— r— =u
0000:8090 0E 26 8B 76 0D 81 FE F6 0F 72 0C 0B FF EB BC D1 _«_u--------------r ------------------

0000:8060 EF D1 EF D1 EF D1 EF 81 E7 FF 0F 16 IF C3 26 C? ------------------a-
0000:80B0 46 IE FF FF 50 B4 88 36 C6 06 F7 02 08 BF FF 0F F--------P— 6-----------------------

0000:80C0 E8 08 FE 3C 03 F8 75 01 F9 58 C3 E8 77 80 72 DB — <— n— X— u-r-
0000:80D0 8B 35 74 0C 51 B1 04 D3 E2 59 81 E6 0F 00 EB 14 -5t-Q-----------Y------------------

0000:80E0 26 81 7E 0D F6 0F 73 00

G
O E6 00 F0 81 E2 FF 0F s — — — ■

0000:80F0 EB 02 33 F6 0B F2 89 35 36 C5 36 74 05 80 4C 05 — 3-----------56-6 t-L-

==== (1 - Next Screen: P - Previous Screen: ESCape'-

2-36 Debugging with DB86

Press these keys
in sequence:

To do this:

Esc Escapes from the memory dump program and
returns to the main menu of the EXAMPLE
program. The memory dump program is
completed.

3 Selects the memory dump program again from
the menu, displaying the prompt for a starting
address. To reach line 326 where the
breakpoint was set so you can continue
debugging, you must run the memory dump
program again.

F Specifies the first character of the segment
offset. Then, the program reaches line 326 and
breaks.

At the prompt in the Command Window, enter the following
command to check the value of the nib variable:

*nib
000F

The nib variable inputs the key you typed at the keyboard. As
shown, nib is getting the correct value as you typed it.

Press these keys To do this:
in sequence: * *

F8 Steps to the next line of the program where the
value in the nib variable is shifted left and

^assigned to the dw variable.

At the prompt in the Command Window, enter the following
command to show the value of the dw variable:

*dw
00000000

This variable should be F0000000, so something happened during the
assignment.

Debugging with DB86 2-37

To observe this condition in further detail, set up a Watch Window
for nib and dw by entering the following commands at the prompt in
the Command Window:

*waO=nib
*wal=dw

A Watch Window is opened below the menu bar and the values of the
two watch expressions are displayed.

Debug Hindoo Go Set Uieu Brouse Help
nib ■ 000F "

Ldu : 00000000

i 321 char *ptr-' 1
322 unsigned long du-‘ 1
323 unsigned int nib-' H
324 1
325 nib = inhnibO: 1

P 326 du = (long)(nib « 28):

■ 328 du != (longHnib << 24):
329 nib = inhnibi):
330 du != (long)(nib « 20): H
331 nib = inhnib(): II
332 du i= (long)(nib « 16): |

! 333 cout(':'): ♦
000F
*du
00000000
«ua0=nib
*ual=du

♦

H
Mod: EXAMPIO Proc-’ IMPTR Line: U327 STEP |

2-38 Debugging with DB86

Press these keys
in sequence:

To do this:

F10

9

F10 F10 8
F10 F10 7
F10 F10 F10 I
F10 F10 2
FIO F10 3
F10 F10 4

F10 (2 times)

Steps over the next line of the program and
flips to the user-program screen, displaying the
prompt again. The memory dump program is
ready to accept the next character of the
segment offset.
Specifies the next character of the segment
offset. Notice in the Watch Window that the
nib variable is correctly set to 9 but dw remains
at 0.
Steps through the program as you specify the
remaining characters of the address. After each
step, observe the values of nib and dw in the
Watch Window. The nib variable is getting the
correct value as you type it, but dw never
accumulates these values until it gets to the
lower word (i.e., the offset part of the address).
The segment part of the address remains set to
0.
Executes the next two steps until you reach line
345.

At the prompt in the Command Window, type the following command
to check the value that was assigned to the p tr variable, confirming
that it is incorrect: *

*ptr
0000H:1234H

Debugging with DB86 2-39

Press these keys
in sequence:

To do this:

F5 Executes the memory dump program to display
Esc the memory specified; returns to the main menu
3 of the EXAMPLE program; selects the memory
F dump subroutine from the menu; and specifies

the first character of the segment offset.

You already discovered that the bug first occurs
in line 326. To look at this bug more closely
requires assembly-language debugging. The
commands you just typed execute the memory
dump program again until line 326 is reached.
The breakpoint is still set at this line from a
previous step.

F2 Turns on the Register Window and displays
F3 disassembled code in the View Window. Note

the current execution point is the first
assembly-language statement that makes up line
326.

The View Window now displays the disassembled code for each source
line:

1 Debug Uindou Go Set Uieu Brouse Help
nib : 000F
du : 00310020 AX-' 000F

BX= 1434
| 325 nib = inhnibO; Q : 0046
1 79E1H:061FH 0E PUSH CS DX= 1D31

79E1H:0620H E841FF CALL S-00BCH ; A=0 SI- 0000
1 79E1H:0623H 8946F6 nou IBP-0AH1,AX DO 0000

326 du = (longMnib « 28); BP= 146C
* VUtlH:0b2bH HittbFb nou AX» tBP-BAHl | SP: 1462

79E1H:0629H B11C nou CLilCH ; +28T SS= 775A
79E1H:062BH D3E0 SHL AX,CL DS: 1D31
79E1H:062DH DrtQQfJQDnOuuo nou DX,0 ES: 775A
73E1H:0630H 8946F8 nou IBP-08Hi,AX CS: 79E1
7SE1H:0633H 8956FA nou IBP-06H1,DX IP: 0626

327 nib = inhnibO; odlszapc
79E1H:0636H 0E

~ J— " ' “ _=
PUSH CS — ^1 1 11 ' 4 DBHb

B0008000 U1.0
>ua0=nib
*ual=du
*ptr
J0000H: 1234H

Mod: EXAHP10 Proc IHPTR Line: |J326 BRK |

2-40 Debugging with DB86

Press these keys
in sequence:

To do this:

F8 (2 times) Executes the next two assembly-language
instructions. The line step command steps
through the source lines as they are displayed in
the View Window. If assembly-language
instructions are shown, this command steps one
instruction at a line. If high-level, source code
is displayed, it steps one source statement at a
time.
Notice the values of registers in the Register
Window as you step. The character F that you
typed is moved into the AX register and the
shift counter of 1CH (28T) is moved into CL.

F8 Executes the next assembly-language
instruction, which is the instruction that shifts
the value left 28 times. Notice, however, that
the shift left is occurring on AX, a 16-bit
register. If you shift a 16-bit value left 28
times, the value is shifted out of the register.
And as observed, the AX register changes to 0.

F8 (3 times) Executes the next two assembly-language
instructions. Notice that the value of dw in the
Watch Window changes to 0.

Re-examine the source line number 326:

dw = (long) (nib « 28);

This line is intended to convert nib, an unsigned in t, into a long, a
32-bit unsigned variable. After conversion, it should shift the value
left 28 times. What is actually happening is that nib is shifted left 28
times (and lost) and, after being shifted, it is converted to a 32-bit
long and assigned to dw. The last three assembly-language instructions
make this conversion and assignment.

Debugging with DB86 2-41

To accomplish its intended purpose, the source line should read as
follows:

dw = (long)nib « 28;

The parentheses around the nib « 28 expression cause it to be
evaluated first before the conversion. Taking these parentheses out
solves the problem and allows the conversion to take place first.

As you scroll through the View Window, note that this same error
occurs in lines 328, 330, 332, 335, 337, and 339. The bug does not
have any effect in lines 335, 337, and 339, the offset part of the
address because, in these lines, the value is shifted left less than 16
times. In these cases, nib is long enough for the shift operation.

Now, that the bug has been found, enter the following command to
exit from the debugger:

*exi t

In the development applications process, illustrated in Figure 1-2, the
next step is to edit the source files with a text editor and re-compile
and re-link to created a corrected object file that you can continue to
test and debug.

The remaining chapters in this manual provide reference information
on the menu system, the keyboard controls, and the commands that
can be entered in the Command Window.

2-42 Debugging with DB86

Contents
Chapter 3 DB86 Menu System

3.1 Introduction..3-1
3.1.1 Starting the Menu System..3-2
3.1.2 Selecting Commands from the Menus..................................3-2
3.1.3 Exiting from the Menu System... 3-3

3.2 The Debug Menu (Alt-D)..3-4
3.3 The Window Menu (Alt-W).. 3-7
3.4 The Go Menu (A lt-G)...3-11
3.5 The Set Menu (Alt-S)..3-15
3.6 The View Menu (Alt-V)..3-17
3.7 The Browse Menu (Alt-B)...3-19
3.8 The Help Menu (A lt-H)..3-23

Chapter 3
DB86 Menu System

3.1 Introduction

The debugger menu system is represented on the screen by the Menu
Bar across the top line of the display. Once started, this menu system
offers an easy way to do common debugging tasks. You do not have
to remember command syntax or even command names. Just select
the commands from the menus.

Generally, the menu system proves most useful when you are learning
the system. Once you know how to use the system, you can turn the
Menu Bar off and use function keys or commands most of the time.

This chapter describes the menu system. Each menu item is described
separately.

Debra Uindow Go

)0S 3.20 (044-D) DB86 U1.0
:opyright 1983,1988 INTEL CORPORATION

<No Program Loaded>

Figure 3-1 Debugger Screen with Help Menu

In the following descriptions of the menus, cross-references to similar
keyboard controls and encyclopedia entries are listed after the menu
item descripton. Keyboard controls are described in Chapter 4 while
encyclopedia entries are in Chapter 5.

3.1.1 Starting the Menu System

There are two ways to activate the menu system:
Alt-M activates the menu system. The entire Menu Bar is

shown in the highlight color on color monitors. The
first pulldown menu name (Debug) is shown in reverse
video on all monitors.
To select a pulldown menu, use the leftarrow (<-) and
rightarrow (-») keys to highlight the desired menu in
the Menu Bar. Press enter to select the highlighted
pulldown menu. The selected menu is pulled down on
the screen under the menu name to show the items
available on that menu.

Alt-x activates the menu system and directly selects the
specified menu, x is the first letter of the name of a
pulldown menu. The leftarrow («-) and rightarrow (-»)
keys can then be used to cycle through the neighboring
menus after one has been selected.

3.1.2 Selecting Commands from the Menus

There are two ways to select an item from a pulldown menu:
• Use the uparrow (t) and downarrow (I) keys to highlight the

item desired on the pulldown menu and press the enter key to
select the highlighted item. You can also use the Home and End
keys to jump to the first and last menu items, respectively. •

• Type the first character of the name of the item as it appears on
the pulldown menu.

3-2 DB86 Menu System

Any menu item followed by ellipses (...) prompts for additional
information. Enter the information requested in the pop-up window
to complete the function. A standard set of line-editing controls can
be used when entering information at the prompt. See Chapter 4 for
more information.

3.1.3 Exiting from the Menu System

When the menu system is active, press the ESC key to exit from it.

If you are entering text at a prompt after you have selected a menu
item, press ESC once to clear the prompt and then press ESC again to
exit from the menu system.

If you have already selected a menu item, the debugger automatically
exits from the menu system when the function is complete. The
exception is the Help Menu; the debugger returns to the Help Menu
after displaying the requested help. To exit from the menu system
when you are in the Help Menu, press ESC or explicitly select the
Quit Help menu item.

DB86 Menu System 3-3

The following screen shows the Debug Menu:

3.2 The Debug Menu (Alt-D)

The Debug Menu contains utility commands for initializing the debug
environment, running DOS commands, and exiting from the debugger.
Load Program ... prompts for the object file to be loaded for

debugging. Drive and pathnames can be
specified with the filename. For example, you
can specify a file as follows:

C:\PR0GS\MYPR0G.86

After the program is loaded, the debugger
searches for the corresponding source file in the
drive and directory specified by the current
Source Path. If the source file is found, it is
displayed in the View Window. Otherwise,
assembly language is disassembled from the
memory where the program was loaded.
Keyboard Control: none
Encyclopedia Entry: LOAD

3-4 DB86 Menu System

Reload clears all defined breakpoints, tracepoints, and
watch expressions and reloads the object file
that was most recently loaded.
Keyboard Control: none
Encyclopedia Entry: LOAD

Source Path ... prompts for the pathname of the directory
where the debugger can find source files for
display. Optionally, you can specify up to 10
extensions separated by commas. For example,
if the source files have an extension of .LST or
.C and are in the directory PROG on drive C,
you can specify the following Source Path:

C:\PR0G,.C,.LST
The debugger searches the path for source files
with the same extensions as those specified in
the Source Path, and in the order they are
listed. The names of the source files (less
extensions) are assumed to be the same as the
debug module name (i.e., those names seen by
the the DIR module command). See Appendix
C for further information. If you specify a
path with no extensions, the previously defined
extensions are used. If no extensions have been
defined, the default, .LST, is used. New
extensions replace previously defined
extensions.
Keyboard Control: none
Encyclopedia Entry: SPATH

DB86 Menu System 3-5

DOS Shell

Exit DB86

temporarily exits from the debugger, displays
the DOS prompt, and lets you enter DOS
commands. For example, you can edit changes
in a source file with a text editor. The display
screen flips to the user-program screen (page 0
on CGA) which is used for output from DOS
commands. Enter EXIT at the DOS prompt to
return to the debugger. The complete status of
the debug session, including the screen display,
is restored.
Keyboard Control: none
Encyclopedia Entry: !

exits from the debugger and returns to DOS.
Keyboard Control: none
Encyclopedia Entry: EXIT

3-6 DB86 Menu System

The following screen shows the Window Menu:

3.3 The Window Menu (Alt-W)

Dr him Gn_____ Set_____Uieu Brouse Help

The Window Menu contains commands that control the debugger
screen display and windows.
ASM Display toggles the View Window between program

source display (the default) or source display
plus the assembly language for each source line
(i.e., disassembly display).
Keyboard Control: F3
Encyclopedia Entry: ASM

Registers toggles the display of the processor registers and
flags in the Register Window that appears on
the right side of the display screen. The
Register Window stays on until it is toggled off.
All register contents are shown in hexadecimal.
The flags are shown as an eight-character value
(e.g., ODisZAPc) where each letter stands for
one of the processor flags as follows:

0 - Overflow Z - Zero
D - Direction A - Auxiliary Carry
1 - Interrupt Enable P - Parity
S - Sign C - Carry

DB86 Menu System 3-7

Watch Window

Flip Screen

If the letter is uppercase, the corresponding flag
is set (logic 1); if the letter is lowercase, the
corresponding flag is clear (logic 0).
The Register Window is updated when the user
program stops (e.g., at breakpoints or during
stepping).
Keyboard Control: F2
Encyclopedia Entry: FLAGS, REGS, REGS87

toggles the display of the Watch Window
appearing between the Menu Bar and the View
Window. The Watch Window stays on until
toggled off. The current values of watch
expressions are displayed here. Watch
expressions are defined with the WA command
and can hold the values of user-program
variables. The Watch Window is updated when
the user program stops (e.g., at breakpoints or
during stepping).
Keyboard Control: sF2
Encyclopedia Entry: WA

toggles to show the output screen from the user
program. The entire debugger screen is
temporarily replaced with the output screen of
the user program that is currently being
debugged. Press any key to restore the
debugger screen. If screen flipping has been
toggled off with the No Flipping menu item,
Flip Screen turns it back on.
Keyboard Control: F4
Encyclopedia Entry: none

3-8 DB86 Menu System

No Flipping

Menu Bar On/Off

toggles screen flipping off until a flip is
explicitly requested again with the F4 key.
Whenever the user program begins executing,
the debugger saves its display screen and allows
the user program to control the display screen.
When the user program stops, the debugger
restores its display screen saving the
user-program, display screen. This screen
flipping can cause the display screen to blink
annoyingly (e.g., when you are in Auto Step
mode). This switching takes place even when
the user program does not output to the display
screen. In this case, the flipping can be turned
off safely with the No Flipping option. Do not
use this function if the program being debugged
outputs to the display screen. In this case, the
user program and the debugger will conflict
with one another overwriting the display screen.
Keyboard Control: sF4
Encyclopedia Entry: none

toggles the display of the Menu Bar at the top
of the screen. With the Menu Bar off, an extra
line of display is used for the View Window.
When off, you can still access the menu system
in the same way as if the Menu Bar were on.
The Menu Bar stays off until toggled back on,
except that it is temporarily shown whenever
you access the menu system.
Keyboard Control: none
Encyclopedia Entry: none
Invocation Control: NOMB

DB86 Menu System 3-9

Cycle Window toggles debugger control between the View
Window and the Command Window. The
system cursor blinks in the window currently in
control. Additionally, color monitors show the
window currently in control with the highlight
color. When in the Command Window, you can
enter debugger command lines. When in the
View Window, you can use the keyboard
controls to view source code and to do many
common debugging tasks.
Keyboard Control: F6
Encyclopedia Entry: none

3-10 DB86 Menu System

The following screen shows the Go Menu:

3.4 The Go Menu (Alt-G)

Debug 111 mlm i Set Uieu Brouse Help

Til Cursor Line F7

The Go Menu contains commands that execute the user program
under debugger control.

With the Auto Step, Step, and Procedure Step functions in the Go
Menu, the user program can step by source-level statement or by
assembly-language statement, determined by the display in the View
Window. If source only is shown in the View Window, stepping is by
numbered, executable, source line. If assembly language is shown in
the View Window, then stepping is by assembly-language instruction.
Assembly language can be shown in the View Window when the
source is not available or when the disassembly display is toggled on
with the ASM Display item in the Window Menu.

With the Call Step item, stepping is to the next CALL instruction
whether or not the CALL aligns with a source-level statement.
Likewise, with the Return Step item, stepping is to the next RETURN
instruction.

DB86 Menu System 3-11

Til Cursor Line clears previous temporary breakpoints and sets a
new temporary breakpoint at the current cursor
line of the user program shown in the View
Window. Then this menu item executes the
user program from the current execution point
until an enabled fixed or conditional breakpoint
is reached or until the temporary breakpoint is
reached. The temporary breakpoint remains
active until the next Go Til Cursor Line
command or until breakpoints are cleared. The
debugger beeps if you are not on an executable
source line when you issue this command.
Keyboard Control: F7
Encyclopedia Entry: GO TIL

Go Til Breakpoint executes the user program from the current
execution point, keeping all currently defined
breakpoints and tracepoints.
Keyboard Control: F5
Encyclopedia Entry: GO

Keep Fixed executes the user program from the current
execution point, clearing temporary breakpoints,
but keeping all fixed breakpoints, conditional
breakpoints, and tracepoints.
Keyboard Control: sF7
Encyclopedia Entry: GO

Forever clears all breakpoints and tracepoints and
executes the user program from the current
execution point. The only way to stop the
program before it reaches completion is with
the SysReq or Ctrl-Break keys.
Keyboard Control: sF5
Encyclopedia Entry: GO FOREVER

3-12 DB86 Menu System

Auto Step steps through the user program starting at the
current execution point. Auto stepping
continues until a fixed, conditional, or
temporary breakpoint is reached or until any
keyboard key is pressed. Conditional
breakpoints and watch expressions are updated
at every step.
Keyboard Control: none
Encyclopedia Entry: LSTEP, ISTEP

Step executes one step of the user program at the
current execution point, retaining all
breakpoints.
Keyboard Control: F8
Encyclopedia Entry: LSTEP, ISTEP

Call Step executes the user program from the current
execution point until one step beyond the next
encountered CALL instruction. In other words,
Call Step steps into the called procedure or
function, easing the task of nesting into the
next procedure or function that will be called.
Keyboard Control: sF8
Encyclopedia Entry: CSTEP

DB86 Menu System 3-13

Procedure Step

Return Step

steps through a called procedure. If you are
currently on a CALL instruction this menu item
executes the called procedure or function and
stops upon return from it. If you are not on a
CALL instruction, this menu item is the same as
Step.
Keyboard Control: F10
Encyclopedia Entry: PSTEP

executes the user program from the current
execution point until one step beyond the next
RETURN instruction (i.e., execution stops after
the next RETURN instruction that is encountered).
Thus, Return Step nests out of the called
procedure or function to the calling procedure
or function. If an intervening CALL instruction
is encountered, it is stepped over.
Keyboard Control: sFlO
Encyclopedia Entry: RSTEP

3-14 DB86 Menu System

The following screen shows the Set Menu:

3.5 The Set Menu (Alt-S)

The Set Menu contains commands that set and clear breakpoints.
Breakpoint sets a temporary breakpoint at the program

location indicated by the current cursor in the
View Window. A maximum of 10 temporary
breakpoints can be set at the same time.
Temporary breakpoints are shown in the View
Window by highlighting the source display line
and displaying the letter B next to the source
display line in the Break Status Column at the
left side of the View Window.
Keyboard Control: F9
Encyclopedia Entry: GO TIL

Tracepoint sets a tracepoint at the program location
indicated by the current cursor in the View
Window. When execution reaches a tracepoint,
an announcement message is displayed in the
Command Window and the Watch Window is
updated. A maximum of ten tracepoints can be
set at the same time.

DB86 Menu System

Keyboard Control: sF9
Encyclopedia Entry: TR«

3-15

Clear at Cursor

Remove All

clears any breakpoint or tracepoint at the
current cursor location in the View Window.
Keyboard Control: none
Encyclopedia Entry: none

clears all breakpoints and tracepoints that are
currently defined. Watch expressions are
retained.
Keyboard Control: none
Encyclopedia Entry: none

3-16 DB86 Menu

The following screen shows the View Menu:

3.6 The View Menu (Alt-V)

The View Menu contains commands that display information in a
pop-up window that overwrites the debugger screen. If the
information exceeds the size of this window, a pause prompt appears
on the Status Line, and you can press any key to continue the display.
At the end of the display, press any key to restore the debugger
screen.
Calls displays the call ancestry relative to the current

execution point in the user program. The call
ancestry is the nested list of procedures that
have called one another down to the currently
executing procedure.
Keyboard Control: none
Encyclopedia Entry: CALLS

DB86 Menu System 3-17

Expanded Calls displays the call ancestry relative to the current
execution point in the user program.
Additionally, this menu item displays the local
variables allocated on the stack for each
procedure.
Keyboard Control: none
Encyclopedia Entry: CALLS EXP

Locals displays the current value of variables defined
local to the current execution point in the user
program.
Keyboard Control: none
Encyclopedia Entry: LOCALS

Modules displays the names of all modules in the
program currently loaded for debugging.
Keyboard Control: none
Encyclopedia Entry: DIR MODULE

Debug Status displays the status of all breakpoints,
tracepoints, and watch expressions that are
currently defined. Any user-defined debug
objects and their respective values are also
shown.
Keyboard Control: none
Encyclopedia Entry: DIR DEBUG

3-18 DB86 Menu System

The following screen shows the Browse Menu:

3.7 The Browse Menu (Alt-B)

Debug Uindou Go Set Uieu BiTBTSl Help

The Browse Menu contains commands that change the scope to
another module or return to the home scope (i.e., the current
execution point).
Home Scope restores the View Window and the current scope

to the current execution point in the user
program. After browsing to other modules or
scrolling through the current module, this
function returns you to the home scope. The
current execution point (the location in the user
program to which the current instruction
pointer is pointing) is highlighted with the
reverse video execution bar in the View
Window.
Keyboard Control: Grey *
Encyclopedia Entry: none

DB86 Menu System 3-19

Scope ... prompts for a scope expression in a pop-up
window and changes the scope context to the
specified location. The expression entered at
the prompt should evaluate to a location in the
user program being debugged. For example,
the following symbolic reference evaluates to
line number 40 in the DEMO module:

:DEMO#40

Changing the scope explicitly using this menu
function is another way to browse to a different
source module. At any point when the user
program stops execution, the scope is set to the
same location as CS:IP. This location, the
current execution point in the user program, is
also known as the home scope. When you
browse to another module, you can scroll
through its source code in the View Window;
view any variables that are local to the new
scope; or set breakpoints at the new location.
Keyboard Control: none
Encyclopedia Entry: SCOPE

3-20 DB86 Menu System

Calls initiates callstack browsing. This menu item
allows you to browse through modules using the
Ctrl-Home and Ctrl-End keys according to the
call ancestry relative to the current execution
point. The Ctrl-Home key browses toward the
top of the call stack and Ctrl-End browses
toward the end of the call stack (toward the
most distant calling ancestor). Normally,
Ctrl-Home and Ctrl-End do not browse through
modules according to the call ancestry, but
instead browse through all modules in the user
program. The next go or step command that is
issued restores normal module browsing. Local
variables become active as you browse to each
level and may be viewed by the Locals item in
the View Menu.
Keyboard Control: none
Encyclopedia Entry: none

Find ... prompts for a search string and searches the
source code displayed in the View Window
starting at the current cursor location. Only the
source for the current module is searched. If a
match is found, the surrounding source is
displayed in the View Window and the
thumbmark is placed on the line where the
match occurred. If no match is found, the
debugger beeps and displays a message on the
Status Line.
Keyboard Control: none
Encyclopedia Entry: none

DB86 Menu System 3-21

Next Find

Previous Find

searches forward from the current cursor
location for the next occurrence of the search
string that was specified for the most recent
Find.
Keyboard Control: none
Encyclopedia Entry: none

searches backward from the current cursor
location to find the previous occurrence of the
search string that was specified for the most
recent Find.
Keyboard Control: none
Encyclopedia Entry: none

3-22 DB86 Menu System

The following screen shows the Help Menu:

3.8 The Help Menu (Alt-H)

Debug Uindou Go Uieu Brouse

auigation Keys
dit Keys
ebug Menu
indou Menu
o Menu
et rienu
ieu Menu
rouse Menu
onnand Uindou
ast Error
nit Help <ESC>

Help Menu Items Each item on the Help Menu displays a help
screen on the related subject. The help screen
overwrites the current debugger screen. Press
any key to restore the debugger screen and
return to the Help Menu. As a convenience,
you are returned to the help menu after
viewing a help topic. The Quit Help item is the
same as pressing the Esc key and exits the
menu system.
Keyboard Control: FI, sFl
Encyclopedia Entry: HELP

DB86 Menu System 3-23

Contents
Chapter 4 DB86 Keyboard Controls

4.1 Introduction.. 4-1
4.2 Navigational Key Controls... 4-1
4.3 Line-editing Key Controls.. 4-3
4.4 Function Key Controls..4-5
4.5 Other Keyboard Controls..4-8

Chapter 4
DB86 Keyboard Controls

4.1 Introduction

This chapter describes the single key controls available in the
debugger: navigational keys, line-editing keys, function keys, and
other control keys. These single key controls provide a responsive
level of interacting with the debugger and play an important role in
making the debugger easy to use.

Keyboard templates that can be placed on your keyboard are supplied
with the debugger and contain reference information on debugger
keyboard controls.

The navigational key controls work only when the View Window is
active unless otherwise noted.

4.2 Navigational Key Controls

t moves the cursor up one line.
moves the cursor down one line.
scrolls the View Window left by one column.
scrolls the View Window right by one column.

Ctrl-<- scrolls the View Window left by ten columns.
Ctrl-* scrolls the View Window right by ten columns.
PgUp scrolls the View Window up one page. A page is equal

to the current size of the View Window with a one line
overlap. PgUp works either in the View Window or
the Command Window.

PgDn scrolls the View Window down one page. A page is
equal to the current size of the View Window with a
one line overlap. PgDn works either in the View
Window or the Command Window.

Grey - scrolls the View Window up one line to move back to
the beginning of the source code. The cursor stays at
the current window location and does not follow the
data being viewed. Grey - works either in the View
Window or the Command Window.

Grey + scrolls the View Window down one line to move
forward to the end of the source code. The cursor
stays at the current window location and does not
follow the data being viewed. Grey + works either in
the View Window or the Command Window.

Grey * restores the scope to the current execution point in the
user program. After browsing to different modules or
scrolling through the current module, use the Grey * to
quickly return to the home scope. Grey * works either
in the View Window or the Command Window. Grey *
is the same as the Home Scope item on the Browse
Menu.

Home jumps to the start of the current source module.
End jumps to the end of the current source module.
Ctrl-Home browses to the previous module. Usually, the window

is cued to the start of the previous module in the
module list. However, if the Calls item on the Browse
Menu has been set, Ctrl-Home browses to the next
procedure toward the top of the callstack. Ctrl-Home
works either in the View Window or the Command
Window.

Ctrl-End browses to the next module. Usually, the window is
cued to the start of the previous module in the module
list. However, if the Calls item on the Browse Menu
has been set, Ctrl-End browses to the next procedure
toward the end of the callstack, i.e., toward the most
distant calling ancestor. Ctrl-End works either in the
View Window or the Command Window.

4-2 DB86 Keyboard Controls

Both command-line input and user responses to prompts can be edited
using the same set of line-editing keys.

In addition to editing the current command line, the debugger
maintains a command-line buffer so previously issued commands can
also be recalled, edited, and re-issued.

Command-line editing can be done only when the Command Window
is active.

Editing of user responses to prompts can be done until the Enter key
is pressed.

The following keys can be used only when editing command lines in
the Command Window.
Ctrl-E re-issues the last command stored in the command-line

history buffer.
t clears the current command line and restores the

previously issued command line from the history
buffer. You can edit and re-issue this command line.
Use the uparrow (T) key to cycle backward to the
beginning of the command-line history buffer. At the
beginning of the history buffer, the uparrow (t) key
causes a beep.

1 clears the current command line and restores the next
command in the history buffer. You can edit and
re-issue this command line. Use the downarrow (J)
key to cycle forward to the end of the command-line
history buffer. At the end of the history buffer, the
downarrow (1) key causes a beep.

4.3 Line-editing Key Controls

DB86 Keyboard Controls 4-3

The following keys can be used in both cases to edit command lines
or user responses.
«■ moves the cursor left by one character.

moves the cursor right by one character.
Home restores the cursor to the left end of the current line.
End restores the cursor to the end of the current line.
Ins toggles between insert and overstrike editing modes.
Del deletes the character under the screen cursor.
Ctrl-F deletes the character under the screen cursor (same as

Del).
Grey <- backspaces and deletes the character to the immediate

left of the current screen cursor.
Ctrl-X deletes all characters from the current screen cursor to

the beginning of the line.
Ctrl-A deletes all characters from the current screen cursor to

the end of the line.
Ctrl-Z deletes the entire current line (same as ESC).
Esc deletes the entire current line (same as Ctrl-Z).
Enter submits the currently edited line for execution.

4-4 DB86 Keyboard Controls

The function keys work when the Command Window is active or
when the View Window is active.

Every function key duplicates a menu item. The following
descriptions summarize the function key and provide a cross-reference
to the menu item which describes the function in more detail.
Cross-references to related command encyclopedia entries are also
listed.

4.4 Function Key Controls

FI provides help on function keys and other keyboard
controls.
Menu/Item: Help/Function Keys
Encyclopedia Entry: HELP

F2 toggles the Register Window on or off.
Menu/Item: Window/Registers
Encyclopedia Entry: FLAGS, REGS, REGS87

F3 toggles the View Window between program source
display and disassembly display.
Menu/Item: Window/ASM Display
Encyclopedia Entry: ASM

F4 toggles to show the debugged program’s output screen.
Menu/Item: Window/Flip Screen
Encyclopedia Entry: none

F5 executes the user program from the current execution
point, keeping all currently defined breakpoints and
tracepoints.
Menu/Item: Go/Til Breakpoint
Encyclopedia Entry: GO

DB86 Keyboard Controls 4-5

Menu/Item: Window/Cycle Window
Encyclopedia Entry: none

toggles debugger control between the View Window
and the Command Window.

clears previous temporary breakpoints; sets a new
temporary breakpoint at the current line; and executes
the user program from the current execution point.
Menu/Item: Go/Til Cursor Line
Encyclopedia Entry: GO TIL

executes one step of the user program.
Menu/Item: Go/Step
Encyclopedia Entry: LSTEP, ISTEP

toggles a temporary breakpoint on and off at the
program location indicated by the current cursor in the
View Window.
Menu/Item: Set/Breakpoint
Encyclopedia Entry: none

if on a CALL instruction, executes the called procedure
or function and stops upon return from it. Otherwise,
executes one step of the user’s program (same as F8).
Menu/Item: Go/Procedure Step
Encyclopedia Entry: PSTEP

provides additional help on the most recent error
message. In effect, this function is a way to get more
help.
Menu/Item: Help/Last Error
Encyclopedia Entry: HELP En

DB86 Keyboard Controls

sF2

sF4

sF5

sF7

sF8

sF9

sFlO

Menu/Item: Window/Watch Window
Encyclopedia Entry: WA

toggles the on-screen presence o f the Watch Window.

toggles screen flipping off or on.
Menu/Item: Window/No Flipping
Encyclopedia Entry: none

clears all breakpoints and tracepoints and executes the
user program from the current execution point.
Menu/Item: Go/Forever
Encyclopedia Entry: GO FOREVER

clears temporary breakpoints and executes the user
program keeping fixed breakpoints, conditional
breakpoints, and tracepoints.
Menu/Item: Go/Keep Fixed
Encyclopedia Entry: GO

executes the user program stepping into the next called
procedure or function that is encountered.
Menu/Item: Go/Call Step
Encyclopedia Entry: CSTEP

sets a tracepoint at the program location indicated by
the current cursor in the View Window.
Menu/Item: Set/Tracepoint
Encyclopedia Entry: TR«

executes the user program until one step beyond the
next RETURN instruction encountered, thus nesting out
of the called procedure or function.
Menu/Item: Go/Return Step
Encyclopedia Entry: RSTEP

DB86 Keyboard Controls 4-7

In addition to the function keys, there are several other keys that
perform debugging functions.

The Ctrl-Home and Ctrl-End keys allow browsing from module to
module. The Grey * key restores the home scope. The Grey - and
Grey + keys move the View Window over the source code, scrolling
through the source. All of these keys are described in detail in
Section 4.2.

The following keys are also available to control the debugger:
Ctrl-PgUp moves the window divider up, making the View

4.5 Other Keyboard Controls

Ctrl-PgDn

Window smaller by one line and the Command Window
larger by one line. Ctrl-PgUp works either in the
View Window or the Command Window.
moves the window divider down, making the View
Window larger by one line and the Command Window
smaller by one line. Ctrl-PgDn works either in the
View Window or the Command Window.

SysReq restores control to the debugger when the user program
is executing. For example, if the GO FOREVER
command is issued and you want to stop execution
before the program ends or if the program is caught in
an infinite loop, you can force control back to the
debugger with the SysReq key.

Ctrl-Break same as SysReq when the user program is in control;
otherwise, when the debugger is in control, same as
Ctrl-C.

Ctrl-C cancels the current command.

If the debugger is displaying more information than will fit in the
window being used, the following keys are available to control the
display.
F(ast mode) continues output without pausing after each screen.
L(ine mode) displays one line of output and pauses again.
P(age mode) displays one window of output and then pauses again.

4-8 DB86 Keyboard Controls

Contents
Chapter 5 DB86 Command Language Encyclopedia

5.1 How to Use this Chapter.. 5-1
5.2 Functional Overview of Commands.. 5-3

! Shell Escape..5-10
ASM...5-11
BASE... 5-15
Breakpoints... 5-17
CALLS.. 5-19
CB...5-22
Command Entry...5-24
Control Constructs... 5-28
COUNT... 5-30
CSTEP... 5-32
Data types... 5-33
Debug Variables...5-35
Debugger Commands.. 5-36
DEFINE.. 5-37
DIR...5-39
DO..5-44
ENABLE/DISABLE.. 5-46
EVAL.. 5-49
EXIT..5-52
Expressions... 5-53
FB...5-62
FLAGS.. 5-64
GO..5-66
HELP.. 5-68
IF..5-71
INCLUDE... 5-73
ISTEP...5-74
Lexical Elements..5-76
LIST/NOLIST...5-79
LOAD.. 5-80
LSTEP... 5-82
Memory Access..5-84
Menu System..5-87
OBREAK.. 5-88
PORT...5-89
Pseudovariables...5-91
PSTEP... 5-92

Registers and Flags... 5-94
REGS... 5-95
REGS87...5-99
REPEAT...5-102
RSTEP... 5-104
SCOPE... 5-106
SETMOD...5-108
SPATH.. 5-110
STACK.. 5-112
Stepping Commands.. 5-113
SYSINT.. 5-114
T R ... 5-116
User-program Symbols.. 5-118
WA... 5-119
WPORT...5-121

Chapter 5
DB86 Command Language Encyclopedia

This chapter contains a brief functional overview of debugger
commands and provides comprehensive reference descriptions for the
commands and related topics in alphabetical order.

5.1 How to Use this Chapter

The command entry shown on the following page is an example of an
entry in this encyclopedia. The entry includes command syntax, with
definitions for keywords, delimiters, and variables; discussion of how
the command is used; examples; and cross-references to related
commands and to menu system commands and keyboard controls that
perform a similar function. Topical entries may include additional
subject headings, as appropriate.

Debug Window Go Set View Browse Help

"help
M

Help is available for:

ASH BASE BREAKPOINT BROUSEHENU CALLS CHDUINDOU
COmAHDS COMMENTS CONSTRUCTS COUNT CSTEP DEBUGHEMU
(JEFINE DEREFERENCE DIR DISPLAY DO EDIT
feMTRV EXCEPTIONS EXIT GO GOHEKU HELP
IF INCLUDE INVOCATION ISTEP KEYBOARD LABELS
LINES LIST LOAD LSTEP MENU MODIFY
HODULES OBJECTS OPERATORS PORT PROCEDURES PSTEP
REALS REGISTERS REPEAT RSTEP SCOPE SETHENU
SOURCE STACK TYPES VARIABLES VIEVHENU U1ND0UMENU

<Ho Projran Loaded>

Figure 5-1 DB86 Command Language Help Screen

COMMAND NAME
A short statement about the
function the command performs

Syntax

The syntax section gives the correct syntax for the command,
including all modifiers and variables that are available. The
notational conventions used in command syntax are listed on the
inside front cover of this book.

Discussion

The discussion section defines the command and explains how it is
used.

Examples

The examples section gives one or more examples of the command,
showing how it might be used in a debugging environment. The
debugger prompt precedes user input, just as it would if you were
using the system. User input appears in bold type and system output
appears in regular type. Debugger keywords are in all caps. An
example may include comments enclosed in slash-asterisk delimiters
(e.g., /* comment */).

The following example shows how user input is differentiated from
system output. In this example, BASE is user input; HEX is debugger
output.

*BASE
HEX

Most command and topic entries include examples.

Cross-references

The cross-references section refers you to related entries in the
command language encyclopedia and to any menu-system items or
keyboard controls that perform a similar function. Most command
and topic entries include cross-references.

5-2 DB86 Command Language Encyclopedia

Encyclopedia Entries

The commands section lists other commands or topics in this
command language encyclopedia.

Menu/Item

The menu/item section first lists the menu in which you will find the
item, and then the item itself. The item performs a function similar
to the command that is the subject of this entry.

Keyboard Control

The keyboard control section lists the keyboard control that performs
a function similar to the command that is the subject of this entry.

5.2 Functional Overview of Commands

Tables 5-1 through 5-7 group debugger commands according to
function and give a brief definition of each command and topic
covered in the Command Language Encyclopedia.

DB86 Command Language Encyclopedia 5-3

Table 5 -1 DB86 Control Constructs

Entry Description

COUNT Groups and executes commands a specified
number of times

DO Groups and executes commands

IF Groups and conditionally executes commands

REPEAT Groups and executes commands forever, while,
or until an exit condition is met

Table 5-2 DB86 Debug Environment Commands

Entry Description

! Shell Escape Accesses DOS system commands from the
debugger environment

BASE Displays or establishes the default base for
numeric constants

DEFINE Defines a global or local debug variable

DIR Displays a listing of symbolic debug information

EVAL Calculates and displays the results of an
expression

EXIT Terminates the debug session and returns
control to the host operating system

5-4 DB86 Command Language Encyclopedia

Table 5 -2 DB86 Debug Environment Commands (continued)

Entry Description

HELP Provides on-line operating assistance

INCLUDE Executes command input from a text file

LIST/NOLIST Opens or closes a debug session log file

OBREAK Is a pseudovariable that determines whether or
not a breakpoint occurs when a user-program
overlay is loaded

SYSINT Is a pseudovariable that determines whether or
not breakpoint checking occurs when a DOS
interrupt is encountered during program
execution

Table 5-3 DB86 Processor Status Commands

Entry Description

FLAGS Displays or changes 8086/8088 flags

PORT Is a pseudovariable that displays or changes the
contents of a specified byte wide I/O port

REGS Displays or sets 8086/8088 microprocessor
registers

REGS87 Displays or sets 8087 emulator or numerics
processor registers

WPORT Is a pseudovariable that displays or changes the
contents of word-wide ports

DB86 Command Language Encyclopedia 5-5

Table 5 -4 DB86 Source Display Commands

Entry Description

SCOPE Sets a new debugger browse context or displays
the current one

SETMOD Correlates an executable module with a source
display file

SPATH Displays or sets the path and default extensions
used to find the source display files of compiled
modules

Table 5-5 DB86 Memory Access Commands

Entry Description

ASM Displays 8086 and 8087 machine code using
assembler mnemonics or patches mnemonics
line by line to memory

CALLS Displays procedure calls on the stack

LOAD Reads an Intel-86, load-time locatable, OMF file
into memory

STACK Displays values from the top of the stack

5-6 DB86 Command Language Encyclopedia

Table 5 -6 DB86 Execution and Watch Commands

Entry Description

CB Sets conditional breakpoint or displays the
current conditional breakpoints

CSTEP Steps into the next procedure call encountered

ENABLE/DISABLE Enables or disables a specified breakpoint,
tracepoint, or watch expression; or enables or
disables all breakpoints, tracepoints, or watch
expressions

FB Sets fixed breakpoint or displays current fixed
breakpoints

GO Starts program execution and controls
breakpoints and tracepoints

ISTEP Steps through a program one machine
instruction at a time

LSTEP Steps to next high-level language line in program

PSTEP Steps to the next high-level language line in the
program, stepping over procedure calls

RSTEP Steps out of the current procedure until after the
next return encountered, stepping over calls

TR Sets new tracepoint or displays current
tracepoints

WA Sets a new watch expression or displays a
current watch expression

DB86 Command Language Encyclopedia 5-7

Table 5-7 DB86 Topical Entries

Entry Description

Breakpoints Set breakpoints, tracepoints, or watch
expressions; or display the current breakpoint,
tracepoint, or watch expression

Command Entry Includes command-line interface, continuation
lines, multiple command lines, comments,
editing, and display controls

Control Constructs Group commands and control program
execution

Data Types Are the standard types, used in commands and
displays, with which the debugger is familiar

Debug Variables Store temporary values during a debug session

Debugger Commands Are the primary commands in the debugger
command-language

Expressions Are one or more numbers, debug variables, or
functions separated by operators

Lexical Elements Are names, numbers, strings and special
character delimiters recognized by the debugger

Memory Access Makes it possible to display or change debug
variables or program variables in user-program
memory

Menu System Gives access, through pulldown menus, to many
debugger commands

5-8 DB86 Command Language Encyclopedia

Table 5 -7 DB86 Topical Entries (continued)

Entry Description

Pseudovariables Affect the operation of the debugger

Registers and Flags Set the contents of a specified register or flag;
display the contents of all registers or flags or a
specified register or flag

Stepping Commands Step program execution by called procedure,
machine instruction, language instruction,
procedure, or return instruction

User-program Symbols Are accessible for display

DB86 Command Language Encyclopedia 5-9

! Shell Escape
Accesses DOS system commands
from the debugger environment

Syntax

! {DOS_command}

Where:
DOS_command is a DOS command line that you wish to execute.

Discussion

The ! shell escape command provides access to DOS system commands
from the debugger environment, but does not save the current DB86
screen. You can run any program or command executable from the
DOS command level, as long as there is enough RAM.

Example

In this example, the ! command is used to execute the DOS SET
command, which displays DOS environment variables that are
currently set:

*iSET
COMSPEC = C:\C0MMAND.C0M
:WORK: = D:\
PROMPT = PG

Cross-references

Encyclopedia Entry

EXIT

Menu/Item

Debug/DOS Shell

5-10 DB86 Command Language Encyclopedia

ASM
Displays 8086 and 8087 machine code

using assembler mnemonics or patches
mnemonics line by line to memory

Syntax

ASM aexpr [= 'asm-86'[,'asm-86', ...]]

Where:
aexpr is an address, an expression that evaluates to an

address, or a range of addresses specified as addr TO
addr or addr LENGTH n, where addr is an address or
an expression that evaluates to an address and n is the
specified number of instructions.

asm-86 is any valid 8086 instruction.

Discussion

The ASM command displays a single instruction or specified set of
instructions in the user program in assembler mnemonics. It also
enables you to write assembly-code patches to memory.

Disassembly

The disassembly format depends on whether you use ASM with a single
address, a range of addresses or a partition. To display the first
instruction at a given address, use the form ASM addr. To display all
instructions that start within a certain range, use the form ASM addr
TO addr.; an instruction is displayed if its first byte is within the
range, even if subsequent bytes are not. To display an exact number
of instructions, use the form ASM addr LENGTH n.

When you use an absolute address to specify a partition, the absolute
address is converted into segment:offset form before disassembly
begins.

DB86 Command Language Encyclopedia 5-11

ASM (continued)
Disassembled instructions are displayed in columns; from left to right,
they are address, hexadecimal, object-code values, opcode mnemonics,
and operands (if any). For example, here is line 266 from the MENU
module in a sample user program called EXAMPLE.86:

*ASM #266
4FA7H:0415H E94F00 JMP :MENU #281

Because the debugger can determine the length of lines, procedures,
and modules within the user program, you can limit the display of
disassembled instructions to those of interest. For example, to see
only the instructions in line number 37 of your program, enter the
command ASM #37. Likewise, to see only the instructions associated
with a procedure called PROC_A, enter ASM PR0C_A.

Patching Code

You can also use the ASM command to assemble code into memory.
For example, suppose you wanted to replace the code at line number
50 in the user program with the instruction sequence MOY AX,50H
and then PUSH AX. The following command sequence would do this:

*ASM #50 = 'MOV AX,50H\ ‘PUSH AX'

When you are assembling instructions into memory, make sure that
their addresses do not conflict with addresses of other instructions
that you want to keep.

If an invalid instruction is encountered during disassembly, double
question marks (??) are displayed in place of an instruction.

NOTE

You can use ASM interchangeably with its alias, SASM.

5-12 DB86 Command Language Encyclopedia

ASM (continued)
Examples

1. In this example, ASM disassembles ten lines of assembly code,
starting at the address of the current execution point.

*ASM $ LENGTH 10
: PLMTST
lD3D:0000h
1D3D:0002H
1D3D:0003H
#54
1D3D:0006H
1D3D:000BH
1D3D:000DH
#56
1D3D:0010H
64T
#57
1D3D:0016H
1D3D:001CH
1D3D:001EH

8BEC
FB
E84700

803E10000E
7403
E92300

C70602004000

813E02002800
7703
E90900

MOV BP,SP
STI
CALL $+004AH

CMP BYTE PTR 0010H,0EH ; 14T
JZ $+0005H
JMP $+0026H

MOV WORD PTR 0002H,0040H ;

CMP WORD PTR 0002H.0028H ; 40T
JA $+0005H
JMP $+000CH

2. In this example, ASM assembles the PUSHF and CALL instructions
starting at address 2089H.

*ASM 2089H = 'PUSHF\
**’CALL 31A0K'

3. In this example, ASM assembles two MOV instructions, starting at
address CS:31A0H.

ASM CS:31AOR = 'MOV AX,40! , 'MOV ES,AX

DB86 Command Language Encyclopedia 5-13

Encyclopedia Entries

CALLS
LOAD
Memory Access
STACK

Menu/Item

Window/ASM Display

Keyboard Control

F3 Toggle ASM display

A S M (c o n tin u e d)
C ro s s -re fe re n c e s

5-14 DB86 Command Language Encyclopedia

BASE
Displays or establishes the default

base for numeric constants

Syntax

‘BINARY 21'
BASE = DECIMAL 10T

HEX 16T
expr

Where:
BINARY

DECIMAL

HEX

expr

Discussion

The BASE command displays the default number base (radix) for
numeric constants. Display of user-program variables and debug
variables is also governed by the BASE command. Integers and
floating-point numbers are always displayed in decimal.

When used with the assignment statement, BASE =, BASE sets the
default base to binary, decimal, or hexadecimal. During input, you
can override the default base setting of a constant with an explicit
base suffix: Y for binary, T for decimal, H for hexadecimal (e.g.,
10H).

You can also use BASE as an expression within other commands and as
a variable (e.g., variable = BASE). The type of the BASE
pseudovariable is BYTE.

The default BASE is hexadecimal.

defines binary as the current radix.
defines decimal as the current radix.
defines hexadecimal as the current radix.
is an expression that evaluates to 2 for binary, 10 for
decimal, or 16 for hexadecimal.

DB86 Command Language Encyclopedia 5-15

BASE (continued)
Examples

1. In this example, BASE displays the current base.

*3ASE
HEX

2. In this example, BASE changes the default base to decimal. The
suffix T ensures that the base is changed to decimal. Without the
suffix, the specified base is interpreted as a number in the
current base. For example, if the current base is hexadecimal,
the command BASE = 10 does not not change the base to decimal
since the 10 is interpreted as a hexadecimal value.

*BASE - 10T
*BASE
DECIMAL

Cross-reference

Encyclopedia Entry

Expressions

5-16 DB86 Command Language Encyclopedia

Breakpoints
Set breakpoints, tracepoints, or watch

expressions; or display the current
breakpoint, tracepoint, or watch expression

Discussion

Breakpoint commands set breakpoints, tracepoints, or watch
expressions; or display the current breakpoint, tracepoint, or watch
expression. Breakpoint commands and the functions they perform are
listed in Table 5-8.

Table 5-8 DB86 Breakpoint Commands

Breakpoint Command Action
CB/7 = aexpr, bexpr Sets a conditional breakpoint
FBn = add r Sets a fixed breakpoint
TRn = aexpr[expr-list] Sets a tracepoint
WAn = aexpr, bexpr Sets a watch expression

Breakpoint status for the current execution line is shown in the Break
Status Column in the View Window. The debugger indicates different
types of breaks with the following symbols. An enabled breakpoint is
shown in uppercase; a disabled (or defined in a nonresident overlay,
but inactive) breakpoint is shown in lowercase. A hidden breakpoint
is one that is set within the range of a program line but is not exactly
on the line boundary; it is always shown as +.
• B Temporary breakpoint
• F Fixed breakpoint
• + Hidden breakpoint
• T Tracepoint
• C Conditional breakpoint
• E Exception breakpoint (used internally by the debugger)

DB86 Command Language Encyclopedia 5-17

B reakp o in ts (c o n tin u e d)
C ro s s -re fe re n c e s

Encyclopedia Entries

CB GO RSTEP
CSTEP ISTEP TR
ENABLE/DISABLE LSTEP WA
FB PSTEP

Menus/Items

Go Menu
Set Menu

Keyboard Controls

F5 Go, all breakpoints
sF5 Go forever
F7 Go til cursor line
F9 Set temporary breakpoint
sF9 Set tracepoint

5-18 DB86 Command Language Encyclopedia

CALLS
Displays procedure

calls on the stack

Syntax

CALLS [EXP]
Where:
EXP includes the stack resident variables for each procedure

in the display.

Discussion

The CALLS command displays the current chain of procedure calls on
the stack, giving you a dynamic view of procedure call nesting. Fully
qualified references to procedures are listed. The first reference is to
the current execution point. The second reference is to the return
point, to which execution control will return when the current
procedure exits.

CALLS operates correctly only when the assembly prologue of the
current procedure has been executed. That is, the instruction pointer
must be pointing to the first executable statement of the current
procedure, rather than to the entry point of the procedure.

If the EXP control is used, the stack resident variables for each
procedure in the call chain are also displayed.

NOTE

The CALLS command does not operate correctly if the nesting
sequence includes a procedure written in assembly language.

You can use CALLS interchangeably with its alias, CALLSTACK.

DB86 Command Language Encyclopedia 5-19

Examples
1. In this example, CALLS displays the procedure calls that are on the

stack when get_char occurs. As indicated in the example, the
nesting level is shown for each procedure followed by the address
of the procedure, followed by the procedure name.

*L0AD dc.86
*G0 TIL getchar
[Break a t :DC#74]
*CALLS
(0) :DC#74 READ_CHAR
(1) :DC#85 PR0CESS_T0KEN
(2) :DC#102 LEX_SCAN
(3) :DC#80 PR0CESS_T0KEN
(4) :DC#255 PARSE_LINE
(5) :DC#600

2. In this example, the CALLS command displays an expanded listing
that shows the variables for each procedure:

*caMs exp
(0) : EXAMPIO#126 CLS

REG REGS (s tru c tu re
AX 02CA
BX 4F29
CX 0020
DX 4FA0
SI 0003
DI 01E3
DS 4F29
ES 0116

)
(1) :MENU#97 MENU_MEMDUMP

DONE +0
PTR 4FA7H:0157H
KEY 0003

(2) :MENU#272 MAIN
MI +3
DONE +0

(3) :CALLMAIN#5

C A LLS (c o n tin u e d)

5-20 DB86 Command Language Encyclopedia

Cross-references

Encyclopedia Entries

Memory Access
STACK

Menus/Items

View/Calls
View/Expanded Calls

C A LLS (c o n tin u e d)

DB86 Command Language Encyclopedia 5-21

CB
Sets a conditional breakpoint or displays
the current conditional breakpoint

Syntax

CB[n] [= aexpr, bexpr]
Where:

n is a number, from 0 to 3 inclusive, assigned to a
debugger conditional breakpoint.

aexpr is an expression representing the address at which the
Boolean expression is evaluated.

bexpr is a Boolean expression that is evaluated at the address
defined by aexpr. If the Boolean expression is true
(i.e., Least-Significant Bit (LSB) = 1), the breakpoint is
taken; otherwise, user-program execution continues.

Discussion

The conditional breakpoint command, CB, sets a conditional
breakpoint at the specified address: when the address is encountered
and the condition is true, program execution stops. Up to four
conditional breakpoints are available: CBO through CB3.

You can enable all or specified conditional breakpoints with the
ENABLE command and disable them with the DISABLE command. All
breakpoints are cleared with the GO FOREVER command. The Clear at
Cursor and Remove All items on the Set Menu remove conditional
breakpoints.

In Auto Step mode, the debugger evaluates a conditional breakpoint at
each program step. This feature allows you to test for program
conditions at every point in the program flow rather than at a unique
address only.

To show the current definition of a conditional breakpoint, enter CB/7.
Use the DIR CB command to see the currently defined conditional
breakpoints.

5-22 DB86 Command Language Encyclopedia

C B (co n tin u ed)
Examples

1. In this example, CB breaks at line 15 in module :MYM0D when
count_var is greater than 5.

*CB0 = :MYM0D#15,count_var > 5

2. In this example, CB breaks at line number 30 of the module
:Y0URM0D if xy equals 5 or if mtop is less than 25 hexadecimal.

*CB1 = YOURMOD#30, (xy == 5) OR (mtop < 25H)

3. In this example, CBO is enabled.

*ENABLE CBO

Cross-references

Encyclopedia Entries

Breakpoint Commands FB PSTEP
CSTEP GO RSTEP
DIR ISTEP TR
ENABLE/DISABLE LSTEP WA

Menus/Items

Go/Til Cursor Line
Set/Breakpoint
Set/Clear at Cursor
Set/Remove All

Keyboard Controls

F7 Go til cursor line
F9 Set temporary breakpoint

DB86 Command Language Encyclopedia 5-23

Command Entry
Includes command-line interface,
continuation lines, multiple command
lines, comments, editing, and display control

Command-line Interface and Windowed Menu System

You can issue debugger commands through the command-line
interface at the bottom of the screen or through the windowed menu
system at the top of the screen.

When you start the debugger, you see the asterisk (*) prompt in the
Command Window, waiting for input. You can enter commands at
the prompt or toggle control to the View Window or the menu system.
Type Alt-M (for Menus) and, using the arrow keys, move to the menu
you wish to use. See Chapter 3 for more information on the menu
system. Press the F6 key to change control to the View Window. See
Chapter 4 for more information on the controls available in the View
Window.

Continuing Command-lines

You can continue a command line to the next line by typing an
ampersand (&) at the end of the line. The continuation character is
most useful when you want to type a lengthy sequence of commands
before any of the commands are executed.

You do not need the ampersand at the end of a command line if the
line ends before the command is complete. The debugger can tell
when a command is complete, and it requests additional input, with a
double asterisk (**) prompt, if you have not finished a command. Be
careful not to leave out a necessary continuation character; it is
possible to type a complete, valid command before you have finished
entering the command you had in mind.

You can use ampersands within strings; they are not be interpreted as
continuation characters.

Multiple Command Lines

You can type multiple commands on a single line, separating each
command from the next with a semicolon (;).

5-24 DB86 Command Language Encyclopedia

Comments

You can include comments, enclosing them in comment brackets: /*
and */. A comment can appear anywhere a space, tab, or new line is
allowed.

C o m m a n d E ntry (c o n tin u e d)

Editing

You can edit command lines typed at the command-line prompt, using
the debugger line-editing controls. Line-editing controls are
summarized in Table 5-9. See Chapter 4 for a complete description
of line-editing controls.

When you have completed a debugger command-line (and with the
cursor anywhere in the command line) press Enter to enter the
command into the system.

When the debugger has more information to display in a given
window than room in which to display it, you can control the display
using Fast mode (F), Line mode (L), or Page mode (P). Display
output control keys and the actions they perform are listed in Table
5-10.

DB86 Command Language Encyclopedia 5-25

C o m m a n d E ntry (co n tin u ed)
Table 5 -9 DB86 Com m and-line Editing

Key Action

Grey<- Deletes character to the left (backspace)

Del or Ctrl-F Deletes character at the cursor

Ctrl-X Deletes line to left of cursor

Ctrl-A Deletes line to right of cursor

Ctrl-Z Deletes current line

<- Moves cursor one character left

Moves cursor one character right

t Restores previous command line from history
buffer

i Scans to next command line in history buffer

Home Goes to the start of current command line

End Goes to the end of current command line

Esc Cancels current command line

Ctrl-C or Ctrl-Break Cancels command in progress

Ctrl-E Re-executes previous command

5-26 DB86 Command Language Encyclopedia

C o m m a n d Entry (co n tin u e d)
Table 5 -1 0 Display Output Control Keys

Key Action

F(ast mode) Continues output without pause

L(ine mode) Displays one line of output at a time

P(age mode) Displays one window of output at a time

Cross-references

Encyclopedia Entry

Menu System

Menus/Items

Help/Edit Keys
Help/Navigation Keys

Keyboard Controls

Edit Keys
Navigation Keys

DB86 Command Language Encyclopedia 5-27

Control Constructs
Group commands and
control program execution

Discussion

Control constructs, paired commands such as DO . . . END and IF . . .
END [IF] permit you to set up conditions for controlling program
execution. Debugger control constructs and the actions they perform
are listed in Table 5-11.

Table 5-11 DB86 Control Constructs

Control Construct Action

COUNT...
END[COUNT]

Executes a loop a specified maximum number of
times

COUNT...
WHILE ...
END[COUNT]

Executes a loop a specified maximum number of
times while a specified condition is met

COUNT...
UNTIL...
END[COUNT]

Executes a loop a specified maximum number of
times, until a specified condition is met

DO... END Executes the commands between the DO and
the END, grouping the set of commands into a
unit

IF...
THEN ...
END[IF]

Executes a set of commands between THEN and
END if the specified condition is true

IF...
THEN ...
ELSE...
END[IF]

Executes a set of commands between THEN and
ELSE if the specified condition is true; otherwise,
executes the commands between ELSE and
END

5-28 DB86 Command Language Encyclopedia

Table 5-11
Control Constructs (continued)

DB86 Control Constructs (continued)

Control Construct Action

REPEAT...
END[REPEAT]

Executes a set of commands between REPEAT
and END forever

REPEAT...
WHILE ...
END[REPEAT]

Executes a set of commands between REPEAT
and END as long as the specified condition is
met

REPEAT...
UNTIL...
END[REPEAT]

Executes a set of commands between REPEAT
and END until the specified condition is met

Cross-references

Encyclopedia Entries

COUNT ... ENDCOUNT
DO ... END
IF ... ENDIF
REPEAT ... ENDREPEAT

DB86 Command Language Encyclopedia 5-29

COUNT... ENDCOUNT
Group and execute commands
a specified number of times

Syntax

COUNT expr
debugger_commands}
"WHILE bexpr
UNTIL bexpr

END[COUNT]
Where:
expr is an expression that specifies how many times

the commands between COUNT and END are to be
executed.

debugger commands are one or more debugger commands except
HELP, INCLUDE, and LOAD.

bexpr is a Boolean expression, evaluated to either true
(Least-Significant Bit (LSB) = 1) or false (LSB
= 0).

WHILE bexpr evaluates the Boolean expression to determine
when execution stops (i.e., when the WHILE
expression is false or the COUNT is reached).

UNTIL bexpr evaluates the Boolean expression to determine
when execution stops (i.e., when the UNTIL
expression is true or the COUNT is reached).

Discussion

The COUNT . . . ENDCOUNT construct executes debugger commands a
specified maximum number of times. The COUNT expression is
converted to a word value and is evaluated only once, when the
statement is first encountered.

You can nest COUNT blocks; the number of dots before the
command-line prompt indicates the nesting level.

5-30 DB86 Command Language Encyclopedia

Example
COUNT... ENDCOUNT (continued)

In this example, COUNT . . . ENDCOUNT steps through the program as
LSTEP would, until either 100 lines have been executed or the
execution point is at line number 30.

*C0UNT lOOt
.*LSTEP
•*WHILE $ < > #30
.*ENDC0UNT

Cross-references

Encyclopedia Entries

Control Constructs Expressions
Debugger Commands IF . . . ENDIF
DO . . . END REPEAT . . . ENDREPEAT

DB86 Command Language Encyclopedia 5-31

CSTEP
Steps into the next procedure
call encountered

Syntax

CSTEP

Discussion

The CSTEP command steps by machine instruction using the ISTEP
command until the next CALL instruction is encountered. It then steps
into the procedure call using one ISTEP instruction and displays the
next executable line.

CSTEP allows you to step from the current execution point and nest
into the next encountered procedure call.

Cross-references

Encyclopedia Entries

Breakpoint Commands GO RSTEP
CB ISTEP TR
ENABLE/DISABLE LSTEP WA
FB PSTEP

Menu/Item

Go/Call Step

Keyboard Control

sF8 Call step

5-32 DB86 Command Language Encyclopedia

Data Types
Are the standard types, used in

commands and displays, with
which the debugger is familiar

Discussion

Data types, the standard types with which the debugger is familiar,
are listed in Table 5-12. You cannot create new types within the
debugger. User-defined variables, which have been defined in a user
program at compilation, cannot refer to debug variables.

Table 5-12 DB86 User-program Types

Type Description
Unsigned
ADDRESS
BYTE
DWORD
SELECTOR

WORD

16-bit quantity in current base
8-bit quantity
32-bit quantity in current base
16-bit quantity representing a segment (paragraph), in current

base
16-bit quantity in current base

Signed
INTEGER
LONGINT
SMALLINT
EXTINT

16-bit quantity in Base 10
32-bit quantity in Base 10
8-bit quantity in Base 10
64-bit quantity in Base 10

Composite
ARRAY
STRUCTURE

Composite
Composite

Floating-point
LONGREAL
REAL
TEMPREAL

64-bit floating-point number
32-bit floating-point number
80-bit floating-point number representing intermediate real
values

DB86 Command Language Encyclopedia 5-33

Data Types (continued)
Table 5-12 DB86 User-program Types (continued)

Type Description

Pointer
POINTER 32-bit selectoroffset pair

Boolean
BOOLEAN True (LSB = 1) or False (LSB = 0)

Character
CHAR ASCII character string

Assembler
ASM Assembler language mnemonic

Cross-references

Encyclopedia Entries

Debug Variables
DEFINE
Expressions
User-program Symbols

5-34 DB86 Command Language Encyclopedia

Debug Variables
Store temporary values
during a debug session

Discussion

Debug variables can store temporary values during a debug session.

To display the value of a debug variable, simply type name, where
name is the name of the variable.

To define a new debug variable, use the DEFINE command.

To change a debug variable, type name = .

Cross-references

Encyclopedia Entries

Data Types
DEFINE
DIR

DB86 Command Language Encyclopedia 5-35

Debugger Commands
Are the primary commands in
the debugger command-language

Discussion

Debugger commands, the primary commands in the debugger
command-language, enable you to set breakpoints, tracepoints, and
watch expressions; control program execution; and perform a variety
of debugging functions.

Debugging commands are available through the command-line
interface, the menu system, and the keyboard.

Cross-references

Encyclopedia Entries

Command Entry
HELP
Menu System

Menu/Item

Help Menu

5-36 DB86 Command Language Encyclopedia

DEFINE
Defines a global or

local debug variable

Syntax

DEFINE [GLOBAL] type name [= expr]
Where:
GLOBAL specifies that name is global, whether or not it appears

in any DO ... END constructs.
type specifies the data type of the debug variable. The

following list presents debugger data types:
ADDRESS LONGINT
ASM LONGREAL
BOOLEAN POINTER
BYTE REAL
CHAR SELECTOR
DWORD SMALLINT
EXTINT TEMPREAL
INTEGER WORD

name is the user-specified name for the debug variable.
expr is an expression that assigns an initial value to the

variable.

Discussion

The DEFINE command defines a debug variable. The variable is global
if defined at the the outer command level (that is, if it is not enclosed
in a DO ... END construct) or if you use the GLOBAL option.
Otherwise, the variable is local, and so is known only within the
DO — END block in which it appears.

The debug variable has the same properties as a program variable of
the same type, except that it cannot be prefaced with a dot.

DB86 Command Language Encyclopedia 5-37

DEFINE (continued)
You can assign an initial value to the debug variable. If no value is
given, the variable has a default value of zero (or is a string of zero
length) and its Boolean value is set to false. You can assign a new
value to a debug variable as long as the new value does not change
the type.

Example

In this example, DEFINE defines two variables, a pointer and a
string.

*DEFINE pointei x = :LI$TMOO #50
*EVAL x LINE
:LISTM0D #50
^DEFINE char s - 'This is a string'
*s
*This is a s trin g

Cross-references

Encyclopedia Entries

Data Types
Debug Variables
DO . . . END
Expressions

5-38 DB86 Command Language Encyclopedia

DIR
Displays a listing

of symbolic debug information

Syntax

DIR [PUBLIC] ’[m typ e | s t y p e]
[module-name] [m typ e \ s t y p e | LINE | SETMOD]
MODULE
DEBUG
b r e a k - t y p e

Where:
PUBLIC

m typ e

lists all public symbols.
qualifies the display of symbols so that only debug
variables of memory type m typ e are displayed. The
following list presents m typ e variables:

ARRAY
BOOLEAN
BYTE
CHAR
DWORD
ENUMERATION
FILE
INTEGER
LONGINT

LONGREAL
POINTER
PROCEDURE
REAL
RECORD
SET
SMALLINT
TEMPREAL
WORD

See Table 5-13 for language-specific information.
s t y p e qualifies the display of user symbols so that only

variables of special user program type s t y p e are
displayed. ARRAY, RECORD, PROCEDURE, and
LABEL are all s t y p e variables.

m odule-name names a specific module whose public symbols are to
be listed. The current module is used when
module-name is not specified.

LINE displays the line numbers of executable statements.
These line numbers are generated at compile time.

DB86 Command Language Encyclopedia 5-39

DIR (continued)
MODULE

SETMOD

displays the names of all modules currently loaded in
the symbol table.
lists all correlations between modules of the loaded
program and list files; these correlations are set by the
user and by the debugger. The display includes
module name and path name.

DEBUG Displays the current definitions of breakpoints,
tracepoints, watch expressions, and debug variables.

break-type is one of the following breakpoints, tracepoints, or
watch expressions: CB, FB, TR, WA.

Discussion

The DIR command, without options, displays a listing of symbols in
the current module. Symbols are indented to show their scope.

If the symbol type is a structure, the elements of the structure are
displayed. If the symbol type is an array, the array bounds are
displayed. Dynamic and base attributes are also displayed.

If the module has not yet been accessed by the debugger and the
SPATH extension list has not been applied, the module extension is
shown as an asterisk (*) (e.g., TEST1.*).

If all SPATH extensions have been applied to the file and no list file
match is found, "None" is displayed.

To display the active values of breakpoints, tracepoints, or watch
expressions, type break-type.

5-40 DB86 Command Language Encyclopedia

D IR (c o n tin u e d)
Table 5 -1 3 DB86 mtypes and their L anguage-specific Names

mtype ASM-86 PL/M FORTRAN-86 iC-86 Pascal-86

byte BYTE BYTE UNSIGNED
SHORT

BYTE

ADDRESS ADDRESS *var

word WORD WORD UNSIGNED WORD

dword LONG DWORD UNSIGNED
LONG

real REAL REAL REALM REAL REAL

smallint INTEGERS SIGNED
CHAR

integer INTEGER INTEGER*2 INTEGER INTEGER

longint LONGINT INTEGERM LONG LONGINT

char CHAR CHARACTER UNSIGNED
CHAR

CHAR

boolean LOG I CAL* 1 BOOLEAN

array ARRAY ARRAY ARRAY ARRAY

structure STRUCTURE STRUCT RECORD

proce
dure

PROCEDURE FUNCTION FUNCTION PROCE
DURE

DB86 Command Language Encyclopedia 5-41

D IR (c o n tin u e d)
Table 5 -1 3 DB86 mtypes and their L anguage-specific Names (continued)

mtype ASM-86 PL/M FORTRAN-86 iC-86 Pascal-86
pointer POINTER POINTER far*var @var

long- QWORD
real

REAL*8 double

temp- TBYTE
real

set SET

file FILE

enumer- enum ENUMER-
ation ATION

Example

In this example, DIR displays a listing showing the correlation between
each module to be debugged (first column) and its list file (second
column).

*DIR SETMOD
ECRYPTION
MYPROG
YOURPROG
TEST1
CHKFIL

\list.dir\ECRYPTION.LST
\list.dir\MYPROG.LST
\list.dir\YOURPROG.LST
\1i st.di r\TESTl.*
None

5-42 DB86 Command Language Encyclopedia

Cross-references

Encyclopedia Entries

Data Types
SETMOD

Menus/Items

View/Locals
View/Modules
View/Debug

D IR (co n tin u e d)

DB86 Command Language Encyclopedia 5-43

DO ... END
Group and execute commands

Syntax

DO
{debugger_commands}

END

Where:

debugger_coimands can be any debugger commands except HELP,
INCLUDE, and LOAD.

Discussion

The DO ... END construct groups one or more debugger commands in
a block and executes the commands.

You can nest DO blocks; the number of dots before the * prompt
indicates the nesting level.

Example

In this example, the DO ... END construct groups a series of
commands, which test the value of a variable, varl, after a breakpoint
occurs at line number 50.

*D0
. *G0 TIL #50
.*IF varl == 25T THEN
. .*'TRUE' /*display TRUE on console*/

LSE
FALSE' /*display FALSE on console*/

..*:NDIF
,*END
[Break at :mod #50]
TRUE

5-44 DB86 Command Language Encyclopedia

Cross-references

Encyclopedia Entries

Control Constructs
COUNT ... ENDCOUNT
Debugger Commands
IF ... ENDIF
REPEAT ... ENDREPEAT

D O ... E N D (c o n tin u e d)

DB86 Command Language Encyclopedia 5-45

ENABLE/DISABLE
Enables or disables a specified breakpoint,
tracepoint, or watch expression; or enables
or disables all breakpoints, tracepoints,
or watch expressions

Syntax

[ENABLE]
[DISABLE] [break-type-list]

Where:

break-type-list lists either all or specified conditional
breakpoints, fixed breakpoints, tracepoints, or
watch expressions. The items in the list are
separated by commas. The following list
presents debugger breakpoints, tracepoints, and
watch expressions:

• Conditional Breakpoints

CBO
CB1
CB2
CB3

• Fixed Breakpoints

FBO
FBI
FB2
FB3
FB4
FB5

• Tracepoints

TRO TR5
TR1 TR6
TR2 TR7
TR3 TR8
TR4 TR9

5-46 DB86 Command Language Encyclopedia

ENABLE/DISABLE (continued)
• Watch Expressions

WAO
WA1
WA2
WA3
WA4
WA5

Discussion

The ENABLE command enables all conditional breakpoints, fixed
breakpoints, tracepoints, or watch expressions. To enable a particular
breakpoint, tracepoint, or watch expression, enter ENABLE CBn, FBn,
TR/7, or WAn.

The DISABLE command disables all conditional breakpoints, fixed
breakpoints, tracepoints, or watch expressions. To disable a particular
breakpoint, tracepoint, or watch expression, enter DISABLE CBn, FBn,
TRn, or WAn. All conditional and fixed breakpoints and tracepoints are
cleared with the GO FOREVER command.

Disabled breakpoints and tracepoints do not halt the user program that
is executing under debugger control. Disabled watch expressions are
not shown in the Watch Window.

Use the DIR command to show currently defined conditional
breakpoints (DIR CB), fixed breakpoints (DIR FB), tracepoints (TR), and
watch expressions (WA).

Examples
1. In the following example, all watch expressions are enabled.

* ABU

2. In the following example, fixed breakpoint number 3 and
conditional breakpoint number 1 are disabled. *

*DISABLE FB3, CB1

DB86 Command Language Encyclopedia 5-47

ENABLE/DISABLE (continued)
Cross-references

Encyclopedia Entries

Breakpoint Commands FB
CB TR
DIR WA
GO FOREVER

Menus/Items

Go/Forever
Go/Til Breakpoint
Go/Keep Fixed

Keyboard Controls

F5 Go, all breakpoints
sF5 Go forever
sF7 Go, fixed breakpoints

5-48 DB86 Command Language Encyclopedia

Syntax

EVAL e x p r [OV

Where:

e x p r

OV ov-name

LINE

PROCEDURE

SYMBOL

EVAL
Calculates and displays

the result of an expression

ov-name] 'LINE
PROCEDURE
SYMBOL

is an expression.

is the name of an overlay. If you wish to evaluate to a
symbolic reference in an overlay that is not present,
O V forces the symbolic reference to ov-name. ov-name
is assigned by the user at link-time when linking with
LINK86.

displays a line number, in the form
m o du le -n am e# lin e-n u m ber . If address mapping was
not exact, this message can include + o f f s e t, where
o f f s e t is the difference in bytes between
m o d u le -n a m e il in e -n u m b e r . If the debugger has no line
number information for the module, offset is calculated
from the start of the module.

displays a procedure, in the form
m o d u le -n a m e .p ro ced u re -n a m e . This message can
include + o f f s e t, as described in LINE, above.

displays the symbol associated with an address specified
in e x p r, in the form
m odule_nam e.procedure_nam e. sym bol. This message
can include + o f f s e t, as described in LINE, above.
When e x p r evaluates to a module with no labels, or
with no labels before the expression, SYMBOL displays
the module name.

DB86 Command Language Encyclopedia 5-49

EVAL (continued)
Discussion

The EVAL command calculates and displays the result of an expression.
When used with LINE, EVAL calculates and displays the module name
and line number closest to expr. When used with PROCEDURE, EVAL
calculates and displays the module name and procedure closest to
expr. When used with SYMBOL, EVAL calculates and displays the label
or data variable closest to expr.

Most results are displayed in binary, decimal, hexadecimal, and
ASCII. Negative integers are displayed with negative signs. ASCII is
displayed as a string enclosed in apostrophes ('string'); any
nonprinting characters are displayed as periods (.). Floating-point
calculations are displayed as 10 bytes, in hexadecimal form. Real
types with no calculations are displayed in the number of bytes
appropriate to their type; that is, a real is displayed as 4 bytes, a
longreal as 8 bytes, and a tempreal as 10 bytes.

Examples
1. In this example, EVAL calculates and displays the current

execution point.

*EVAL $ LINE
:M0D_2#3
★

2. In this example, EVAL determines in which procedure the address
1024:40 is.

*EVAL 1024:40 PROCEDURE
:M0D_2.PR0C_0NE+5
*

3. In this example, EVAL evaluates the result of a combination of
program variable expressions and a constant.

*EVAL 13 + fvarl - j)
01101110Y 110T 6EH * n'

5-50 DB86 Command Language Encyclopedia

4. In this example, EVAL determines which procedure in overlay
0VERLAY_1 corresponds to address 1234:56.

*EVAL 1234:56 OV 0VERLAY1 PROCEDURE
:M0D6.LOAD
*1 ... DS:1234 SYMBOL
:INI0.FIELD IDX

EVA L (c o n tin u e d)

Cross-reference

Encyclopedia Entry

Expressions

DB86 Command Language Encyclopedia 5-51

EXIT
Terminates the debug session
and returns control
to the host operating system

Syntax

EXIT

Discussion

The EXIT command closes all open files, terminates the debug session,
and returns to the operating system.

Example

In this example, EXIT exits the debugger and returns to DOS.

*EXIT
C>

Cross-references

Encyclopedia Entry

! DOS Shell

Menus/Items

Debug/Exit DB86
Debug/DOS Shell

5-52 DB86 Command Language Encyclopedia

Expressions
Are one or more numbers, debug variables,

or functions separated by operators

Discussion

An expression is a single value or a combination of operands (one or
more numbers, debug variables, strings, or control variables) separated
by operators.

Operands

Debugger operands include the following:

Debug variables
Keywords
Line numbers
Numbers
Pseudovariables BASE, PORT, WPORT
Real numbers
User program symbols

Operators

The debugger recognizes the operators shown in Table 5-14. The
operators are grouped according to precedence, with the unary
operator class having the highest precedence and arithmetic operator
class having the lowest precedence. The operators are also grouped
according to precedence within each class.

M O D is valid with Boolean operands and real numbers.

DB86 Command Language Encyclopedia 5-53

E xp ressio n s (c o n tin u e d)
Table 5-14 Operators

Operator Function

Arithmetic Operators

+ unary and binary plus

- unary and binary minus

* multiplication

/ division

MOD modulo (remainder)

Boolean Operators

NOT Boolean NOT

AND Boolean AND

OR Boolean OR

XOR Boolean XOR

Relational Operators

< > not equal

> greater than

< less than

< = less than or equal to

> = greater than or equal to

= = equals

5-54 DB86 Command Language Encyclopedia

Types and Their Valid Operators

Table 5-15 shows which operators are valid for which types.

Table 5-16 shows which binary operators are valid between operands
of different types.

E xp ressio n s (c o n tin u e d)

Table 5-15 Types and their Valid Operators

Type Valid Operators
Unary

Binary

Unsigned + , NOT All operators

Signed + , - All operators

Floating-point + ,., - Unary and binary,
relational operators

Pointer None +, relational operators

Boolean NOT Boolean, relational
operators

Character None None

DB86 Command Language Encyclopedia 5-55

E xp ressio n s (co n tin u ed)
Table 5 -1 6 Disparate Types and their Valid Binary Operators

Type Type Valid Binary Operators

Unsigned Signed All operators
Floating-point Unary and binary,

relational operators
Pointer Relational operators,

Boolean
+ . -
Boolean, relational
operators

Character All operators

Signed Unsigned All operators
Floating-point Unary and binary,

relational operators
Pointer Relational operators,

Boolean Boolean, relational
operators

Character None

Floating-point Unsigned Unary and binary,
relational operators

Signed Unary and binary,
relational operators

Pointer Relational operators,

Boolean Boolean, relational
operators

Character None

5-56 DB86 Command Language Encyclopedia

E xp ressio n s (c o n tin u e d)
Table 5 -1 6 Disparate Types and their Valid Binary Operators (continued)

Type Type Valid Binary Operators

Pointer Unsigned Relational operators,
j _

Signed
i ,

Relational operators,
+ , -

Relational operators,
- L _

Floating-point

Boolean
i p

None
Character None

Boolean Unsigned Boolean, relational
operators

Signed Boolean, relational
operators

Floating-point Boolean operators
Pointer None
Character None

Character Unsigned All operators
Signed None
Floating-point None
Pointer None
Boolean None

DB86 Command Language Encyclopedia 5-57

Expressions (continued)
Expression Typing

When the debugger evaluates expressions that contain different data
types, it automatically performs any necessary type conversions, as
shown in Table 5-17. The debugger also performs conversions when
a particular type is required by the syntax (e.g., in COUNT expr, expr
becomes a word).

5-17 Type Conversions in Expressions

Expression Resulting Type
Unsigned

operator Unsigned DWORD
operator Signed LONGINT
operator Floating-point TEMPREAL
operator Pointer POINTER
operator Boolean BOOLEAN
operator Character DWORD

Signed
operator Unsigned LONGINT
operator Signed LONGINT
operator Floating-point TEMPREAL
operator Pointer POINTER
operator Boolean BOOLEAN
operator Character Incompatible; error message

Floating-point
operator Unsigned TEMPREAL
operator Signed TEMPREAL
operator Floating-point TEMPREAL
operator Pointer POINTER
operator Boolean BOOLEAN
operator Character Incompatible; error message

5-58 DB86 Command Language Encyclopedia

E xp ressio n s (c o n tin u e d)
Table 5 -1 7 Type Conversions in Expressions (continued)

Expression Resulting Type

Pointer
operator Unsigned POINTER
operator Signed POINTER
operator Floating-point POINTER
operator Pointer DWORD
rel operator Pointer BOOLEAN
operator Boolean Incompatible; error message
operator Character Incompatible; error message

Boolean
operator Unsigned BOOLEAN
operator Signed BOOLEAN
operator Floating-point BOOLEAN
operator Pointer Incompatible; error message
operator Boolean BOOLEAN
operator Character Incompatible; error message

Character
operator Unsigned DWORD
operator Signed Incompatible; error message
operator Floating-point Incompatible; error message
operator Pointer Incompatible; error message
operator Boolean Incompatible; error message
operator Character Incompatible; error message

DB86 Command Language Encyclopedia 5-59

Expressions (continued)
Typing in an Assignment Operation

When the debugger combines different types in an assignment
operation, it automatically performs any necessary type conversions, as
shown in Table 5-18. In direct mapping conversions, the debugger
expands the source operand to maximum precision and then truncates
it to the destination type if necessary. In tests, the result is true if
the least-significant bit is 1, false if the least-significant bit is 0.

5-18 Type Conversions in Assignments

Assignment Resulting Type
Unsigned =

Unsigned Direct mapping
Signed Direct mapping
Floating-point Fixed point
Pointer Direct mapping
Boolean Incompatible; error message
Character Direct mapping

Signed =
Unsigned Direct mapping
Signed Direct mapping
Floating-point Fixed point
Pointer Direct mapping
Boolean Incompatible; error message
Character Incompatible; error message

Floating-point =
Unsigned Floating-point
Signed Floating-point
Pointer Incompatible; error message
Boolean Incompatible; error message
Character Incompatible; error message

5-60 DB86 Command Language Encyclopedia

E xp ressio n s (co n tin u e d)
Table 5 -1 8 Type Conversions in Assignments (continued)

Assignment Resulting Type
Pointer =

Unsigned
Signed
Floating-point
Boolean
Character

Direct mapping
Incompatible; error message
Incompatible; error message
Incompatible; error message
Incompatible; error message

Boolean =
Unsigned
Signed
Floating-point
Pointer
Character

Test
Test
Test
Incompatible; error message
Incompatible; error message

Character =
Unsigned
Signed
Floating-point
Pointer
Boolean

Direct mapping
Incompatible; error message
Incompatible; error message
No conversion necessary
Incompatible; error message

Cross-references

Encyclopedia Entry

Data Types
Debug Variables
Pseudovariables
User-program Symbols

DB86 Command Language Encyclopedia 5-61

FB
Sets a fixed breakpoint
or displays a current
fixed breakpoint

Syntax

FB[n] [= aexpr]

Where:

n is a number, from 0 to 5 inclusive, assigned to a
debugger breakpoint.

aexpr is an expression that evaluates to the address at which
program execution is to be halted.

Discussion

The fixed breakpoint command, FB, sets a new breakpoint at the
specified address. This breakpoint remains in effect regardless of a
GO TIL condition. Up to six fixed breakpoints are available: FBO,
FBI, FB2, FB3, FB4, and FB5.

You can enable fixed breakpoints with the ENABLE command and
disable them with the DISABLE command. All breakpoints are
effectively disabled with the GO FOREVER command.

For the current definition of a fixed breakpoint, enter FBn.

Use the DIR FB command to display the current definitions of all
fixed breakpoints.

5-62 DB86 Command Language Encyclopedia

FB (co n tin u ed)
Examples

1. In this example, FB displays the current definition of fixed
breakpoint number 0.

*FB0
:vstl.vstl_enter_module

2. In this example, FB sets a breakpoint at line number 37 of the
current module.

*FB1 = #37

Cross-references

Encyclopedia Entries

Breakpoint Commands GO
CB TR
DIR WA
ENABLE/DISABLE

DB86 Command Language Encyclopedia 5-63

FLAGS
Displays or changes
8086/8088 flags

Syntax

FLAGS 1 [= bexpr]
flag-name J
Where:
bexpr is an expression that represents a Boolean value.
flag-name is one of the following flag bits:

OFL Overflow flag
DFL Direction flag
IFL Interrupt flag
SFL Sign flag
ZFL Zero flag
AFL Auxiliary flag
PFL Parity flag
CLF Carry flag

Description

The FLAGS command displays or sets 8086/8088 flags.

Use the FLAGS form to display the flag word in the current radix. To
display the flag word in another radix, supply the desired base suffix.

The flag word is shown in the Register Window as an 8-letter value
(e.g., ODisZAPC) in which each letter stands for one of the processor
flags listed above. An uppercase letter indicates that the flag is set
(logic 1) and a lowercase letter indicates that the flag is not set (logic
0).

Use the flag-name form to reference the desired flag. To set all the
flags (i.e., the flag word) to a different value, use the FLAGS = expr
form.

5-64 DB86 Command Language Encyclopedia

FLAG S (c o n tin u e d)
Examples

1. In this example, FLAGS displays the 8086/8088 flags in binary;
BASE sets the radix to 2.

*BASE = 2
* LAGS
1111000101100101

2. In this example, FLAGS sets the Carry flag to true.

*CFL = TRUE

Cross-references

Encyclopedia Entries

Expressions
FLAGS
Registers and Flags
REGS
REGS87

Menu/ltem

Window/Registers

Keyboard Control

F2 Toggle Register Window

DB86 Command Language Encyclopedia 5-65

GO
Starts program execution
and controls breakpoints and tracepoints

Syntax

GO fFOREVER
TIL expr [, exprl . . . expr9]

Where:
FOREVER clears all active breaks and executes the program from

the CS:IP ($) to the end of the program.
executes the program from the CS:IP ($) until a
specified address is reached. The comma (,) separating
expressions represents an OR function.

TIL

expr is an expression that can be converted into an address
in the object code being debugged.

Discussion

The GO command begins execution of the user program at the LOAD
address or from the previous breakpoint.

To set temporary breakpoints, use the GO TIL expr {, exprl ... expr9}
form; in this way, you can set up to ten temporary breakpoints.
Temporary breakpoints remain in effect until you specify another GO
TIL or GO FOREVER.

To change the execution address, assign a value to dollar sign ($), a
pseudovariable that represents the current execution point.

When you change the execution address with $, you may
invalidate the run-time stack as a consequence of disrupting
the normal flow of the program.

To execute the program up to a certain line number, enter GO TIL
ftline-number. Both the executable line and its context are displayed.

5-66 DB86 Command Language Encyclopedia

NOTE

G O (c o n tin u e d)
Examples

1. In this example, GO executes the user program until CS:2090H or
CS.3090H is encountered.

*G0 TIL CS:2090H , CS:3090H

2. In this example, GO clears all active breaks and executes the user
program from beginning to end.

*G0 FOREVER

3. In this example, GO clears all existing temporary breakpoints and
then sets a temporary breakpoint at line number 39.

*U0 TIL #39

Cross-references

Encyclopedia Entries

Expressions
LOAD

Menus/Items

Go/Forever
Go/Keep Fixed
Go/Til Breakpoint
Go/Til Cursor Line

Keyboard Controls

F5 Go, all breakpoints
sF5 Go forever
F7 Go til cursor line
sF7 Go, fixed breakpoint
F9 Set temp breakpoint

DB86 Command Language Encyclopedia 5-67

HELP
Provides on-line operating assistance

Syntax

HELP help-item
E
n
E n

Where:
he Ip-item

E
n

E/7

specifies the topic for which help is desired. Help
topics are listed below.
displays the expanded error message for the last error.
displays the error message number n, with no expanded
text, n must be a decimal number.
displays the expanded error message number n.

5-68 DB86 Command Language Encyclopedia

Discussion
H E LP (c o n tin u e d)

The HELP command provides on-line operating assistance by
displaying helpful information in the command window on a variety
of topics:

ASM ENTRY MODULES
BASE EXCEPTIONS OBJECTS
BREAKPOINT EXIT OPERATORS
BROWSEMENU GO PORT
CALLS GOMENU PROCEDURES
CMDWINDOW HELP PSTEP
COMMANDS IF REALS
COMMENTS INCLUDE REGISTERS
CONSTRUCTS INVOCATION REPEAT
COUNT ISTEP RSTEP
CSTEP KEYBOARD SCOPE
DEBUGMENU LABELS SETMENU
DEFINE LINES SOURCE
DEREFERENCE LIST STACK
DIR LOAD TYPES
DISPLAY LSTEP VARIABLES
DO MENU VIEWMENU
EDIT MODIFY WINDOWMENU

Example

In this example, HELP provides on-line information about the EXIT
command. *

*HELP EXIT
To exit the debugger, type EXIT. DB86 ends the debugging
session, closes all files (both the debugger's and the
user's), returns all allocated memory (both the debugger's
and the user's), and returns to the host operating system.

DB86 Command Language Encyclopedia 5-69

HELP (continued)
Cross-references

Encyclopedia Entry

Debugger Commands

Menu/Item

Help Menu

5-70 DB86 Command Language Encyclopedia

IF ... ENDIF
Group and conditionally

execute commands

Syntax

IF bexpr THEN
{debugger_commands}
ELSE {debugger_commands}

ENDIF

Where:
bexpr is a Boolean expression, which evaluates to true

(Least-Significant Bit (LSB) = 1) or false (LSB
= 0).

debugger_commands can be any debugger commands except HELP,
INCLUDE, and LOAD.

Discussion

The IF . . . ENDIF construct groups one or more debugger commands
in a block and executes the commands.

IF . . . ELSE executes debugger commands when bexpr is false. When
bexpr is false and there is no ELSE clause, no commands are executed.

DB86 Command Language Encyclopedia 5-71

IF ... ENDIF (continued)
Example

In this example, the IF . . . ENDIF construct sets up and executes the
following condition: if var_l equals 12, then perform an LSTEP from
the current line. Otherwise, set a breakpoint at line number 101 and
begin program execution.

*var_l
0
*IF var_Jt == 12 THEN
.*1. STEP
.*ELSE GO TIL #101
.*ENDIF
[Step at #57]

Cross-references

Encyclopedia Entries

COUNT . . . ENDCOUNT
Debugger Commands
DO . . . END
Expressions
REPEAT . . . ENDREPEAT

5-72 DB86 Command Language Encyclopedia

INCLUDE
Executes command input

from a text file

Syntax

INCLUDE filename [NOLIST]

Where:
filename is the name of the file to be included.
NOLIST is the debugger command that suppresses the listing of

the included file to the terminal.

Discussion

The INCLUDE command redirects command input from a separate text
file, treating the input as part of the current listing. Make sure that
INCLUDE is the last command to appear on a line.

You can nest INCLUDE commands; the level of nesting permitted is
determined by the debugger memory manager.

Example

In the following example, INCLUDE includes a command file that
initializes the source path for debug list files and also assigns specific
list files to two of the program modules.

* INCLUDE exampl.inc
*SPATH * ..\list.dir
* iETMOD :module_a to first. 1st
* iETMOD imoduleb to second,1st

Cross-reference

Encyclopedia Entry

L1ST/NOLIST

DB86 Command Language Encyclopedia 5-73

ISTEP
Steps through a program one
machine instruction at a time

Syntax

ISTEP

Discussion

The ISTEP command executes the machine instruction at the current
execution point, displays the next machine instruction, and then stops.

NOTE

If your PC has a resident 8087 microprocessor, ISTEP executes
two instructions instead of one when it is stepping through an
instruction which either alters the segment register or ends in
a wait cycle (opcode 9B). Execution of two instructions is due
to interactions between the 8087 and 8086/8088 processors and
their communication protocols.

Example

In this example, ISTEP steps and displays the processor registers at the
next line in the program. *

*

0021:0045H 890E0E00 MOV WORD PTR 000EH,CX

5-74 DB86 Command Language Encyclopedia

IS T E P (co n tin u ed)
Cross-references

Encyclopedia Entries

CB
CSTEP
ENABLE/DISABLE

Breakpoint Commands FB
GO
LSTEP
PSTEP

RSTEP
TR
WA

Menus/Items

Go/Auto Step
Go/Return Step
Go/Call Step
Go/Procedure Step
Go/Return Step
Go/Step

Keyboard Control

F8 Step Execution

DB86 Command Language Encyclopedia 5-75

Lexical Elements
Are names, numbers,
strings, and special character delimiters
recognized by the debugger

Discussion

Lexical elements are names, numbers, strings, and special character
delimiters recognized by the debugger. These elements are defined
below.

Names

Names include keywords, symbols in the user program, and debug
symbols. Keywords are symbolic elements of the DB86 command
language and cannot be used in any other context. See Appendix F
for the list of keywords reserved for DB86. You can refer to debug
symbols as simple, unqualified names.

A name must begin with any of the following:
uppercase or lowercase letter
at symbol (@)
underscore (_)
question mark (?)

A name can also be made up of any of the following:
at symbol (@)
underscore (_)
question mark (?)
dollar sign ($)
decimal digit

With one exception, the break character (dollar sign, $) is not
significant in identifiers and is discarded on input, as is consistent
with PL/M. However, the exception is the pseudovariable $, which
represents the current program counter (PC).

5-76 DB86 Command Language Encyclopedia

Numbers

Numbers are 8-, 16-, or 32-bit binary quantities, depending on the
number of significant digits. If you have an 8087 numeric processor
or an 8087 emulator program loaded, you can also use real numbers,
in binary, decimal, or hexadecimal radix. Real numbers are
floating-point numbers in scientific notation, and can range from
8.43E-37 to 3.38E+38.

Signed numbers and real numbers are made possible by the syntax for
expressions.

The base of a number or real number is set with the BASE command.
To override the current base setting, enter one of the following
suffixes:
• nY Binary
• nl Decimal
• nH Hexadecimal
• nK Decimal multiple of 1024

The unusual base specifiers, especially Y and T, are required because
of the use of B as a hexadecimal digit. That is, it would otherwise be
unclear whether IB is a hexadecimal number or a binary number with
a base override.

Lexical E lem en ts (c o n tin u e d)

Strings

A string is one or more characters enclosed in apostrophes (’). You
can create a string up to 254 characters long, not counting the
apostrophe delimiters. You can use an apostrophe as part of a string
by enclosing it in quotation marks (that is, You can use both
uppercase and lowercase letters in a string.

Strings that are separated by one or more logical blanks (including
spaces, tabs, or returns) are concatenated to form a single string. This
feature makes it possible to break strings over line boundaries.

Special Character Delimiters

The debugger recognizes the delimiters listed in Table 5-19.

DB86 Command Language Encyclopedia 5-77

Lexical Elements (continued)
Table 5-19 Special Character Delimiters

Character(s) Function

space logical blank
tab logical blank
return line terminator
ampersand... return continuation line indicator
semicolon (;) command separator
apostrophe (’) string delimiter
dot (.) infix symbol quantification delimiter
colon (:) module name prefix
comma (,) list element separator
caret O pointer dereferencer
/ * . . . 7 comment sequence
double quote (") user symbol override character

Cross-reference

Encyclopedia Entry

BASE

5-78 DB86 Command Language Encyclopedia

LIST/NOLIST
Opens or closes

a debug session log file

Syntax

LIST filename
NOLIST

Where:
filename is the name of the file in which information is to be

listed.

Discussion

The LIST command creates a debug session log by opening a file and
recording a history of all interactions in the command window
between the debugger and the user. Output includes prompts, input
line echos, and error messages.

The NOLIST command closes the current list file. There are two other
ways to close the current list file:
1. Open another list file, using the LIST command;
2. Exit DB86.

Examples
1. In this example, LIST opens a debug session log file on the A

drive.

*LIIT a ;a u g l.83
2. In this example, NOLIST closes the current list file.

* OUST

DB86 Command Language Encyclopedia 5-79

LOAD
Reads an Intel-86, load time
locatable, OMF file into memory

Syntax

LOAD filename [lo a d - f i l e - ta i l]

Where:
f i lename
load-fi l e - ta i l

names the file to be loaded into memory.
specifies the command invocation controls for
the program to be loaded.

Discussion

The LOAD command reads an INTEL-86, load-time-locatable, OMF
file into memory, making it available to the debugger for debugging.
Symbolic information is included in the file if you used the DEBUG
option at compilation time.

If the source path has not been explicitly set by the user with the
SPATH command, it is set to the directory from which the debugger is
loaded.

In this example, LOAD loads MYPROG.86 into memory; /s/m is passed
to the program as a load file tail.

♦LOAD \debug\mydir\myprog.86 /s/m

Example

5-80 DB86 Command Language Encyclopedia

Cross-references
LO A D (c o n tin u e d)

Encyclopedia Entry

SPATH

Menus/Items

Debug/Load Program
Debug/Reload
Debug/DOS Shell
Debug/Exit DB86
Debug/Source Path

DB86 Command Language Encyclopedia 5-81

LSTEP
Steps to the next high-level
language line in the program

Syntax

LSTEP

Discussion

The LSTEP command executes the high-level language line at the
current execution point and then stops.

You can use LSTEP even if the current execution point is not at the
beginning of a source-level statement; LSTEP steps to the next
statement number in the program.

NOTE

If your PC has a resident 8087 microprocessor, I STEP executes
two instructions instead of one when it is stepping through an
instruction which either alters the segment register or ends in
a wait cycle (opcode 9B). Execution of two instructions is due
to interactions between the 8087 and 8086/8088 processors and
their communication protocols.

Example

In this example, LSTEP steps at two consecutive language statements.

*LSTEP
[Step at :SWAPARR#17]
*LSTEP
[Step at :SWAPARR#18]

5-82 DB86 Command Language Encyclopedia

LS TE P (c o n tin u e d)
Cross-references

Encyclopedia Entries

Breakpoint Commands
CB
CSTEP
ENABLE/DISABLE

FB
GO
ISTEP
PSTEP

RSTEP
TR
WA

Menus/Items

Go/Auto Step
Go/Step

Keyboard Control

F8 Step execution

DB86 Command Language Encyclopedia 5-83

Memory Access
Makes it possible to display
or change debug variables or program
variables in user-program memory

Discussion

The debugger’s memory access features enables you to display or
change debug variables or program variables in user-program memory.

Displaying Variables

To display the value of a debug or program variable within the
program block containing the current execution point or the block
containing the variable as a public symbol, simply type the name of
the variable and press Enter.

To display the address of a variable within the current program block,
use the dot operator (.) as a prefix to the variable name as in
.variable. The current program block is determined by the SCOPE
pseudovariable.

To display the item the pointer is pointing to (i.e., to dereference the
pointer), type pointer-name*. Pointer dereferencing is available only
for languages that provide type information describing pointer item
relationships (such as iC-86).

To display the value of a variable outside the current scope, provide a
fully or partially qualified reference, which establishes a path from
the module level to the desired symbol.

The syntax for a fully qualified reference is as follows:

:module-name .procedure-name.symbol-qual i f i e r .symbol-name.

The syntax for a partially qualified reference is the same, but shorter:
you can omit the outermost module and procedure specifications,
depending on the current scope.

5-84 DB86 Command Language Encyclopedia

Modifying Variables

To change the value of a debugger or program variable, type the
variable name, the assignment operator (=), and the new value:
variable = new-value, new-value must be the same type as the
original value or coercible to it. See the Expressions topic in this
chapter for rules governing type coercion during assignment.

If the variable being displayed or modified is stack resident and is not
active at the time of reference then <INACTIVE> is displayed.

If a variable name conflicts with a DB86 keyword (e.g., BASE), use the
double-quote prefix (") to force DB86 to look up the variable in the
user symbol table.

M e m o ry A ccess (c o n tin u e d)

Examples
1. In this example, the debugger displays the values of three

consecutive integers, starting at INTARRAY:

♦integer .INTARRAY LENGTH 3
+15 -47 +1024

2. In this example, the debugger changes the value of the user
variable bob, which is defined as an integer.

♦bob
+215
♦bob = 8
♦bob
+8

3. In this example, the debugger displays the ten bytes starting at
. var.

♦BYTE .var LENGTH 10
1047:3333 01 23 77 00 11 22 33 44 55 66 77 88 99 AA CC

4. In this example, the debugger initializes an array of words to
zero.

♦WORD .word array length 50 = 0

DB86 Command Language Encyclopedia 5-85

Memory Access (continued)
5. In this example, the debugger moves a block of memory from one

area to another.

*BYTE .arrayl LENGTH 20 = BYTE .array2 LENGTH 20

6. In this example, the debugger displays an inactive, stack-resident
variable:

*ABC
<INACTIVE>

7. In th is example, you use the double-quote prefix to force
DB86 to lookup the variable BASE in the user symbol table instead
of the current number base:

*"base = 37T
* base
37
* ase
DECIMAL

Cross-references

Encyclopedia Entries

Expressions
Data Types
SCOPE

5-86 DB86 Command Language Encyclopedia

Menu System
Gives access, through pulldown

menus, to many debugger commands

Discussion

The menu system gives access, through pulldown menus, to many
often-used debugger commands. The menu system is represented on
the screen by the Menu Bar across the top line of the display. You
do not have to remember command syntax or even command names;
just select the commands from the menus.

There are two ways to activate the menu system:
• Type Alt-M. Use the leftarrow (<-) and rightarrow (->) keys to

highlight the desired menu in the Menu Bar. Press Enter to
select the highlighted pulldown menu.

• Type Alt-x, where x is the first letter of the name of a pulldown
menu.

To select a menu item, use the uparrow (t) and downarrow (I) keys
until the desired item is highlighted. Press Enter to select the
highlighted menu item. Or type the first character of the desired
item.

To exit the menu system, press Esc.

Cross-references

Encyclopedia Entry

Debugger Commands

Menu/Item

Alt-M or Alt-x, where x is the first letter of the name of a pulldown
menu.

DB86 Command Language Encyclopedia 5-87

OBREAK
Is a pseudovariable that determines
whether or not a breakpoint occurs
when a user-program overlay is loaded

Syntax

OBREAK = [TRUE 1
[false]

Discussion

The Boolean pseudovariable OBREAK controls whether or not execution
of the user program stops when an overlay load is detected. The
default value is true, which means that execution breaks each time an
overlay load request is performed.

When OBREAK is false, overlay loads are transparent; that is, they do
not perceptibly interrupt program execution.

NOTE

The debugger’s overlay loading function simulates the UDI
DQSOVERLAY function. You must use the NOGROUPOVERLAYS
(NOGO) option of LINK86 when you are linking user programs
that contain overlays and are to be debugged using DB86.

Example

In this example, OBREAK is set to false.

* JBREAK = FALSE
*
FALSE

Cross-reference

Encyclopedia Entry

Pseudovariables

5-88 DB86 Command Language Encyclopedia

PORT
Is a pseudovariable that

displays or changes the contents
of a specified byte wide I/O port

Syntax

PORT (port-number) [= data]
Where:
PORT (port-number) displays the contents of the user I/O port

specified by port-number in the current base.
port-number is a number or expression that
evaluates to a number in the current base from
0000H to OFFFFH.

data is any byte of data entered in the current base.
data is written to the specified port.

Discussion

The pseudovariable PORT displays the contents of a specified byte
wide I/O port. When used with the assignment operator (=), PORT
changes the contents of a port.

When used as a pseudovariable in a debugger expression, PORT
represents the current value of the byte port.

If you try to write data longer than a byte (e.g., a word), PORT uses
only the least-significant byte. Use the WPORT pseudovariable for
word length data.

DB86 Command Language Encyclopedia 5-89

PORT (continued)
Examples

1. In this example, PORT reads I/O port number 2. The base is
hexadecimal.

*P0RT(2)
99

2. In this example, PORT writes a decimal value to I/O port number
2. The T base selector overrides the current base and designates
50 as a decimal number.

*P0RT(2) = SOT
*P0RT{2)
32

Cross-references

Encyclopedia Entries

Pseudovariables
WPORT

5-90 DB86 Command Language Encyclopedia

Pseudovariables
Affect the operation

of the debugger

Discussion

The pseudovariables OBREAK, SYS I NT, PORT and WPORT affect the
operation of the debugger. OBREAK controls how the debugger acts
when an overlay load request is performed. SYS I NT controls whether
or not the debugger monitors certain DOS interrupts during program
execution. PORT and WPORT give access to the contents of byte wide
and word wide I/O ports. To display the value of one of these
pseudovariables, just type pseudo-var, where pseudo-var is OBREAK,
PORT, SYS I NT, or WPORT.

The pseudovariable SCOPE points to the current execution point or
changes it to your specification.

Cross-references

Encyclopedia Entries

BASE
Data Types
Debug Variables
OBREAK

PORT
SCOPE
SYSINT
WPORT

DB86 Command Language Encyclopedia 5-91

PSTEP
Steps to the next high-level
language line in the program,
stepping over procedure calls

Syntax

PSTEP

Discussion

If the current execution point resides at a CALL instruction, PSTEP
executes the called procedure and stops upon return from it. PSTEP
treats the procedure or function as if it were a single statement,
executing it completely before returning control at the next statement.
The next statement to be executed is displayed.

NOTE

If your PC has a resident 8087 microprocessor, I STEP executes
two instructions instead of one when it is stepping through an
instruction which either alters the segment register or ends in
a wait cycle (opcode 9B). Execution of two instructions is due
to interactions between the 8087 and 8086/8088 processors and
their communication protocols.

Example

In this example, PSTEP steps through a call to a procedure. Before
PSTEP is executed, the current CS:IP ($) is at line number 40 in the
module myprog. Line 40 consists of a call to a procedure. When
PSTEP is executed, the entire procedure is executed. *

*PSTEP
[Step a t imyprog #41]

5-92 DB86 Command Language Encyclopedia

Cross-references
P S T E P (c o n tin u e d)

Encyclopedia Entries

CSTEP
GO
ISTEP
LSTEP
RSTEP

Menu/Item

Go/Procedure Step

Keyboard Control

F10 Step over procedure

DB86 Command Language Encyclopedia 5-93

Registers and Flags
Set the contents of a specified register or
flag; display the contents of all registers or
flags or a specified register or flag

Discussion

Registers and flags set the contents of a specified register or flag.
They also display the contents of all registers or flags or a specified
register or flag. Registers and flags are displayed in hexadecimal.

Cross-references

Encyclopedia Entries

Expressions
FLAGS
REGS
REGS87

Menu System

Window/Registers

Keyboard Control

F2 Toggle Register Window

5-94 DB86 Command Language Encyclopedia

REGS
Displays or sets 8086/8088

microprocessor registers

Syntax

"REGS
86/ 88_register-name [= expr]

Where:
expr is an expression that sets the contents of the

specified 8086/8088 register.
86/88_register- displays the contents of one of the following
name 8086/8088 registers, in hexadecimal format:

AX CH ES
AH CL SS
AL DX SP
BX DH BP
BH DL IP
BL CS DI
CX DS SI

Discussion

The REGS command displays the contents of all registers, or the
contents of a specified 8086/8088 register, during a particular
program state. Definitions of 8086/8088 registers are shown in Table
5-20.

DB86 Command Language Encyclopedia 5-95

R E G S (c o n tin u e d)
Table 5-20 8086/8088 Registers

Keyword Description Data Type

Data Registers

AX Accumulator register
pair

WORD

AH Accumulator high byte BYTE

AL Accumulator low byte BYTE

BX B register pair WORD

BH B register high byte BYTE

BL B register low byte BYTE

CX C register pair WORD

CH C register high byte BYTE

CL C register low byte BYTE

DX D register pair WORD

DH D register high byte BYTE

DL D register low byte BYTE

5-96 DB86 Command Language Encyclopedia

REGS (continued)
Table 5-20 8086/8088 Registers (continued)

Keyword Description Data Type

Pointer/lndex Registers

SI Source index WORD

Dl Destination index WORD

BP Base pointer WORD

SP Stack pointer WORD

Segment Registers

CS Code segment WORD

DS Data segment WORD

ES Extra segment WORD

SS Stack segment WORD

Instruction Pointer

IP Instruction pointer WORD

DB86 Command Language Encyclopedia 5-97

REGS (continued)
Examples

1. In this example, register-name AX sets the contents to 12C0 and
displays the new value.

*AX = 12C0
*AX
12C0

2. In this example, REGS displays the current contents of all
registers.

* !EGS
AX=0004H BX=003AH
SI=39 E7H DI49F2H
SS=39E7H DS=49F2H
IP=03A2H
FLAGS:ZFL OFL PFL

CX=0000H DX=0002H
BP0104H SP=49F2H
ES=0104H CS=49F2H

Cross-references

Encyclopedia Entries

Expressions
FLAGS
Registers and Flags
REGS87

Menu/Item

Window/Registers

Keyboard Control

F2 Toggle Register Window

5-98 DB86 Command Language Encyclopedia

REGS87
Displays or sets 8087 emulator or

numerics processor registers

Syntax

"REGS87
87 register-name [= expr\

Where:
expr is an expression that sets the contents of the

specified 80x87 math coprocessor unit.
87_register-name displays the contents of one of the following

8087 registers, in hexadecimal format:
ST0 ST7
ST1 FIO
ST2 FCW
ST3 FSW
ST4 FTW
ST5 FIA
ST6 FDA

Discussion

The REGS87 command displays the contents of all registers, or the
contents of a specified 8087 register, during a particular program
state. The 8087 coprocessor may be either the 8087 emulator or an
8087 numeric processor; the debugger automatically recognizes the
coprocessor type at load time. Definitions of 8087 registers are shown
in Table 5-21.

NOTE

If the program being debugged does not use real math, the
contents of the 8087 registers are undefined. In this instance,
the debugger prevents you from displaying or setting 8087
registers.

DB86 Command Language Encyclopedia 5-99

R E G S 87 (c o n tin u e d)
Table 5-21 8087 Registers

Keyword Description Data Type

STO Stack Register 0 Tempreal

ST1 Stack Register 1 Tempreal

ST2 Stack Register 2 Tempreal

ST3 Stack Register 3 Tempreal

ST4 Stack Register 4 Tempreal

ST5 Stack Register 5 Tempreal

ST6 Stack Register 6 Tempreal

ST7 Stack Register 7 Tempreal

FIO Instruction Opcode Word

FCW Control Word Word

FSW Status Word Word

FTW Tag Word Word

FIA Instruction Address Dword

FDA Data Address Dword

5-100 DB86 Command Language Encyclopedia

Example
R E G S 87 (c o n tin u e d)

In this example, REGS87 displays the current contents of all registers
(assuming that a floating-point user program is loaded).

*
F10 : 0624 FCW :037F
FSW : 0000 FTW : FFFF
FIA :0006E229 FDA :00000D62
STO :+3.14159265350000000 ST1 1+2.00000000000000000
ST2 :+0.00000000000000000 ST3 :+3.00000000000000000
ST4 :+4.00000000000000000 ST5 :+3.00000000000000000
ST6 :+2.00000000000000000 ST7 :+l.00000000000000000

Cross-references

Encyclopedia Entries

Expressions
FLAGS
Registers and Flags
REGS

Menu/Item

Window/Registers

Keyboard Control

F2 Toggle Register Window

DB86 Command Language Encyclopedia 5-101

REPEAT... ENDREPEAT
Groups and executes commands forever,
while, or until an exit condition is met

Syntax

REPEAT
{debugger_commands
WHILE bexpr
UNTIL bexpr}

ENDREPEAT

Where:
debugger_commands can be any debugger commands except HELP,

INCLUDE, and LOAD.
bexpr is a Boolean expression that evaluates to true

(Least-Significant Bit (LSB) = 1) or false (LSB
= 0).

WHILE bexpr

UNTIL bexpr

executes while bexpr is true. Execution stops
when the WHILE bexpr is false.
executes until bexpr is true.

Discussion

The REPEAT . . . ENDREPEAT construct repeatedly executes a block of
commands until the specified exit condition is reached.

Example

In this example, REPEAT__ ENDREPEAT line steps the program until
line number 50 is reached.

*

.*LSTEP

.* NTH $ = = # 5 1

.♦ENDREPEAT

5-102 DB86 Command Language Encyclopedia

REPEAT... ENDREPEAT (continued)
Cross-references

Encyclopedia Entries

COUNT ... ENDCOUNT
Debugger Commands
DO ... END
Expressions
IF . . . ENDIF

DB86 Command Language Encyclopedia 5-103

RSTEP
Steps out of the current
procedure until after the
next return encountered,
stepping over calls

Syntax

RSTEP

Discussion

The RSTEP command executes the user program from the current
execution point until one step beyone the next RETURN instruction
encountered. RSTEP steps through any intervening CALL instructions.

RSTEP provides the ability to return execution context to the
procedure that called the current procedure. RSTEP is implemented as
a series of ISTEP commands; therefore, execution is not at full
machine speed.

Example

In this example, RSTEP returns control to the procedure that called the
current procedure. *

*CALLS
[0] :M0D #27 CO
(1) :M0D #41

*R$TEP
[Step at :M0D #41]

5-104 DB86 Command Language Encyclopedia

Cross-references
R S TE P (c o n tin u e d)

Encyclopedia Entries

CSTEP
GO
ISTEP
LSTEP
PSTEP

Menu/Item

Go/Return Step

Keyboard Control

sFlO Return step

DB86 Command Language Encyclopedia 5-105

SCOPE
Sets a new debugger browse context
or displays the current one

Syntax

SCOPE [= aexpr]
Where:
aexpr is an expression that evaluates to an address.

Discussion

The pseudovariable SCOPE defines the current scope context. The
scope context is a memory location in the user program that is known
to the debugger and that determines what user symbols and variables
are visible to the debugger. It also determines what source
information is shown in the View Window. After any steps or
breakpoints, the scope is automatically set to the current execution
point (CS.IP). When the debugger is in control, the user is free to
change the scope to another location in the program (i.e., browsing).

Use SCOPE = aexpr to change the current scope context and display a
window of data starting at that point.

You can use the scope context to help qualify a symbol in the user
program. The current scope determines how much information you
must provide when you are looking up a user-program symbol. The
debugger searches for the symbol first in the innermost program
block, and then in the next (ancestor) block, continuing the search
until the symbol is found or the search fails in the outermost block.

For example, suppose execution has halted in the procedure GETCHAR
in the module SCANNER. You can refer to any variable in GETCHAR just
by typing its name. But suppose execution has halted outside
GETCHAR. To refer to a variable within GETCHAR, you must also supply
a qualifier (e.g., GETCHAR.TOKEN). To refer to a variable in another
module, you must supply the module name and any enclosing
procedure names; use a dot to separate procedure names from each
other (e.g., :SCANNER.GETSTR.GETCHAR.CH).

5-106 DB86 Command Language Encyclopedia

Even if the current execution point is not inside of GETCHAR, you can
set SCOPE to a point inside GETCHAR and, thus, allow direct reference
to variables like CH, which are visible only inside of GETCHAR. SCOPE
can easily be set back home (i.e., to CS:IP) by the command
SCOPE = $.

S C O P E (co n tin u e d)

NOTE

You can use SCOPE interchangeably with its alias, NAMESCOPE.

Example

In this example, SCOPE locates var_l, which is known in M0D_2 but
not in M0D_1.

♦SCOPE = :M0D_1
* ar 1
VAR_1
ERROR #12
Symbol not known in current context.
*^C0PE = ;MQD_2
*var_l
15

Cross-references

Encyclopedia Entries

Pseudovariables
User-program Symbols

Menu/Item

Browse/Scope ...

Keyboard Control

Grey *

DB86 Command Language Encyclopedia 5-107

SETMOD
Correlates an executable module
with a source display file

Syntax

SETMOD :module-name TO filename

Where:
module-name is the name of the module for which debug

information is obtained and stored in the virtual
symbol table.

filename is the name of the file used for source display. It may
be a listing file generated during compilation or it may
be the source file.

Discussion

The SETMOD command correlates the name of an executable module
with the name of a corresponding source or listing file. The debugger
uses this file while displaying the user program in the View Window.

The source display file is derived as follows:
1. The debugger looks up, in the virtual symbol table, the name of

the module being debugged or the name of the module you have
specified.

2. The debugger checks to see if you set the module with SETMOD.
3. If you set the module with SETMOD, the debugger derives the full

path name from the filename plus the SPATH setting.
4. If you have not set the module, SPATH is prefixed to the module

name and the first extension specified by SPATH is appended to
the module name.

5. The debugger keeps trying each extension supplied by SPATH until
a file is successfully opened or the SPATH extension list is
exhausted.

Since the default extension in the SPATH extension list is .LST, the
default module name is modu le-name. LST.

5-108 DB86 Command Language Encyclopedia

Examples
S E T M O D (c o n tin u e d)

In this example, DIR displays the current se ttin g fo r program
module ecryption, SETMOD assigns FI LEI. C to ECRYPTION, and DIR
confirms the new setting.

*DIR :ecryption SETMOD
ECRYPTION \TEST.DIR\ECRYPTIO.LST
*SETM0D :ecryption TO filel.c
*DIR :ecryption SETMOD
ECRYPTION \TEST.DIR\FILE1.C

2. In this example, SETMOD assigns FORTRAN.LST to the program
MYPROG.

*SETM0D myprog TO fortran.1st

Cross-references

Encyclopedia Entries

DIR
SPATH

Menu/Item

Debug/Source Path

DB86 Command Language Encyclopedia 5-109

SPATH
Displays or sets the path
and default extensions used
to find the source display
files of compiled modules

Syntax

SPATH [= pathname [,e x tO , . . . e x t9]]

Where:
pathname

ext

Discussion

The SPATH command displays the current path to the directory
containing source display files for compiled and linked modules. The
source display filenames are not part of the path name. The default
path is the path from which the user program was loaded and the
default extension list is .LST.

To set a new path, use SPATH = pathname.

If you have not explicitly assigned a file to a module with SETMOD, the
debugger attempts to apply a module name as a prefix and each list
extension as a suffix until a file is found or the extension list is
exhausted.

The debugger can have only one path at a time. Therefore, we
recommend that, before beginning the debug process, you place all
related source display files in a single directory and use SPATH to set
the path to that directory. The grouping of source display files by
directory ensures that the debugger has source list text information
for all the necessary source display files.

specifies the relative or absolute path to the directory
containing source display files in the format
\directory-name\directory-name. directory-name
can also be one of the DOS relative directories (. and

is the extension or extension list for pathname. You
can list up to ten extensions.

5-110 DB86 Command Language Encyclopedia

S P A TH (co n tin u e d)
Examples

1. In this example, SPATH sets the source path to ..\..\prog\display.

*SPATH * ..\..\prog\display

2. In this example, SPATH sets the directory to
\prog\display\window, and also initializes the suffix search list to
.C,.LST.

*SPATH * \prog\display\window, .C,.LST

3. In this example, SPATH displays the current path and extension
list.

* PATH
\PR0G\10_DISP LAY\WINDOW
Extensions: .C .LST

Cross-references

Encyclopedia Entries

LOAD
SETMOD

Menu/Item

Debug/Source Path

DB86 Command Language Encyclopedia 5-111

STACK
Displays values from
the top of the stack

Syntax

STACK [expr]

Where:
expr is an expression that specifies the number of values to

be displayed.

Discussion

The STACK command displays either the first value or the specified
number of values from the top of the stack.

Example

In this example, STACK displays the top 16 values on the stack, in
hexadecimal format.

*BASE « HEX
* TACK 10
01AO 01A4 00AF 5DD2 50CB C033 5050 FF50
14AF 005C 14B7 005C 01A4 14BF 005C 14C7

Cross-reference

Encyclopedia Entry

Expressions

5-112 DB86 Command Language Encyclopedia

Stepping Commands
Step program execution by called

procedure, machine instruction,
language instruction, procedure,

or return instruction

Discussion

Stepping commands provide control over program execution. You can
step into the next called procedure (CSTEP), by machine instruction
(ISTEP), by line instruction (LSTEP), through a procedure (PSTEP),or
out of a procedure (RSTEP).

Cross-references

Encyclopedia Entries

CSTEP
ISTEP
LSTEP
PSTEP
RSTEP

Menu/Item

Go Menu

Keyboard Controls

F8 Execute one step of user program
sF8 Step into next procedure call encountered
F10 Step over procedure calls to next line
sFlO Step out of current procedure

DB86 Command Language Encyclopedia 5-113

SYSINT
Is a pseudovariable that
determines whether or not
a breakpoint occurs when
a DOS interrupt is encountered
during program execution

Syntax

SYSINT = TRUE '
FALSE

Discussion

The pseudovariable SYSINT determines whether or not a breakpoint
occurs when a DOS interrupt is encountered during program
execution. When SYSINT is set to the default, true, the debugger
monitors the following interrupts:
• INT8 DOS timer tick (18.2/sec) enables the debugger to monitor

for a SYSREQ break during program execution
• INTI5 SYSREQ handler intercepts depression of the SysReq key,

which posts a request for program execution to cease •
• INT21 Function 0, Function 4C, DOS Exit command is used by C

run-time libraries to terminate program execution. The exit is
intercepted by the debugger

• INT21 Function 62 Get PSP Address simulates the program PSP
when the user program is running under C run time libraries.

N O T E

Set SYSINT to false only when absolutely necessary; the false
setting provides no way to trap the user-program, exit request
or to solicit asynchronous break requests with SysReq. Note
that trapped interrupt vectors are modified only when the user
program is active. The debugger restores interrupt vectors to
their default values when execution of the user program is
suspended.

5-114 DB86 Command Language Encyclopedia

Example
S Y S IN T (co n tin u e d)

In this example, SYSINT changes its value from true to false.

* YSINT
TRUE
*SYSINT - FALSE
* YSINT
FALSE

Cross-references

Encyclopedia Entries

OBREAK
Pseudovariables

DB86 Command Language Encyclopedia 5-115

TR
Sets a new tracepoint
or displays a current tracepoint

Syntax

TR[/i] [= aexpr [expr- l is t]]

Where:
n

aexpr

ex p r - l i s t

Discussion

The tracepoint command, TR, sets a tracepoint at the specified
address, for the purpose of reporting the address at which the
program is executing. Program execution resumes after the report.
Up to 10 tracepoints are available: TRO, TR1, TR2, TR3, TR4, TR5,
TR6, TR7, TR8, and TR9.

There may be a number of comma-separated expressions in
expr- l is t . Examples of expressions are variable names, strings
enclosed in single quotes, and Boolean expressions enclosed in
parentheses.

You can enable tracepoints with the ENABLE command and disable
them with the DISABLE command.

Use the ENABLE and DISABLE commands to selectively activate
tracepoints (e.g., ENABLE/DISABLE TR/7) or to activate all tracepoints
(ENABLE/DISABLE TR).

To display a list of expressions with the tracepoint, specify the list of
expressions.

To show the current definition of a tracepoint, enter TR/7.

is a number, from 0 to 9 inclusive, assigned to a
debugger tracepoint.
is an expression representing the address at which
program execution is to be monitored.
is an expression list that is evaluated and displayed at
the trace address.

5-116 DB86 Command Language Encyclopedia

NOTE

Expressions in the Watch Window are updated when
tracepoints are encountered in the executing user program.

Examples
1. In this example, TRO displays its current definition, which is to

report when program execution reaches mymod .myproc.

* RO = :mymod.myproc

2. In this example, a tracepoint is defined to report the
val ues of x and y when program execution reaches line number
50.

*TR1 = #5l , 'The value of x isi'jX/The value of y
**y,'x equals y:*, (x ■■ y)

Cross-references

Encyclopedia Entries

T R (c o n tin u e d)

Breakpoint Commands FB
CB GO
DIR TR
ENABLE/DISABLE WA

Menu/Item

Set/Tracepoint

Keyboard Control

sF9 Set tracepoint

DB86 Command Language Encyclopedia 5-117

User-program Symbols
Are accessible for display

Discussion

User-program symbols and their addresses are accessible for display.

To display the value of a user-program, symbol, type symbol-name.
If the symbol name conflicts with a debugger keyword, use the double
quote (") prefix operator.

To display the address of a user-program symbol, type .symbol-name
(prefixing the dot operator [.]) Depending on the current scope, you
may need to give more information.

To change a user-program symbol, type symbol-name = value.
Assigned values are automatically coerced to the user symbol type.

Cross-references

Encyclopedia Entries

Debug Variables
Lexical Elements
SCOPE

5-118 DB86 Command Language Encyclopedia

WA
Sets a new watch expression

or displays a current watch expression

Syntax

WA[n] [= expr]

Where:
n is a number, from 0 to 5 inclusive, assigned to a

debugger watch expression.
expr is an expression.

Discussion

The watch expression command, WA, allows you to view program
variables or memory activity in the Watch Window at program
execution points. Watch expressions can be memory template
commands, references to symbolic variables, or, when enclosed in
parentheses, a complex series of references that evaluate to a unique
expression.

Watch expressions are updated as follows:
• At every program step when used with CSTEP, ISTEP, LSTEP,

PSTEP, or RSTEP
• At program breakpoints
• At program tracepoints
• At each execution step when DB86 is running in Auto Step mode

An advantage to using program tracepoints for updating is that the
user program can continue running with periodic tracepoints
providing the watch update function.

Up to six watch expressions are available: WAO, WA1, WA2, WA3,
WA4, and WA5.

You can enable watch expressions with the ENABLE command and
disable them with the DISABLE command.

DB86 Command Language Encyclopedia 5-119

WA (continued)
Use the ENABLE and DISABLE commands to selectively activate watch
expressions (e.g., ENABLE/DISABLE WAn) or to activate all watch
expressions (ENABLE/DISABLE WA).

To show the current definition of a watch expression, enter WAn.

Examples
1. In this example, WAO sets up a watch of count_var.

*WA0 = count_var

2. In this example, WA1 sets up a watch of the value of a Boolean
expression. The expression evaluates to true when xy equals 5 or
when mtop is less than 25 hexedecimal. Otherwise, it is false.

*WA1 = (xy == 5) OR (mtop < 25H)

3. In this example, WA2 sets up a watch on a pointer at location
0000:0040.

*WA2 = pointer 0000:0040

Cross-references

Encyclopedia Entries

Breakpoint Commands ENABLE/DISABLE
CB FB
CSTEP GO
DIR ISTEP

Menu/Item

Window/Watch Window

Keyboard Control

sF2 Toggle Watch Window

LSTEP
PSTEP
TR

5-120 DB86 Command Language Encyclopedia

WPORT
Is a pseudovariable that
displays or changes the

contents of word-wide ports

Syntax

WPORT(port-number) [= data]
Where:
port-number displays the contents of the specified

word-wide, I/O port in the current base, port-
number is a number or expression that specifies
one of the I/O ports in the range 0000H to
OFFFFH.

data writes a word of data to the specified port.

Discussion

The pseudovariable WPORT displays or changes the contents of a
specified word-wide, I/O port. There is no protection against writing
a read-only control register. The debugger displays the output word
in hexadecimal.

When used as a pseudovariable in a debugger expression, WPORT
represents the current value of the word port.

Examples
1. In this example, WPORT reads a word-wide port.

*WP0RT(023H)
0A12

2. In this example, WPORT writes a word-wide port.

*WP0RT(0123H) = 5556
*WP0RT(0123H)
5556

DB86 Command Language Encyclopedia 5-121

WPORT (continued)
Cross-references

Encyclopedia Entries

PORT
Pseudovariables

5-122 DB86 Command Language Encyclopedia

Contents
Appendixes

Appendix A DB86 Installation
A.l Installing the DB86 Debugger Software..A -l
A.2 Modifying the System Configuration..A-3
A.3 Setting Environment Variables.. A-3
A. 4 Keyboard Templates... A-4

Appendix B DB86 Invocation
B. l Syntax.. B-l
B.2 Controls... B-l
B. 3 Examples... B-4

Appendix C Shortcuts and Tips
C. l Setting up a Second Monitor... C -l
C.2 Using RAM Disk for the Virtual Symbol Table Buffer..................... C-2
C.3 Shortcut for Setting SPATH.. C-3
C.4 Hints on Naming Modules..C-3
C.5 Using the Debug Control in ASM86 Programs..................................... C-4
C.6 Debugging Programs with Overlays..C-4
C.7 Using the SWAP Control..C-4
C.8 Tips on Variable Names and Reserved Words..C-5
C. 9 Tips on Clearing Breakpoints.. C-5

Appendix D Language Support
DT iC -86...D -l
D. 2 PL/M -86.. D -l
D.3 ASM86.. D-2
D.4 Fortran-86.. D-2
D.5 Pascal-86.. D-2

Appendix E Error Messages

Appendix F Reserved Words

Appendix G ASCII Codes

Appendix A
DB86 Installation

This appendix is a guide to installing the DB86 debugger on DOS
systems.

A.1 Installing the DB86 Debugger Software

The following hardware and software is required to run the DB86
debugger on DOS systems:
• Hardware: IBM PC XT, IBM PC AT, and IBM PS/2 or fully

equivalent system
• Operating system: DOS V3.0 or later or OS/2 running in

compatibility mode
• System memory requirements: 21 OK bytes RAM plus memory

required by the DOS, user-application program

An 8087 numeric coprocessor is not required in the user system.
Floating-point math can be accomplished via the 8087 emulator that
accompanies the user program being debugged. If an 8087
coprocessor is present, the debugger can use it. The debugger uses
the same floating-point support that the program being debugged
uses.

Make a backup copy of the product disk(s) before installation, using
the DOS DISKCOPY program.

To avoid name conflicts, create a directory for the DB86 debugger.

If your version of DB86 comes on 5.25-inch disks, DB86 and help and
error files are on the disk labeled Disk 1 of 2, and the EXAMPLE
program is on the disk labeled Disk 2 of 2. If your version of DB86
comes on a 3.5-inch disk, all files are on that disk.

To install the software, perform the following steps:
1. Change to the directory you have created for the DB86 debugger.
2. Copy all files from your single 3.5-inch disk to the current

directory with the COPY command. Or, copy all files from each
5.25-inch product disk. Assuming that the product disk is in
drive A and the current drive is drive C, enter:

Ocopy a :* .*

There are three files on the product disk (Disk 1 of 2 if you have a
5.25-inch disk) that you must copy to run DB86:

DB86.EXE
DB8 6 .OVE
DB8 6 .OYH

Also, you can copy the following EXAMPLE program files (on Disk 2 of
2 if you have a 5.25-inch disk):

EXAMPLE.EXE
EXAMPLE.86
EXAMPIO.C
MENU.C
INFO.C
BLIMP.C
TRYIT.BAT
EXAMPLE.MAC
README
TOOLPACK.EXE

See Section 1.4 and Chapter 2 for further instructions on trying the
debugger with the EXAMPLE programs.

Be sure to read the README text file and Release Notes for further
information on the particular release of DB86 that you have.

A-2 DB86 Installation

A.2 Modifying the System Configuration

Before you use the DB86 debugger, you must create or modify the
system configuration file CONFIG.SYS so it includes the FILES and
BUFFERS commands.

The FILES command specifies the maximum number of files that can
be opened at the same time. The BUFFERS command specifies the
number of disk buffers allocated in memory.

Set the value of FILES to 12 (or greater). Set the value of BUFFERS to
10 (or greater).

If there is no CONFIG.SYS file on your fixed disk, follow these steps to
create the necessary commands:
1. Type:

C>copy con \config.sys <Enter>

2. Enter the commands:

FILES = 12 <Ente >
BU FERS = 10 <Ent r>

3. Save the file: press the F6 key or <CTRL>-Z and then press
<Enter>.

4. Reboot the system.

If the CONFIG.SYS file already exists, use an editor to add or modify
the needed commands in the existing file. Include the commands
FILES = 12 and BUFFERS = 10.

A.3 Setting Environment Variables

The debugger uses the value of the : WORK: environment variable as a
default pathname for its virtual symbol table buffer. If you do not
specify a value for :W0RK:, the debugger uses the root directory on
drive C: for the virtual symbol table buffer. To specify a different
path, use the DOS SET command to assign a value to :W0RK:.

DB86 Installation A-3

For example, the following DOS command assigns :W0RK: to a RAM
disk, drive E.

Oset :W0RK:=E:

You can place the SET command in the file AUTOEXEC.BAT if you wish.
Then, : WORK: is automatically defined each time you reboot. See your
DOS user’s guide for further information.

A.4 Keyboard Templates

Two keyboard templates come with the debugger. These templates
provide quick reference information on the debugger keyboard
controls and other quick reference information. (See Chapter 4 for
more information on the keyboard controls.)

The templates come with an adhesive backing and can be permanently
attached to the keyboard by removing the protective paper from the
back of the template before applying it to the keyboard surface. If
you do not wish to attach them with the adhesive, do not remove the
protective paper backing.

One template is designed for keyboards with function keys on the left
side. The other is designed for keyboards with function keys across
the top; the top template can also be used with keyboards that have
function keys on the side.

A-4 DB86 Installation

Appendix B
DB86 Invocation

This appendix describes the DOS command line used to invoke DB86.

B.1 Syntax

DB86 is invoked with a DOS command line in the following form:

db86 [controls] [load-fi le [l o a d - f i l e - ta i l]]

Where:
controls

load-f i le

loa d - f i l e - ta i l

B.2 Controls

DB86 controls must appear on the command line before any
load-f i le is specified. The following controls can be typed on the
command line:
MACRO(/i lename) specifies a file containing DB86 commands to

be executed during initialization.
If a macro filename is specified, it can include
a drive and path as part of the specification;
enclose the filename in parentheses.

can be any of the valid DB86 controls: MACRO,
NOMACRO, VSTBUFFER, SWAP, NOSWAP, NOMB, CL2,
M0N2, or L43.
is the name of the file containing the user
program to be loaded for debugging. It can
include a drive and pathname as part of the
specification.
is the command tail used by the load file. For
example, it can consist of filenames or controls
used by program to be debugged.

NOMACRO

VSTBUFFER(size)

SWAP

If neither MACRO nor NOMACRO is specified, DB86
looks for DB86.MAC, but still runs even if
DB86.MAC is not present.
If MACRO is specified, DB86 lists the commands
in the macro file as it executes them.
The macro file can be used to automatically set
up the debugging environment at the start of
the session.
Abbreviation: MR

prevents DB86 from trying to find a macro file
to be executed during initialization. This
control is useful to prevent execution of
DB86.MAC even if it is present.
Abbreviation: NOMR

specifies the size of the virtual symbol table
buffer in memory. Performance can be
improved by increasing the size of the symbol
table buffer, s ize is the buffer size in K
bytes, expressed as a positive integer. The
minimum size is 6K bytes; the maximum is 61K
bytes. If a s ize less than 6 is specified, 6K
bytes are used; if a s ize greater than 61 is
specified, 61K bytes are used. If this control is
not specified, DB86 uses a default size of 6K
bytes.
Abbreviation: VSTB

uses screen image swapping, which requires an
additional 8K bytes of memory. SWAP is the
default for monochrome monitors and need not
be specified for the MDA video adapter. For
color video adapters, DB86 normally flips
between the user-program screen and the DB86
screen using alternate video pages. In this case,
DB86 assigns video page 0 for the user-program
screen and video page 3 for the DB86 screen.
Video page flipping is used only if the DOS
video mode is 2 or 3 on a CGA, EGA, or VGA
video adapter. Use SWAP to override this page
flip default and force the use of screen image

B-2 DB86 Invocation

NOSWAP

NOMB

CL2

MON2

swapping on color adapters. The SWAP control
also assigns video page 0 for both the
user-program screen and the debugger control
screen.
disables screen image swapping. With NOSWAP,
the user program overwrites the DB86 display
screen. If DB86 is running with a monochrome
video adapter (MDA), screen flipping is
accomplished by image swapping instead of
writing to alternate video pages. Use NOSWAP
if you want to disable swapping on
monochrome adapters. Note that, if you do so,
you effectively disable screen flipping and all
your user-program output will overwrite the
DB86 display screen.
runs DB86 with no Menu Bar present on the
screen. You can still access the menu system
and temporarily display the Menu Bar while
you are in the menu system. Once DB86 is
running, you can toggle the Menu Bar on and
off with the Menu Bar On/Off item in the
Window Menu.
uses monochrome video attributes regardless of
the video adapter present. CL2 is intended for
monochrome displays that map color attributes
into grey scale. If the grey scale colors do not
show up very well on the display screen, use
CL2 to force DB86 to use monochrome
attributes, regardless of the type of video
adapter present. CL2 attributes are
automatically enabled if DOS video mode 2 or 7
is already in effect during DB86 initialization.
runs DB86 using two video monitors. For
example, you can use a monochrome adapter
(MDA) for the DB86 display screen and show
the user-program output at the same time on a
color adapter (CGA, EGA, or VGA). Both
video adapters must be present in the host DOS
computer for M0N2 to work. If DOS is using
the color adapter, M0N2 directs DB86 to use the
monochrome adapter for its display screen. If

DB86 Invocation B-3

DOS is using the monochrome adapter, M0N2
directs DB86 to use the color adapter for its
display screen. The user program uses the same
monitor that DOS uses. See Appendix C for
tips on setting up a second monitor.

L43 runs DB86 in 43-line mode if an EGA or VGA
adapter is present. If DOS is already set to use
the 43-line mode, DB86 automatically uses
43-line mode. In 43-line mode, DB86 uses 43
lines for both its display screen and for the
user-program output screen.

NOTE

An unrecognized control is interpreted as the name of the user
program to be debugged; any text following the program name
is treated as the user-program, command tail.

B.3 Examples
1. In this example, DB86 is run with a virtual symbol table buffer

of 40K bytes. During initialization, DB86 executes the macro file
TEST.MAC. DB86 uses two video monitors and loads the user
program MYTEST.86 with the command tail /A /B preserved for
the user program:

C>dbS6 macro(test.mac) vstb(40) mon2 mytest.86 /A /B

2. In this example, DB86 is run with the default virtual symbol table
buffer of 6K bytes; uses 43-line mode on the EGA video adapter;
runs with no Menu Bar present; and does not look for a macro
file to include. The program MY PROG. 86 is loaded during
initialization.

C>db86 143 nomb nomr myprog.86

B-4 DB86 Invocation

Appendix C
Shortcuts and Tips

This appendix describes techniques you can employ to more
effectively use the debugger. Many of the tips mentioned assume a
familiarity with the debugger and contain advanced techniques to
make the debugger run faster and better.

C.1 Setting Up a Second Monitor

A host, DOS-compatible PC can have two video adapter boards, each
with its own monitor attached. In this configuration, the host PC
provides the memory used by both video adapters.

The debugger can use both monitors, if the host PC has them. By
using two monitors, you can see the debugger display screen on one
monitor at the same time that you see the user-program screen on the
other monitor. This configuration is particularly valuable when you
are debugging a program that does a lot of screen output and
keyboard input. Without two monitors, you would have to flip the
screen between the debugger display and the user-program display.

To setup a host PC with two monitors, follow these steps:
1. Install the second video adapter with its monitor on the host PC.

Consult the appropriate system manuals for installing a second
monitor under DOS.

2. Once installed, attach the monitor to the video adapter board.
Consult your system documentation for more information.

3. Run the debugger with the M0N2 control:

C:\DB86>db66 mon2

The M0N2 control requires that both monitors are present. Both video
adapter boards must be installed on the bus; the host PC memory for
each video adapter board must be present; and a monitor must be
attached to each video adapter. If the debugger detects only one
video adpater present on the system, it ignores the M0N2 control as if
you had not typed it in.

Screen flipping is automatically disabled by the debugger when the
M0N2 control is used, so the F4 and sF4 keys are irrelevant. Swapping
is not used by the debugger when the M0N2 control is specified, so the
SWAP and NOSWAP controls are ignored.

When you install the two video adapters in your system, one is
designated as the primary video adapter while the other one is the
secondary adapter. The primary adapter is the default adapter that
the operating system uses when it first initializes and the one you
enter DOS commands on.

The secondary adapter is used for the debugger screen while the
primary adapter is for the user-program screen.

Typically, one of the two monitors is set up as VGA, EGA, or CGA
color video, while the other one is set up as MDA monochrome video.
In this configuration, the VGA, EGA, or CGA adapter is usually set
up as the primary adapter and thus serves as the user-program screen,
while the MDA adapter is used for the debugger screen. This setup is
typical because it provides a richer set of graphics modes for the user
program. However, if the primary adapter is the MDA, the user
program appears on it while the debugger appears on the secondary
(VGA, EGA, or CGA) monitor.

On a two-monitor system, be sure that the user program does not
change its video mode to the adapter being used by the debugger.
Changing to the mode being used by the debugger causes a direct
conflict; the user-program screen display overwrites the debugger
screen display and vice versa.

C.2 Using RAM Disk for the Virtual Symbol Table Buffer

By setting the DOS environment variable named : WORK:, to a RAM
disk, you can speed the performance of the debugger.

See Appendix A for more information on setting this environment
variable.

You can also use a disk cache program to speed hard disk
performance when the debugger is accessing source files.

C-2 Shortcuts and Tips

C.3 Shortcut for Setting SPATH

When the debugger is invoked, it implicitly sets the SPATH variable to
the subdirectory specified for the load file on the command line.
Thus, if your command line looks like the following, SPATH is set to
the directory CSRC. The debugger looks in that directory to find the
source files and you do not have to explicitly issue the SPATH
command.

C:\DB86>db86 c:\csrc\myprog.86

C.4 Hints on Naming Modules

The debugger uses the module name from the OMF file to generate
candidate source filenames by adding the extensions from SPATH.

With C programs, the source filename is used for the module name.
Thus, there is no possibility that the module name and source
filename can ever be different.

With other compilers, however, you can specify a module name within
the source code. This module name is passed on to the OMF file.
Thus, the source filename may differ from the module name.

For instance, with a PL/M program, the module name must be
specified as a label on the outermost DO— END block. This module
name is preserved in the OMF file and is used by the debugger. If
the module name is BLIMP$PROGRAM while the source file is named
BLIMP.P86, the debugger first truncates the module name to the first
eight characters that are legal, DOS filename characters and then tries,
unsuccessfully, to find a source file with that name. In this example,
the $ character is not a valid filename character, so it is dropped
leaving BLIMPPRO as the filename that cannot be found.

As another example, assume that the module is named BLIMP and the
listing file is called BL.LST. In this case, the debugger will not find
the source since the listing filename is not the same as the module
name.

Shortcuts and Tips C-3

Be sure that you use the same name for the module name, the source
filename, and the list filename if you specify any of these names
during compilation. Or, use the SETMOD command to explicitly
correlate the module name with its associated source or list file.

C.5 Using the Debug Control in ASM86 Programs

The DEBUG control in ASM86 puts symbol names and types into the
OMF file. However, it does not include line numbers. The View
Window displays disassembled code for ASM86 programs instead of
using the source code with symbols. However, the symbols and types
are known to the debugger and you can include symbol names and
types in debugging commands.

C.6 Debugging Programs with Overlays

The OBREAK flag is normally set to true causing the user program to
automatically break any time an overlay is loaded. If you do not wish
this break to occur, set the OBREAK flag to false. You may wish to
incorporate the command to set OBREAK into a macro file so it is done
before you start debugging:

*obreak=false

C.7 Using the SWAP Control

The debugger implements flipping between the user-program screen
and the debugger screen in different ways depending on the video
adapters available. Swapping is the default for MDA monochrome
adapters; page switching is the default for CGA, EGA, or VGA color
adapters.

In some cases, color adapters may require swapping instead of page
switching; namely, if the user program makes use of page switching
itself, it will conflict with the debugger’s use of page switching. In
these cases, the SWAP control must be specified to force the debugger
to use swapping instead of page switching.

C-4 Shortcuts and Tips

The SWAP control does not resolve the conflict if the user program
switches video modes on the same adapter used for the debugger
control screen. In this case, setting up a second video adapter and
using the M0N2 control is recommended. See Section C.l for further
tips on setting up a second monitor.

C.8 Tips on Variable Names and Reserved Words
If a program symbol is the same as a reserved word, you can still
access the program symbol by prefixing it with a double quote
character when you type it.

For example, suppose your program has the variable name ch which is
also a reserved word for the CH register. You can still access your
program variable name and display its value instead of the value of
the CH register by typing a double quote first:

*"ch
B

C.9 Tips on Clearing Breakpoints

To clear a temporary breakpoint, scroll to the source line where the
temporary breakpoint is set and press the F9 key. The F9 key toggles
the temporary breakpoint on and off at the current source line shown
in the View Window.

To clear a conditional breakpoint, fixed breakpoint, or tracepoint is
set, scroll to the source line where the breakpoint or tracepoint is set
and press the F9 key two times. The first time replaces any
temporary breakpoint, conditional breakpoint, fixed breakpoint, or
tracepoint at that location. The second time toggles off the temporary
breakpoint.

The Clear at Cursor item on the Set Menu clears any breakpoint or
tracepoint at the current location.

The Remove All item on the Set Menu clears all breakpoints and
tracepoints that are currently defined.

Shortcuts and Tips C-5

Watch expressions can be enabled or disabled with the ENABLE and
DISABLE commands; and the Watch Window can be removed from the
screen with the sF2 key or with the Watch Window item on the
Window Menu. Watch expressions, however, cannot be removed or
cleared.

C-6 Shortcuts and Tips

Appendix D
Language Support

The debugger supports the following languages:
iC-86
PL/M-86
ASM86
Fortran-86
Pascal-86

This appendix outlines the level of support provided for each of these
languages.

D.1 iC-86

All C-language features provided by iC-86 Version 4.0 are supported,
with the following exceptions:
• Complex number types or functions that return complex number

types are not supported. For example, the following functions in
math.h are not supported: Bessel functions of the first kind,
double h y p o t(r ,i) , and double cabs(z). Thus, complex numbers
cannot be accessed symbolically by the debugger.

• The union type is not provided. Thus, members of unions cannot
be accessed symbolically by the debugger.

• Bit fields and enumeration are not supported.

D.2 PL/M-86

All PL/M language features provided by PL/M-86 Version 3.1 are
supported.

D.3 ASM86

All ASM86 language features provided by ASM86 Version 3.1 are
supported, with the following exceptions:
• The use of the GROUP directive in ASM86 causes grouped

segments to be declared as a single segment with one base
address. DB86 keeps track of these segments individually with
separate base addresses. Thus, references to grouped segments
will be inaccurate.

• No source code display is performed for any module or procedure
written in assembly language.

D.4 Fortran-86

All Fortran-86 language features provided by Fortran-86 Version 3.0
are supported, with the following exceptions:
• Implicit GO TO conditionals are not supported by the LSTEP,

ISTEP, or PSTEP commands in the debugger. For example, the
debugger does not execute the following code fragment in the
proper sequence, nor does it break at the appropriate breakpoint:

X = LINES - CONSTANT
IF (X) 200, 330, 450

D.5 Pascal-86

All Pascal language features provided by Pascal-86 Version 3.1 are
supported, with the following exceptions:
• Variant record types are not supported. Thus, variant records

and their fields cannot be accessed symbolically by the debugger. •
• Enumerations, sets, and files are not accessed symbolically by the

debugger.

D-2 Language Support

Appendix E
Error Messages

00 Type definition record with unrecognizable format.
01 Array’s lower bound is unknown - zero is assumed.
02 Symbol is not an array or has fewer dimensions than

specified.
03 Array index is out of bounds.

The array index specified in the symbolic request was
larger than the maximum dimension defined for the
array in the original source program.

04 Referenced array expects a single character array
index.

05 Address of module is not known.
The module referenced contains no debug information
and the address of the module can not be determined.
DB86 can not provide symbolic support without
symbolic information in the module being loaded. Be
sure that the DEBUG option is being used when
compiling and assembling or symbolic information will
not be generated.

06 Unknown module specified.
A module name was specified that could not be found.
Be sure the name is spelled correctly or check the list
of program modules with the DIR MODULE
command.

07 No line information was loaded for module.
There was no line information in the module. DB86
can not provide source support without line
information in the module being loaded.
Be sure that the DEBUG option is being used when
compiling and assembling or line information will not
be generated.

08 No symbol information was loaded for module.
There was no symbolic information in the module.
DB86 can not provide source or symbolic support
without symbolic information in the module being
loaded. Be sure that the DEBUG option is being used
when compiling and assembling or symbolic
information will not be generated.

09 Cannot determine module for specified location.
Could not find the specified location in any known
module. Either the specified location is outside of the
program or in a module for which there is no symbol
information.

10 Cannot determine current default module.
Could not find current location in any known module.
Either the current execution point is outside of the
program or in a module for which there is no symbol
information.

11 Symbol currently not active.
The symbol is stack resident and is only available when
the current execution point is in the procedure in
which the symbol is defined.

12 Symbol not known in current context.
The debugger cannot find and identify the symbol as
either a keyword or program symbol. This message can
occur if a debugger keyword or program symbol does
not exist or is misspelled.

13 No symbol information was loaded for program.
There is no symbolic information in the loaded
program. DB86 can not provide source or symbolic
support without symbol information in the loaded
program. Be sure that the DEBUG option is being
used when compiling and assembling or symbol
information will not be generated.

E-2 Error Messages

14 Symbol reference of unsupported type, displayed as a
word.
DB86 does not know the type of the symbol being
referenced. This may be because no type information
exists in the program or DB86 does not support the
symbolic type being referenced. By default The
contents of the symbol is display as a WORD.

15 Symbol is not known to be a structure.
The symbol was specified as a structure and was found
not to be a structure.

16 Symbol is not a known structure field name.
The symbol was specified as part of a structure and
was not found to be part of the structure.

17 Cannot determine offset of field from start of
structure.
The debugger was unable to determine the size of one
of the preceding structure fields, hence the requested
field cannot be referenced.

18 Nested symbolic references not permitted.
19 Symbol isn’t a pointer variable or its dereference type

is unknown.
Only symbols that are defined as pointers and that have
an additionally defined type may be dereferenced.
Only C and PASCAL allow this, PL/M does not and
hence PL/M pointer may not be dereferenced.

20 Specified line is not an executable statement.
The specified line does not exist in the loaded program.
Lines that exist may always be found by using the DIR
LINE command. Disappearing line numbers may occur
if compiling with any optimize level higher than 0
because some lines may be eliminated during the
optimization process.

Error Messages E-3

Specified line does not exist in module.
The specified line does not exist in the referenced
module. Lines that exist may always be found by
using the DIR LINE command. Disappearing line
numbers may occur if compiling with any optimize
level higher than 0 because some lines may be
eliminated during the optimization process.
Cannot evaluate line reference.
The segment part of line reference pointer not known.
It may be that no symbol information was loaded for
module.
Specified type is incompatible with directory.
Specified type cannot be used with the specified (or
default) directory. For example, DIR PUBLIC LINE is
contradictory, as there are no public lines.
Cannot perform symbol table request. No user
program loaded.
Breakpoint is already defined at this address.
In order to define another breakpoint address to this
address the existing break must be removed. Position
the address into the view window where you may use
the F9 key to toggle the breakpoint off. Setting
SCOPE to this address will position the break into the
view window.
Maximum number of temp breaks already defined.
DB86 limits the number of temp breaks that may be
defined to 10. Either some of the existing temp breaks
must be removed or the breakpoint must be assigned to
a break of another type.
Execution cannot proceed.
Either you have not loaded a program or else your
program has Exited. In either instance execution is not
allowed to occur.
Workspace exceeded.
There is no DOS memory remaining for the debugger
to utilize.

Error Messages

42

43
44
47
48
49

50
53
67

68
69
70
71

78
79
80
81
82
84

85

Error Messages

The name is either undefined or not of the correct
type.
The name is undefined.
The name is already defined with a different type.
Illegal type specified in DIR DEBUG command.
The named object is not a literally.
Illegal assignment to register.

String too long to perform assignment.
Overlay name does not exist.
This command not allowed inside of a compound
command.
Invalid type.
Invalid type conversion.
String longer than 254 characters.
String too long for numeric conversion.
Strings of length >1 may not be used in numeric
conversion.
Invalid floating point value for output.
Invalid expression for MTYPE.
Invalid boolean operation.
Invalid string operation.
Invalid pointer operation.
Attempt to assign value to code instead of variable.
An attempt was made to assign an expression to a
location associated with user code (eg, :main.procl = 5,
where procl is a procedure in module main). Direct
assignments may only be made to variables or with
mtype operators (eg, BYTE .:main.procl = 5).
Attempt to assign illegal value to BASE variable.

E-5

Not in a procedure or in a procedure with no debug
information.
In order for the calling procedure to be identified (and
the CALLS command to function properly), the current
execution point must be in a procedure, or in a
procedure for which there is debug information.
The debugger has overflowed its 86 stack.
The sequence of operations performed by the debugger
caused DB86 to overflow its run-time stack.
UDI Exception.
The operation performed generated a DB86 run-time
exception. Operations such as divide-by-zero are
known to cause this exception.
Illegal extended integer.
Error occurred during shell escape.
Either there is insufficient DOS memory available or
COMMAND.COM is not visible in the current
directory.
Illegal File Extension.
The specified file extension is not valid for DOS.
Extensions are restricted to no more than three
characters in length.
Maximum number of file extensions exceeded.
The maximum number of list file extensions that may
be specified is 10.
Illegal file name in SETMOD.
The filename used is not a valid DOS filename.
No data segment information. Program may execute
incorrectly.
The load module did not provide any information
about the data segment. Therefore, execution of the
program may have unexpected results.

Error Messages

I l l

112

113
115

116

117

118

Error Messages

No stack segment information. Program may execute
incorrectly.
The load module did not provide any information
about the stack segment. Therefore, execution of the
program may have unexpected results.
Program cannot be loaded. Start address needs fixing
up by linker.
Program start address needs fixup by linker.
The 8087 Emulator was not found in the load module.
Bad object record in load file.
The loader encountered a record while loading the
program that was not recognized. This can be caused
by loading a file that is not an object file (for example
a source file), an object file that is not in OMF86
form, or an object file that has been corrupted.
Load file contains absolute load addresses.
The load file contains a module which has been fixed
in memory. Possibly the file has been run through
LOC86 which creates an absolute program. The
debugger will only load relocatable (LTL) programs
linked with LINK86 using the BIND control.
Load file contains unresolved externals.
The program being loaded was found to have
unresolved referenced to symbols and the program load
has been aborted. Be sure all program modules have
been properly linked together and that no unresolved
symbol warnings are issued during the final program
link.
Accessed Symbol not in resident overlay.
The symbol being accessed is defined in an overlay
that is not currently resident in the user program
overlay area. The value returned will not be correct as
it represents a value that exists in another overlay.
Correct reverences may only be made when the overlay
in which the symbol is defined is in memory.

E-7

119

120

136
137
138
139

140
141

142
143
144
160
161
162
163
164

Memory segment request failure during load.
More memory is needed to load program than is
available. More memory may be obtained by
eliminating programs that are resident in memory
before the debugger is used.
Load module contained no starting address information.
The load module did not provide any information
about the starting address. The load has been aborted
and execution of the program is not possible. Be sure
that a main module has been created and linked into
the program.
Divide by zero (operation yields 0 result).
Invalid type for arithmetic.
Invalid integer operation.
Real math is not available.
In order to use real math (including any operations or
reference toreal numbers), you must have an 8087 math
coprocessor or have the 8087 emulator linked into the
program under debug. This error may be detected if
references to 8087 libraries were encountered in the
loaded program but neither the 87 emulator or math
chip was found by DB86.
Invalid real number.
Attempted real comparison with NAN, +infinity or -
infinity.
Invalid real operation.
Invalid extended integer operation.
Illegal numeric constant.
Attempt to INCLUDE :CI:.
I/O error on INCLUDE file.
I/O error on LIST file.
I/O error while loading object file.
Could not open load file.

Error Messages

165

166
167

168
169
177
180
181
182
183

184
185
186

Error Messages

Error while attempting to open virtual symbol table.
The virtual symbol table uses :WORK: for the disk-
resident portion of the virtual symbol table. Ensure
that the device for :WORK: is ready and that DB86 has
access rights to it.
Error while attempting to seek in virtual symbol table.
Error while attempting to write to virtual symbol table.
The disk device used for the virtual symbol table
cannot be written to. The most common cause of this
problem is a full device.
Error while attempting to close virtual symbol table.
Error while attempting to read virtual symbol table.
First address is greater than second address.
Illegal mnemonic.
Illegal number.
Unrecognized 8086/8087 mnemonic.
Illegal use of indirect addressing.
The correct forms of indirect addressing are:

<symbolic ref> [BX] + offset
<symbolic ref> [BP] + offset
<symbolic ref> [DI] + offset
<symbolic ref> [SI] + offset
<symbolic ref> [BP] [DI] + offset
<symbolic ref> [BP] [SI] + offset
<symbolic ref> [BX] [DI] + offset
<symbolic ref> [BX] [SI] + offset

The symbolic reference (of the form
:MODULE.SYMBOL.SYMBOL.etc) and the ’+ offset’
are optional.
Illegal single line assembler operand.
Single line assembler syntax error. See HELP ASM.
Memory pointer (e.g., BYTE, WORD, etc) without
memory operand (e.g., number or symbolic reference).

E-9

187
188

189

190

198

226

249
512

513
532

Too few operands for this instruction.
Illegal operands, both operands appear to reference
memory.

The types of the operand(s) do not match the
mnemonic or each other.
One byte relative jump is out of range. Range is -128
to +127.
BASE must be 2T, 10T or 16T.
The value was detected during the use of the BASE
variable.
Unsupported variable assignment.
The attempted assignment operation is invalid.
Potential causes:
Assigning a value to a variable whose type is unknown;
(Use a memory template command to perform the
assignment)
Insufficient memory for Virtual Symbol Table buffers.
The cause of execution break is unknown to DB86.
Execution was broken in a manner that DB86 cannot
determine. It was not via a known breakpoint or a
control-c. Most likely caused by placing an interrupt
at the given address.
This breakpoint is already active.
No program was loaded.

E-10 Error Messages

Appendix F
Reserved Words

This appendix contains the keywords that DB86 recognizes and uses.
To avoid ambiguity, do not use these keywords as user-defined names
for debug objects. The debugger always tries to interpret these names
as keywords first, which can have confusing results if you were
attempting to reference the user-defined name instead of the
keyword. To force the debugger to reference the user-defined name
instead of the corresponding keyword, you must prefix the symbol
with a quotation mark (").

! AX DH FCW
n BASE DI FDA
$ BH DIR FIA
(BINARY DISABLE FILE
) BL DL FIO
* BOOLEAN DO FLAGS
+ BP DS FOREVER
* BX DWORD FSW
- BYTE DX FTW
. CALLS ELSE GLOBAL
/ CALLSTACK ENABLE GO
: CB END HELP
• CBO ENDCOUNT HEX
< CB1 ENDIF IF
<= CB2 ENDREPEAT IFL
<> CB3 ENUMERATION INCLUDE
- CFL ES INTEGER
== CH EVAL IP
> CHAR EXIT ISTEP
>= CL EXP LABEL
ADDRESS COUNT EXTINT LENGTH
AFL CS FALSE LINE
AH CSTEP FB LIST
AL CX FBO LOAD
AND DEBUG FBI LOCALS
ARRAY DECIMAL FB2 LONGINT
ASM DEFINE FB3 LONGREAL

DFL FB4 LSTEP
FB5

MOD REGS87 ST5 TR8
MODULE REPEAT ST6 TR9
NAMESCOPE RSTEP ST7 TRUE
NOLIST SASM STACK UNTIL
NOT SCOPE SYMBOL WA
OBREAK SELECTOR SYSINT WAO
OFL SET TEMPREAL WA1
OR SETMOD THEN WA2
ORIF SFL TIL WA3
OV SI TO WA4
PFL SMALLINT TR WA5
POINTER SP TRO WHILE
PORT SPATH TR1 WORD
PROCEDURE SS TR2 WPORT
PSTEP STO TR3 XOR
PUBLIC ST1 TR4 ZFL
REAL ST2 TR5 [
RECORD ST3 TR6]
REGS ST4 TR7

F-2 Reserved Words

Appendix G
ASCII Codes

This appendix lists ASCII codes. Table G -l is a list of codes. Table
G-2 is a list of code functions.

Table G -l ASCII Code List

Dec Hex Character Dec Hex Character

0 00 NULL 29 1D GS
1 01 SOH 30 1E RS
2 02 STX 31 1F US
3 03 ’ ETX 32 20 SP
4 04 EOT 33 21 !
5 05 ENQ 34 22 M
6 06 , 4 ACK 35 23 #
7 ' 07 BEL 36 24 $
8 08 BS 37 25 %
9 09 HT 38 26 &
10 OA LF 39 27 »

11 0B VT 40 28 (
12 OC FF 41 29)
13 0D CR 42 2A *
14 0E SO 43 2B +
15 OF SI 44 2C $
13 10 DLE 45 2D -

17 11 DC1 46 2E
18 12 DC2 47 2F /
19 13 DC3 48 30 0
20 14 DC4 49 31 1
21 15 NAK 50 32 2
22 16 SYN 51 33 3
23 17 ETB 52 34 4
24 18 CAN- 53 35 5
25 19 EM 54 36 6
26 1A ■ SUB 55 37 7
27 1B ESC 56 38 8
28 1C FS 57 39 9

Table G - l ASCII Code List (continued)

Dec Hex Character Dec Hex Character

58 3A 93 5D]
59 3B > 94 5E A

60 3C < 95 5F -

61 3D = 96 60 6
62 3E > 97 61 a
63 3F 9- 98 62 b
64 40 @ 99 63 c
65 41 A 100 64 d
66 42 B 101 65 e
67 43 C 102 66 f
68 44 D 103 67 g
69 45 E 104 68 h
70 46 F 105 69 i
71 47 G 106 6A j
72 48 H 107 6B k
73 49 I 108 6C I
74 4A J 109 6D m
75 4B K 110 6E n
76 4C L 111 6F o
77 4D M 112 70 P
78 4E N 113 71 q
79 4F 0 114 72 r
80 50 P 115 73 s
81 51 Q 116 74 t
82 52 R 117 75 u
83 53 S 118 76 V
84 54 T 119 77 w
85 55 U 120 78 X

86 56 V 121 79 y
87 57 w 122 7A z
88 58 X 123 7B {
89 59 Y 124 7C I
90 5A z 125 7D }
91 5B [126 7E ~
92 5C \ 127 7F DEL

G-2 ASCII Codes

Table G -2 ASCII Control Code D efinition

Abbreviation Meaning Dec Hex

NUL NULL Character 0 0
SOH Start of Heading 1 1
STX Start of Text 2 2
ETX End of Text 3 3
EOT End of Transmission 4 4
ENQ Enquiry 5 5
ACK Acknowledge 6 6
BEL Bell 7 7
BS Backspace 8 8
HT Horizontal Tabulation 9 9
LF Linefeed 10 0A
VT Vertical Tabulation 11 OB
FF Form Feed 12 OC
CR Carriage Return 13 0D
SO Shift Out 14 0E
SI Shift In 15 OF
DLE Data Link Escape 16 10
DC1 Device Control 1 17 11
DC2 Device Control 2 18 12
DC3 Device Control 3 10 13
DC4 Device Control 4 20 14
NAK Negative Acknowledge 21 15
SYN Synchronous Idle 22 16
ETB End of Transmission Block 23 17
CAN Cancel 24 18
EM End of Medium 25 19
SUB Substitute 26 1A
ESC Escape 27 1B
FS File Separator 28 1C
GS Group Separator 29 1D
RS Record Separator 30 1E
US Unit Separator 31 IF
SP Space 32 20
DEL Delete 127 7F

ASCII Codes G-3

-

Glossary

active window the window in which the cursor is located.
You can enter commands at the
command-line prompt if the Command
Window is active. You can scroll through
the user program source if the View
Window is active.

address a memory location expressed as a
segment'.offset pair. Both the segment and
the offset are unsigned integers in the range
0 to 65535. An address corresponds to a
location in the 8086, target-system memory.

alias another name for a character string.

base see number base.

Break Status Column a single column to the left of the View
Window. This column contains single letter
codes indicating where breakpoints and
tracepoints are set.

browsing the ability to move the current scope from
the current module into other modules in
the user program.

CGA Color Graphics Adapter.

call ancestry a list of procedure names that constitute the
history of procedure calls that were
executed prior to the current execution
point.

Command Window the window that appears at the bottom of
the screen for entry of DB86 commands.

control construct a grouping of commands to be executed in a
block.

current execution
point

the location of the instruction pointer in the
user program (CS:IP).

debug environment the configuration of debugger control
options and user-defined debug objects.

debug session log a list file that records all interaction
between the user and the debugger during a
debug session.

debug variable a variable defined at debug time as a
specific data type, optionally given an initial
value, and stored in host memory.

disassembled code code displayed in assembly language.

EGA Enhanced Graphics Adapter.

exception breakpoint one of four built-in breakpoints recognized
by DB86.

flipping the ability to switch between the DB86
control screen and the user program output
screen.

hidden breakpoint a breakpoint that is set within the range of
a program line but is not exactly on the line
boundary. For example, a breakpoint that
is set on an assembly-language instruction
that is not the first instruction in a
disassembled line. A hidden breakpoint is
designated by a plus sign (+) in the Break
Status Column.

highlight bar the horizontal, screen wide marker that
highlights the current execution point in the
View Window.

history buffer memory storing a record of command
entries.

Glossary-2

home scope the scope associated with the current
execution point. When directed with the
Grey * command, DB86 returns directly to
the home scope after browsing or scrolling.

human interface the part of the debugger software that
assists you in entering commands, using the
menu system and keyboard, and performing
other tasks.

keyword a character string that has a reserved
definition in DB86.

least-significant bit
(LSB)

lowest value bit. Not the same as low
order, which indicates a bit position.

list file a host-system file in which all interaction
on the terminal is saved. Do not confuse
list file with listing files which are
compiler-generated files containing the
source code for the user program.

load-file tail a string made up of options and controls
required by the user program. Used when
the user program is specified on the DB86
invocation line. Can also be set in the LOAD
command.

MDA Monochrome Display Adapter.

make file a text file containing the necessary
commands to compile and link a user
program. Make files can be interpreted by
a separate MAKE utility, or they can be
automated batch files (.BAT) which are
executed by the command interpreter of the
operating system.

mapped memory the memory ranges that are accessed by the
user program during debugging.

mtype memory type.

Glossary-3

Menu Bar the menu selections that appear at the top
of the screen for selection of DB86 menus.
The Menu Bar can be turned off.

Menu System provides easy visual access to many of the
same debugging features and commands as
the Command Window.

most-significant bit
(MSB)

highest value bit. Not the same as high
order, which indicates a bit position.

number base setting to which all input and output is
interpreted (e.g., binary, decimal, or
hexadecimal numbers).

OMF86 object module format for the 8086
microprocessor. OMF is the Intel standard
for the structure of object modules.

partition an address with an associated length in the
target system.

patch a user modification to the program being
debugged. See the ASM command for
further information on assembling patches
into memory.

point-and-shoot a method of debugging in which the user
locates bugs by scrolling through the
program source, setting breakpoints, and
executing the program to those breakpoints.

port circuitry on a microprocessor for input to or
output from an external device.

pseudovariable a system defined variable that cannot be
removed, with a predefined value range.
Like a command, a pseudovariable initiates
operations and affects system operation.
Like a variable, a pseudovariable has a
name and value and can be assigned,
displayed, and used in expressions.

Glossary-4

radix see number base.

Register Window the window that appears as an option at the
right side of the screen. Target register
contents are displayed and, during program
execution, updated.

scope an address in the user program that
determines symbol visibility, starting with
the innermost program block and moving
outward to the current module.

scrolling makes it possible to move the cursor or
window within the current module.

search string string specified by user for the Find item in
the Browse Menu.

shell escape passes host operating system commands to
the host operating system.

source display file either the listing file produced by the
compiler or the source program file used as
input to the compiler. The debugger uses
these files for source display in the View
Window.

Status Line the line that appears at the bottom of the
screen for indicating the current status of
DB86 and providing messages about
miscellaneous program activity.

stepping executing the user program one specified
step at a time.

stype a user program variable of type ARRAY,
RECORD, PROCEDURE, or LABEL.

swapping one of two internal techniques used by
DB86 to switch between the DB86 control
screen and the user program output screen.
(See Appendix B).

Glossary-5

symbolic information information about user program elements
such as modules, procedures,and variables,
which is available when the program has
been translated with the DEBUG option.

thumbmark the marker appearing in the left margin of
the View Window and indicating the cursor
location. The thumbmark is displayed even
when the View Window is not the active
window.

toggle turn off or on.

tracepoint a specified program location like a
breakpoint, but which does not stop
execution. When execution passes through a
tracepoint, an announcement appears in the
Command Window.

View Window the window in which the user program
source is displayed during debugging.

VGA Video Graphics Array.

watch expression memory template commands, references to
symbolic variables, or references to a unique
expression. The program variables or
memory activity is displayed in the Watch
Window at program execution points.

watchpoint a construct created by using the conditional
breakpoint and auto stepping features of the
debugger. A user-specified expression is
evaluated at every step during auto
stepping. It causes a breakpoint to occur
when the expression evaluates to true.

Watch Window the window that appears as an option at the
top of the screen for viewing user program
variables during program execution.

Glossary-6

Index

! Shell Escape, 5-10
+ ,5-17
43-line control, 2-7
8086/8088 registers and flags, 5-95, 5-96
8087 coprocessor, 1-3
8087 registers and flags, 5-99, 5-100

A
Aborting a command, 4-8
Accessing the menu system, 5-87
Accessing user-program memory, 5-84
Active window, G lossary-1
Address, Glossary-1
Alias, Glossary-1
Application development process, 1-4
ASM Display, 3-7, 3-11
ASM examples, 5-13
ASM, 5-11
Assembler data types, 5-34
Assembling code into memory, 5-12
Assembly, 1-2
Assignment command, 2-26
Auto Step mode, 3-13, 5-22
Automatic type conversions, 5-60, 61

B
Base 10, 5-15
Base 16, 5-15
Base 2, 5-15
BASE examples, 5-16
BASE, 5-15, 5-77
Base, Glossary-1
Binary, 5-15
Blinking screen, 3-9
Boolean data types, 5-34
Boolean operators, 5-54
Break status, 5-17
Break Status Column, Glossary-1
Breaking on access to data, 2-13

Breakpoints, 1-2,1-3,1-18, 2-10, 2-12, 3-
5, 3-8, 3-12, 3-13, 3-15, 3-16, 3-18,
4- 5, 4-7, 5-17, 5-22, 5-46, 5-47,
5- 62

Browse Menu, 3-19
Browsing, 2-19, 3-19, 3-20, 4-2, 4-8,

Glossary-1

C
Call ancestry, 3-17, Glossary-1
Call instruction, 3-14, 4-6
Call Step, 3-13
Called procedure, 3-13, 3-14, 3-17, 4-6,

4-7, 5-32
Calls, 3-17, 3-21
CALLS, 5-19
CALLS example, 5-20
Callstack, 4-2, 5-19
Callstack browsing, 3-21
CB, 5-22
CGA, Glossary-1
Changing a byte port, 5-89
Changing a word port, 5-121
Changing debug variables, 5-35
Changing flags, 5-64
Changing user-program symbols, 5-118
Changing variables, 5-84
Character data types, 5-34
Character delimiters, 5-76, 77, 78
Clear at Cursor, 3-16
Clearing breakpoints, 2-14
Clearing tracepoints, 2-14
Command entry, 5-24
Command line, 1-3
Command overview, 5-3
Command Window, 3-10, 3-15, 4-2, 4-3,

4-5, 4-6, 5-24, Glossary-1
Command-line buffer, 4-3
Command-line comments, 5-25
Command-line controls, 2-27

Command-line editing, 4-3, 4-4, 5-24, 25,
26

Command-line entry, 5-24
Command-line interface, 4-3, 4-4, 5-24,

25,26
Comments, 5-25
Composite data types, 5-33
Conditional breakpoint examples, 5-23
Conditional breakpoints, 2-12, 5-17, 5-22
Configuring the debug environment,

2-27
Continuation character, 5-24
Continuing command-lines, 5-24
Control construct, Glossary-1
Control constructs, 5-102, 5-4, 5-28, 5-30,

5-44, 5-71,
Control keys, 4-1
Controlling the display of DB86

information, 5-27
Controls, 2-27
Correlating a module with a source file,

5-108
COUNT, 5-28, 5-30
COUNT example, 5-31
CSTEP, 5-32
Ctrl-Break key, 2-14
Current execution point, Glossary-2
Cursor, 4-1, 4-4
Cycle Window, 3-10

D
Data access, 1-2
Data types, 5-33, 5-55
DB86 commands, 5-36
DB86 debugger features, 1-2
DB86 help, 1-12
DB86 invocation, 1-8
DB86 prompt, 5-24
DB86 screen display, 1-9, 3-9
DB86, learning, 1-3, 3-1
Debug environment, Glossary-2
Debug environment commands, 5-4
Debug Menu, 3-4

Debug session log, 5-79, Glossary-2
Debug Status, 3-18
Debug variable, Glossary-2
Debug variables, 3-18, 5-15, 5-35, 5-53
Debug variables, types, 5-37
Debugger commands, 5-36
Debugger screen, 3-8
Debugger source display files, 2-4
Debugging session, log of, 1-3
Debugging with DB86,1-6
Decimal, 5-15
Default extension, 3-5
DEFINE, 5-37
DEFINE example, 5-38
Defining debug variables, 5-35, 5-37
Deleting characters, 4-4
Delimiters, 5-76, 5-77, 5-78
Dereferencing pointers, 2-24
DIR, 5-39, 5-40
DIR example, 5-42
DISABLE, 5-46, 5-47
DISABLE example, 5-47
Disabling breakpoints, 2-14, 5-46, 5-47
Disassembled code, Glossary-2
Disassembly, 1-2, 5-11
Disassembly display, 2-22, 2-26, 3-7, 3-

11, 4-5
Display control, 5-27
Displaying a byte port, 5-89
Displaying a flag, 5-94
Displaying a register, 5-94
Displaying a watch expression, 5-119
Displaying a word port, 5-121
Displaying an 8086/8088 flag, 5-95
Displaying an 8086/8088 register, 5-95
Displaying an 8087 flag, 5-99
Displaying an 8087 register, 5-99
Displaying data, 2-22
Displaying debug variables, 5-35
Displaying flags, 5-64
Displaying memory, 5-84
Displaying stack values, 5-112
Displaying symbols, 5-39, 40

Index-2

Displaying the base, 5-15
Displaying the path, 5-110
Displaying user output, 1-22
Displaying user-program symbols, 5-118
Displaying variables, 5-84
DO, 5-28, 5-37, 5-44
DO example, 5-44
DOS interrupts, user program, 5-114
DOS Shell, 3-6, 5-10
DOS version number, 1-7
Dumping memory, 2-25, 5-84

E
Editing command lines, 4-3, 4-4, 5-24,

25,26
Editing user responses, 4-4
EGA, Glossary-2
ENABLE, 5-46, 5-47
ENABLE example, 5-47
Enabling breakpoints, 2-14, 5-46, 5-47
Entering commands, 1-12
Error message help, 4-6
EVAL, 2-25, 5-49, 5-50
EVAL examples, 5-50
Evaluating expressions, 5-49
Evaluating line numbers, 5-49
Evaluating procedures, 5-49
Evaluating symbols in overlays, 5-49
Evaluating symbols, 5-49
Examining data, 2-22
Example debugging, 2-28
Exception breakpoint, Glossary-2
Exception breakpoints, 5-114, 5-17
EXE files during linking, 2-5
Executing a command, 4-4
Executing a user program, 1-20,2-15
Execution and watch commands, 5-7
EXIT, 5-52
EXIT example, 5-52
Exiting from DB86,1-24, 3-6, 5-52
Exiting from the Help Menu, 3-3
Exiting from the menu system, 3-3
Expanded Calls, 3-18

Expression typing, 5-58, 59, 60, 61
Expressions, 5-53
Extension list, 3-5
Extensions, 3-5

F
Fast mode, 5-27
FB, 5-62
Find..., 3-21
Finding a bug, 2-28
Fixed breakpoint examples, 5-62
Fixed breakpoints, 2-12, 5-17, 5-62
FLAGS examples, 5-65
Flags, 3-7, 3-8
FLAGS, 5-64
Flags, 5-94
Flip Screen, 3-8, 3-9
Flipping, 2-19, Glossary-2
Floating-point data types, 5-33
Function keys, 1-3, 4-5

G
Global debug variables, 5-37
GO, 2-15, 5-66
GO examples, 5-67
Go Forever, 3-12
GO FOREVER, 5-66
Go Keep Fixed, 3-12
Go Menu, 2-15, 3-11
Go Til Breakpoint, 3-12
Go Til Cursor Line, 3-12
GO TIL, 5-66
Grouping commands, 5-28

H
HELP example, 5-69
Help Menu, 3-23
Help screens, 3-23
Help, 1-3, 3-23, 4-5, 5-68
Hexadecimal, 5-15
Hidden breakpoint, Glossary-2
Hidden breakpoints, 5-17
Highlight bar, Glossary-2

Index-3

History buffer, Glossary-2
Home scope, Glossary-3
Human interface, Glossary-3

I
Identifiers, 5-76
IF, 5-28, 5-71
IF example, 5-72
INCLUDE, 5-73
INCLUDE example, 5-73
Include files, 2-27
Insert editing mode, 4-4
Invoking the debugger, 2-6
ISTEP example, 5-74
ISTEP, 5-74

K
Keyboard controls, 1-3, 4-1
Keyword, Glossary-3
Keywords, 5-76

L
L43 control, 2-7
Language instruction stepping, 5-82
Last error help, 5-68
Least significant bit (LSB), Glossary-3
Lexical elements, 5-76
Line mode, 5-27
Line-editing keys, 4-3
Link Response File, 2-4
Linking, 2-2
LIST example, 5-79
List file, Glossary-3
List files, 2-27
List files during compile, 2-4
LIST, 5-79
LOAD example, 5-80
Load Program, 3-4
LOAD, 5-80
Load-file tail, 2-6, Glossary-3
Loading a user program, 2-6, 2-8, 3-4,

5-80
Local debug variables, 5-37

Local variables, 3-18, 3-21
LSTEP, 5-82
LSTEP example, 5-82

M
Machine instruction stepping, 5-74
Macro files, 2-7, 2-27
Macros, 5-73
Make file for linking, 2-2
Make file, Glossary-3
Mapped memory, Glossary-3
MDA, Glossary-3
Memory access commands, 5-6
Memory access examples, 5-85
Memory access, 1-2
Memory access, 5-84
Menu bar, 3-1, 3-9
Menu Bar, Glossary-4
Menu prompting, 3-3, 3-20
Menu system, 1-3, 3-1, 3-2, 3-9, 5-24,

5-87, Glossary-4
Modifying data, 2-26
Modules, 3-18
Modules in EXAMPLE program, 2-2
MON2 control, 2-7
Monitors, two, 2-7
Most significant bit (MSB), Glossary-4
Moving around in the user program,

5-106
Mtype variables, 5-39
Mtype, Glossary-3
Mtypes, 5-41, 5-42
Multiple command lines, 5-24

N
Names, 5-76
NAMESCOPE, 5-106
Navigational key controls, 4-1
Nested procedures, 3-17,4-7, 5-19
Nesting DO blocks, 5-44
Nesting INCLUDE commands, 5-73
Next Find, 3-22
No Flipping, 3-8, 3-9

Index-4

NOLIST, 5-79
NOLIST example, 5-79
Number base, Glossary-4
Numbers, 5-76

O
OBREAK, 5-88, 5-91
OBREAK example, 5-88
OBREAK flag, 2-14
Observing program output, 2-19
OMF86, Glossary-4
Opening a debug session log, 5-79
Operands, 5-53
Operators, 5-53, 5-54, 5-55
Output screen, 3-8, 3-9, 4-5
Overlay, 1-3
Overlays, user program, 5-88
Overstrike editing mode, 4-4

P
Page mode, 5-27
Paired commands, 5-28
Partition, Glossary-4
Patch, Glossary-4
Patching a user program, 2-22
Patching code, 5-12
Pathname, 3-5
Path, 5-110
PC-DOS version number, 1-7
Point-and-shoot, Glossary-4
Pointer data types, 5-34
Point-and-shoot debugging, 2-12
PORT examples, 5-89
PORT, 5-89, 91
Port, Glossary-4
Preparing a program for debugging, 2-2
Previous Find, 3-22
Procedure calls, 5-19
Procedure Step, 3-14
Procedure stepping, 5-92
Processor status commands, 5-5
Program development, 1-4
Program symbols, 1-2

Program variables, 3-18, 3-20
Prompts, 3-3, 3-20
Pseudovariable, Glossary-4
Pseudovariables, 5-88, 5-89, 5-91, 5-114,

5-121
PSTEP, 5-92
PSTEP example, 5-92

Q
Quit Help, 3-23

R
Radix, 5-15, 5-77, Glossary-5
Register access, 1-2
Register Window, 3-8, 4-5, Glossary-5
Registers and flags, 3-7, 5-94
REGS, 5-95
REGS example, 5-98
REGS87, 5-99
Relational operators, 5-54
Reload, 3-5
Reloading a program, 3-5
Remove All, 3-16
REPEAT, 5-28, 5-102
REPEAT example, 5-102
Repeating a block of commands, 5-102
Return instruction stepping, 5-104
Return instruction, 3-14, 4-7
Return Step, 3-14
Returning to DOS shell, 3-6, 5-10
RSTEP, 5-104
RSTEP example, 5-104
Running with two monitors, 2-7

S
Sample command entry, 5-2
SASM, 5-12
Scope..., 3-20
Scope, 3-19, 3-20, 4-2, 4-8, Glossary-5
SCOPE, 5-106
Screen flipping, 1-3, 3-6, 3-8, 3-9, 4-7
Screen, blinking, 3-9

Index-5

Scrolling, 1-16, 2-19, 3-19, 3-20, 4-1, 4-2,
Glossary-5

Search string, Glossary-5
Searching for a user program symbol,

5-106
Searching, 3-21, 3-22
Selecting a menu, 3-2
Selecting a menu item, 3-2
Selecting the menu bar, 3-2
Separate source files, 2-2
Sequencing through a user program,

2-15
Set Menu, 3-15
SETMOD, 5-108
SETMOD example, 5-109
Setting 8086/8088 flags, 5-95
Setting 8086/8088 registers, 5-95
Setting 8087 flags, 5-99
Setting a new execution point, 5-106
Setting breakpoints, 2-10
Setting flags, 5-64, 5-94
Setting registers, 5-94
Setting the base, 5-15
Setting the path, 5-110
Setting watch expressions, 5-119
Shell escape, 5-10, Glossary-5
Shotgun approach, 2-15
Showing user output, 1-22
Signed data types, 5-33
Single-step, 1-2
Source display, 1-2, 3-7, 4-5
Source display commands, 5-6
Source display file, Glossary-5
Source path, 2-7
Source Path, 3-4, 3-5
SPATH, 2-7, 5-110
Specifying drive and path names, 3-4
STACK, 5-112
STACK example, 5-112
Starting program execution, 5-66
Status Line, 3-17, Glossary-5
Step, 3-13

Stepping, 3-8, 3-11, 3-13, 3-14, 4-7, 5-32,
5-74, 5-82, 5-92, 5-104, 5-113,
Glossary-5

Stepping commands, 2-16, 5-113
Strings, 5-76, 5-77
Stype, Glossary-5
Stype variables, 5-39
Swapping, Glossary-5
Symbol, user program, searching for,

5-106
Symbolic display, 5-84
Symbolic information, Glossary-6
Symbols, 5-76
SYSINT, 5-91, 5-114
SYSINT example, 5-115
SYSINT flag, 2-14
SysReq key, 2-14

T
Temporary breakpoints, 2-12, 5-17
Thumbmark, 3-21, Glossary-6
Toggle, Glossary-6
TR, 5-116
TR example, 5-117
Tracepoint example, 2-10, 5-117
Tracepoint, Glossary-6
Tracepoints, 3-12, 3-15, 3-16, 3-18, 4-5,

4-7, 5-17, 5-46, 5-47, 5-116
Transparent overlay, 1-3
Two monitors, 2-19
Type conversions, 5-58, 5-59, 5-60, 5-61
Type operators, 5-55, 5-57
Types, 5-33

U
Unary and binary operators, 5-54
Unsigned data types, 5-33
User response, 3-3, 3-20
User response editing, 4-3
User-program symbols, 5-118

Index-6

VGA, Glossary-6
View Window, 3-7,3-9, 3-10, 3-11, 3-16,

3-17, 3-19, 4-1, 4-2, 4-5, 4-6, 4-8,
5-24, Glossary-6

V

W
WA, 5-119
WA examples, 5-120
Watch expression, Glossary-6
Watch expression examples, 5-120
Watch expressions, 1-2, 2-24, 2-38, 3-13,

3-18, 5-17, 5-46, 5-47, 5-119
Watch Window, 1-2, 2-38, 3-8, 4-7,

Glossary-6
Watchpoint, Glossary-6
Watchpoints, 2-13
Window divider, 4-8
Window Menu, 3-7
WPORT, 5-91, 5-121
WPORT examples, 5-121

READER RESPONSE CARD

DB86 Software Debugger
User’s Guide
481850-001

We’d Like Your Opinion

Please use this form to help us evaluate the effectiveness of this manual and improve the quality of future
versions.

To order publications, contact the Intel Literature Department (see page ii of this manual).

Fill in the squares below with a rating of 1 through 10:

POOR AVERAGE EXCELLENT

1 2 3 4 5 6 7 8 9 10
I | Readability

| Technical depth
| | Technical accuracy
I | Usefulness of material for your needs
I | Comprehensibility of material
□ OVERALL QUALITY OF THIS MANUAL

If you gave a 4 or less (in any category), please explain here:

What suggestions would you have for improving this manual:

If you would like us to call you for more specific suggestions about this book, please additionally fill in
your phone number below.

Name___

Phone Number (_______)___

Address___

Thanks for taking the time to fill out this form.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

INTEL CORPORATION
DTO TECHNICAL PUBLICATIONS HF2-38
5200 NE ELAM YOUNG PARKWAY
HILLSBORO OR 97124-9978

II.I..I...I...II..I.I.I..II.I..I.I..I...II..I..I..II

Please fold here and close the card with tape. Do not staple.

W E ’D LIKE Y O U R C O M M E N T S . . .

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.
If you are in the United States and are sending only this card, postage is
prepaid.
If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding “ United States of America” if
you are outside the United States.
Thanks for your comments.

International Sales Offices

BELGIUM
Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark A/S
Glentevej 61-3rd Floor
dk-2400 Copenhagen

ENGLAND
Intel Corporation (U.K.) LTD.
Piper’s Way
Swindon, Wiltshire SN3 1RJ

FINLAND
Intel Finland OY
Ruosilante 2
00390 Helsinki

FRANCE
Intel Paris
1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park
Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation S.P.A.
Milandfiori, Palazzo E/4
20090 Assago (Milano)

JAPAN
Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

NETHERLANDS
Intel Semiconductor (Nederland B.V.)
Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam

NORWAY
Intel Norway A/S
P.O. Box 92
Hvamveien 4
N-2013, Skjetten

SPAIN
Intel Iberia
Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvaegen 24
S-171 36 Solna

SWITZERLAND
Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg
CH-8065 Zurich

WEST GERMANY
Intel Semiconductor GmbH
Seidlestrasse 27
D-8000 Muenchen 2

