
ASM86 LANGUAGE
REFERENCE MANUAL

Copyright © 1981, 1982, 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 121703-003

ASM86 LAI"GUAGE
REFERENCE MANUAL

Order Number: 121703-003

Copyright © 1981, 1982, 1983 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 I

ii

Additional copics of this manual or other Intclliteraturc may be obtained from:

Literature Department
Intcl Corporation
3065 Bowers A venue
Santa Clara, CA 95051

Intel retains the right to make changes to these spccifications at any time, without notice. Contact your
local sales office to obtain the latest specificatiors before placing your order.

Intcl Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implicd warranties of mcrchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. I ntel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for thc use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the propcrty of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in I ntel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may bc copied or reproduced in any form or by any means without the prior
written consent of I ntel Corporation.

The following are trademarks of I ntel Corporation and its affiliates and may only be used to identify Intel
products:

BITBUS im iRMX Plug-A-Bubblc
COMMputcr iMMX iSBC PROMPT
CREDIT Insitc iSBX Promwarc
Data Pipeline inte l iSDM QucX
Genius intclBOS iSXM QUEST
i Intclcvision Library Manager Ripplcmodc
" I inteligcnt Identifier MCS RMX/80
121CE intcligcnt Programming Megachassis RUPI
ICE Intcllcc MICROMAINFRAME Seamless
iCS Intcllink MULTIBUS SOLO
iDBP iOSP MULTICHANNEl. SYSTEM 2000
iDIS iPDS MULTIMODUI.E UPI
iLBX

REV. REVISION HISTORY DATE APPD.
-

-001 Original issue. 9/81

-002 Correct errors in command pages of -00 I issue. 9/82
Include new information for iAPX 186 instruc-
tions.

-003 Revised to correct errors in Appendix A of -002 11/83 D.N.
issue.

III

• @ n ~ ___________________ P_R_E_F_A_C_E~
How to Use 'This Manual

This manual describes the assembly language for the 8086/8088 and the 8087. You
should already be familiar with the 8086/8087/8088 before attempting to use this
manual. Because this is a reference manual, it should not be read from cover-to
cover. The ASM86 LANGUAGE REFERENCE MANUAL is part of a family of
manuals designed to help you program the 8086/8088 and the 8087. For you to learn
how to program the 8086/8087/8088 in assembly language, you should read the
following manuals:

The 8086 Family User's Guide, 9800722

This is an introduction to all the chips in the 8086 family. It describes the hard
ware architecture and the instruction set of the 8086/8088. This is essential
reading!

The 8086 Family User's Guide-Numerics Supplement, 121586

This manual describes the 8087 Numeric Processor. If you are going to be
programming for the 8087, you should read this manual.

An Introduction to ASM86, 121689

This manual serves as an introduction to programming in assembly language for
the 8086/8088. It will teach you the basic concepts necessary to begin writing
programs for the 8086/8088. This manual is an introduction to much of the
material covered in the ASM86 LANGUAGE REFERENCE MANUAL.

Before plunging into this manual you should read Chapter 1. It introduces some of
the concepts, terminology, and conventions that are used throughout the manual.
Sections labeled "Overview" are introductions to material covered in a chapter.
These sections are intended to give you an overall perspective of the material. In
Chapter 3, there are two sections entitled "Introduction to ... ". These sections
introduce two data structures unique to the assembly language. You should read
these sections early in your use of the manuaL The following is a brief description of
the chapter contents:

Chapter 1 - discusses the important issues of the machine architecture (registers,
segmentation) and introduces the assembly language.

Chapter 2 - discusses the assembler directives that control segmentation (defining
program segments).

Chapter 3 - discusses the definition of variables and labels and the definition and
initialization of data storage. It also describes the many data structures
supplied by the assembly language.

Chapter 4 - describes the possible operand types that you can use with machine
instructions. It also describes the assembly-time expressions that you
can use.

Chapter 5 - describes the directives that allow you to develop modular programs,
both in assembly language and assembly language programs that will
link to modules written in other 8086/8088 languages.

v

vi

Chapter 6 - fully describes the instruction sets for the 8086/8088 and the 8087.

Chapter 7 - describes the macro language supplied by the assembler.

NOTE

This manual replaces three previous reference manuals for ASM86. There
are three different assemblers for ASM86. They are:

a. 8080/8085 based assembler with no 8087 support

b. 8080/8085 based assembler with 8087 support

c. 8086 based assembler with 8087 support.

This manual covers all the versions of the ASM86 assembler. Any dif
ferences will be noted where they occur (the END and NAME directive).

RELATED PUBLICATIONS

For further, more detailed information about Intel's 8086/8088 assembly language
and ASM86 assembler, see the following manuals:

An Introduction to ASM86, 121689

• ASM86 Macro Assembler Operating Instructions for 8086-Based Development
Systems, 121628

or

• 8086/8087/8088 Macro Assembler Operating Instructions for 8080/8085-Based
Development Systems, 121624

or

MCS-86 Macro Assembler Operating Instructions for ISIS-II Users, 9800641

For a description of the 8086/8088 architecture and an overview of the ASM86 and
PL/M-86 languages, see:

Morse, Stephen P., The 8086 Primer (2nd Ed), Hayden Book Company, Inc.,
Rochelle Park, New Jersey, 1982.

For information on the 8086 and 8088 microprocessors and the 8087 Numeric Data
Processor, see:

• The 8086 Family User's Manual, 9800722

• The 8086 Family User's Manual, Numerics Supplement, 121586

For information on the PL/M-86 programming language and compiler, see:

PL/M-86 User's Guide for 8086-Based Systems, 121636

or

• PL/M-86 Programming Manual, 9800466

PL/M-86 Compiler Operating Instructions for 8080/8085-Based Development
Systems, 9800478

For information on the LINK86 and LOC86 utility programs, see:

• iAPX 86,88 Family Utilities User's Guide, 121616

or

8086 Family Utilities User's Guide, 9800639

• (R) n

CHAPTER 1 PAGE
OVERVIEW OF THE ASM86
ASSEMBL Y LANGUAGE
The 8086/8087/8088 Development Environment 1-1
An Overview of the Assembly Language 1-1
Basic Assembly Language Constituents 1-3

Character Set 1-3
Tokens and Separators 1-4
Delimiters 1-4
Identifiers 1-4
Statements ".............. 1-5

An Overview of the Macro Language 1-5
CPU Hardware Overview 1-5

The General Register Set 1-6
The Segment Register Set 1-7

The 8086/8088 Memory Segmentation Model 1-8
A Description of the Format Used for

Directive Specifications 1-9

CHAPTER 2
SEGMENT ATION
Overview of Segmentation 2-1
The SEGMENT/ENDS Directive 2-1

Multiple Definitions for a Segment 2-3
"Nested" or "Embedded" Segments 2-4
The Default Segment - ??SEG 2-5

The ASSUME Directive 2-5
Forward Referenced Names in an
ASSUME Directive......................... 2-7
Multiple ASSUME Directives 2-8

The GROUP Directive "...... 2-8
Use of the OFFSET Operator with Groups 2-9

CHAPTER 3
DEFINING AND INITIALIZING DATA
Overview of Variables and Labels 3-1
Constants 3-2
Defining and Initializing Variables (DB, DW, DD,

DQ, DT Directives) 3-3
Introduction to Records 3-8
The RECORD Directive 3-8

Record Template Definition 3-8
"Partial" Records 3-9
Record Allocation and Initialization 3-9

Introduction to Structures 3-10
The STRUC Directive 3-11

Structure Template Definitions 3-11
Structure Allocation and Initialization 3-12

Defining Labels 3-15
The PROC Directive 3-15
The LABEL Directive 3-17

CONTENTS I

PAGE
The Location Counter ($) 3-18
The ORG Directive 3-18
The EVEN Directive 3-19
The PURGE Directive 3-19

Using the PURGE Directive to Control Debug
Information 3-19

CHAPTER 4
ACCESSING DATA-OPERANDS
AND EXPRESSIONS
8086/8087/8088 Instruction Statements 4-1
Operand Types 4-2

Registers 4-2
Floating Point Stack 4-2

Immediate Operands 4-2
Memory Operands 4-3

Direct Address 4-3
Register Indirect Address 4-3
Based Address 4-4
Indexed Address 4-4
Based Indexed Address 4-4
Segment Register Defaults 4-4

Overview of Expressions 4-6
Types of Expression Operands 4-6

Numbers 4-6
Address Expressions 4-7
Accessing Structure Fields 4-8
Relocatable Expressions 4-9

Arithmetic Operators 4-10
HIGH/LOW 4-10
Multiplication and Division 4-11
Shift Operators 4-11
Addition and Subtraction 4-12
RelationalOperators 4-12
Logical Operators 4-13

Attribute Overriding Operators 4-14
Segment Override 4-14
PTR Operator 4-15
SHORT Operator 4-16

Attribute Value Operators 4-17
THIS Operator 4-17
SEG Operator 4-18
OFFSET Operator 4-18
TYPE Operator 4-19
LENGTH Operator 4-20
SIZE Operator 4-21

Record Specific Operators 4-21
Shift Count 4-22
MASK Operator 4-22
WIDTH Operator 4-23

Operator Precedence 4-23

vii

· " n

Highest Precedence
Lowest Precedence

The EQU Directive

CHAPTER 5
PROGRAM LINKAGE DIRECTIVES
Overview of Program Linkage
The PUBLIC Directive
The EXTRN Directive

The Placement of EXTRN's
The END Directive
The NAME Directive

CHAPTER 6
THE 8086/8087/8088
INSTRUCTION SET
The 8086/8088 Instruction Set
Instruction Statement Formats
Addressing Modes

Memory Operands
Segment Override Prefixes
Register Operands
Immediate Operands

String Instructions and Memory References
Mnemonic Synonyms
Organization of the Instruction Set

Data Transfer
General Purpose Transfers
Accumulator-Specific Transfers
Address-Object Transfers
Flag Register Tranfers

Arithmetic
Flag Register Settings
Addition
Subtraction
Multiplication
Division

Logic
Two-Operand Operations

String Manipulation
Hardware Operation Control
Primitive String Operation
Software Operation Control

Control Transfer
Calls, Jumps, and Returns
Conditional Jumps
Iteration Control
Interrupts

Processor Control
Flag Operations

viii

PAGE
4-23
4-23
4-24

5-1
5-1
5-1
5-2
5-3
5-5

6-1
6-1
6-1
6-1
6-2
6-3
6-4
6-4
6-6
6-6
6-7
6-7
6-7
6-7
6-8
6-8
6-8
6-8
6-9
6-9
6-9

6-10
6-10
6-10
6-10
6-11
6-12
6-12
6-12
6-12
6-13
6-13
6-14
6-14

CONTENTS (Cont'd.) 1

Processor Halt
Processor Wait
Processor Escape
Bus Lock
Single Step

Instruction Description Formats
Format Boxes .. "
Instruction Detail Tables
Flags

The 8087 Instruction Set
8087 Architectural Summary

Floating-Point Stack
Environment

Status Word
Control Word
Tag Word

Exception Pointers
Data Types

8087 Operation
Coprocesssing
Numeric Processing

8087 Emulators
Organization of the 8087 Instruction Set

Data Transfer Instructions
Arithmetic Instructions
Comparison Instructions
Transcendental Instructions
Constant Instructions
Processor Control Instructions

CHAPTER 7
THE MACRO PROCESSING
LANGUAGE

PAGE
6-14
6-14
6-14
6-15
6-15
6-15
6-16
6-16
6-16

6-108
6-J08
6-108
6-109
6-109
6-110
6-111
6-112
6-112
6-114
6-114
6-114
6-116
6-116
6-116
6-117
6-119
6-119
6-120
6-120

Introduction 7 -1
Macro Processor Overview 7-1

Creating and Calling Macros 7-2
Creating Parameterless Macros 7-2
Creating Macros with Parameters 7-6
LOCAL Symbols in Macros. 7-7

The Macro Processor's Built-in Functions 7-8
Comment, Escape, Bracket and MET ACHAR

Built-in Functions 7-8
Comment Function 7-8
Escape Function 7-9
Bracket Function 7-10
METACHAR Function 7-11

Numbers and Expressions in MPL 7-11
SET Macro 7-11
EY AL Function 7-12

Logical Expressions and String Comparisons
in MPL 7-12

Control Flow and Conditional Assemblies 7-14

• \H

n ~ ____________ C_O_N_T_E_N_T_S_(_C_o_n_t'd_.~)
PAGE

IF Function 7-14
WHILEFunction 7-15
REPEAT Function 7-16
EXIT Function 7-16

String Manipulation Built-in Functions 7-17
LEN Function 7-17
SUBSTRFunction 7-17
MATCH Function 7-18

Console I/O Built-in Functions 7-19
Advanced MPL Concepts 7-19

Macro Delimiters 7-20
Implied Blank Delimiters 7-20
Identifier Delimiters 7-20
Literal Delimiters 7-21

Literal vs. Normal Mode 7-22
Algorithm for Evaluating Macro Calls 7-23

APPENDIX A
CODE MACROS

APPENDIX B
FLAG OPERATIONS

• Ii'

n

TABLE

I-I
3-1
6-1
6-2

6-3
6-4
6-5
6-6
6-7

TITLE

Implicit use of General Registers
Constants
String Instruction Mnemonics
8086/8087 Conditional Transfer

Operations
Symbols
Effective Address Calculation Tim(:
8087 Data Types
Rounding Modes
Exception and Response Summary

PAGE

1-7
3-3
6-4

6-13
6-17
6-19

6-112
6-115
6-116

APPENDIX C
RESERVED WORDS

APPENDIX D
MPL BUILT-IN FUNCTIONS

APPENDIX E
INSTRUCTIONS IN
HEXADECIMAL ORDER

APPENDIX F
EXAMPLE MACROS

APPENDIXG
EXAMPLE PROGRAMS

APPENDIX H
186 INSTRUCTION SET SUMMARY

TABLES I

TABLE

6-8
6-9
6-10

6-11
6-12
6-13
6-14
6-15

TITLE PAGE

Data Transfer Instructions 6-117
Arithmetic Instructions 6-117
Basic Arithmetic Instructions and

Operands 6-118
Comparison Instructions 6-119
Transcendental Instructions 6-119
Constant Instructions 6-120
Processor Control Instructions 6-121
FXAM Condition Code Settings 6-194

ix

FIGURE TITLE PAGE

1-1

1-2
1-3
1-4
3-1
3-2
6-1
6-2
6-3

x

8086/8087/8088 Development
Environment 1-2

The General Register Set 1-6
The Segment Register Set 1-7
Generating a Physical Address 1-8
"Partial" Record Definition 3-9
Structure Definition and Allocation 3-14
The 8087 Stack Fields 6-108
8087 Environment 6-109
Status Word Format 6-110

ILLUSTRATIONS]

FIGURE TITLE PAGE

6-4
6-5
6-6
6-7
6-8
6-9

7-1

Control Word Format 6-111
Tag Word Format 6-112
Exception Pointers Format 6-112
Data Formats 6-113
FSA VE/FRSTOR Memory Layout 6-179
FSTENV and FLDENV Memory

Layouts 6-185
Macro Processor versus Assembler-

Two Different Views of a
Source File 7-1

• (II) C CHAPTER 1
OVERVIEW OF THE ASM86

__________ A_S_S_E_M_B_L_Y_L_A_N_G_U_A_G~E
n

The 8086/8087/8088 Development Environment
This chapter presents an overview of ASM86, a macro assembly language for the
8086 and 8088 microprocessors, optionally in combination with the 8087 Numeric
Data Processor. The assembler generates object modules, which contain machine
inshuctions and data, from programs written in ASM86. Programs may be written
solely in assembly language or can be a modular combination of ASM86, PL/M-86,
FORTRAN-86, or Pascal-86 modules. The assembler is part of a family of
8086/8088 tools, that create a very flexible environment for modular software
development. Other members of this family of software tools are:

• CONV86-a tool to convert error-free 8080/8085 source files to syntactically
valid ASM86 source files. It will issue caution and error messages for conver
sions that may require editing.

• PL/M-86-creates object modules from programs written in PL/M-86, a high
level systems implementation language for the 8086/8088.

• Pascal-86-creates object modules from programs written in Pascal-86, a high
level applications language.

• FORTRAN-86-creates object modules from programs written In

FORTRAN-86, a high level applications language.

• LINK86-combines object modules into load modules.

• LOC86-binds load modules to absolute memory addresses.

• LIB86-helps build and manage libraries of object modules.

• OH86-converts an 8086/8088 object module to Intel Hex Format.

• ICETM-86-the In-Circuit Emulator for the 8086.

• ICETM-88-the In-Circuit Emulator for the 8088.

This revision of the ASMr86 Language Reference Manual includes information on
the iAPX 186 instructions. These instructions can be used only if you use the
iAPX 186 assembler. The 186-only instructions are indicated by having iAPX 186 in
parentheses after the mnemonic. Clocks of iAPX 186 are given in Appendix H of this
manual.

The manuals describing the languages and operation of the software relating to the
8086 Family of components are listed in the preface section of this manual, "How to
Use This Manual." Figure 1-1 illustrates these tools within the software develop
ment environment for the 8086/8087/8088.

An Overview of the Assembly Language
The assembly language for the 8086/8088 is used to write and structure programs to
be assembled, linked, located, and executed on an 8086 or 8088 microprocessor,
optionally in combination with an 8087 Numeric Data Processor. There are direc
tives to control program segmentation, the allocation of data, including structured
data types, and to structure multi-module programs through relocation and linkage
directives. The assembly language features a set of operators for assembly-time
expressions, which allow the user to manipulate and control the data typing in a sim
ple way and supply a means to perform assembly time arithmetic.

A very important feature of the assembly language is its simplified instruction
mnemonics. Many assemblers require the programmer to remember a different

1-1

Overview of the ASM86 Assembly Language

1-2

ACTIVITY TOOL FILE REFERENCE

---~
I C~~~~RT ,

\ 8080 I
'----

CD MCS-86 ASSEMBLY LANGUAGE CONVERTER OPERATING INSTRUCTIONS FOR ISIS-
II USERS (9800642)

@ ISIS-II CREDIT CRT-BASED TEXTEDITOR USER'S GUIDE (9800902)

CD ISIS-II USER'S GUIDE (9800306)

o ASM86 LANGUAGE REFERENCE MANUAL (1:21703)

® 8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR 8080/8085-
BASED DEVELOPMENT SYSTEMS (121624)

® 8086 FAMILY UTILITIES USER'S GUIDE FOR M80/8085-BASED DEVELOPMENT
SYSTEMS (9800639)

CD ICE-86 IN-CIRCUIT EMULATOR OPERATING INSTRUCTIONS FOR ISIS-II USERS
(9800714)

® ICE-88 IN-CIRCUIT EMULATOR OPERATING INSTRUCTIONS FOR ISIS-II USERS
(9800949)

Figure 1-1. 8086/8087/8088 Development Environment

ASM86

121703-1

ASM86 Overview of the ASM86 Assembly Language

mnemonic for each machine opcode. For example, a "move immediate" would
require a different mnemonic than a "move memory". The 8086/8088 instruction
set uses a single mnemonic for each generic instruction type. Thus, all "moves" use
the mnemonic "MOV". The ope ode generated is dependent on the operands sup
plied with the instruction. A move from memory could be written:

MOV AX, COUNT

where count is a variable. An immediate move would be written as:

MOV OX, OA123H

In each case the mnemonic is the same. This simplification allows the programmer
to concentrate on the programming task and not on remembering a large set of
mnemonics. In order to determine the correct instruction to generate, the assembler
examines the operands and determines their "type" (byte/word, variable/constant,
etc.) and then uses this information to select the appropriate code.

The 8086 and 8088 have instructions to manipulate both 8 and 16-bit data. ASM86 is
a "strongly-typed" language in that it checks that operands in an instruction are of
the same "type". This prevents the programmer from inadvertantly moving a word
variable into an 8-bit destination, for example. This would be an error that might
not be detected until run-time. The assembler will catch this error at the time of
assembly, saving the programmer the chore of debugging this error. However, one
of the features of programming in assembly language is the ability to manipulate
data in every possible way, including the above "illegal" operation. ASM86 has
many directives and expression operators to override this typing mechanism so that
these types of operations can be performed (see Chapter 4).

The assembler allows you to forward reference variables and labels in your program.
A forward reference is a use of a variable or label prior to its definition.

MOV AX, COUNT ;forward reference to COUNT

COUNT OW 1 5 ;definition of COUNT

When you make a forward reference such as that shown above, the assembler must
make a guess as to the nature of the thing referenced. In this case it will assume that
it is a word variable because AX is a word register. However, it could be a constant
if it was defined as:

COUNT EQU 15 ;definition of COUNT as a constant

It is possible for the assembler to guess wrong or to make a poor guess that could
lead to an error message or inefficient code .. It is recommended that you try to avoid
forward references as much as possible in your program. A good practice is to define
all your variables/ data at the top of your program.

Basic Assembly Language Constituents
This section discusses the elements that constitute a source file in the ASM86
assembly language.

Character Set
The character set used in ASM86 is a subset of both ASCII and EBCDIC character
sets. The valid characters consist of the alphanumerics:

ABC DEFG H I J K L M NO PQ RSTU V W X Y Z
abcdefghijklmnopqrstuvwxyz
0123456789

1-3

Overview of the ASM86 Assembly Language

1-4

along with these special characters

+-*I=()[]<>;' .",_:?@$&

and the non-printing characters

space tab carriage-return line-feed

If an ASM86 program contains any character that is not in this set, the assembler
will treat the character as a blank. The combination of a linefeed or carriage
return/linefeed immediately followed by an ampersand represents a continuation
line and is treated as a blank (except within a character string or comment).

Upper- and lower-case letters are not distinguished from each other (except in
character strings). For example, xyz and XYz are interchangeable.

Blanks are not distinguished from each other and any unbroken sequence of blanks
is considered to be the same as a single blank (except within a character string).

Special characters and combinations of special characters have particular meanings
in a program, as described in the remainder of this manual.

. Tokens and Separators

A token is the smallest meaningful unit of a source program, much as words are the
smallest meaningful units of a book in English. Separators are used to separate two
adjacent tokens so that they are not mistakenly thought to be one longer token. The
most commonly used separator is the blank. Any unbroken sequence of blanks may
be used wherever a single blank is allowed. Horizontal tabs are also used as
separators and are interpreted by the assembler identically to blanks except that they
may appear as multiple blanks in the list file (see operator's manual). Any illegal
character, or character used in an illegal context, is also treated as a separator.

Delimiters

Delimiters are special characters that serve to mark the end of a token and also have
a special meaning unto themselves (as opposed to separators, which merely mark the
end of a token). Commas, plus-signs, square brackets, etc., all serve as delimiters.
When a delimiter is present, separators need not be used; however, using separators
often makes your programs easier to read and, therefore, easier to understand.

Identifiers

An identifier is used to name a user-defined entity in a program. This could be a seg
ment, a group, a variable, a label, or a constant defined with an EQUate directive.
The format for an identifier is as follows:

1. The identifier must begin with a letter or one of three special characters:

a. A question mark (?), with hexadecimal value 3FH.

b. A commercial at-sign (@), with hexadecimal value 40H.

c. An underscore C-), with hexadecimal value 5FH.

2. It may contain letters or digits and the three special characters.

3. The identifier name is considered unique only up to 31 characters, but it can be
of any length (up to 255 characters).

4. Every identifier has global scope within your program module.

ASM86

ASM86 Overview of the ASM86 Assembly Language

Statements

Just as tokens may be seen as the assembly language counterparts to the English con
cept of words, so may statements be viewed as analogous to sentences. A statement
is a specification to the assembler as to what action to perform. In fact, one way of
viewing a computer program is as a sequence of statements which, when taken as an
aggregate, is intended to perform a particular function. Statements may be divided
into two types:

Instructions: these are translated by the assembler into machine instruction code
which "instruct" the 8086/8087/8088 to perform certain operations.

Directives: these are not translated into machine instruction code by the assembler
but rather "direct" the assembler itself to perform certain clerical functions.

Usually a statement will occupy one "line" in your source file. A "line" is a
sequence of characters ended by a terminator (line-feed or carriage-return/line-feed
combination). However, ASM86 provides for "continuation lines" which allow a
statement to occupy more than one physical line in your source file. Any statement
may be continued if the first character following the terminator is an "&". (Sym
bols, however, may NOT be broken across continuation lines. Character strings may
not be continued across continuation lines; the string must be closed with an
apostrophe on one line and then reopened with an apostrophe on a subsequent con
tinuation line, with an intervening",". Comments are considered to be ended by a
terminator; if a comment is continued then the first non-blank character following
the "&" must be a";".)

An Overview of the Macro Language

The assembler contains as its front-end a macro processor. The macro processor
scans the source file for macro definitions and macro calls written in Macro Pro
cessor Language (MPL). Macro calls are expanded according to macro definitions,
and the resulting source assembly language is assembled by the assembler. By using
MPL, you can create macros specific to your application that can generate
sequences of assembly language instructions or directives. The macro processor is a
very powerful string replacement facility that can help to simplify a programming
task. Repeatedly used code sequences can be replaced by a simple macro call. Also,
frequently used assembler directive statements can be replaced by macro calls.
Details for the use of MPL are in Chapter 7.

CPU Hardware Overview

For a complete understanding of the architecture of the 8086/8088, the reader
should become familiar with Chapters 1 and 2 of The 8086 FamiJy User's ManuaJ,
9800722-03). The 8086 and 8088 execute exactly the same instructions. The instruc
tion set includes arithmetic and logical, program transfer, and data transfer opera
tions. It also includes some new operations not found on previous Intel micro
processors. These include:

• Multiplication and division of signed and unsigned binary numbers as well as
unpacked decimal numbers.

• Move, scan, and compare operations for strings up to 64K bytes in length.

• Non-destructive bit testing.

• Byte translation from one code to another.

• Software-generated interrupts.

• A group of instructions that can help coordinate the activities of multiprocessor
systems.

1-5

Overview of the ASM86 Assembly Language

1-6

This section will give a broad overview of the machine architecture by presenting the
register set for the 8086/8088. The 8087 is discussed in Chapter 6.

The General Register Set

The 8086/8088 has a set of eight 16-bit general registers. These general registers are
subdivided into two sets of four registers. The first set is called the data registers.
Each 16-bit data register is further divided into two 8-bit registers, allowing its upper
(high) and lower halves to be separately addressed. This means that each data
register can be used interchangeably as a 16-bit register, or as two 8-bit registers.
Each of these 16-bit and 8-bit registers can participate in arithmetic and logical
operations. The data register set is given below:

16-Bit Register

AX
BX
CX
OX

8-Bit Registers
High Low

AH
BH
CH
OH

AL
BL
CL
OL

The second set of general registers consists of the pointer and index registers. These
registers can participate in most of the same 16-bit arithmetic and logical operations
as the data registers. In most cases, however, these registers are used as pointer or
index registers for addressing data objects in memory. The addressing modes
available on the 8086/8088 are discussed in Chapter 4. These registers are:

BP - base pointer
SP - stack pointer
SI - source index
01 - destination index

I

I L
15 8 7 0

{

- - - - ¥- _~ACCUMULATOR AH AL

BX
DATA - -BH - ,..... - BL - BASE

GHOUP CX
- -CH -,..... - CL- COUNT

- - DH - ~ - -i5i - DATA

POINTER {" ::~' ;;;~::: AND

GI~g~~ 51 FNODUE~CE

01 PNE~J~NATION L..-____ _

Figure 1-2. The General Register Set 9800722-7

ASM86

ASM86 Overview of the ASM86 Assembly Language

Some of the 8086/8088 instructions make implicit use of general registers. Table 1-1
lists the general types of instructions which use these registers. You should refer to
the complete description of each instruction given in Chapter 6 for a discussion of
this implicit use.

Table 1-1. Implicit Use of General Registers

Register Operations

AX Word Multiply, Word Divide, Word 1/0

AL ~ Byte Multiply, Byte Divide, Byte 1/0, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

OX Word Multiply, Word Divide, Indirect 1/0

SP Stack Operations

SI String Operations

01 String Operations

The Segment Register Set

The 8086/8088 is capable of addressing a megabyte of memory. This megabyte can
be accessed through four segments by the CPU. Each segment is 64K bytes in size.
The four segment registers (CS, SS, DS, ES) indicate the base locations for these
segments. The four segments are functionally defined as containing code, data (two
segments), and the hardware stack. The CS register points to the current code seg
ment, from which instructions are fetched. The SS register points to the current
stack segment. All hardware stack operations are performed on locations in this seg
ment. The DS register points to the current data segment that generally contains pro
gram variables. The ES register points to the current extra segment; it is typically
used for data storage. These registers are accessible to programs and can be
manipulated by several instructions.

15 0

cs ~co"' SEGMENT

DS
DATA
SEGMENT

SS
STACK
SEGMENT

ES EXTRA
SEGMENT

FiglLlre 1-3. The Segment Register Set 9800722-8

1-7

Overview of the ASM86 Assembly Language

1-8

The 8086/8088 Memory Segmentation Model

The 8086/8088 can address a megabyte of memory (1,048,576 bytes). This memory
space is viewed by the CPU at run-time as four functional portions called physical
segments. Each physical segment is dedicated for a particular use. One is dedicated
to contain code, one for data, one for the hardware stack, and an extra segment that
is usually used for data.

A segment register contains a 16-bit value, used to point to the start or base of a
physical segment. The contents of a segment register determine the upper 16 bits of a
20-bit address. Thus, each physical segment must begin at an address whose low
four bits are zero. Such a location is called a 'paragraph boundary.' The value in a
segment register is called a 'paragraph number.' Thus the location 123401--1 is
indicated by paragraph number 12341--1. For a segment register to point to this loca
tion (denoting the start of a physical segment at that location) it would be loaded
with the value 12341--1 defining a 64K segment starting at absolute address 123401--1.

It requires 20 bits to address a megabyte of memory. The 20 bits are composed from
two portions by the CPU. The first portion is the 16-bit paragraph number discussed
above. It specifies where the physical segment begins in memory. Another quantity
is required to specify the location of a particular object within that physical segment.
This quantity is called the offset portion of the address. It defines a location at a
specific offset from the start of the physical segment. Each offset is a 16-bit
quantity, allowing you to address up to 64K bytes in a physical segment.

How then does the hardware generate a 20-bit address from these two values? First,
the paragraph number in the appropriate segment register is multiplied by 16
(shifted left 4 bits). The result is then added to the offset yielding the 20-bit address
(see figure 1-4). The hardware automatically performs this operation. You, however
must ensure: 1) that the correct paragraph number is loaded into the correct segment
register and 2) that the instruction uses the correct offset value. The first is usually
handled by some initialization code at the start of the program or by the loader. The
second is handled by the assem bier, as long as the instruction is correctly coded.

The assembler, while assembling the source file, is producing code/data for only one
segment at a time. Within a segment, the assembler needs only to keep track of the
offset of an object, whether it be code or data. The offset is referred to as the "loca
tion counter," which may be user programmable. This same situation is true during
the execution of a program; only one segment is active at a given time for either code
or data. Once a segment register is set with the base of a particular segment, objects
within that segment can be referred to using only their offsets within that segment.
Because of the segmentation model used, the programmer is usually only
manipUlating the offset part when coding an instruction.

SHIFT LEFT 4 BITS I ISEGMENT}
• • 1 2 3 4 • BASE ,... __ --t.......,....., 15 0 LOGICAL

11 2 3 4 :ol~1 ADDRESS
19 • 0 0 " 2 2 OFFSET

I 0 0 2 2 I 15 0

15 t 0

[2 2 3 6 2 I PHYSICAL ADDRESS

19 + 0

TO MEMORY

Figure 1-4. Generating a Physical Address 9800722-18

ASM86

ASM86 Overview of the ASM86 Assembly Language

An important concept to keep in mind while programming the 8086/8088 is
'addressability.' The object in memory which you are referencing must be address
able at run-time. This means that the appropriate segment register contains the base
of the segment in which the: object is located. You must insure that the proper value
is loaded into a segment register before the object is referenced by an. instruction.
This is accomplished by using the appropriate sequence of instructions to initialize
the segment register. There are assembler directives described in Chapter 2, which
help to insure that you are aware of the addressability of data and code while writing
a program. The following example shows the definitions of two segments, one for
data and one for code. In the code segment, there is an illustration of the type of
code that is used to initialize a segment register.

Example:

DATA SEGMENT

ABYTE DB o

DATA ENDS

ASSUME CS:CODE, DS:DATA

CODE SEGMENT

CODE ENDS

MOV
MOV

AX, DATA
D S, AX

;define a segment for data

;some data!

;end of segment definition

;defines the addressabi Lity
;of the contents of these
;segments

;define a segment for code

;AX = base address of DATA
; s e gme n t. i nit i aLi zeD S, d a t a
;now addressabLe through DS

;end of segment definition

A source module is a separately assembled or compiled source file. An executable
program can be made up of one or more modules. A single module can define

1. A part of a physical segment.

2. A complete physical segment.

3. Parts of several physical segments.

4. Several complete physical segments.

A physical segment is composed of one or more 'logical segments.' These are defini
tions of segments made in your program through the use of assembler directives
designed for this purpose. You can specify a set of logical segments and their con
tents (code, data, etc.) and control how they are combined into physical segments.
The mechanism for accomplishing this task is discussed in Chapter 2.

A Description of the Format Used for Directive
Specifications

The chapters that follow will discuss the form and use of the assembler directives.
The following describes the format used to specify how each directive is written and
the meaning and use of the different fields that can be part of a directive.

\-9

Overview of the ASM86 Assembly Language

1-10

A. Syntax

The following notation is used to show the syntax of the directives.

1. Lower case strings represent fields that can be replaced either by user-supplied
strings (such as names) or by assembler keywords. These items are referred to as
Field Values. The actual replacement values are specified for each directive in
the sections entitled Field Values.

2. Upper case strings represent assembler keywords (e.g., SEGMENT, DB, END,
or NAME).

3. Optional items are shown in brackets, i.e., [item]. These items are optional in
the syntax. Use of these fields is specified for each directive. In some cases the
absence of this item ("none specified") denotes a default case, which is noted
where appropriate.

4. The item [, ...] represents the optional repetition of a specific item. The syntax

thing [,

would expand to

thing, thing, thing, ...

The actual number of items that can appear in the list is typically limited by con
straints internal to the assem bIer.

B. Description

This section is a paragraph which describes the meaning and use of the directive.

c. Field Values

This section describes the values used in specific fields shown in the syntax of the
directive. Upper case strings denote assembler keywords.

D. Additional Notes

After the above sections, there may be sections dealing with important considera
tions, concepts, or applications of the particular directive. These sections should be
read carefully.

ASM86

r-- CHAPTER 2
~ _______________ S_E_G_M_E_N_T_A_T_IO_N_

Overview of Segmentation

The 8086/8088 directly addresses one megabyte of memory. This megabyte is viewed
by the CPU through four segments, each containing up to 64K bytes. These four
segments are called physical segments. The start of each segment is defined by the
value placed in a segment register. This value is called a paragraph number. It
defines a paragraph boundary in memory, an address divisible by 16 (least signifi
cant hexadecimal digit is equal to OH).

The four segments are classified as code, data~ stack, and extra. They are defined by
the four segment registers:

CS for code

DS for data

SS for stack

ES for extra

Executable instructions will be in a physical segment defined by the value in CS. Any
stack operations will occur within the segment defined by SS. Data is normally
found in the segment defined by DS, but it can also be placed in the segments
defined by the other segment registers. The contents of the physical segments in
memory during the execution of a program are defined through the assembly
language as logical segments. A physical segment can contain any number of logical
segments that were specified in the program source code (either one or more
modules). The SEGMENT directive is used to both define a logical segment and to
control how the segments will be combined to form a physical segment. The
GROUP directive is another way to combine logical segments with certain restric
tions. Because all code and data must lie within some physical segment during pro
gram execution, a way to specify this addressability is required during assembly time
to check for this condition. The ASSUME din:ctive serves this purpose.

The SEGMENT lENDS Directive

Syntax:

name SEGMENT [align-type] [combine-type] ['classname']

name ENDS

Description:

The SEGMENT lENDS directive is used to define a logical segment. This segment
may be combined with other segments in the same module andlor with segments
defined in other modules. These segments will form the physical segments, located
in memory, that are pointed to by the segment registers. The programmer will place
within the SEGMENT lENDS pair the code, data, or stack. Within a source module,
each occurrence of an equivalent SEGMENT lENDS pair (with the same name) is
viewed as being one part of a single program segment.

2-1

Segmentation

2-2

Field Values:
name

The name for the segment, a unique ASM86 identifier.

[align-type]

This field specifies on what type of boundary in memory the segment will be
located.

The values it may have are:

1. None specified-the default value of paragraph alignment. The segment
will begin on an address divisible by 16 (i.e., an address whose least signifi
cant hexadecimal digit is equal to OH).

2. PARA-paragraph alignment (same as default).

3. BYTE-byte alignment; segment may start at any address.

4. WORD-word alignment; segment will start at an even address (i.e., least
significant bit equal to OB). (See EVEN directive, page 3-19.)

5. PAGE-page alignment; segment will start at an address whose two least
significant hexadecimal digits are equal to OOH.

6. INP AGE-inpage alignment; the entire segment must fit within 256 bytes
and, when located, must not overlap a page boundary (i.e., OOH, 100H,
200H, ... ,OFFOOH).

[combine-type]

This field specifies how the segment will be combined with segments from other
modules to form a physical segment in memory. The actual combination will
occur during the LINK86 and LOC86 phase of development. The values for this
field are:

1. None specified-the default value of non-combinable. The segment will not
be combined with any other segment. (Note, however, that separate pieces
of this segment in the same module will be combined.)

2. PUBLIC-all segments of the same name that are defined to be public will
be combined (concatenated to form one physical segment). The order of
combination is controlled during the use of LINK86. The length of the
resulting physical segment will equal the sum of the lengths of the segments
combined.

3. COMMON-all segments of the same name that are defined to be common
will be overlapped to form one physical segment; all of the combined
segments begin at the same physical address. The length of the physical seg
ment will be equal to the length of the largest segment combined.

4. STACK-all segments of the same name that are defined to be stack will be
combined into a physical segment so that each combined segment will end
at the same address (overlaid against high memory) and will grow
"downward." The length of the stack segment after combination will equal
the sum of the lengths of the segments combined.

5. MEMORY -all segments of the same name that are defined to be memory
will be combined so that the first memory segment encountered by LINK86
will be treated as the physical "memory" segment. In the list of modules
linked together by LINK86, the first module that contains a "memory" seg
ment will be used to define the physical "memory" segment. It will be
located at an address above all other segments in the program. Any other
segments of the type memory that are encountered by LINK86 will be com
bined as common with the first segment. The length of the memory segment
will be equal to the length of the first memory segment encountered.

ASM86

ASM86

6. AT expression-this is an absolute physical segment to be located at the
memory address defined by the expression. This expression will represent a
paragraph number. For example, if the expression is 4444H, then the seg
ment will be located at paragraph number 4444H or absolute memory
address 44440H. The expression must evaluate to a constant (see Chap
ter 3). No forward references are allowed.

['classname']

The classname is used to indicate that segments are to be located (by LOC86)
near each other in memory. This is not a means of combining segmen~::; so that
they are addressable from the same segment register. The class name indicates
that certain uncombined segments are to be put in the same general area in
physical memory (for ~~xample, ROM).

Example:

The following two segments will be located adjacent to one another-

DATA1 SEGMENT BYTE 'ROM'

DATA1 ENDS

DATA2 SEGMENT BYTE 'ROM'

DATA2 ENDS

Multiple Definitions for a Segment

You may "open" and "close" a segment (with SEGMENT and ENDS directives)
within the module as many times as you wish. All "parts" of the segment which you
define are treated together by the assembler as parts of one segment.

The following two occurrences of the segment DATA-

DATA SEGMENT PUBLIC

ABYTE DB 0
AWORD OW 0

DATA ENDS

DATA SEGMENT PUBLIC

ANOTHERBYTE DB 0
ANOTHERWORD DW 0

DATA ENDS

Segmentation

2-3

Segmentation

2-4

are equivalent to-

DATA SEGMENT PUBLIC

ABYTE DB 0
AWORD OW 0
ANOTHERBYTE DB 0
ANOTHERWORD OW 0

DATA ENDS

Whel1 you re-open a segment, you do not need to re-specify its attributes. However,
you cannot change its attributes. The following is correct:

CODE SEGMENT BYTE PUBLIC

CODE ENDS

CODE SEGMENT

CODE ENDS

The following will be flagged as an error:

DATA SEGMENT WORD 'ROM'

DATA ENDS

DATA SEGMENT BYTE 'ROM'

DATA ENDS

"Nested" or "Embedded" Segments

Segments are never physically nested or embedded in memory. However, you may
nest segment definitions in your program. This is only a lexical nesting and does not
represent a physical nesting. For example, the following is a legal construct:

CODE SEGMENT ;begin CODE

DATA SEGMENT ;begin DATA, stop assembling CODE

ASM86

ASM86

DATA ENDS

CODE ENDS

iend DATA, begin assembLing CODE
iagain

iend CODE

The assembler will treat the CODE segment separate from the DATA segment. The
contents of the DATA segment are not contained within the CODE segment. The
following will be flagged as an error because SEGMENT lENDS pairs must be
matched as shown above:

CODE SEGMENT

DATA SEGMENT

CODE ENDS

DATA ENDS

ibegin CODE

ibegin DATA

ian error!!! Cannot cLose CODE before
icLosing DATA

The Default Segment-??SEG

All variables and instructions must lie within some segment at run-time. If you do
not specify a segment to contain your code or data, the assem bIer will create a seg
ment named ??SEG, in which this code or data will lie. This segment is non
combinable and paragraph aligned.

The ASSUME Directive

Syntax:

ASSUME segreg:segpart [, ...]

or

ASSUME NOTHING

Description:

At run-time, every memory reference (a variable or label) requires two parts in order
to be physically addressed: a paragraph number (segment part) and an offset (within
the segment). The paragraph number will be in one of the segment registers, defining
the physical segment in which the variable or label lies. (This value will have been
placed in the segment register by the appropriate initialization code.) The offset
value will be contained in the instruction which makes the reference. These two
values are used to compute the absolute address of the object referenced. You usc
the ASSUME directive to define what the contents of the segment registers will be at
run-time. This is done to help the assembler ensure that the code or data referenced
will be addressable. The assembler will check each memory reference for address
ability based on the contents of the ASSUME directive. The ASSUME directive does

Segmen ta tion

2-5

Segmentation

2-6

not initialize the segment registers; it is used by the assembler to help you to be aware
of the addressability of the code and data. Unless the code or data is addressable (as
defined either by an ASSUME or a segment override) the assembler will report an
error. The ASSUME directive also helps the assembler decide when to automatically
generate a segment override instruction prefix. (See Chapter 4 on the Segment Over
ride Prefix.) The following example illustrates the use of ASSUME-

ASSUME DS:DATA, CS:CODE

DATA SEGMENT

ABYTE DB 0
AWORD DB 0

DATA ENDS

DATA X

WHERE

DATAX

CODE

ALAB:

SEGMENT

DB 0

ENDS

SEGMENT

MOV
MOV

MOV

MOV
JMP

MOV

MOV
MOV

PUBLIC

PUBLIC

PUBLIC

AX, DATA
OS, AX

A L, ABYTE

AWORD,15
ALAB

AH, WHERE

AX, DATAX
E S I A X

ASSUME ES:DATAX

MOV AH, WHERE

CODE ENDS

;the DATA segment is
;addressabLe through OS and
;the CODE segment through CS

;AX = base address of DATA
;initiaLize OS

;DS points to base of DATA
;segment that contains ABYTE.
;Instruction wi LL use offset of
;ABYTE to address vaLue

;CS points to base of CODE
;CS initiaLized when program
;Loaded, instruction wiLL use
;offset of ALAB to caLcuLate
; jump

;AN ERROR!!! I! OS has not been
;initiaLized with the base
;address of the segment DATA X
;and no ASSUME has been made l

;The assembLer does not know
; where WHERE is.

;initiaLize ES

;DATAX now in ES

;assembLer wi II automaticalLy
;assemble an ES instruction
;prefix to address WHERE

ASM86

ASM86

Field Values:

segreg

One of the 8086/8088 segment register names: CS, OS, SS, or ES.

segpart

This field defines a paragraph number in one of the following ways:

1. A segment name, as in:

AS SUM E C S : COD E, D S : D A T A

2. A previously defined group name (see page 2-8), as in:

ASSUME CS:CODEGRP, DS:DATAGRP

3. An expression(see page 4-18) of the form:

SEG variable-name or SEG label-name or SEG external-name,

asin:

ASSUME CS:SEG START, DS:SEG COUNT

4. The keyword NOTHING, which states that nothing is defined to be in that
segment register at that time. If a segment register is assumed to contain
NOTHING, the assembler will not generate instructions that use this seg
ment register for memory addressing.

Example:

ASSUME ES:NOTHING

The form ASSUME NOTHING is equivalent to:

ASSUME CS:NOTHING, DS:NOTHING, SS:NOTHING, ES:NOTHING

This is the default, which remains in effect until the first ASSUME directive
is seen.

Forward Referenced Names in an ASSUME Directive

You may forward reference a name (i.e., refer to name not yet defined) in an
ASSUME directive only if that name is the name of a segment. This is in the form:

ASSUME CS:CODE

CODE SEGMENT

CODE ENDS

;The name CODE is a forward reference

;CODE defined here

If the name is not the name of a segment, an error will be reported.

Segmentation

2-7

Segmentation

2-8

Multiple ASSUME Directives

An ASSUME directive will stay in effect until it is changed by another ASSUME.
That is, if you assume some contents in CS, that assumption will hold until you
assume some new contents or NOTHING in CS.

The GROUP Directive

Syntax:

name GROUP segpart [, ...]

Description:

The GROUP directive is used to combine several logical segments together, so that
they will form one physical segment (i.e., they will all be addressable from the same
base) after the program has been located. The size of the group is equal to the sum of
the sizes of all the segments specified in the GROUP directive. The total size must be
less than or equal to 64K bytes. The assembler will make no checks to see if the size
of the group will be correct. This check is made by LOC86. The group name can be
used as if it were a segment name (except in another GROUP directive). The order of
the segments in the group directive will not necessarily be the order of the segments
in memory after the program is located.

The GROUP directive serves as a "shorthand" way of referring to a combination of
segments. Its utility is in specifying a collection of segments that are to be grouped at
link-time to form one physical segment. However, the assembler views the program
content in terms of segments. When you define a variable or label (see Chapter 3),
the assembler assigns that variable or label to the segment in which it was defined.
The offset associated with the variable or label is from the base of its segment and
not from the base of the group.

One use of the group name is in the ASSUME directive. If, for example, you have
defined many different data segments that you intend to form into one physical seg
ment when the program is located in memory, you could combine these segments
with the GROUP direqive. Since the contents of all these data segments will be
addressable through DS during the execution of the program, you may use the group
name in the ASSUME and to initialize DS. For example,

DATAGRP GROUP DATA1, DATA2

DATA1 SEGMENT

ABYTE DB 0

o AT A 1 ENDS

DATA2 SEGMENT

AWORD OW 0

DATA2 ENDS

ASSUME DS:DATAGRP, DS:CODE ;use group name i n ASSUME

CODE SEGMENT

ASM86

ASM86

MOV
MOV

MOV

CODE ENDS

Field Values:

name

AX, OATAGRP
D S, AX

AX, AWORD

;AX = base address of group
;initiaLize DS

;addressabLe through DS

A unique ASM86 identifier that is used as the name for the group.

segpart

The field defines a paragraph number in one of the following ways:

1. A segment name, as in:

CODEGRP GROUP CODE1, CODE2

2. An expression (see page 4-18) of the form:
SEG variable-name or SEG label-name or SEG external-name,

asin:

DATAGRP GROUP SEG START, SEG COUNT

Use of the OFFSET Operator With Groups

When using the OFFSET operator (see page 4-18) with a variable or label whose seg
ment is in a group, you must use the group name as a segment override (see page
4-14) in the expression, as in:

MOV BX, OFFSET DATAGRP:COUNT

Also, if you wish to store the paragraph number of a variable or label, you must use
this construct:

DW DATAGRP:CQUNT
DD DATAGRP:CQUNT

Segmentation

2-9

CHAPTER 3
DEF'INING AND INITIALIZING DATA

Overview of Variables and Labels

The two most referenced objects (other than registers) in a program are variables
and labels. You define these objects in your program. Variables refer to data items,
areas of memory where values are stored. Labels refer to sections of code that may
be jumped to or CALLed. Each variable and label has a unique name in your
program.

A variable is defined through a data definition statement or the LABEL directive.
Each variable has three attributes:

1. Segment-The segment in which the variable was defined. It is a value that
represents the paragraph number of the segment.

2. Offset-The offset (current location counter) of the variable defined. It is a
16-bit value which represents the distance in bytes from the base (or start) of the
segment to the start of the variable in memory.

3. Type-The size of the data item in bytes. In most cases this type is specified
through a keyword in the definition. The type of a variable determines how it
may be used in an instruction and also, in some cases, how data will be stored
within that variable. The possible types are:

1. BYTE-one byte--SOS6/S0SS data types.

2. WORD-one word (two bytes)-SOS6/S0SS data types.

3. DWORD--one double-word (four bytes)-SOS6/S0SS or SOS7 data types.

4. QWORD--one quad-word (eight bytes)-80S7 data types.

5. TBYTE-·one ten-byte (ten bytes)-8087 data types.

6. A structure-a multi-byte, "structured" S086/S088 data type.

7. A record--an 8 or 16 bit, "bit-encoded" 8086/80S8 data type.

When you define a variable, the assembler will store its definition, which includes
the above attributes. In Chapter 4, there is a discussion of expression operators that
allow you to obtain or to override these attributes.

Labels define addresses for executable instructions. They represent a "name" for a
location in the code. This "name" or label is a location that can be jumped to or
CALLed. The label is an operand of the CALL, JMP, and conditional jump instruc
tions. A label can be defined three ways: 1) a name followed by a ":" associated
with an instruction statement, 2) a PROC directive, or 3) with a LABEL directive.
Like a variable, a label has three attributes, two of which are the same as those for a
variable:

1. Segment-same as variable.

2. Offset-same as variable.

3. Type-for a label, the type specifies the type of jump or CALL that must be
made to that location. There are two types:

1. NEAR-this type represents a label that will be accessed by a jump or
CALL that lies within the same physical segment. This type of access is
referred to as an intra-segment jump or CALL. In this case, only the offset
part of the label is used in the jump or CALL instruction.

3-1

Defining and Initializing Data

3-2

2. FAR-this type represents a label that will be accessed from another
segment. In this case, because control is transferred from one physical seg
ment to another, the contents of the CS register must be changed by the
jump or CALL. A far label will be represented in the jump or CALL
instruction by its offset and its segment part (to be loaded into CS).

A special form for defining a label is the PROC directive. This form specifies a
sequence of code that will be CALLed just as a subroutine in a high-level language.
The PROC directive defines a label with a type, either NEAR or FAR. It also defines
a context for the RET instruction so that the assembler can determine the type of
RET to code (either a near RET or a far RET). This construct can help to structure
your programs into clearly defined subroutines. But, unlike high-level language pro
cedures, there is no scoping of names and you can "fall into" an imbedded
"proced ure." (See page 3 -15.)

Constants
A constant is a pure number without any attributes. In general, a constant can be
binary, octal, decimal, hexadecimal, ASCII, decimal real, or hexadecimal real. A
constant can evaluate to one of three types: 8-bit, 16-bit, or real. These types cannot
necessarily be used in the same context. You should verify the correct use of con
stants. The assembler will report an error if a constant is used incorrectly. The pro
per contexts for a particular type are noted throughout this manual. Table 3-1 gives
the rules for forming each type of constant. A constant that can be represented in 8
or 16 bits has a special internal representation in the assembler. These constants are
referred to as '17-bit numbers.' The maximum range of values for these numbers is
-OFFFFH to OFFFFH. All assembly time expressions use two's complement
arithmetic on 17-bit numbers. Real constants (or floating point numbers) are
restricted to DD, DQ, DT, and EQU directives. (For further information on the use
of reals and the 8087 see The 8086 Family User's Manual Numeric Supplement,
121586-001.)

There is a special set of constants that are used in programming for the 8087. In
general, these constants are referred to as "reals." The actual types are:

1. Short integer-four bytes.

2. Short real-four bytes.

3. Long integer-eight 9ytes.

4. Long real-eight bytes.

5. Packed decimal number-ten bytes.

6. Temp-real-ten bytes.

A short, long, or temp-real can be expressed in three ways:

1. Decimal real-without exponent.

1.234
3.14159
98.6
1234.4321
1.

2. Decimal real-with exponent.

6.8E27
1.23E-3
lE6

3. Hexadecimal real.

40490FDBR
OCOOOOOOOR

ASM86

ASM86 Defining and Initializing Data

Integers (includes packed decimal) can be expressed in either binary, octal, decimal,
or hexadecimal notation. The type of data allocation (the directive) you choose will
affect the range of values that can be used in the initialization. These ranges are
noted below under the appropriate directive.

Constant Type

Binary
(Base 2)

Octal
(Base 8)

Decimal
(Base 10)

Hexadecimal
(Base 16)

ASCII

Decimal Real
(Base 10)

Hexadecimal
Real (Base 16)

Table 3-1. Constants

Rules for Formation

A sequence of O's and 1 's followed by the
letter'B'

A sequence of digits 0 through 7 followed
by either the letter '0' or the letter '0'

A sequence of digits 0 though 9, option
ally followed by the letter '0'

A sequence of digits 0 through 9 and/or
letters A through F followed by the letter
'H'. (Sequence must begin with 0-9)

Any ASCII string enclosed in quotes
(More than 2 chars. valid for DB only.)

A clecimal fraction, optionally followed by
an exponent. The fraction is a sequence
of digits 0 through 9. A decimal pOint is

Examples

11 B
10001111 B

77770
45670
777770

3309
33090

55H
2EH
OBEACH
OFEH

'A', 'BC'
'UPDATE.EXT'

3.1415927
.002E7
1 E-32

required if no exponent is present and is 1.
optional otherwise. The exponent starts
with an E, followed by an optional sign
and digits from 0-9.

A sequence of digits 0-9 and / or letters A
through F followed by the letter R. The
sequence must begin with 0-9. Total
number of digits must be (8, 16, 20) or (9,
17, 21). If odd numbered, the first digit
must be O.

40490FDBR
OCOOOOOOOR

~------------~-------------------,---------------~------------~

Defining and Initializing Variables
(DB, DW, DD, DO, DT Directi"es)

Syntax:

1 byte initialization:

[name] DB init [, ...]

2 byte initialization:

[name] DW init [, ...]

4 byte initialization:

[name] DD init [, ...]

3-3

Defining and Initializing Data ASM86

3-4

8 byte initialization:

[name] DQ init [, ...]

10 byte initialization:

[name] DT init [, ...]

Description:

The DB, OW, DO, DQ, and DT directives are used to define variables and/or
initialize memory. When the directive is used with a name, it specifies a named
variable whose segment part is the current segment and whose offset is the current
location counter. Its type depends on the type of data initialization statement used.
The variable can be initialized to a value, as in:

COUNT DB 10 ;a variable initialized to 10

or it can simply reserve space with no specific initial value:

FLAGS OW ? ;reserve a word

You may also use these directives to define the contents of memory when the pro
gram is loaded. To specify 10 bytes of 0, you might code

DB 0,0,0,0,0,0,0,0,0,0

or

DB 10 DUP (0) ;a DUP is a repeated initialization

There are many types of values that can be used to initialize data. The following is a
list of the possible types of initialization:

1. Constant expressions-a numeric value.

TEN DB 10

2. Indeterminate initialization.

RESERVE OW ?

3. An address expression-the offset or base part of a variable or label.

POINTER OW COUNT ;store offset of COUNT

SEGBASE OW DATA ;store base address of DATA
;segment

APTR DO COUNT ;store offset and segment part
; 0 f COUNT

4. An ASCII string of more than two characters-DB only.

MESSAGE DB 'HELLO THERE'

MYHERO DB 'ALEISTER CROWLEY'

5. A list of initializations.

STUFF DB 10, 'A STRING', 0, 'Q'

NUMBS OW 1, 2, 3, 4, OFFFFH

ASM86 Defining and Initializing Data

6. A repeated initialization, where the quantity in the '()' is repeated 'number
OUP'times.

TENS DB 10 DUP (10)

PATTERN OW 100 DUP (0,1,65535)

When a number is stored in 16 bits, it is stored with its low-order byte preceding the
high-order byte in memory. For example, if you were to code

OW 1234H

it would be stored as

34 12
low high

-------3» increasing memory addresses

in memory. If you specify a string in a DB directive it will be stored with one ASCII
character per byte in the same order as the characters appear in the string.

DB 'ABC'

is stored as

41 42 43

in memory.

Field Values:

[name]

init

A unique ASM86 identifier. It defines a variable whose offset will be the current
location counter. Its type will be the type of the data initialization unit. Its
length will be equal to the number of bytes initialized.

There are many possible values for init depending on the usage and context. Init
has five possible types, listed below. The form used will depend on what type of
initialization you wish to perform. The different forms and contexts are noted
below.

1. A constant expression.

a. 1 byte initialization-a constant or expression that evaluates to 8-bits
(i.e., -255 to +255 decimal).

b. 2 byte initialization-a constant or expression that evaluates to 16-bits
(i.e., -65535 to +65535 decimal).

c. 4 byte initialization-

1. A constant or expression that evaluates to 16-bits (a 17 -bit
number). The upper 16 bits are sign-extended in assemblers that
support the 8087, else they are initialized to OH.

2. Short integer in the range -232 + 1 to +232 -1, which is -4 294 967
295 to +4 294 967 295

3. Real in the range -2128 to -2126 , 0, +2- 126to +2128 , or approximately
--3.4E38 to -1.2E -38, 0, 1.2E -38 to 3.4E38.

3-5

Defining and Initializing Data

3-6

d. 8-byte initialization-

1. Long integer in the range -264 +1 to +264 -1, which is -18446744
073709551 615 to +18 446 744 073709551 615.

2. Real in the range -2 1024 to -2- 1022, 0, +2- 1022 to +2 1024, or
approximately -1.7E308 to -2.3E -308, 0, 2.3E -308 to 1.7E308.

3. A constant (17 -bit number), which will be sign-extended to fit in a
DQ field.

e. 10-byte initialization-

1. Long integer in the range -10 18 + 1 to + 10 18 -1, which is
-999999999999999999 to +999999999999999999. The number will
be stored as packed decimal (BCD) format.

2. Real in the range _216384 to _2-16382, 0, +2-16382 to +216384, or
approximately -1.1E4932 to -3.4E-4932, 0, 3.4E-4932 to
+1.1E4932.

2. The character "?' for indeterminate initialization.

In situations where you wish to reserve storage but do not need to initialize
that area to any particular value, you can use the special character "?".
This character specifies that the area will be reserved. The reserved area will
be initialized with an indeterminate value. It can be used with any of the
data initialization directives.

ABYTE DB ? ;reserve a byte
AWaRD OW ? ;reserve a word (2 bytes)
ADWORD DO ? ;reserve a dword (4 bytes)
AQWORD DQ ? ;reserve a qword (8 bytes)
ATBYTE DT ? ;reserve a tbyte (1 0 bytes)

When used in a special DUP construct, "?" can be used to specify no
initialization (see below).

3. Initializing with an address-expression- DW and DO only.

You can initialize a OW or DO with a variable name, label name, segment
name, or group name. When you use a variable or label name in a OW, you
are initializing with the offset of that variable or label.

OW COUNT ;store the offset of COUNT
;from its segment

OW DATAGRP:COLJNT ;store the offset of COUNT
;from its group (DATAGRP)

U sing a segment name or group name in a OW will store the paragraph
number of that item.

OW CODE ;store the paragraph number of CODE
;segment

In a DO, the use of a variable or label name will store the offset of the
variable or label in the lower order word and the segment part (paragraph
number) in the higher order word. This forms a pointer to that item.

DO COUNT ;store a pointer to COUNT

which is equivalent to:

OW COUNT
OW SEG COUNT

;store the offset of COUNT
;store the paragraph number of
;COUNT's segment

ASM86

ASM86 Defining and Initializing Data

Use of segment or group name in a DD will store the paragraph number in
the low order word and initialize the higher order word with OOH.

4. Initializing with a string-DB only.

In a DB you can define a string up to 255 characters long. Each character is
stored in a byte, where successive characters occupy successive bytes. The
string must be enclosed with single quotes. If you wish to include a single
quote in a string, code it as two consecutive quotes. Examples are given
below.

ALPHABET DB 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

DIGITS DB '0123456789'

WITHQUOTE DB 'THIS AIN"T HARD!!' ;inserting quote
;in string

In a DW and DD you may code a string of either one or two characters. In
this case, the string is interpreted to be a number and it will be stored as a
number. For example,

NUMB OW 'AB'

is equivalent to

NUMB OW 4142H

where the low byte is stored first followed by the high byte. The same con
vention is true for a DD. In that case, the upper 16 bits will be initialized to
OOH.

5. Initializing with a repeated value.

There is a special construct that can initialize an area of memory with a
repeated value or list of values. The form for this construct is given below.

repeatval DUP (val [, ...]

"Repeatval" is a positive number from 1 to 65535. It specifies the number
of data initialization units to be initialized (bytes, words, dwords, qwords,
or tbytes). "Val" may be any of the following:

1. An expression-either numeric (appropriate to the data initialization
unit) or an address·-expression for a DW or DD.

2. A "?" for indeterminate initialization. If the special form

DB repeatval DUP (?) or

DW repl;!atval DUP (?) or

DD repeatval DUP (?) or

DQ repl;!atval DUP (?) or

DT repeatval DUP (?)

is used, then no data initialization record will be produced in the object
module, but the area will be reserved. Any other use of the "?" will
cause a data initialization record to be produced, but the value used for
initialization will be indeterminate.

As an example:

WO R 01
WORD2

DB 2 DUP (?)
OW 1 DUP (?)

will both referenc(;~ word variables without initializing data, whereas

3-7

Defining and Initializing Data

3-8

WORD3
WORD4
WORD5
WORD6

DW ?
DB 1 DUP (?,?)
DB 1 DUP (?), 1 DUP (?)
DB 2 DUP (1 DUP (?»

will all initialize words to an indeterminate value.

3. A string where the data initialization unit is a DB.

STRING DB 10 DUP ('HELLO')

4. A list of the above items following the rules given above for each item.

STRINGS DB 1 0 DUP ('HELLO', 'GOODBYE')
ADDEXPS DW 3 DUP (COUNT, START, NEXT)
NUMBS DD 100 DUP (1 , OFFFFH, 15 10101010B)
DIFFERENT DB 25 DUP (2 , 'NSJRAJ' , 3)

5. "Val" may also be another DUP statement, following again all the
above rules. DUP's may be nested up to eight levels deep.

MORESTRINGS DB 15
MORENUMBS DW 27
NESTEDDUP DB 3

DUP ('HELLO', 3 DUP ('GOODBYE'»
DUP (1, 3,5, DUP (2, 5, 7»
DUP (4 DUP (5 DUP (1, 6 DUp· (0»»

Introduction to Records

ASM86 has a special data initialization statement that allows you to construct bit
encoded data structures called records. A record may be either 8 or 16 bits in size.
Each record is defined to have a number of fields containing a certain number of bits
per field. You can store information in these fields and also access that information.
Records are useful where you wish to access specific bits in a data structure. These
could be flag bits, fields in a data structure used to store a real number, etc. There
are special operators used to access the fields in a record. These are discussed in
Chapter 4. There are two steps in using a record. The first defines a "template" for
the record. This specifies the size of the record and its fields. The second step uses
the record name in a data initialization statement to actually allocate the storage.
These steps are described below.

The RECORD Directive

Record Template Definition

Syntax:

name RECORD field-name:exp [= initval] [, ...]

Description:

A record is a bit pattern you define in order to format bytes or words for bit
packing. A record can be from 1 to 16 bits in size. Records are first defined through
the Record Template Definition. Data can then be allocated and initialized through
the use of the record name in a data initialization statement (given below). Some
examples:

ERRORFLAGS

SIGNEDNUMB

RECORD IOERR:3=0, SYSTEMERR:3=0, MEMERR:3=0

RECORD SIGN:1, NUMBER:15

ASM86

ASM86 Defining and Initializing Data

Field Values:
name

This is a unique ASM86 identifier, which is the name for the record template
defined.

field-name

exp

This is a unique ASM86 identifier, which defines a bit field within the record.

This is a constant or expression that evaluates to be a number in the range 1 to
16. This value specifies the number of bits in the field. (If a symbol is used in an
expression, it must not be a forward reference.) The sum of the "exp's" in a
record definition must not exceed 16; if they do, an error will be reported.

[= initval]

This is a constant or expression that evaluates to a number that can be
represented by the number of bits defined for that field. This optional clause
defines a default value for the field. If no initval is specified, the default value is
zero. This default value can be overriden during allocation and initialization.

"Partial" Records

A "partial" record is a record that does not fully occupy a byte or word. The
assembler will right-justify the fields within the record in the least significant bit
positions of the byte or word defined by the record. The undefined (unallocated) bits
have a value of zero when the record is used to allocate storage. If you defined a
record as below

QUASI RECORD A:6, 8:6

it will be formatted as follows:

15 12 11 6 5 o

(undefined) (A) ~
QUASI (definition, not storage)

(8)

~----------~----------~------
4 bits 6 bits 6 bits

Figure 3-1. "Partial" Record Definition

Record Allocation and Initialization!

Syntax:
[name] record-name < [exp] [, ...] >

or

[name] record-name repeat-val DUP « [exp] [, ...] »

3-9

Defining and Initializing Data

3-10

Description:
Use of this form will allocate data in the form specified by the record template used.
You may override any default values given in the record definition. For example,

FLAGS

FLAGS1

ERRORFLAGS <0,3,0>

ERRORFLAGS <>

PLUSONE SIGNEDNUMB <0,1>

MINUS15 SIGNEDNUMB <1, 15>

Field Values:
[name]

;no initiaLization overrides

A unique ASM86 identifier that is a name for the byte or word allocated.

record-name

This is the name of the previously defined record template that defines how the
bits within the byte or word are to be allocated.

[exp]

You may optionally override default values of record fields when you allocate
the storage. The "exp" must evaluate to a number that will fit in the number of
bits in the field you wish to override. You may override all, some, or none of the
fields in the record template. The following rules apply:

For a record with N fields, each field is represented in the allocation statement,
as shown below-

<fl ,f2,0, ... ,fn>

To override a particular field, place the value in the position of that field in the
allocation statement. To override "0" you would code

<,,2>

To override "fn" you would code

<", ... ,2>
Each "empty" override (the",") specifies one field; you can skip fields up to
the field you wish to override just by typing a "," for that field. You do not
need to type anything for fields after the one you wish to override if you are not
specifying any values for them. To allocate a record with no overrides you
simply code:

<>
repeatval

A positive integer that indicates the number of records to be allocated.

Introduction to Structures
You can define "structured" data blocks built from the basic types of data
initialization statements. These data blocks are called "structures." A structure is
composed of data initialization statements that define the fields within a block of

ASM86

ASM86 Defining and Initializing Data

data. Each of the fields can be separately accessed. For example, if you wish to
define a data structure that contains a complex number that has two fields, you
could code the following:

COMPLEX STRUC

REALPART OQ 0
COMPLEX PART OQ 0

COMPLEX ENDS

This code defines a template that can then be used to allocate storage. To store the
complex number 1.2 * 3.5i, you would code the following:

VALUE COMPLEX <1.2, 3.5>

To perform any calculations based on this value, you would refer to the fields of the
structure as

VALUE.REALPART

and

VALUE.COMPLEXPART

in the instruction (see Chapter 4).

The STRU(~ Directive

Structure Template Definition

Syntax:

name STRUC

[fieldname] data-inilt

name ENDS

Description:

A structure is a "structured" data type. This is similar to a "record" data type in
Pascal, except that the type of elements you may define for a structure are restricted
to the data types allowed in ASM86, (i.e., byte, word, dword, qword, and tbyte). A
STRUC/ENDS pair defines a storage template with various subfields of possibly
different types. This template can then be used to allocate data based on the "struc
ture" of the template. You may define values for the fields that can then be over
riden (with some exceptions) when the structure is used to initialize storage. An
example of a structure is shown below.

EMPLOYEE

EMPNAME
HOURRATE
NUMBHOURS

STRUC

DB I

DO 5.60
DB ?

EMPLOYEE ENDS

I ;20 chars allowed
;dollars per hour
;hours per week to be used

3-11

Defining and Initializing Data

3-12

This structure template could then be used to create data structures for different
employees. You can override the initial values when the data is allocated and you
may programmatically change the values in allocated structures (see Chapter 4).

Field Values:

name

A unique ASM86 identifier that is the name for the structure template defined.

fieldname

A unique ASM86 identifier. This name will be used to access the fields within an
allocated structure. [t represents an offset from the base of the allocated struc
ture. In the example above, the field HOURRATE would have an offset of 20
from the beginning of the structure. This value (expressed by the field name) is
used in instructions to access the field. (See Chapter 4.) A fieldname has the
following attributes:

data-init

segment-none
offset-number of bytes from start of structure
type-type of init

This may be any allowed data initialization statement (DB, OW, DO, DQ, or
DT). Refer to the section "Defining Variables" for the details on all the allowed
forms.

Structure Allocation and Initialization

Syntax:

[name] structure-name < [exp] [, ...] >

or

[name] structure-name repeatval DUP « [exp] [, ...] »

Description:

Use of this statement will allocate storage based on the structure template used. The
amount of storage allocated will be a function of the number of bytes defined in the
template. Initial values in the fields may be overriden with certain restrictions (see
below). An array of structures can be allocated by using the form with a "DUP".
For example,

ACOMPLEXNUMB COMPLEX <1.6, 7.8>

JONES EMPLOYEE <'JONES, SAM', 2.00, 60>

PEOPLE EMPLOYEE 20 DUP «»

Field Values:

[name]

A unique ASM86 identifier. This name will define a variable whose segment
part will be the current segment and whose offset will be the current location
counter. Its type will be an integer equal to the number of bytes allocated by the
template.

ASM86

ASM86 Defining and Initializing Data

structure-name

A name of a previously defined structure template.

repeatval

exp

A positive integer that indicates the number of structures to be allocated.

This field is a value that will override the default value given in the template
definition. Its type must match the type of the field. It may be either a constant,
an expression, a string, or the indeterminate initialization character, "?". The
value can only be used to override fields that meet the following restrictions:

1. The field specified in the structure template definition cannot be a list of
values or a DUP clause.

2. A DB that is initialized with a single string of two or more characters can be
overriden only with another string. If the overriding string is shorter than
the original string, the remaining characters of the default string are used. If
the overriding string is longer, it is truncated.

3. The value must fit within the field you wish to override.

Example of overridable fields-

OVERRIDABLE STRUC

ASTRING DB 'ABCDEFG'
DONTCAf~E OW ?
AREAL DO 3.14·159

OVERRIDABLE ENDS

Example of non-overridable fields-

NONOVERRIDE STRUC

ALIST DB 1 , 2, 3
ADUP DW 1 0 DUP (?)

NONOVERIDE ENDS

For a structure with N fields, each field is represented in the allocation state
ment as shown below--

<f1 ,f2,f3, ... ,fn>

To override a particular field, place the value in the position of that field in the
allocation statement. To override "f3" you would code

<,,2>

To override "fn" you would code

<", ... ,2>

Each "empty" override (",") specifies one field. You can skip fields up to the
field you wish to override just by typing a "," for that field. You do not need to
type anything for any fields after the one you wish to override if you are not
specifying any values for them. To allocate a structure with no overrides you
simply code:

<>

3-13

Defining and Initializing Data

Q) DEFINE a STRUCTURE template by enclosing a
list of data-definition directives between
STRUC/ENDS. Initial default values will be
assigned to structure fields unless overridden dur
ingallocation. (Multiple fields, e.g., THIRD, can
not be overridden.)

BLUEPRINT STRUC
FIRST DW OFFFEH
SECOND DW BUFFER
THIRD DB 7,5
FOURTH DB 'A'
FIFTH DB?
SIXTH DW 257

BLUEPRINT ENDS

15 a

-O-F F E~
OFFSET (BUFFER)

a 5: a 7 -- --
*INDET 4 1

a a 1

.FIRST

.SECOND

.THIRD

.FOURTH

.SIXTH

CD REFERENCE structure fields as shown. Effective
address of structure field is offset of structure
copy plus relative displacement of field:

MOV AL,B1.THIRD
ADD AL, B2.THIRD + 1 ;for multiple field item
ADD AL,B3.FIFTH[20] ;3rd copy in array,

or [(N-1)*TYPE 83]

"INDETERMINATE

ASM86

Q) ALLOCATE storage for single or multiple copies
using the structure-name from CD as an
assembly-time operator. The list in angle-brackets
tells the assembler which default values to over
ride. Trailing fields default to values in Q).

(B1 BLUEPRINT < »

OFF E

OFFSET (BUFFER)

a 5 a 7
*INDET 4

a a

(B2 BLUEPRINT <,0",25B

o
a F F E

a a a a
a 5 I a 7

F F I 4 1

a 1 a 1

B1.FIRST

B1.SECOND

B1.THIRD

B1.FOURTH

B1.SIXTH

B2.FIRST

B2.SECOND

B2.THIRD

B2.FOURTH

B2.SIXTH

(B3 BLUEPRINT 5 DUP «",,50»)

o
a F F E B3. FIRST[O]

OFFSET (BUFFER) B3.SECOND[0]

a 5 a 7 B3.THIRD[O]

3 2 4 83.FOURTH:O]

0 1 0 1 83.SIXTH ~O]

0 F E 83. FIRST[1 0]

83.SECOND[10]

3 1

0 0 1 83.SIXTH[30]

0 F F E B3.FIRSTI40]

OFFSET (BUFFER) 83.SECONDI40]

0 5 0 7 83.THIRDI40]

3 2 4 83.FOURTHI40]

0 0 83.SIXTHI40]

Or, load 8X with offset 83, Sl with multiple of 10 (since
10 byte~ in structure), and ripple through:

MOV BX, OFFSET B3
MOV SI,30 ;in general, use (N-1)*TYPE B3
ADD AL,[BX][SI].FIFTH ;4th copy, 5th field

Assuming 83 is addressed through OS. Otherwise, use
segment override.

Figure 3-2. Structure Definition and Allocation 121623-7

3-14

ASM86 Defining and Initializing Data

Defining Labels

A label, a symbolic name for a particular location in an instruction sequence, may
be defined in one of three ways. The first way is the most common. The format is
shown below:

label: [instruction]

where "label" is a unique ASM86 identifier and "instruction" is an
8086/8087/8088 instruction. This label will have the following attributes:

1. Segment-the current segment being assembled.

2. Offset-the current value of the location counter.

3. Type-will be NEAR.

An example of this form of label definition is:

ALAB: MOV AX, COUNT

The second means of defining a label is the PROC directive. This can be used to
define either a near or far label. The third means is the LABEL directive. (Do not
confuse the use of the term "label" with the name of this directive.) Either a near or
far label can be defined. See below for a discussion of the PROC and LABEL
directives.

The PROC Directive

Syntax:

name PROC [type]

name ENDP

Description:

A PROC directive is used to define a label and to delineate a sequence of instruc
tions that are usually interpreted to be a subroutine, that is, CALLed either from
within the same physical segment (near) or from another physical segment (far). The
primary use of the PROC directive is to give a type to the RET instruction enclosed
by the PROC/ENDP pair. A PROC is different from a high-level language
subroutine or procedure. There is no scoping of names in a PROC. All user-defined
variables and labels in a program must be unique. Also, there is no "block
structuring" of PROC's. If a PROC is defined within a PROC, execution can "fall
into" the PROC. For example

P1 PROC NEAR

MOV AX, 1 5 ;execution begun here wi II
ADD OX, AX ;continue through to the MOV AX, 0

P2 PROC NEAR

MOV AX, 0
CMP AX, COUNT
J E LAB

3-15

Defining and Initializing Data

3-16

SUB COUNT,
LAB: MOV AX, 0

RET ;exit P1 and P2 here!

P2 ENDP

CMP OX, 1 0 ;never wi II be executed!!!
J E LAB
RET

P1 ENDP

The 8086/8088 has two types of RET instructions, either near or far, that must cor
respond to the type of CALL made. Given below is an example of both a near and a
far PROC, each with their appropriate CALL.

Example I-A NEAR PROC.

LOCALCODE SEGMENT PUBLIC

ANEARPROC PROC NEAR

;some code

RET ; w ill be near RET
ANEARPROC ENDP

CALL ANEARPROC ia near CALL

LOCALCODE ENDS

Example 2-A FAR PROC.

GLOBALCODE SEGMENT WORD

AFARPROC PROC FAR

;some code

RET ; w ill be a far RET
AFARPROC ENDP

GLOBALCODE ENDS

SPECSEG SEGMENT BYTE

CALL AFARPROC ;will be a far call
iintersegment

SPECSEG ENDS

ASM86

ASM86 Defining and Initializing Data

Field Values:

name

This is a unique ASM86 identifier that defines a label whose segment attribute is
the current segment, and whose offset is the current location counter. Its type is
defined in the PROC directive.

type

This field specifies the type for the label defined. The possible values are:

1. None specified-defaults to NEAR.

2. NEAR-to define a near label.

3. FAR-to define a far label.

This field will specify to the assembler what type of CALL instruction to generate
for the procedure and what type of RET instruction to code for any RET instruction
found between the PROC/ENDP pair.

The LABEL Directive

Syntax:

name LABEL type

Description:

The LABEL directive creates a name for the current location of assembly, whether
data or code. You use the LABEL directive to define a variable or a label that will
have the following attributes:

1. Segment-the current segment being assembled.

2. Offset-the current offset within that segment.

3. Type-the operand to the LABEL directive.

The LABEL directive is useful for defining a different name with possibly a dif
ferent type for a location that is named through the usual means. For example, if
you desire to access two consecutive bytes as both a word and as two different bytes,
the following usage of the LABEL directive will allow both forms of access.

AWORD LABEL WORD
LOWBYTE DB 0
HIGHBYTE DB 0

It can also be used to define two labels of different types for the same location of
code. This is useful if a section of code is to be called both near and far. (The pro
grammer must be careful in this case to insure that the right RET is executed for the
type of CALL made.) The following (potentially deadly) example illustrates this use.

AFARLABEL
NEARLAB:

Field Values:

name

LABEL
MOV

FAR
AX, B X

A unique ASM86 identifier.

3-17

Defining and Initializing Data

3-18

type

This field identifies the type that is to be assigned to this name and location. It
can specify a variable or a label depending on the type. This field can have the
following values:

1. BYTE-defines a variable of type byte.

2. WORD-defines a variable of type word.

3. DWORD-defines a variable of type dword.

4. QWORD-defines a variable of type qword.

5. TBYTE-defines a variable of type tbyte.

6. A structure name-the type will be equal to the number of bytes allocated
by the structure.

7. A record name--the type will either be a byte or word depending on the size
of the record.

8. NEAR-defines a label of type near.

9. FAR-defines a label of type far.

The Location Counter ($)

The location counter keeps track of the current offset within the current segment
that is being assembled. This value is symbolized by the character "$", which may
be used in certain contexts, (i.e., expressions or instructions) (see Chapter 4). This
symbol represents a near label, whose attributes are:

segment-current segment
offset-current offset
type-near

The assembler will maintain the correct offset within a segment even if the segment
is repeatedly "opened" and "closed" in the module with the appropriate
SEGMENT lENDS pairs.

The ORG Directive

Syntax:

ORG exp

Description:

The ORG directive allows you to control the location counter within the current seg-'
ment. You use the ORG directive to set the location counter to the desired value. Be
careful in the use of this directive not to overwrite any previously allocated data or
code by ORGing to a location previously allocated. The ORG directive is used to
locate code or data at a particular location (offset) within a segment. Used with an
absolute segment, you can specify the actual location in memory in which the code
or data will be located.

Field Values:

exp

This is an expression that is evaluated modulo 65536. The expression must not
include any forward references. You may use the value of the current location
counter, "$" in an expression, such as:

ORG OFFSET ($+1000)

ASM86

ASM86 Defining and Initializing Data

Avoid expressions of the form

ORG OFFSET ($-1000)

since this will overwrite your last 1000 bytes of assembly (or will re-ORG high in
the current segment if the expression evaluates to a negative number).

The EVEN Directive

Syntax:

EVEN

Description:

The EVEN directive ensures that the code or data following the use of the directive
will be aligned on a word boundary. For 8086 data, this may result in a faster fetch
time. The assembler will insert a NOP (90H) in front of the code or data, if it is
necessary, to force the word alignment. The EVEN directive cannot be used in a byte
aligned segment-an error message will be issU(~d.

The PURGE Directive

Syntax:

PURGE name [, ...]

Description:

The PURGE directive deletes the definition of a specified symbol, allowing the sym
bol to be redefined. All occurrances of the symbol following the PURGE directive
and the redefinition of the symbol will use the new definition. It will remain unde
fined after it is purged unless it is redefined. A reference to a symbol after a purge,
but before a redefinition is a forward reference to the redefinition. If no redefinition
occurs, the reference will cause an error. The following types of symbols cannot be
purged-

1. Register names

2. The symbol ??SEG.

3. Hands-off keywords (see list in Appendix C).

4. A symbol that appears in a PUBLIC statement.

Using the PURGE Directive to Control Debug Information

The PURGE directive can be used to control the symbol information placed in the
object module by the asst:mbler when the DEBUG control is specified. (See the
Operating Instructions for a description of the DEBUG control. If you do not wish
to have information placed in the object module for certain symbols, you can purge
those symbols at the end of the program just before the END statement.

3-19

• ® C CHAPTER 4
ACCESSIING DATA-OPERANDS

__________ ~A~N~D~EX~P~R~E~S~S~IO~N~S~
n

8086/8087/8088 Instruction S1tatements

Syntax:

[label:] [prefix] mnemonic [operand [, operand]]

Description:

The instruction statements form the core of an assembly language program. These
statements define the actual program that the CPU (and NDP) will execute. This
chapter describes the operands used in the assembly language. The 8086/8087/8088
instruction set is defined and discussed in Chapter 6. The operand field specifies the
object of the machine operation. For a two operand instruction, one of the operands
is considered a destination operand and the other is the source operand. This form is
given below.

INSTRUCTION DESTINATION, SOURCE

Some examples, shown below, illustrate some instruction statements:

MOV AX, 0 ;pLace 0 into AX

ADD Cl., DL ;CL = CL + DL

ALAB: REP MOVSB ;with prefix instruction and LabeL

Refer to Chapter 6 for the use of the Prefix instructions.

Field Values:

[label:]

A unique ASM86 identifier, followed by a colon, that is used to define a label.
(See Chapter 3 ..)

[prefix]

An 8086/8088 Prefix instruction, i.e., LOCK and REP instructions. (See
Chapter 6.)

mnemonic

An 8086/8088 or 8087 instruction. These are fully described in Chapter 6.

operand

There are many possibl(~ types of operands, including registers, constant values,
variables, and labels. The operand you specify will depend on the instruction
coded. All of the various operand types are discussed below.

4-1

Accessing Data-Operands and Expressions

4-2

Operand Types

Registers
The 8086/8088 registers can be used as explicit operands to many instructions. In
two-operand instructions they may be used for both source and destination. The
register set is shown below.

Segment Registers:

CS, os, SS, ES

General Registers (16 Bits):

AX, BX, CX, OX, SP, BP, SI, 01

General Registers (8 Bit):

AL, AH, BL, BH, CL, CH, OL, OH

Pointer and Index Registers:

BX, BP, SI, 01

The different sets overlap. Each of the general registers (8 and 16 bit) can participate
in arithmetic and logical operations. The Pointer and Index registers are also used in
certain address modes (see Register Expression section below). The segment registers
can be used in MOV's, PUSH's, and POP's.

Floating Point Stack

The 8087 has it's own set of 'registers' called the floating-point stack. There are
eight stack elements that can be referenced. The form is ST(i), where 'i' refers to the
element 0 through 7. The top-of-stack is always ST(O), which may be abbreviated as
ST.

Immediate Operands
An immediate operand is a constant value (number). This is a "17-bit" number (see
Chapter 3). Immediate operands are used as source operands in an 8086/8088
instruction statement. For example,

MOV AL, 5 ;AL = 5

CMP AX, OFFFFH ;compare AX to OFFFFH

An immediate operand can also be an expression that evaluates to a number. This
chapter discusses all the types of expressions.

Examples of expressions as immediate operands:

CMP AL, 15 OR 5

ADD OX, (23 * 2) / 10

;an expression exampLe--compare
;AL with 15

;add 4 to DX

ASM86

ASM86 Accessing Data-Operands and Expressions

Memory Operands

A memory operand refers to a particular location in memory. The general term for a
memory operand is an "address expression." An address expression may be a sim
ple variable or label name, or it may involve registers, structure fields, and/or con
stants. Each address expression will reflect a particular addressing mode. The
8086/8088 has many different types of addressing modes. They are:

Direct Address

The operand is a simple variable or label name. The name expresses the offset of the
operand that is used to calculate the address.

MOV AX, COUNT ;move the word value at memory location
; COUNT; nto AX

JMP ALAB ;jump to memory location ALAB

Register Indirect Address

In this case the offset of the memory location is contained in one of the pointer or
index registers (BX, BP or SI, 01). To address the location you must first load the
offset into the register and then use the register name in brackets as the operand. For
example, to indirectly address a variable you would code the following:

MOV BX, OFFSET AVAR

MOV AX, [BX] ;AX = contents of AVAR

A JMP or CALL instruction can use any 16-bit general register for indirect
addressing.

MOV AX, OFFSET ALAB
JMP AX

MOV
MOV
CALL

TARG, OFFSET ALAB
BX, OFFSET TAHG

[B X]

; no [] are nee de d her e I - - simp l e
;indirect jump to ALAB

;[] used here (a register
;expression) !--two level indi rect
;jump to ALAB

The two levels of indirection in JMP ICALL [BX] are schematically depicted as
follows:

JMP/CALL [8X]

I-oFFSET A[~
ADTARG (DWORD)

OFFSETTARGET

4-3

Accessing Data-Operands and Expressions

4-4

Based Address

The base address mode is similar to register indirect mode except that, in this case, a
displacement is added to the contents of the register. With this mode the register can
point to the base of a data structure in memory and the displacement can then be
used to access a field within the data structure.

MOV BX, OFFSET DATASTRUC
MOV AX, [BX + 5]

;BX = base of DATASTRUC
;AX = word located at the
;fifth byte of DATASTRUC

Based addressing is typically used with either BX or BP as the base register though
SI and DI may also be used. The displacement may be either 8 or 16 bits.

Indexed Address

Indexed addressing is similar to based addressing except that the registers SI or D I
are used along with a variable name. These registers are used as an index from the
offset represented by the variable name. The contents of the register used as an index
specifies a byte displacement from the offset of the variable. You may also use a
displacement value in the operand.

MOV S I , 0 ;set indices to 0
MOV D I , 0
MOV C X, LENGTH SOURCE

ALAB: MOV AX, SOURCE[SI] ;indexed address
MOV DEST[DI], AX
INC S 1
INC S I ;index next word in SOURCE
INC D 1
INC D I ;index next word i n DEST
LOOP ALAB

Based Indexed Address

This mode uses the contents of a base register (BX, BP), the contents of an index
register (SI, DI), and an optional displacement. With this mode you may point the
base register at the base of a data structure and then use the index register as an
index into that structure.

MOV BX, OFFSET ARRAYSTRUC

MOV SI, 0

ALAB: MOV AX, [BX + SI]

ADD SI, 2
JMP ALAB

Segment Register Defaults

Variable references such as:

[B X]
[BP]
WORD PTR [DI]
[BX].FIELDNAME
BYTE PTR [BP]

; load base address

;index value

;get element

;increment index

ASM86

ASM86 Accessing Data-Operands and Expressions

are termed "anonymous references" because no variable name is given from which
a segment can be determined. (The structure field in the fourth example has a type
and offset, but no segment associated with it.)

Segment registers for anonymous references are determined by hardware defaults,
unless you explicitly code a segment prefix operator. The hardware defaults are:

• [BX] normally defaults to segment register DS

• [BP] normally defaults to segment register SS

• When an index register is used without a base register (as in WORD PTR [DI] or
[SI + 5]), the default segment register is DS

• When an index register is used with a base register (as in [BP][SI] or BYTE PTR
[BX][DI]), the default segment register is that of the base register (SS or DS, in
these cases).

There are two variable-ref(~rencing exceptions for defaults:

]. Operations which implicitly reference the stack (PUSH, POP, CALL, RET,
INT, and IRET) always use SS, and cannot be overridden. (The construct [SP]
is not an addressing mode, and thus you cannot assemble e.g. MOV [SP], BX,
much less override it.)

2. String instructions always use ES as a segment register for operands pointed to
by DI.

Special care must be taken to ensure that the correct segment is addressed when an
anonymous offset is specified. Unless you code a segment prefix override, the hard
ware default segment will be addressed, and the anonymous offset applied to it.

Thus, if a programmer's declared variables all reside in segment SEG l:

SEG1 SEGMENT

FOO OW 500 OUP (0) 500 wor'ds of O's

SEG1 ENDS

and if his ASSUME directive in segment CODEl is as follows:

ASSUME CS:CODE1, OS:SEG1

then all references to named variables in segment SEG 1 will assemble correctly. But
suppose our programmer elects to use BP as an index register to access elements of
Faa in SEG l, as follows:

MOV BP, OFFSET FOO

MOV AX, [BX]

;Load BP with offset of FOO in
; SEG1 .
;Put first word of FOO into AX.
;No assembLy-time error, but wrong
;seg-reg (SS instead of OS) at
; run - time.

4-5

Accessing Data-Operands and Expressions

4-6

Because no variable name is present (for ASSUME to check), and because no seg
ment override prefix is specified, the [BP] reference, by default, specifies an offset
address that will be combined with the SS segment register, and not the DS, as
intended. The code should read:

MOV BP, OFFSET FOO

MOV AX, OS:[BP]

;Load BP with offset of FOO in
; SEG1 .
;Use OS seg-reg for OATA1, put
;first word of FOO into AX.

Overview of Expressions

An expression can define a value that initializes data or is used as an operand to an
instruction. An expression can specify a numeric value or define an address in
memory that will then serve as an instruction operand. There are many different
kinds of operators that you may use to create expressions:

• Arithmetic Operators

high and low (HIGH, LOW)
addition and subtraction (+, -)
multiplication and division (*, /, MOD)
shifting operators (SHR, SHL)

• Logical Operators (AND, OR, XOR, NOT)

• Relational Operators (EQ, LE, L T, GE, GT, NE)

• Attribute operators

attribute overriding operators (segment override, PTR, SHORT, THIS)
attribute value operators (SEG, OFFSET, TYPE, LENGTH, SIZE)

• Record-Specific Operators (shift count, MASK, WIDTH)

These operators can be used to define numbers or with the attribute operators you
may define variables or labels. Each type of operator is discussed below.

Types of Expression Operands

Numbers

A number or constant (17-bit number) can be used in most expressions. There are
some limitations in the use of relocatable numbers (these are numbers whose values
are unknown during assembly). These limitations and the definition for relocatable
numbers are discussed below. The attribute value operators (e.g., OFFSET) return
numbers that can be re1ocatable. Simple numbers or constants (such as "2") can be
used without any limitations for most operators and expression types. An absolute
number is a value known at assembly time.

ASM86

ASM86 Accessing Data-Operands and Expressions

Address Expressions

An address expression defines a location in memory. This location can be viewed as
either a variable or label, depending on the type of expression used. The simplest
address expression is the name of a variable or label. In this case, the name implies
addressing using the offset of the variable or label.

ADD DX, COUNT ;COUNT is simple address expression

ADD DX, COUNT + 2 ;In this case, the address
;expression has the same segment
;and type as COUNT but has an
;offset that is two greater

ADD DX, COUNT[2] ;is equivalent to COUNT + 2

A register expression is an address expression that uses a pointer and/or index
register. This form was shown above under the discussion of addressing modes. The
different types of register expressions are shown below:

1. [pointerreg] or [indexreg]

2.

[s X]
[S p]

[S 1]
[D 1]

[pointerreg + indexreg]

[BX + SIJ
[BX + D 1]
[SP + S 1]
[SP + D 1]

3. [pointerreg + disp] or [indexreg + disp]

[BX + di sp]
[SP + di sp]

4. [pointerreg + indexreg + disp]

[SX + Sl + disp]
[SX + Dl + disp]
[SP + Sl + disp]
[SP + Dl + disp]

[Sl + disp]
[Dl + disp]

NOTE

Disp can be either an 8 or 16 bit displacement.

NOTE

You may also substitute a set of "[]" for the "+" in these types of
expressions. For example, the following are equivalent forms:

[B X + S 1] is the same as [B X] [S 1]
[S P + D 1 + 2] is the same as [S X] [D 1] [2]

A register expression can be combined with a simple address expression to form a
more complex address. This allows for indexed variables or doubly-indexed
variables. The form is:

name [reg exp]

4-7

Accessing Data-Operands and Expressions

4-8

Examples:

COUNT[BX]

COUNT[BX + 2]

COUNT[BX + SI]

;simple index

;index plus displacement

;double index

A register expression implies that the address of the operand will be computed using
the run-time contents of the registers used. For the examples above, the offset of the
variable COUNT will be added to the contents of the register(s) in the register
expression.

You may use a register expression by itself as an operand. This case is called an
anonymous reference because the reference has no explicit type (either byte, word,
etc.). When using this form you must insure that a type is specified. For a two
operand instruction where one of the operands is a register, the assem bIer will deter
mine the type from the type of the register. For example:

MOV CX, [B X] ;move word pointed to by BX

In all other cases using an anonymous reference, you must specify the type using the
PTR operator (discussed below). For example:

MOV WORD PTR [01], 5 ;assign two bytes

INC BYTE PTR [BX + 2] ;increment a byte

Accessing Structure Fields

Another form of address expression uses a structure field name as a displacement
that is added to an offset. A field name represents an offset within the structure (see
Chapter 3). For example,

ASTRUC

ABYTE
AWORD
BYTE2

STRUCTURE

DB a
OW a
DB a

ASTRUC ENDS

;offset = a
;offset = 1
;offset = 3

The field names can then be combined with a variable name or register expression to
form an address expression. This address expression has the following attributes:

segment-same as variable or machine default for register expression

offset -offset of variable or register expression plus the offset of the field within
the structure.

type -type of structure field.

ASM86

ASM86 Accessing Data-Operands and Expressions

For example,

ANARRAY DB 1 ,2,3,4,

MOV A L, ANARRAY.BYTE2 ; A L w; l l equal 4

MOV C X, ANARRAY.AWORD ; C X w; l l equal 0302H

MOV BX, OFFSET ANARRAY ; B X holds offset

MOV A L, [BX] .ABYTE ; A L will equal 1

Relocatable Expressions

Address expressions (those involving variables and labels) and numeric expressions
may have results which cannot be known until logical segments have been combined
and located. These expressions are termed" relocatable." The following rules define
when an expression is relocatable. There are some restrictions on the use of
relocatable expressions with some of the operators. These restrictions are noted
below for each operator.

1. Segments and Groups·-the name of a segment or group can be used to represent
its paragraph number in an expression. This value is relocatable for all segments
and groups except for a segment defined with the "AT exp" form of the SEG
MENT directive. These values are assigned by the locator or loader. This type of
relocatability is called' 'Base relocatability."

Example:

DATAGRP GROUP DATA1, DATA2

DATA1 SEGMENT PUBLIC

DATA1 ENDS

DATA2 SEGMENT PUBLIC

SEGSTORE OW DATAGRP ;DATAGRP ;s base relocatable

SEGBASE OW DATA1 ;DATA1 ;s base relocatable

DATA2 ENDS

2. Variables and Labels--a variable or label is not considered to be relocatable if it
is defined in a "non-relocatable segment." This is a segment that has either a
PARA or PAGE alignment type and is not a PUBLIC or STACK segment, or it
was defined with the "AT exp" combine-type. Use of a variable name in an
expression implies the value of its offset within its segment. This value will be
relocatable for any variable or label that is defined in a "relocatable" segment
or in an EXTRN directive. A relocatable variable or label is "offset
relocatable." These values are assigned by the linker.

Example:

DATA SEGMENT PUBLIC

ABYTE DB 0

AWORD OW ABYTE ;ABYTE ;s offset relocatable

DATA ENDS

4-9

Accessing Data-Operands and Expressions

4-10

3. Numbers-a constant is relocatable if it is defined in an EXTRN directive with
type ABS. In this case the term "relocatable" indicates that the value of the
number, defined in another module, is unknown at assembly time.

Example:

EXTRN ANUMBER:ABS

DATA SEGMENT
AWaRD OW ANUMBER

DATA ENDS

Arithmetic Operators

HIGH/LOW

Syntax:

HI G H operand
LOW operand

Description:

;ANUMBER is relocatable

These operators are called the "byte isolation" operators. HIGH and LOW accept
either a numeric expression or a variable or label as an operand. HIGH returns the
high-order byte; LOW the low-order byte. If the operand is an absolute number then
the result will be absolute. In all other cases, the result will be relocatable. An error
will result if these operators are used with an operand or expression involving a seg
ment or group name. For example,

MOV
TEN HEX

AH, HIGH (1234H)
EQU LOW (OFF10H)

;AH = 12H
;TENHEX = 10H

These operators can be applied to each other; if Q is a relocatable value, the follow
ing identities apply:

LOW LOW Q = LOW Q
LOW HIGH Q = HIGH Q
HIGH LOW Q = 0
HIGH HIGH Q = 0

Field Values:

operand

A numeric expression or a variable or label name.

ASM86

ASM86 Accessing Data-Operands and Expressions

Multiplication and [)ivision

Syntax:

Multiplication: operand * operand

Division: operand / operand

Modulo: operand MOD operand

Description:

You may only use these operators with absolute numbers, and the result is always an
absolute number. Either operand may be a numeric expression, as long as the
expression evaluates to an absolute number. Some examples,

CMP AL, 2*4
MOV CX, 123H/16

Field Values:

operand

An absolute number.

Shift Operators

Syntax:

;compare AL to 8
;CX = 12H

Shift right: operand SHR count

Shift left: operand SHL count

Description:

The shift operators will perform a "bit-wise" shift of the operand. The operand will
be shifted "count" bits either to the right or the left. Bits shifted into the operand
will be set to o. The operands must be numeric expressions that evaluate to absolute
numbers. For example,

MOD BX, OFACBH SHR 4 ;BX = BX + OFACH

Field Values:

operand

A numeric expression that evaluates to an absolute number.

count

An absolute number that represents the number of bits the operand is to be
shifted, either right or left.

4-11

Accessing Data-Operands and Expressions

4-12

Addition and Subtraction

Syntax:

Addition: operand + operand

Subtraction: operand - operand

Description:

These operators can be used with either absolute or relocatable operands, but there
are certain restrictions in the use of relocatable operands. The following shows all
the allowed uses of absolute and relocatable operands.

ABS = an absolute operand

RELOC = a relocatable operand

ABS + ABS ABS - ABS

ABS + RELOC RELOC - ABS

RELOC + ABS RELOC - RELOC

NOTE

"reloc-reloc" is only allowed for operands with the same type of
relocatability and the quantities are defined in the same segment (both are
either base or offset relocatable). The result of "reloc-reloc" is an absolute
number.

Field Values:

operand

An expression evaluating to an absolute number or a variable or label name.

Relational Operators

Syntax:

equal: operand EQ operand

not equal: operand NE operand

less than: operand LT operand

less than or equal: operand LE operand

greater than: operand GT operand

greater than or equal: operand GE operand

ASM86

ASM86 Accessing Data-Operands and Expressions

Description:

The relational operators may have operands that are:

a. both absolute numbers

b. variable or label names (defined in the current module), that have the same type
of relocatability.

The result of a relational operation is always an absolute number. They return an
8-or 16-bit result of all l' s for TR UE and all 0' s for FALSE. Some examples,

MOV AL, 3 EQ 0 ;AL = 0 (false)
CMP BX, 2 LE 15 ;BX = OFFFFH (true)

Field Values:

operand

An absolute number or a variable or label name.

Logical Operators

Syntax:

operand 0 R operand

operand XOR operand

operand AND operand

NOT operand

Description:

The logical operators may only be used with absolute numbers. They always return
an absolute number.

A logical operator can be either:

1. OR-logical "or", maps O's in corresponding positions into 0 and 1 's elsewhere
in the result, for example,

11011 00 1 B OR 100 11 0 11 B = 11011 0 11 B

2. XOR-exclusive "or", maps corresponding bits equal in value into 0, and
corresponding bits unequal in value into ll, for example,

10 111 0 11 B X 0 R 110 111 0 1 B = 01100110 B

3. AND-logical "and", maps 1 's in corresponding positions into 1 and O's
elsewhere in the result, for example,

101100 11 B AND 1101101 B = 1 000000 1 B

4. NOT -logical negation, forms the 1 's complement by mapping 1 's to O's and O's
to 1 's, for example,

NOT(10101111B) = 01010000B

4-13

Accessing Data-Operands and Expressions

4-14

Field Values:

operand

An absolute number.

Attribute Overriding Operators

Segment Override

Syntax:

CS:varlab

DS:varlab

SS:varlab

ES:varlab

segname:varlab

groupname:varlab

Description:

The segment override is used to override the segment attribute of a variable or label.
There are two uses for this override, the first is similar to an ASSUME, and the
second is used in order to store the correct offset of a variable or label.

The first form uses a segment register as the "segpart" of a memory address. In this
case you are specifying from which segment register the variable or label is address
able. This form is similar to an ASSUME, except that it is restricted to a single state
ment. It is also more error prone than the use of an ASSUME because you must
explicitly code the override for each reference to a variable or label. The explicit use
of a segment override takes precedence over any ASSUME directive. The following
example illustrates the use.

ASSUME DS:DATA, CS:CODE

DATA SEGMENT

ABYTE DB 0

DATA ENDS

CODE SEGMENT

MOV BL, ABYTE

MOV BL, ES:ABYTE

CODE ENDS

;reference is covered by the
;ASSUME

;no ASSUME is required here for
;this reference

ASM86

ASM86 Accessing Data-Operands and Expressions

Another use of this form is to override the implicit use of a segment register in
accessing data. The 8086/8088 will use the DS register in order to access data. When
the following line of code is executed, the DS register is used.

MOV BL, [BX]

You may use the segment override to change this implicit use. If, for example, your
data is addressable through the ES register and you do not have an ASSUME, you
can code the following form:

MOV BL, ES:[BX]

The instruction that is assembled will be preceded by a "segment override prefix"
byte that forces the 8086/8088 to use the ES register in order to calculate the physical
address of the variable. The same effect will occur if you ASSUME your data into
ES.

The second use of the segment override is to insure that your use of the OFFSET
operator (see below) will return the correct offset of your variable or label. When a
variable or label is defined in a segment that is part of a group, then you must use the
segment override with the group name when you use the OFFSET operator (see the
discussion of the OFFSET operator given below). This is to ensure that the offset
from the group base, rather than the segment base, is returned.

Field Values:

varlab

A variable name, label name, or address-expression.

segname

A segment name.

groupname

A group name.

PTR Operatolr

Syntax:

type PTR name

Description:

The PTR operator is used to define a memory reference with a certain type. The
assembler determines the correct instruction to assemble based on the type of the
operands to the instruction. There are certain instances where you may specify an
operand that has no type. These cases involve the use of numeric or register expres
sions. Here the PTR operator is used to specify the type of the operand. The follow
ing examp1es illustrate this use:

MOV WORD PTR [BX], 5

INC DS:BYTE PTR 10

;set word pointed to by BX = 5

;increment byte at offset 10
;from DS

4-15

Accessing Data-Operands and Expressions

4-16

This form can also be used to override the type attribute of a variable or label. If, for
example, you wished to access an already defined word variable as two bytes, you
could code the following:

MOV el, BYTE PTR AWORD

MOV Dl, BYTE PTR AWORD + 1

Field Values:

type

;get fi rst byte

;get second byte

This field can have one of the following values:

1. BYTE

2. WORD

3. DWORD

4. QWORD

5. TBYTE

6. NEAR

7. FAR

name

This field can be:

1. A variable name.

2. A label name.

3. An address or register expression.

4. An integer that represents an offset.

SHORT Operator

Syntax:

SHORT label

Description:

The SHORT operator is used to specify that the label referenced by a JMP instruc
tion is within + 127 bytes at the instruction. This operator is only used when the label
is forward referenced in the instruction. When the assembler encounters a forward
reference, it must make certain assumptions. When a label is forward referenced,
the assembler assumes that it will require two bytes to represent the relative offset of
the label. By correctly using the SHORT operator, you can save a byte of code when
you use a forward reference. If the label is not within the specified range, an error
will occur. The following example illustrates the use of the SHORT operator.

JMP FWD lAB ;three byte instruction

JMP SHORT FWDlAB ;two byte instruction

ASM86

ASM86 Accessing Data-Operands and Expressions

Field Values:

label

A label addressable through CS.

Attribute Value Operators

The operators discussed below return the numerical values of the attributes of a
variable or label. These operators do not change the attribute of the variable or label
used.

TH IS Operatc)r

Syntax:

THIS type

Description:

The THIS operator defines a memory location at the current location of assembly.
This location can be either a variable or a label. Its segment attribute will be the cur
rent segment being assembled and its offset will be the value of the current location
counter. Its type will be specified by the operand to this operator. Use of this
operator is similar to the use of the LABEL directive. This operator is used either in
conjunction with the EQU directive (see below) or as part of an operand to an
instruction. (The latter form will be rarely used.) It can be used to define another
name with an alternate type for a data item; for example

AWaRD EQU THIS WORD
BYTE1 DB a
BYTE2 DB 0

is equivalent to:

AWaRD L.ABEL WORD
BYTE1 DB 0
BYTE2 DB 0

Use of the symbol "$" (the location counter symbol) is equivalent to THIS NEAR.

Field Values:

type

This field can have the following values:

1. BYTE

2. WORD

3. DWORD

4. QWORD

5. TBYTE

6. NEAR

7. FAR

4-17

Accessing Data-Operands and Expressions

4-18

SEG Operator

Syntax:

SEG varlab

Description:

This operator returns the segment value of the variable or label, a base relocatable
quantity. Use of this operator can have two interpretations, depending on the con
text used. In an ASSUME directive, you may use this operator to specify the seg
ment in which an object is defined. For example,

ASSUME CS:SEG START, OS:SEG COUNT

specifies that CS will hold the paragraph number of the segment containing "start"
and that DS will hold the paragraph number of the segment in which "count" was
defined. This construct is useful with objects for which you do not know the seg
ment in which they are defined (most likely defined in another module). In this case
the expression is a symbolic representation of the segment's name.

The other type of interpretation is that of a paragraph number. Here it is used either
to store the paragraph number in a variable or to initialize a segment register.

SETSTART OW SEG COUNT

INIT: MOV AX, SEG COUNT
MOV OS, AX

;store the paragraph number
;<for the segment

;init OS with count's
;segment

The SEG operator should be avoided when groups are used. Variables and labels are
relative to the base of the group and not to the segment in which they are defined.
The value returned by the SEG operator for an element that is contained within a
group will not reflect the group base.

Field Values:

varlab

The name of a variable or label.

OFFSET Operator

Syntax:

OFFSET varlab

Description:

This operator returns the offset of the variable or label from the base of the segment
in which it is defined. In most cases, the value returned is not set until link time, i.e.,
it is a relocatable number. The OFFSET operator is used primarily to initialize
variables or registers to be used for indirect addressing. Some instructions explicitly

ASM86

ASM86 Accessing Data-Operands and Expressions

use indirect addressing when accessing data. When coding these instructions, you
are required to initialize a register to the offset value of the data you wish to access.
The following example demonstrates this use--

TRANSLATE: MOV
MOV
XLAT

BX, OFFSET ASCIITABLE
AL, VALUE

;BX points to translation
;table

If a variable or label is contained in a group (its segment is defined to be in a group),
then you must use a group override with the OFFSET operator. This ensures that the
offset used is from the group base and not from the individual segment base. For
example,

DGROUP DATA1, DATA2

DATA1

DATA1

DATA2

SEGMENT PUBLIC

ENDS

SEGMENT PUBLIC

ASCIITABLE DB 0
DB 1

DB 128

DATA2 ENDS

CODE SEGMENT PUBLIC

TRANSLATE: MOV BX, OFFSET DGROUP:ASCIITABLE ;need group
;override

MOVE AL, VALUE
XLAT

CODE ENDS

Field Values:

varlab

The name of a variable or label.

TYPE Operator

Syntax:

TYPE varlab

; her e

;BX points to
;translation table

4-19

Accessing Data-Operands and Expressions

4-20

Description:

The TYPE operator returns a value that represents the type of the operand. This
value can be useful in certain instruction sequences where the type of the operand is
used to calculate a value used in incrementing a pointer. For example,

ALAB:

MOV BX, OFFSET ARRAY
MOV ex, LENGTH ARRAY
MOV S I , 0
ADD AX, [BX + S I]

ADD SI, TYPE ARRAY
LOOP ALAB

;LENGTH = # of elements
;used as index into array
;array element added to
;AX

;increment the pointer by
;the size of an array
;element

TYPE returns the following values, depending on the type of the operand

I. A byte-returns 1.

2. A word-returns 2.

3. A dword-returns 4.

4. A qword-returns 8.

5. A tbyte-returns 10.

6. A structure name-returns a value equal to the number of bytes declared in the
structure definition.

7. A near label-returns 255.

8. A far label-returns 254.

Field Values:

varlab

The name of a variable, structure, or label.

LENGTH Operator

Syntax:

LENGTH variable

Description:

LENGTH returns the number of data units (bytes, words, or dwords) that have been
allocated for a variable. The data unit is equal to the type of the variable. This
operator is useful for setting a counter for a loop that accesses the elements of an
array (see example above).

AWORDARRAY

ABYTEARRAY

DW 150 DUP (0)

DB 1,2,3,4,5,6,7

;LENGTH = 150

;LENGTH = 7

ASM86

ASM86 Accessing Data-Operands and Expressions

Field Values:

variable

The name of a variable.

SIZE Operator

Syntax:

SIZE variable

Description:

The SIZE operator returns the number of bytes allocated for a variable. This value is
related to the LENGTH and TYPE operators through the following identity:

SIZE = LENGTH * TYPE

Some examples,

AWORDARRAY

ABYTEARRAY

ASIZE

Field Values:

variable

OW 150 DUP (0)

DB 1,2,3,4,5,6,7

MOV AX, SIZE AWORDARRAY

DB SIZE ABYTEARRAY

The name of a variable.

Record Specific ()perators

;SIZE = 300

;SIZE = 7

;AX = 300

;ASIZE is initialized
;to 7

Use of records may involve three special operators. These operators allow you to
isolate and access the fields defined within a record. Since the fields in a record are
mapped into bits and not into byte-aligned structures, you may require that these
fields be masked off (in order to isolate only specific bits) and then shifted into the
lower order bits of a byte. (The record-specific operators are described individually
below.)

A record name can also be used in an expression. In this case the record is used to
specify a number based on the initialization used. For example, if you define the
record

R RECORD F1:8, F2:8

you could use it to define a numeric expression that will evaluate to a constant
number.

4-21

Accessing Data-Operands and Expressions

4-22

MOV AX, R<OABH, 'C'> ;AX = OAB43H

MOV BX, R<5,7> + R<3,4> ;BX = OBOBH
MOV CX, R<B6H, 23H> XOR R<135, 35> ;CX = 100H

Shift Count

Syntax:

recfieldname

Description:

Use of the record field name specifies the number of bits the record must be shifted
in order to move the field in it to the low order bits of a byte or word (depending on
the size of the record). For example, if you had defined the following record:

PATTERN

AREC

RECORD A:3, B:1, C:2, 0:4, E:6

PATTERN < >

you could use the following sequence of code to isolate and access the field C in the
record:

MOV OX, AREC ;move record into OX
AND OX, MASK C ;mask out fields A,B,C,D,E--

;000011000000000013 i s the
;value used

MOV C L, C ;field name as s hi f t count--10
; i s the value used

SHR OX, C L ;DX i s now equal to value of
;field C

Field Values:

recfieldname

The name of a field within a record.

MASK Operator

Syntax:

MASK record-field

Description:

Use of this operator defines a value that can be used to mask off fields in a record
(Le., a value with 1 's in those bit positions specified by the record field, and O's
elsewhere), leaving only the record-field specified. This operator is used with an
AND (or TEST) instruction with the operands being 1) the record stored either in a
register or a memory location, and 2) an expression using the MASK operator. See
the previous example for an illustration.

ASM86

ASM86 Accessing Data-Operands and Expressions

Field Values:

record -field

The name of a field within a record.

WIDTH Operator

Syntax:

WIDTH rec

Description:
The WIDTH returns a value equal to the number of bits in either a record or a
record field. From the above example:

DB WIDTH AREC ;equaLs 16

DB WIDTH C ;equaLs 2

Field Values:

rec

Either a record name or record field name.

Operator Precedence

The following is a list, in decreasing order of precedence, of the classes of operators.
All expressions are evaluated from left to right following the precedence rules. You
may override this order of evaluation and precedence through the use of
parentheses.

Highest Precedence

1. Parenthesized expressions, angle-bracket (record) expressions, square-bracket
expressions, the structure "dot" operator, and the operators LENGTH, SIZE,
WIDTH, and MASK.

2. PTR, OFFSET, SEG, TYPE, THIS, and "name:" (segment override).

3. HIGH and LOW.

4. Multiplication and division: *, /, MOD, SHR, SHL.

5. Addition and subtraction: +, -.
a. unary

b. binary

6. Relational: EQ, NE, LT, LE, GT, GE.

7. Logical NOT.

8. Logical AND.

9. Logical OR and XOR.

10. The SHORT operator.

Lowest Precedence

4-23

Accessing Data-Operands and Expressions

4-24

The EaU Directive

Syntax:

equ-name EQU equ-value

Description:

The EQU directive is a very powerful means to define symbols for many of the
ASM86 constructs. These symbols can form names that have more mnemonic value,
or that form a "shorthand" notation for a complex construct. In the FIELD
V ALUE section below, many examples are given showing its use.

Field Values:

equ-name

A unique ASM86 identifier.

equ-value

This field can have the following values:

1. A variable or label name (may be forward referenced).

ALABEL

ALAB:

EQU

MOV

ALAB

AX, 0

2. An 8086/8088 register name.

COUNT
POINTER

EQU CX
EQU BX

MOV COUNT, 10
MOV POINTER, OFFSET ARRAY

3. 8086/8087/8088 instruction names.

DATAMOVE
INCREMENT

EQU MOV
EQU INC

DATAMOVE AX, BX
INCREMENT AX

4. A numeric constant (integer or floating-point).

PI EQU 3.14159
TOTAL EQU 6

;CX = 10
;BX = offset
;of array

ASM86

ASM86 Accessing Data-Operands and Expressions

The precision of a floating-point number used in an EQUate is determined
by the context in which it is used. For example,

DD PI ;single precision

DQ PI ;double precision

5. An assembly-time expression involving numeric values.

E1 EQU 2 + 3

E2 EQU E1 AND 4

E3 EQU (E1 - E2) / 12

6. A register expression. These may be single register expressions or they may
also include a segment override. This construct is useful in defining data
items to be accessed on the stack.

STACKWORD EQU WORD PTR SS:[BP + 2]

AVAR EQU [BX + 3]

ANEXTRAVAR EQU ES:[BX]

4-25

• R r-- CHAPTER 5 n ~_P_R._O_G_R_A_M __ L_I_N_K_A_G_E_D_I R_E_C_T_IV_E_S~

Overview of Program Linkage

ASM86 supplies the necessary directives to support multi-modular programs. A pro
gram may be composed of many individual modules (ASM86, PL/M-86, Pascal-86,
or FORTRAN-86) that are separately assembled or compiled. Each module may
define variables or labels that other modules may use. The mechanisms in ASM86
for communicating symbol information from module to module are the
PUBLIC/EXTRN directives. The PUBLIC directive defines those symbols that may
be used by other modules. The EXTRN directive defines for a given module these
symbols (defined dsewhere) that can be used. In order to uniquely name different
object modules that are to be linked together, use the NAME directive. The END
directive, which is required in all modules, can be used to specify a "main module,"
that is, a module which contains the code that will be initially executed upon loading
the program. It supplies a means to specify the start address of the program that will
be initialized by the loader. For assemblers running on 8086-based systems,
initialization values for other segment registers may also be specified in the END
directive.

The PUBLIC Directive

Syntax:

PUBLIC name [, ...]

Description:

The PUBLIC din;!ctive specifies which symbols in the module are available to other
modules at link-time. These symbols may be variables, labels, or constants (17-bit
numbers, defined using EQU). All other symbols will be flagged as an error.

Field Values:

name

Any user-defined variable, label, or constant (17-bit number).

The EXTRN Directive

Syntax:

EXTRN name:type [, ...]

Description:

The EXTRN directive specifies those symbols, which may be referenced in the
module, that have been d(~clared "public" in another module. The EXTRN directive
will specify the name of the symbol and its type.

5-1

Program Linkage Directives

5-2

Field Values:

name

type

The name of the symbol declared to be public in another module.

The type of the symbol declared public in another module. This type should
agree with the type of the symbol declared public. This field can have the
following values:

1. BYTE-a variable of type byte.

2. WORD-a variable of type word.

3. DWORD-a variable of type dword.

4. QWORD-a variable of type qword.

5. TBYTE-a variable of type tbyte.

6. A structure name: indicates a variable whose type is equal to the number of
bytes allocated in the structure definition.

7. A record nflme: type will be either a byte or word depending on the size of
the record.

8. NEAR-a label of type near.

9. FAR-a label of type far.

10. ABS-a constant (l7-bit number), always of type word.

The Placement of EXTRN's

You must be careful in placing the EXTRN directive because the location of the
EXTRN directive in relation to the definition of program segments is very critical.
The following rules apply:

1. If you know the segment in which the external sym bol is defined, then place
the EXTRN directive between a SEGMENT lENDS pair that is identical to
the SEGMENT lENDS pair in which the object was defined in the other
module. The object can be used like any other variable or label. For exam
ple, if in the module SCAN .A86, you defined a variable such as the one
below

DATA SEGMENT WORD PUBLIC

COUNT DB 0

PUBLIC COUNT

DATA ENDS

you would place the EXTRN directive in the module, PARSE.A86, in the
following way:

DATA SEGMENT WORD PUBLIC

EXTRN COUNT:BYTE

DATA ENDS

ASM86

ASM86 Program Linkage Directives

2. If you do not know the segment in which the external symbol is defined, or
if the segment in which it is defined is non-combinable, then place the
EXTRN directive outside of all SEGMENT lENDS pairs in your program.
To address the external symbol you must load the segment part (paragraph
number) of the symbol into a segment register using the SEG operator (see
page4-1S)"

MOV AX v SEG COUNT
MOV ES v AX

Then you must either use an ASSUME directive to verify addressability
such as

ASSUME ES:SEG COUNT

MOV OX f COUNT

or use a segment override (see page 4-14) for each use of that symbol.

MOV OX, ES:CQUNT

The EN D Directive

Syntax:

For SOSO/SOS5 resident ASMS6 assemblers:

END [label name]

For SOS6 resident ASMS6 assemblers:

END [regint [, ...]]

Description:

The END directive is required in all ASMS6 module programs. It is, appropriately,
the last statement in the module. Its occurrence terminates the assembly process; any
text found beyond the END directive will be ignored (and an error will be issued).
Another purpose of the END directive is to define the module as being a MAIN
MODULE. This implies that the code contained in the module will be the code that
is initially executed when the program is loaded into memory. Execution will begin
at the label in your code specified as the start address in the END directive.

For the SOS6 based assemblers, the END directive can also be used to define the
initial contents of DS and SS. It specifies values to be placed in the segment registers
by the loader as it loads the program prior to execution. If this alternate means of
initializing these registers is used, then the initial values for CS:IP are required. You
could also choose to write some code to do the same initialization.

Example for SOSO/SOS5 resident ASMS6 assemblers:

ASSUME CS:CODE, DS:DATA

DATA SEGMENT

ABYTE DB 0

DATA ENDS

5-3

Program Linkage Directives

5-4

CODE SEGMENT

START: MOV AX, DATA
MOV DS, AX

;initialize DS

CODE ENDS

END START

Example for 8086 resident ASM86 assemblers:

ASSUME CS:CODE, DS:DATA, SS:STACK

DATA SEGMENT

ABYTE DB 0

DATA ENDS

STACK SEGMENT STACK

DW 10 DUP (?)
STACKTOP DW 0

STACK ENDS

CODE SEGMENT

START: MOV AL, ABYTE ;DS is already initialized

CODE ENDS

END START, DS:DATA, SS:STACK:STACKTOP

Field Values:

[label name]

;CS:IP points to
;CODE:START
;DS points to DATA
;SS:SP points to
;STACK:STACKTOP

The name of a label defined in the module. This label defines that point in the
code where execution of the program should begin.

[regint]

This field defines the contents for a segment register (and also the registers IP
and SP). To initialize the segment registers, the following formats apply:

'Segname' is either a segment name or a group name. It identifies the paragraph
number to be loaded into the segment register.

ASM86

ASM86 Program Linkage Directives

'Labelname' is the name of a label defined in the module. Its offset will be used
to initialize IP.

'Varname' is the name of a variable defined in the module. Its offset will be
used to initialize SP.

To initialize CS and IP:

labelname
or

CS:labelname
or

CS:segname:labelname

To initialize SS and SP:

SS:segname:varname
or

SS:segname

To initialize DS:

DS:segname

The NAME Directive

Syntax:

NAME modname

Description:

(the segment part of the label is used for CS)

(same as "labelname")

(the segment part or paragraph number that is
to be loaded into CS is taken from segname)

(SP will be initialized to the offset of varname)

(SP will be initialized to be equal to the size of
the segment)

The NAME directive is used to define a name for the object module. Each module
that will be linked to others must have a unique name. The NAME directive can be
used to specify this name.

For SOSO/SOS5 resident ASMS6 assemblers, the default object module name is the
source file name stripped of its extension. For example, if the source file name is
SCAN .AS6, the object mode name will be SCAN. This occurs if no NAME directive
is used.

For SOS6 resident ASMS6 assemblers, the NAME directive must be used. If it is not
used, an error will occur and the assembler will give the object module the default
name ANONYMOUS. Using this default name can cause problems when linking
together assembly language modules. LIB-S6 will report an error if two modules
have the same name.

Field Values:

modname

A user-defined identifier. Hands-off and dual-function keywords are invalid
and will cause an error.

5-5

• (R) C CHAPTER 6
TH E 8086/8087 /8088

_____________ I_N_ST_R_U_C_T_I_O_N __ S_ET~
n

The 8086/8088 Instruction Set

Instruction Statelment Formats

The format for the instruction statement was introduced in Chapter 4. The format is
shown below:

[label:] [prefix] mnemonic [operand [, operand]]

This chapter describes the 8086/8087/8088 instruction set. The instruction set con
sists of a set of mnemonics that select different machine operations. The instruction
set encyclopedia at the end of this chapter describes each of these mnemonics, their
operations, and allowed operands.

Addressing Modes

The 8086 instruction set provides several different ways to address operands. Most
two-operand instructions allow either memory or a register to serve as one operand,
and either a register or a constant within the instruction to serve as the other
operand. Memory to memory operations are excluded.

Operands in memory may be addressed directly with a 16-bit offset address, or
indirectly with base (BX or BP) andlor index (SI or DI) registers added to an
optional 8- or 16-,bit displacement constant. This constant can be the name of a
variable or a pure number.. When a name is used, the displacement constant is the
variable's offset (see Chapter 4).

The result of a two-operand operation may be directed to either memory or a
register. Single-operand operations are applicable uniformly to any operand except
immediate constants. Virtually all 8086 operations may specify either 8- or 16-bit
operands.

Memory Operands

Operands residing in memory may be addressed in four ways:

• Direct 16-bit offset address

• Indirect through a base register, BX or BP, optionally with an 8- or 16-bit
displacement

• Indirect through an index register, SI or DI, optionally with an 8- or 16-bit
displacement

• Indirect through the sum of one base register and one index register, optionally
with an 8- or 16-bit displacement.

The location of an operand in an 8086 register or in memory is specified by up to
three fields in each instruction. These fields are the mode field (mod), the register
field (reg), and the register Imemory field (rim). When used, they occupy the second
byte of the instruction sequence. This byte is referred to as the Modrm byte of the
instruction.

6-1

The 8086/8087/8088 Instruction Set

6-2

The mode field occupies the two most significant bits, 7 and 6, of the byte, and
specifies how the rim field (bits 2, 1, 0) is used in locating the operand. The rim
field can name a register that holds the operand or can specify an addressing mode
(in combination with the mod field) that points to the location of the operand in
memory. The reg field occupies bits 5, 4, and 3 following the mode field, and can
specify that one operand is either an 8-bit register or a 16-bit register. In some
instructions, this reg field gives additional bits of information specifying the instruc
tion, rather than only encoding a register.

Description

The effective address (EA) of the memory operand is computed according to the
mod and rim fields:

if mod = 00 then DISP = 0*, disp-Iow and disp-high are absent
if mod = 01 then DISP = disp-Iow sign-extended to 16 bits, disp-high is absent
if mod = 10 then DISP = disp-high:disp-Iow
ifr/m = 000 then EA = (BX) + (SI) + DISP
if rIm = 001 then EA = (BX) + (DI) + DISP
if rIm = 010 then EA = (BP) + (SI) + DISP
if rIm = 011 then EA = (BP) + (DI) + DISP
if rIm = 100 then EA = (SI) + DISP
if rIm = 101 then EA = (DI) + DISP
if rIm = 110 then EA = (BP) + DISP*
if rIm = 111 then EA = (BX) + DISP

*except if mod = 00 and rIm = 110 then
EA = disp-high: disp-Iow

Instructions referencing 16-bit objects interpret EA as addressing the low-order
byte; the word is addressed by EA + 1, EA.

Encoding

mod reg rIm I disp-Iow diSP-~

Segment Override Prefixes

General register BX and pointer register BP may serve as base registers. When BX is
the base the operand by default resides in the current Data Segment and the DS
register is used to compute the physical address of the operand. When BP is the
base, the operand by default resides in the current Stack Segment and the SS seg
ment register is used to compute the physical address of the operand. When both
base and index registers are used, the operand by default resides in the segment
determined by the base register, i.e., BX means DS is used, BP means SS is used.
When an index register alone is used, the operand by default resides in the current
Data Segment. The physical address of most other memory operands is by default
computed using the DS segment register (exceptions are noted below). These
assembler-default segment register selections may be overridden by preceding the
referencing instruction with a segment override prefix.

Description

The segment register selected by the reg field of a segment prefix is used to compute
the physical address for the instruction this prefix precedes. This prefix may be com
bined with the LOCK andlor REP prefixes, although the latter has certain require
ments and consequences-see REP.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Encoding

I 001 reg 11 0

reg is assigned according to the following table:

Segment

00 ES
01 CS
10 SS
11 DS

Exceptions

The physical addresses of all operands addressed by the SP register are computed
using the SS segment register, which may not be overridden. The physical addresses
of the destination operands of the string primitive operations (those addressed by
the DI register) are computed using the ES segment, which may not be overridden.

Register Operands

The four 16-bit general registers and the four 16-bit pointer and index registers may
serve interchangeably as operands in nearly all 16-bit operations. Three exceptions
to note are multiply, divide, and some string operations, which use the AX register
implicitly. The eight 8-bit registers of the HL group may serve interchangeably in 8-
bit operations. Multiply, divide, and some string operations use AL implicitly.

Description

Register operands may be indicated by a distinguished field, in which case REG will
represent the selected register, or by an encoded field, in which case EA will repre
sent the register selected by the rim field. Instructions without a "w" bit always
refer to 16-bit registers (if they refer to any register at all); those with a "w" bit refer
to either 8- or 16-bit registers according to "w".

Encoding

General Registers:

Distinguished Field:

~ ______ re_g~1 or C==_r_e_g __ ~

for mode = 11 EA = rIm (a register):

11 reg

REG is assigned according to the following table:

16·,Bit [w = 1] 8-Bit [w = 0]

000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

6-3

The 8086/8087/8088 Instruction Set

6-4

Instructions that reference the flag register file as a 16-bit object use the symbol
FLAGS to represent the file:

FLAGS X:X:X:X:(OF):(DF):(lF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

where X is undefined.

Immediate Operands
All two-operand operations except multiply, divide, and the string operations allow
one source operand to appear within the instruction as immediate data. Sixteen-bit
immediate operands that have a high-order byte that is the sign extension of the low
order byte may be abbreviated to eight bits.

Three points about immediate operands:

• Immediate operands always follow addressing mode displacement constants
(when present) in the instruction.

• The low-order byte of 16-bit immediate operands always precedes the
high-order byte.

• The 8-bit immediate operands of instructions with s:w = 11 are sign-extended to
16-bit values.

String Instructions and Memory References

Table 6-1 shows the mnemonics of the string instructions that can be coded without
operands (MOYSB, MOYSW, etc.) or with operands (MOYS, etc.).

The string instructions are unusual in several respects:

1. Before coding a string instruction, you must:

• Load SI with the offset of the source string.

• Load DI with the offset of the destination string.

2. One of the forms of REP (REP, REPZ, REPE, REPNE, REPNZ) can be coded
immediately preceding (but separated from by at least one blank) the primitive
string operation mnemonic (thus, REPNZ SCASW is one possibility). This
specifies that the string operation is to be repeated the number of times deter
mined by CX. (Refer to instruction descriptions.)

3. Each can be coded with or without symbolic memory operands.

• If symbolic operands are coded, the assembler can check the addressability
of the operands.

Table 6-1. String Instruction Mnemonics

Operation Mnemonic if Mnemonic if Mnemonic if
Being Operand Is Operand Is Symbolic Operands

Performed Byte String Word String Are Coded*

Move MOVSB MOVSW MOVS
Compare CMPSB CMPSW CMPS
Load ALI AX LODSB LODSW LODS
Store from ALI AX STOSB STOSW STOS
Com pare to ALI AX SCASB SCASW SCAS
Block Input INSB INSW INS
Block Output OUTSB OUTSW OUTS

*If symbolic operands are coded, the assembler can check their addressability. Also, their
TYPEs determine the opcode generated.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

• Anonymous references that use the hardware defaults should be coded
using the operand-less forms (e.g. MOVSB, MOVSW), to avoid the
cumbersome (but otherwise required):

MOVS ES:BYTE PTR [DI], [SI]

as opposed to the simple:

MOVSB

• Anonymous references that do not use the hardware defaults require both
segment and type to be explicitly specified:

MOVS ES:BYTE PTR [DI], SS:[SI]

• Never use [BX] or [BP] addressing modes with string instructions.

4 If the instruction mnemonic is coded without operands (e.g., MOVSB,
MOVSW), then the segment register defaults are as follows:

• Sl defaults to an offset in the segment addressed by OS,

• 01 is required to be an offset in the segment addressed by ES.

Thus, the direction of data flow for the default case in which no operands are
specified is from the segment addressed by OS to the segment addressed by ES.

5. If the instruction mnemonic is coded with operands (e.g. MOVS, CMPS), the
operands can be anonymous (indirect) or they can be variable references.

Example:

DESTSTRING EQU ES:BYTE PTR [DI]

SRCSTRING EQU DS:BYTE PTR [SI]

ASSUME CS:CODE, DS:DATA, ES:DATA1

DATA SEGMENT

SRCARRAY DB 10 DUP (1)

DATA ENDS

DATA1 SEGMENT

DESTARRAY DB 10 DUP (?)

DATA1 ENDS

CODE SEGMENT
MOV
MOV
MOV
MOV

MOV
MOV

AX,
D S ,
AX,
E S ,

S I ,
D I ,

DATA
AX
DATA1
AX

OFFSET
OFFSET

; I NIT

; I NIT

SRCARRAY
DESTARRAY

DS

ES

;INIT POINTER REGISTERS

MOV CX, 10 ;NUMBER OF ELEMENTS
REP MOVS DESTSTRING, SRCSTRING

6-5

The 8086/8087/8088 Instruction Set

6-6

;PERFORM STRING OPERATION

CODE ENDS

Mnemonic Synonyms

There are some machine operations that can have different mnemonics. The dif
ferent mnemonics are all synonyms in that they refer to the same machine instruc
tions. They are supplied by the assembler to allow you to think of the operation in
terms that are more helpful for your task. Many of the conditional jump instruc
tions have more than one mnemonic. When used after a compare, the conditional
jump mnemonic can express the type of compare or the result of the compare in
terms of the flags that were set. For example,

CMP DEST, SRC
JE LAB1 ;jump if dest is equal to source

or

CMP DEST, SRC
JZ LAB1 ;jump if zero flag set (dest = src)

In both cases, the same instruction will be encoded for the jump. Programmers
familiar with other assembly languages that use conditional jump mnemonics that
refer to flags may be more comfortable using this form. However, the first form that
expresses the relationship the compare is checking between the operands is more
expressive.

Organization of the Instruction Set

Instructions are described in this section in six functional groups:

• Data transfer

• Arithmetic

• Logic

• String manipulation

• Control transfer

• Processor control

Each of the first three groups mentioned in the preceding list is further subdivided
into an array of codes that specify whether the instruction is to act upon immediate
data, register or memory locations, whether 16-bit words, or 8-bit bytes are to be
processed, and what addressing mode is to be employed. All of these codes are listed
and explained in detail, but you do not have to code each one individually. The con
text of your program automatically causes the assembler to generate the correct
code. There are three general categories of instructions within each of the three func
tional groups mentioned:

I. Register or memory space to or from register

2. Immediate data to register or memory

3. Accumulator to or from registers, memory, or ports

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Data Transfer

Data transfer operations are divided into four classes:

1 general purpose

2 accumulator-specific

3 address-object

4 flag

None affect flag settings except SAHF and POPF.

General Purpos(~ Transfers

Four general purpose data transfer operations are provided. These may be applied
to most operands, though there are specific exceptions. The general purpose
transfers (except XCHG) are the only operations that allow a segment register as an
operand.

- MOV performs a byte or word transfer from the source (rightmost) operand to
the destination (leftmost) operand.

- PUSH decrements the SP register by two and then transfers a word from the
source operand to the stack element currently addressed by SP.

- POP transfers a word operand from the stack element addressed by the SP
register to the destination operand and then increments SP by 2.

-- XCHG exchanges the byte or word source operand with the destination operand.
The segment registers may not be operands of XCHG.

Accumulator-Specific Transfers

Three accumulator-specific transfer operations are provided:

- IN transfers a byte (or word) from an input port to the AL register (or AX
register). The port is specified either with an inline data byte, allowing fixed
access to ports 0 through 255, or with a port number in the DX register, allowing
variable access to 64K input ports.

- OUT is similar to IN except that the transfer is from the accumulator to the
output port.

- XLAT performs a table lookup byte translation. The AL register is used as an
index into a 256-byte table addressed by the BX register. The byte operand so
selected is transferred to AL.

Address-Object Transfers

Three address-object transfer operations are provided:

-- LEA (load effective address) transfers the offset address of the source operand to
the destination operand. The source operand must be a memory operand and the
destination operand must be a 16-bit general, pointer, or index register.

- LDS (load pointer into DS) transfers a "pointer-object" (i.e., a 32-bit object
containing an offset address and a segment address) from the source operand
(which must be a doubleword memory operand) to a pair of destination registers.
The segment address is transferred to the DS segment register. The offset address
is transferred to the 16-bit general, pointer, or index register that you coded.

- LES (load pointer into ES) is similar to LDS except that the segment address is
transferred to the ES segment register.

6-7

The 8086/8087/8088 Instruction Set

6-8

Flag Register Transfers

Four flag register transfer operations are provided:

- LAHF (load AH with flags) transfers the flag registers SF, ZF, AF, PF, and CF
(the 8080 flags) into specific bits of the All register.

- SAHF (store AH into flags) transfers specific bits of the AH register to the flag
registers, SF, ZF, AF, PF, and CF.

- PUSHF (push flags) decrements the SP register by two and transfers all of the
flag registers into specific bits of the stack element addressed by SP.

- POPF (pop flags) transfers specific bits of the stack element addressed by the SP
register to the flag registers and then increments SP by two.

Arithmetic

The 8086/8088 provides the four basic mathematical operations in a number of dif
ferent varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic are provided. Standard twos complement representation of signed values
is used. The addition and subtraction operations serve as both signed and unsigned
operations. In these cases the flag settings allow the distinction between signed and
unsigned operations to be made (see Conditional Transfer). Correction operations
are provided to allow arithmetic to be performed directly on unpacked decimal
digits or on packed decimal representations.

Flag Register Settings

Six flag registers are set or cleared by arithmetic operations to reflect certain proper
ties of the result of the operation. They generally follow these rules (see also Appen
dix C):

- CF is set if the operation results in a carry out of (from addition) or a borrow into
(from subtraction) the high-order bit of the result; otherwise, CF is cleared.

- AF is set if the operation results in a carry out of (from addition) or a borrow into
(from subtraction) the low-order four bits of the result; otherwise, AF is cleared.

- ZF is set if the result of the operation is zero; otherwise, ZF is cleared.

- SF is set if the high-order bit of the result of the operation is set; otherwise, SF is
cleared.

- PF is set if the modulo 2 sum of the low-order eight bits of the result of the
operation is 0 (even parity); otherwise, PF is cleared (odd parity).

- OF is set if the operation results in a carry into the high-order bit of the result but
not a carry out of the high-order bit, or vice versa; otherwise, OF is cleared.

Addition

Five addition operations are provided:

- ADD performs an addition of the source and destination operands and returns
the result to the destination operand.

- ADC (add with carry) performs an addition of the source and destination
operands, adds one if the CF flag is found previously set, and returns the result to
the destination operand.

- INC (increment) performs an addition of the source operand and one, and
returns the result to the operand.

- AAA (unpacked BCD (ASCII) adjust for addition) performs a correction of the
result in AL of adding two unpacked decimal operands, yielding an unpacked
decimal sum.

- DAA (decimal adjust for addition) performs a correction of the result in AL of
adding two packed decimal operands, yielding a packed decimal sum.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Subtraction

Seven subtraction operations are provided:

- SUB performs a subtraction of the source from the destination operand and
returns the result to the destination operand.

- SBB (subtract with borrow) performs a subtraction of the source from the
destination operand, subtracts one if the CF flag is found previously set, and
returns the result to the destination operand.

- DEC (decrement) performs a subtraction of one from the source operand and
returns the result to the operand.

- NEG (negate) performs a subtraction of the source operand from zero and
returns the result to the operand.

- CMP (compare) performs a subtraction of the source destination operand,
causing the flags to be affected, but does not return the result.

- AAS (unpacked BCD (ASCII) adjust for subtraction) performs a correction of
the result in AL of subtracting two unpacked decimal operands, yielding an
unpacked decimal difference.

- DAS (decimal adjust for subtraction) performs a correction of the result in AL of
subtracting two packed decimal operands, yielding a packed decimal difference.

Multiplication

Three multiplication operations are provided:

- MUL performs an unsigned multiplication of the accumulator (AL or AX) and
the source operand, returning a double length result to the accumulator and its
extension (AL and AH for 8-bit operation, AX and DX for 16-bit operation). CF
and OF are set if the top half of the result is non-zero.

-- IMUL (integer multiply) is similar to MUL except that it performs a signed
multiplication. CF and OF are set if the top half of the result is not the sign
extension of the low half of the result.

- AAM (unpacked BCD (ASCII) adjust for multiply) performs a correction of the
result in AX of multiplying two unpacked decimal operands, yielding an
unpacked decimal product.

Division

There are three division operations provided and two sign-extension operations to
support signed division:

- DIV performs an unsigned division of the accumulator and its extension (AL and
AH for 8-bit operation, AX and DX for 16-bit operation) by the source operand
and returns the single length quotient to the accumulator (AL or AX), and
returns the single length remainder to the accumulator extension (AH or DX).
The flags are undefined. Division by zero generates an interrupt of type O.

- IDIV (integer division) is similar to DIV except that it performs a signed division.

- AAD (unpacked BCD (ASCII) adjust for division) performs a correction of the
dividend in AL before dividing two unpacked decimal operands, so that the result
will yield an unpacked decimal quotient.

- CBW (convert byte to word) performs a sign extension of AL into AH.

- CWD (convert word to double word) performs a sign extension of AX into DX.

6-9

The 8086/8087/8088 Instruction Set

6-10

Logic

The 8086/8088 provides the basic logic operations for both 8- and 16-bit operands.

Single-Operand Operations. Three-single-operand logical operations are provided:

- NOT forms the one's complement of the source operand and returns the result to
the operand. Flags are not affected.

- Shift operations of four varieties are provided for memory and register operands:
SHL (shift logical left), SHR (shift logical right), SAL (shift arithmetic left), and
SAR (shift arithmetic right). Single bit shifts, and variable bit shifts with the shift
count taken from the CL register are available. The CF flag becomes the last bit
shifted out, OF is defined only for shifts with count of 1, and is set if the final
sign bit value differs from the previous value of the sign bit, and PF, SF, and ZF
are set to reflect the resulting value.

- Rotate operations of four varieties are provided for memory and register
operands: ROL (rotate left), ROR (rotate right), RCL (rotate through CF left),
and RCR (rotate through CF right). Single bit rotates, and variable bit rotates
with the rotate count taken from the CL register, are available. The CF flag
becomes the last bit rotated cut; OF is defined only for shifts with count of 1, and
is set if the final sign bit value differs from the previous value of the sign bit.

Two-Operand Operations

Four two-operand logical operations are provided. The CF and OF flags are cleared
on all operations; SF, PF, and ZF reflect the result.

- AND performs the bitwise logical conjunction of the source and destination
operand and returns the result to the destination operand.

- TEST performs the same operations as AND, causing the flags to be affected but
does not return the result.

- OR performs the bitwise logical inclusive disjunction of the source and
destination operand and returns the result to the destination operand.

- XOR performs the bitwise logical exclusive disjunction of the source and
destination operand and returns the result to the destination operand.

String Manipulation

One-byte instructions perform various primitive operations for the manipulation of
byte and word strings (sequences of bytes or words). Any primitive operation can be
performed repeatedly in hardware by preceding its instruction with a repeat prefix
(see REP). The single-operation forms may be combined to form complex string
operations with repetition provided by iteration operations.

Hardware Operation Control

All primitive string operations use the SI register to address the source operands.
The DI register is used to address the destination operands that reside in the current
extra segment. If the DF flag is cleared, the operand pointers are incremented after
each operation, once for byte operations and twice for word operations. If the DF
flag is set, the operand pointers are decrement~~d after each operation. See Processor
Control for setting and clearing DF.

Any of the primitive string operation instructions may be preceded with a one-byte
prefix indicating that the operation is to be repeated until the operation count in CX
is satisfied. The test for completion is made prior to each repetition of the operation.
Thus, an initial operation count of zero in ex will cause zero executions of the
primitive operation.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

The repeat prefix byte also designates a valU(: to compare with the ZF flag. If the
primitive operation is one that affects the ZF flag, and the ZF flag is unequal to the
designated value after any c:xecution of the primitive operation, the repetition is ter
minated. This permits the scan operation, for example, to serve as a scan-while or a
scan-until.

During the execution of a repeated primitive operation, the operand index registers
(SI and DI) and the operation count register (eX) are updated after each repetition,
whereas the instruction pointer will retain the offset address of the repeat prefix byte
(assuming it immediately precedes the string operation instruction). Thus, an inter
rupted repeated operation will be correctly resumed when control returns from the
interrupting task.

Using more than one prefix on an instruction is processor dependent. Please refer to
the User's Manual for your processor for further information.

Primitive String Operation

Five primitive string operations are provided:

- MOYS (MOYSB, MOVSW) transfers a byte (or word) operand from the source
(rightmost) operand to the destination (leftmost) operand. As a repeated opera
tion, this provides for moving a string from one location in memory to another.

-- CMPS (CMPSB, CMPSW) subtracts the rightmost byte (or word) operand from
the leftmost operand and affects the flags but does not return the result. As a
repeated operation, this provides for comparing two strings. With the appro
priate repeat prefix it is possible to determine after which string element the two
strings become unequal, thereby establishing an ordering between the strings.

- SCAS (SCASB, SCASW) subtracts the destination byte (or word) operand from
AL (or AX) and affects the flags but does not return the result. As a repeated
operation, this provides for scanning for the occurrence of, or departure from, a
given value in the string.

-- LODS (LODSB, LODSW) transfers a byte (or word) operand from the source
operand to AL (or AX). This operation ordinarily would not be repeated.

- STOS (STOSD, STOSW) transfers a byte (or word) operand from AL (or AX) to
the destination operand. As a repeated operation, this provides for filling a string
with a given value.

In all the cases above, the source operand is addressed by SI and the destination
operand is addressed by Dl. Only in CMPB/CMPW does the DI-indexed operand
appear as the rightmost operand.

6-11

The 8086/8087/8088 Instruction Set

6-12

Software Operation Control

The repeat prefix provides for rapid iteration in a hardware-repeated string opera
tion. The iteration control operations (see LOOP) provide this same control for
implementing software loops to perform complex string operations. These iteration
operations provide the same operation count update, operation completion test, and
ZF flag tests that the repeat prefix provides.

By combining the primitive string operations and iteration control operations with
other operations, it is possible to build sophisticated yet efficient string manipula
tion routines. One instruction that is particularly useful in this context is XLA T. It
permits a byte fetched from one string to be translated before being stored in a sec
ond string, or before being operated upon in some other fashion. The translation is
performed by using the value in the AL regisIer as an index into a table pointed at by
the BX register. The translated value obtained from the table then replaces the value
initially in the AL register (see XLAT).

Control Transfer

Four classes of control transfer operations may be distinguished: calls, jumps, and
returns; conditional transfers; iteration control; and interrupts.

All control transfer operations cause the program execution to continue at some new
location in memory, possibly in a new code segment. Conditional transfers are pro
vided for targets in the range -128 to + 127 bytes from the transfer.

Calls, Jumps, and Returns

Two basic varieties of calls, jumps, and returns are provided-those that transfer
control within the current code segment, and those that transfer control to an arbi
trary code segment, which then becomes the current code segment. Both direct and
indirect transfers are supported; indirect transfers make use of the standard address
ing modes as described in above.

The three transfer operations are described below.

- CALL pushes the offset address of the next instruction onto the stack (in the case
of an inter-segment transfer the CS segment register is pushed first) and then
transfers control to the target operand.

- JMP transfers control to the target operand.

- RET transfers control to the return address saved by a previous CALL operation,
and optionally may adjust the SP register so as to discard stacked parameters.

Intra-segment direct calls and jumps specify a self-relative direct displacement, thus
allowing position independent code. A shortened jump instruction is available for
transfers in the range -128 to +127 bytes from the instruction for code compaction.

Conditional Jumps

The conditional transfers of control perform a jump contingent upon various
Boolean functions of the flag registers. The destination must be within a -128 to
+ 127 byte range of the instruction. Table 6-2 shows the available instructions, the
conditions associated with them, and their interpretation.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Table 6-2. 8086/8087 Conditional Transfer Operations

Instruction Condition Interpretation

JE or JZ ZF = 1 "equal" or "zero"

JL or JNGE (SF xor OF) = 1 "less" or "not greater or equal"

JLE or JNG ((SF xor OF) or ZF) =
1 "less or equal" or "not greater"

JB or JNAE CF = 'I "below" or "not above or equal"
or JC or "carry"

JBE or JNA (CF or ZF) = 1 "below or equal" or "not above"

JP or JPE PF = 'I "parity" or "parity even"

JO OF = 1 "overflow"

JS SF = 'I "sign"

JNE or JNZ ZF = () "not equal" or "not zero"

JNLorJGE (SF xor OF) = 0 "not less" or "greater or equal"

JNLE or JG ((SF xor OF) or ZF) =
0 "not less or equal" or "greater"

JNB or JAE CF=O "not below" or "above or equal"
orJNC or "no carry"

JNBE or JA (CF or ZF) = 0 "not below or equal" or "above"

JNP or JPO PF = I) "not parity" or "parity odd"

JNO OF=O "not overflow"

JNS SF = I) "not sign"

." Above" and "below" refer to the relation between two unsigned values, while "greater"
and "less" refer to the relation between two signed values,

Iteration Control

The iteration control transfer operations perform leading- and trailing-decision loop
control. The destination of iteration control transfers must be within a -128 to + 127
byte range of the instruction. These operations are particularly useful in conjunction
with the string manipulation operations.

There are four iteration control transfer operations provided:

- LOOP decrements the ex ("count") register by one and transfers if ex is not
zero.

- LOOPZ (also called LOOPE) decrements the ex register by one and transfers if
ex is not zero and the ZF flag is set (loop while zero or loop while equal).

- LOOPNZ (also called LOOPNE) decrements the ex register by one and
transfers if ex is not Zt:ro and the ZF flag is cleared (loop while not zero or loop
while not equal).

- JeXZ transfers if the ex register is zero.

Interrupts

Program execution control may be transferred by means of operations similar in
effect to that of external interrupts. All interrupts perform a transfer by pushing the
flag registers onto the stack (as in PUSHF), and then performing an indirect inter
segment call through an element of an interrupt transfer vector located at absolute
locations 0 through 3FFH. This vector contains a four-byte element for each of up
to 256 different interrupt types.

6-13

The 8086/8087/8088 Instruction Set

6-14

Three interrupt transfer operations provided.

- INT pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through anyone of the 256 vector elements.
A one-byte form of this instruction is available for interrupt type 3.

- INTO pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through vector element 4 if the OF flag is set
(trap on overflow). If the OF flag is cleared, no operation takes place.

- IRET transfers control to the return address saved by a previous interrupt
operation and restores the saved flag registers (as in POPF).

Processor Control

Various instructions and mechanisms are provided for control and operation of the
processor and its interaction with its environment.

Flag Operations

There are seven operations provided that operate directly on individual flag
registers.

- ClC clears the CF flag.

- CMC complements the CF flag.

- STC sets the CF flag.

- ClD clears the DF flag, causing the string operations to auto-increment the
operand pointers.

- STD sets the DF flag, causing the string operations to auto-decrement the
operand pointers.

- ClI clears the IF flag, disabling external :interrupts (except for the non-maskable
external interrupt).

- STI sets the IF flag, enabling external interrupts after the execution of the next
instruction.

Processor Halt

The Hl T instruction causes the 8086 proces:';or to enter its halt state. The halt state
is cleared by an enabled external interrupt or RESET.

Processor Wait

The WAIT instruction causes the processor to enter a wait state if the signal on its
TEST pin is not asserted. The wait state may be interrupted by an enabled external
interrupt. When this occurs the saved code location is that of the WAIT instruction,
so that upon return from the interrupting task, the wait state is re-entered. The wait
state is cleared and execution resumed when the TEST signal is asserted. Execution
resumes without allowing external interrupts until after the execution of the next
instruction. This instruction allows the processor to synchronize itself with external
hardware.

Processor Escape

The ESC instruction provides a mechanism by which other processors may receive
their instructions from the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 processor does no operation for the ESC instruction
other than to access a memory operand.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Bus Lock

A special one-byte prefix may precede any instruction causing the processor to assert
its bus-lock signal for the duration of the operation caused by that instruction. This
has use in multiprocessing applications (see LOCK).

Single Step

When the TF flag register is set, the processor generates a type 1 interrupt after the
execution of each instruction. During interrupt transfer sequences caused by any
type of interrupt, the TF flag is cleared after the push-flags step of the interrupt
sequence. No instructions are provided for setting or clearing TF directly. Rather,
the flag register image saved on the stack by a previous interrupt operation must be
modified, so that the subsequent interrupt return operation (lRET) restores TF set.
This allows a diagnostic task to single-step through a task under test, while still exe
cuting normally itself.

If the single-stepped instruction itself clears the TF flag, the type 1 interrupt will still
occur upon completion of the single-stepped instruction. If the single-stepped
instruction generates an interrupt or if an enabled external interrupt occurs prior to
the completion of the single-stepped instruction, the type 1 interrupt sequence will
occur after the interrupt sequence of the generated or external interrupt, but before
the first instruction of the interrupt service routine is executed.

The 8086/8088 hardware protects the execution of the instruction immediately
following a POP or a MOV to a segment register instruction from any kind of inter
rupt, including type 1 interrupts used to single-step. When single-stepping through a
task under test, the single-step interrupt is not recognized until the instruction
following the POP or MOV to a segment register instruction is executed.

Example

TEST_TASK SEGMENT
ASSUME CS:TEST_TASK

INSTRUC1: POP DS
INSTRUC2: POP BX
INSTRUC3: ADD AX, [BX]

TEST_TASK ENDS

When single-stepping through TEST_TASK, INSTRUCI steps to INSTRUC3
since the single-step interrupt is not recognized by the 8086/8088 until the instruc
tion following the POP to the DS segment register (POP BX) is executed.

Instruction Description Formats

The formats presented in the individual instruction descriptions and briefly dis
cussed here reflect the assembly language processed by the 8086/8087/8088 Macro
Assembler (ASM86).

6-15

The 8086/8087/8088 Instruction Set

6-16

Format Boxes

The individual instruction descriptions show first a format box such as the following
example.

MemlReg * Immediate to Reg

"--_O_p_c_o_d_e_ _M_o_d_R __ M_-L_ === =r= -=== _-,-__ D_a_t_a _-L_ = ~
These are byte-wise representations of the object code generated by the assembler
and are interpreted as follows:

• Opcode is the 8-bit opcode for the instruction. The actual opcode generated is
defined in the "Opcode" column of the instruction table that follows each
format box.

• ModRM is the byte that specifies the operands of the instruction. It contains a
2-bit mode field (MOD), a 3-bit registr~r field (REG), and a 3-bit Register or
Memory (RIM) field.

• Dashed blank boxes following the M odRM box are for any displacement
required by the mode field.

• Data is for a byte of immediate data.

• A dashed blank box following a Data box is used whenever the immediate
operand is a word quantity.

Instruction Detail Tables

Following each format box, an instruction detail table shows the opcode, the
number of clocks required for the operation to take place, the actual operation per
formed, and a coding example for each variant of the instruction.

The instruction detail table for the instruction IMUL is shown below. The examples
in the table are neither complete nor restrictive; anyplace there is a memory operand,
any of the seven memory addressing modes can be used.

Opcode Clocks Operation Coding Example

F6 80-98 AX <- AL • Reg 8 IMUL BL

F6 (86-104) + EA AX AL' Mem 8 IMUL BYTESOMETHING

F7 128-154 DX:AX AX' Reg 16 IMUL BX

F7 (134-160) + EA DX:AX <- AX • Mem 16 IMUL WORDSOMETHING

Flags

The flags produced by each instruction are represented by a table such as the
following:

o D ITS ZAP C

x - u u u u x

ASM86

ASM86 The 8086/8087/8088 Instruction Set

The top line in the table represents the individual flags, and the lower line shows the
effect on each flag by the instruction. The letters, numbers and symbols used in the
table are defined as follows:

AX

AH

AL

BX

BH

BL

CX

CH

CL

DX

DH

DL

SP

BP

IP

Flag

o
D
I
T
S
Z
A
P
C

Effect
Code

x

u

o

8086/8088
Descriptor

Flags

DI

SI

CS

DS

ES

SS

Definition

Overflow
Direction (used in string ops)
Interrupt Enable (1 =enablecl)
Single Step Trap Flag (causes interrupt 1 after next instruction)
Sign
Zero
Auxiliary Carry (used primarily in BCD ops)
Parity
Carry

Effect

Modified by the instruction; result depends on operands.

Not modified.

Undefined after the instruction.

Set to 1 by the instruction.

Set to 0 by the instruction.

Table 6-3. Symbols

Meaning

Accumulator (16-bit)

Accumulator (high-order byte)

Accumulator (low-order byte)

I~egister BX (16-bit), which may be split and addressed as two
8-bit registers.

High-order byte of relJister BX.

ILow-order byte of register BX.

Register CX (16-bit), which may be split and addressed as two
a-bit registers.

High-order byte of relJister CX.

Low-order byte of register CX.

'Register DX (16-bit), which may be split and addressed as two
8-bit registers.

High-order byte of re!Jister DX.

Low-order byte of register DX.

Stack pOinter (16-bit)

Base pointer (16-bit)

Instruction Pointer (1f3-bit)

16-bit register space, in which nine flags reside.

Destination Index register (16-bit)

Stack Index register (16-bit)

Code Segment register (16-bit)

Data Segment register (16-bit)

Extra Segment register (16-bit)

Stack Segment register (16-bit)

6-17

The 8086/8087/8088 Instruction Set

6-18

8086/8088
Descriptor

REG8
REG16

LSRC,RSRC

reg

EA
rIm

mode

w

d

(...)

(BX)

((BX))

(BX) + 1, (BX)

((BX) + 1, (BX))

Concatenation, e.g.,
((OX) + 1: (OX))

addr

addr-Iow
addr-high

addr + 1: addr

data

data-low
data-high

disp
disp-Iow

disp-high

+

%

&

I
II

Table 6-3. Symbols (Cont'd.)

Meaning

The name or encoding of an 8-bit CPU register location.
The name or encoding of an 16-bit CPU register location.

Refer to operands of an instruction, generally left source and
right source when two operands are used. The leftmost
operand is also called the destination operand, and the
rightmost is called tile source operand.
A field that specifie:3 REG8 or REG16 in the description of an
instruction.

Effective address (Hi-bit)
Bits 2, 1, and 0 of the MODRM byte used in accessing
memory operands. 'rhis 3-bit field defines EA, in conjunction
with the mode and w fields.

Bits 7 and 6 of the MODRM byte. This 2-bit field defines the
addressing mode.
A 1-bit field in an instruction, identifying byte instructions
(w=O), and word instructions (w=1)

A 1-bit field in an instruction, "d" identifies direction, i.e.
whether a specified register is source or destination.
Parentheses mean the contents of the enclosed register or
memory location.

Represents the contents of register BX, which can mean the
address where an 8··bit operand is located. To be so used in
an assembler instruction, BX must be enclosed only in
square brackets.
Means this 8-bit operand, the contents of the memory
location pointed at by the contents of register BX. This nota
tion is only descriptive for use in this chapter. It cannot
appear in source statements.

Means the address (of a 16-bit operand) whose low-order
8-bits reside in the memory location pOinted at by the con
tents of register BX and whose high-order 8-bits reside in the
next sequential memory location, (BX) + 1.
Means the 16-bit opE:rand that resides there.

Means a 16-bit word that is the concatenation of two 8-bit
bytes, the low-order byte in the memory location pOinted at
by OX and the high-order byte in the next sequential memory
location.
Address (16-bit) of a byte in memory.

Least significant byte of an address.
Most significant bytH of an address.

Addresses of two consecutive bytes in memory, beginning at
addr.
Immediate operand (8-bit if w=O; 16-bit if w=1).

Least significant byte of 16-bit data word.
Most significant byte of 16-bit data word.

Displacement
Least significant byte of 16-bit displacement.

Most significant byte of 16-bit displacement.
Assignment
Addition
Subtraction
Multiplication
Division
Modulo
And
Inclusive or
Exclusive or

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Table 6-4" Effective Address Calculation Time

EA Components Clocks·

Displacement Only 6

Base or Index Only (BX BP, SI, 01) 5

Displacement
+ 9

Base or Index (BX, BP, SI, 01)

Base BP+DI, BX+SI 7
+

Index BP+SI, BX+DI 8

Displacement BP+DI+DISP 11
+ BX+SI+ DISP

Base
+ BP+SI+ DISP 12

Index BX+DI+DISP

* Add 2 clocks for segment override

6-19

MNEMONIC ASM86

Sample 8086/8088 Instruction

Format

+L..--..-----I+
tit I data data]

L- immediate data (either 8- or 16-bits)

an offset value (either 8- or 16-bits)

a mod I rm byte if needed

the opcode

Opcode Clocks Operation Coding Example

(the value (number of clocks (the machine operation) MNEMONIC

of the required)

opcode

byte)

Operation

(A description of the machine operation.)

Flags

o 0 ITS ZAP C

(shows the effect on the flags)

Description

(Describes the use/ operation of the instruction.)

6-20

ASM86

ASCII Adjust 'for Addition

Format

Opcode

Opcode Clocks Operation

37 4 adjust AL, flags, AH

Operation

if (AL & OFH) > 9 or AF = 1 then do;
AL +- AL + 6
AH +- AH + 1
CF +- AF +-1

end;
AL +- AL & OFH

Flags

o 0 ITS ZAP C

U - - - U U x U x

Description

Coding Example

AAA

AAA is used to correct the result of adding two unpacked BCD digits in the AL
register. After the normal byte addition, AAA tests the auxiliary carry flag (AF),
which is set by a carry out of the low nibble of AL. If either the AF is set or the low
nibble of AL is greater than 9, then a carry bit is added to the AH register, and the
low nibble of AL is increased by 6 to produce the decimal digit. AL is masked to 4
bits whether an adjustment was performed or not, thus always leaving an unpacked
BCD result in the low nibble of AL. High nibble data does not affect the corrected
result of the addition, so ASCII digits can be added correctly by following the AAA
with an OR AL,30H to restore the result to an ASCII character. The digit carry, in
AH, is not affected by this restoration.

AAA

6-21

AAD

6-22

ASCII Adjust for Division

Format

Long -- Opcode ~

Opcode Clocks Operation Coding Example

D5,OA 60 Adjust AL, AH prior to division AAD

Operation

AL ~ AL + (AH * OAH)
AH ~O

Flags

0 0 T S Z A P C

U - - - x x u x u

Description

AAD is used to prepare 2 unpacked BCD digits (least significant in AL, most signifi
cant in AH) for a division operation that will yield an unpacked result. This is
accomplished by multiplying AH by 10 and adding the product to AL. Then AH is
zeroed, leaving AX with the binary equivalent of the original unpacked 2-digit
number.

ASM86

ASM86

ASCII Adjust 1:or Multiplication

Format

Long -- Opcode

Opcode

D4,OA

Operation

AH ~ (AL I OAH)

Clocks

AL ~ (AL MOD OAH)

Flags

o 0 ITS ZAP C

U - - - x x u x u

Description

Operation

Adjust AL, AH after

multiplication

Coding Example

AAM

AAM is used to produce 2 unpacked BCD digits (least significant in AL, most
significant in AH) after a multiplication of 2 unpacked digits. This is accomplished
by dividing the binary product in AL by ten. The quotient is left in AH as the most
significant digit, and the remainder is left in AL as the least significant digit.

AAM

6-23

AAS

6-24

ASCII Adjust for Subtraction

Format

Opcode

Opcode Clocks Operation

3F 4 adjust AL, flags, AH

Operation

if (AL & OFH) > 9 or AF = 1 then do;
AL «- AL - 6
AH «- AH -1
CF «- AF «- 1

end;
AL «- AL & OFH

Flags

o 0 ITS ZAP C

U U U x U x

Description

Coding Example

AAS

AAS is used to correct the result of subtracting two unpacked BCD digits in the AL
register. After the normal byte subtraction, AAS tests the auxiliary carry flag (AF),
which is set by a carry out of the low nibble of AL. If the AF is set or the low nibble
of AL is greater than 9, then a borrow bit is subtracted from AH, and the low nibble
of AL is decreased by 6 to produce the proper decimal digit. AL is masked to 4 bits
whether an adjustment was performed or not, thus always leaving an unpacked
BCD result in the low nibble of AL. High nibble data does not affect the corrected
result of the subtraction, so ASCII digits can be subtracted correctly by following
the AAS with an OR AL,30H to restore the result to an ASCII character. The digit
borrow, in AH, is not affected by this restoration.

ASM86

ASM86

Integer Add With Carry

Format

Memory/Reg + Reg

[Opcode ModRM

Opcode Clocks

12 a
12 9+EA

13 :1

13 9+EA

10 16+ EA

11 16+EA

Immed to AX/ AL

Opcode Data

Opcode Clocks

14 4

15 4

Immed to Memory/Reg

r==I==~
Operation

l~eg8 +- CF + Reg 8 + Reg8

l~eg8 +- CF + Reg8 + Mem8

l~eg16 +- CF + Reg16 + Reg16

Reg'16 +- CF + Reg16 + Mem16

Mem8 +- CF + Mem8 + F~eg8

Mem16 +- CF + Mem16 + Reg16

L=~
Operation

AL +- CF + AL + Immed8

AX +- CF + AX + Immed16

Coding Example

ADC BL,CL

ADC BL,BYTESOMETHING

ADC BX,CX

ADC BX,WORDSOMETHING

ADC BYTESOMETHING,BL

ADC WORDSOMETHING,BX

Coding Example

ADC AL,5

ADC AX,400H

,--_O_pc_o_d_e_-,-_N __ lo_d_R_M_* _.L = _ _ __~ ____ D_a_ta ____ ~_ ==== ~
"-(Reg field=010)

Opcode Clocks Operation Coding Example

80 1\ Reg8 +- CF + Reg8 + Immed8 ADC BL,32

80 17+ EA Mem8 +- CF + Mem8 + Immed8 ADC BYTESOMETHING,32

81 Reg16 +- CF + Reg16 + Immed16 ADC BX,1234H

81 17+ EA Mem16 +- CF + Mem16 + Immed16 ADC WORDSOMETHING,1234H

83 4 l~eg16 +- CF + Reg16 + Immed8 ADC BX,32

83 17+ EA Mem16 +- CF + Mem16 + Immed8 ADC WORDSOMETHING,32

(lmmed8 is sign-extended

before add in last 2 easEls)

Operation

LeftOpnd +- CF + LeftOpnd + RightOpnd

Flags

o 0 T S ZAP C

x - x x x x x

Description

The sum of two operands and the initial state of the carry flag replaces the left
operand.

ADC

6-25

ADD

6-26

Integer Addition

Format

Memory/Reg + Reg

-=r--~ Opcode ModRM
-- ---

Opcode Clocks

02 3

02 9+EA

03 3

03 9+EA

00 16+EA

01 16+EA

Immed to AX/ AL

Opcode Data

Opcode Clocks

04

05 4

Immed to Memory/Reg

Operation

Reg8 +- Reg8 + Reg8

Reg8 +- Reg8 + Mem8

Reg16 +- Reg16 + Reg16

Reg16+- Reg16 + Mem16

Mem8 +- Mem8 + Reg8

Mem16 +- Mem16 + Ren16

=~
Operation

AL +- AL + Immed8

AX +- AX + Immed16

Coding Example

ADD BL,CL

ADD BL,BYTESOMETHING

ADD BX,CX

ADD BX,WORDSOMETHING

ADD BYTESOMETHING,BL

ADD WORDSOMETHING,BX

Coding Example

ADD AL,5

ADD AX,400H

L--_O_p_c_o_d_e_.....L._M_o_d_R_m._*_.....L._ =~~_-=c= ~~_-__ --,-__ D_a_t_a __ -,---_ = ~
*-(Reg field = 000)

Opcode

80

80

81

81

83

83

Operation

Clocks

4

17+EA

4

17+EA

4

17+EA

Operation

Reg8 +- Reg8 + Immed8

Mem8 +- Mem8 + Immed8

Reg16 +- Reg16 + Immed16

Mem16 +- Mem16 + Immed16

Reg16 +- Reg16 + Immed8

Mem16 +- Mem16 + Immed8

(Immed8 is sign-extended

before add in last 2 cases)

LeftOpnd +- LeftOpnd + RightOpnd

Flags

o 0 T S ZAP C

x - x x x x x

Description

The sum of two operands replaces the left operand.

Coding Example

ADD BL,32

ADD BYTESOMETHING,32

ADD BX,1234H

ADD WORDSOMETHING,1234H

ADD BX,32

ADD WORDSOMETHING,32

ASM86

ASM86

Logical AND

Format

Memory IReg with Reg

Opcode ModRM r==I=~
Opcode Clo(:ks Operation

22 3 Reg8 +- Reg8 AND Reg8

22 9+EA Fteg8 +- Reg8 AND Mem8

23 3 Fteg16 +- Reg16 AND Regl6

23 9+EA Fteg16 +- Reg16 AND Mem16

20 16+EA Mem8 +- Mem8 AND Reg8

21 16+EA Mem16 +- Mem16 AND Reg16

Immed to AXI AL

Opcode Data c=~
Opcode Clocks Operation

24 AL +- AL AND Immed8

25 4 AX +- AX AND Immed16

Immed to Memory IReg

Opcode ModRm* C = _--'-_
*·-(Reg field = 100)

Opcode Clocks Operation

80 4 Reg8 +-- Reg8 AND Immed8

80 17+EA Mem8 Mem8 AND Immecl8

81 4 Reg16 Reg16 AND Immed16

81 17+EA Mem16 +- Mem16 AND Immed16

Operation

LeftOpnd -- LeftOpncl and RightOpnd

OF -- CF -- 0

Flags

DDT S ZAP C

o - - - x u

Description

Coding Example

AND BL,CL

AND BL, BYTESOM ETH ING

AND BX,CX

AND BX,WORDSOMETHING

AND BYTESOMETHING,BL

AND WORDSOMETHING,BX

Coding Example

AND AL,4

AND AX,400H

__ ~ ____ D_at_a ____ ~_ = ~
Coding Example

AND BL,3FH

AND BYTESOMETHING,3FH

AND BX,3FFH

AND WORDSOMETHING,3FFH

The result of a bitwise logical AND of the two operands replaces the left operand.
The carry and overflow flags are cleared.

AND

6-27

BOUND

6-28

Check Array Against Bounds [iAPX 186]

For 186 clocks, sec Appendix H.

Format

L...-_O_p_co_d_e_--'--_M_o_d_R_M._---L __ = I_ = ~
Opcode

62

Operation

Operation

if Reg16 < Mem16 at EA, or
Reg16> Mern16 at EA + 2 then
INTERRUPT 5

Coding Example

BOUND BX,ARRAYFOO_ 4

if left-operand (a register) < lower-limit (a word variable at EA)
or left-operand> upper-limit (at EA + 2) then do;

INTERRUPT 5;
end if;

Flags

N PL a 0 T S ZAP C

Description

BOUND is used to ensure that a signed array index is within the limits defined by a
two-word block of memory. This two word block might typically be found just
before the array itself and therefore be accessible at a constant offset of -4 from the
array, simplifying the addressing. The first word of the block at the effective address
contains the lower limit, and the second word contains the upper limit for the index,
which is in the register operand of the instruction. The effective address cannot be a
register operand-that is, the two-word block cannot be in registers.

ASM86

ASM86

Call

Format

Within segment or group, IP relative

Opcode DispL

Opcode Clocks

E8 19

DispH

Operation

IP -IP + Disp16

·-(SP) - return link

Within segment or group, Indirect

L-_O_P_c_o_de_---L._M __ O_d_R_M_*_L = I~ = ~
*-(Reg field = 010)

Opcode Clocks

FF 16

FF 21 +EA

FF 21 +EA

Operation

if IP-relative then do;
IP - IP + Disp16;
-(SP) - return link;

else do;
IP +- (EA);
-(SP) +- return link;

end if;

Flags

o 0 T S ZAP C

Description

Operation

IP-Reg16

·-(SP) +- return link

IP - Mem16

·-(SP) - return link

IP - Mem16

·-(SP) - return link

Coding Example

Coding Example

CALL SI

CALL WORD PTR [SIJ

CALL POINTER_ TO_FRED

There are two types of within-segment or group calls: one that is IP-relative and is
specified by the use of a NEAR label as the target address, and one in which the
target address is taken from a register or variable pointer without modification (i.e.,
is NOT IP-relative). In the first case, the 16-bit displacement is relative to the first
byte of the next instruction.

The second case is specified when the operand is any (16-bit) general, base, or index
register-as in CALL AX, CALL BP, or CALL 01, respectively-or when the
operand is a word-variable, as in CALL WORD PTR [BP] or CALL
OPEN_ROUTINE[BX] (assuming that OPEN_ROUTINE is declared a word
array or structure element). When the effective address is a variable, as in the
preceding two examples, DS is the implied segment register for all EA's not using
BP.

CALL

6-29

CALL

6-30

The return link, which is pushed to the TOS during the CALL, is the address of the
instruction following the CALL.

Inter-segment or group, Direct

Opcode

Opcode

9A

Operation

CS +- segbase;
IP +- offset;

offset

Clocks

28

-(SP) +- return link;

Flags

o D T S ZAP C

offset

Operation

CS <- segbase

IP <- offset

Inter-segment or group, Indirect

Opcode

Opcode

FF

Operation

cs +- (EA + 2);
JP +- (EA);

Flags

ModRM*

*-(Reg field = 011)

Clocks

37+EA

Operation

CS +- segbase

IP +- offset

o 0 T 5 ZAP C

Description

I
-
segbase segbase

Coding Example

CALL FAR~_LABELJOO

Coding Example

CALL DWORD PTR FOO

An intersegment or group (long or far) CALL will transfer control by replacing both
the values in CS and IP. This effectively transfers control to another segment or
group by changing both the base (paragraph number) and offset values.

ASM86

ASM86

Convert Byte to Word

Format

Opcode

Opcode Clocks

98

Operation

if (AL AND BOH) = BOH then do;
AH - OFFh

else do;
AH -0

end;

Flags

o 0 T S ZAP C

Description

Operation

convert byte in AL to word

inAX

Coding Example

CBW

CBW converts the byte in AL to a word in AX by sign extension of AL through AH.
No flags are affected.

CBW

6-31

CLC

6-32

Clear Carry Flag

Format

Opcode

Opcode

F8

Operation

CF-O

Flags

Clocks

o 0 T S ZAP C

o

Description

Operation Coding Example

clear the carry flag CLC

CLC clears the carry flag, CF. No other flags are affected.

ASM86

ASM86 CLD

Clear Direction Flag

Format

Opcode

Opcode Clocks Operation Coding Example

FC clear direction flag CLD

Operation

DF +- 0

Flags

0 0 I T S Z A P C

- 0 - -

Description

CLD clears the direction flag, DF. No other flags are affected.

6-33

ell

6-34

Clear Interrupt Enable Flag

Format

Opcode

Opcode

FA

Operation

IF ~O

Flags

Clocks

2

o D ITS ZAP C

o

Description

Operation

clear interrupt flag

Coding Example

eLi

eLI clears the interrupt enable flag, IF. No other flags are affected.

ASM86

ASM86

Complement Carry Flag

Format

Opcode

Opcode

F5

Operation

if CF = 1 then do;
CF-O

else do;
CF -1

end;

Flags

Clocks

2

o 0 T S ZAP C

x

Description

Operation

complement carry flag

Coding Example

CMC

CMC complements the carry flag, CF. No other flags are affected.

CMC

6-35

CMP

6-36

Compare Two Operands

Format

Memory/Reg with Reg

Opcode ModRM

Opcode Clocks Operation

3A 3 flags <- Reg8 - Reg8

3A 9+EA flags <- Reg8 - Mem8

3B 3 flags +-- Reg16 - Reg16

3B 9+EA flags +-- Reg16 - Mem16

38 9+EA flags +-- Mem8 - Reg8

39 9+EA flags +-- Mem16- Reg16

Immed to AX/ AL

Opcode Data =~
Opcode Clocks Operation

3C flags +-- AL -lmmed8

3D 4 flags +-- AX -lmmed16

Immed to Memory/Reg

Opcode ModRM*

*-(Reg field = 111)

Opcode

80

80

81

81

83

83

Operation

Clocks

10+EA

4

10+EA

4

10+EA

Operation

flags +-- Reg8 -lmmed8

flags +-- Mem8 - Immed8

flags +-- Reg16 -lmmed16

flags +- Mem16 -lmmed16

flags +-- Reg16 -lmmed8

flags +- Mem16 -lmmed8

(Immed 8 is sign-extended

before sub in last 2 cases)

flags +- LeftOpnd - RightOpnd

Flags

o D T S ZAP C

x x x x x x

Description

=~
Coding Example

CMP BL,CL

CMP BL,BYTESOMETHING

CMP BX,CX

CMP BX,WORDSOMETHING

CMP BYTESOMETHING,BL

CMP WORDSOMETHING,BX

Coding Example

CMP AL,5

CMP AX,400H

__ ~ ___ D_a_ta ____ ~_='~

Coding Example

CMP BL,32

CMP BYTESOMETHING,32

CMP BX,1234H

CMP WORDSOMETHING,1234H

CMP BX,32

CMP WORDSOMETHING,32

The flags are set by the subtraction of the right operand from the left operand.
Neither operand is modified. A table of signed and unsigned comparisons supported
by conditional jumps is provided under the' J cond' heading of this chapter.

ASM86

ASM86

Convert Word to Doubleword

Format

Opcode

Opcode

99

Operation

Cloc:ks

5

Operation

convert word in AX to

doubleword in OX:AX

if (AX AND 8000H) = 8000H then do;
DX +- OFFFFH

else do;
DX +- 0

end;

Flags

o 0 T S ZAP C

Description

Coding Example

cwo

CWD converts the word in AX to a doubleword in DX:AX by sign extension of AX
through DX. No flags are affected.

CWD

6-37

DAA

6-38

Decimal Adjust for Addition

Format

Opcode

Opcode Clocks Operation

27 adjust AL, flags, AH

Operation

if (AL & OFH) > 9 or AF = 1 then do;
AL +-- AL + 6

AF +-- 1

end;
if AL > 9F or CF = 1 then do;

AL +- AL + 60H
CF +-1

end;

Flags

o 0 T S ZAP C

U - x x x x x

Description

Coding Example

DAA

DAA is used to correct the result of adding two bytes, each of which contains two
packed BCD digits, in order to produce a packed decimal result. After the normal
byte addition in AL, DAA tests the auxiliary carry flag (AF), which is set by a carry
out of the low nibble of AL. If either the AF is set or the low nibble of AL is greater
than 9, then the low nibble of AL is increased by 6 to produce the correct decimal
digit, and the high nibble of AL is incremented, effecting the digit carry.

Whether this first adjustment is made or not, a second adjustment is made if AL is
greater than 9FH or if the CF is set, indicating a carry out of the high digit. In this
case, 60H is added to AL and the CF is set.

ASM86

ASM86

Decimal Adjust for Subtraction

Format

Opcode

Opcode Clocks Operation

2F 4 a.djust AL, flags, AH

Operation

if (AL & OFH) > 9 or AF = 1 then do;
AL +- AL - 6
AF +-1

end;
if AL:> 9F or CF = 1 then do;

AL +- AL - 60H
CF +-1

end;

Flags

o 0 T S ZAP C

U - x x x x x

Description

Coding Example

DAS

DAS is used to correct the result of subtracting two bytes, each of which contains
two packed BCD digits, in order to produce a packed decimal result. After the nor
mal byte subtraction in AL, DAS tests the auxiliary carry flag (AF), which is set by a
carry out of the low nibble of AL. If either the AF is set or the low nibble of AL is
greater than 9, then the low nibble of AL is reduced by 6 to produce the correct
decimal digit.

Whether this first adjustment is made or not, a second adjustment is made if AL is
greater than 9FH or the CF is set, indicating a borrow out of the high digit. In this
case, 60H is subtracted from AL and the CF is set.

DAS

6-39

DEC

6-40

Decrement by 1

Format

Word Register

IOPcode + reg I
Opcode

48+ reg

Clocks

Memory/Byte Register

Operation

Reg16 - Reg16 -1

,--_O_p_c_o_d_e_",--_M_od_R_M __ *_..I-_ = I = ~
*-(Reg field = 001)

Opcode

FE
FE
FF

Operation

Clocks

15+EA

15+EA

Operand - Operand -1

Flags

DDT 5 ZAP C

x - - - x x -

Description

Operation

Reg8 - Reg8-1

Mem8 +- Mem8-1

Mem16 +- Mem16-1

The operand is decremented by 1.

Coding Example

DEC BX

Coding Example

DEC BL

DEC BYTESOMETHING

DEC WORDSOMETHING

ASM86

ASM86

Unsigned Division

Format

Memory/Reg with AX or DX:AX

Opcode MadRM* C = _....&..-_ = ~
*--(Reg field = 110)

Opcode Clocks Operation

F6 80-90 AH,AL +- AX I Reg8

F6 (86-96) + EA AH,AL +- AX I Mem8

F7 144-162 DX,AX +- DX:AX I Reg16

F7 (150-168)+ EA DX,AX +- DX:AX I Mem16

Operation

if byte-operation then do;
if AX / divisor> OFFH then INT 0;
else do;

AL +- AX / divisor
AH +- AX MOD divisor

end if;

/ * unsigned division * /
/* unsigned modulo * I

else do; / * word-operation * /
if OX:AX / divisor> OFFFFH tllen INT 0
else do;

AX +- OX:AX / divisor / * unsigned division * I
OX +- OX:AX MOD divisor /* unsigned modulo * I

end if;
end if;

Flags

o D T S ZAP C

U - U U U U U

Description

Coding Example

DIV BL

DIV BYTESOMETHING

DIV BX

DIV WORDSOMETHING

Depending on the opcode, either a word in AX is divided by a byte found in a
register or memory location, or a doubleword in DX:AX is divided by a word
register or memory location. A doubleword dividend is stored with its high word in
DX and low word in AX, and the results are: DX gets the unsigned modulo, and AX
gets the unsigned quotient. For a word dividend (byte divisor), the dividend is in AX
and the results are: AH gets the unsigned modulo, and AL gets the unsigned quo
tient. In either case, if the result is too big to fit in the designated register (AX or AL)
then an interrupt of type 0 is performed to allow the overflow to be handled.

DIV

6-41

ENTER

6-42

High Level Procedure Entry [iAPX 186]

For 186 clocks, see Appendix H.

Format

Opcode DataL DataH Level

Opcode Operation Coding Example

C8 build new stack frame ENTER NUMDYNS,LEXLVL

Operation

right-operand = display level
left-operand = number of bytes of dynamic storage needed by the routine
-(SP) +- BP;
temp +- SP;
if display level> 0 then

repeat level-1 times;
-(SP) +- -(BP);

end repeat;
-(SP) +- temp;

end if;
BP +- temp;
SP +- SP - number of dynamics;

Flags

N PL 0 0 ITS ZAP C

Description

ENTER is used to create' the stack frame required by most block-structured high
level languages. The first parameter specifies how many bytes of dynamic storage is
to be allocated on the stack for the routine being entered, while the second cor
responds to the lexical nesting level of the routine and determines how many stack
frame pointers are copied into the new stack frame from the preceding frame. This
list of pointers is also known as the DISPLAY. BP is used as the current stack frame
pointer. ENTER first pushes BP and saves the address of the BP-save for later use.
H the lexical level is greater than 0, then the list of outer frame pointers from the
preceding frame is copied to the new frame, the stack is marked with the temporary
holding the address of the top of this list, and BP is set to the current value of SP.
Then the dynamics are allocated by subtracting the number of bytes of dynamics
from SP.

ASM86

ASM86

Escape

Format

Opcode + i ModRM c= --'--".-~
Opcode Clocks Operation

D8+i 8+EA data bus +- (EA)

D8+i 2 data bus +- (EA)

Operation

if mod -1= 11 then data bus +- (EA)
if mod = 11 then no operation

Flags

o 0 T S ZAP C

Description

Coding Example

ESC 6,ARRAY

ESC 20,AL

The ESC instruction provides a mechanism by which other processors may receive
their instructions from the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 processor does no operation for the ESC instruction
other than to access a memory operand and place it on the bus.

ESC

6-43

HLT

6-44

Halt

Format

Opcode

Opcode Clocks Operation Coding Example

F4 halt operation HLT

Operation

cease operation;

Flags

o 0 T S ZAP C

Description

The HL T instruction causes the 8086/8088 processor to enter its halt state. The halt
state is cleared by an enable interrupt or reset.

ASM86

ASM86

Signed Division

Format

Memory/Reg with AX or DX:AX

Opcode ModRM* c= _--L __ '---~

*--(Reg field =111)

Opcode Clocks Operation

F6 101-112 AH,AL <-- AX I Reg8

F6 (107-118) + EA AH,AL <-- AX I Mem8

F7 165-184 DX,AX <-- DX:AX I Reg16

F7 (171-190)+EA DX,AX <-- DX:AX I Mem16

Operation

if byte-operation then do;
if AX / divisor> 7FH or AX / divisor +- 80H then INT 0;
else do;

AL +- AX / divisor
AH +- AX MOD divisor

end if;

/ * signed division * /
/* signed modulo * /

else do; / * word-operation * /

Coding Example

IDIV BL

IDIV BYTESOMETHING

IDIV BX

IDIV WORDSOMETHING

if DX:AX / divisor> 7FFFH or DX:AX / divisor +- 8000H then INT 0;
else do;

AX +- DX:AX / divisor / * signed division * /
DX +- DX:AX MOD divisor / * signed modulo * /

end if;
end if;

Flags

o D T S ZAP C

U - - - U U U U U

Description

Depending on the opcode, either a word in AX is divided by a byte in a register or
memory location, or a dword in DX:AX is divided by a word register or memory
location. A dword dividend is stored with its high word in DX and low word in AX,
and the results are: DX gets the signed modulo, and AX gets the signed quotient.
For a word dividend (byte divisor) the dividend is in AX, and the results are: AH
gets the signed modulo, and AL gets the signed quotient. In either case, if the result
is too big to fit in the designated register (AX or AL) then an interrupt of type 0 is
performed to allow the overflow to be handled.

IDIV

6-45

IMUL

6-46

Signed Multiplication

For 186 clocks, see Appendix H.

Format

Memory/Reg with AL or AX

Opcode ModRM*

*-(Reg field = 101)

Opcode Clocks Operation

F6 80-98 AX ~ AL' Reg8

F6 (86-104)+EA AX +-- AL' Mern8

F7 128-154 DX:AX +-- AX' Reg16

F7 (134-160)+ EA DX:AX +-- AX' Mern16

Mem/Reg * Immediate to Reg [iAPX 186]

Opcode ModRM

Coding Example

IMUL BL

IMUL BYTESOMETHING

IMUL BX

IMUL WORDSOMETHING

_--L.. __ D_a_ta __ .L.-.._ = ~
Opcode Operation Coding Example

6B Reg 16 +-- Reg 16 * Immed 8 IMUL BX,SI,5
6B Reg 16 +-- Reg 16 * Immed 8 IMUL BX,5 ;product-.. BX

6B Reg 16 +-- Mem 16 * Immed 8 IMUL BX,WORDSMTHING,5
69 Reg 16 +-- Reg 16 * Immed 16 IMUL BX,SI,400H
69 Reg 16 +-- Reg 16 * Immed 16 IMUL BX,400H ;product -.. BX

69 Reg 16 +-- Mem 16 * Immed 16 IMUL BX,WORDSMTHING,400H

Operation

if byte-operation then do; / * byte operation, word result * /
AX +- AL * (Mem8 or Reg8);
if AH is a sign extension of AL then CY ~ OF +- 0;
else CY +- OF --- 1;

else if word-operation then do; / * word-operation, dword result * /
DX:AX ~ AX * (Mem16 or Reg16);
if DX is a sign extension of AX then CY +- OF +- 0;
else CY ~ OF +- 1 ;

else do; /* immed-operation, word result * /
Reg16 -lmmed16 * (Mem16 or Reg16);
if product fits in destination register then CY +-- OF +- 0;
else CY +- OF +-1;

end if;

Flags

o D T S ZAP C

x - U U U U x

ASM86

ASM86

Description

There are two types of integer (signed) multiplication in the ASM86, distinguishable
by the types of operands and the precision of the result:

1. Multiply a byte memory or register operand by a byte in AL, producing a word
result in AX (called 'byte-operation, word result' above).

2. Multiply a word memory or register operand by a word in AX, producing a
dword result in DX:AX (called 'word-operation, dword result' above).

There is a third type of integer (signed) multiplication in the iAPX 186,
distinguishable by the types of operands and the precision of the result:

3. Multiply a word memory or register operand by a word (or byte, which will be
sign-extended to a word) of immediate data, producing a word result in a regis
ter. This instruction uses the full capability of the MODRM byte; therefore the
destination need not be: the same register as contained the multiplicand. For
example, IMUL BX,SL,5 will multiply the contents of the SI register by 5 and
leave the (word) result in BX (called 'immed-operation, word result' above).

IMUL

6-47

IN

6-48

Input Byte, Word

Format

Fixed port

port~
~--------~------

Opcode

Opcode

E4

E5

Variable port

Opcode

Opcode

EC

ED

Operation

Clocks

10

10

Clocks

a
a

if fixed-port then
portnumber in instruction;
o ~ portnumber ~ OFFH;

else
portnumber in DX;
o ~ portnumber ~ OFFFFH;

end if;

Operation

AL +- Porta

AX +- Porta

Operation

AL +- Port16(in OX)

AX +- Port16(in OX)

if byte-input then AL +- ioport[portnumber);
else AX +- ioport[portnumber);

Flags

o 0 T S ZAP C

Description

Coding Example

IN AL,BYTEPORTNUMBER

IN AL,BYTEPORTNUMBER

Coding Example

IN AL,OX

IN AX,OX

IN transfers a byte or word from the specified input port to AL or AX. Use of the
fixed port format allows access to ports 0 through FF, and encodes the port number
in the instruction. To use the variable port format you load the DX register with a 16
bit port number and then code the mnemonic 'DX' in place of a constant port
number. This format allows access to 64k ports.

ASM86

ASM86

Increment By 1

Format

W ord Register

[Opcode + reg I
Opcode Clocks Operation

40 + reg 2 Reg16 Reg16 + 1

Memory IByte Register

Opcode ModRM* C = _....L-._ = ~
*--(Reg field = 000)

Opcode

FE

FE

FF

Operation

Clocks

3

15+EA

15+ EA

Operand +- Operand + 1

Flags

o 0 T S ZAP C

x x x x x -

Description

Operation

Reg8 Reg8 + 1

Mem8 Mem8 + 1

Mem16 <- Mem16 + 1

The operand is incremented by 1.

Coding Example

INC BX

Coding Example

INC BL

INC BYTESOMETHING

INC WORDSOMETHING

INC

6-49

INT
INTO

6-50

Interrupt

Format

"--_O_p_c_o_d_e _..L.-- type =]
Opcode

CC
CD
CE

Operation

SP +- SP - 2
-(SP) +- FLAGS
IF +- 0
TF +- 0
SP +- SP - 2
-(SP) +- CS

Clocks

52
51

53 or 4

CS +- TYPE * 4 + 2
SP +- SP - 2
-(SP) +-IP
IP +- TYPE * 4

Flags

DDT 5 ZAP C

--0 -----

Description

Operation

Interrupt 3

Interrupt 'type'

Interrupt 4 if FLAGS.OF = 1,

else NOP

Coding Example

INT 3

INT 5
INTO

INT pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through anyone of the 256 vector elements.
The one-byte form of this instruction generates a type 3 interrupt.

INTO pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through vector element 4 (location lOH) if the
OF flag is set (trap on overflow). If the OF flag is clear, no operation takes place.

ASM86

ASM86

Return from Interrupt

Format

Opcode

Opcode Clocks

CF

Operation

IP +- (SP) + +
SP +- SP + 2
CS +- (SP) + +
SP +- SP + 2

FLAGS +- (SP) + +
SP +- SP + 2

Flags

24

o 0 T S ZAP C

x x x x x x x x x

Description

Operation

Return from interrupt

Coding Example

IRET

IRET returns control to an interrupted routine by transferring control to the return
address saved by a previous interrupt operation and restoring the saved flag registers
(as in POPF).

IRET

6-51

Jcond ASM86

Jump on Condition

Operation

if condition is true then do;
sign-extend displacement to 16 bits;
IP +- IP + sign-extended displacement;
end if;

Format

Opcode DiSP~
Opcode Clocks Operation Coding Example

77 16 or 4 jump if above JA TARGETLABEL (CF OR ZF)=O

73 16 or 4 jump if above or equal JAE T ARGETLABEL CF = 0

72 16 or 4 jump if below JB TARGETLABEL CF=1

76 16 or 4 jump if below or equal JBE TARGETLABEL (CF OR ZF)=1

72 16 or 4 jump if carry set JC T ARGETLABEL CF = 1

74 16 or 4 jump if equal JE TARGETLABEL ZF=1

7F 16 or 4 jump if greater JG TARGETLABEL ((SF XOR OF) OR

ZF)=O

7D 16 or 4 jump if greater or equal JGE TARGETLABEL (SF XOR OF)=O

7C 16 or 4 jump if less JL TARGETLABEL (SF XOR OF)=1

7E 16 or 4 jump if less or equal JLE T ARGETLABEL ((SF XOR OF) OR

ZF)=1

76 16 or 4 jump if not above JNA TARGETLABEL (CF OR ZF)=1

72 16 or 4 jump if neither above nor equal JNAE TARGETLABEL CF=1

73 16 or 4 jump if not below JNB TARGETLABEL CF=O

77 16 or 4 jump if neither below nor equal JNBE TARGETLABEL (CF OR ZF)=O

73 16 or 4 jump if no carry JNC TARGETLABEL CF=O

75 16 or 4 jump if not equal JNE TARGETLABEL ZF=O

7E 16 or 4 jump if not greater JNG TARGETLABEL ((SF XOR OF) OR

ZF)=1

7C 16 or 4 jump if neither greater nor JNGE TARGETLABEL (SF XOR OF)=1

Elqual

7D 16 or 4 jump if not less JNL TARGETLABEL (SF XOR OF)=O

7F 16 or 4 jump if neither less nor equal JNLE T ARGETLABEL ((SF XOR OF) OR

ZF)=O

71 16 or 4 jump if no overflow JNO TARGETLABEL OF=O

7B 16 or 4 jump if no parity JNP TARGETLABEL PF=O

79 16 or 4 jump if positive JNS TARGETLABEL SF=O

75 16 or 4 jump if not zero JNZ TARGETLABEL ZF=O

70 16 or 4 jump if overflow JO TARGETLABEL OF=1

7A 16 or 4 jump if parity JP TARGETLABEL PF=1

7A 16 or 4 jump if parity even JPE TARGETLABEL PF=1

7B 16 or 4 jump if parity odd JPO T ARGETLABEL PF = 0

78 16 or 4 jump if sign JS T ARGETLABEL SF = 1

74 16 or 4 jump if zero JZ TARGETLABEL ZF=1

E3 18 or 6 jump if CX is zero (does not JCXZ T ARGETLABEL

test flags)

Flags

0 0 T S Z A P C

- - - -

6-52

ASM86

Description

Conditional jumps (except for JCXZ, explained below) test the flags, which
presumably have been set: in some meaningful way by a previous instruction.
Because there are, in many instances, several meaningful and useful ways to inter
pret a particular state of the flags, ASM86 allows different mnemonics for each
interpretation to resolve to the same op-code" This means that some op-codes are, in
effect, synonyms for others. As an example, consider that a programmer who has
just compared a character to another in AL might wish to jump if the two were equal
(JE), while another who had just ANDed AX with a bit field mask would prefer to
consider only whether the result was zero or not (he would use JZ, a synonym for
JE).

JCXZ differs from the other conditional jumps in that it actually tests the contents
of the CX register for zero, rather than interrogating the flags. This instruction is
useful following a conditionally repeated string operation (REPE SCASB for exam
ple) or conditional loop instruction (such as LOOPNE TARGETLABEL), both of
which may terminate for either of two reasons. These instructions implicitly use a
limiting count in the CX register, and looping (or repeating) ends either when the
CX register goes to zero or when the condition specified in the instruction (flags
indicating equals in both of the above cases) occurs. JCXZ is useful when the two
terminations must be handled differently.

In every case, if the condition specified in the conditional jump is true, the signed
displacement byte is sign extended to a word and added to the IP, which has been
updated to point to the first byte of the next instruction. This limits the range of the
conditional jump to 127(dt~cimal) bytes beyond and 126 bytes before the instruction
(remember, the IP was incremented by 2 to point to the next instruction before the
displacement was added).

Jcond

6-53

JMP

6-54

Jump

Format

Within segment or group, IP relative

Opcode DispL DispH .=J
Opcode Clocks Operation

E9 15 IP -IP + Disp16

EB 15 IP - IP + DispB

(DispB sign-extended)

Within segment or group, Indirect

Opcode ModRM*

*-(Reg field = 100)
Opcode Clocks Operation

FF 11 Ip.- Reg16

FF 1B+EA IP'- Mem16

FF 1B+EA IP'- Mem16

Operation

if IP-relative then do;
if short then sign-extend Disp8 to Disp16;
IP ~ IP + Disp16;

else do;
IP~(EA);

end if;

Flags

o 0 T S ZAP C

Description

Coding Example

JMP NEAR_LABEL~~FOO

JMP SHORT NR_~LAB_FOO

Coding Example

JMP SI

JMP WORD PTR [SI]

JMP POINTER_ TO~_FRED

There are two types of within-segment jumps: one which is IP-relative and is
specified by the use of a NEAR label as the target address; and one in which the
target address is taken from a register or variable pointer without modification (i.e.
is NOT IP-relative). In the first case, the displacement-which is relative to the first
byte of the next instruction-may be either a full word or a byte which will be sign
extended to a word.

The second case is specified when the operand is any (16-bit) general, base, or index
register-as in JMP AX, JMP BP, or JMP DI, respectively-or when the operand is
a word-variable, as in JMP WORD PTR [BP], or JMP CS:CASE_ TABLE[BX]
(assuming that CASE __ TABLE was defined as an array of word pointers). When
the effective address is a variable, as in the preceding two examples, DS is the
implied segment register for all EA's not using BP. Note especially the difference
between JMP BX and JMP [BX]. In the first jump the new IP is taken from a
register, while in the second it comes from a word variable which is pointed at by the
register.

ASM86

ASM86

Inter-segment or group, Direct

Opcode

Opcode

EA

Operation

cs +- seg base
IP +- offset

Flags

offset

Clocks

15

DDT 5 ZAP C

offset

Operation

CS <-- segbase

IP <-- offset

Inter-segment or group, Indirect

segbase

L--_O_P_c_o_d_e_.J.-_~._~_Od_R_M_*_,r= =r: = ~
*-(Reg fj(~ld = 101)

Opcode CI()cks

FF 24+EA

Operation

cs +- EA.segbase;
IP +- EA.offset;

Flags

DDT 5 ZAP C

Description

Operation

CS +- segbase

IP <-- offset

segbase

Coding Example

Coding Example

JMP CASE_TABLE[BXl

The long jumps transfer control using both an offset and paragraph number
(segbase), which may be either included in the instruction itself or found in a
DWORD variable.

JMP

6-55

LAHF

6-56

Load AH From Flags

Format

Opcode

Opcode

9F

Operation

Clocks Operation

copy low byte of flags word to

AH

AH +- SF:ZF:X:AF:X:PF:X:CF
/* 'x' indicates non-specified bit value * /

Flags

o 0 T S ZAP C

Description

Coding Example

LAHF

The Sign, Zero, Auxiliary carry, Parity, and Carry Flags are transferred to AH in
the following format:

SF goes to AH bit7
ZF goes to AH bit6
AF goes to AH bit4
PF goes to AH bit2
CF goes to AH bitO

The remaining bits are indeterminate.
No flags are al tered .

ASM86

ASM86 LDS/LES

Load Pointer to OS/ES and Register

Format

,--_O_P_CO_d_e_-L-_tl/_I_O_d_R_M __ L = = ~
Opcode

C4

C5

Operation

Clocks Operation Coding Example

16+ EA dword pointer at EA goes LES BX,DWORDPOINTER

to reg16 (1 st word) and ES

(2nd word)

16+ EA dword pointer at EA goes LDS BX,DWORDPOINTER

to reg16 (1st word) and D8

(:~nd word)

Reg16 +- Mem16 @ EA / * offset part of Virtual Address OWord * /
os (or ES) +- Mem16 @ EA + 2 /* selector part of Virtual Address OWord * /

Flags

o 0 T S ZAP C

Description

The double word in the memory location designated by the effective address and 3
successive bytes is treated as two word operands. The first of these in EA:EA + 1 is
the offset part of the pointer and is loaded into the designated word-register. The
second word, at EA+2:EA+3, is the paragraph number (segment base) of the
address, and is loaded into the DS or ES registl~r.

6-57

LEA

6-58

Load Effective Address

Format

'---_O_p_co_d_e_.....&..-_M_o_d_R __ M_---'-_ = I = ~
Opcode Clocks

8D 2+EA

Operation

if EA = register then UDtrap;
else Reg 16..- offset(EA)

Flags

o 0 T S ZAP C

Description

Operation

Reg16 +- EA

Coding Example

LEA BX,SOMEVARIABLE [SI]

The effective address of the memory operand is put in the specified register. You
should use this instruction only if EA requires run time calculation, i.e., has indexing
with index or base register. Otherwise, you should use MOY reg, OFFSET variable.

ASM86

ASM86

High Level Procedure Exit [iAPX 186]

For 186 clocks, see Appendix H.

Format

Opcode

Opcode Operation Coding Example

C9 release current stack frame
and return to prior frame.

LEAVE

Operation

SP ~ BP;
BP ~ (SP)+ +;

Flags

N P L 0 0

Description

/ * burn off dynamics and display * /
/ * recover aiel frame pointer * /

T S ZAP C

LEAVE is the complementary operation to ENTER, and reverses the effects of that
instruction. By copying BP to SP, LEAVE releases all the stack space used by a
routine for its dynamics and display. The old frame pointer is now popped into BP,
restoring the caller's frame, and a subsequent RET xx instruction will follow the
back-link and remove any arguments pushed on the stack for the exiting routine.

LEAVE

6-59

LOCK

6-60

Assert Bus Lock

Format

Opcode

Opcode

FO

Operation

None.

Flags

Clocks

2

o 0 T S ZAP C

Description

Operation

assert the bus lock

next instruction

Coding Example

LOCK XCHG AX,SEMAPHORE

A special one-byte lock prefix may precede any instruction. It causes the processor
to assert its bus-lock signal for the duration of the operation caused by the instruc
tion. In multiple processor systems with shared resources it is necessary to provide
mechanisms to enforce controlled access to those resources. Such mechanisms, while
generally provided through software operating systems, require hardware
assistance. A sufficient mechanism for accomplishing this is a locked exchange (also
known as test-and-set-Iock).

It is assumed that external hardware, upon receipt of that signal, will prohibit bus
access for other bus masters during the period of its assertion.

The instruction most useful in this context is an exchange register with memory. A
simple software lock may be implemented with the following code sequence:

Check: MOV A L, 1 iset AL to 1 (imp lie s locked)
LOCK XCHG Sema,AL itest and set lock

TEST A L, AL iset flags based on AL
JNZ Check ; ret ry i f lock already set

MOV Sema,O ;clear the lock when done

The LOCK prefix may be combined with the segment override and/or REP prefixes,
although the latter has certain problems. (See REP.)

ASM86

ASM86 LOOP
LOOPE

LOOPNE
LOOPZ

LOOPNZ
Loop Control

Format

Opcode

Opcode

E1

EO

E1

EO

E2

Operation

ex ~ ex -1;

Disp

Clocks

18 or 6

19 or 5

18 or 6

19 or 5

17 or 5

J
Operation

elee ex; loop if equal and ex
notO

elee ex; loop if not equal and

ex not 0

elee ex; loop if zero and ex
notO

elee ex; loop if not zero and ex
notO

dec ex; loop if ex not 0

if (condition is true) and (eX <> 0) then do;
sign-extend displacement to 16 bits;
IP +- IP + sign-extended displacement;

end if;

Flags

o 0 T S ZAP C

Description

Coding Example

LOOPE TARGETLABEL

LOOPNE TARGETLABEL

LOOPZ TARGETLABEL

LOOPNZ TARGETLABEL

LOOP TARGETLABEL

The LOOP instructions are intended to provide iteration control and combine loop
index management with conditional branching. To use the LOOP instruction you
load an unsigned iteration count into CX, then code the LOOP at the end of a series
of instructions to be iterated. Each time LOOP is executed the CX register is
decremented and a conditional branch to the top of the loop is performed. The five
variants of the instruction (LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ)
allow branching on three sets of conditions, since two pairs of variants are
synonymous. Conditions for branching are:

LOOP branches if ex non-zero after decrementing;
LOOPZ, LOOPE branch if ex non-zero and ZF = 1;
LOOPNZ, LOOPNE branch if ex non-zero and ZF = O.

In every case, if the condition specified in the conditional loop is true, the signed
displacement byte is sign extended to a word and added to the IP, which has been
updated to point to the first byte of the next instruction. This limits the range of the
conditional loop to 127 (decimal) bytes beyond and 126 bytes before the instruction
(remember, the IP was incremented by 2 to point to the next instruction before the
displacement was added).

6-61

MOV

6-62

Move Data

Format

Memory/Reg to or from Reg

Opcode ModRM

Opcode Clocks Operation

SS 9+EA MemS +- RegS

SS 2 RegS +- RegS

S9 9+EA Mem16 +- Reg16

S9 2 Reg16 +- Reg16

SA S+EA RegS +- MemS

SB S+EA Reg16 +- Mem16

Direct-Addressed Memory to or from AX/ AL

Opcode AddrL AddrH

Opcode Clocks Operation

AO 10 AL +- MemS

A1 10 AX +- Mem16

A2 10 MemS +- AL

A3 10 Mem16 +- AX

Immed to Reg

Opcode Data =~
Opcode Clocks Operation

BO+reg 4 Reg S +- ImmedS

B8+reg 4 Reg16 +-lmmed16

Immed to Memory/Reg

Opcode ModRM*

*-(Reg field = 000)

Opcode

C6

C6

C7

C7

Clocks

4

10+EA

4

10+EA

Operation

RegS +- ImmedS

MemS +- ImmedS

Reg16 +-lmmed16

Mem16 +-lmmed16

Memory /Reg to or from SReg

Coding Example

MOV BYTESOMETHING,AL

MOV BL,AL

MOV WORDSOMETHING,AX

MOV BX,AX

MOV AL,BYTESOMETHING

MOV AX,WORDSOMETHING

Coding Example

MOV AL,BYTESOMETHING

MOV AX,WORDSOMETHING

MOV BYTESOMETHING,AL

MOV AX,WORDSOMETHING

Coding Example

MOV CL,5

MOV SI,400H

__ ~ ____ D_a_ta ____ ~_===== ~

Coding Example

MOV BL,32

MOV BYTESOMETHING,32

MOV BX,1234H

MOV WORDSOMETHING,1234H

L-_O_p_c_o_d_e_-,--_M_o_d_R_M._*_--L._ = I = ~
*-(Reg field = SReg)

ASM86

ASM86

Opcode Clocks

8C 9+EA

8C 2

8E 8+EA

8E 2

Operation

LeftOpnd ~ RightOpnd

Flags

o 0 T S ZAP C

Description

Operation

Mem16 <-- SReg

Fleg16 <-- SReg

SReg* <-- Mem16

SReg* <-- Reg16

·CS not allowed

Coding Example

MOV WORDSOMETHING,DS

MOV AX,DS

MOV DS,WORDSOMETHING

MOV DS,AX

The right operand (source) is copied to the left operand (destination). The right
operand is not modified. No flags are affected.

MOV

6-63

MUL

6-64

Unsigned Multiplication

Format

Memory/Reg with AL or AX

Opcode ModRM>

>-(Reg field = 100)

Opcode Clocks Operation

F6 70-77 AX +- AL· Reg8

F6 (76-83)+ EA AX +- AL > Mem8

F7 118-133 DX:AX +- AX • Reg16

F7 (124-139)+EA DX:AX +- AX· Mem16

Operation

Coding Example

MUL BL

MUL BYTESOMETHING

MUL BX

MUL WORDSOMETHING

if byte-operation then do; / * byte operation, word resu It * /
AX +- AL * (Mem8 or Reg8);
if AH = 0 then CY +- OF - 0;
else CY +- OF +-1;

else if word-operation then do; / * word-operation, dword result * /
OX:AX +- AX * (Mem16 or Reg16);
if OX = 0 then CY +-- OF +- 0;
else CY +- OF +-- 1;

end if;

Flags

o D T S ZAP C

x U U U U x

Description

There are two types of unsigned multiplication in the 8086/8088, distinguishable by
the types of operands and the precision of the result:

1. Multiply a byte memory or register operand by a byte in AL, producing a word
result in AX (called 'byte-operation, word result' above).

2. Multiply a word memory or register operand by a word in AX, producing a
dword result in DX:AX (called 'word-operation, dword result' above).

In both types of multiply the carry and overflow flags are used to signal whether the
product has exceeded the precision of the operands which produced it. Thus, when
multiplying two bytes, if the product is larger than can be expressed in a byte (i.e.
prod> 256.) then the CY and OF flags will be set; otherwise, they will be cleared.

ASM86

ASM86

Negate an Integer

Format

Memory/Reg

Opcode

Opcode

F6

F7

F6

F7

Operation

ModRM* L=_--L..._·--~

*-(Reg field = 011)

Clocks Operation

:3 Reg8 +- OOH - Reg 8

:3 Reg16 +- OOOOH - Reg16

16+ EA Mem8 +- OOH - Mem8

16+EA Mem16 +- OOOOH - Mem16

Operand +-- 2's complement of Operand

Flags

DDT 5 ZAP C

x - - - x 1 *

*except when operand is zero, then CF+ 0

Description

Coding Example

NEG BL

NEG BX

NEG BYTESOMETHING

NEG WORDSOMETHING

The two's complement of the register or memory operand replaces the old operand
value.

NEG

6-65

NOP

6-66

No Operation

Format

Opcode

Opcode Clocks Operation Coding Example

90 3 no operation NOP

Operation

Perform no operation.

Flags

o 0 T S ZAP C

Description

NOP is a one-byte filler instruction which takes up space but affects none of the
machine context except lP.

ASM86

ASM86

Form One's Complement

Format

Memory/Reg

Lol __ O_p_c_o_de_--,-_M._O_d_R_M_* _,L = _-L_,

"-(Reg field = 010)

Opcode Clocks Operation

F6 3 RegS OFFH - RegS

F6 16+EA MemS OFFH - MemS

F7 3 Reg16 OFFFFH - Reg1H

F7 16+EA Mem16 OFFFFH - Mem16

Operation

Operand +- one's complement of Operand

Flags

o 0 T S ZAP C

Description

=~

Coding Example

NOT BL

NOT BYTESOMETHING

NOT BX

NOT WORDSOMETHING

The operand is inverted, that is, every 1 becomes a 0 and vice versa.

NOT

6-67

OR

6-68

Logical Inclusive OR

Format

Memory IReg with Reg

Opcode ModRM =I=~
Opcode Clocks Operation

OA 3 Reg8 +- Reg8 OR Reg8

OA 9+EA Reg8 +- Reg8 OR Mem8

OB 3 Reg16 +- Reg16 OR Reg 16

08 9+EA Reg16 +- Reg16 OR Mem16

08 16+EA Mem8 +- Mem8 OR Reg8

09 16+EA Mem16 +- Mem16 OR Reg16

Immed to AXIAL

L.-_O_p_c_o_d_e_-,--__ D_a_t_a ___ .L.-_ = ~
Opcode

OC

OD

Clocks

4

4

Immed to Memory IReg

Opcode ModRM*

Operation

AL +- AL OR Immed8

AX +- AX OR Immed16

*-(Reg field = 001)

Opcode

80

80

81

81

Operation

Clocks

4

17+EA

4

17+EA

Operation

Reg8 +- Reg8 OR Immed8

Mem8 +- Mem8 OR Immed8

Reg16 +- Reg16 OR Immed16

Mem16 +- Mem16 OR Immed16

LeftOpnd +- LeftOpnd or RightOpnd

OF CF +- 0

Flags

DDT 5 ZAP C

- X U X

Description

Coding Example

OR 8L,CL

OR 8L,8YTESOMETHING

OR BX,CX

OR 8X,WORDSOMETHING

OR 8YTESOMETHING,BL

OR WORDSOMETHING,BX

Coding Example

OR AL,5

OR AX,400H

_....L-__ D_at_a __ ,--_ = ~
Coding Example

OR 8L,32

OR 8YTESOMETHING,32

OR 8X,1234H

OR WORDSOMETHING,1234H

The inclusive OR of two operands replaces the left operand. The carry and overflow
flags are cleared.

ASM86

ASM86

Output Byte, Word

Format

Fixed port

Opcode

Opcode

E6

E7

Variable port

Opcode

Opcode

EE

EF

Operation

Port

Clo(:ks

10

10

Clocks

8

8

if fixed-port then
portnumber in instruction;
o ~ portnumber ~ OFFH;

else
portnumber in OX;
o ~ portnumber ~ OFFFFH;

end if;

Operation

Port8 <- AL

Port8 <- AX

Operation

Port16 (in OX) <- AL

Port16 (in OX) <- AX

if byte-output then ioport[portnumber] +- AL;
else ioport[portnumtler] +- AX;

Flags

o 0 T S ZAP C

Description

Coding Example

OUT BYTEPORTNUMBER,AL

OUT BYTEPORTNUMBER,AX

Coding Example

OUT OX,AL

OUT OX,AX

OUT transfers a byte from AL or a word from AX to the specified output port. Use
of the fixed port format allows access to ports 0 through FF, and encodes the port
number in the instruction. To use the variable port format you load the DX register
with a 16 bit port number and then code the mnemonic 'DX' in place of a constant
port number. This format allows access to 64k ports.

OUT

6-69

POP

6-70

Pop a Word From the Stack

Format

Word Memory

Opcode ModRM*

*-(Reg field=OOO)

Opcode

8F

Word Register

I Opcode + reg I

Opcode

58 + reg

Clocks

17+EA

Clocks

8

Segment Register

10Pcode+SRegl

Ope ode

07 + (SReg*S)

Operation

Operand ~ TOS;
SP +- SP + 2;

Flags

Clocks

8

o 0 T S ZAP C

Description

Operation

Mem16 +- (SP) + +

Operation

Reg16 +- (SP) + +

Operation

SReg +- (SP)++

Coding Example

POP WOROSOMETHING

Coding Example

POP BX

Coding Example

POP OS

The word on the top of the stack replaces the previous contents of the memory,
register, or segment register operand. The stack pointer is incremented by 2 to point
to the new top of stack.

If the destination operand is a segment register, the value POPed will be a paragraph
number.

POP CS is NOT allowed.

ASM86

ASM86

Pop All Registers [iAPX 186]

For 186 clocks, see Appendix H.

Format

Opcode

Opcode Operation

61 restore registers from
the stack

Operation

01 +- (SP) + +;
SI +- (SP) + + ;
BP +- (SP) + + ;
SP +- SP + 2;
BX +- (SP)+ +;
ox +- (SP)+ +;
ex +- (SP)+ +;
AX+-(SP)++;

Flags

N PL 0 D

Description

/* POP ANO IGNORE SP * /

T S ZAP C

Coding Example

POPA

POP A restores the registers pushed by PUSHA, except that the SP value is ignored.

POPA

6-71

POPF

6-72

Pop the TOS Into the Flags

Format

Opcode

Opcode

9D

Operation

Flags -TOS;
SP ~ SP + 2;

Flags

Clocks

8

o 0 ITS ZAP C

x x x x x x x x x

Description

Operation

FLAGS (SP) + +

Coding Example

POPF

The TOS is copied to the Flags and the stack pointer is incremented by 2 to point to
the new top of stack. Bit position to flag assignments are:

OF ~ bit 11
DF - bit 10
IF ~ bit9
TF ~ bit8
SF ~ bit?
ZF - bit6
AF +- bit 4
PF ~ bit2
CF +- bit 0

ASM86

ASM86

Push a Word Onto the Stack

For 186 clocks, see Appendix H.

Format

Memory/Reg

Opcode

Opcode

FF

Word Register

I Opcode + reg I

Opcode

50 + reg

ModRM* C = _--L--_ = ~
*·-(Reg field =110)

Clocks Operation

16+ EA --(SP) -- Mem16

Clocks Operation

--(SP) -- Reg16

Word Immediate [iAPX 186]

~ __ O_P_co_d_e __ ~ ____ D_a_t_a ___ ~= ~

Coding Example

PUSH WOROSOMETHING

Coding Example

PUSH BX

Opcode Ol>eration Coding Example

6A

68

-(SP) - Immed8
(sign extended)
-(SP) +--Immed'16

Segment Register

~pcode+SRegl

Ope ode Clocks

06+(SReg*S)

Operation

SP - SP - 2;
ros - Operand;

10

Operation

--(SP) -- SReg

PUSH 5

PUSH 400H

Coding Example

PUSH OS

PUSH

6-73

PUSH

6-74

Flags

o 0 T S ZAP C

Description

The stack pointer is decreased by 2 and the word operand is copied to the new top of
stack.

ASM86

ASM86

Push All Regist~~rs [iAPX 186]

For 186 clocks, see Appendix H.

Format

Opcode

Opcode Operation

60 save registers on the stack

Operation

temp +- SP;
-(SP) +- AX;
-(SP) +- ex;
-(SP) +- OX;
-(SP) +- BX;

-(SP) +- temp;
-(SP) +- BP;
-(SP) +- S\;
-(SP) +- 0\;

Flags

N PL 0 0 ITS ZAP C

Description

Coding Example

PUSHA

PUSHA saves the registers noted above on the stack.

PUSHA

6-75

PUSHF

6-76

Push the Flags to the Stack

Format

Opcode

Opcode Clocks Operation Coding Example

9C 10 -(SP) +- FLAGS PUSHF

Operation

SP - SP - 2;
TOS - Flags;

Flags

0 D I T S Z A P C

Description

The stack pointer is decremented by 2 and the flags are copied to the new top of
stack. Flag to bit position assignments are:

bit 11 - OF
bit 10 - OF
bit 9 +-IF

bit 8 +-TF

bit 7 +- SF

bit 6 -ZF
bit 4 +- AF

bit 2 +- PF

bit 0 +- CF

ASM86

ASM86

Rotate Left Thlrough Carry

For 186 clocks, see Appendix H.

Format

Memory or Reg by 1

L-_O_p_c_o_d_e_-,--_M_o_d_R_M_* _L = _---'-_-= ~
Opcode

DO
DO
01

01

"-(Reg fie,ld = 01 0)

Clocks

2

15+EA

15+EA

Operation

rotate Reg 8 by 1

rotate Mern8 by 1

rotate Reg 16 by 1

rotate Mern16 by 1

Memory or Reg by count in CL

Coding Example

RCL BL,1

RCL BYTESOMETHING,1

RCL BX,1

RCL WOROSOMETHING,1

L __ O_Pc_o_d_e_.l.....-_M,_O_d_R_M_* _L = I= = ~
;'-(Reg field = 01 0)

Opcode Clocks Operation

02 8+4/bit rotate Reg8 by CL

02 20+EA+4/bit (otate Mern8 by CL

03 8+4/bit rotate Reg16 by CL

03 20 + EA+ 4/bit rotate Mern16 by CL

Mem or Reg by Immed8 [iAPX 186]

Coding Example

RCL BL,CL

RCL BYTESOMETHING,CL

RCL BX,CL

RCL WOROSOMETHING,CL

L-_O_p_co_d_e_--L __ M __ o_d_R_M_* r = I= = _-L-__ c_o_u_n_t_~
*-(Reg field = 011)

Opcode Operation

CO rotate Reg8 by Immed8 RCL
CO rotate Mem8 by Immed8 RCL
C1 rotate Reg16 by Immed8 RCL
C1 rotate Mem16 by Immed8 RCL

Operation
if variable-bit-rotate then count'=CL or count= Immed8;

else count=1;
do until count=O

tempcf ~ CF;
CF ~ high-order-bit of operand;
operand ~ operand * 2 + tempcf;
count ~ count -1;

Coding Example

BL,5
BYTESOMETHING,5
BX,5
WORDSOMETHING,5

RCL

6-77

RCL

6-78

end do;
if not variable-bit-rotate then do;

if high-order-bit of operand <> CF then OF +- 1;
else OF +-"0;

end if;

Flags

o 0 ITS ZAP C

x x

Description

The register or memory operand is rotated left through the CF according to the shift
count, which may be either a fixed count of 1 or a variable count that has been
loaded into the CL register. If the shift count is 1, the overflow flag is set if the high
bit of the rotated operand differs from the resulting carry flag. Only CF and OF are
affected.

ASM86

ASM86

Rotate Right Through Carry

For 186 clocks, see Appendix H.

Format

Memory or Reg by 1

L-._O_P_c_o_d_e_....L...._M_o._d_R_M_* _,C = -=r_ = ~
Opcode

00

00

01

01

*·-(Reg field = 011)

Clocks Operation

rotate Reg8 by 1

15+EA rotate Mem8 by 1

2 rotate Reg16 by 1

15+ EA rotate Mem16 by 1

Memory or Reg by count in CL

Coding Example

RCR BL,1

RCR BYTESOMETHING,1

RCR BX,1

RCR WOROSOMETHING,1

[Opcode ModRM* C=_-L-=~
*·-(Reg field = 011)

Opcode Clocks Operation

02 8+4/bit rotate Reg8 by CL

02 20 + EA + 4/bit rotate Mem8 by CL

03 8+4/bit rotate Reg16 by CL

03 20+EA+4/bit rotate Mem16 by CL

Mem or Reg by Immed8 [iAPX 186]

Coding Example

RCR BL,CL

RCR BYTESOMETHING,CL

RCR BX,CL

RCR WOROSOMETHING,CL

~_O_P_co_d_e_--,-__ M._O_d_R_M_*_C = I_ = __ """,-__ c_o_un_t_--.J

* -(Reg field = 011)

Opcode Operation Coding Example

CO rotate Reg8 by Immed8 RCR
CO rotate Mem8 by Immed8 RCR
C1 rotate Reg16 by Immed8 RCR
C1 rotate Mem16 by Immed8 RCR

Operation

if variable-bit-rotate then count'= CL or count= Immed8;
else do;

count=1 ;
if high-order-bit of operand <> CF then OF +- 1;
else OF +- 0;

end if;
do until count=O

tempcf +- CF;
CF +- low-order-bit of operand;

BL,5
BYTESOMETHING,5
BX,5
WORDSOMETHING,5

RCR

6-79

RCR

6-80

operand +- operand I 2;
high-order-bit of operand ~ tempcf;
count +- count -1;

end do;

Flags

o 0 ITS ZAP C

x - - x

Description

The register or memory operand is rotated right through the CF according to the
shift count, which may be either a fixed count of 1 or a variable count that has been
loaded into the CL. register. If the shift count is 1, the overflow flag is set if the high
bit of the un-rotated operand differs from the original carry flag. Only CF and OF
are affected.

ASM86

ASM86 REP
REP/REPZ/REPE/REPNE/REPNZ

Repeat Prefix

Format

Opcode

Opcode Clocks

F3 2

F3

F2 2

Operation

do while CX <> 0;

Operation

repeat next instruction until

CX=O

repeat next instruction until

CX=O or ZF=1

repeat next instruction until

CX=O orZF=O

/* acknowledge pending interrupts * /
/* perform string operation in subsequent byte */
CX ~ CX -1; / * does not aHect flags * /
if string operation = SCAS or CMPS and

ZF <> repeat condition then undo;
end do;

Flags

o 0 T S ZAP C

Description

Coding Example

REP MOVSB

REPE SCASB

REPZ SCASB

REPNE SCASB

REPNZ SCASB

The REP prefix causes a succeeding string operation to be repeated until the count in
CX goes to zero (REP causes CX to be decremented after each repetition of the
string op). If the string operation is either SCAS or CMPS (or a variant of those
such as SCASB ...) then the ZF is compared to the repeat condition after the string
op is performed, and the repeat is terminated if the ZF does not match the condi
tion. For example, REPE SCASB will scan a string, comparing each byte to the AL
register, as long as the ZF is 1, indicating 'EQ U AL' .

REP, REPE, and REPZ are synonymous, as are REPNZ and REPNE.

Execution of the repeated string operation will not resume properly following an
interrupt if more than one prefix is present preceding the string primitive. Execution
will resume one byte befon~ the primitive (presumably where the repeat resides), thus
ignoring the additional prefixes.

6-81

RET

6-82

Return From Subroutine

Format

Opcode

Opcode

C3

CB

Clocks

8

18

Operation

intra-segment return

inter-segment return

Return and add constant to SP

Opcode

Opcode

C2

CA

Operation

IP+--(SP)+ +;
SP +-- SP + 2;

DataL

Clocks

12

17

if intersegment then
CS +-- (SP) + +;
SP +-- SP + 2;

if add immediate to SP then

DataH

Operation

intra-segment ret and add

inter-segment ret and add

SP +-- SP + immediate constant;

Flags

o 0 T S ZAP C

Description

Coding Example

RET

RET

Coding Example

RET 8

RET 8

RET transfers control through a back-link on the stack, reversing the effects of a
CALL instruction. If the intra-segment RET is used, the back-link is assumed to be
just the return-IP, while inter-segment RETs assume both IP and CS are on the
stack. RETs may optionally add a constant to the stack pointer, effectively remov
ing any arguments to the called routine which were pushed prior to the CALL.

ASM86

ASM86

Rotate Left

For 186 clocks, se(~ Appendix H.

Format

Memory or Reg by 1

1L.. __ O_P_c_o_de_----'-_M __ O_d_R_M_*_r = ---'---= ~
"-(Reg field = 000)

Opcode

00

00

01

01

Clocks

15+EA

2

15+EA

Operation

rotate RegS by 1

rotate MemS by 1

rotate Reg16 by 1

rotate Mem16 by 1

Memory or Reg by count in CL

L---_O_P_c_od_e_----'-_M,_O_d_R_M_*_L = 'I~= ~
<-(Reg fil31d = 000)

Opcode CI()cks Operation

02 S+4/bit rotate RegS by CL

02 20 + Ea+ 4/bit rotate MemS by CL

03 S+4/bit rotate Reg16 by CL

03 20+EA+4/bit rotate Mem16 by CL

Mem or Reg by Immed8 [ilAPX 186]

Coding Example

ROL BL,1

ROL BYTESOMETHING,1

ROL BX,1

ROL WOROSOMETHING,1

Coding Example

ROL BL,CL

ROL BYTESOMETHING,CL

ROL BX,CL

ROL WOROSOMETHING,CL

L-_O_P_co_d_e_-.L __ M __ O_d_R_M_*_I = == = _--,-__ c_o_u_n_t _....J

*-(Reg field = 000)

Opcode Operation Coding Example

CO rotate Reg8 by 'Immed8 ROL
CO rotate Mem8 by Immed8 ROL
C1 rotate Reg16 by Immed8 ROL
C1 rotate Mem16 by Immed8 ROL

Operation
if variable-bit-rotate then count=CL or count=lmmed8;

else count=1;
do until count=O

CF +- high-order-bit of operand;
operand +- operand * 2 + CF;
count +- count -1;

BL,5
BYTESOMETHING,5
,BX,5
WORDSOMETHING,5

ROL

6-83

ROL

6-84

end do;
if not variable-bit-rotate then do;

if high-order-bit of operand <> CF then OF +- 1;
else OF +- 0;

end if;

Flags

o 0 T S ZAP C

x x

Description

The register or memory operand is rotated left according to the shift count, which
may be either a fixed count of 1 or a variable count that has been loaded into the CL
register. The high order bit of the operand is copied directly to the low order bit dur
ing the rotate, as well as to CF. If the shift count is 1, the overflow flag is set if the
high bit of the rotated operand differs from the resulting carry flag. (That is, if the
high and low order bits of the result are not the same.) Only CF and OF are affected.

ASM86

ASM86

Rotate Right

For 186 clocks, see Appendix H.

Format

Memory or Reg by 1

Opcode

Opcode

DO
DO
01

01

ModRM* C __ ~--~
*--(Reg fiel,d = 001)

Clocks Operation

rotate RegS by 1

15+EA rotate MemS by 1

2 rotate Reg16 by 1

15+EA rotate Mem16 by 1

Memory or Reg by count in CL

L--_O_p_c_o_de_---I-_tv_l __ od_R_M_*_L = I~ = ~
*-(Reg field = 001)

Opcode Clocks Operation

02 S+4/bit rotate RegS by CL

02 20+ EA + 4/bit rotate MemS by CL

03 S+4/bit rotate Reg16 by CL

03 20 + EA +4/bit rotate Mem16 by CL

Mem or Reg by Immed8 [iAPX 186]

~_O_P_co_d_e_~ __ tv.I_O_d_R_M_* __ ~ = __ ~ __
* -(Reg field = 001)

Coding Example

ROR BL,1

ROR BYTESOMETHING,1

ROR BX,1

ROR WOROSOMETHING,1

Coding Example

ROR BL,CL

ROR BYTESOMETHING,CL

ROR BX,CL

ROR WOROSOMETHING.CL

count

Opcode Operation Coding Example

co
CO
C1
C1

Operation

rotate Reg8 by Irnmed8
rotate Mem8 by Immed8
rotate Reg16 by Ilmmed8
rotate Mem16 by Immed8

ROR BL,5
ROR BYTESOMETHING,5
ROR BX,5
ROR WORDSOMETHING,5

if variable-bit-rotate then count==CL or count=lmmed8;
else count = 1;
do until count = 0

tempcf ~ CF;
CF ~ low-order-bit of operand;
operand ~ operand I 2;
high-order-bit of operand ~ CF;

ROR

6-85

ROR

6-86

count - count -1;
end do;
if not variable-bit-rotate then do;

if high-order-bit of operand < > CF then OF -1;
else OF-O;

end if;

Flags

o 0 ITS ZAP C

x - - - - x

Description

The register or memory operand is rotated right according to the shift count, which
may be either a fixed count of 1 or a variable count that has been loaded into the CL
register. The low bit of the operand is copied directly to the high bit during the
rotate, as well as to the CF. If the shift count is 1, the overflow flag is set if the high
bit of the rotated operand differs from the un-rotated high bit. Only CF and OF are
affected.

ASM86

ASM86

Store AH in Flags

Format

Opcode

Opcode Clocks

9E 1\

Operation

Operation

copy AH to low byte of flags

word

AH -+ SF:ZF:X:AF:X:PF:X:CF

/* 'x' indicates non-specified bit value * /

Flags

o 0 ITS ZAP C

x x x x x

Description

Coding Example

SAHF

The Sign, Zero, Auxiliary carry, Parity, and Carry Flags are loaded from AH in the
following format:

AH bit7 goes to SF
AH bit6 goes to ZF
AH bit4 goes to AF
AH bit2 goes to PF
AH bitO goes to CF

No other flags are altered.

SAHF

6-87

SAL/SHL

6-88

Arithmetic / Logical Left Shift

For 186 clocks, see Appendix H.

Format

Memory or Reg by 1

Opcode ModRM*

"-(Reg field = 100)

Opcode

00
00
01

01

Clocks

15+ EA

2

15+EA

Operation

shift Rega by 1

shift Merna by 1

shift Reg16 by 1

shift Mem16 by 1

Memory or Reg by count in CL

Coding Example

SAL BL,1

SHL BYTESOMETHING,1

SHL BX,1

SAL WOROSOMETHING,1

L...-_O_p_c_od_e_--,-_M_o_d_R_M __ " _""--_ = I = ~
*-(Reg field = 100)

Opcode Clocks Operation

02 8+4/bit shift Rega by CL

02 20 + EA+ 4/bit shift Merna by CL

03 8+4/bit shift Reg16 by CL

03 20 + EA+ 4/bit shift Mem16 by CL

Coding Example

SHL BL,CL

SAL BYTESOMETHING,CL

SAL BX,CL

SHL WOROSOMETHING,CL

Mem or Reg by immediate count [iAPX 186]

Opcode ModRM*

·-(Reg field = 100)

Opcode Operation

CO rotate Reg8 by Immed8
CO rotate Mem8 by Immed8
C1 rotate Reg16 by Immed8
C1 rotate Mem16 by Immed8

Operation

count

Coding Example

SHL BL,5
SAL BYTESOMETHING,5
SAL BX,5
SHL WORDSOMETHING,5

if variable-bit-shift then count=CL or count=lmmed8;

else count=1;
do until count=O

CF - high-order-bit of operand;
operand - operand • 2;
count -- count -1;

end do;

ASM86

ASM86 SAL/SHL

if not variable-bit-shift then do;
if high-order-bit of operand <> CF then OF ~ 1;
else OF +- 0;

end if;

Flags

DDT 5 ZAP C

x - - - x u

Description

SHL (shift logical left) and SAL (shift arithmetic left) shift the operand left by
COUNT bits, shifting in low-order zero bits.

6-89

SAR

6-90

Arithmetic Right Shift

For 186 clocks, see Appendix H.

Format

Memory or Reg by 1

Opcode ModRM*

*-(Reg field= 111)

Opcode

00

00

01

01

Clocks

15+EA

2

15+ EA

Operation

shift Reg8 by 1

shift Mem8 by 1

shift Reg16 by 1

shift Mem 16 by 1

Memory or Reg by count in CL

Coding Example

SAR BL,1

SAR BYTESOMETHING,1

SAR BX,1

SAR WOROSOMETHING,l

'--_O_p_c_o_d_e_-'--_M_o_d_R __ M_*_---'-_ = I = ~
*-(Reg field = 111)

Opcode Clocks Operation

02 8+4/bit shift Reg8 by CL

02 20+EA+4/bit shift Mem8 by CL

03 8+4/bit shift Reg16 by CL

03 20+EA+4/bit shift Mem16 by CL

Mem or Reg by Immcd8 [iAPX 186]

Opcode

Opcode

co
CO
C1
C1

Operation

ModRM*

*-(Reg field = 111)

Operation

rotate Reg8 by Immed8
rotate Mem8 by Immed8
rotate Reg16 by Immed8
rotate Mem16 by Immed8

Coding Example

SAR BL,CL

SAR BYTESOMETHING,CL

SAR BX,CL

SAR WOROSOMETHING,CL

count

Coding Example

SAR BL,5
SAR BYTESOMETHING,5
SAR BX,5
SAR WORDSOMETHING,5

if variable-bit-shift then count=CL or count=lmmed8;
else count=1;
do until count=O

CF ~ low-order-bit of operand;
operand ~ operand' 2; '* SIGNED DIVIDE *'
count ~ count -1;

end do;

ASM86

ASM86

if not variable-bit-shift then do;
OF ~O;

end if;

Flags

o D ITS ZAP C

x - - - x x u x x

Description

SAR (shift arithmetic right) shifts the operand right by COUNT bits, shifting in
high-order bits equal to the original high-order bit of the operand (sign extension).

SAR

6-91

SBB

6-92

Integer Subtraction With Borrow

Format

Memory/Reg with Reg

Opcode ModBM =~
Opcode Clocks Operation

1A 3 Reg8 +- Reg8 - Reg8 - CF

1A 9+EA Reg8 +- Reg8 - Mem8 - CF

1B 3 Reg16 +- Reg16 - Reg16 - CF

1B 9+EA Reg16 +- Reg16- Mem16 - CF

18 16+EA Mem8 +- Mem8 - Reg8 - CF

19 16+EA Mem16 +- Mem16 - Reg16 - CF

Immed from AX/ AL

~ __ O_P_c_o_d_e __ ~ ___ D_a_t_a _____ ~_ ==== ~

Opcode

1C

1D

Clocks

4

4

Operation

AL +- AL -lmmed8 - CF

AX +- AX -lmmed16 - CF

Immed from Memory/Reg

Opcode ModRM*

*-(Reg field = 011)

Opcode Clocks Operation

80 4 Reg8 +- Reg8 - Immed8 - CF

80 17+ EA Mem8 +- Mem8 -lmmed8 - CF

81 4 Reg16 +- Reg16 -lmmed16 - CF

81 17+EA Mem16 +- Mem16 -lmmed16 - CF

83 4 Reg16 +- Reg16 -lmmed8 - CF

83 17+EA Mem16 -- Mem16 -lmmed8 - CF

(Immed8 is sign-extended

before subtract)

Operation

LeftOpnd LeftOpnd - RightOpnd - CF

Flags

o D T S ZAP C

x - x x x x x

Coding Example

SBB BL,CL

SBB BL,BYTESOMETHING

SBB BX,CX

SBB BX,WORDSOMETHING

SBB BYTESOMETHING,BL

SBB WORDSOMETHING,BX

Coding Example

SBB AL,5

SBB AX,400H

__ ~ ___ D_a_ta ____ ~_ ==== ~

Coding Example

SBB BL,32

SBB BYTESOMETHING,32

SBB BX,1234H

SBB WORDSOMETHING,1234H

SBB BX,32

SBB WORDSOMETHING,32

ASM86

ASM86

Description

The result of subtracting the right operand, then the original value of the carry flag,
from the left operand replaces the left operand.

SBB

6-93

SHR

6-94

Logical Right Shift

Format

Memory or Reg by 1

Opcode

Opcode

DO
DO
01

01

ModRM*

*-(Reg field = 101)

Clocks Operation

shift RegS by 1

15+EA shift MemS by 1

2 shift Reg 16 by 1

15+ EA shift Mem16 by 1

Memory or Reg by count in CL

Opcode ModRM*

*-(Reg field = 101)

Opcode Clocks Operation

02 8+4/bit shift RegS by CL

02 20+ Ea+4/bit shift MemS by CL

03 8+4/bit shift Reg16 by CL

03 20+EA+4/bit shift Mem16 by CL

Mem or Reg by Immed8 [iAPX 186]

Opcode

Opcode

co
CO
C1
C1

Operation

ModRM*

*-(Reg field = 101)

Operation

rotate Reg8 by Immed8
rotate Mem8 by Immed8
rotate Reg16 by Immed8
rotate Mem16 by Immed8

Coding Example

SHR BL,1

SHR BYTESOMETHING,1

SHR BX,1

SHR WOROSOMETHING,1

Coding Example

SHR BL,CL

SHR BYTESOMETHING,CL

SHR BX,CL

SHR WOROSOMETHING,CL

count

Coding Example

SHR BL,5
SHR BYTESOMETHING,5
SHR BX,5
SHR WORDSOMETHING,5

if variable-bit-shift then count=CL or count=lmmed8;
else do;

count=1 ;
OF ~ high-order-bit of operand;

end if;
do until count=O

CF ~ low-order-bit of operand;
operand ~ operand' 2;
count ~ count -1;

end do;

'* UNSIGNED DIVIDE *'

ASM86

ASM86

Flags

DDT 5 ZAP C

- x x u x x

Description

SHR shifts the operand right by COUNT bits, shifting in high-order zero bits.

SHR

6-95

STC

6-96

Set Carry Flag

Format

Opcode

Opcode

F9

Operation

CF~1

Flags

Clocks

o D T 5 ZAP C

Description

Operation

set the carry flag

STC sets the carry flag, CF. No other flags are affected.

ASM86

Coding Example

STC

ASM86

Set Direction Flags

Format

Opcode

Opcode

FO

Operation

OF --1

Flags

Clocks

2

o 0 T S ZAP C

-1 -----

Description

Operation Coding Example

set direction flag STO

STn sets the direction flag, DF. No other flags are affected.

STD

6-97

STI ASM86

Set Interrupt Enable Flag

Format

Opcode

Opcode Clocks Operation Coding Example

FB set interrupt flag STI

Operation

IF +--1

Flags

0 0 I T S Z A P C

Description

STI sets the interrupt enable flag, IF. No other flags are affected.

6-98

ASM86

String Operations

For 186 clocks, see Appendix H.

Format

Opcode

Opcode

A6

A7

A4
A5

AE

AF

AC

AD

AA

AB

6E

6F

6C

60

Operation

do until CX = 0;

Clocks Operation

22 flags - (SI) - (01)

22 flags - (SI) - (01)

18 (01) -(SI)

18 (01) <--(SI)

15 flags - (01) - AX

15 flags <-- (01) - AL

12 AL<--(SI)

12 AX <-- (SI)

11 (01) <-- AL

11 (01) <--AX

(Ol)+- port(OX)

(01)..- port(OX: OX + 1)

port(OX)+-(SI)

port(OX:OX + 1)"-(SI)

I * acknowledge any pendin!~ interrupts * I
perform string primitve once;
CX +- CX -1; I * does not affect flags * I
if OF = 0 then add pointer adjustment to OS and lor ES
else subtract pOinter adjustment from OS and lor ES;
if SCAS or CMPS, and repeat condition does not match ZF
then undo;

end do;

Description

Coding Example

CMPS BSTRING

CMPS WSTRING

MOVS BSTRING1,BSTRING2

MOVS WSTRING1,WSTRING2

SCAS BSTRING

SCAS WSTRING

LOOS BSTRING

LOOS WSTRING

STOS BSTRING

STOS WSTRING

INS BSTRING, OX

INS WSTRING, OX

OUTS OX, BSTRING

OUTS OX, WSTRING

The string primitive operations are intended to be used primarily with the REP
prefix. There are 7 primitives which, when so prefixed, perform the following
operations:

Flags

DDT 5 ZAP C

- x

CMPS
CMPSB
CMPSW

x

Compare the elements of two strings, one pointed to by ES:DI and the
other by DS:SI.

String

6-99

String

6-100

Flags

DDT 5 ZAP C

MOYS
MOVSB
MOVSW

Flags

Move the string pointed to by DS:SI into memory pointed to by ES:DI.

DDT 5 ZAP C

X - - - X

SCAS
SCASB
SCASW

Flags

Scan a string pointed to by ES:DI, comparing each element to AX or
AL according to the type of string, and setting the flags to the result
of such a comparison. Used with the conditional repeat-prefix
(REPE, ...), this primitive can locate the next element matching
AX/ AL or next not-matching elemert.

DDT 5 ZAP C

LODS
LODSB
LODSW

Flags

Load each string element into AX/ AL. This primitive would be used
with the LOOP construct rather than the REP prefix, since some further
processing on the data moved to AX/ AL is almost surely necessary.

DDT 5 ZAP C

STOS
STOSB
STOSW

Store the AX or AL contents into the entire string.

The following operations are for iAPX 186:

INS

OUTS

Store in memory pointed to by ES:DI the block of bytes or words read
from the 10 address in DX.

Output to the 10 address in DX the block of bytes/words in memory
pointed to by DS:SI.

Each repetition of the string operation acknowledges pending interrupts, checks CX
for zero (and stops repeating if 0), performs the string primitive operation once, adjusts
any memory pointers used by the string operation by 1 for bytes and 2 for words (the
adjustment is added if the FLAGS.DF is 0, otherwise subtracted), decrements CX
(which does not affect the flags), and, in the case of SCAS and CMPS or their
variants, checks the ZF for a match with the REP condition. As long as the REP
condition matches, another repetition will be performed. For example, REPNE SCAS
FOO will stop with ES:DI pointing to the next element of FOO which has not yet

ASM86

ASM86

been scanned, and the last dement scanned did not match the repeat condition 'Not
Equal'-that is, the last element scanned matched the value in AX or AL, depending
on whether FOO was a word or byte string. Repeat conditions 'NE' and 'NZ' match
ZF=O, while 'E' and 'Z' match ZF= 1.

Every string primitive has three variants. The mnemonics above, CMPS, MOYS,
SCAS, LODS, INS, and OUTS, are generic and require one or more operands to be
coded with them-(~.g. REP SCAS FOO or REP MOYS FEE,FIE. These operands
are used only to determine: the size of a string element-byte or word-and do not
determine the addresses of the strings used. The addresses used are determined solely
by the contents of the register pairs ES:DI and DS:SI, as appropriate. Rather than
coding operands for size specification, you may use the generic mnemonic with a 'W'
or 'B' suffix-e.g. STOSB or CMPSW-and omit the operands entirely.

For Repeat String Operations, Clocks are:

Clocks Coding Example

9+17/rep REP MOVSB

9+22/rep REPE CMPSW

9+15/rep REPNE SCASB

9+13/rep REP LODSB

9+ 1 O/rep REP STOSW

String

6-101

SUB

6-102

Integer Subtraction

Format

Memory/Reg with Reg

Opcode ModRM ==r==J
Opcode Clocks Operation

2A 3 Reg8 <-- Reg8 - Reg8

2A 9+EA Reg8 <-- Reg8 - Mem8

2B 3 Reg16 <-- Reg16 - Reg16

2B 9+EA Reg16 <-- Reg16 - Mem16

28 16+EA Mem8 +- Mem8 - Reg8

29 16+EA Mem16 +- Mem16 - Reg16

Immed to AX/ AL

L..-_O_P_C_O_d_e_--,-__ D_a_ta_I =]
Opcode

2C

2D

Clocks

4

Immed to Memory/Reg

Operation

AL +- AL -lmmed8

AX +- AX -lmmed16

Coding Example

SUB BL,CL

SUB BL,BYTESOMETHING

SUB BX,CX

SUB BX,WORDSOMETHING

SUB BYTESOMETHING,BL

SUB WORDSOMETHING,BX

Coding Example

SUB AL,5

SUB AX,400H

L..-_O_P_C_O_d_e_--,-_M_Od_R_M __ *_--,-_ -_ -_ -_-_- I ~~=== _L..-__ D_a_ta __ -,-____ _

*-(Re~l field = 101)

Opcode

80

80

81

81

83

83

Operation

Clocks

4

17+EA

4

17+EA

4

17+EA

Operation

Reg8 +-- Reg8 -lmmed8

Mem8 +- Mem8 -lmmed8

Reg16 +- Reg16 -lmmed16

Mem16 +- Mem16 -lmmed16

Reg16 +- Reg16 -lmmed8

Mem16 +-- Mem16 -lmmed8

(Immed8 is sign-extended

before subtract)

LeftOpnd +- LeftOpnd - RightOpnd

Flags

o 0 T S ZAP C

x - - - x x x x x

Description

Coding Example

SUB BL,32

SUB BYTESOMETHING,32

SUB BX,1234H

SUB WORDSOMETHING,1234H

SUB BX,32

SUB WORDSOMETHING,32

The result of subtracting the right operand from the left operand replaces the left
operand.

ASM86

ASM86

Logical Compare

Format

Memory /Reg with Reg

Opcode ModRM r= --~

Opcode Clocks

84 :3

84 9+EA

85 :3

85 9+EA

Immed to AX/ AL

Opcode Data

Opcode Clocks

A8 4

A9 4

Immed to Memory/Reg

Operation

flags <- Reg8 AND Reg8

flags <- Reg8 AND Mem8

flags <- Reg16 AND Reg16

flags <- Reg16 AND Mem16

L=~
Operation

flags <- AL AND Immed8

flags <- AX AND Immed16

Coding Example

TEST BL,CL

TEST BL,BYTESOMETHING

TEST BX,CX

TEST BX,WORDSOMETHING

Coding Example

TEST AL,4

TEST AX,400H

L--_O_P_c_o_d_e_~_M._O_d_R_M_*_L = =C' = _..L-__ D_a_t_a_--,,---= ~
*-(Reg field = 000)

Opcode Clclcks Operation

F6 5 flags <- Reg8 AND Immed8

F6 11 -I- EA flags <- Mem8 AND Immed8

F7 5 flags <- Reg16 AND Immed16

F7 11 + EA flags <- Mem16 AND Immed16

Operation

flags ~ LeftOpnd and RightOpnd

OF ~ CF ~ a

Flags

DDT 5 ZAP C

o - - - x u

Description

Coding Example

TEST BL,3FH

TEST BYTESOMETHING,3FH

TEST BX,3FFH

TEST WORDSOMETHING,3FFH

The result of a bitwise logical AND of the two operands modifies the flags. Neither
operand is modified.

TEST

6-103

WAIT

6-104

Wait While TEST pin not Asserted

Format

Opcode

.Opcode Clocks Operation Coding Example

98 3+5n* none WAIT

*3 + 5n clocks where n is the number of times the TEST line is polled and found to be inactive.

Operation

None.

Flags

o 0 T S ZAP C

Description

The WAIT instruction causes the processor to enter a wait state if the signal on a
TEST pin is not asserted. The wait state may be interrupted by an enabled external
interrupt. When this occurs the saved code location is that of the WAIT instruction,
so that upon return from the interrupting task the wait state is re-entered. The wait
state is cleared and execution resumed when the TEST signal is asserted. Execution
resumes without allowing external interrupts until after the execution of the next
instruction. The instruction allows the processor to synchronize itself with external
hardware.

ASM86

ASM86

Exchange Memory IRegister With IRegister

Format

Memory IReg with Reg

Opcode ModRM

Opcode Clocks

86 4

86 17+ EA

87 4

87 17+EA

Word Register with AX

I Opcode + Reg I

Opcode Clocks

90+ Reg

Operation

temp +- left operand;
left operand +- right operand;
right operand +- temp;

Flags

o 0 T S ZAP C

Description

r== =~
Operation

Fleg8 +---+ Reg8

Mem8 +---+ Mem8

Fleg16 «---+ Reg16

Mem16 +---+ Mem16

Operation

AX +---+ Reg16

Coding Example

XCHG BL,CL

XCHG BYTESOMETHING,CL

XCHG BX,CX

XCHG CX,WORDSOMETHING

Coding Example

XCHG AX,BX

The two operands are exchanged. Segment registers are not legal operands. The
order of the operands is immaterial. No flags are affected.

XCHG

6-105

XLAT
XLATB

6-106

Table Look-up Translation

Format

Opcode

Opcode

07

07

Operation

Clocks

11

11

Operation

replace AL with table entry

AL ~ table entry with effective address equal to BX + AL;

Flags

o 0 T S ZAP C

Description

Coding Example

XLAT ASCII_TABLE

XLATB

XLA T is intended for use as a table look-up instruction. You put the base address of
the table in BX and a byte to be translated in AL. XLA T adds AL to the contents of
BX and uses the result as an effective address. The byte at that EA is loaded into
AL. BX is unchanged, and no flags are modified.

ASM86

ASM86

Logical Exclusive 0 R

Format

Memory/Reg with Reg

Opcode ModRM c= =~
Opcode Clocks Operation

32 3 FlegS - RegS XOR RegS

32 9+EA FlegS - RegS XOR Mem8

33 3 Fleg16 - Reg16 XOR Reg"16

33 9+EA Fleg16 - Reg16 XOR Mem16

30 16+EA MemS - MemS XOR Rega

31 16+EA Mem16 - Mem16 XOR Reg16

Immed to AX/ AL

~_O_P_c_o_d_e_..L..-_._D_a_t_a __ "C = ~
Opcode

34

35

Cloc:ks

Immed to Memory/Reg

Operation

AL - AL XOR ImmedS

t~x - AX XOR Immed16

Opcode ModRM* r===c=
*-(Reg field = 110)

Opcode Clocks Operation

SO 4 RegS - RegS XOR ImmedS

SO 17+EA MemS - MemS XOR ImmedS

S1 Fleg16 - Reg16 XOR Immed16

S1 17+EA Mem16 - Mem16 XOR Immed16

Operation

LeftOpnd - LeftOpnd XOR Ri~JhtOpnd
OF -CF - 0

Flags

DDT S ZAP C

0-- - x u x

Description

Coding Example

XOR BL,CL

XOR BL,BYTESOMETHING

XOR BX,CX

XOR BX,WORDSOMETHING

XOR BYTESOMETHING,BL

XOR WORDSOMETHING,BX

Coding Example

XOR AL,5

XOR AX,400H

_~ __ D_a_ta __ ~_ ~ ~

Coding Example

XOR BL,32

XOR BYTESOMETHING,32

XOR BX,1234H

XOR WORDSOMETHING,1234H

The exclusive OR of two operands replaces the left operand. The carry and overflow
flags are cleared.

XOR

6-107

The 8086/8087/8088 Instruction Set

6-108

The 8087 Instruction Set

This section provides a summary discussion of those elements of the 8087 Numeric
Processor that are of specific interest to the 8087 programmer. The following pro
grammer accessible features of the architecture are included: floating-point stack;
status, control and tag words; exception pointers; and data types. An elementary
description of 8087 operation is provided to give a working understanding of
8086/8087/8088 coprocessing, 8087 numeric processing, exception handlers, and
8087 emulators.

Those users who wish detailed information on the 8087 architecture, operation,
and I or those who wish to write their own exception handlers are referred to The
8086 Family User's Manual, Numerics Supplement, Order No. 121586.

8087 Architectural Summary

The programmer accessible features of the 8087 Numeric Processor architecture
consist of the eight floating-point stack elements; the seven words which constitute
the 8087 environment (status word, control word, tag word, 2-word instruction
address, and 2-word data address); and the seven data types accessible by the 8087.

Floating-Point Stack

The 8087 stack consists of eight elements divided into the fields shown in figure 6-1.
The format of the fields corresponds with the temporary real data format used in all
stack calculations and described under Data Types.

At a given point in time, the ST field in the status word identifies the current stack
top element. This floating point stack element (rather than the status word field) is
referred to in the rest of this chapter as ST. A load (push) operation, as in FLDLN2,
decrements the stack pointer by 1 and loads a value (in this case loge2) into the new
stack top. An operation which pops the floating point stack increments the stack
pointer by 1 (FADDP ST(i),ST adds the contents of the stack top to the stack ele
ment designated by (i), stores the result in ST(i) and increments the stack pointer by
1, making ST(1) the new stack top, ST(O).

79 64 63

S EXPONENT SIGNIFICAND ST3

ST2

ST1 STACK POINTER

1-+----4----.-----1 ST(O) ~

ST(7)
1-+----4----.-----1

ST(6)
~---;----.-----_i

ST(5)
~----;---------_i

ST(4)

Figure 6-1. The 8087 Stack Fields 121623-8

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Elements of the floating point stack can be addressed either implicitly or explicitly:

FST ST(3)

FADD

Stores the contents of the stack top into element 3.

Adds the contents of the stack top to the contents of ST(1),
stores the result in ST(1) and pops the stack. The result is now
in the new stack top.

Note that floating-point stack indices outside of the range 0-7 are flagged as "out of
range."

Environment

The 8087 environment consists of the seven words shown in figure 6-2.

15

B I c31 1
ST I C2 C1 I CO IR I ' PE I UE OE I ZE DE liE STATUS WORD

IIC RC PC IEMI ' PM I UM ' I ZM DM 11M
1 I I I

CONTROL WORD

TAG(7) I TAG(6) TAG(5) TAG(4) TAG(3) TAG(2) TAG(1) TAG(O)
I I I I I .i- I I

TAG WORD FORMAT

16 LSB

4 MSB J 0 INSTRUCTION OPCODE
I INSTRUCTION ADDRESS

16 LSB

4 MSB I 0
I DATA ADDRESS

'RESERVED

Figure 6-2. 8087 Environment 121623-9

Status Word

The status word reflects the overall condition of the 8087; it may be examined by
storing it into memory with an 8087 instruction and then inspecting it with
8086/8088 CPU code. The status word is divided into the exception flag and status
bit fields shown in figure 6-3. The busy field (bit 15) indicates whether the 8087 is
executing an instruction (B:=I) or is idle (B=O) ..

Several 8087 instructions (e.g., comparison instructions) result in modification of
the condition code. The condition code is contained in bits 14 and 10-8 (C3-CO) of
the status word. The condition code is used mainly for conditional branching. See
the following instruction descriptions later in this chapter for condition code inter
pretations: FCOM, FCOMP, FCOMPP, FTST, FXAM and FPREM.

Bits 13-11 of the status word points to the 8087 stack element that is the current
stack top (ST). Note that if ST=OOOB, a "push" operation which decrements ST,
produces ST= 111 B; similarly, popping the stack with ST= 111 B yields ST=OOOB.

Bit 7 (lR) is the interrupt request field. The 8087 latches this bit to record a pending
interrupt to the 8086/8088 CPU.

Bits 5-0 (PE, UE, OE, EE, DE, and IE) are set to indicate that the 8087 has detected
an exception while executing an instruction.

6-109

The 8086/8087/8088 Instruction Set

6-110

15

ST
I

~
EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERO DIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT REQUEST

CONDITION CODE(1)

STACK TOP POINTER(2)

'----------------------- BUSY

Figure 6-3. Status Word Format

ST values

000 = element 0 is stack top
001 = element 1 is stack top

111 = element 7 is stack top

Control Word

The control word consists of the exception masks, an interrupt enable mask, and
control bits as shown in figure 6-4. During the execution of most instructions, the
8087 checks for six classes of exception conditions:

1. Invalid operations·-programming errors such as trying to load a floating point
stack element that is not empty, popping an operand from an element that is
empty, using operands that cause indeterminate results (DID, square root of a
negative number, trying to store an unnormalized number which will not denor
malize, etc.).

2. Overflow-usually the exponent of the true result is too large for the destination
real format.

3. Underflow-the true exponent is too small to be represented in the result
format.

4. Zerodivide-division of a finite non-zero operand by zero.

5. Denormalized-an instruction attempts to operate on a denormalized number.

6. Precision-for instructions that perform exact arithmetic, this exception means
that some precision has been lost in reporting the results of an operation.

When one of these six conditions occurs, the corresponding flag in the status word is
set to 1. The 8087 checks the appropriate mask in the Control Word to determine if
it should process the exception with a default handling procedure on chip (mask = 1)
or invoke a user written exception handler (mask = 0).

In the first case, the exception is said to be MASKED (from user software).

ASM86

121623-10

ASM86

15

I

The 8086/8087/8088 Instruction Set

I
IIC I RC

I
-~

7 0

PC IIEMI I PM I UMloMI ZM I DMG
I
r--

ill

(1) Interrupt-Enable Mask:
o = Interrupts Enabled

L EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

CONTROL BITS

INTERRUPT-ENABLE MASK(1)

PRECISION CONTROU2)

ROUNDING CONTROU3)

INFINITY CONTROU4)

(RESERVED)

1 = Interrupts Disabled (Masked)
(2) Precision Control:

00 = 24 bits
01 = (reserved)
10 = 53 bits
11 = 64bits

(3) Rounding Control:
00 = Round to Nearest or Even
01 = Round Down (toward "")
10 = Round Up (toward' ,Xl)
11 = Chop (Truncate Toward Zero)

(4) Infinity Control:

~ ~ ~~W;;tive

Figure 6-4. Control Word Format

The control bits have the following meanings:

pc: Precision control-results are rounded to one of three
precisions: Temporary Real (64 bits), Long Real (53 bits) or
Short Real (24 bits).

RC:

IC:

Tag Word

Rounding Control-results are rounded in one of four
directions: unbiased round to the nearest or even value, round
toward +, round toward -, or round toward zero.

Infinity Control-there are two types of infinity arithmetic
provided: affine and projective. The default means of closing a
Number system is projective. See The 8086 Family User's
Manual, Numerics Supplement, for a complete description.

The tag word, as shown in figure 6-5, contains tags describing the contents of the
corresponding stack elements.

121623-11

6-111

The 8086/8087/8088 Instruction Set

6-112

15

L

I

7

Tag values:
00 = Valid (Normal or Unnormal)
01 = Zero (True)
10 = Special (Not-A-Number, '''', or Denormal)
11 = Empty

Figure 6-5. Tag Word Format

OPERAND ADDRESS(1)

I INSTRUCTION OPCODE(2)

INSTRUCTION ADDRESS(1)

10

(1) 20-bit physical address

o

o

(2) 11 least significant bits of opcode; 5 most significant bits are always 8087 hook (11011 B)

Figure 6-6. Exception Pointers Format

Exception Pointers

121623-12

121623-13

The exception pointers shown in figure 6-6 are provided for user-written exception
handlers. Whenever the 8087 executes an instruction, it saves the instruction address
and the instruction opcode in the exception pointers. In addition, if the instruction
references a memory operand, the address of the operand is retained also. An excep
tion handler can be written to store these pointers in memory and obtain informa
tion concerning the instruction that caused the error.

Data Types

The 8087 addresses seven different data types using all of the 8086 addressing
modes. These data types and their valid ranges of value are shown in table 6-5.

Figure 6-7 describes how these formats are stored in memory (the sign is always
located in the highest-addressed byte). In the figure, the most significant digits of all
numbers (and field within numbers) are the leftmost digits.

Table 6-5. 8087 Data Types

Data Type Bits Significant Approximate Range (Decimal) Digits (Decimal)

WORD INTEGER 16 4-5 -32768 ~ x ~ +32767

SHORT INTEGER 32 9 -2x109~x~2x109

LONG INTEGER 64 18 -9 x 10 18 ~ x ~ +9 x 1018

PACKED DECIMAL 80 18 -99 ... 99 ~ x ~ +99 ... 99 (18 digits)

SHORT REAL 32 6-7 0,1.2 x 10-38 ~ I x I ~ 3.4 x 1038

LONG REAL 64 15-16 0,2.3x10-308~ Ixl ~1.7x10308

TEMPORARY REAL 80 19-20 0,3.4X10-4932~ Ixl ~1.1x104932

ASM86

ASM86 The 8086/8087/8088 Instruction Set

.--- INCREASING SIGNIFICANCE

r:r::==:1 (TWO'S
WORD INTEGER ~~ COMPLEMENT)

15

SHORT INTEGER rsr-___ M_A_C.,.iN_�_Tu_D_E _____ 1 (TWO'S LL.. COMPLEMENT)

31 0

r:r I (TWO'S
LONG INTEGER ~, ____ • _____ M_A_G_N_IT_U_D •• E _________ ...I COMPLEMENT)

~ 0

SHORT REAL I S I d,_~~A_O S_N ~_~_T~_-SI-G-N-IF-IC-A-N-D-...
31 23 o

r:r BIASED I
LONG REAL ~ EXPONENT

63 ---------52~~------------'-----------------~

''-- I,

SIGNIFICAND

r:r BIASED L
TEMPORARY REAL ~ __ E_X_PO_N_E •• N_T __ ~LU_I~--__ .----SI-G-N-IF-IC-A-N-D---_____ ~

79 64 63'

NOTES:
S = Sign bit (0 = positive, 1 = negative)
dn = Decimal digit (two per byte)
X = Bits have no significance: 8087 ignores when loading, zeros when storing,
, = Position of implicit binary paint
I = Integer bit of significand: stored in temporary real. implicit in short and long real
Exponent Bias (normalized values):

Short Real: 127 (7FH)
Long Real: 1023 (:IFFH)
Temporary Real: "16383 (3FFFH)

Figure 6-7. Data Formats

o

121623-14

The three binary integer formats are identical except for length, which governs the
range that can be accommodated in each format. The leftmost bit is interpreted as
the number's sign: 0 = positive and 1 = negative. Negative numbers are represented
in standard two's complement notation (the binary integers are the only 8087 format
to use two's complement). The quantity zero is represented with a positive sign (all
bits O). The 8087 word integer format is identical to the 16-bit signed integer data
type of the 8086 and 8088.

Decimal integers are stored in packed decimal notation, with two decimal digits
"packed" into each byte. Negative numbers are distinguished from positive ones
only by the sign bit. All digits must be in the range OH-9H.

The 8087 stores real numbers in a three-field binary format that resembles scientific
notation. The number's significant digits are held in the SIGNIFICAND field, the
EXPONENT field locates the binary point within the significant digits (determining
the number's magnitude), and the SIGN field indicates whether the number is
positive or negative. Negative numbers differ from positive numbers only in their
sign bit.

6-113

The 8086/8087/8088 Instruction Set

6-114

The short and long real formats exist only in memory. If a number in one of these
formats is loaded into the stack, it is automatically converted to temporary real.

Special values are included to increase flexibility though not within the domain of
normal floating point arithmetic. These special values are listed here, but the reader
is referred to The 8086 Family User's Manual, Numerics Supplement, for descrip
tions. The special values include:

• Signed zero

• +00 and -00 representations

• Indefinite values

• NAN values (Not-A-Number)

• Denormals

• Unnormals

8087 Operation

Coprocessing

The 8087 and host CPU act as coprocessors. They share the same instruction stream
and sometimes perform parallel executions. The 8086/8088 has a set of ESCAPE
instructions that, in memory addressing mode, cause the 8086/8088 to calculate the
address and read the contents of that address. The 8086/8088 ignores the word it
reads and executes subsequent instructions. The 8087, however, monitors the same
instruction stream and when it detects an ESCAPE it begins processing. The 8087
latches the opcode and, if there was an address calculated, the 8087 captures both
the address and the datum read by the 8086/8088. The 8087 decodes the instruction
to determine how many more words it needs from memory. It increments the
address and fetches data until all required data is read. The 8087 then releases the
bus and begins calculating while the 8086/8088 continues executing the instruction
stream.

The 8086/8088 WAIT instruction allows software to synchronize the 8086/8088 to
the 8087 so that the host processor does not execute the next instruction until the
8087 is finished with its current (if any) instruction. To accomplish this, the pro
grammer should explicitly code the FW AIT instruction immediately before an
8086/8088 instruction that accesses a memory operand read or written by a previous
8087 instruction.

If an 8087 and a processor other than its host CPU can both update a variable,
access to that variable should be controlled so that one processor at a time has
exclusive rights to it. This can be done by using an 8086/8088 XCHG instruction
prefixed by LOCK. When the 8087 no longer needs the variable, the 8086/8088
clears it and again makes it available for use.

The 8087 interrupt requests are made to the 8086/8088 as the result of detecting an
exception. Interrupts are enabled or disabled by the Interrupt Enable Mask (lEM) in
the Control Word. When IEM is set to 1, interrupts are masked (disabled). The
interrupt request remains set until it is explicitly cleared. This can be done by the
FNCLEX, FNSA VE, or FINIT instructions.

Numeric Processing

The 8087 has four rounding modes, selectable by the RC field in the control word.
The rounding modes and their corresponding RC fields are shown in table 6-6.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Table 6-6. Rounding Modes

RC Field Roundin!~ Mode Rounding Action

00 Round to nearest Closer to b of a or c; if equally close, select
even number (the one whose least significant
bit is zero).

01 Round down (toward -00) a

10 Round up (toward +00) c

11 Chop (toward 0) SmallE~r in magnitude of a or c

Note: a < b < c; a and c are representable, b is not.

Rounding occurs in arithmetic and store operations when the format of the destina
tion cannot exactly represent the true result. This can happen when a precise tem
porary real number is stored in a shorter real format or in an integer format. Round
ing introduces an error in a result that is less than one unit in the last place to which
the result is rounded. "Round to the nearest significant bit" is the default mode and
is suitable for most applications. Other modes and applications are described in The
8086 Family User's Manual, Numerics Supplement.

The precision of results can be calculated to 64, 53, or 24 bits as selected by the PC
field of the control word. The default setting is 64 bits. This setting is best suited for
most applications.

The 8087's system of real numbers may be closed by either of two models of infinity.
The IC field in the control word is set for ~ither projective or affine closure. The
default is projective, which is recommended for most computations. Both closure
forms and their uses are described in The 8086 Family User's Manual, Numerics
Supplement.

The 8087 can represent data and final results of calculations in the range
±2.3xlO-308 to :tl.7xl0308 (double precision). Compared to most computers,
including large mainframes, the 8087 provides a very good approximation of the real
number system. It is important to remember, however, that it is not an exact
representation, and that arithmetic on real numbers is inherently approximate.

Conversely, and equally important, the 8087 does perform exact arithmetic on its
integer subset of the reals. That is, an operation on two integers returns an exact
integral result, provided that the true result is an integer and is in range.

The 8087 detects the six types of exceptions shown in table 6-7. The programmer has
a choice of using the 8087 on-chip fault-handling capability by masking exceptions
in the Control Word, or writing software exception handlers and unmasking excep
tions in the control word. Table 6-3 shows the 8087 response to each situation.

If the exception is unmasked, its detection results in the generation of an interrupt.
When an interrupt is generated, the interrupt procedure (exception handler) has
available the exception flags, a pointer to the instruction causing the interrupt and a
pointer to the datum if memory was addressed. Each of the exceptions shown in
table 6-7 has a sticky flag associated with it, which means that once the flag is set, it
remains until reset by software. Several instructions can be used to clear the flag:
FCLEX clears exceptions; FRSTOR or FLDENV overwrite flags.

Those users who wish to write their own exception handlers should consult The 8086
Family User's Manual, Numerics Supplement since they will vary widely from one
application to the next.

6-115

The 8086/8087/8088 Instruction Set

6-116

Table 6-7. Exception and Response Summary

Exception Masked Response Unmasked Response

Invalid If one operand is NAN··, return it; Request interrupt.
Operation if both are NANS, return NAN with

larger absolute value; if neither is
NAN, return indefinite.

Zerodivide Return 00 signed with "exclusive Request interrupt.
or" of operand signs.

Denormalized Memory operand: proceed as Request interrupt.
usual. Register operand: convert to
valid unnormal, then re-evaluate
for exceptions.

Overflow Return properly signed 00. Register destination: adjust
exponent,· store result, request
interrupt. Memory destination:
request interrupt.

Underflow Denormalize result. Register destination: adjust
exponent,· store result, request
interrupt. Memory destination:
request interrupt.

Precision Return rounded result. Return rounded result, request
interrupt.

* On overflOW, 24,576 decimal is subtracted from the true result's exponent; this forces the
exponent back into range and permits a user exception handler to ascertain the true result
from the adjusted result that is returned. On underflow, the same constant is added to the
true result's exponent.

NAN is a member of a class of special values that exist in the real formats only. See the The
8086 Family User's Manual, Numerics Supplement.

8087 Emulators

Numeric processing capability is not restricted to 8087 users. Intel offers two
8086/8088 software products which provide 8087 functionality. E8087 emulates the
full 8087 instruction set for assembly language programs. PE8087 furnishes numeric
support for PL/M-86 software. Use of the 8087 Emulators necessitates modification
of the instruction formats presented in this chapter.

ASM86, the Intel 8086/8087/8088 assembler, produces special object code for 8087
instructions. Floating point instructions are identified in such a way that they may
be linked to the 8087 Emulators. Refer to the 8086/8087/8088 Assembler Operating
Instructions for ISIS-II User's manual for a short description of this change and link
procedure.

Organization of the 8087 Instruction Set

Data Transfer Instructions

These instructions are summarized in table 6-8. They move operands among stack
elements or between the stack top and memory. Any of the seven data types can be
converted to temporary real and loaded (pushed) onto the stack in a single opera
tion; they can be stored in memory in the same manner. The data transfer instruc
tions automatically update the 8087 tag word to reflect the stack contents following
the instruction.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Table 6-8. Data Transfer Instructions

Real Transfers

FLD Load real
FST Store real
FSTP Store real and pop
FXCH Exchange registers

Integer Transfers

Fill) Integer load
FIST Integer store
FISTP Integer store and pop

Packed Decimal Transfers

FBL.D Packed decimal (BCD) load
FBSTP Packed decimal (BCD) store and pop

Arithmetic Instructions

The arithmetic instruction set for the 8087 provides a great many variations on the
basic add, subtract, mUltiply and divide operations, and a number of other useful
functions. Table 6-9 gives a summary of these instructions.

Table 6-9. Arithmetic Instructions

Addition

FADD Add real
FADDP Add wal and pop
FIADD Integer add

Subtraction

FSUB Subtract real
FSUBP Subtract real and pop
FISUB Integer subtract
FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed

Multiplication

FMUL Multiply real
FMULP Multiply real and pop
FIMUL Integer multiply

Division

FDIV Divide real
FDIVP Divide real and pop
FIDIV Integer divide
FDIVR DividE~ real reversed
FDIVRP Divide real reversed and pop
FIDIVR IntegEH divide reversed

Other Operations

FSQRT Square root
FSCALE Scale
FPREM Partial remainder
FRNDINT Round to integer
FXTRACT Extract exponent and significand
FABS Absolute value
FCHS Chan!~e sign

6-117

The 8086/8087/8088 Instruction Set

6-118

The stack element form is a generalization of the classical stack form; the program
mer specifies the stack top as one operand and any stack element on the stack as the
other operand. Coding the stack top as the destination provides a convenient way to
make use of a constant held elsewhere in the stack. The converse coding (ST is the
source operand) allows, for example, adding the top into a stack element used as an
accumulator.

Often the operand in the stack top is needed for one operation but then is of no fur
ther use in the computation. The stack element and pop form can be used to pick up
the stack top as the source operand, and then discard it by popping the floating
point stack. Coding operands of ST(1),ST with a stack element pop mnemonic is
equivalent to a classical stack operation: the top is popped and the result is left at the
new top.

Programmers no longer need to spend valuable time eliminating square roots from
algorithms because processors run too slowly. Other arithmetic instructions perform
exact modulo division, round real numbers to integers, and scale values by powers
of two.

The 8087's arithmetic instructions (addition, subtraction, multiplication, and divi
sion) allow the programmer to minimize memory references and to make optimum
use of the 8087 floating-point stack.

Table 6-10 summarizes the available operation/ operand forms that are provided for
basic arithmetic. In addition to the four normal operations, two "reversed"
instructions make subtraction and division "symmetrical" like addition and
multiplication.

• Operands may be located in stack elements or memory.

• Results may be deposited in a choice of stack elements.

• Operands may be a variety of 8087 data types: long real, short real, short integer
or word integer, with automatic conversion to temporary real performed by the
8087.

Five instruction forms may be used across all six operations, as shown in table 6-10.
The classical stack form may be used to make the 8087 operate like a classical stack
machine. No operands are coded in this form, only the instruction mnemonic is
coded. The 8087 picks the source operand from the stack top and the destination
from the next stack element. It then performs the operation, pops the stack, and
returns the result to the new stack top, effectively replacing the operands by the
result.

Table 6-10. Basic Arithmetic Instructions and Operands

Instruction Form
Mnemonic Operand Forms

ASM86 Example
Form destination, source

Classical stack Fop {ST(1),ST} FADD

Stack element Fop ST(i),ST or ST,ST(i) FSUB ST,ST(3)

Stack element FopP ST(i),ST FMULP ST(2),ST
and pop

Real memory Fop {ST,} short-real/iong-real FDIV AZIMUTH

Integer memory Flop {ST,} word-integerlshort-integer FIDIV N_PULSES

Notes: Braces { } surround implicit operands; these are not coded, and are shown here for
information only.

op = ADD destination +- destination + source
SUB destination +- destination - source
SUBR destination +- source - destination
MUL destination +- destination· source
DIV destination +- destination -;- source
DIVR destination +- source -;- destination

ASM86

ASM86 The 8086/8087/8088 Instruction Set

The two memory forms increase the flexibility of the 8087's arithmetic instructions.
They permit a real number or a binary integer in memory to be used directly as a
source operand. This is a very useful facility in situations where operands are not
used frequently enough to justify holding them in the floating point stack. Note that
various forms of data allocation may be used to define these operands; they may be
elements in arrays, structures or other data organizations, as well as simple scalars.

The six functional groups of instructions are discussed further in the next
paragraphs.

Comparison Instructions

Each of these instructions (table 6-11) analyzes the top stack element, often in rela
tionship to another operand, and reports the result in the status word condition
code. The basic operations are compare, test (compare with zero), and examine
(report tag, sign, and normalization). Special forms of the compare operation are
provided to optimize algorithms by allowing direct comparisons with binary integers
and real numbers in memory, as well as popping the stack after a comparison.

The FSTSW (store status word) instruction may be used following a comparison to
transfer the condition code to memory for inspection. See individual descriptions of
the instructions listed in table 6-11 for interpretations of the condition code bits.

Note that instructions other than those in the comparison group may update the
condition code. To ensure that the status word is not altered inadvertently, it should
be stored immediately after the compare operation.

Table 6-11. Comparison Instructions

FCOM
FCOMP
FCOMPP
FICOM
FICOMP
FTST
FXAM

Transcendental Instructions

Compare real
Compare real and pop
Compare real and pop twice
Inte£ler compare
Inte£jer compare and pop
Test
Examine

The instructions in this group are summarized in table 6-12. They perform the core
calculations for all common trigonometric, inverse trigonometric, hyperbolic,
inverse hyperbolic, logarithmic and exponential functions. Prologue and epilogue
software may be used to reduce arguments to the range accepted by the instructions
and to adjust the result to correspond to the original arguments if necessary. The
transcendentals operate on the top one or two stack elements, and they return their
results to the stack..

Table 6-12. Transcendental Instructions

FPTAN
FPATAN
F2XM1
FYL2X
FYL2XP"1

Partial tangent
Partial arctangent
2x-1
Y * lo92X
Y * lo92(X + 1)

6-119

The 8086/8087/8088 Instruction Set

6-120

The transcendental instructions assume that their operands are valid and in-range.
The instruction descriptions in this section provide the range of each operation. To
be considered valid, an operand to a. transcendental must be normalized; denormals,
unnormals, infinities and NANs are considered invalid. Zero operands are accepted
by some functions and are considered out-of-range by others. If a transcendental
operand is invalid or out-of-range, the instruction will produce an undefined result
without signaling an exception. It is the programmer's responsibility to ensure that
operands are valid and in-range before executing a transcendental. FPREM may be
used to bring an operand into range for periodic functions.

Constant Instructions

Each of these instructions (table 6-13) loads (pushes) a commonly-used constant
onto the stack. The values have full temporary real precision (64 bits) and are
accurate to approximately 19 decimal digits. Since a temporary real constant
occupies 10 memory bytes, the constant instructions, which are only two bytes long,
save storage and improve execution speed, in addition to simplifying programming.

Table 6-13. Constant Instructions

FLDZ
FLD1
FLDPI
FLDL2T
FLDL2E
FLDLG2
FLDLN2

Processor Control Instructions

Load + 0.0
Load + 1.0
Load IT

Load 109210
Loadlog2e
Loadlog102
Loadlog e2

When CPU interrupts are enabled, as will normally be the case when an application
task is running, the "wait" forms of these instructions should be used. Most of the
instructions shown in table 6-14 are used in system-level activities rather than in
computations. These activities include: initialization, exception handling, and task
switching.

Alternate mnemonics are shown for several of the processor control instructions in
table 6-14. This mnemonic, distinguished by a second character of "N", instructs
the assembler not to prefix the instruction with a CPU WAIT instruction (instead, a
CPU NOP precedes the instruction). This "no-wait" form is intended for use in
critical code regions where aWAIT instruction might precipitate an endless wait.
Thus, when CPU interrupts are disabled, and the 8087 can potentially generate an
interrupt, the "no-wait" form should be used.

Except for FNSTENV and FNSA VE, all instructions which provide a no-wait
mnemonic are self-synchronizing and can be executed back-to-back in any combina
tion without intervening FW AITs. These instructions can be executed by one part of
the 8087 while the other part is busy with a previously decoded instruction. To
ensure that the processor control instruction executes after completion of any opera
tion in progress, the "WAIT" form of that instruction should be used.

ASM86

ASM86 The 8086/8087/8088 Instruction Set

Table 6-14. Processor Control Instructions

FINIT I FNINIT
FDISI/FNDISI
FENI/FNENI
FLDCW
FSTCW I FNSTCW
FSTSW/FNSTSW
FCLEX/FNCLEX
FSTENV IFNSTENV
FLDENV
FSAVE/FNSAVE
FRSTOR
FINCSTP
FDECSTP
FFREE
FNOP
FWAIT

Initialize processor
Disable interrupts
Enable interrupts
Load control word
Store control word
Store status word
Clear exceptions
Store environment
Load environment
Save state
Restore state
Increment stack pOinter
Decrement stack pointer
Free register
No operation
CPU wait

6-121

MNEMONIC

6-122

Sample 8087 Instruction

Format

WAIT op1 I m/op/rm

L an offset value (either 8 or 16 bits)

'----- modrm byte (middle 3 bits part of opcode)

- opcode (possibly two bytes)

an 8086 wait instruction, NOP, or emulator instruction

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

(the 8087 (emulator typical (machine operation) MNEMONIC

instruction instruction range

coding) coding)

Operation

(A description of the machine operation.)

Exceptions

I ZOO U P

(shows which exceptions could be set)

ASM86

ASM86

Format

WAIT

8087
Encoding

9809 FO

Operation

op1

Emulator

Encoding

CO 19 FO

op2

Execution
Clocks

Typical

Range

500

310-630

Operation Coding Example

F2XM1

This instruction calculates the function Y = 2X-I. X is taken from the top of the
floating point stack and must be in the range 0 ~ X ~ 0.5. The result Y replaces X at
the stack top.

Exceptions

I ZOO U P *
x x

*Operands not checked.

Description

This instruction is designed to produce a very accurate result even when x is close to
zero. To obtain Y = 2\ add 1 to the result delivered by F2XM 1.

The following formulas show how values other than 2 may be raised to a power of
X.

10X = 2x· 109210

eX = 2X • 1092e

yx = 2X • 1092Y

The 8087 has built-in instructions, described in this chapter, for loading the con
stants LOG2 10 and LOG2 e, and the FYL2X instruction may be used to calculate X
* log2 Y.

F2XM1

6-123

FABS

6-124

Absolute Value

Format

WAIT

8087

Encoding

9809 E1

Operation

op1

Emulator

Encoding

CO 19 E1

op2

Execution
Clocks

Typical

Range

14

10-17

Operation Coding Example

ST +- I ST I FABS

The absolute value instruction changes the element in the top of the stack to its ab
solute value by making its sign positive.

Exceptions

ZOO U P

x

ASM86

ASM86

Add Real

Format

Stack top + Stack element

WAIT

8087
Encoding

9808 CO+ i

98DCCO+i

op1

Emulator

Encoding

CD18CO+i

CD 1CCO+i

op2 + i

Execution
Clocks

Typical

Range

85

70-100

85

70-100

Stack top + memory operand

WAIT op1 m/op/rm

Execution
8087 Emulator Clocks

Encoding Encoding Typical

Range

9808 mOrm CD 18 mOrm 105+ EA

(90-120) + EA

98 DC mOrm CD 1C mOrm 110+ EA

(95-125) + EA

Operation

Operatnon Coding Example

ST +- ST + ST(i) FADD ST,ST(2)

ST(i) ~- ST + ST(i) FADD ST(4),ST

addr1 I addr2 ~

Operation Coding Example

ST +- ST + mem-op FADD COUNT

(short-real)

ST +- ST + mem-op FADD MEAN

(long-real)

The add real instruction adds the source operand to the destination operand and
places the result in the destination. The source operand may be either the stack top,
a stack element, or a short or long real operand in memory. When the source is the
stack top, the destination is one of the stack elements. When the source is a stack ele
ment or memory operand, the destination is the stack top.

Exceptions

ZOO U P

x x x x x

FADD

6-125

FADDP
FADD

6-126

Add Real and Pop

Format

Stack top + Stack Element

WAIT op1 op2 + i

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

9B DE C1 CD 1 E C1 90 ST(1) +- ST + ST(1) FADD

75-105 pop stack

9B DE CO + i CD 1 E CO + i 90 ST(i) +- ST + ST(i) FADDP ST(2),ST

75-105 pop stack

Operation

The add real and pop stack instruction adds the stack top to one of the stack elements,
replacing the stack element with the sum, and then pops the floating point stack.

Exceptions

ZOO U P

x x x x x

ASM86

ASM86

Packed Decimal (BCD) Load

Format

L-._W_A_IT __ .L.-___ o_p_1 __ -''"-_m_'o_p_'_rm_---'-_ ~:l.ddr1 I addr2 ~

8087
Encoding

Emulator

Encoding

9B DF m4rm CD IF m4rm

Execution
Clocks

Typical

Range

300+ EA

Operation

push stack

(~!90-31 0) + EA ST -- mem-op

Coding Example

Operation

The BCD load instruction converts the memory operand from packed decimal to
temporary real and pushes the result onto the stack. The sign of source is preserved,
including the case when the value is negative zero.

Exceptions

x
ZOO U P

Note

The packed decimal digits of the source are assumed to be in the range
0-9H. The instruction does not check for invalid digits (A-FH) and the
result of attempting to load an invalid encoding is undefined.

FBLD

6-127

FBSTP

6-128

Packed Decimal (BCD) Store and Pop

Format

WAIT

8087
Encoding

9B OF m6rm

Operation

op1

Emulator

Encoding

CD IF m6rm

Execution
Clocks

Typical

Range

530+ EA

(520-540) + EA

Operation

mem-op <- ST

pop stack

Coding Example

FBSTP FORECAST

The packed decimal store and pop stack instruction converts the contents of the
stack top to a packed decimal integer, stores the result at the destination in memory,
and pops the floating point stack.

Exceptions

x

Z D a U p

Note

FBSTP produces a rounded integer from a non-integral value by adding 0.5
to the value and then deleting least significant bits.

Users who are concerned about rounding may precede FBSTP with FRNDINT.

ASM86

ASM86

Change Sign

Format

WAIT

8087
Encoding

9809 EO

Operation

op1

Emulator

Encoding

CO 19 EO

op2

Execution
Clocks

Typical

Range

15

10-17

Operation Coding Example

8T +-- --3T FCH8

The change sign instruction complements the sign on the stack top element.

Exceptions

ZOO U P

x

FCHS

6-129

FCLEX
FNCLEX

6-130

Clear Exceptions

Format

WAIT

8087

Encoding

S9 DB E2

90 DB E2

Operation

op1

Emulator

Encoding

CD 1B E2

CD 1B E2

op2

Execution
Clocks

Typical

Range

5

2-8

5
2-8

Operation

clear 8087 exceptions

clear 8087 exceptions

(no wait)

Coding Example

FCLEX

FNCLEX

This instruction clears all exception flags, the interrupt request flag and the busy flag
in the status word. As a consequence, the 8087's INT and BUSY lines go inactive.
The FCLEX form of this instruction is preceded by an assembler-generated WAIT
instruction.

Exceptions

I zoo U p

Description

FNCLEX is used in critical areas of code where aWAIT instruction might result in a
deadlock. FCLEX is used to insure that the processor control instruction executes
only after completion of any operation in progress in the NOP.

ASM86

ASM86

Compare Real

Format

Compare Stack top and Stack element

WAIT

8087

Encoding

980801

980800+ i

op1

Emulator

Encoding

CO 18 01

CO 18 00+ i

op2+i

Execution
Clocks

Typical

Range

45

40-50

45

40-50

Operation

ST - 8T(1)

ST - ST(i)

Compare Stack top and memory operands

[WAIT op1

8087 Emulator

Encoding Encoding

9808 m2rm CO 18 m2rm

98 DC m2rm CD 1C m2rm

Operation

L m/op/rm

Execution
Clocks

Typical

Range

65+ EA

(60-70) + EA

70+ EA

(65-75)+ EA

Operatiion

ST - memop

(short-real)

ST - memop

(long-real)

Coding Example

FCOM

FCOM ST(2)

Coding Example

FCOM WAVELENGTH

FCOM MEAN

The compare real instruction compares the stack top with the source operand. The
source operand may be a stack element or short or long real memory operand. If no
operand is coded. ST is compared with ST(1).

Exceptions

ZOO U P

x x

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

C3 C2 GO ORDER

0 0 0 ST> source
0 0 1 ST < source

0 0 ST = source
ST? source

FCOM

6-131

FCOM

6-132

Note

NANs and 00 (projective) cannot be compared and return C3 = CO = 1 as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT_B?
FWAIT
MOV AH, BYTE PTR STAT_B?+1
SAHF

;STORE RESULT FROM FCOM
;WAIT FOR STORE
;MOVE STATUS BYTE TO AH
;LOAD INTO BOB6 FLAGS REGISTER

The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

J B - ;JUMP ; f ST < source OR ST ? source
JBE - ;JUMP I F ST ~ source OR ST ? source
JA - ;JUMP I F ST > source and NOT ST ? source
JAE - ;JUMP I F ST ~ source and NOT ST ? source
J E ;JUMP I F ST = source or ST ? source
JNE - ;JUMP I F ST -:/= source and NOT ST ? source

ASM86

ASM86 FCOMP

Compare Real and Pop

Format

Compare Stack top and Stack element and pop

WAIT

8087
Encoding

98 OS 09

980S0S+i

op1

Emulator

Encoding

CD 18 09

CD 18 OS+ i

op2+ i

Execution
Clocks

Typical Operation

Range

47 ST - 8T(1)

42-52 pop stack

47 ST - 8T(i)

42-52 pop stack

Compare Stack top and memory operand and pop

WAIT op1 m/op/rm addr1

Execution
8087 Emulator Clocks

Encoding Enc:oding Typical Opera.tion

Range

98 OS m3rm CD 113 m3rm 6S+EA ST - mem-op

(63-73) + EA pop stack

(short-real)

98 DC m3rm CD 1C m3rm 72+EA ST - mem-op

(67-77) + EA pop stack

(long-real)

Operation

Coding Example

FCOMP

FCOMP ST(3)

addr2 ~

Coding Example

FCOMP DENSITY

FCOMP PERCENT

The compare real and pop stack instruction compares the stack top with the source
operand and then pops the floating point stack. The source operand may be a stack
element or short or long real memory operand. If no operand is coded, ST is com
pared with ST(1).

Exceptions

ZOO U P

x x

6-133

FCOMP

6-134

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

C3 C2 CO ORDER

0 0 0 ST> source
0 0 1 ST < source

0 0 ST = source
ST? source

Note

NANs and 00 (projective) cannot be compared and return C3 = CO = 1 as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT 87
FWAIT
MOV AH, BYTE PTR STAT 87+1
SAHF

;STORE RESULT FROM FCOM
;WAIT FOR STORE
;MOVE STATUS BYTE TO AH
;LOAD INTO 8086 FLAGS REGISTER

The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

J B - ;JUMP ; f ST < source OR ST ? source
JBE - ;JUMP I F ST ~ source OR ST ? source
JA - ;JUMP I F ST > source and NOT ST ? source
JAE - ;JUMP I F ST ~ source and NOT ST ? source
J E ;JUMP I F ST = source or ST ? source
JNE - iJUMP I F ST t source and NOT ST ? source

ASM86

ASM86 FCOMPP

Compare Real and Pop Twice

Format

WAIT

8087
Encoding

98 DE D9

Operation

op1

Emulator

Encoding

CD 1E D9

op2

Execution
Clocks

Typical

Range

50

Operation

ST - ST(1)

45-55 pop stack

pop stack

Coding Example

FCOMPP

The compare real and pOp stack twice instruction compares the stack top with ST(1)
and pops the floating point stack twice, discarding both operands. No operands may
be explicitly coded with this instruction.

Exceptions

ZOO U P

x x

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

C3 C2 CO ORDER

0 0 0 ST> source

0 0 1 ST < source

0 0 ST = source
ST? source

Note

NANs and 00 (projective) cannot be compared and return C3 = CO = 1 as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT 87
FWAIT
MOV AH, BYTE PTR STAT 87+1
SAHF

;STORE RESULT FROM FCOM
;WAIT FOR STORE
;MOVE STATUS BYTE TO AH
;LOAD INTO 8086 FLAGS REGISTER

6-135

FCOMPP ASM86

The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

J B - ;JUMP i f ST < source OR ST ? source
JBE - ;JUMP I F ST ~ source OR ST ? source
JA - ;JUMP I F ST > source and NOT ST ? source
JAE - ;JUMP I F ST ~ source and NOT ST ? source
J E - ;JUMP I F ST = source or ST ? source
JNE - ;JUMP I F ST

"*
source and NOT ST ? source

6-136

ASM86 FDECSTP

Decrement Stack Pointer

Format

WAIT

8087
Encoding

98 D9 F6

Operation

op1

Emulator

Encoding

CD 19 F6

Execution
Clocks

Typical

Range

9

Operation

stack pointer +- 2

6-12 stack pointer-1

Coding Example

FDECSTP

This instruction subtracts 1 from the stack top pointer in the status word. No tags or
registers are altered, nor is any data transferred. Executing FDECSTP when the
stack top pointer is 0, changes the pointer to 7.

Exceptions

I ZOO U P

6-137

FDISI
FNDISI

6-138

Disable Interrupts

Format

WAIT

8087

Encoding

9B DB E1

90 DB E1

Operation

op1

Emulator

Encoding

CD 1 B E1

CD1B E1

op2

Execution
Clocks

Typical

Range

5

2-8

5

2-8

Operation

Set 8087 interrupt mask

Set 8087 interrupt mask

(no wait)

Coding Example

FDISI

FNDISI

The instruction sets the interrupt enable mask in the control word and prevents the
NOP from issuing an interrupt request. The FOISI form of this instruction is
preceded by an assembler-generated WAIT.

Exceptions

I ZOO U P

Description

The NO WAIT form of the instruction (FNOISI) is intended for use in critical code
regions where aWAIT instruction might induce an endless wait.

Note

If WAIT is decoded with pending exceptions, the 8087 generates an
interrupt- masked or not.

ASM86

ASM86

Divide Real

Format

Stack top and Stack element

WAIT

8087
Encoding

98D8FO+i

98 DC F8+i

op1

Emulator

Encoding

CD18FO+i

CD 1C F8+i

op2+i

Execution
Clocks

Typical

Range

198

193-203

198

193-203

Stack top and memory operand

WAIT op1 m/op/rm

Execution
8087 Emulator Clocks

Encoding Encoding Typical

Range

9808 m6rm CD 18 m6rm 220 + EA

(215-225) + EA

98 DC m6rm CD 1C m6rm 225+ EA

(220-230) + EA

Operation

Operation Coding Example

ST +- ST/ST(i) FDIV ST,ST(2)

ST(i) <--- ST(i)/ST FDIV ST(3),ST

addr1 addr2 ~

Operation Coding Example

ST +- ST I mem-op FDIV DISTANCE

(short-real)

ST +- ST/mem-op FDIV GAMMA

(long-real)

The divide real instructions divide the destination by the source and return the quo
tient to the destination. The source operand may be either the stack top, a stack ele
ment, or a short or long real operand in memory. When the source is the stack top,
t.he destination is one of the stack elements. When the source is a stack element or
memory operand, the destination is the stack top.

The divide real and pop stack instruction divides one of the stack elements by the
stack top, replaces the stack element with the quotient, and then pops the floating
point stack.

Exceptions

ZOO U P

x x x x x x

FDIV

6-139

FDIVP

6-140

Divide Real and Pop

Format

WAIT op1 op2+ i

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

98 DE F9 CD 1 E F9 202 ST(1)'-- ST(1)/ST FDIV

197-207 pop stack

98 DE F8+ i CD1EF8+i 202 ST(i) +- ST(i)/ST FDIVP ST(3),ST

197-207 pop stack

Operation

The divide real instructions divide the destination by the source and return the quo
tient to the destination. The source operand may be either the stack top, a stack ele
ment, or a short or long real operand in memory. When the source is the stack top,
the destination is one of the stack elements. When the source is a stack element or
memory operand, the destination is the stack top.

The divide real and pop stack instruction divides one of the stack elements by the
stack top, replaces the stack element with the quotient, and then pops the floating
point stack.

Exceptions

ZOO U P

x x x x x x

ASM86

ASM86

Divide Real Reversed

Format

Stack top and Stack element

'--__ W_A_I_T_---. ____ O_P1 __ L. op2 + i]

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

98 D8 F8+i CD 18 F8+i 199 5T <-- 5T(i)/5T FDIVR 5T,5T(2)

194-204

98 DC FO+ i CD1CFO+i 199 5T(i) +- ST/ST(i) FDIVR 5T(3),ST

194-204

Stack top and memory operand

L-.._W_A_IT __ ...L.-_._OP_1 __ L m t opt rm

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

98 D8 m7rm CD 18 m7rm 221 + EA 5T <-- rnem-op/ST FDIVR RATE

(216-226) + EA (short-real)

98 DC m7rm CD 1C m7rm 226+ EA ST <-- rnem-op/ST FDIVR SPEED

(221-231) + EA (long-real)

Operation

The divide real reversed instructions divide the source operand by the destination
and return the quotient to the destination. The source operand may be either the
stack top, a stack element~, or a short or long real operand in memory. When the
source is the stack top, the destination is one of the stack elements. When the source
is a stack element or memory operand, the destination is the stack top.

The reverse divide and pop stack instruction divides the stack top by one of the stack
elements and returns the quotient to the stack element. The floating point stack is
then popped.

Exceptions

Z D 0 U P

x x x x x x

FDIVR

6-141

FDIVRP

6-142

Divide Real Reversed and Pop

Format

WAIT op1 OP2~

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

9B DE F1 CD 1E F1 203 ST(1) <- ST/ST(1) FDIVR

198-208 pop stack

9B DE FO+ i CD 1E FO+i 203 ST(i) <- ST/ST(i) FDIVRP ST(4),ST

198-208

Operation

The divide real reversed instructions divide the source operand by the destination
and return the quotient to the destination. The source operand may be either the
stack top, a stack element, or a short or long real operand in memory. When the
source is the stack top, the destination is one of the stack elements. When the source
is a stack element or memory operand, the destination is the stack top.

The reverse divide and pop stack instruction divides the stack top by one of the stack
elements and returns the quotient to the stack element. The floating point stack is
then popped.

Exceptions

ZOO U P

x x x x x x

ASM86

ASM86

Enable Interrupts

Format

WAIT

8087
Encoding

9B DB EO

90 DB EO

Operation

op1

Emulator

Encoding

CD 1B EO

CD 1B EO

op2

Execution
Clocks

Typical

Range

5

2-8

5

2-8

Operation Coding Example

clear 8087 interrupt mask FENI

clear 8087 interrupt mask FNENI

(no wait)

This instruction clears the interrupt enable mask in the control word, allowing the
8087 to generate interrupt requests. The FENI form of this instruction is preceded
by an assembler-generated WAIT instruction.

Exceptions

I ZOO U P

Description

The NO WAIT form of the instruction (FNENI), is intended for use in critical code
regions where aWAIT instruction might induce an endless wait.

The WAIT form of this instruction (FEN I), should be used in all non-critical code
regions. This form insures that the processor control instruction executes after com
pletion of any operation in progress in the NEU.

FENI
FNENI

6-143

FFREE

6-144

Free Register

Format

WAIT

8087
Encoding

98 DO CO+i

Operation

op1

Emulator

Encoding

CD 10 CO+ i

op2+i

Execution
Clocks

Typical

Range

11

9-16

Operation Coding Example

TAG(i) masked empty FFREE ST(1)

This instruction changes the destination stack element's tag to empty. The contents
of this stack element are unaffected.

Exceptions

I Z D 0 U P

ASM86

ASM86

Integer Add

Format

[WAIT op1 m/op/rm addr1 _---'-_ addr2 ~

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

98 DA mOrm CD 1A mOrm 125+ EA ST <-- ST + mem-op FIADD DISTANCE

(108-143) + EA (short integer)

98 DE mOrm CD 1E mOrm 120+ EA ST <-- ST + mem-op FIADD PULSE

(102-137) + EA (word integer)

Operation

This instruction adds the integer memory source to the top of the stack and returns
the sum to the destination at the top of the stack.

Exceptions

ZOO U P

x x x x

FIADD

6-145

FICOM

6-146

Integer Compare

Format

,--_W_A_I_T_--, __ O_P_1 ___ ...L-_m_lo_p_l_rm_~_ addr1 I addr2 ~

8087

Encoding

Emulator

Encoding

98 DA m2rm CD 1 A m2rm

98 DE m2rm CD 1 E m2rm

Operation

Execution
Clocks

Typical

Range

Operation

85 + EA ST - mem-op

(78-91) + EA (short integer)

80 + EA ST - mem-op

(72-86) + EA (word integer)

Coding Example

FICOM PASSES

FICOM CENTS

The integer compare instructions convert the memory operand (a word or short
binary integer) to temporary real and compare it with the top of the stack.

Exceptions

ZOO U P

x x

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

C3 C2 CO ORDER

0 0 0 8T> source
0 0 1 8T < source

0 0 8T = source
8T? source

Note

NANs and 00 (projective) cannot be compared and return C3 = CO = 1 as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FS.TSW STAT 87
FWAIT
MOV AH, BYTE PTR STAT 87+1
SAHF

;STORE RESULT FROM FICOM
;WAIT FOR STORE
;MOVE STATUS BYTE TO AH
;LOAD INTO 8086 FLAGS REGISTER

ASM86

ASM86 FICOM

The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

J B - ;JUMP i f ST <: source OR ST ? source
JBE - ;JUMP I F ST ~; source OR ST ? source
JA - ;JUMP 1 F ST > source and NOT ST ? source
JAE - ;JUMP I F ST ~: source and NOT ST ? source
J E - ;JUMP I F ST = source or ST ? source
JNE - ;JUMP I F ST i= source and NOT ST ? source

6-147

FICOMP

6-148

Integer Compare and Pop

Format

L-_W_A_IT_--, ___ op_1 ___ ~_m_/o_.p_l_rm_---L._ addr1 I addr2 ~

8087

Encoding

Emulator

Encoding

98 DA m3rm CD 1 A m3rm

98 DE m3rm CD 1 E m3rm

Operation

Execution
Clocks

Typical

Range

87 + EA

(80-93) + EA

82 + EA

(74-88) + EA

Operation

ST - mem-op

pop stack

(short integer)

ST - mem-op

pop stack

(word integer)

Coding Example

FICOMP LIMIT

FICOMP SAMPLE

The integer compare instructions convert the memory operand (a word or short
binary integer) to temporary real and compare it with the top of the stack. FICOMP
additionally discards the value in ST by popping the floating point stack.

Exceptions

Z D 0 U P

x x

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

C3 C2 CO ORDER

0 0 0 ST> source
0 0 1 ST < source

0 0 ST = source
ST? source

Note

NANs and 00 (projective) cannot be compared and return C3 = CO = 1 as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT 87
FWAIT
MOV AH, BYTE PTR STAT 87+1
SAHF

;STORE RESULT FROM FICOMP
;WAIT FOR STORE
;MOVE STATUS BYTE TO AH
;LOAD INTO 8086 FLAGS REGISTER

ASM86

ASM86 FICOMP

The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

J B - ;JUMP i f ST < source OR ST ? source
JBE - ;JUMP I F ST ~ source OR ST ? source
JA - ;JUMP I F ST > source and NOT ST ? source
JAE - ;JUMP I F ST ~ source and NOT ST ? source
J E ;JUMP I F ST = source or ST ? source
JNE - ;JUMP I F ST -=1= source and NOT ST ? source

6-149

FIDIV

6-150

Integer Divide

Format

L-_W_A_IT __ -L-__ O_p1 ___ ---L-_m_'_o_p_'_rm_--L_ addr1 I addr2 =.J

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

98 DA m6rm CD 1A m6rm 236+ EA ST ST I mem-op FIDIV SURVEY

(230-243) + EA (short integer)

98 DE m6rm CD 1E m6rm 230+ EA ST +- ST/mem-op FIDIV ANGLE

(224-238) + EA (word integer)

Operation

The integer divide instruction divides the top of the stack by the integer memory
operand and returns the quotient to the top of the stack.

Exceptions

ZOO U P

x x x x x x

ASM86

ASM86

Integer Divide Reversed

Format

L..-_W_A_IT __ ___ O_p1 ___ -'-_m_' o_p_'_r_m_-,--_ add r1 I addr2 ~

Execution
8087 Emulator Clocks

Encoding Enc()ding Typical Operation Coding Example

Range

98 DA m7rm CD 1A m7rm 237 + EA ST +- mem-op/ST FIDIVR COORD

(231-245) + EA (short integer)

98 DE m7rm CD1Em7rm 230+ EA ST +- mem-op/ST FIDIVR FREQUENCY

(225-239) + EA (word integer)

Operation

The reversed integer divide instruction divides the integer memory operand by the
top of the stack and returns the quotient to the stack top.

Exceptions

ZOO U P

x x x x x x

FIDIVR

6-151

FILD

6-152

Integer Load

Format

WAIT op1 m/op/rm addr1 addr2 ~

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

9B DB mOrm CD 1 B mOrm 56+EA push stack FILD STANDOFF

(52-60)+ EA ST <- mem-op

(short integer)

9B OF mOrm CD 1 F mOrm 50+EA push stack FILD SEQUENCE

(46-54) + EA ST +- mem-op

(word integer)

9B OF m5rm CD 1 F m5rm 64+EA push stack FILD RESPONSE

(60-68) + EA ST +- mem-op

(long integer)

Operation

The integer load instruction converts the integer memory operand from its binary
integer format (word, short, or long) to temporary real and pushes the result onto
the stack. The new stack top is tagged zero if all bits in the source were zero, and is
tagged valid otherwise.

Exceptions

Z D 0 U P

x

ASM86

ASM86

Integer Multiply

Format

L-__ W __ A_IT ____ ~ __ . __ o_p_1 _____ ~_m __ lo_p_l_r_m __ ~ __ addr1 ===c== addr2 ~

Execution
8087 Emulator Clocks

Encoding Encoding Typical Opera~ion Coding Example

Range

9B DA m1rm CD 1A m1rm 136+ EA ST -- ST • mem-op FIMUL BEARING

(130-144) + EA (short integer)

9B DE m1rm CD 1E m1rm 130+ EA ST <- ST * mem-op FIMUL POSITION

(124-138)+EA (word integer)

Operation

The integer multiply instruction mUltiplies the integer memory operand and the top
of the stack and returns the product to the top of the stack.

Exceptions

Z D 0 U P

x x x x

FIMUL

6-153

FINCSTP

6-154

Increment Stack Pointer

Format

~ ___ W_A_IT ____ L-___ O_P_1 _____ ~ ___ O_P,~

8087
Encoding

98 D9 F7

Operation

Emulator

Encoding

CD 19 F7

Execution
Clocks

Typical

Range

9

Operation

stack pointer of-

6-12 stack pointer + 1

Coding Example

FINCSTP

The stack pointer increment instruction adds 1 to the stack top pointer in the status
word. It does not alter tags or register contents, nor does it transfer data. It is not
equivalent to popping the stack since it does not set the tag of the previous stack to
empty. Incrementing a stack pointer of 7 changes it to O.

Exceptions

I ZOO U P

ASM86

ASM86

Initialize Processor

Format

WAIT

8087

Encoding

9B DB E3

90 DB E3

Operation

op1

Emulator

Encoding

CD 1B E3

CD 1B E3

op2

Execution
Clocks

Typical Operation Coding Example

Range

5 initialize 8087 FINIT

2-8

5 initialize 8087 FNINIT

2-8 (no wait)

The initialize processor instruction performs the functional equivalent of a hardware
RESET, except that it does not affect the instruction fetch synchronization of the
8087 and its CPU. FINIT IFNINIT sets the control word to 03FFH, empties all
floating point stack elements, and clears exception flags and busy interrupts. The
FINIT form of this instruction is preceded by an assembler-generated WAIT
instruction.

Exceptions

I ZOO U P

Note

The system should call the INIT87 procedure in lieu of executing
FINIT IFNINIT when the processor is first initialized, for compatability
with the 8087 emulator.

FINIT
FNINIT

6-155

FIST

6-156

Integer Store

Format

L..--_W_A_IT __ -'--__ O_p_1 ___ --L-_m_'_o_p_'_rm_---L_ addr1 I addr2 ~

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

9B DB m2rm CD 1B m2rm 88+EA mem-op +- ST FIST COUNT

(82-92) + EA (short integer)

9B OF m2rm CD 1F m2rm 86+ EA mem-op +- ST FIST FACTOR

(80-90) + EA (word integer)

Operation

The integer store instruction rounds the contents of the stack top to an integer
(according to the RC field of the control word) and transfers the result to the
memory destination. The destination may define a word or short integer variable.
Negative zero is stored in the same encoding as positive zero: 0000 ... 00.

Exceptions

x
zoo U P

x

ASM86

ASM86

Integer Store and Pop

Format

WAIT op1 m/op/rm addr1 I addr2]

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

9B DB m3rm CD 1B m3rm 90+EA mem-op <- ST FISTP CORRECTED

(84-94) + EA pop stack

(short integer)

9B DF m3rm CD 1F m3rm 88+EA mem-op <- ST FISTP ALPHA

(82-92) + EA pop stack

(word integer)

9B DF m7rm CD 1F m7rm 100+EA mem-op <- ST FISTP READINGS

(94-105) + EA pop stack

(long integer)

Operation

The integer store and pop stack instruction rounds the contents of the stack top to
an integer (according to the RC field of the control word) and transfers the result to
the memory destination. The floating point stack is popped following the transfer.
The destination may be any of the binary integer data types.

Exceptions

x
ZOO U P

x

FISTP

6-157

FISUB

6-158

Integer Subtract

Format

L..--_W_A_IT ________ o_p1 ___ --'--_m_' o_p_,_rm_---,-_ addr1 I add r2 ~

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

9B DA m4rm CD 1A m4rm 125+ EA ST ... ST - mem-op FISUB BASE

(108-143)+EA (short integer)

9B DE m4rm CD 1E m4rm 120+ EA ST ... ST - mem-op FISUB SIZE

(102-137)+EA (word integer)

Operation

This instruction subtracts the integer memory operand from the top of the stack and
returns the difference to the top of the stack.

Exceptions

ZOO U P

x x x x

ASM86

ASM86 FISUBR

Integer Subtract Reversed

Format

~r= ___ W __ A_IT ____ ~ ____ O_P1 _____ ~ __ m __ lo_p_l_r_m __ ~_·addr1 ~ addr2 ~

Execution
8087 Emuiator Clocks

Encoding Encoding Typical Operation Coding Example

Range

9B DA m5rm CD 1A m5rm 125+ EA ST mem-op - ST FISUBR FLOOR

("109-144)+ EA (short integer)

9B DE m5rm CD 1E m5rm 120+ EA ST <- mem-op - ST FISUBR BALANCE

(1103-139) + EA (word integer)

Operation

The integer subtract reversed instruction subtracts the stack top from the integer
memory source and returns the difference to the stack top.

Exceptions

ZOO U P

x x x x

6-159

FLO

6-160

Load Real

Format

Stack element to Stack top

WAIT op1 op2+i L-________ ~____ __ __ ~ ________ ~

8087

Encoding

9B09CO+i

Emulator

Encoding

CO 19 CO+i

Execution
Clocks

Typical

Range

20

Operation

T, ~- ST(i)

17-22 push stack

ST <- T,

Memory operand to Stack top

Coding Example

FLO ST(2)

WAIT op1 m/op/rm addr1 I addr2 .~

Execution

8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

9B 09 mOrm CD 19 mOrm 43+ EA push stack FLO READING

(38-56) + EA ST <- mem-op

(short real)

9B DO mOrm CD 10 mOrrn 46+ EA push stack FLO TEMPERATURE

(40-60)+ EA ST <- mem-op

(long real)

9B DB m5rm CD 1 B m5rrn 57+ EA push stack FLO SAVEREAOING

(53-65) + EA ST <- mem-op

(temp real)

Operation

The load real instruction pushes the source operand onto the top of the floating
point stack. This is done by decrementing the stack pointer by one and then copying
the contents of the source to the new stack top. The source may be a stack element
on the stack (ST(i))~ or any of the real data types in memory. Short and long real
source operands are converted to temporary real automatically. Executing FLD
ST(O) duplicates the old stack top in the new stack top.

Exceptions

ZOO U P

x x

ASM86

ASM86 FLDCW

Load Control Word

Format

.... [__ W_A_IT __ .L-___ O_P_1 __ L m lop I rm

8087
Encoding

9809 m5rm

Operation

Emulator

Encoding

CO 19 m5rm

Execution
Clocks

Typical

Range

10+EA

(7-14) + EA

--I-~ addr1 addr2
--- --

Operation

processor control word

<- mem-op

Coding Example

FLOCW CONTROL

This instruction replaces the current processor control word with the word defined
by the source operand.

Exceptions

I zoo U P

Description

This instruction is typically used to establish, or change, the 8087's mode of
operation.

Note

If an exception bit in the status word is set, loading a new control word that
unmasks that exception and clears the interrupt enable mask will generate
an immediate request before the next instruction is executed. When chang
ing modes, the recommended procedure is to first clear any exceptions and
then load the new control word.

6-161

FLDENV

6-162

Load Environment

Format

WAIT

8087
Encoding

98 D9 m4rm

Operation

op1

Emulator

Encoding

CD 19 m4rm

m/op/rm

Execution
Clocks

Typical

Range

40+EA

(35-45) + EA

addr1 I addr2]

Operation Coding Example

8087 environment ~ FLDENV ENV_STORE

mem-op

The load environment instruction reloads the 8087 environment from the memory
area defined by the source operand. This data should have been written by a
previous FSTENV IFNSTENV instruction.

Exceptions

I ZOO U P

Description

CPU instructions may immediately follow FLDENV, but no subsequent N DP
instruction should be executed without an intervening FW AIT or assembler
generated WAIT.

Note

Loading an environment image that contains an unmasked exception causes
an immediate interrupt request from 8087 (assuming IEM = 0 in the envi
ronment image).

ASM86

ASM86 FLDLG2

Load L09102

Format

WAIT

8087
Encoding

9809 EC

Operation

op1

Emulator

Encoding

CO 19 EC

op2

Execution
Clocks

Typical

Range

21

18-24

Operation

push stack

ST -109102

Coding Example

FLOLG2

The load log base 10 of 2 instruction pushes the value log102 onto the top of the
floating point stack. The constant has temporary real precision of 64 bits and
accuracy of approximately 19 decimal digits.

Exceptions

ZOO U P

x

6-163

FLDLN2

6-164

Format

WAIT op1 op2

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

98 D9 ED CD 19 ED 20 push stack FLDLN2

17-23 ST -loQe2

Operation

The load log base e of 2 instruction pushes the value loge2 onto the top of the
floating point stack. This constant has temporary real precision of 64 bits with an
accuracy of approximately 19 decimal digits.

Exceptions

ZOO U P

x

ASM86

ASM86 FLDL2E

Format

WAIT

8087
Encoding

98 D9 EA

Operation

op1

Emulator

Encoding

CD 19 EA

op2

Execution
Clocks

Typical

Range

18

Operation Coding Example

push stack FLDL2E

The load log base 2 of e instruction pushes the value log2e onto the top of the
floating point stack. This value has full temporary real precision of 64 bits.

Exceptions

ZOO U P

x

6-165

FLDL2T

6-166

Load LOQ210

Format

WAIT

8087

Encoding

9809 E9

Operation

op1

Emulator

Encoding

CO 19 E9

op2

Execution
Clocks

Typical

Range

19

16-22

Operation

push stack

ST -IOQ210

Coding Example

FLOL2T

The load log base 2 of 10 instruction pushes the constant log21O onto the stack. This
constant has temporary real precision of 64 bits with accuracy of approximately 19
decimal digits.

Exceptions

Z D 0 U p

x

ASM86

ASM86

Loadn

Format

WAIT L op1

8087 Emulator

Encoding Enc:oding

9B 09 EB CO 19 EB

Operation

op2

Execution
Clocks

Typical

Range

19

16-22

Operation Coding Example

push stack FLOPI

ST~·-n

This instruction pushes 1t onto the top of the stack. The 1t value has full temporary
real precision of 64 bits with an accuracy of approximately 19 decimal digits.

Exceptions

ZOO U P

x

FLDPI

6-167

FLDZ

6-168

Load +0.0

Format

WAIT

8087
Encoding

9B D9 EE

Operation

op1

Emulator

Encoding

CD 19 EE

op2

Execution
Clocks

Typical

Range

14

11-17

Operation

push stack

ST +- 0.0

Coding Example

FLDZ

The load zero instruction pushes the value +0.0 onto the top of the floating point
stack. The constant has temporary real precision of 64 bits.

Exceptions

ZOO U P

x

ASM86

ASM86

Load + 1.0

Format

WAIT

8087
Encoding

98 D9 E8

Operation

op1

Emulator

Encoding

CD 19 E8

op2

Execution
Clocks

Typical

Range

18

15-21

Operation

push stack

ST <-1.0

Coding Example

FLD1

This instruction pushes the constant + 1.0 onto the top of the floating point stack.
This constant has full temporary real precision of 64 bits.

Exceptions

ZOO U P

x

FLD1

6-169

FMUl

6-170

Multiply Real

Format

Stack top and Stack element

WAIT op1 op2+i

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

98 OS CS+ i C01SCS+i 138" ST <- ST • ST(i) FMUL ST,ST(3)

130-145·

98 DC CS+ i CD 1CCS+i 138" ST(i) +- ST(i) " ST FMUL ST(2)'ST

130-145*

97
"Clocks are 90-105 when one or both operands are short.

Stack top and memory operand

L-__ W_A_IT __ -L-__ O_p_1 __ .L...-_m_lo_p_l_r_m_-,-- addr1 I addr2 J

8087 Emulator

Encoding Encoding

98 OS m1rm CD 1S m1rm

98 DC m1rm CD 1C m1rm

Operation

Execution
Clocks

Typical
Operation Coding Example

Range

11S+ EA ST <- ST * mem-op FMUL SPEED

(110-125) + EA (short real)

161 + EN ST +- ST " mem-op FMUL HEIGHT

(154-168) + EN (long real)

"Clocks are
120 + EA

when one or both operands are short.
(112-126) + EA

The multiply real instruction mUltiplies the destination operand by the source and
returns the product to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

Exceptions

ZOO U P

x x x x x

ASM86

ASM86

Multiply Real and Pop

Format

WAIT op1 op2+i

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operatil)n Coding Example

Range

98 DE CS + i CD 1E C8+i 142· ST(i) +- ST(i) * ST FMULP ST(2),ST

134-14S· pop stack

·Clocks are 100 when one or both operands are short.
94-1 OS

Operation

The multiply real instruction multiplies the destination operand by the source and
returns the product to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

The mUltiply real and pop stack instruction multiplies one of the stack elements by
the stack top, replaces the stack element with the product, and then pops the floating
point stack.

Exceptions

ZOO U P

x x x x x

FMULP

6-171

FNOP

6-172

No operation

Format

~ ___ W_A_IT ____ L-___ O_P_1 _____ L-___ O~P~

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

9809 DO CO 19 DO 13 ST-ST FNOP

10-16

Operation

This operation stores the stack top to the stack top and thus effectively performs no
operation.

Exceptions

I ZOO U P

ASM86

ASM86 FPATAN

Partial Arctangent

Format

WAIT

8087

Encoding

98 D9 F3

Operation

op1

Emulator

Encoding

CD 19 F3

op2

Execution
Clocks

Typical

Range

650

250-800

Operation

T1 +-- arctan (ST(1)/ST)

pop stack

ST+--T1

Coding Example

FPATAN

The partial arctangent instruction computes the function e = ARCTAN (Y IX). X is
taken from the top stack element and Y from ST(1). Y and X must observe the
inequality 0 < Y < X < + 00. The instruction pops the floating point stack and
returns e to the new stack top, overwriting the Y operand.

Exceptions

I Z D 0 U p *

x x

*operands not checked

Description

This instruction assumes that the operands are valid and in-range. To be considered
valid, an operand must be normalized. If an operand is either invalid or out-or
range, the instruction will produce an undefined result without signalling an
exception.

6-173

FPREM

6-174

Partial Remainder

Format

WAIT

8087
Encoding

9809 F8

Operation

op1

Emulator

Encoding

CO 19 F8

OP2~

Execution
Clocks

Typical

Range

125

15-190

Operation

ST -- REPEAT (ST - ST(1))

Coding Example

FPREM

This instruction performs modulo division on the stack top by ST(l). FPREM pro
duces an EXACT result; the precision exception does not occur. The sign of the
remainder is the same as the sign of the original dividend.

Exceptions

ZOO U P

x x x

Description

FPREM operates by performing successive subtractions. It can reduce a magnitude
difference of up to 26~ in one execution. If FPREM produces a remainder that is less
than the modulus (ST(l », the function is complete and bit C2 of the status word
condition code is cleared. If the function is incomplete, C2 is set to 1; the result in ST
is then called the partial remainder.

Software can be used to inspect C2 by storing the status word following execution of
FPREM and re-executing the instruction (using the partial remainder in ST as the
dividend), until C2 is cleared. An alternate possibility is comparing ST to ST(l) to
determine when the function is complete. If ST > ST(1), FPREM must be executed
again. If ST = ST(1), the remainder is 0 and execution is complete. If ST < ST(1), ex
ecution is complete and the remainder is ST.

Note

A context switch between the instructions in the remainder loop can be
forced by a higher priority interrupting routine which needs the 8087.

One important use of FPREM is to reduce arguments (operands) of periodic
transcendental functions to the range permitted by these instructions. For example,
the FPT AN (tangent) instruction requires its argument to be less than TT/4. Using TT/4
as a modulus, FPREM will reduce an argument so that it is in the range of FPT AN.
Because FPREM produces an exact result, the argument reduction does NOT intro
duce roundoff error into the calculations even if several iterations are required to
bring the argument into range. The rounding of TT produces a rounded period rather
than a rounded argument.

FPREM also provides the least-significant three bits of the quotient generated by
FPREM (in C 3, C], Co). This is also important for transcendental argument reduc
tion since it locates the original angle in the correct one of eight 7r / 4 segments of the
unit circle.

ASM86

ASM86

Partial Tangent

Format

WAIT

8087
Encoding

98 D9 F2

Operation

op1

Emulator

Encoding

CD 19 F2

op2

!Execution
Clocks

Typical

Range

450

30-540

Operation

Y/X +- TAN (ST)

ST·- Y

PUSll stack

ST.- X

Coding Example

FPTAN

The partial tangent instruction computes the function Y IX = TAN(e). e is taken
from the top stack element. The value of e must be within the range 0 < = e < 7r I 4.
The result of the operation is a ratio; y replaces e in the stack and X is pushed,
becoming the new stack top. e is measured in radians.

Exceptions

ZOO U P *

x x

*operands not checked

Description

The ratio result of FPT AN is designed to optimize the calculation of the other
trigonometric functions.

This instruction assumes that the operand is valid and in-range; to be considered
valid, an operand must be normalized. If the operand is invalid or out-of-range, the
instruction will produce an undefined result without signalling an exception.

FPTAN

6-175

FRNDINT

6-176

Round to Integer

Format

WAIT

8087
Encoding

98 D9 FC

Operation

op1

Emulator

Encoding

CD 19 FC

op2

Execution
Clocks

Typical

Range

45
16-50

Operation

ST +- nearest integer (ST)

This instruction rounds the top stack element to an integer.

Exceptions

x
ZOO U P

x

Description

Coding Example

FRNDINT

Assume that ST contains the 8087 real number encoding of the decimal value
155.625. FRNDINT will change the value to 155 if the RC field of the control word
is set to down or chop; or to 156 if it is set to up or nearest.

ASM86

ASM86 FRSTOR

Restore Saved State

Format

L WAIT

8087
Encoding

op1

Emulator

Encoding

98 DD m4rm CD 1 D m4rm

Operation

m/op/rm

Execution
Clocks

Typical

Range

202 + EA

(197 -207) + EA

~ddr1 I addr2]

Operation Coding Example

8087 state <-- mem-op FRSTOR STATE_SAVE

The restore state instruction reloads the 8087 from the 94-byte memory area defined
by the source operand. This information should have been written by a previous
FSA VE/FNSA VE instruction.

Exceptions

I Z D 0 U P

Note

CPU instructions may immediately follow FRSTOR, but no NOP instruc
tion should be (:xecuted without an intervening FW AIT or an assembler
generated WAIT.

The 8087 resets to its new state at the conclusion of the FRSTOR. The 8087 will, for
example, generate an immediate interrupt request if indicated by the exception and
mask bits in the memory image.

6-177

FSAVE
FNSAVE

6-178

Save State

Format

WAIT

8087
Encoding

98 DD m6rm

90 DD m6rm

Operation

op1

Emulator

Encoding

m/op/rm

Execution
Clocks

Typical

Range

CD 1 D m6rm 202 + EA

(197-207) + EA

CD 1D m6rm 202 + EA

(197-207) + EA

addr1 I addr2 ~

Operation

mem-op +- 8087 state

mem-op +- 8087 state

(no wait)

Coding Example

FSAVE STATE_SAVE

FNSAVE STATE

The save state instruction writes the full 8087 state-environment plus register
stack-to the memory location specified in the destination operand, and initializes
the NDP. The FSA VE form of this instruction is preceded by an assembler
generated WAIT instruction.

Exceptions

I ZOO U P

Description

Figure 6-8 shows the 94-byte save area layout. Typically, FSAVE/FNSA VE will be
coded to save this image on the CPU stack.

If an instruction is executing in the 8087 when FNSA VE is decoded, the CPU queues
the save and delays its execution until the running instruction completes normally,
or encounters an unmasked exception. The save image, therefore, reflects the state
of the 8087 following completion of any running instruction. After writing the state
image to memory, FSA VE/FNSA VE initializes the 8087 as if FINIT IFNINT had
been executed.

FSA VE/FNSA VE is useful whenever a program wants to save the current state of
the NDP and initialize it for a new routine. Three examples are:

1. An operating system needs to perform a context switch (suspend the task that
has been running and give control to a new task);

2. An interrupt handler needs to use the 8087;

3. An application task wants to pass a "clean" 8087 stack to a sub-routine.

ASM86

ASM86

INSTRUCTION {
POINTER

OPERAND {
POINTER

TOP STACK {
El.EMENT:ST

NEXT STACK {
ELEMENT:ST(1)

LAST STACK {
ELEMENT:ST(7)

NOTES:
S = Sign

INCREASING ADDRESSES

15 o

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

IP15-0 +6

IP19-16\ 0\ OPCODE +8

OP15-0 +10

OP19-16! 0 +12

SIGNIFICAND 15-0 +14

SIGNIFICAND 31-16 +16

SIGNIFICAND 47-32 +18

SIGNIFICAND 63-48 +20
.l -

S\ EXPONENT 14-0 +22

SIGNIFICAND 15-0 +24

SIGNIFICAND 31-16 +26

SIGNIFICAND 47-32 +28

SIGNIFICAND 63-48 +30
.l

S\ EXPONENT 14-0 +32

'-~ ~~

SIGNIFICAND 15-0 +84

SIGNIFICAND 31-16 +86

SIGNIFICAND 47-32 +88

SIGNIFICAND 63-48 +90
.l

sj EXPONENT 14-0 +92

Bit 0 of each l:ield is rightmost, least signilficant bit of corresponding
register field.
Bit 63 of signiificand is integer bit (assumed binary point is immediately
to the right).

FSAVE
FNSAVE

Figure 6-8. FSA VE/FRSTOR Memory Layout 121623-15

Note

FSA VE/FNSA VE, like FSTENV IFNSTENV, must be protected from any
other 8087 instruction that might execute while the save is in progress.
When FSA VE is coded, this can be insured by placing an explicit FW AIT in
front of a subsequent no-wait mnemonic, if there is one. When FSA VE is
executed with CPU interupts disabled, an FW AIT should be executed
before CPU interrupts are enabled or any subsequent 8087 instruction is
executed. Because the FNSA VE initializes the NDP, there is no danger of
the FW AIT causing an endless wait. Other CPU instructions may be
executed between the FNSA VE and the FWAIT; this will reduce interrupt
latency if the FNSA VE is queued in the 8087.

6-179

FSCALE

6-180

Scale

Format

WAIT

8087
Encoding

9809 FO

Operation

opl

Emulator

Encoding

C019FO

op2

Execution
Clocks

Typical

Range

35

32-38

Operation Coding Example

5T <- 5T * 2ST(1) F5CALE

This instruction interprets the value contained in ST(1) as an integer, and adds this
value to the exponent of the number in ST. ST(1) must be in the range -2 15 ~ ST(1)
< + 215 and ST(1) must be an integer.

Exceptions

ZOO U P

x x x

Description

FSCALE is particularly useful for scaling the elements of a vector because it pro
vides rapid multiplication or division by integral powers of 2.

Note

FSCALE assumes the scale factor in ST(1) is an integral value in the range
-2 15 ~ x < 215. If the value is not an integer, but is in-range and is greater in
magnitude than 1, FSCALE uses the nearest integer smaller in magnitude,
i.e., it chops the value toward O. If the value is out of range, or 0 < I x I <
1, the instruction will produce an undefined result and will not signal an
exception. The recommended practice is to load the scale factor from a
word integer to ensure correct operation.

ASM86

ASM86

Square Root

Format

WAIT

8087
Encoding

9809 FA

Operation

op1

Emulator

Encoding

C01!lFA

op2

Execution
Clocks

Typical

Range

183

180-186

Operation Coding Example

ST +- Y-ST FSQRT

This instruction replaces the contents of the top of the stack with its square root. ST
must be in the range -0 ~ ST ~ + 00.

Exceptions

ZOO U P

x x x

FSQRT

6-181

FST

6-182

Store Real

Format

Stack top to Stack element

WAIT op1 OP2+y==J

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

98 DD DO+ i CD 1D DO+i 18 ST(i) +- ST FST ST(4)

15-22

Stack top to memory operand

WAIT op1 m/oP/~ addr1 I addr2]

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

98 D9 m2rm CD 19 m2rm 87+EA mem-op +- ST FST MEAN

(84-90) + EA (short-real)

98 DD m2rm CD 1D m2rm 100 + EA mem-op +- ST FST READING

(96-104) + EA (long-real)

Operation

The store real instruction transfers the top of the stack to the destination, which may
be another stack element or a short or long real memory operand. If the destination
is short or long real, the significand is rounded to the width of the destination
according to the RC field of the control word and the exponent is converted to the
width and bias of the destination format.

Exceptions

ZOO U P

x x x x

Note

If the stack top is tagged special (it contains 00, a NAN, or a denormal), the
stack top significand is not rounded. In this case, the least significant bits of
the stack top are deleted to fit the destination. The exponent is treated in the
same way. This preserves the value's identification as 00, or a NAN (expo
nent of all ones), or a denormal (exponent all zeros) so that it can be prop
erly loaded and tagged later in the program, if desired.

ASM86

ASM86 FSTCW
FNSTCW

Store Control Word

Format

L-_W_A_IT __ .l..-___ o~P_1 ___ ...L....._m_lo_p_l_r_m_...l__- addr1 I addr2]

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

9809 m7rm CD HI m7rm 15+ EA mem-op <- processor FSTCW CONTROL

(12-18)+EA control word

9009 m7rm CO 19 m7rm 15+EA mem-op <- processor FNSTSW CONTROL

(12-18)+EA control word

(no wait)

Operation

The store control word instructions write the current processor control word to the
memory location defined by the destination. The FSTCW form of this instruction is
preceded by an assembler-generated WAIT instruction.

Exceptions

I Z D 0 U P

Description
When application tasks are running, the WAIT form of this instruction should be
used. The NO WAIT form is provided for use in critical code regions where a WAIT
instruction might induce an endless wait.

6-183

FSTENV
FNSTENV

6-184

Store Environment

Format

~ __ W_A __ IT __ ~ _____ Op_1 ____ ~_m __ lo_p __ I_rm __ ~ __ addr1 ==c= addr2 ~

8087
Encoding

Emulator

Encoding

9809 m6rm CO 19 m6rm

90 09 m6rm CD 19 m6rm

Operation

Execution
Clocks

Typical

Range

45+EA

(40-50) + EA

45+ EA

(40-50)+ EA

Operation

mem-op +- 8087

environment

mem-op +- 8087

environment

(no wait)

Coding Example

FSTENV ENVIRON

FNSTENV ENVIRON

This instruction writes the 8087 basic status (control word, status word, and tag
word) and exception pointers to the memory location defined by the destination
operand. The FSTENV form of this instruction is preceded by an assembler
generated WAIT instruction.

Exceptions

I zoo U P

Description

FSTENV IFNSTENV is often used by exception handlers because it provides access
to the exception pointers which identify the offending instruction and operand.

FSTENV IFNSTENV typically saves the environment on the CPU stack. After the
environment is saved, FSTENV IFNSTENV sets all exception masks in the pro
cessor; it does not affect the interrupt enable mask. Figure 6-9 shows the format of
the environment data in memory. If FNSTENV is decoded while another instruction
is executing concurrently in the NEU, the 8087 does not store the environment until
the other instruction has completed. The data saved by this instruction, therefore,
reflects the state of the 8087 AFTER any previously decoded instruction has been
executed.

Note

FSTENV IFNSTENV must be allowed to complete before any other 8087
instruction is decoded. When FSTENV is coded, an assembler-generated
WAIT should precede any subsequent 8087 instruction. When using
FNSTENV, with CPU interrupts disabled, an explicit FW AIT should be
executed before enabling CPU interrupts.

There is no risk of the FW AIT causing an endless wait. FNSTENV masks
all exceptions so that interrupt requests from the 8087 are prevented.

ASM86

ASM86

INSTRUCTION {
POINTER

OPERAND {
POINTER

15

INCREASING ADDRESSES

~
~::t

CONTROL WORD

STATUS WORD

TAG WORD +4

IP15-0 +6

IP19-161 01 OPCODE +8

OP15-0 +10

OP19-16I 0 +12

Figure 6-9. FSTENV and FLDENV Memory Layouts

FSTENV
FNSTENV

121623-16

6-185

FSTP

6-186

Store Real and Pop

Format

Stack top to Stack element

WAIT

8087
Encoding

op1

Emulator

Encoding

9B DO 08 + i CD 1 0 08 + i

OP2~

Execution
Clocks

Typical

Range

20

17-24

Operation

ST(i) +- ST

pop stack

Stack top to memory operand

Coding Example

FSTP ST(2)

L..-_W_A_IT __ -'--__ o_p1 ___ ---'-_m_' o_p_,_rm_m-T_....L- add r1 I addr2]

Execution
8087 Emulator Clocks

Encoding Encoding Typical
Operation Coding Example

Range

98 D9 m3rm CD 19 m3rm 89+ EA mem-op +- ST FSTP TOTAL

(86-92) + EA pop stack

(short-real)

98 DD m3rm CD 1D m3rm 102+EA mem-op +- ST FSTP AVERAGE

(98-106) + EA pop stack

(long-real)

9B DB m7rm CD 1B m7rm 55+ EA mem-op +- ST FSTP TEMP STORE

(52-58) + EA pop stack

(tem p-real)

Operation

The store real and pop stack instruction transfers the top of the stack to the destina
tion and then pops the stack. The destination may be another stack element, or
memory operand (short-real, long-real, or temporary-real). If the destination is
short or long real memory, the significand is rounded to the width of the destination
according to the RC field of the control word and the exponent is converted to the
width and bias of the destination format.

This instruction allows storing temporary real numbers into memory. Coding FSTP
ST(O) is equivalent to popping the stack with no data transfer.

Exceptions

ZOO U p

x x x x

ASM86

ASM86 FSTSW
FNSTSW

Store Status Word

Format

L..-_W_A_IT __ .L-___ o_p_1 ___ ..&..-_m_' o_p_'_rm_-,-_,. _a_dd_r_1 I _a_d_d_r2_ ~

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

98 DD m7rm CD1D m7rm 15+EA mem-op - 8087 status FSTSW SAVE_STAT

(12-18) + EA word

90 DD m7rm CD1D m7rm 15+ EA mem-op - 8087 status FNSTSW SAVE_STAT

(12-18)+EA word

(no wait)

Operation

The store status word instructions write the current value of the 8087 status word to
the destination operand in memory. The FSTSW form of this instruction is preceded
by an assembler-generated WAIT instruction"

Exceptions

I ZOO U P

Description

The three primary uses of this instruction are:

1. To implement conditional branching following a comparison or FPREM
instruction (VV AIT form).

2. To poll the 8087 to determine if it is busy (NO-WAIT form).

3. To invoke exception handlers in environments that do not use interrupts (W AIT
form).

Note

If the WAIT form is used with an outstanding unmasked exception,
deadlock will result.

6-187

FSUB

6-188

Subtract Real

Format

Stack top and Stack element

WAIT op1 op2+i

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

98 D8 EO+ i CD18EO+i 85 8T - 8T - 8T(i) F8U8 8T,8T(2)

70-100

98 DC E8 + i CD 1C E8 + , 85 8T(i) - 8T(i) - 8T F8U8 8T(3),8T

70-100

Stack top and memory operand

L-_W_A_IT __ ~ __ o_p1 __ --I-_m_l_o_p_l_rm_--L_ addr1 ==r= add r2 .J

8087

Encoding

Emulator

Encoding

98 D8 m4rm CD 18 m4rm

98 DC m4rm CD 1 C m4rm

Operation

Execution
Clocks

Typical

Range

105+ EA

(90-120)+ EA

110+ EA

(95-125)+EA

Operation

8T - 8T - mem-op

(short-real)

8T - 8T - mem-op

(long-real)

Coding Example

F8U8 VALUE

F8U8 8A8E

The subtract real instruction subtracts the source operand from the destination and
returns the difference to the destination. The source operand may be either the stack
top, a stack element or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

Exceptions

Z D 0 U P

x x x x x

ASM86

ASM86

Subtract Real and Pop

Format

WAIT op1 op2+ i

Execution
8087 Emulator Clocks

Coding Example Encoding Encoding Typical Operation

Range

9B 08 E8 + i CD 08 E8 + i 90 ST(1) <- ST(1) - ST FSUB

75-105 pop stack

9BDEE8+i CD 1E E8+ i 90 ST(i) <-- ST(i) - ST FSUBP ST(2),ST

75-105 pop stack

Operation

The subtract real instruction subtracts the source operand from the destination and
returns the difference to the destination. The source operand may be either the stack
top, a stack element or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

The subtract real and pop stack instruction subtracts the stack top from one of the
stack elements, replacing the stack element with the difference and then pops the
floating point stack.

Exceptions

ZOO U P

x x x x x

FSUBP

6-189

FSUBR

6-190

Subtract Real Reversed

Format

Stack top and Stack element

WAIT

8087

Encoding

op1

Emulator

Encoding

9B D8 E8 + i CD D8 E8 + i

9BDCEO+i CD 1C EO+ i

op2+i

Execution
Clocks

Typical

Range

87

70-100

87

70-100

Stack top and memory operand

WAIT op1 m/op/rm

Execution
8087 Emulator Clocks

Encoding Encoding Typical

Range

9B D8 m5rm CD 18 m5rm 105+ EA

(90-120)+ EA

98 DC m5rm CD 1C m5rm 110+ EA

(95-125) + EA

Operation

Operation Coding Example

ST +- ST(i) - ST FSUBR ST,ST(i)

ST(i) +- ST - ST(i) FSUBR ST(3),ST

-I-] addr1 addr2
--- ---

Operation Coding Example

ST +- mem-op - ST FSUBR INDEX

(short-real)

ST +- mem-op - ST FSU8R VECTOR

(long-real)

The reverse subtract instruction subtracts the destination from the source and
returns the difference to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

ASM86

ASM86 FSUBRP

Subtract ReallReversed and Pop

Format

WAIT

8087
Encoding

9B DE E1

9B DE EO+ i

Operation

op1

Emulator

Encoding

CD 1 E E1

CD 1E EO+i

op2+i

Execution
Clocks

Typical Operation

Range

90 ST(1) ST - ST(1)

75-105 pop stack

90 ST(i) +- ST - ST(i)

75-105 pop stack

Coding Example

FSUBR

FSUBRP ST(2),ST

The reverse subtract instruction subtracts the destination from the source and
returns the difference to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

The reverse subtract and pop stack instruction subtracts one of the stack elements
from the stack top and returns the difference to the stack element. The floating
point stack is then popped.

Exceptions

Z D 0 U P

x x x x x

6-191

FTST

6-192

Test Stack Top Against + 0.0

Format

WAIT op1

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

9809 E4 CO 19 E4 42 ST of- ST - 0.0 FTST

38-48

Operation

The test instruction compares the element in the top of the floating point stack with
zero and posts the result to the condition code.

Exceptions

Z D 0 U P

x x

Description

C3

o
o

co

o
1
o

Condition Code Test Results

Result

8T is positive
8T is negative
8T is zero (+ or-)
8T is not comparable (Le., it is a NAN or projective 00)

ASM86

ASM86

(CPU) Wait while 808'7 is busy

Format

WAIT

Execution
8087 Emulator Clocks

Encoding Encoding Typical Operation Coding Example

Range

98 90 3+5n 8086 wait instruction FWAIT

3+5n

Operation

This instruction is an alternate mnemonic for the CPU WAIT instruction. FW AIT
must be used instead of WAIT for 8087 emulator compatability is desired.

Exceptions

I ZOO U P

Description

The FW AIT mnemonic should be coded whenever the programmer wants to syn·
chronize the CPU to the NDP. This means that further instruction decoding will be
suspended until the NDP has completed the current instruction. This is useful if the
CPU wants to inspect a value stored by the NDP (i.e., FIST should be followed by
FW AIT to ensure that the value has been stored before attempting to examine it).

Note

Programmers should not code WAIT to synchronize the CPU and 8087.
The routines that alter an object program for 8087 emulation change any
FW AITs to NOPs but do not change any explicitly coded WAITs. The pro
gram will wait forever if aWAIT is encountered in emulated execution since
there is no 8087 to drive the CPU's test pin active.

FWAIT

6-193

FXAM

6-194

Examine Stack Top

Format

l...-__ W_A_IT __ L-.. __ O_p_1. __ ..L-__ O,p2]

8087
Encoding

9B D9 E5

Operation

Emulator

Encoding

CD 19 E5

Execution
Clocks

Typical

Range

17

12-23

Operation

set condition code

Coding Example

FXAM

The examine instruction reports the content of the top of the floating point stack as
positive/negative and NAN/unnormalldenormallnormallzero, or empty. The con
dition codes which can be generated are shown in table 6-15.

Exceptions

I ZOO U P

Description

Table 6-15 lists and interprets all of the condition code values that FXAM
generates. Although four different encodings may be returned for an empty register,
bits C3 and CO of the condition code are both 1 in all encodings. Bits C2 an C 1
should be ignored when examining for empty.

Table 6-15. FXAM Condition Code Settings

Condition Code

C3 C2 C1 CO
Interpretation

0 0 0 0 + Unnormal

0 0 0 1 + NAN

0 0 1 0 - Unnormal

0 () 1 1 - NAN

0 1 0 0 + Normal

0 , 0 1 +00

0 1 1 0 - Normal

0 1 1 1 - 00

1 () 0 0 + 0

1 () 0 1 Empty

1 0 1 0 -0
1 0 1 1 Empty

1 1 0 0 + Denormal

1 1 0 1 Empty

1 1 1 0 - Denormal

1 1 1 1 Empty

ASM86

ASM86

Exchange Registers

Format

WAIT

8087
Encoding

9809 CS

9809 CS+ i

Operation

op1

Emulator

Encoding

CO 19 CS

CO 19 CS+ i

op2+i

Execution
Clocks

Typical Operation Coding Example

Range

12 T, ST(1) FXCH

10-15 ST(1)';-' ST

ST-T,

12 T,-ST(i) FXCH ST(3)

10-15 ST(i) - ST

ST-T,

The exchange instruction swaps the contents of a stack element and the stack top. If
the stack element is not explicitly coded, ST(1) is used.

Exceptions

Z D 0 U P

x

Description

Many 8087 instructions opt:rate only on the stack top; FXCH provides an easy way
to use these instructions on lower stack elements. For example, the following
sequence takes the square root of the third element from the top.

FXCH ST(3)
FSQRT
FXCH ST(3)

FXCH

6-195

FXTRACT

6-196

Extract Exponent and Significand

Format

WAIT

8087

Encoding

9809 F4

op1

Emulator

Encoding

CO 19 F4

op2

Execution
Clocks

Typical

Range

50

Operation

T1 - exponent (ST)

27-55 T2 <- significand (ST)

ST-T1

push stack

ST -T2

Coding Example

FXTRACT

Operation

The extract instruction "decomposes" the number in the stack top into two numbers
that represent the actual value of the operand's exponent and significand fields. The
"exponent" replaces the original operand on the stack and the "significand" is
pushed onto the stack.

Exceptions

ZOO U P

x

Description

FXTRACT is useful in conjunction with FBSTP for converting numbers in 8087
temporary real format to decimal representations (e.g., for printing or displaying).
It can also be useful for debugging, since it allows the exponent and significand parts
of a real number to be examined separately.

Note

Following execution of FXTRACT, ST (the new stack top), contains the
value of the original significand expressed as a real number. The sign of this
number is the same as the operand's; its exponent is 0 true (16,383 or
3FFFH biased), and its significand is identical to the original operand's.
ST(1) contains the value of the original operand's true (unbiased) exponent
expressed as a real number. If the original operand is zero, FXTRACT pro
duces zeros in ST and ST(1) and BOTH are signed as the original operand.

Example

Assume ST contains a number whose true exponent is +4 (i.e., its exponent field
contains 4003H). After executing FXTRACT, ST(l) will contain the real number
+4.0; its sign will be positive, its exponent field will contains 4001 +) (+2 true) and its
significand field will contain l.aOO ... OOB. In other words, the value in ST(l) will be
1.0x22 = 4.

ASM86

ASM86 FXTRACT

If ST contains an operand whose true exponent is -7 (i.e., its exponent field con
tains 3FF8H), th(~n FXTRACT will return an "exponent" of -7.0. After the
instruction executes, ST(1)'s sign and exponent fields will contains COOl H (negative
sign, true exponent of 2) and its significand will be 181100 ... OOB. The value in
ST(1) will be -1.11x22 = -7.0.

In both cases, following FXTRACT, ST's sign and significand fields will be the
same as the original operand's and its exponent field will contain 3FFFH, (0 true).

6-197

FYL2X

6-198

Format

WAIT

8087

Encoding

9809 F1

Operation

op1

Emulator

Encoding

CO 19 F1

op2

Execution
Clocks

Typical

Range

950

900-1100

This instruction calculates the function:

Operation

ST1 <- ST(1) * IOQ2 (ST)

pop stack

ST +- T1

Coding Example

FYL2X

X is taken from the stack top and Y from ST(l). The operands must be in the ranges
o < X <00 and - 00 < y < + 00. The instruction pops the stack and returns Z at the
(new) stack top replacing the Y operand.

Exceptions

I ZOO U P *

x

*operands not checked

Note

This function optimizes the calculation of log to any base other than two
since a mUltiplication is always required:

ASM86

ASM86 FYL2XP1

Format

[WAIT

8087

Encoding

98 D9 F9

Operation

op1

Emulator

Encoding

CD 19 F9

op2

Execution
Clocks

Typical

Range

850

700-1000

Operation

T1+-ST+1

T2 +- ST(1) * IOQ2 T1

pop stack

ST +- T2

Coding Example

FYL2XP1

This instruction calculates the function Z = Y*LOG2 (X + I). X is taken from the
stack top and must be in the range 0 < I X I < (1- V2/2). Y is taken from ST(1)
and must be in the range -0011 < Y <00. FYL2XPI pops the floating point stack and
returns Z at the new stack top, replacing Y.

Exceptions

I zoo UP ...

x

* operands not checked

Note

This instruction provides improved accuracy over FYL2X when computing
the log of a number very close to I. For example, when calculating 1 + E
where E < < 1, being able to input E rather than 1 + E to the function allows
more significant digits to be retained.

6-199

• (R; r-- CHAPTER 7
~E MACRO PROCESSING LANGUAGE n

I ntrod uction

The Macro Processing Language (MPL) of the 8086/8087/8088 Macro Assembler is
a string replacement facility. It permits you to write repeatedly used sections of code
once and then insert that code at several places in your program. If several program
mers are working on the same project, a library of macros in include files can be
developed and shared by the entire team. Perhaps MPL's most valuable capability is
conditional assembly. Compact configuration-dependent code is often critical to
microprocessor software dl;!sign, and conditional assembly of sections of code can
help to achieve the most compact code possible.

This chapter documents MPL in three parts. The first section describes how to
define and use your own macros. The second section defines the syntax and
describes the operation of the macro processor's built-in functions. The final section
of the chapter is devoted to advanced concepts in MPL.

The first two sections give enough information to begin using the macro processor.
However, sometimes a more exact understanding of MPL's operation is needed.
The advanced concepts section should fill those needs.

Macro Processor Overview

The macro processor views the source file in very different terms than does the
assembler. To the assembler, the source file is a series of control lines, instruction
lines, and directive lines. To the macro processor, the source file is a long string of
characters. Figure 7-1 illustrates these two different views of the input file .

.
MOV AX,27
ADD AX,55
MOV ex, AX .

Figure 7-1. Macro Processor versus Assembler
Two Different Views of a Source File 121623-17

7-1

The Macro Processing Language

7-2

All macro processing of the source file is performed before your code is assembled.
Because of this independence between the processing of macros and assembly of
code, we must differentiate between macro-time and assembly-time. At macro-time,
assembly language symbols-labels, predefined assembler symbols, EQU symbols,
and the location counter are not known. The macro processor does not recognize the
assembly language. Similarly, at assembly-time no information about macros is
known.

The macro processor scans the source file looking for macro calls. A macro call is
actually a request to the macro processor either to (re)define a user-defined macro or
to replace a built-in or user-defined macro with its defined value.

This defined value or return value of a macro is the text that replaces the macro call.
The return value of some macros is the null string. (The null string is a character
string containing no characters.) In other words, when these macros are called, the
calls are removed from the input stream. In their place, the assembler sees the return
value kept.

Thus, when a macro call is encountered, the macro processor expands the call to its
return value. The return value of a macro is then passed to the assembler and the
macro processor continues. All characters that are not part of a macro call are
passed to the assembler.

Creating and Calling Macros

The macro processor is a character string replacement facility. It searches the source
file for a macro call, and then replaces the call with the macro's return value. The
metacharacter (070 is the default) signals a macro call. Until the macro processor
finds a metacharacter, it does not process text. It simply passes the text from the
source file to the rest of the assembler.

Since MPL only processes macro calls, it is necessary to call a macro in order to
create other macros. The built-in function DEFINE creates macros. Built-in func
tions are a predefined part of the macro language, so they may be called without
prior definition. The general syntax for DEFINE is:

070 [*] DEFINE(call-pattern) [Iocal-symbol-list](macro-body)

DEFINE is the most important MPL built-in function. This section of the chapter is
devoted to describing this built-in function. Each of the symbols in the syntax above
(call-pattern, local-symbol-list, and macro-body) are thoroughly described in the
pages that follow. In some cases we have abbreviated this general syntax to
emphasize certain concepts.

Creating Parameterless Macros

When you create a parameterless macro, there are two parts to a DEFINE call: the
call pattern and the macro body. The call pattern defines the name used when the
macro is called; the macro body defines the return value of the call.

The syntax of a parameterless macro definition is shown below:

(flo *DEFINE (call-pattern) (macro-body)

The '070' is the metacharacter that signals a macro call. The ,*, is the literal character
that is normally used when defining macros. The exact use of the literal character is
discussed in the advanced concepts section.

ASM86

ASM86 The Macro Processing Language

When you define a parameterless macro, the call-pattern is a macro identifier that
will follow the metacharacter in the source file. The rules for macro identifiers are:

• The identifier must begin with an alphabetic character (A,B,C, ... ,Z or
a,b,c, ... z).

• The remaining characters may be alphabetic, special (a question mark (?) or an
underscore character C-», or decimal digits (0,1,2, ... ,9).

• Only the first 31 characters of a macro identifier are significant. Upper and
lower case characters are not distinguished in a macro identifier.

The macro-body is usually the return value of the macro call. However, the macro
body may contain calls to other macros. If so, the return value is actually the fully
expanded macro body, including the return values of the calls to other macros.
When you define a macro using the literal character, '*', shown above, macro calls
contained in the body of the macro are not expanded until you call the macro. The
macro call is reexpanded each time it is called.

Example 1. Nested Macro

%*DEFINE(ASTRING)(PHANT)
%*DEFINE(JUMBO)(ELE%ASTRING)

Call-%J UMBO

is expanded to- E L E P HAN T

The syntax of DEFINE requires that left and right parentheses surround the macro
body. For this reason, you must have balanced parentheses within the macro body.
(i.e., each left parenthesis must have a succeeding right parenthesis, and each right
parenthesis must have a preceding left parenthesis.) We call character strings that
meet these requirements balanced-text.

Example 2. Balanced and Unbalanced '()'

Balanced strings--

(a b c)
(a(b)c)
«ab(c)d)e)

Unbalanced strings-

(abc
(a(b)c
(ab(c)

To call a macro, you use the metacharacter followed by the call-pattern for the
macro. (The literal character is generally not needed when you call a user-defined
macro.) The macro processor will remove the call and insert the return value of the
call. If the macro body contains any call to other macros, they will be replaced with
their return values.

7-3

The Macro Processing Language

7-4

Example 3. Macro Calls

%*DEFINE(ME) (I LIKE)
%*DEFINE(WHAT(OBJECT»(MY %OBJECT)

Calls-

%ME ~ I LIKE
%WHAT(BIKE) ~ MY BIKE
%ME %WHAT(JOB). ~ I LIKE MY JOB.

Once a macro has been created, it may be redefined by a second call to DEFINE.

Example 4. Redefinition of Macros

%*DEFINE(LINCOLN)(GETTYSBURG)

%LINCOLN WILL EXPAND TO ~ GETTYSBURG

%*DEFINE(LINCOLN)(ONE CENT)

%LINCOLN WILL EXPAND TO ~ ONE CENT

The three examples below show several macro definitions. Their return values are
also shown.

NOTE

In order to postpone discussion of the use of local macro symbols for labels,
location counter relative addressing (with '$ ') is used in these examples.
This is done for simplicity, but is not generally recommended because dif
ferent addressing modes produce different instruction sizes which will affect
the location counter offset required.

Example 1:

Macro definition at the top of the program:

%*DEFINE(MOVE) (
MOV CX,100
LEA SI,TABLE1
LEA DI,TABLE2
REP MOVSW
)

Macro call as it appears in program:

PUSH CX
%MOVE
POP CX

The program after the macro processor makes the expansion:

PUSH CX
MOV CX,100
LEA SI,TABLE1
LEA SI,TABLE2
REP MOVSW
POP CX

ASM86

ASM86

Example 2:

Macro definition at the top of the program:

%*DEFINE (ADDS)(
MOV CX,100
MOV SI,O
MOV AX,TABLE2[SIJ
ADD AX,S
MOV TABLE2[SIJ,AX
INC SI
INC SI
LOOPZ $-13
)

The macro call as it appears in the original program body:

PUSH AX
%ADDS
POP AX

The program after macro expansion:

PUSH AX
MOV CX,100
MOV SI,O
MOV AX,TABLE2[SIJ
ADD AX,S
MOV TABLE2[SIJ,AX
INC SI
INC SI
LOOPZ $-13
POP AX

Example 3:

Macro definition at the top of the program:

%*DEFINE(MOV AND ADD)(
%MOVE --
%ADDS
)

The macro call as it appears in the body of the program:

The program after macro expansion:

MOV CX,100
LEA SI,TABLE1
LEA SI,TABLE2
REP MOVSW
MOV CX,100
MOV SI,O
MOV AX,TABLE2[SI]
ADD AX,S
MOV TABLE2[SIJ,AX
INC SI
INC SI
LOOPZ $-13

The Macro Processing Language

7-5

The Macro Processing Language

7-6

Creating Macros with Parameters

If the only thing the macro processor could do was simple string replacement, then it
would not be very useful for most programming tasks. Each time we wanted to
change even the simplest part of the macro's return value we would have to redefine
the macro. Parameters in macro calls allow more general-purpose macros.

Parameters leave holes in a macro body that are filled in when you call the macro.
This permits you to design a single macro that produces code for many typical pro
gramming operations.

The term parameter refers to both the formal parameters that are specified when the
macro is defined (the holes), and the actual parameters or arguments that are
specified when the macro is called (the fill-ins).

The syntax for defining macros with parameters is very similar to the syntax for
macros without parameters. The call-pattern that we described earlier actually
includes both the macro-name and an optional parameter-list. With this addition
the syntax for the DEFINE built-in function becomes:

o;o*DEFINE(macro-name[(parameter-list)]) (macro-body)

NOTE
This is not the only format allowable but a specific case. The parentheses
are not the only delimiters that can be used (see the Advanced MPL Con
cepts section).

The macro-name must be a valid macro identifier.

The parameter-list is a list of macro identifiers separated by macro delimiters,
usually commas. These identifiers comprise the formal parameters used in the
macro. The macro identifier for each parameter in the list must be unique.

The macro-body must be a balanced-text string. The locations of parameter replace
ment (the placeholders to be filled in by the actual parameters) are indicated by plac
ing a parameter's name preceded by the metacharacter in the macro body. The
parameters may be used any number of times and in any order within the macro
body. (If a user-defined macro has the same macro identifier name as one of the
parameters to the macro, the macro may not be called within the macro body since
the name would be recognized as a parameter.)

The example below shows the definition of a macro with three parameters
SOURCE, DEST, and COUNT. The macro will produce code to copy any number
of words from one part of memory to another.

%*DEFINE(MOVE ADD GEN(SOURCE,DEST,COUNT»(
- -MOV CX,%COUNT

MOV SI,O
MOV AX,%SOURCE[SIJ
MOV %DEST[SIJ ,AX
INC S I
INC SI
LOOPZ $-13

To call a macro with parameters you must use the metacharacter followed by the
macro's name as with parameterless macros. However, a list of the actual
parameters must follow. In the most simple case these actual parameters are

ASM86

ASM86 The Macro Processing Language

enclosed with parentheses, and separted from each other by commas. The actual
parameters must be balanced-text and may optionally contain calls to other macros.
A simple call to the macro defined above might be:

%MOVE_ADD_GEN(INPUT, STORE, 100H)

The above macro call produces the following code:

MOV CX,100H
MOV SI,O
MOV AX,INPUT[SIJ
MOV STORE[SIJ,AX
INC SI
INC SI
LOOPZ $-13

LOCAL Symbols in Macros

The LOOPZ instruction uses offset addressing ($-13). However, if the instructions
in the macro MOVE_ADD_GEN are modified, the offset address ($-13) may need
to be changed. This is a disadvantage of using offset addressing. If we chose to use a
label for the jump destination, macro modification would generally not affect the
label. However, the macro could only be used once, since a second call to the macro
would cause a conflict in label definitions at assembly time. We could make the label
a parameter and specify a different symbol name each time we call the macro. A
preferable way to ensure a unique label for each macro call is to put the label in a
LOCAL list. The LOCAL list construct allows you to use macro identifiers to
specify assembly-time symbols. Each use of a LOCAL symbol in a macro guarantees
that the symbol will be replaced by a unique assembly-time symbol each time the
macro is called.

The macro processor increments a counter once for each symbol used in the list
every time your program calls a macro that uses the LOCAL construct. Symbols in
the LOCAL list, when used in the macro body, receive a two to five digit suffix that
is the hexadecimal value of the counter. The first time you call a macro that uses the
LOCAL construct the suffix is '00' .

The syntax for the LOCAL construct in the DEFINE function is shown below. (This
is the complete syntax for the built-in function DEFINE):

0,70 *DEFINE(rnacro-name [parameter-list]) [LOCAL local-list] (macro-body)

The local-list is a list of valid macro identifiers separated by spaces. Since these
macro identifiers are not parameters, the LOCAL construct in a macro has no affect
on the syntax of a macro call.

The example below shows the MOVE_ADD_GEN macro definition that uses a
LOCAL list:

%~DEFINE(MOVE ADD GEN(SOURCE,DEST,COUNT» LOCAL LABEL (
- -MOV CX,%COUNT

MOV SI,O
%LABEL: MOV AX,%SOURCE[SIJ

MOV %DEST[SIJ,AX
INC SI
INC SI
L.OOPZ %LABEL

7-7

The Macro Processing Language

7-8

The following macro call:

%MOVE_ADD_GEN(DATA,FILE,67)

would produce this code if this is the eleventh call to a macro using a LOCAL list:

MOV CX,67
MOV SI,O
LABELOA: MOV AX,DATA[SIJ
MOV FILE[SIJ,AX
INC S I
INC S I
LOOPZ LABELOA

Since macro identifiers follow the same rules as ASM86, you can use any macro
identifier in a LOCAL list. However, if you use long identifier names, they should
be restricted to 26 characters. Otherwise the label suffix may cause the identifiers to
exceed 31 characters and the excess characters would be truncated.

The Macro Processor's Built-in Functions

The macro processor has several built-in or predefined macro functions. These built
in functions perform many useful operations that would be difficult or impossible to
produce in a user-defined macro. An important difference between a user-defined
macro and a built-in function is that user-defined macros may be redefined, while
built-in functions cannot be redefined.

We have already seen one of these built-in functions, DEFINE. DEFINE creates
user-defined macros. DEFINE does this by adding an entry in the macro processor's
table of macro definitions. Each entry in the table includes the call-pattern for a
macro, and its macro body. Entries for the built-in functions are present when the
macro processor begins operation.

Other built-in functions perform numerical and logical expression evaluation, affect
control flow of the macro processor, manipulate character strings, and perform
console 110 (see Appendix D for a listing of the MPL built-in functions).

Comment, Escape, Bracket and METACHAR
Built-in Functions

Comment Function
The Macro Processing Language can be very subtle, and the operation of macros
written in a straightforward manner may not be immediately obvious. Therefore, it
is often necessary to comment your macro definitions.

The macro processor's comment function has the following syntax:

070 'text'

or

070' text end-ai-line

ASM86

ASM86 The Macro Processing Language

The comment function always evaluates to the null string. Two terminating
characters are recognized, the apostrophe and the end-oi-line (line feed character,
ASCII OAH). The second form of the call allows you to spread macro definitions
over several lines, while avoiiding any unwanted end-oi-lines in the return value. In
either form of the comment function, the text or comment is not evaluated for
macro calls.

The example below shows a commented macro definition:

%*DEFINE(MOVE_ADD_GEN(SOURCE,DEST,COUNT)) LOCAL LABEL
MOV CX,%COUNT %'COUNT SHOULD BE A CONSTANT
MOV SI,O

%LABEL %1 %LABEL IS A LOCAL SYMBOL IT WILL HAVE A NUMBER ADDED
MOV AX,%SOURCE[SI] %'SOURCE MUST BE A WORD ADDRESS I

MOV %DEST[SI] ,AX %'DEST MUST ALSO BE A WORD ADDRESS I

INC S I
INC S I
LOOPZ %LABEL %'THIS WILL HAVE THE SAME NUMBER ADDED

%'AS THE %LABEL ABOVE'

Call to above macro:

%MOVE_ADD_GEN(DATA, STOR, 20H)

Return-value from above calll:

MOV CX,20H MOV SI,O
LABEL07: MOV AX,DATA[SI]

MOV STOR[SI],AX
INC SI
INC SI
LOOPZ LABEL07

Notice that the comments that were terminated with end-oi-line removed the end-oi
line character along with the rest of the comment.

Note that the metacharacter is not recognized as flagging a call to the macro pro
cessor when it appears in the comment function.

Escape Function

Occasionally, it is necessary to prevent the macro processor from processing text.
There are two built-in functions that perform this operation: the escape function
and the bracket function.

The escape function interrupts the processor from its normal scanning of text. The
syntax for this function is shown below:

%n text-n-characters-long

The metacharacter followed by a single decimal digit designates that the specified
number of characters (maximum is 9) shall not be evaluated. The escape function is
useful for inserting a metacharacter as text, adding a comma as part of an argument,
or placing a single parenthesis in a character string that requires balanced
parentheses.

7-9

The Macro Processing Language

7-10

Several examples of the escape function are shown below:

MACCALL is defined as follows:

%*DEFINE(MACCALL(ARG1, ARG2, ARG3»
(

%ARG1
%ARG2
%ARG3

Before Macro Expansion

COMPUTE 10%1% OF SUM
%MACCALL(JANUARY 23%1, 1980,

MARCH 15%1, 1980,
APRIL 9%1,1980)

%MACCALL(1%1) ADD INPUTS,
2%1) DIVIDE BY INPUT
3%1) GET INPUTS)

Bracket Function

After Macro Expansion
(actual parameters)

~ ;COMPUTE 10% OF SUM
~ ;JANUARY 23, 1980
~ ;MARCH 15, 1980
~ ;APRIL 9, 1980
~ ; 1) ADD INPUTS
~ ;2) DIVIDE BY INPUT
~ ;3) GET INPUTS

The other built-in function that inhibits the macro processor from expanding text is
the bracket function. The syntax of the bracket function is shown below:

(YJo(balanced-text)

The bracket function inhibits all macro processor expansion of the text contained
within the parentheses except for the escape function, the comment function, and
parameters which are still recognized. Since there is no restriction on the length of
the text within the bracket function, it is often easier to use than the escape function.
However, since balanced text is required and the metacharacter is interpreted,
sometimes the bracket function does not do what you want and the escape function
must be used.

Consider the following macro:

%*DEFINE(DW(LIST,NAME»
%NAME OW %LIST
)

The macro above will add DW statements to the source file. It uses two parameters:
one for the variable name and one for the DW expression list. Without the bracket
or several escape functons we would not be able to use more than one expression in
the list, since the first comma would be interpreted as the delimiter separating the
macro parameters. The bracket function permits more than one expression in the
LIST argument:

%DW(%(198H, 3DBH, 163BH),PHONE)~ PHONE OW 198H, 3DBH, 163H

In the example above the bracket function prevents the character string '198H,
3DBH, 163BH' from being evaluated as separate parameters.

ASM86

ASM86 The Macro Processing Language

MET ACHAR Function

The built-in function MET ACHAR allows you to redefine the metacharacter ini
tially (ltJo). Its syntax is shown below:

ltJo MET ACHAR(balanced-text)

The following example changes the metacharacter from (ltJo) to (&):

%METACHAR(&)

The balanced-text argument may be any number of characters long. However, only
the first character in the string, i.e., the character immediately after the '(" is taken
to be the new metcharacter. Extreme caution should be taken when using
MET ACHAR, since it can have catastrophic effects. Consider the example below:

%METACHAR(&)

In this example MET ACHAR defines the space character to be the new
metacharacter, since it is the first character in the balanced-text string!

Numbers and IExpressions in MPL

Many of the built-in functions recognize and evaluate numerical expressions in their
arguments. MPL uses the same rules for representing numbers as ASM86 (see
Chapter 3):

• Numbers may be represented in base 2 (B suffix), base 8 (0 or Q suffix), base 10
(D suffix or no suffix), and base 16 (H suffix).

• Internal representation of numbers is 17 bits (-OFFFFH to +OFFFFH). The
processor does not recognize real or long integer numbers.

• The operators recognized by the macro processor and their order of precedence
is shown in the list below (see Chapter 4 for discussion of these operators):

1. () (highest precedence)

2. HIGH, LOW,

3. *, /, MOD, SHL, SHR

4. +, -(both unary and binary forms)

5. EQ,NE,LE,LT,GE,GT

6. NOT

7. AND

8. OR, XOR (lowest precedence)

The macro processor cannot access the assembler's symbol table. The values of
labels, location counter, and EQU symbols are not known during macro-time
expression evaluation. Any attempt to use assembly-time symbols in a macro-time
expression generates an error. However, you can define macro-time symbols with
the predefined macro SET.

SET Macro

SET assigns the value of the numeric exprt:!ssion to the identifier, macro-id, and
stores the macro-id in the macro-time symbol table. macro-id must follow the same
syntax conventions used for other macro identifiers. SET has the following syntax:

ltJo SET(macro-id, expression)

7-11

The Macro Processing Language

7-12

The SET macro call affects the macro-time symbol table only; when SET is
encountered in the source file, the macro processor replaces it with the null string.
Symbols defined by SET can be redefined by a second SET call, or defined as a
macro by a DEFINE call. In fact, if you ever assemble your source with the GEN
control in effect you will see that SET uses the DEFINE built-in function to create
the numeric symbols.

The following examples show several ways to use SET:

Before Macro Expansion

%SET(COUNT,O)
%SET(OFFSET,16)
MOV AX, %COUNT + %OFFSET
MOV BX, %COUNT

After Macro Expansion

~ null string
~ null string
~ MOV AX, OOH + 10H
~ MOV BX, OOH

SET can also be used to redefine symbols in the macro-time table:

%SET(COUNT,%COUNT + %OFFSET)
%SET(OFFSET,%OFFSET * 2)

~ null string
~ null string

MOV AX, %COUNT + %OFFSET
MOV BX, %COUNT

~ ~OV AX, 10H + 20H
~ MOV BX, 10H

SET is a predefined macro, not a built-in function; as such it may be redefined,
however, you will then loose this function.

EV AL Function

The built-in function EV AL accepts an expression as its argument and returns the
expression's value in hexadecimal. The syntax for EV AL is:

OJoEV AL(expression)

The expression argument must be a legal macro-time expression.

The return-value from EV AL follows ASM86's rules for representing hexadecimal
numbers (see Chapter 3). EVAL always returns an expression with at least 3
characters even if the argument evaluates to a single digit. The leading character is
always a decimal-digit (0,1,2, ... ,9). The remaining digits may be any hexadecimal
digit (0,1,2, ... E,F). The trailing character must always be the hexadecimal suffix
(H). The following examples show the return-value from EV AL:

Before Macro Expansion

MOV AX, %EVAL(1+1); move two to AX

COUNT EQU %EVAL(33H + 15H + OFOOH)
ADD AX, %EVAL(10H-«13 + 6) * 2) + 7)
%SET (NUM1 ,44)
%SET(NUM2,25H)
MOV AX, %EVAL(%NUM1 LE %NUM2)

After Macro Expansion

~ MOV AX, 02H; move
two to AX

~ COUNT EQU OF48H
~ ADD AX, OFFF1H
~ null string
~ null string
~ MOV AX, OOH

Logical Expressions and String Comparisons in M PL
Several built-in functions return a logical value when they are called. Like relational
operators that compare numbers and return true or false (-lH or OOH), respectively,
these built-in functions compare character strings. If the function evaluates to
'TRUE,' then it returns the character string '-1 H' (all ones). If the function
evaluates to 'FALSE,' then it returns 'OOH' (zeros).

ASM86

ASM86 The Macro Processing Language

The built-in functions that return a logical value compare two balanced-text string
arguments and return a logical value based on that comparison. The list of string
comparison functions below shows the syntax and describes the type of comparison
made for each. Both arguments to these functions may contain macro calls (the calls
are expanded before the comparison is made)"

% EOS(arg 1 ,arg2)

%NES(arg1,arg2)

%L TS(arg1 ,ar02)

% LES(arg1 ,ar,q2)

%GTS(arg1,arg2)

%GES(arg1,arg2)

True if both arguments are identical; equal

True if arguments are different in any way; not equal

True if first argument has a lower value than second
argument; less than

True if first argument has a lower value than second
argument or if both arguments are identical; less
than or equal

True if first argument has a higher value than second
argument; greater than

True if first argument has a higher value than second
argument, or if both arguments are identical; greater
than or equal

Before these functions perform a comparison, both arguments are completely
expanded. Then the ASCII value of the first character in the first string is compared
to the ASCII value of the first character in the second string. If they differ, then the
string with the higher ASCII value is considered to be greater. If the first characters
are the same, then the process continues with the second character in each string,
and so on. Only two strings of equal length that contain the same characters in the
same order are equal.

Before Macro IExpansion

%GTS(16D,11H)

%EOS(ABC,ABC)

%EOS(ABC, ABC)

%L TS(CBA,cba)

%GES(ABCDEF ,ABCDEF)

After Macro Expansion

-1 H these macros compare strings
true not numerical values; ASCII '6'

is greater than ASCII '1 '

-1 H th e c haracte r stri ng s are
true identical

DOH the space after the comma is
false part of the second argument

-1 H the lower-case characters have
true a higher ASCII value than

upper-case

OOH the space at the end of the
false second argument makes the

second argument greater than
the first

As with any other macro, the arguments to the string comparison macros can be
other macros.

%*DEFINE(DOG) (CAT)
%*DEFINE(MOUSE) (%DOG)
%EQS(%DOG,%MOUSE) -1H

true

7-13

The Macro Processing Language ASM86

7-14

Control Flow and Conditional Assemblies

Some built-in functions expect logical expressions in their arguments. Logical
expressions follow the same rules as numeric expressions. The difference is in how
the macro interprets the 17-bit value that the expression represents. Once the expres
sion has been evaluated to a 17-bit value, MPL uses only the low-order bit to deter
mine whether the expression is TRUE or FALSE. If the low-order bit is a one (the
17-bit numeric value is odd), the expression is TRUE. If the low-order bit is a zero
(the 17-bit value is even), the expression is FALSE.

Typically, you will use either the relational operators (EQ, NE, LE, L T, GT, or GE)
or the string comparison functions (EQS, NES, LES, L TS, GTS, or GES) to specify
a logical value. Since these operators and functions always evaluate to -1 H (all
ones) or OOH (all zeros), you needn't worry about the single bit test. But remember,
all numeric expressions are valid, and regardless of the value of the other 16 bits,
only the least significant bit counts.

IF Function

The IF built-in function evaluates a logical expression, and based on that expression,
expands or withholds it text arguments. The syntax for the IF macro is shown below:

%IF (expression) THEN (balanced-text1) [ELSE (balanced-text2)] FI

The IF function first evaluates the expression. If the low order bit is one, then
balanced-textl is expanded; if the low order bit is zero and the optional ELSE clause
is included in the call, then balanced-text2 is expanded. If the low order bit is zero
and the ELSE clause is not included, the IF call returns the null string. FI must be
included to terminate the call.

IF calls can be nested; when they are, the ELSE clause refers to the most recent IF
call that is still open (not terminated by FI). FI terminates the most recent IF call
that is still open.

Several examples of IF calls are shown below:

This is a simple example of the IF call with no ELSE clause.

%IF (%GTS(OFFH,%VAR» THEN (MOV AX, %VAR) F1

This is the simple form of the IF call with an ELSE clause.

%IF (%EQS(ADD AX, %OPERATION» THEN (ADD BX, %R1) ELSE (ADD BX, %R2) F1

This is an example of several nested IF calls.

open first IF %IF (%EQS(%OPER,ADD» THEN (ADD AX,DATUM
) ELSE (

open second IF %IF (%EQS(%OPER,SUB» THEN SUB AX,DATUM
) E LS E (

open third IF %IF (%EQS(%OPER,MULT» THEN (MUL DATUM
) ELSE (DIV DATUM

close third IF) F I
close second IF) F I
close first IF) F I

ASM86 The Macro Processing Language

Example 5. Conditional Assembly

%SET (DEBUG, 1)
%IF (DEBUG) THEN (
MOV AX, DEBUG FLAG
OUT AX, 2
)

MOV BX, OFFSET ARRAY
SUB BX, 1

will expand to:

MOV AX, DEBUG FLAG
OUT AX, 2
MOV BX, OFFSET ARRAY
SUB BX, 1

You could change the % SET to

%SET (DEBUG, 0)

to turn off the 'debug' code.

WHILE Function

The IF macro is useful for implementing one kind of conditional assembly
including or excluding lines of code in the source file. However, in many cases this is
not enough. Often you may wish to perform macro operations until a certain condi
tion is met. The built-in function WHILE provides this facility.

The syntax of the VVHILE macro is shown below:

070 WHILE (expression) (balanced-text)

The WHILE function evaluates the expresson. If the least significant bit is one, then
the balanced-text is expanded; otherwise, it is not. Once the balanced-text has been
expanded, the logical argument is retested and if the least significant bit is still one,
then the balanced-text is again expanded. This continues until the logical argument
proves false (the least significant bit is 0).

Since the macro continues processing until expression is false, the balanced-text
should modify expression, or else WHILE may never terminate.

A call to the built-in function EXIT will always terminate a WHILE macro. EXIT is
described below.

The following examples show two common us'es of the WHILE macro:

%SET(COUNTER,S)
%WHILE(%COUNTER GT 0)
(INC BX
%SET(COUNTER, %COUNTER - 1)

)

%WHILE(%COUNT LT OFFH) (HLT
%SET(COUNT, %COUNT+1))

These examples use the SET macro and a macro-time symbol to count the iterations
of the WHILE macro.

7-15

The Macro Processing Language

7-16

REPEAT Function

MPL offers another built-in function that will perform the counting loop
automatically. The built-in function REPEAT expands its balanced-text a specified
number of times. The general form of the call to REPEAT is shown below:

0,70 REPEA T (expression) (balanced-text)

Unlike the IF and WHILE macros, REPEAT uses the expression for a numerical
value that specifies the number of times the balanced-text will be expanded. The
expression is evaluated once when the macro is first called, then the specified
number of iterations is performed.

The examples below will perform the same text insertion as the WHILE examples
above.

%REPEAT (5) (INC BX
)

%REPEAT (OFFH - COUNT) (HLT
)

Note that the line feeds preceding the right paren in each of the above examples are
necessary for correct assembly.

EXIT Function

The EXIT built-in function terminates expansion of the most recently called
REPEAT, WHILE or user-defined macro. It is most commonly used to avoid
infinite loops (e.g., a WHILE expression that never becomes false, or a recursive
user-defined macro that never terminates). It allows several exit points in the same
macro.

The syntax for EXIT is:

0,70 EX IT

Two examples of how you might use the EXIT macro follow:

This use of EXIT terminates a recursive macro when an odd number of bytes have
been added.

%*DEFINE(MEM ADD MEM(SOURCE,DESTIN,BYTES»
MOV AL~%SOURCE
ADD AL,%DESTIN
MOV %DESTIN,AL
IF (%BYTES EQ 1) THEN (%EXIT)FI
MOV AL, %SOURCE + 1
ADD AL, %DESTIN + 1
MOV %DESTIN + 1, AL
IF (%BYTES GT 2) THEN

(%MEM ADD MEM(%SOURCE+2,%~ESTIN+2,%BYTES-2»FI
) - -

The above example adds two pairs of bytes and stores the results in DESTIN. As
long as there are more than two pairs of bytes to be added, the macro
MEM_~ADD ___ MEM is expanded. That is, as long as BYTES is greater than 2, the
expansion continues. When BYTES reaches a value of 1 (odd number of byte pairs)
the macro is exited.

ASM86

ASM86 The Macro Processing Language

This EXIT is a simple jump out of a recursive loop.

%*DEFINE(UNTIL (CONDITION, BODY»
(%BODY

%IF (%CONDITION) THEN (%EXIT)
ELSE (%UNTIL(%CONDITION,%BODY» FI

This example assumes that BODY is a macro that modifies CONDITION such that
CONDITION eventually becomes true.

String Manipulation Built-in Functions

The purpose of the Macro Processor is to manipulate character strings. Therefore,
there are several built-in functions that perform common character string manipula
tion functions.

LEN Function

The built-in function LEN takes a character string argument and returns the length
of the character string in hexadecimal (the same format as EV AL). The character
string argument to LEN is limited to 256 characters.

The syntax of the LEN macro call is shown below:

0,10 LEN (balanced-text)

Several examples of calls to LEN and the hexadecimal numbers returned are shown
below:

Before Macro Expansion After Macro Expansion

%LEN(ABCDEFGHIJKLMNOPQRSTUVWXYZ) ~ 1AH
%LEN(A,B,C) ~ OSH commas are counted
%LEN() ~ OOH
%*DEFINE(CHEESE) (MOUSE)
%*DEFINE(DOG) (CAT)
%LEN(%DOG %CHEESE) ~ 09H

Athe space after G is
counted as part of the
Length

SUBSTR Function

The built-in function SUBSTR returns a substring of its text argument. The macro
takes three arguments: a balanced character string to be divided and two numeric
arguments. The syntax of the macro call to SUBSTR is shown below:

O,1oSUBSTR(balanced-text ,expression 1 ,expression2)

balanced-text is described above.

expression1 specifies the starting character of the substring.

expression2 specifies the number of characters to be included in the substring.

7-17

The Macro Processing Language

7-18

If expression} is zero or greater than the length of the argument string, then
SUBSTR returns the null string.

If expression2 is zero, then SUBSTR returns the null string. If expression2 is greater
than the remaining length of the string, then all characters from the start character
of the substring to the end of the string are included.

The examples below show several calls to SUBSTR and the value returned:

Before Macro Expansion

%SUBSTR(ABCDEFG,5,1)
%SUBSTR(ABCDEFG,5,100)
%SUBSTR(123(56)890,4,4)
%SUBSTR(ABCDEFG,8,1)
%SUBSTR(ABCDEFG,3,O)

MATCH Function

After Macro Expansion

~ E

~ EFG
~ (56)
~ null
~ null

The built-in function MATCH searches a character string for a delimiter character
and assigns the substrings on either side of the delimiter to the identifiers. The
syntax of the MATCH call is shown below:

l}!oMATCH(identifier} delimiter identifier2) (balanced-text)

identifieri and identifier2 are valid MPL identifiers.

delimiter is the first character to follow identifieri. Typically, a space or comma is
used, but any character that is not a macro identifier character may be used. You
can find a more complete description of delimiters in the Advanced Concepts section
at the end of the chapter.

balanced-text is as described earlier in the chapter.

MATCH searches the balanced-text string for the specified delimiter. When the
delimiter character is found, then all characters to the left of it are assigned to iden
tifier1 and all characters to the right are assigned to identifier2. If the delimiter is
not found, the entire balanced-text string is assigned to identifieri and the null
string is assigned to identifier2.

The following example shows a typical use of the MATCH macro.

%MATCH (NEXT,LIST) (10H, 20H, 30H)
MOV SI, VAR PTR

%WHILE (%LEN(%NEXT) NE 0) (
MOV BX, %NEXT
MOV AX, [BX+S IJ
ADD AX,22H
MOV [BX+SIJ, AX
%MATCH (NEXT)LIST)(XLIST)

Produces the following code:

first iteration
of WHILE

MOV BX, 10H
MOV AX, [BX+SI]
ADD AX,22H
MOV [BX+SI]. AX

ASM86

ASM86 The Macro Processing Language

second iteration
of WHilE

third iteration
of WHILE

MOV BX, 20H
MOV AX, [BX+SIJ
ADD AX,22H
MOV [BX+S IJ, AX

MOV BX, 30H
MOV AX, [BX+SIJ
ADD AX,22H
MOV [BX+S IJ, AX

Console I/O Built-in Functions

Four built-in functions perform console I/O. The first two, IN and OUT, are line
oriented. IN outputs the characters '> >' as a prompt to the console, and returns the
next line typed at the console including the line terminator. OUT outputs a string to
the console; the return value of OUT is the null string. The syntax of both macros is
shown below:

OJolN

OJoOUT(baJanced-text)

Several examples of how these macros can be used are shown below:

%OUT(ENTER NUMBER OF PROCESSORS IN SYSTEM)
%SET(PROC COUNT,%IN)
%OUT(ENTE~ THIS PROCESSOR'S ADDRESS)

ADDRESS EQU %IN
%OUT(ENTER BAUD RATE)
%SET(BAUD,%IN)

The following lines would be displayed at the console:

ENTER NUMBER OF PROCESSORS IN SYSTEM >userresponse
EN T E R T HIS PRO C E S S 0 R I SAD D RES S :> user response
EN T E R B A U D RAT E > user response

The second two, CI and CO, are character oriented functions. CI returns a single
character typed at the console. CI neither prompts for input nor echoes the character
typed. CO outputs a single character to the console; the return value of CO is the
null string. The syntax of the CI and CO macros is:

% C I
% CDC char)

The following example defines the macro NUMBER to be a string of three
characters typed at the console, and echoes the characters as they are typed:

%DEFINECNUMBER)C)
%REPEAT(3)(%DEFINECA)C%CI) %COC%A)

%DEFINECNUMBER)I:%NUMBER%A))

Advanced MPL Concepts

For most programming problems, the Macro Processing Language as described
above is sufficient. However, in some cases a more complete description of the
macro processor's function is necessary.

7-19

The Macro Processing Language

7-20

However, it is impossible to describe all of the subtleties of the macro processor in a
single chapter. With the rules described in this section, you should be able to discern,
with a few simple tests, the answer to any specific question about MPL.

Macro Delimiters

When we discussed the syntax for defining macros, the parameter-list was sur
rounded by parentheses, and parameters were separated by commas. Because we
used these delimiters to define a macro, a call to the macro required that these same
delimiters be used. When we discussed the MATCH function, we mentioned that a
space could be used as a delimiter. In fact the macro processor permits almost any
character or group of characters to be used as a delimiter.

Regardless of the type of delimiter used to define a macro, once it has been defined,
only the delimiters used in the definition can be used in the macro call. Macros
defined with parentheses and commas require parentheses and commas in the macro
call. Macros defined with spaces (or any other delimiter) require that specific
delimiter when called.

Macro delimiters can be divided into three classes: implied blank delimiters, iden
tifier (or id) delimiters and literal delimiters.

Implied Blank Delimiters

Implied blank delimiters are easy to me and contribute readability and flexibility to
macro calls and definitions. An implied blank delimiter is one or more spaces, tabs
or new lines (a carriage-return/lincfeed pair or just a linefeed) in any order. To
define a macro that uses the implied blank delimiter, simply place one or more
spaces, tabs or new lines surrounding the parameter list and separating the formal
parameters.

When you call the macro defined with the implied blank delimiter, each delimiter
will match a series of spaces, tabs, or new lines. Each parameter in the call begins
with the first non-blank character, and ends with the next blank character.

An example of a macro defined using implied blank delimiters is:

%*DEFINE(SENTENCE SUBJECT VERB OBJECT) (THE %SUBJECT %VERB %OBJECT.

All of the following calls are valid for the above definition:

Before Macro Expansion

%SENTENCE TIME IS RIPE
%SENTENCE CATS

EAT
F ISH

%SENTENCE
PEOPLE

After Macro Expansion

~ THE TIME IS RIPE.

~ THE CATS EAT FISH.

LIKE FREEDOM ~ THE PEOPLE LIKE FREEDOM.

Identifier Delimiters

Identifier (id) de1imiters are legal macro identifiers designated as delimiters. To
define a macro that uses an id delimiter in its call pattern, you must prefix the
delimiter with the commercial at symbol (@). You must separate the id delimiter
from the macro identifiers (formal parameters or macro name) by a blank character.

ASM86

ASM86 The Macro Processing Language

When calling a macro defined with id delimiters, an implied blank delimiter is
required to precedt: the id delimiter, but none is required to follow the id delimiter.
The @ is not required.

An example of a macro defined with id delimitl;!rs is:

%*DEFINE(ADD P1 @TO P2 @AND P3) (
MOV AX, %P1
MOV BX, AX
ADD AX, %P2
MOV %P2, AX
MOV AX, BX
ADD AX, %P3
MOV %P3, AX

The following call:

%ADD ATOM TO MOLECULE AND CRYSTAL

returns this code when expanded:

MOV AX, ATOM
MOV BX, AX
ADD AX, MOLECULE
MOV MOLECULE, AX
MOV AX, BX
ADD AX, CRYSTAL
MOV CRYSTAL, AX

The call could also have been written

%ADD ATOM TOMOLECULE ANDCRYSTAL

Literal Delimiters

The delimiters used when we documented user-defined macros (parentheses and
commas) were literal delimiters. A literal delimiter can be any character except the
metacharacter.

When you define a macro using a literal delimiter you must use exactly that delimiter
when you call the macro. If you do not include the specified delimiter character as it
appears in the definition, it will generate a macro error.

When defining a macro, you must literalize the delimiter string, if the delimiter you
wish to use meets any of the following conditions:

• uses more than one character,

• uses a macro identifier character (A-Z, 0-9, _ ,or ?),

• uses a commercial at (@),

• uses a space, tab, carriage-return, or lincfeed.

7-21

The Macro Processing Language

7-22

You can use the escape function (%n) or the bracket function (%(») to literalize the
delimiter string. Several examptcs of definitions and calls using a variety of literal
delimiters are shown below:

This is the simple form shown earlier:

Before Macro Expansion After Macro Expansion

%*DEFINE(MAC(A,B) (%A %B)
%MAC(4,5)

~ nuLL string
~ 4 5

In the following example brackets are used instead of parentheses. The commercial
at symbol separates parameters:

%*DEFINE(MOV[A%(@)B]) (MOV[%A],%B)
%MOV[BX @ 01] ~ MOV[BX],DI

In the next two examples delimiters that could be id delimiters have been defined as
literal delimiters (the differences are noted):

%*DEFINE(ADD (A%(AND)B»(ADD %A,%B)
%ADD(AX AND 5)

~ nuLL string
~ ADD AX, 5

To illustrate the differences between id delimiters and literal delimiters, consider the
following macro definition and call. (A similar macro definition is discussed with id
delimiters):

%*DEFINE(ADD P1 %(TO) P2 %(AND) P3) (
MOV AX, %P1
MOV BX, AX
ADD AX, %P2
MOV % P 2, AX
MOV AX, BX
ADD AX, %P3
MOV %P3, AX

The following call:

%ADD COUNT TO INCR AND FACTOR

returns this code when expanded

MOV AX, COUNT
MOV BX, AX
ADD AX, INCR
MOV INCR, AX
MOV AX, BX
ADD AX, FACTOR
MOV FACTOR, AX

If the parameters contain strings that match the delimiters, i.e., if % PI is ATOM,
you will get incorrect results.

Literal VS. Normal Mode

In normal mode the macro processor scans text looking for the metacharacter.
When it finds one, it begins expanding the macro call. Parameters are substituted
and macro calls are expanded. This is the usual operation of the macro processor,

ASM86

ASM86 The Macro Processing Language

but sometimes it is necessary to modify this mode of operation. The most common
use of the literal mode is to prevent macro expansion. The literal character in
DEFINE prevents the expansion of macros in the macro-body until you call the
macro.

When you place the literal character in a DEFiNE call, the macro processor shifts to
literal mode while expanding the call. The effect is similar to surrounding the macro
body with the bracket function. The escape, comment, and bracket functions are
expanded; but no further processing is performed. Any calls to other macros are not
expanded.

If there are no parameters in the macro being defined, the DEFINE built-in function
can be called without the literal character. If the macro uses parameters, the macro
processor will attempt to evaluate the formal parameters in the macro-body as
parameterless macro calls.

The following example illustrates the difference between defining a macro in literal
mode and normal mode:

%SET(TOM,1)
%*DEFINE(AB) (%EVAL(%TOM»
%DEFINE(CD) (%EVAL(%TOM»

When AB and CD are defined, TOM is equal to 1. The macro body of AB has not
been evaluated due to the literal character, but the macro body of CD has been com
pletely evaluated, since the literal character is not used in the definition. Changing
the value of TOM has no affect on CD, it changes the return value of AB as
illustrated below:

Before Macro Expansion

%SET(TOM,2)
%AB
%CD

After Macro ExpanSion

-+ 02H
-+ 01H

The macros themselves can be called with the literal character. The return value then
is the unexpanded body:

-+ 01H
-+ %EVAL(%TOM)

The literalized calls to AB and CD show that CD evaluates to 01 H, while AB con
tains a macro call to EV AL with %TOM as its parameter.

Algorithm for Evaluating Macro Calls

The algorithm the macro processor uses for evaluating the source file can be seen in
6 steps:

1. Scan the source until the metacharacter is found.

2. Isolate the call pattern. See note below.

3. If macro has parameters, expand each parameter from left to right (initiate step
one on actual parameter) before expanding the next parameter.

4. Substitute actual parameters for formal parameters in macro body.

5. If the literal character is not used, initiate step one on macro body.

6. Insert the result into output stream.

7-23

The Macro Processing Language

7-24

NOTE

When isolating the call pattern, the macro processor is actually
scanning input for the specified delimiter. All text found between
delimiters is considered the actual parameter. For this reason Id
delimiters need not be terminated by spaces in a call.

The terms 'input stream' and 'output stream' are used, because the return value of
one macro may be a parameter to another. On the first iteration, the input stream is
the source file. On the final iteration, the output stream is passed to the assembler.

The examples below illustrate the macro processor's evaluation algorithm:

%SET(TOM,3)
%*DEFINE(STEVE) (%SET(TOM,%TOM-1) %TOM)
%*DEFINE(ADAM(A,B» (
DB %A, %B, %A, %B, %A, %B
)

Here is a call ADAM in the normal mode with TOM as the first actual parameter
and STEVE as the second actual parameter. The first parameter is completely
expanded before the second parameter is expanded. After the call to ADAM has
been completely expanded, TOM will have the value 02H.

Before Macro Expression After Macro Expression

%ADAM(%TOM,%STEVE) ~ DB 03H, 02H, 03H, 02H, 03H, 02H

Now reverse the order of the two actual parameters. In this call to ADAM, STEVE
is expanded first (and TOM is decremented) before the second parameter is
evaluated. Both parameters have the same value.

%SET(TOM,3)
%ADAM(%STEVE,%TOM) ~ DB 02H, 02H, 02H, 02H, 02H, 02H

Now we will literalize the call to STEVE when it appears as the first actual
parameter. This prevents STEVE from being expanded until it is inserted in the
macro body, then it is expanded for each replacement of the formal parameters.
Tom is evaluated before the substitution in the macro body.

%SET(TOM,3)
%ADAM(%*STEVE,%TOM) ~ DB 02H, 03H, 01H, 03H, OOH, 03H

ASM86

APPENDIX A
CODEMACROS

This chapter describes codemacros, which define 8086, 8087, and 8088 instructions.
Codemacros should not be confused with macros, which are described in Chapter 7.

A codemacro is a preset body of code which you define, a skeleton in which most
instructions and values are fixed. They are automatically assembled wherever the
macro is invoked (used as an instruction), which saves your rewriting them every
time that sequence is needed.

However, certain names used in the definition are NOT fixed. They are stand-ins,
which are replaced by names or values that you supply in the same line that invokes
the codemacro. These stand·-ins are called "dummy" or "formal" parameters. They
simply "hold the place" for the actual parameters to come. Formal parameters thus
indicate where and how the actual parameters are to be used.

You invoke the codemacro by using its name as an instruction. For example:

MOV BX, WORD3
MAC1 PARAM1, PARAM2
ADD AX, WOR04

MAC! above represents the use of some codemacro you defined earlier. It appar
ently requires 2 parameters" that is, the definition used 2 formals to be replaced by
these actual parameters suplPlied above when you invoke the codemacro.

In fact, the MOV and ADD instructions above are codemacros. The assembler's
entire instruction set is defined and implemented as a large number of codemacros.
(The definitions are at the end of this Appendix). Once you understand how this is
done, you may add instructions to those supplied as part of the assembler.

The type of macro used to implement this assembly language is called a codemacro
to distinguish it from text macros described in Chapter 7. The latter are more
familiar to programmers because previous assembly languages have included such a
facility. Text macros are not discussed in this chapter. The presentation below will
describe creating and using codemacros.

These codemacros are encoded at codemacro definition time into a very compact
form, so that all defined codemacros may reside simultaneously in memory. Each
definition specifies a certain combination of parameters and will match only those.
Other combinations of parameters may be accommodated by redefining the
codemacro. Multiple definitions of the same codemacro name are chained together;
so that when the codemacro is called, each link of the chain can be checked for a
match of operands ..

Since the 8086 instruction set consists of codemacros, it is natural to refer to a
codemacro being called as an "instruction," and to refer to its actual parameters as
"operands. "

A-I

Codemacros

A-2

For example, the language has an ADD instruction that works properly with any
general register or memory location as a destination operand or as a source operand,
and works with immediate-data operands. This is achieved by defining 11
codemacros to generate the 11 different machine instructions appropriate to these
different cases and combinations. The correct one is used because the specification
of its formal parameters is matched by the actual parameters supplied in your source
code. The details of how this works are covered in this chapter.

The definition of a codemacro begins with a line specifying its name and a list of its
formal parameters, if any:

CODEMACRO name [formal_listJ

or

CODEMACRO name PREFX

where formal_list is a list of formal parameters, each in the form

form __ name:specifier _letter [modifier_letter] [range]

The square brackets indicate optional items; they are not actually used in the state
ment that you code. The single word CODEMACRO and the name are both
required. The formal parameters are optional. If they are present, then each one
must be followed by one of the specifier letters A, C, D, E, M, R, S, X. After the
specifier letter comes an optional modifier letter: b, d, q, t, or w. There follows an
optional range specifier, which consists of a pair of parentheses enclosing either one
expression, or two expressions separated by a comma. The semantics of specifiers,
modifiers, and ranges are described below.

When no formals are used, you may code the keyword PREFX, indicating the code
macro is to be used as a prefix to other instructions. This too is optional. Examples
of prefixes in the 8086 instruction set are LOCK and REP.

The definition ends with a line as follows:

ENDM

Between the first and last lines of a codemacro· definition is the body of the code
macro, the actual bit patterns and formal parameters which will be assembled and
replaced each time the macro is invoked. Only a few kinds of directive are allowed in
codemacros. They are:

1. SEGFIX

2. NOSEGFIX

3. MODRM

4. RELB

5. RELW

6. DB

7. DW

8. DD

9. Record initialization

10. RFIX

11. RFIXM

12. RNFIX

13. RNFIXM

14. RWFIX

ASM86

ASM86

Each of these directives, along with the special expression operand PROCLEN, are
explained further on in this chapter.

Some simple examples of codemacros:

Codemacro STC
DB OF9H ; this sets the carry flag (CF) to 1.
Endm

Codemacro PUSHF
DB 9CH ; pushes all flags into top word on stack.
Endm

Codemacro ADD dst:Ab, src:Db
DB 04H
DB src
Endm

The first two examples simply allow a machine instruction to be invoked by the use
of a name, which is usually more easily rem em bered ("mnemonic") than a string of
numbers.

The third example is one of the 11 macros defining the ADD instruction, or more
precisely, defines one of the 11 ADD instructions. (There are 11 in order to cover all
the valid combinations of parameters.) It has two formal parameters, called "dst"
and "src," for destination and source operands. These formals could be called
anything; for example:

Codemacro ADD anything:Ab, other:Db
DB 04H
DB other
Endm

is the identical macro in function and format.

Specifiers

Every formal parameter must have a specifier letter, which indicates what type of
operand is needed to match the formal parameter. There are eight possible specifier
letters:

1. A

2. C

3. D

4. E

5. F

6. M

7. R

8. S

9. T

10. X

meaning Accumulator, that is AX or AL.

meaning Code, i.e., a label expression only.

meaning Data, i.e., a number to be used as an immediate value.

meaning Effective address, i.e., either an M (memory address) or an R
(register) .

meaning a floating point stack element, i.e., ST or ST(i).

meaning a memory address. This can be either a variable (with or without
indexing) or a bracketed register expression.

meaning a general Register only, not an address-expression, not a register
in brackets, and not a segment register.

meaning a Segment register only, either CS, DS, ES, or SS.

meaning the floating point stack top, i.e., ST or ST(O).

meaning a direct memory reference, a simple variable name with no
indexing.

Codemacros

A-3

Codemacros

A-4

A more detailed discussion of which operands match which specifier letters appears
in the instruction-matching section later in this chapter.

Modifiers

The optional modifier letter imposes a further requirement on the operand, relating
either to the size of data being manipulated, or to the amount of code generated by
the operand. The meaning of the modifier depends on the type of the operand:

• For variables, the modifier requires the operand to be of a certain TYPE: "b"
for byte, "w" for word, "d" for dword, "q" for qword, "t" for tbyte.

• For labels, the modifier requires the object code generated to be of a certain
amount: "b" for an 8-bit relative displacement on a NEAR label, "w" for
NEAR labels which are outside the -128 to 127 short displacement range, and
"d" for FAR labels.

• For numbers, the modifier requires the number to be of a certain size: "b" for
-256 through 255, and "w" for other numbers between -65,536 and 65,535.
The specifier-modifier pairs "Dd"; "Dq" and "Dt" are never matched.

Note that this manual uses upper-case letters for specifiers and lower-case letters for
modifiers. This is a useful language convention to clarify the code. However it is not
required-as in all source code outside of strings, the distinction between upper and
lower case is ignored by the assembler.

Range Specifiers

If a range is specified, it can be a single expression or two expressions separated by a
comma. Each expression must evaluate to a register or a pure number, i.e., not an
address. Range specifiers are not allowed with floating point stack elements, that is,
src=F or T. The list of number values corresponding to range registers is given in the
instruction-matching section later in this chapter. The following shows the first lines
(only) of three codemacros in the current language which use range specifiers:

1. Codemacro IN dst:Aw,port:Rw(DX)

2. Codemacro ROR dst:Ew,count:Rb(CL)

3. Codemacro ESC opcode:Db(O,63),adds:Eb

The first of these is one of the four codemacros for the IN (input) instruction. It says
that if a register is to specify the port from which to input a word, only DX will
match this codemacro. Any other register will fail to match, and the source line will
be flagged as erroneous (e.g., IN AX,BX is in error).

The second is one of the four ROtate Right codemacros. It says the word rotated can
be any word register except a segment register, or any word in memory. It is to be
rotated right some number of bit positions ("count"), where "count" is specified as
a byte register, and further specified to be CL. No other register will match (e.g.,
ROR AX, DL is in error).

The third says the "opcode" supplied as the first parameter to the ESC instruction
must be a byte of immediate-data of value ° to 63 inclusive.

Segfix

SEGFIX is a directive, included in some codemacro definitions, which instructs the
assembler to determine whether a segment-override prefix byte is needed to access a
given memory location. If the override byte is needed, it is output as the first byte of
the instruction. If it is not needed, no action is taken.

ASM86

ASM86

The form of the directive is:

SEGFIX formaL_name

where "formal_name" is the name of a formal parameter which represents the
memory address. Because it is a memory address, the formal must have one of the
specifiers E, M, or X.

In the absence of a segment-override prefix byte, the 8086 hardware uses either DS
or SS. Which one depends on which base register, if any, was used. BP implies SS.
BX implies DS. No base register also implies DS. (This, of course, includes the three
possibilities of SI alone, DI alone, or no indexing at all.) The assembler must decide
whether this hardware-implied segment register is actually the one that will reach the
intended memory location.

The assembler examines the segment attribute of the memory-address expression
provided as the actual parameter. This attribute could be a segment, a group, or a
segment register.

• If it is a segment, the assembler determines whether that segment or a group
containing that segment has been ASSUMEd into the hardware-implied seg
ment register. If so, no override byte is needed. If not, the assembler checks the
ASSUMEs of other segment registers, looking for the segment or a group con
taining it. If found, the override byte for that segment register is issued. If not
found, an error is reported.

• If it is a group, the assembler takes the same action as for a segment, except that
the possibility of an including group is ruled out: the group itself must be
ASSUMEd into one of the segment registers. Otherwise an error is reported.

• If it is a segment register, the assembler sees if it is the hardware-implied
segment register. If so, no override byte is issued. If not, the override byte for
the specified segment register is issued.

Nosegfix

NOSEGFIX is used for certain operands in those instructions for which a prefix is
illegal because the instruction cannot use any other segment register but ES for that
operand. This applies only to the destination operand of these string instructions:
CMPS, MOVS, SeAS, STOS.

The form of the directive is:

NOSEGFIX segreg, formal_name

where "segreg" is one of the four segment registers ES, CS, SS, DS, and
"formal_name" is the name of a memory-address formal parameter. As a memory
address, the formal must have one of the specifiers E, M, or X.

The only action the assembler performs when it encounters a NOSEGFIX in
assembling an instruction is to perform an error check-no object code is ever
generated from this directive.

The assembler looks up the segment attribute of the actual parameter (memory
address) corresponding to "formal_name." If the attribute is a segment register, it
must match "segreg." If the attribute is a group, it must be ASSUMEd into
"segreg." If the attribute is a segment, it or a group containing it must be
ASSUMEd into "segreg. n If these tests fail and "formal_name" is thus deter
mined not to be reachable from "segreg," an error is reported.

The only value for "segreg" actually used by the string instructions listed above is
ES.

Codemacros

A-5

Codemacros

A-6

Modrm

This directive instructs the assembler to create the ModRM byte, which follows the
opcode byte on many of the 8086's instructions. The byte is constructed to carry the
following information:

1. The indexing-type or register number to be used in the instruction.

2. Which register is (also) to be used, or more information to select the instruction.

The MODRM byte carries the information in three fields:

The mod field occupies the two most significant bits of the byte, and combines with
the rim to form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the next three bits following the mod field, and specifies either
a register number or three more bits of opcode information. The meaning of the reg
field is determined by the first (opcode) byte of the instruction.

The rim field occupies the three least significant bits of the byte. It can specify a
register as the location of an operand, or form part of the addressing-mode encoding
in combination with the mod field as described above.

The bit patterns corresponding to each indexing mode and register combination are
given in Chapter 1 and Appendix B. They need not concern you when you are
writing codemacros, since the assembler takes care of the encoding when you pro
vide the operands.

The form of the directive is:

where "formal_or_number" is either the name of a formal parameter, or an
absolute number: and "formal_name" is the name of another formal parameter.

"formal_or_number" represents the quantity which goes into the reg field of the
ModRM byte. If it is a number, then that same value is always plugged into the field
every time that codemacro definition is invoked. The number in this case is a con
tinuation of the opcode identifying which instruction the hardware is to execute.

If it is a formal, then the corresponding operand (usually a register number) is
plugged in.

"formal-name" represents an effective-address parameter. The assembler examines
whether the operand supplied is a register, variable, or indexed variable, and con
structs the mod and rim fields which correctly represent the operand. If the operand
calls for an 8-bit or 16-bit offset displacement, the assembler generates that as well.

An example of an 8086 instruction using ModRM:

Codemacro ADD dst:Rw, src:Ew
Segfix src
DB 3
MODRM dst, src
Endm

The specifiers R wand Ew indicate that this codemacro will match only when the
actual parameters in the invocation line are a full word general register destination,
and a full word source, memory or general register.

ASM86

ASM86

Example 1:

ADD 0 X, [B X] [S I] becomes

00000011 10010000
76543210 76543210

The first byte identifies this as an ADD of a memory word into a register. This par
ticular byte covers only 1 of the 4 cases that are possible depending on the lowest 2
bits. If bit 1 (direction) is a 0, the ADD is FROM a register TO either a register or a
memory location. l[f bit 1 is aI, then the ADD is TO a register FROM a register or
memory location. The least significant bit, bit 0, tells whether the data being ADDed
is byte (0) or word (1).

The second byte is the MODRM byte, with DX encoded as 010 in bits 5, 4,3, a mode
of 10 in bits 7, 6, and an RM of 000 (see Chapter 1 or Appendix B for more detail).

If the source line had included a variable; for example:

ADD OX, MEMWORO [BX] [SI]

then the offset of MEMWORD (low-order byte first, high byte last) would follow
the MODRM byte.

Example 2:

ADD OX, [01]
00000011 10010101
76543210 76543210

As a different example, consider a destination of a word in memory and a source of
immediate-data. The relevant codemacros are:

Codemacro ADD dst:Ew,src:Ow
Segfix dst
OB81H
MOORM O,dst
OW src
Endm

Codemacro ADD dst:Ew,src:Ob (-128, 127)
Segfix dst
DB 83H
MOORM O,dst
DB src
Endm

The object code generated for the instruction and data are different in the 2 cases of
a byte of data or a word of data.

Furthermore, the MODRM line for these instructions specifies a "for
mal_or_number" field of zero, i.e., 3 bits all zero, whereas the MODRM line for
the two examples above specified a field of dst, which became 010 to represent DX.

Example 3:

ADD [01], 513
10000001 10000101 00000001 00000010

Codemacros

A-7

Codemacros

A-8

Example 4:

ADD BYTE PTR [BX] [S1], 4
10000011 10000000 00000100

The immediate-data byte or word follows the MODRM byte.

Relb and Relw

These directives, used in calls and jumps, instruct the assembler to generate the
displacement between the end of the instruction and the label which is supplied as an
operand. This means RELB generates the 1 byte (and RELW the 2 byte) displace
ment, or distance in bytes, between the instruction pointer value (at the end of the
codemacro) and the destination address.

The directives have the following form:

RELB formaL __ name

or

RELW formal_name

where "formal_name" is the name of a formal with a "C'" (Code) specifier.

The assembler assumes that all RELB and REL W directives occur immediately after
a single opcode byte in the codemacro (as in all the JUMP and CALL instructions in
the 8086 instruction set). It needs this assumption to determine (during codemacro
matching) where the displacement starts from, so that an operand can be identified
as "Cb" or "Cw." Although the assembler allows you to define codemacros in
which RELB and RELW occur elsewhere in the definition (e.g., a multi-instruction
codemacro), you run the risk of making the wrong match when the codemacro is
invoked. If a "b" is thus matched as "w," a wasted byte is generated; if a "w" is
thus matched as a "b," an error is reported.

Examples of RELB and REL W as they appear in the 8086 instruction set are:

Codemacro JMP place:Cw
DB OE9H
RELW place
Endm

Codemacro JE place:Cb
DB 74H
RELB place
Endm

These are direct jumps to labels in the CS segment. The specifier on the formal
parameter of the first macro calls for a NEAR label in the current CS segment (Cd
would mean FAR). This means a 16 bit offset, able to reach any byte in the
immediate 64K bytes of address higher than the start of the segment. REL W com
putes the distance and provides it as a word to follow the OE9H instruction byte.

If the offset of the target is 513, then this codemacro would generate the instruction:

11101001 00000001 00000010

ASM86

ASM86

The distance begins at the end of that REL W word, i.e., if you were counting the
bytes to that label, the first byte counted would be the one after the 3 bytes compris
ing this jump.

NOTE

A match only occurs iif the label was assembled under the same ASSUME
CS:name as the jump. Only if there is a match is object code actually
generated.

The second example is a conditional jump, executed only if its conditions are met. In
this case, a Jump if Equal, the jump occurs if ZF=O. Conditional jumps are always
self-relative and limited to destinations whose distance can fit in 1 byte. This means
destinations no further ahead than 127 bytes and no further behind this instruction
than -128 bytes.

If the target is 99 bytes ahead, then this codemacro would generate the instruction:

01110100 01100011

The distance counted begins with the byte after these 2 bytes above.

DB, OW, and DO

These directives are similar to the DB, DW, and DD directives which occur outside
of codemacro definitions (see Chapter 3); however, there are some differences in the
operands they accept.

The form of the directives is:

DB cmac_expression
or

DW cmac_expression
or

DD cmac_expression

where cmac_expression is either an expression without forward references which
evaluates to an absolute number; a formal parameter name; or a formal parameter
name with a dot-record field shift construct.

An absolute number means that the same value is to be assembled every time this
codemacro definition is invoked. A formal parameter means that the corresponding
actual operand is to be assembled. A dot-record field shift construct means that the
actual operand is to be shifted and then plugged in, as discussed later in this chapter.

The operands to these codemacro initializations are restricted, in that lists and DUP
counts are not allowed.

Note that the DQ and DT directive are not allowed inside codemacro definitions.

Record Ini1tializations

The record initialization directive allows you to control bit fields smaller than one
byte in codemacro definitions. The form of the directive is:

Codemacros

A-9

Codemacros

A-lO

where record __ name is the name of a previously-defined record (see Chapter 3), and
cmac_expression_list is a list of cmac __ expressions, separated by commas. (These
particular square brackets are not used in writing the list; their meaning here is that
the list is optional.) A cmac_expression is, as in the above section, either a number,
a formal, or a shifted formal. In addition, null cmac_expressions are allowed in the
list; in which case the default record field value as specified in the RECORD defini
tion is used.

The directive instructs the assembler to put together a byte or a word (depending on
the record), using the constant numbers and supplied operands as specified in tlhe
expression list. The values to be plugged in might not fit into the record fields; in
that case, the least significant bits are used, and no error is reported. In addition, a
record initialization is subject to the following limitation: the number of fields in the
record definition plus the number of fields being initialized by absolute numbers (by
default or given), plus the number of fields initialized by shifted formal parameters
cannot exceed 14.

RFIX

RFIX is a directive which generates two bytes: an 8086/8088 WAIT instruction
(1001 1011 B) followed by the first byte of an 8086/8088 ESCAPE instruction (110111
XXXB). The form of the directive is:

where "formal __ or_number" is either the name of a formal parameter with
specifier D or an absolute number. The value of "formal_or_number" specifies
the low-order three bits of the second byte generated.

As an example of the use of RFIX, consider the codemacro for the 8087 instruction
FLDl:

Codemacro
RFIX

DB
ENDM

F L D 1
001B
1110 1000B

The source statement instruction FLD generates:

1001 1011 11011001 1110 1000

The first byte is an 8086/8088 WAIT instruction. The second byte is the first byte of
an 8086/8088 ESCAPE instruction. The low-order three bits of the second byte,
followed by the third byte, identify this as an FLD 1 instruction.

RFIXM

RFIXM is a directive which generates the same two bytes as RFIX, but also instructs
the assembler to determine whether a segment-override byte is needed to access a
given memory location. The form of the RFIXM directive is:

where "formal_or_number" is either the name of a formal parameter with
specifier D or an absolute number, and 'formal_name' is the name of a formal
parameter which represents a memory address; that is, its specifier must be 'E', 'M'
or 'X'.

ASM86

ASM86

If the memory address uses the default segment register, no segment-override byte is
needed and RFIXM generates the same two bytes as RFIX.

If the memory address requires a segment-override byte, RFIXM generates three
bytes: an 8086/8088 WAIT instruction, a segment-override byte (001 reg 110B), and
the first byte of an 8086/8088 ESCAPE instruction. Note that the segment-override
byte is the second byte generated, not as SEGFIX would generate, the first.

(See the discussion of SEGFIX for information on how the assembler determines
whether or not a segment-override byte is necessary.)

As an example of the use .of RFIXM, consider one of the codemacros for the 8087
instruction FADD:

Codemacro
RFIXM
ModRM

EndM

FADDmemop:Mq
100B, memop
OOOB, memop

The source statement instruction FADD QUAR [BX] generates the following bytes:

1001 1011 00100110 11011100 00001010

The first byte is an 8086/8088 WAIT instruction. The second byte is the segment
override byte, specifying ES (reg=OO). The third, fourth and fifth bytes identify the
floating point instruction as FADD, with a memory operand pointed to by BX, with
a displacement of 10. QUAR becomes a QWORD variable at offset 10 from a seg
ment ASSUMED into the ES register only.

RNFIX

The RNFIX directive generates two bytes: an 8086 NOP instruction (1001 OOOOB)
followed by the first byte of an 8086/8088 ESCAPE instruction (11011 XXXB).
RNFIX functions like RFIX, except that a NOP instruction is the first byte
generated, rather than a VI/ AIT instruction. The format of the RNFIX directive is:

where "formaL_or_number" is either the name of a formal parameter with
specifier D or an absolute number. The value of "formal_or_number" specifies
the low-order three bits of the second byte generated.

As an example of the use of RNFIX, consider the codemacro for the 8086 instruc
tion FN CLEX:

Codemacro
RNFIX
DB

EndM

FNCLEX
011B
111 000 10B

The source statement instruction FNCLEX generates the following three bytes:

1001 0000 11011011 11100010.

Codemacros

A-II

Codemacros

A-12

RNFIXM

RNFIXM is a directive which generates the same two bytes as RNFIX, but also
instructs the assembler to determine whether a segment-override byte is needed to
access a given memory location. RNFIXM functions like RFIXM, except that a
NOP instruction is the first byte generated, rather than aWAIT instruction. The
format of the RNFIXM directive is:

RNFIXM formaLor __ number, formal_name

where "formal_or __ number" is either the name of a formal parameter with
specifier D or an absolute number and 'formal_name' is the name of a formal
parameter which represents a memory address, that is, its specifier must be 'E', 'M'
or 'X'.

If a segment-override byte (001 reg IIOB) is needed to address "formal_name," it
immediately follows the first byte generated, i.e., the NOP instruction.

As an example of the use of the RNFIXM directive, consider the codemacro for the
8087 instruction FNSA VE:

Codemacro
RNfixM
ModRM

EndM

FNSAVE memop:M
101B, memop
110B, memop

The source statement instruction FNSAVE WORD PTR SS:[BX] generates the
following bytes:

1001 0000 00110110 11011 1101 0011 0111

Note that the segment-override byte (0011 0110B) follows the NOP instruction
(10010000) .

RWFIX

The RWFIX directive generates an 8086/8088 WAIT instruction (1001 1011 B). The
format of this directive is:

RWFIX

NOTE

The preceding descriptions assume that the generated code is to be linked
with the 8087 chip library (8087.LIB). If the code is linked instead with the
8087 emulator library (E8087.LIB), an emulator instruction is generated
instead of an 8087 instruction. The emulator instruction differs from the
8087 instruction in the first two bytes of code. The correct instruction may
not be determined until the program is actually linked so the Assembler
listing will always show the 8087 instructions.

USing the Dot Operator to Shift Parameters

A special construct allowed as the operand to a DB, DW, or DO, or as an element of
the operand to a record initialization, is the shifted formal parameter. The form of
this construct is:

formaL __ name.record_field_name

ASM86

ASM86

where formal_name is the name of a formal whose corresponding operand will be
an absolute number; and record_field_name is the name of a record field. The
assembler evaluates this expression when the codemacro is invoked, by right-shifting
the operand provided using the shift count defined by the record field.

The example in the 8086 instruction set where this feature is used is the ESC instruc
tion, which permits communication with other devices using the same bus. Given an
address, ESC puts that address on the bus; given a register operand, no address is
put on the bus. This enabks execution of commands from an external device both
with or without an associated operand. These commands are represented in the ESC
codemacro as numbers between 0 and 63 inclusive. The interpretation of the number
is done by the external device.

R53 Record RF1:5, RF2:3
R233 Record RF6:2, mid3:3, RF7:3
Codemacro ESC opcode:Db(0,63), addr:E
Segfix addr
R53 <110118, opcode.mid3>
ModRM opcode, addr
EndM

The R53 line in the body of the codemacro generates 8 bits as follows: the high-order
5 bits become 11011 B, and the low-order 3 bits are filled with the actual parameter
supplied as "opcode" shifted right by the shift count of mid3, namely 3.

Example:

Assume that you wish to use ESC with an "opcode" of 39 on an "addr" of MEM
WORD, whose offset is 477H in ES, indexed by DI.

ESC 39, ES: MEMWORO [01]

SEGFIX addr becomes ES: = 0010 0110B

39 = 00100111 B

opcode.Ml03 = (000)00100

R53<11011 B, opcode.mid3> becomes 110 11100

for [OI],MOO = 10,R/M = 101

MODRM opcode,addr puts "opcode" into bits 5, 4, 3 of the modrm byte, with bits
7, 6, 2, 1, 0 filled by the appropriate mod and RIM from "addr." Since opcode is 6
bits and the field is only 3 bits wide, only the low-order 3 are used, namely 111, and
the high-order bits (l00) are ignored.

Therefore MODRM opcode,addr becomes 1011 1101B followed by the offset of
MEMWORD, 0111 0111 00000100.

Therefore the full object code for this ESC source line is:

0010 0110 (byte 1)

1101 1100 (byte 2)

1011 1101 (byte 3)

0111 0111 (byte 4)

0000 0100 (byte 5)

Note that opcode's 6 bits are split between the last 3 bits of byte 2 and bits 5, 4, 3 of
byte 3.

Codemacros

A-13

Codemacros

A-14

PROCLEN

This special operand equals 0 if the current PROC is declared NEAR, and OFFH if it
is declared FAR. Code outside of PROC ... ENDP blocks is considered NEAR. The
RET codemacros use this operator in creating the correct machine instructions to
return from a CALL to a NEAR or FAR procedure:

Codemacro RET
R413 <OCH,PROCLEN,3>
Endm

Instead of the more familiar DB or OW storage allocation commands, this
codemacro makes use of a previously defined record. It is used here the same way a
DB would be, but with the initialization given inside angle brackets to show that
each field in the record gets its own initial value. You can tell there are at least 3
fields in the record (if this invocation validly matches the definition, i.e., is not an
error) because 3 values are given, separated by commas.

Four such records are defined as one of the first acts of the assembler, to be used in
defining its instruction set. They are listed in APPENDIX A along with the
codemacros for ASM86:

R53 Record R F 1 : 5 , RF2:3
R323 Record RF3:3, RF4:2, RF5:3
R233 Record RF6:2, Mid3:3, RF7:3
R413 Record R F 8: 4, R F 9: 1 , RF10:3

The last line above, R413, defines an 8 bit record of 3 fields: the high-order 4 bits (7,
6, 5, 4) called RF8, the next (bit 3) called RF9, and the low-order 3 (bits 2, I, 0)
called RFIO. (When R413 is used as a storage allocation command, initial values for
all fields must be specified within angle brackets because none were specified in the
definition.)

In the codemacro for RET, the field RF8 is set to OCH = 1100, and RFIO is set to
3 = OIl. Field RF9, which becomes bit 3 of the allocated record byte, will be 0 if the
current PROC (in which the RET appears) is typed NEAR, or it will be I if the
PROC is typed FAR.

Note that PROCLEN is defined to give 8 bits, all zeros or all ones, but that R413
uses only one bit. The field size determines how many bits are used, and if more are
supplied then the high-order bits are ignored beyond the field width.

Matching of Instructions to Codemacros

This section describes what might aptly be termed the heart of the 8086 assembly
language. The careful ordering of the chain of codemacro definitions of a given
instruction (for example, the ADD instruction) combines with the varied set of typ
ing requirements on the operands to produce a single assembly language instruction
mnemonic which represents many hardware instructions.

The algorithm for matching an instruction to a particular codemacro definition is as
follows:

I. In pass 1, actual parameters are evaluated. Those containing forward references
are treated as a special type, as described in each of the cases below.

2. If any of the actual parameters (when there are more than one) is a register
expression without an associated type (e.g., [BX]), or if an implicit reference to
the accumulator is made (e.g., "MOV,3"), then the other parameters are
checked to see if at least one contains an unambiguous modifier type. Numbers

ASM86

ASM86

matching "b" do not suffice; but numbers matching "w," explicitly-given
registers, and all typed variables do suffice to distinguish the modifier type. If
no such parameter is found, the error message "INSUFFICIENT TYPE
INFORMATION TO DETERMINE CORRECT INSTRUCTION" is issued,
and no match is attempted. Note that a single, untyped, register expression
parameter (as in FSTENV [BX]) is allowed.

3. The chain of codemacJro definitions for a given instruction is searched for a
match, beginning with the last one defined and working backwards. In order for
a definition to match, the number of actual parameters must match the number
of formals in the particular definition, and each actual must match the formal in
specifier type, modifier (if given in the formal), and range (if given in the for
mal). The run-down of which actuals match which formals is as follows:

a. SPECIFIERS.
Forward references in pass 1 match C,D,E,M,X.
AX and AL match A,E,R.
Labels match C.
Numbers match D.
Non-indexed variables match E,M,X.
Indexed variables and register expressions match E,M.
Registers except segment registers match E,R.
Segment registers CS,DS,ES,SS match S.
Floating-point stack element

(ST, ST(O), ... , ST(7)) match F.
The floating-point stack top

(ST, ST(O)) match T .

b. MODIFIERS.
The nature of modifier-matching depends on what the matched specifier is.
For numbers: Numbers between -256 and 255 match "b" only. Other

numbers match "w" only.
For labels: NEAR labels with the SAME CS-assume which are in the range
-126 to +129 from the beginning of the codemacro match "b" only.

Other NEAR labels with the same CS assume match' 'w" only.
NEAR labels with a different CS-assume match no modifier.
FAR labels match "d".

For variables: Type BYTE matches "b."
Type WORD matches "w."
Type DWORD matches "d."
Type QWORD matches "q."
Type TBYTE matches "t."
Other numeric types match no modifier.

Forward references match any modifier, except when typing information is
attached, with BYTE PTR, SHORT, FAR PTR, etc.

Index-register expressions without a type associated with them (e.g., [BX])
match either "b" or "w" when used with another operand of type
"b" or "w" and matches no modifier for single-operand instructions.

c. RANGES.
Range specifiers are legal only for parameters which are numbers or
registers (specifiers A, D, R, S). If one specifier follows the formal, the
value of the actual must match; if two follow the formal, the value must fall
within the inclusive range of the specifiers. For this matching, registers
which are passed as actuals assume the following numeric values:

AL: 0
CL: 1
DL: 2
BL: 3
AH: 4
CH: 5
DH: 6

Codemacros

A-IS

Codemacros ASM86

A-16

BH: 7
AX: 0
ex: 1
DX: 2
BX: 3
SP: 4
BP: 5
SI: 6
01: 7
ES: 0
es: 1
SS: 2
os: 3

Forward references do not match the formal if there is a range specifier.

4. If a match is found, the number of bytes of object code generated is estimated.
Forward-reference variables, unless explicitly overridden, are assumed not to
need a segment override byte. ModRMs involving forward references are
assumed to require 16-bit displacements, except if the reference has SHORT, in
which case an 8-bit displacement is assumed.

5. In pass 2, the search through the codemacro chain starts all over again, starting
at the end of the chain and working backwards just as in pass 1. The resolution
of codemacro parameters which were forward references in pass 1 might cause a
different codemacro to be matched in pass 2.

6. Object code generated by the instruction is issued in pass 2. If the number of
bytes output exceeds the pass 1 estimate, an error message is issued and the extra
bytes are withheld. The instruction is thus incomplete and the program should
not be executed. If the number of bytes is less than the pass 1 estimate, the
remaining space is padded with 90H's (Nap; i.e., no operation).

The ADD instruction (like many other instructions) provides an excellent example of
codemacro matching. The 11 codemacro definitions of the ADD instruction cover
the following cases:

DESTINATION

1. BYTE MEMORY

2. WORD MEMORY

3. WORD MEMORY

4. WORD MEMORY

5. AL

6. AX

7. AX

8. MEMORY BYTE OR BYTE-REGISTER

SOURCE

IMMEDIATE BYTE

1M MEDIA TE BYTE (not between --128 and 127)

IMMEDIATE BYTE (from -128 to 127)

IMMEDIATE WORD

IMMEDIATE BYTE

IMMEDIATE BYTE

IMMEDIATE WORD

BYTE-REGISTER

9. MEMORY WORD OR WORD-REGISTER WORD-REGISTER

10. BYTE-REGISTER

11. WORD-REGISTER

MEMORY BYTE OR BYTE-REGISTER

MEMORY WORD OR WORD-REGISTER

Each of the above English-language phrases is abbreviated in the codemacro defini
tions into a two-letter specifier-modifier combination. Once you are used to the
abbreviations, the codemacros themselves are easier to scan and understand than the
above English summary. Here are the first lines of each codemacro described above,
in the same order, with an English reminder of its meaning, using EA to represent an
effective address expression resolving to either a memory or register reference:

1. CodeMacro ADD dst:Eb, src:Db

2. CodeMacro ADD dst:Ew, src:Db

(TO EA byte FROM data byte)

(TO EA word FROM large data
byte)

ASM86

3. CodeMacro ADD dst:Ew, src:Db (-128,127) (TO EA word FROM signed data
byte)

4. CodeMacro ADD dstEw, src:Dw (TO EA word FROM data word)

5. CodeMacro ADD dst:Ab, src:Db (TO AL FROM data byte)

6. CodeMacro ADD dst:Aw, src:Db (TO AX FROM data byte)

7. CodeMacro ADD dst:Aw, src:Dw (TO AX FROM data word)

8. CodeMacro ADD dst:Eb, src:Rb (TO EA byte FROM register byte)

9. CodeMacro ADD dst:Ew, src:Rw (TO EA word FROM register word)

10. CodeMacro ADD dst:Rb, src:Eb (TO register byte FROM EA byte)

11. CodeMacro ADD dst:Rw, src:Ew (TO register word FROM EA word)

The ordering of the codemacros is crucial. For example, the instruction "ADD
AX,3" matches not only definition #6, but also definition #2, since as a register, AX
qualifies as an Ew as well as an Aw. Since definition #6 produces less object code, it
should be selected before definition #2. Hence, it is given later, so that when the
assembler searches backwards from #11 up, it comes across #6 first.

Assuming that the following user symbols have been defined with the following
attributes:

BYTE_VAR
WORD_VAR
WORD_EXPR
B_ARRAY

byte variable
word variable
memory-address expression
byte variable

The following assembler instructions would match the indicated codemacro defini
tion line above:

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

AX,250 ~ 6
AX,350 ~ 7
BX,WORD_EXPR ~ 11
BX,DX ~ 11
BYTE_VAR,AL ~ 8
BYTE_VAR,254 ~ 1
WORD_VAR,CX ~ 9
DH,BARRAY[SI] ~ 10
CL,BYTE_VAR ~ 10
A L, 3 ~ 5
W 0 R D _ V A R , :3 5 6 4 8~ 4
WORD_VAR, OFFSET B ARRAY ~ 4
[BX][SIJ, AH ~ 8
[BP],CL ~ 8
DX,[DI] ~ 11
AX,[SI][BP] ~ 11
WORD_VAR,3 ~ 3
WORD_VAR,255 ~ 2

NOTE

Each codemacro is limited to a maximum of 128 internal bytes, which is
reached at approximately 60 bytes of generated object code.

Codemacros

A-I7

CodemacroiS

Codemacros

; 8086/186 and 8087 Codemacro Definitions

R53
R323
R233
R413

Record
Record
Record
Record

RFl:5,RF2:3
RF3:3,RF4:2,RF5:3
RF6:2,Mid3:3,RF7:3
RF8:4,RF9:1,RF10:3

; 8086/186 Codemacros:

CodeMacro AAA
DB 37H

EndM

CodeMacro AAD
OW 0AD5H

EndM

CodeMacro AAM
OW 0AD4H

EndM

CodeMacro AAS
DB 3FH

EndM

CodeMacro
Segfix
DB 80H
ModRM
DB src

EndM

Adc dst:Eb,src:Db
dst

2,dst

CodeMacro Adc dst:Ew,src:Db
Segfix dst
DB 81H
ModRM 2,dst
OW src

EndM

CodeMacro Adc dst~Ew,src:Db(-128,127)
Segfix dst
DB 83H
ModRM 2,dst
DB src

EndM

CodeMacro Adc dst:Ew,src:Dw
Segf ix dst
DB 81H
ModRM 2,dst
OW src

EndM

CodeMacro Adc dst:Ab,src:Db
DB 14H
DB src

EndM

CodeMacro Adc dst:Aw,src:Db
DB 15H
OW src

EndM

CodeMacro Adc dst:Aw,src:Dw
DB 15H
OW src

EndM

CodeMacro Adc dst:Eb,src:Rb
Segfix dst
DB 10H
ModRM src,dst

EndM

A-I8

CodeMacro
Seg f ix
DB IlH
ModRM

EndM

Adc dst:Ew,src:Rw
dst

src,dst

CodeMacro Adc dst:Rb,src:Eb
Segfix src
DB 12H
ModRM dst,src

EndM

CodeMacro Adc dst:Rw,src:Ew
Segfix src
DB 13H
ModRM dst,src

F.ndM

CodeMacro Add dst:Eb,src:Db
Segfix dst
DB 80H
ModRM 0,dst
DB src

EndM

CodeMacro
Segf ix
DB 81H
ModRM
OW src

EndM

Add dst:Ew,src:Db
dst

0,dst

CodeMacro Add dst:Ew,src:Db(-128,127)
Segfix dst
DB 83H
ModRM 0,dst
DB src

EndM

CodeMacro Add dst:Ew,src:Dw
Segfix dst
DB 81H
ModRM 0,dst
OW src

EndM

CodeMacro Add dst:Ab,src:Db
DB 04H
DB src

EndM

CodeMacro Add dst:Aw,src:Db
DB 05H
OW src

EndM

CodeMacro Add dst:Aw,src:Dw
DB 05H
OW src

EndM

CodeMacro Add dst:Eb,src:Rb
Segfix dst
DB 0
ModRM src,dst

EndM

ASM86

ASM86

CodeMacro
Seg f ix
DB 1
ModRM

EndM

Add dst:Ew,src:Rw
dst

src,dst

CodeMacro Add dst:Rb,src:Eb
Seg fix s rc
DB 2
ModRM dst,src

EndM

CodeMacro Add dst:Rw,src:Ew
Segfix src
DB 3
ModRM dst,src

EndM

CodeMacro
Segfix
DB 80H
ModRM
DB src

EndM

CodeMacro
Segfix
DB 81H
ModRM
Dv-7 src

EndM

CodeMacro
Segfix
DB 81H
ModRM
OW src

EndM

And dst:Eb,src:Db
dst

4,dst

And dst:Ew,src:Db
dst

4,dst

And dst:Ew,src:Dw
dst

4,dst

CodeMacro And dst:Ab,src:Ob
DB 24H
DB src

EndM

CodeMacro And dst:Aw,src:Db
DB 25H
OW src

EndM

CodeMacro And dst:Aw,src:Dw
DB 25H
DH src

EndM

CodeMacro
Segfix
DB 20H
ModRM

EndM

CodeMacro
Segf ix
DB 21H
ModRM

EndM

CodeMacro
Segf ix
DB 22H
ModRM

EndM

CodeMacro
Seg f ix
DB 23H
ModRM

EndM

And dst:Eb,src:Rb
dst

src,nst

And dst:Ew,src:Rw
dst

src,dst

And dst:Rb,src:Eb
src

dst,src

And dst:Rw,src:Ew
src

dst,src

Codemacros

BOUND at end

CodeMacro Call addr:Ew
Segfix addr
DB 0FFH
ModRM 2,addr

EndM

CodeMacro Call addr:Ed
Seg fi x addr
DB 0FFH
ModRM 3,addr

EndM

CodeMacro Call addr:Cd
DB 9AH
DO addr

EndM

CodeMacro Call addr:Cb
DB 0E8H
RelW addr

EndM

CodeMacro Call addr:Cw
DB 0E8H
RelW addr

EndM

CodeMacro CBW
DB 98H

EndM

CodeMacro CLC
DB 0F8H

EndM

CodeMacro CLD
DB 0FCH

EndM

CodeMacro CLI
DB 0FAH

EndM

CodeMacro CMC
DB 0F5H

j<:;ndM

CodeMacro
Segfix
DB 80H
ModRM
DB src

EndM

CodeMacro
Seg f ix
DB 81H
ModRM
OW src

EndM

CodeMacro
Segf ix
DB 83H
ModRM
DB src

EndM

Cmp dst:Eb,src:Db
dst

7,dst

Cmp dst:Ew,src:Ob
dst

7,dst

Cmp dst:Ew,src:Ob(-128,127)
dst

7,dst

CodeMacro Cmp dst:Ew,src:Dw
Segfix dst
DB 81H
ModRM 7,dst
OW src

EndM

A-19

Codemacros

CodeMacro Cmp dst:Ab,src:Db
DB 3CH
DB src

EndM

CodeMacro Crnp dst:Aw,src:Db
DB 3DH
DW src

EndM

CodeMacro Cmp dst:Aw,src:Dw
DB 3DH
DW src

EndM

CodeMacro
Seg f ix
DB 38H
ModRM

EndM

Cmp dst:Eb,src:Rb
dst

src,dst

CodeMacro Cmp dst:Ew,src:Rw
Seg f ix dst
DB 39H
ModRM src,dst

EndM

CodeMacro Cmp dst:Rb,src:Eb
Segfix src
DB 3AH
ModRM dst,src

EndM

CodeMacro Cmp dst:Rw,src:Ew
Segfix src
DB 3BH
ModRM dst,src

EndM

CodeMacro CmpS S1 ptr:Mb,D1 ptr:Mb
NoSegfix ES,D1 ~tr -
Segfix S1 ptr-
DB 0A6H -

EndM

CodeMacro CmpS S1 ptr:Mw,01 ptr:Mw
NoSegfix ES,D1 ~tr
Segfix S1 ptr-
DB 0A7H -

EndM

CodeMacro CMpSB
DB 0A6H

EndM

CodeMacro CmpSW
DB 0A7H

EndM

CodeMacro CWD
DB 99H

EndM

CodeMacro DAA
DB 027H

EndM

CodeMacro DAS
DB 02FH

EndM

CodeMacro Dec dst:Eb
Segfix dst
DB 0FEH
ModRM l,dst

EndM

A-20

CodeMacro Dec dst:Ew
Segf ix dst
DB 0FFH
ModRM l,dst

EndM

CodeMacro Dec dst:Rw
R53 <01001B,dst>

EndM

CodeMacro Div divisor:Eb
Segfix divisor
DB 0F6H
ModRM 6,divisor

EndM

CodeMacro Div divisor:Ew
Segfix divisor
DB 0F7H
ModRM 6,divisor

EndM

; ENTER at end

CodeMacro Esc opcode:Db(0,63) ,addr:Eb
Segfix addr
R53 <11011B,opcode.mid3>
MoJRM opcode,addr

EndM

CodeMacro Esc opcode:Db(0,63) ,addr:Ew
Segfix addr
R53 <11011B,opcode.mid3>
ModRM opcode,addr

EndM

CodeMacro Esc opcode:Db(0,63) ,addr:Ed
Segfix addr
R53 <11011B,opcode.mid3>
ModRM opcode,addr

EndM

CodeMacro Hlt
DB 0F4H

EndM

CodeMacro 1Div divisor:Eb
Segfix divisor
DB 0F6H
ModRM 7,divisor

EndM

CodeMacro 1Div divisor:Ew
Segfix divisor
DB 0F7H
ModRM 7,divisor

EndM

CodeMacro 1mul mplier:Eb
Segfix mplier
DB 0F6H
ModRM 5,mplier

EndM

CodeMacro 1mul mplier:Ew
Segfix mplier
DB 0F7H
ModRM 5 ,mpli er

EndM

CodeMacro 1MUL dst:RW,srcl:EW,src2:DB
Only186
Segf ix srcl
DB 69H
ModRM dst,srcl
OW src2

EndM

ASM86

ASM86

CodeMacro IMUL dst:RW,srcl:EW,src2:DB(-128,127)
Onlyl86
Segfix srcl
DB 6BH
ModRM dst,srcl
DB src2

EndM

CodeMacro IMUL dst:RW,srcl:EW,src2:DW
Onlyl86
Segfix srcl
DB 69B
ModRM dst,srcl
OW src2

EndM

CodeMacro IMUL dst:RW,src2:DB
Onlyl86
DB 69H
ModRM dst,dst
OW src2

EndM

CodeMacro IMUL dst:RW,Src2:DB(-128,127)
Onlyl86
DB 6BH
ModRM dst,dst
DB src2

EndM

CodeMacro IMUL dst:RW,src2:DW
Onlyl86
DB 69H
ModRM dst,dst
OW src2

EndM

CodeMacro In dst:Ab,port:Db
DB 0E4H
DB port

EndM

CodeMacro In dst:Aw,port:Db
DB 0E5H
DB port

EndM

CodeMacro In dst:Ab,port:Rw(DX)
DB 0ECH

EndM

CodeMacro In dst:Aw,port:Rw(DX)
DB 0EDH

EndM

CodeMacro Inc dst:Eb
Segfix dst
DB 0FEH
ModRM 0,dst

EndM

CodeMacro Inc dst:Ew
Segfix dst
DB 0FFH
ModRM 0,dst

EndM

CodeMacro Inc dst:Rw
R53 <01000B,dst>

EndM

; INS,INSB,INSW at end

CodeMacro Int itype:Db
DB 0CDH
DB itype

EndM

CodeMacro Int itype:Db(3)
DB 0CCH

EndM

CodeMacro IntO
DB 0CEH

EndM

CodeMacro Iret
DB 0CFH

EndM

CodeMacro JA place:Cb
DB 77H
RelB place

EndM

CodeMacro JAE place:Cb
DB 73H
RelB place

EndM

CodeMacro JB place:~b
DB 72H
RelB place

EndM

CodeMacro JBE place:Cb
DB 76H
RelB place

EndM

JC Equ JB

CodeMacro JCXZ place:Cb
DB 0E3H
RelB place

EndM

CodeMacro JE place:Cb
DB 74H
RelB place

EndM

CodeMacro JG place:Cb
DB 7FH
RelB place

EndM

CodeMacro JGE place:Cb
DB 7DH
RelB place

EndM

CodeMacro JL place:Cb
DB 7CH
RelB place

EndM

CodeMacro JLE place:Cb
Db 7EH
RelB place

EndM

CodeMacro Jmp place:Ew
Segfix place
DB 0FFH
ModRM 4,place

EndM

CodeMacro Jmp place:Md
Segfix place
DB 0FFH
ModRM 5,place

EndM

Codemacros

A-21

Code macros

CodeMacro Jmp place:Cd
DB 0EAH
DD place

EndM

CodeMacro Jmp place:Cb
DB 0EBH
RelB place

EndM

CodeMacro Jmp place:Cw
DB 0E9H
RelW place

EndM

JNA Equ JBE

JNAE Equ JB

JNB Equ JAE

JNBE Equ JA

JNC Equ JNB

CodeMacro JNE place:Cb
DB 75H
RelB place

EndM

JNG Equ JLE

JNGE Equ JL

JNL Equ JGE

JNLE Equ JG

CodeMacro JNO place:Cb
DB 7lH
RelB place

EndM

CodeMacro JNP place:Cb
DB 7BH
RelB place

EndM

CodeMacro JNS place:Cb
DB 79H
RelB place

EndM

JNZ Equ JNE

CodeMacro JO place:Cb
DB 70H
RelB place

EndM

CodeMacro JP place:Cb
DB 7AH
RelB place

EndM

JPE Equ JP

JPO Equ JNP

CodeMacro JS place:Cb
DB 78H
RelB place

EndM

JZ Equ JE

A-22

CodeMacro LAHF
DB 9FH

EndM

CodeMacro LDS dst:Rw,src:Ed
Segfix src
DB 0C5H
ModRM dst,src

EndM

; LEAVE at end

CodeMacro LES dst:Rw,src:Ed
Segfix src
DB 0C4H
ModRM dst,src

EndM

CodeMacro LEA dst:Rw,src:M
DB 8DH
ModRM dst,src

EndM

CodeMacro Lock Prefx
DB 0F0H

EndM

CodeMacro LodS SI_ptr:Mb
S eg fix SIp t r
DB 0ACH

EndM

CodeMacro LodS SI_ptr:Mw
S eg fix SIp t r
DB 0ADH

EndM

CodeMacro LodSB
DB 0ACH

EndM

CodeMacro LodSW
DB 0ADH

EndM

CodeMacro Loop place:Cb
DB 0E2H
RelB place

EndM

CodeMacro LoopE place:Cb
DB 0ElH
RelB place

EndM

CodeMacro LoopNE place:Cb
DB 0E0H
RelB place

EndM

LoopNZ Equ LoopNE

LoopZ Equ LoopE

CodeMacro Mov dst:Eb,src:Db
Segfix dst
DB 0C6H
ModRM 0,dst
DB src

EndM

CodeMacro Mov dst:Ew,src:Db
Segf ix dst
DB 0C7H
ModRM 0,dst
DW src

EndM

ASM86

ASM86

CodeMacro Mov dst:Ew,src:DW
Segfix dst
DB 0C7H
ModRM 0,dst
DW src

EndM

CodeMacro Mov dst:Rb,src:Db
R53 <10110B,dst>
DB src

EndM

CodeMacro Mov dst:Rw,src:Db
R53 <10111B,dst>
DW src

EndM

CodeMacro Mov dst:Rw,src:Dw
R53 <10111B,dst>
DW src

EndM

Mov dst:Eb,src:Rb
dst

CodeMacro
Segfix
DB 88H
ModRM src,dst

EndM

CodeMacro Mov dst:Ew,src:Rw
Segfix dst
DB 89H
ModRM src,dst

EndM

CodeMacro Mov dst:Rb,src:Eb
Segfix src
DB 8AH
ModRM dst,src

EndM

CodeMacro Mov dst:Rw,src:Ew
Segfix src
DB 8BH
ModRM dst,src

EndM

CodeMacro Mov dst:Ew,src:S
Segfix dst
DB 08CH
ModRM src,dst

EndM

CodeMacro Mov dst:S(ES) ,src:Ew
Segfix src
DB 08EH
ModRM dst,src

EndM

CodeMacro Mov dst:S(SS,DS) ,src:Ew
Seg f ix src
DB 08EH
ModRM dst,src

EndM

CodeMacro Mov dst:Ab,src:Xb
Segfix src
DB 0A0H
DW src

EndM

CodeMacro Mov dst:Aw,src:Xw
Segfix src
DB 0A1H
DW src

EndM

CodeMacro Mov dst:Xb,src:Ab
Segfix dst
DB 0A2H
DW dst

EndM

CodeMacro Mov dst:Xw,src:Aw
Segfix dst
DB 0A3H
DW dst

EndM

CodeMacro MovS SI ptr:Mb,DI ptr:Mb
NoSegfix ES,SI ptr -
Segfix DI ptr-
DB 0A4H -

EndM

CodeMacro MovS SI ptr:Mw,DI ptr:Mw
NoSegfix ES,SI ptr -
S eg fix DIp t r -
DB 0A5H -

EndM

CodeMacro MovSB
DB 0A4H

EndM

CodeMacro MovSW
DB 0A5H

EndM

CodeMacro Mul mplier:Eb
Seg f ix mpli er
DB 0F6H
ModRM 4, mpli er

EndM

CodeMacro Mul mplier:Ew
Seg fix mpli er
DB 0F7H
ModRM 4,mplier

EndM

CodeMacro Neg dst:Eb
Segfix dst
DB 0F6H
ModRM 3,dst

EndM

CodeMacro Neg dst:Ew
Segfix dst
DB 0F7H
ModRM 3,dst

EndM

CodeMacro Nil
EndM

CodeMacro Nop
DB 90H

EndM

CodeMacro Not dst:Eb
Segfix dst
DB 0F6H
ModRM 2,dst

Endt1

CodeMacro Not dst:Ew
Segfix dst
DB 0F7H
ModRM 2,dst

EndM

Codemacros

A-23

Codemacros

CodeMacro
Segfix
DB 80H
ModRM
DB src

EndM

CodeMacro
Segfix
DB 8 1 I-!
ModRM
OW src

EndM

OR dst:Eb,src:Db
dst

l,dst

OR dst:Ew,src:Dw
dst

l,dst

CodeMacro OR dst:Ew,src:Db
Segf ix dst
DB 81B
ModRM l,dst
OW src

EndM

CodeMacro OR dst:Ab,src:Db
DB 0CH
DB src

EndM

CodeMacro OR dst:Aw,src:Db
DB 0DH
OW src

EndM

CodeMacro OR dst:Aw,src:Dw
DB (JDH
OW src

EndM

CodeMacro OR dst:Eb,src:Rb
Segfix dst
DB 8
ModRM src,dst

EndM

CodeMacro OR dst:Ew,src:Rw
Segfix dst
DB 9
ModRM src,dst

EndM

CodeMacro OR dst:Rb,src:Eb
Segfix src
DB 0AH
ModRM dst,src

EndM

CodeMacro OR dst:Rw,src:Ew
Segfix src
DB 0BH
ModRM dst,src

EndM

CodeMacro Out port:Db,dst:Ab
DB 0E6H
DB port

EndM

CodeMacro Out port:Db,dst:Aw
DB 0E7H
DB port

EndM

CodeMacro Out port:Rw(DX) ,dst:Ab
DB 0EEH

EndM

CodeMacro Out port:Rw(DX) ,dst:Aw
DB 0EFH

EndM

A-24

; OUTS,OUTSB,OUTSW at end

CodeMacro Pop dst:Ew
Seg fix dst
DB 08FH
ModRM 0,dst

EndM

CodeMacro Pop dst:S(ES)
R323 <0,dst,7>

EndM

CodeMacro Pop dst:S(SS,DS)
R323 <0,dst,7>

EndM

CodeMacro Pop dst:Rw
R53 <01011B,dst>

EndM

; POPA at end

CodeMacro PopF
DB 9DB

EndM

CodeMacro PUSH src:D
Only186
DB 68H
OW src

EndM

CodeMacro PUSH src:DB(-128,127)
Only186
DB 6AH
DB src

EndM

CodeMacro Push src:Ew
Segfix src
DB 0FFH
ModRM 6,src

EndM

CodeMacro Push src:S
R323 <0,src,6>

EndM

CodeMacro Push src:Rw
R53 <01010B,src>

EndM

; PUSHA moved to end

CodeMacro PushF
DB 9CH

EndM

CodeMacro RCL dst:Eb,count:D(0,31)
Only186
Segfix dst
DB 0C0H
ModRM 2,dst
DB count

EndM

CodeMacro RCL dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 2,dst

EndM

ASM86

ASM86

CodeMacro RCL dst:Ew,count:D(0,31)
Only186
Segfix dst
DB 0CIH
ModRM 2,dst
DB count

EndM

CodeMacro RCL dst:Ew,count:Ob(l)
Segfix dst
DB 0DIH
ModRM 2,dst

EndM

CodeMacro RCL dst:Eb,count:Rb(CL)
Segfix dst
DB 0D2H
ModRM 2,dst

EndM

CodeMacro RCL dst:Ew,count:Rb(CL)
Segfix dst
DB 0031-1
ModRM 2,dst

EndM

CodeMacro RCR dst:Eb,count:D(0,31)
Only186
Segfix dst
DB 0C0H
ModRM 3,dst
DB count

EndM

CodeMacro RCR dst:Eb,count:Db(l)
Segfix dst
DB 0001-1
ModRM 3,dst

EndM

CodeMacro RCR dst:EW,count:D(0,31)
Only186
Segfix dst
DB 0CIH
ModRM 3,dst
DB count

EndM

CodeMacro RCR dst:Ew,count:Db(l)
Segfix dst
DB 0DIH
ModRM 3,dst

EndM

CodeMacro RCR dst:Eb,count:Rb(CL)
Segfix dst
DB 0021-1
ModRM 3,dst

EndM

CodeMacro RCR dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 3,dst

EndM

CodeMacro Rep Prefx
DB 0F3H

EndM

CodeMacro RepE Prefx
DB 0F3H

EndM

CodeMacro RepNE Prefx
DB 0F211

EndM

RepNZ Equ RepNE

Rep Z Equ Rep E

CodeMacro Ret src:Db
R413 <0CH,Proclen,2>
OW src

EndM

CodeMacro Ret src:Dw
R413 <0CH,Proclen,2>
OW src

EndM

CodeMacro Ret
R413 <0CH,Proclen,3>

EndM

CodeMacro ROL dst:Eb,count:O(0,31)
Only186
Segfix dst
DB 0C0H
ModRM 0,dst
DB count

EndM

CodeMacro ROL dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 0,dst

EndM

CodeMacro ROL dst:Ew,count:D(0,31)
Only186
Segfix dst
DB 0CIH
ModRM 0,dst
DB count

EndM

CodeMacro ROL dst:Ew,count:Db(l)
Segfix dst
DB 0DIH
ModR~1 0,dst

EndM

CodeMacro ROL dst:Eb,count:Rb(CL)
Segfix dst
DB 0021-1
ModRM 0,dst

EndM

CodeMacro ROL dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 0,dst

EndM

CodeMacro ROR dst:Eb,count:D(0,31)
Only186
Segfix dst
DB 0C0H
ModRM l,dst
DB count

EndM

CodeMacro ROR dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM l,dst

EndM

Codemacros

A-25

Codemacros

CodeMacro ROR dst:Ew,count:D(0,31)
On1y186
Segfix dst
DB 0C1H
ModRM 1,dst
DB count

EndM

CodeMacro ROR dst:Ew,count:Db(l)
Segfix dst
DB 0DIH
ModRM 1,dst

EndM

CodeMacro ROR dst:Eb,count:Rb(CL)
Segfix dst
DB 0D2H
ModRM 1,dst

EndM

CodeMacro ROR dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 1,dst

EndM

CodeMacro SAHF
DB 9EH

EndM

CodeMacro SAL dst:Eb,count:D(0,31)
On1y186
Segfix dst
DB 0C0H
ModRM 4,dst
DB count

EndM

CodeMacro SAL dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 4,dst

EndM

CodeMacro SAL dst:Ew,count:D(0,31)
Only186
Segfix dst
DB 0C1H
ModRM 4,dst
DB count

EndM

CodeMacro SAL dst:Ew,count:Ob(l)
Seg f ix dst
DB 0D1H
ModRM 4,dst

EndM

CodeMacro SAL dst:Eb,count:Rb(CL)
Seg f ix dst
DB 0021-1
ModRM 4,dst

EndM

CodeMacro SAL dst:Ew,count:Rb(CL)
Segfix dst
DB 0031-1
ModRM 4,dst

EndM

CodeMacro SAR dst:Eb,count:D(0,31)
Only186
Segfix dst
DB 0C0H
ModRM 7,dst
DB count

EndM

A-26

CodeMacro SAR dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 7,dst

EndM

CodeMacro SAR dst:Ew,count:D(0,31)
On1y186
Segfix dst
DB 0C1H
ModRM 7,dst
DB count

EndM

CodeMacro SAR dst:Ew,count:Db(l)
Segfix dst
DB Cm1H
ModRM 7,dst

EndM

CodeMacro SAR dst:Eb,count:Rb(CL)
Segfix dst
DB 0D2H
ModRM 7,dst

EndM

CodeMacro SAR dst:Ew,count:Rb(CL)
Segfix dst
DB 0D3H
ModRM 7,dst

EndM

CodeMacro Sbb dst:Eb,src:Db
Segfix dst
DB 80H
ModRM
DB src

EndM

3,dst

Sbb dst:Ew,src:Db
dst

CodeMacro
Seg fix
DB 81H
ModRM
OW src

3,dst

EndM

CodeMacro Sbb dst:Ew,src:Db(-128,127)
Segfix dst
DB 83H
ModRM 3,dst
DB src

EndM

CodeMacro
Seg fix
DB 81H
ModRM
OW src

EndM

Sbb dst:Ew,src:Dw
dst

3,dst

CodeMacro Sbb dst:Ab,src:Db
DB 1CH
DB src

EndM

CodeMacro Sbb dst:Aw,src:Db
DB 1DH
OW src

EndM

CodeMacro Sbb dst:Aw,src:Dw
DB IDH
OW src

EndM

ASM86

ASM86

CodeMacro Sbb dst:Eb,src:Rb
Segfix dst
DB 18H
ModRM src,dst

EndM

CodeMacro Sbb dst:Ew,src:Rw
Segfix dst
DB 19H
ModRM src,dst

EndM

CodeMacro Sbb dst:Rb,src:Eb
Segfix src
DB lAH
ModRM dst,src

EndM

CodeMacro Sbb dst:Rw,src:Ew
Segfix src
DB lBH
ModRM dst,src

EndM

CodeMacro ScaS 01 ptr:Mb
NoSegfix ES,DI_ptr
DB 0AEH

EndM

CodeMacro ScaS DI ptr:Mw
NoSegfix ES,DI ptr
DB 0AFH -

EndM

CodeMacro ScaSB
DB 0AEH

EndM

CodeMacro ScaSW
DB 0AFH

EndM

SHL Equ SAL

CodeMacro SHR dst:Eb,count:D(0,31)
Only186
Segfix dst
DB 0C0H
ModRM 5,dst
DB count

EndM

CodeMacro SHR dst:Eb,count:Db(l)
Segfix dst
DB 0D0H
ModRM 5,dst

EndM

CodeMacro SHR dst:Ew,count:D(0,31)
Only186
Segfix dst
DB 0C1H
ModRM 5,dst
DB count

EndM

CodeMacro SHR dst:Ew,count:Db(l)
Segfix dst
DB 0D1H
ModRM 5,dst

EndM

CodeMacro SHR dst:Eb,count:Rb(CL)
Segfix dst
DB 0D2H
ModRM 5,dst

EndM

CodeMacro SHR dst:Ew,count:Rb(CL)
Segfix dst
DB 0,D3H
ModRM 5,dst

EndM

CodeMacro STC
DB 0F9H

EndM

CodeMacro STD
DB 0FDH

EndM

CodeMacro STI
DB 0FBH

EndM

CodeMacro Stos 01 ptr:Mb
NoSegfix ES,DI_ptr
DB 0AAH

EndM

CodeMacro StoS DI ptr:Mw
NoSegfix ES,DI_ptr
DB 0ABH

EndM

CodeMacro StoSB
DB 0AAH

EndM

CodeMacro StoSW
DB 0ABH

EndM

CodeMacro Sub dst:Eb,src:Db
Segfix dst
DB 80H
ModRM 5,dst
DB src

EndM

CodeMacro Sub dst:Ew,src:Db
Segfix dst
DB 81H
ModRM 5,dst
DW src

EndM

CodeMacro Sub dst:Ew,src:Db(-128,127)
Segfix dst
DB 83H
1'1odRM 5,dst
DB src

EndM

CodeMacro
Segfix

Sub dst:Ew,src:Dw
dst

DB 81H
ModRM 5,dst
DW src

EndM

CodeMacro Sub dst:Ab,src:Db
DB 2CH
DB src

EndM

CodeMacro Sub dst:Aw,src:Db
DB 2DH
DW src

EndM

Codemacros

A-27

Codemacros

CodeMacro Sub dst:Aw,src:Dw
DB 2DH
OW src

EndM

CodeMacro
Segf ix
DB 28H
ModRM

EndM

CodeMacro
Segfix
DB 29H
ModRM

EndM

Sub dst:~b,src:Rb
dst

src,dst

Sub dst:Ew,src:Rw
dst

src,dst

CodeMacro Sub dst:Rb,src:Eb
Segfix src
DB 2AH
ModRM dst,src

EndM

CodeMacro Sub dst:Rw,src:Ew
Segfix src
DB 2BH
ModRM dst,src

EndM

CodeMacro Test dst:Eb,src:Db
Segfix dst
DB 0F6H
ModRM 0,dst
DB src

EndM

CodeMacro Test dst:Ew,src:Db
Segfix dst
DB 0F7H
ModRM 0,dst
DW src

EndM

CodeMacro Test dst:Ew,src:Dw
Segfix dst
DB 0F7H
ModRM 0,dst
DW src

EndM

CodeMacro Test dst:Ab,src:Db
DB 0A8H
DB src

EndM

CodeMacro Test dst:Aw,src:Db
DB 0A9H
DW src

EndM

CodeMacro Test dst:Aw,src:Dw
DB 0A9H
DW src

EndM

CodeMacro
Segfix
DB 84H
ModRM

EndM

CodeMacro
Segfix
DB 8SH
ModRM

EndM

A-28

Test dst:Eb,src:Rb
dst

src,dst

Test dst:Ew,src:Rw
dst

s rev, ds t

CodeMacro Test dst:Rb,src:Eb
Segfix src
DB 84H
ModRM dst,src

EndM

CodeMacro Test dst:Rw,src:Ew
Segfix src
DB 8SH
ModRM dst,src

EndM

CodeMacro Wait
DB 09BH

EndM

CodeMacro
Segfix
DB 86H
ModRM

Xchg dst:Eb,src:Rb
dst

src,dst
EndM

CodeMacro Xchg dst:Ew,src:Rw
Segfix dst
DB 87H
ModRM src,dst

EndM

CodeMacro Xchg dst:Rb,src:Eb
Segfix src
DB 86H
ModRM dst,src

EndM

CodeMacro Xchg dst:Rw,src:Ew
Segfix src
DB 87H
ModRM dst,src

EndM

CodeMacro Xchg dst:Rw,src:Aw
RS3 <10010B,dst>

EndM

CodeMacro Xchg dst:Aw,src:Rw
RS3 <10010B,src>

EndM

CodeMacro Xlat table:Mb
Segfix table
DB 0D7H

EndM

CodeMacro XlatB
DB 0D7H

EndM

CodeMacro Xor dst:Eb,src:Db
Segfix dst
DB 80H
ModRM 6,dst
DB src

EndM

CodeMacro Xor dst:Ew,src:Db
Segfix dst
DB 81H
ModRM 6,dst
OW src

EndM

CodeMacro Xor dst:Ew,src:Dw
Segfix dst
DB 81H
ModRM 6,dst
OW src

EndM

ASM86

ASM86

CodeMacro Xor dst:Ab,src:Ob
DB 34H
DB src

EndM

CodeMacro Xor dst:Aw,src:Db
DB 35H
OW src

EndM

CodeMacro Xor dst:Aw,src:Dw
DB 35H
OW src

EndM

CodeMacro
Segfix
DB 30H
ModRM

EndM

CodeMacro
Segfix
DB 31H
ModRM

EndM

CodeMacro
Segfix
DB 32H
ModRM

EndM

Xor dst:Eb,src:Rb
dst

src,dst

Xor dst:Ew,src:Rw
dst

src,dst

Xor dst:Rb,src:Eb
src

dst,src

CodeMacro Xor dst:Rw,src:Ew
Segfix src
DB 33H
ModRM dst,src

EndM

; 8087 Codemacros:

CodeMacro F2XM1
Rfix 001B
DB 11110000B

EndM

CodeMacro FABS
Rfix 001B
DB 11100001B

EndM

CodeMacro FADD memop:Md
RfixM 000B,memop
ModRM 000B,memop

EndM

CodeMacro FADD memop:Mq
RfixM 100B,memop
ModRM 000B,memop

EndM

CodeMacro FADD dst:T,src:F
Rfix 000B
R233 <11B,000B,src>

EndM

CodeMacro FADD dst:F,src:T
Rfix 100B
R233 <11B,000B,dst>

EndM

CddeMacro FADD
Rfix 110B
DB 11000001B

EndM

CodeMacro FADDP dst:F,src:T
Rfix 110B
R233 <11B,000B,dst>

EndN

CodeMacro FBLD memop:Mt
RfixM 111B,memop
ModRM 100B,memop

End~l

CodeMacro FBSTP memop:Mt
RfixM 111B,memop
ModRM 110B,memop

End~1

CodeMacro FCHS
Rfix 001B
DB 11100000B

Endt1

CodeMacro FCLEX
Rfix 011B
DB 11100010B

Endr1

Codt:!Macro FCOM memop: Md
RfixM 000B,memop
ModRM 010B,memop

EndM

CodeMacro FCOM memop:Mq
RfixM 100B,memop
ModRM 010B,memop

Endr1

CodeMacro FCOM fpst:F
Rfix 000B
R233 <11B,010B,fpst>

End!1

CodeMacro FCOM
Rfi x 000B
DB 11010001B

EndM

CodeMacro FCOMP memop:Md
RfixM 000B,memop
ModRM 011B,memop

EndM

CodeMacro FCOMP memop:Mq
RfixM 100B,memop
ModRM 011B,memop

EndM

CodeMacro FCOMP fpst:F
Rfix 000B
R233 <11B,011B,fpst>

End!1

CodEOlMacro FCOMP
Rfix 000B
DB 11011001B

Endr1

CodeMacro FCOMPP
Rfix 110B
DB 11011001B

EndI"1

CodeMacro FDECSTP
Hfi x 001B
DB 11110110B

EndM

Codemacros

A-29

Code macros

CodeMacro FOlSl
Rfix 011B
DB 111000131B

EndM

CodeMacro
RfixM
ModRM

EndM

FOlV memop:Md
13I3I3B,memop
1113B,memop

CodeMacro FOlV memop:Mq
RfixM 11313B,memop
ModRM 1113B,memop

EndM

CodeMacro FOlV dst:T,src:F
Rfix 01313B
R233 <llB,ll13B,src>

EndM

CodeMacro FOlV dst:F,src:T
Rfix 11313B
R233 <llB,lllB,dst>

EndM

CodeMacro FOlV
Rfix 1113B
DB 1111113131B

EndM

CodeMacro FOlVP dst:F,src:T
Rfix 1113B
R233 <llB,lllB,dst>

EndM

CodeMacro FOlVR memop:Md
RfixM 13I3I3B,memop
ModRM IllB,memop

EndM

CodeMacro FOlVR memop:Mq
RfixM 11313B,memop
ModRM IllB,memop

EndM

CodeMacro FOlVR dst:T,src:F
Rfix 01313B
R233 <llB,lllB,src>

EndM

CodeMacro FOlVR dst:F,src:T
Rfix 11313B
R233 <llB,ll13B,dst>

EndM

CodeMacro FOlVR
Rfix 1113B
DB 1111013131B

EndM

CodeMacro FOlVRP dst:F,src:T
Rfix 1113B
R233 <11B,110B,dst>

EndM

CodeMacro FENl
Rfix 1311B
DB 111131313130B

EndM

CodeMacro FFREE fpst:F
Rfix 1131B
R233 <11B,01313B,fpst>

EndM

A-30

CodeMacro FlAOO memop:Mw
RfixM 110B,memop
ModRM 13I3I3B,memop

EndM

CodeMacro FlAOO memop:Md
RfixM 13113B,memop
ModRM 13130B,memop

EndM

CodeMacro FlCOM memop:Mw
RfixM 1113B,memop
ModRM 13113B,memop

EndM

CodeMacro FlCOM memop:Md
RfixM 13113B,memop
ModRM 13113B,memop

EndM

CodeMacro FlCOMP memop:Mw
RfixM 1113B,memop
ModRM 1311B,memop

EndM

CodeMacro FlCOMP memop:Md
RfixM 0113B,memop
ModRM 1311B,memop

EndM

CodeMacro FlOlV memop:Mw
RfixM ll13B,memop
ModRM ll13B,memop

EndM

CodeMacro FlOlV memop:Md
RfixM 13113B,memop
ModRM ll13B,memop

EndM

CodeMacro FlOlVR memop:Mw
RfixM 1113B,memop
ModRM lllB,memop

EndM

CodeMacro FlOlVR memop:Md
RfixM 13113B,memop
ModRM IllB,memop

EndM

CodeMacro FlLO memop:Mw
RfixM IllB,memop
ModRM 13I3I3B,memop

EndM

CodeMacro FlLO memop:Md
RfixM 011B,memop
ModRM 13013B,memop

EndM

CodeMacro FlLO memop:Mq
RfixM IllB,memop
ModRM 1131B,memop

EndM

CodeMacro
RfixM
ModRM

EndM

FlMUL memop:Mw
ll13B,memop
13131B,memop

CodeMacro FlMUL memop:Md
RfixM 010B,memop
ModRM 001B,memop

EndM

ASM86

ASM86

CodeMacro FINCSTP
Rfix CHHB
DB 11110111B

EndM

CodeMacro FINIT
Rfix 011B
DB 11100011B

EndM

CodeMacro FIST memop:Mw
RfixM 111B,memop
ModRM 010B,memop

EndM

CodeMacro FIST memop:Md
RfixM 011B,memop
ModRM 010B,memop

EndM

CodeMacro FISTP memop:Mw
RfixM 111B,memop
ModRM 011B,memop

EndM

CodeMacro FISTP memop:Md
RfixM 011B,memop
ModRM 011B,memop

EndM

CodeMacro FISTP memop:Mq
RfixM 111B,memop
ModRM 111B,memop

EndM

CodeMacro FISUB memop:Mw
RfixM 110B,memop
ModRM 100B,memop

EndM

CodeMacro FISUB memop:Md
RfixM 010B,memop
ModRM 100B,memop

EndM

CodeMacro FISUBR memop:Mw
RfixM 110B,memop
ModRM 101B,memop

EndM

CodeMacro FISUBR memop:Md
RfixM 010B,memop
ModRM 101B,memop

EndM

CodeMacro FLO memop:Md
RfixM 001B,memop
ModRM 000B,memop

EndM

CodeMacro FLO memop:Mq
RfixM 101B,memop
ModRM 000B,memop

EndM

CodeMacro FLO memop:Mt
RfixM 011B,memop
ModRM 101B,memop

EndM

CodeMacro FLO fpst:F
Rfix 001B
R233 <11B,000B,fpst>

CodeMacro FISTP memop:Mw
RfixM 111B,mpmo~

ModRM 0118, memop
EndM

CodeMacro FISTP mpmon:M~
RfixM 011B,memop
ModRM 011B,memop

EndM

CodeMacro FISTP memon:Ma
RfixM 1118,memop
ModRM 1118,memop

EndM

CodeMacro F IS UB 1Yl p", on :11114

RfixM 1108,memop
ModRM 100B,memop

EndM

CodeMacro FISUB ",pmoo:Md
RfixM 010B,memop
ModRM 100B,memop

EndM

CodeMacro FISUBR memop:!I1w
RfixM 1108,memop
ModRM 101B,memoo

EnnM

CodeMacro FISU8R ~emoP:Md
RfixM 0108,memoo
MonRM 1018 :me",oo

EndM

CodeMacro FLO memop:Md
RfixM 0018,memop
ModRM 000B~",emop

EndM

CodeMacro FLO memop:Mq
RfixM 101B',mpmop
MoaRM 000B:memop

EndM

CodeMacro
RfixM
Moc'lRM

EndM

FLO memop:Mt
011B,mpmoo
101B.memop

CodeMacro FLO fpst:F
Rfix 0018
R233 <118,000B,fpst>

EndM

CodeMacro FL01
Rfix 0018
DB 11101000B

Enc'lM

CodeMacro
RfixM
ModRM

EndM

CodeMacro
RfixM
ModRM

EndM

FLDC\'l 'Tlemop:M
0018,memoo
1018;memop

FLOENV ",emoo:M
0018,me",00
100B,memop

CodeMacro FLDL2E
Rfix 0018
DB 11101010B

EndM

CodeMacro FLOL2T
Rfix 001B
DB 111010018

EndM

Codemacros

A-31

Codemacros

CodeMacro FLDLG2
Rfix 001B
DR llUH100B

EndM

CodeMacro FLDLN2
Rfix 001B
DB 11101UHB

EndM

CodeMi'lcro FLDPI
Rfix 001B
DB 11101011B

EndM

CodeMacro FLDZ
Rfix 00113
DB 11H31110B

EndM

CodeMacro
RfixM
ModRM

EndM

FMUL memop:Md
000B ',memoo
001B :meTl1op

CodeMacro FMUL memop:Mq
RfixM 100B:TI1PlTloO
ModRM 00113:memop

EndM

CodeMacro FMUL dst:T,src:F
Rfix 000B
R233 <11B:001R,src>

EndM

CodeMacro FMUL n~t:F.src:T
Rfix 1008
R233 <11B,001B,dst>

EndM

CodeMacro FMUL
Rfix 1108
DB 11001001B

EndM

CodeMacro FMULP n~t:F:src:T
Rfix 1108
R233 <IIB,001B,dst>

EndM

CodeMacro FNCLEX
RNfix 011B
DB 11100010B

EndM

CodeMacro FNDISI
RNf i x 0118
DB 11100001B

EndM

CodeMacro FNENI
RNfi x 011B
DB 11100000B

EndM

CodeMacro FNINIT
RNfix 011B
DB 11HHHH1B

EndM

CodeMacro FNOP
Rfix 0'0'1B
DB lUH0'000'B

EnoM

A-32

CodeMacro
RNfixM
ModRM

EndM

CodeMacro
RNfixM
ModRM

EndM

CodeMacro
RNfixM
ModRM

EndM

CodeMi'lcro
RNfixM
ModRM

EndM

FNSA VB memop:M
101B,melTloo

110B :memop

FNSTCW memop:M
001 B ·~lTleTl1oo

I11B :lTlemop

FNSTENV lTlPTI1on:M
001B,memop

110B,memop

FNSTSW lTlelTlop:M
101B,memon

I11B:",emop

CodeMacro FPATAN
Rfix 001B
DB 111100118

EntiM

ConeMacro FPREM
Rfix 00113
DB 11111000B

EnnM

CodpM"'Icro FPTAN
Rfix 001B
DB 11110010B

EndM

CodeMi'lcro FRNDINT
Rfix 001B
DB 11111100B

EndM

ConeMacrn FRSTOR TI1emoo:M
RfixM 101B,memop
ModRM 100B,meTl1on

F!nnM

CodeMi'lcro FSAVE TI1emop:M
RfixM 101B,memoo
ModRM 110B:lTlPlTloO

EndM

CodeMacro FSCALE
Rfix 001B
DB 111111018

EndM

ConeMacro FSQRT
Rfix 001B
DB 11111010B

EndtJf

ConeM"'Icro FST memop:Md
RfixM 001B,memop
ModRM 010B,memop

BnoM

ConeMi'lcrn FST lTlemoo:Mq
RfixM 101B:memop
ModRM 010B,memop

EndM

CodeMacro FST fost:F
Rfix 101B
R233 <11B,0'10'B:fo~t>

EnnM

ASM86

ASM86

CoaeM~cro FSTCW memoo:M
RfixM 001B,me~op
Mod RM 111B '~,..,~",oo

EndM

CodeMacro FSTENV memop:M
RfixM 001B,memoo
ModRM 110B;memoo

EndM

CodeMacro FSTP memop:Md
RfixM 001B:mpT"1oo
~10d RM 011B, memop

EndM

CodeMacro FSTP memop:Mq
RfixM 101B:mpTYloP
ModRM 011B:memop

EndM

CodeMacro FSTP memon:Mt
RfixM 011B:memop
ModRM 111B,memop

EndM

CodeMacro FSTP fnst:F
Rfix 101B
R233 <118,011B,fpst>

EndM

Cod~M'lcro FSTSW meTYlop:M
RfixM 101B,memoo
ModRM 111B,memon

EndM

CoapM'lcro FSU8 TYleTYloo:~d

RfixM 000B,rnemop
ModRM 100B',mpmon

EndM

CodeMacro FSUB memop:Mq
RfixM 100B,memop
Mod RM 10013 >"~mon

EndM

CodeMacro FSUB dst:T,src:F
Rfix 00013
R233 <11B~100B;src>

EndM

CodeMacro FSUB dst:F,src:T
Rfix 1008
R233 <11B:101B:dst>

EndM

CodeMacro FSUB
Rfix 110B
DB 111010018

EndM

CodeMacro FSUBP dst:F,src:T
Rfix 110B
R233 <11B.1018:dst>

EndM

CodeMacro
RfixM
ModRM

EndM

FSU8R memop:Md
000B ,memon
1018.memop

CodeMacro FSUBR rnemop:Mq
RfixM 1008.TYlemop
ModRM 101B,memop

EndM

CodeMacro FSUBR dst:T:src:F
Rfix 000B
R233 <11B,101B,src>

EndM

CodeMacro FSUBR dst:F:src:T
Rfix 100B
R233 <11B,100B,dst>

EndM

CodpM'lcro FSUBR
Rfix 110B
DB 11100001B

EndM

CodeMacro FSUBRP dst:F;src:T
Rfb: 110B
R233 <11B,100B,dst>

EndM

Cod~M~cro FTST
Rfix 00113
DB 11100100B

EndM

CodeMacro FWAIT
RWfix

EndM

CorleM~cro FXAM
Rfix 001B
DB 11100101B

EndM

CodeMacro FXCH fnst:F
Rfix 001B
R233 <11B,001B,fpst>

EndM

CodeMacro FXCH
Rfix 0018
DB 11001001B

EndM

CodeMacro FXTRACT
Hfix 001B
DB 11110100B

EndM

CodeMacro FYL2X
Hfix 001B
DB 111100018

EndM

CodeMacro FYL2XP1
Hfix 001B
DB 11111001 B

EndM

CodeMacro BOUND indx:RW,bptr:MW
On1y186
Segfix botr
DB 62H
t-1od RM i ndx ; bot r

EndM

CodeMacro BOUND indx:RW:bntr:MD
On 1 y186
Segfix bptr
DB 62H
ModRM indx',bntr

EndM

Codemacros

A-33

Codemacros

CodeM~cro ENTER disp:D((L0FFFFH) ;level:D(CL255)
Only186
DB 0C8H
DW di.so
DB ll'>vel

EndM

CodeM~cro INS di ptr:EB,port:RW(DX)
On 1 y186
NoSeqfix ES:di otr
DB 6CH

F.noM

CodeM~cro INS di_ptr:EW,port:RW(DX)
On 1 v186
NoSAqfix ES;di ptr
DB 6DH

EndM

CodeMacro INSB
Onlv186
DB 6CH

EniiM

CooAM"'lcro INSW
On 1 v186
DB 6DH

EndM

CodeMacro LEAVE
Onlv186
DB 0C 9H

EndM

CodeMacro OUTS port:RW(DX) ,si ptr:EB
Onl v186
Seofix si otr
DB 6EH

EndM

A-34

CodeMacro OUTS port:RW(DX) ;si ptr:EW
Onl y186
Segfix si ptr
DB 6FH -.

EndM

CodeM"'lcro OUTSR
On 1 v186
013 6EH

EndM

Code Macro OUTSW
Only186
DB 6FH

EndM

CodeMacro PO PA
Onlv186
DB 61H

EndM

CodeMacro PUSHA
Only186
DB 60H

EndM

P\l r q A R 5 3 . R 3 2 3 . R 2 3 3 . R 41 3
Purge RFl,RF2,RF3.RF4.RF5
PU~qA RF6.RF7.RF8,RF9
Purqe RF10,Mid3

END

ASM86

APPENDIX B
FLAG OPERATIONS

FLAG REGISTERS

Flags are used to distinguish or denote certain results of data manipulation. The
8086 provides the four basic mathematical operations (+, -, *, /) in a number of
different varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic are provided. Standard two's complement representation of signed
values is used. The addition and subtraction operations serve as both signed and
unsigned operations. In these cases the flag settings allow the distinction between
signed and unsigned operations to be made (see Conditional Transfer instructions in
Chapter 6).

Adjustment operations are provided to allow arithmetic to be performed directly on
unpacked decimal digits or on packed decimal representations, and the auxiliary flag
(AF) facilitates th{~se adjustments.

Flags also aid in interpreting certain operations which could destroy one of their
operands. For example, a compare is actually a subtract operation; a zero result in
dicates that the operands are equal. Since it is unacceptable for the compare to
destroy either of the operands, the processor includes several work registers reserved
for its own use in such operations. The programmer cannot access these registers.
They are used for internal data transfers and for holding temporary values in
destructive operations, whose results are reflected in the flags.

Your program can test the setting of five of these flags (carry, sign, zero, overflow,
and parity) using one of the conditional jump instructions. This allows you to alter
the flow of program execution based on the outcome of a previous operation. the
auxiliary carry flag is reserved for the use of the ASCII and decimal adjust instruc
tions, as will be explained later in this section.

It is important for you to know which flags are set by a particular instruction.
Assume, for example, that your program is to test the parity of an input byte and
then execute one instruction sequence if parity is even, a different instruction se
quence if parity is odd. Coding a JPE (jump if parity is even) or JPO (jump if parity
is odd) instruction immediately following the: IN (input) instruction would produce
false results, since the IN i.nstruction does not affect the condition flags. The jump
conditionally executed by your program would reflect the outcome of some previous
operation unrelated to the IN instructions.

For the operation to work correctly, you must include some instruction that alters
the parity flag after the IN instruction, but before the jump instruction. For exam
ple, you can add zero to the input byte in the accumulator. This sets the parity flag
without altering the data in the accumulator.

In other cases, you will want to set a flag though there may be a number of interven
ing instructions before you test it. In these cases, you must check the operation of
the intervening instructions to be sure that they do not affect the desired flag.

The flags set by each instruction are detailed in the individual instructions in
Chapter 6 of this manual.

Details of Flag Usage. Six flag registers are set or cleared by most arithmetic
operations to reflect certain properties of the result of the operation. They follow
these rules below, where "set" means set to 1 and "clear" means cler to O. Further
discussion of each of these: flags follows the concise description.

B-1

Flag Operations ASM86

B-2

CF is set if the operation resulted in a carry out of (from addition) or a borrow
into (from subtraction) the high-order bit of the result; otherwise CF is
cleared.

AF is set if the operation resulted in a carry out of (from addition) or borrow into
(from subtraction) the low-order four bits of the result; otherwise AF is
cleared.

ZF is set if the result of the operation is zero; otherwise ZF is cleared.

SF is set if the high-order bit of the result is set; otherwise SF is cleared.

PF is set if the modulo 2 sum of the low-order eight bits of the result of the
operation is 0 (even parity); otherwise PF is cleared (odd parity).

OF is set if the signed operation resulted in an overflow, i.e., the operation
resulted in a carry into the high-order bit of the result but not a carry out of the
high-order bit, or vice versa; otherwise OF is cleared.

Carry Flag. As its name implies, the carry flag is commonly used to indicate
whether an addition causes a "carry" into the next higher order digit. (However, the
increment and decrement instructions (INC, DEC) do not affect CF.) The carry flag
is also used as a "borrow" flag in subtractions.

The logical AND, OR, and XOR instructions also affect CF. These instructions set
or reset particular bits of their destination (register or memory). See the descriptions
of the logic instruction in Chapter 6.

The rotate and shift instructions move the contents of the operand (registers or
memory) one or more positions to the left or right. They treat the carry flag as
though it were an extra bit of the operand. The original value in CF is only preserved
by RCL and RCR. Otherwise it is simply replaced with the next bit rotated out of the
source, i.e., the high-order bit if an RCL is used, the low-order bit if RCR.

Example:

Addition of two one-byte numbers can produce a carry out of the high-order bit:

Bit Number:

AEH -
+ 74H-

122H

7654

1010
0111
0010

3210

1110B
0100B
0010B - 22H ;carry flag -1

An addition that causes a carry out of the high-order bit of the destination sets the
flag to 1; an addition that does not cause a carry resets the flag to zero.

Sign Flag. The high-order bit of the result of operations on registers or memory can
be interpreted as a sign. Iristructions that affect the sign flag set the flag equal to this
high-order bit. A zero indicates a positive value; a one indicates a negative value.
This value is duplicated in the sign flag so that conditional jump instructions can test
for positive and negative values. The high order bit for byte value is bit 7; for word
values it is bit 15.

ASM86 Flag Operations

Zero Flag. Certain instructions set the zero flag to one. This indicates that the last
operation to affect ZF resulted in all zeros in the destination (register or memory). If
that result was other than zero, then ZF is reset to O. A result that has a carry and a
zero result sets both flags, as shown below:

10100111
+ 01011001

00000000 Carry Flag = 1
Zero Flaig = 1
meanin~1 yes, zero

Parity Flag. Parity is determined by counting the number of one bits set in the low
order 8 bits of the destination of the last operation to affect PF. Instructions that
affect the parity flag set the flag to one for even parity and reset the flag to zero to
indicate odd parity.

Auxiliary Carry Flag. The auxiliary carry flag indicates a carry out of bit 3 of the
accumulator. You cannot test this flag directly in your program; it is present to
enable the Decimal Adjust instructions to perform their function.

The auxiliary carry flag is affected by all add, subtract, increment, decrement, com
pare, and all logical AND, lOR, and XOR instructions.

B-3

DUAL FUNCTION KEYWORD/SYMBOLS

AND NOT OR

SYMBOLS

AAA ENTER FLDENV
AAD ES FLDL2E
AAM ESC FLDL2T
AAS F2XM1 FLDLG2
ADC FABS FLDLN2
ADD FADD FLDPI
AH FADDP FLDZ
AL FBLD FMUL
AX FBSTP FMULP
BH FCHS FNCLEX
BL FCLIEX FNDISI
BOUND FCOM FNENI
BP FCOMP FNINIT
BX FCOMPP FNOP
CALL FDECSTP FNSAVE
CBW FDISI FNSTCW
CH FDIV FNSTENV
CL FDIVP FNSTSW
CLC FDIVR FPATAN
CLD FDIVRP FPREM
CLI FENI FPTAN
CMC FFREE FRNDINT
CMP FIADD FRSTOR
CMPS FICOM FSAVE
CMPSB FICOMP FSCALE
CMPSW FIDIV FSORT
CS FIDIVR FST
CWD FILD FSTCW
CX FIMUL FSTENV
DAA FINCSTP FSTP
DAS FINIT FSTSW
DEC FIST FSUB
DH FISTP FSUBP
DI FISIJB FSUBR
DIV FISIJBR FSUBRP
DL FLO FTST
DS FL01 FWAIT
DX FLDCW FXAM

NON-CONFLICTING KEYWORDS

DA INCLUDE NOERRORPRINT
DATE LI NOGE
DEBUG LIST NOGEN
EJ M1 NOLI
EJECT MACRO NOLIST
EP MEMORY NOMACRO
ERRORPRINT MOD186 NOMR
GEN MR NOOBJECT
GENONLY NODB NOOJ
GO NODEBUG NOPAGING
IC NOEP NOPI

HANDS-OFF KEYWORDS

ABS DWORD GT
ASSUME END HIGH
AT ENDM INPAGE
BYTE ENDP LABEL
CODEMACRO ENDS LE
COMMON EO LENGTH
DB EOU LOW
DD EVEN LT
DO EXTRN MASK
DT FAR MOD
DUP GE MODRM
OW GROUP NAME

SHL

FXCH
FXTRACT
FYL2X
FYL2XP1
HLT
IDIV
IMUL
IN
INC
INS
INSB
INSW
INT
INTO
IRET
JA
JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO

NOPR
NOPRINT
NOSB
NOSYMBOLS
NOTY
NOTYPE
NOXR
NOXREF
OBJECT
OJ
PAGELENGTH

NE
NEAR
NOSEGFIX
NOTHING
OFFSET
ONLY186
ORG
PAGE
PARA
PREFX
PROC
PROCLEN

APPENDIX C
RESERVED WORDS

SHR XOR

JNP PUSH
JNS PUSHA
JNZ PUSHF
JO RCL
JP RCR
JPE REP
JPO REPE
JS REPNE
JZ REPNZ
LAHF REPZ
LDS RET
LEA ROL
LEAVE ROR
LES SAHF
LOCK SAL
LODS SAR
LODSB SBB
LODSW SCAS
LOOP SCASB
LOOPE SCASW
LOOPNE SI
LOOPNZ SP
LOOPZ SS
MOV ST
MOVS STC
MOVSB STD
MOVSW STI
MUL STOS
NEG STOSB
NIL STOSW
NOP SUB
OUT TEST
OUTS WAIT
OUTSB XCHG
OUTSW XLAT
POP XLATB
POPA ??SEG
POPF

PAGEWIDTH SB
PAGING STACK
PI SYMBOLS
PL TITLE
PR TT
PRINT TY
PW TYPE
RESTORE WF
RS WORKFILES
SA XR
SAVE XREF

PTR SEG
PUBLIC SEGFIX
PURGE SEGMENT
OWORD SHORT
RECORD SIZE
RELB STRUC
RELW TBYTE
RFIX THIS
RFIXM TYPE
RNFIX WIDTH
RNFIXM WORD
RWFIX ?

C-l

APPENDIX D
MPL BUILT-IN FUNCTIONS

The following is a list of all MPL built-in functions.

% I text end-of-line or % I text'

O/~(balanced-text)

% C I

% C 0 (char)

% *OEFI N E(macro-name[parameter-list]) [LOCAL local-list] (macro-body)

%n text-n-characters-Iong

%EQS(arg1,arg2)

%EV AL(expression)

%EXIT

%G ES(arg 1, arg2)

%GTS(arg 1, arg2)

%IF (expression) THEN (balanced-text1) [ELSE (balanced-text2)] FI

%IN

%LEN(balanced-text)

%LES(arg 1, arg2)

%LTS(arg1,arg2)

%MATCH(identifier1 delimiter identifier2) (balanced-text)

%M ET ACHAR(balanced-text)

%NES(arg1,arg2)

%OUT(balanced-text)

%REPEAT (expression)! (balanced-text)

%SET(macro-id, expression)

%SU BSTR(balanced-text, expression 1, expression2)

%WHILE (expression) (balanced-text)

D-l

C APPENDIX E
INSTRUCTIONS IN

_________ ~H~E=X~A~D~E~C~I~M~A~L_O~R~D~E~R~

00 00000000 MOD REG RIM ADD EA,REG BYTE ADD (REG) TO EA
01 00000001 MOD REG RIM ADD EA,REG WORD ADD (REG) TO EA
02 00000010 MOD REG RIM ADD REG,EA BYTE ADD (EA) TO REG
03 00000011 MOD REG RIM ADD REG,EA WORD ADD (EA) TO REG
04 00000100 ADD AL,DATA8 BYTE ADD DATA TO REG AL
05 00000101 ADD AX,DATA16 WORD ADD DATA TO REG AX
06 00000110 PUSH ES PUSH (ES) ON STACK
07 00000111 POP ES POP STACK TO REG ES
08 00001000 MOD REG RIM OR EA,REG BYTE OR (REG) TO EA
09 00001001 MOD REG RIM OR EA,REG WORD OR (REG) TO EA
OA 00001010 MOD REG RIM OR REG,EA BYTE OR (EA) TO REG
OB 00001011 MOD REG RIM OR REG,EA WORD OR (EA) TO REG
OC 00001100 OR AL,DATA8 BYTE OR DATA TO REG AL
OD 00001101 OR AX,DATA16 WORD OR DATA TO REG AX
OE 00001110 PUSH CS PUSH (CS) ON STACK
OF 00001111 (not used)
10 00010000 MOD REG RIM ADC EA,REG BYTE ADD (REG) WI CARRY TO EA
11 00010001 MOD REG RIM ADC EA,REG WORD ADD (REG) W I CARRY TO EA
12 00010010 MOD REG RIM ADC REA,EA BYTE ADD (EA) WI CARRY TO REG
13 00010011 MOD REG RIM ADC REG,EA WORD ADD (EA) W I CARRY TO REG
14 00010100 ADC AL,DATA8 BYTE ADD DATA W/CARRY TO REG AL
15 00010101 ADC AX,DATA16 WORD ADD DATA WI CARRY TO REG AX
16 00010110 PUSH SS PUSH (SS) ON STACK
17 00010111 POP SS POP STACK TO REG SS
18 00011000 MOD REG RIM SBB EA,REG BYTE SUB (REG) WI BORROW FROM EA
19 00011001 MOD REG RIM SBB EA,REG WORD SUB (REG) WI BORROW FROM EA
1 A 00011010 MOD REG RIM SBB REG,EA BYTE SUB (EA) WI BORROW FROM REG
1 B 00011011 MOD REG RIM SBB REG,EA WORD SUB (EA) WI BORROW FROM REG
1C 00011100 SBB AL,DATA8 BYTE SUB DATA WI BORROW FROM REG AL
1 D 00011101 SBB AX,DATA16 WORD SUB DATA WI BORROW FROM REG AX
1 E 00011110 PUSH DS PUSH (DS) ON STACK
1 F 00011111 POP DS POP STACK TO REG DS
20 00100000 MOD REG RIM AND EA,REG BYTE AND (REG) TO EA
21 00100001 MOD REG RIM AND EA,REG WORD AND (REG) TO EA
22 00100010 MOD REG RIM AND REG,EA BYTE AND (EA) TO REG
23 00100011 MOD REG RIM AND REG,EA WORD AND (EA) TO REG
24 00100100 AND AL,DATA8 BYTE AND DATA TO REG AL
25 00100101 AND AX,DATA16 WORD AND DATA TO REG AX
26 00100110 ES: SEGMENT OVERIDE WI SEGMENT REG ES
27 00100111 DAA DECIMAL ADJUST FOR ADD
28 00101000 MOD REG RIM SUB EA,REG BYTE SUBTRACT (REG) FROM EA
29 00101001 MOD REG RIM SUB EA,REG WORD SUBTRACT (REG) FROM EA
2A 00101010 MOD REG RIM SUB REG,EA BYTE SUBTRACT (EA) FROM REG
2B 00101011 MOD REG RIM SUB REG,EA WORD SUBTRACT (EA) FROM REG
2C 00101100 SUB AL,DATA8 BYTE SUBTRACT DATA FROM REG AL
2D 00101101 SUB AX,DATA16 WORD SUBTRACT DATA FROM REG AX
2E 00101110 CS: SEGMENT OVERIDE WI SEGMENT REG CS
2F 00101111 DAS DECIMAL ADJUST FOR SUBTRACT
30 00110000 MOD REG RIM XOR EA,REG BYTE XOR (REG) TO EA
31 00110001 MOD REG RIM XOR EA,REG WORD XOR (REG) TO EA
32 00110010 MOD REG RIM XOR REG,EA BYTE XOR (EA) TO REG
33 00110011 MOD FtEG RIM XOR REG,EA WORD XOR (EA) TO REG
34 00110100 XOR AL,DATA8 BYTE XOR DATA TO REG AL
35 00110101 XOR AX,DATA16 WORD XOR DATA TO REG AX
36 00110110 SS: SEGMENT OVERIDE W I SEGMENT REG SS
37 00110111 AAA ASCII ADJUST FOR ADD
38 00111000 MOD FlEG RIM CMP EA,REG BYTE COMPARE (EA) WITH (REG)
39 00111001 MOD FlEG RIM CMP EA,REG WORD COMPARE (EA) WITH (REG)
3A 00111010 MOD FlEG RIM CMP REG,EA BYTE COMPARE (REG) WITH (EA)
3B 00111011 MOD HEG RIM CMP REG,EA WORD COMPARE (REG) WITH (EA)
3C 00111100 CMP AL,DATA8 BYTE COMPARE DATA WITH (AL)
3D 00111101 CMP AX,DATA16 WORD COMPARE DATA WITH (AX)
3E 00111110 DS: SEGMENT OVERIDE WI SEGMENT REG DS
3F 00111111 AAS ASCII ADJUST FOR SUBTRACT
40 01000000 INC AX INCREMENT (AX)
41 01000001 INC CX INCREMENT (CX)

E-l

Instructions in Hexadecimal Order ASM86

E-2

42 01000010 INC
43 01000011 INC
44 01000100 INC
45 01000101 INC
46 01000110 INC
47 01000111 INC
48 01001000 DEC
49 01001001 DEC
4A 01001010 DEC
4B 01001011 DEC
4C 01001100 DEC
4D 01001101 DEC
4E 01001110 DEC
4F 01001111 DEC
50 01010000 PUSH
51 01010001 PUSH
52 01010010 PUSH
53 01010011 PUSH
54 01010100 PUSH
55 01010101 PUSH
56 01010110 PUSH
57 01010111 PUSH
58 01011000 POP
59 01011001 POP
SA 01011010 POP
5B 01011011 POP
5C 01011100 POP
5D 01011101 POP
5E 01011110 POP
SF 01011111 POP
60 01100000 PUSHA
61 01100001 POPA
62 01100010 MOD REG R/M BOUND
63 01100011 (not used)
64 01100100 (not used)
65 01100101 (not used)
66 01100110 (not used)
67 01100111 (not used)

DX
DX
SP
BP
SI
DI
AX
CX
DX
BX
SP
BP
SI
DI
AX
CX
DX
BX
SP
BP
SI
DI
AX
CX
DX
BX
SP
BP
SI
DI

REG,EA

INCREMENT (DX)
INCREMENT (BX)
INCREMENT (SP)
INCREMENT (BP)
INCREMENT (SI)
INCREMENT (DI)
DECREMENT (AX)
DECREMENT (CX)
DECREMENT (DX)
DECREMENT (BX)
DECREMENT (SP)
DECREMENT (BP)
DECREMENT (SI)
DECREMENT (DI)
PUSH (AX) ON STACK
PUSH (CX) ON STACK
PUSH (DX) ON STACK
PUSH (BX) ON STACK
PUSH (SP) ON STACK
PUSH (BP) ON STACK
PUSH (SI) ON STACK
PUSH (DI) ON STACK
POP STACK TO REG AX
POP STACK TO REG CX
POP STACK TO REG DX
POP STACK TO REG BX
POP STACK TO REG SP
POP STACK TO REG BP
POP STACK TO REG SI
POP STACK TO REG DI
PUSH ALL DATA, INDEX, AND POINTER REGISTEI
POP ALL DATA, INDEX, AND POINTER REGISTER:
CHECK INDEX IN REG AGAINST BOUNDS AT EA

68 01101000 PUSH DATA 16 PUSH WORD DATA ON STACK
69 01101001 MOD REG A/M IMUL REG,EA,DATA16 MULTIPLY (EA) BY WORD DATA; SIGNED
6A 01101010 PUSH DATA8 PUSH BYTE DATA ON STACK; SIGN-EXTEND
6B 01101011 MOD REG R/M IMUL REG,EA,DATA8 MULTIPLY (EA) BY BYTE DATA; SIGNED
6C 01101100 INS DST8 BYTEINPUT,STRINGOP
6D 01101101 INS DST16 WORD INPUT, STRING OP
6E 01101110 OUTS DST8 BYTE OUTPUT, STRING OP
6F 01101111 OUTS DST16 WORD OUTPUT, STRING OP
70 01110000 JO DISP8 JUMP ON OVERFLOW
71 01110001 JNO DISP8 JUMP ON NOT OVERFLOW
72 01110010 JC/JB/JNAE DISP8 JUMP ON BELOW/NOT ABOVE OR EQUAL
73 01110011 JNC/JNB/JAE DISP8 JUMP ON NOT BELOW/ABOVE OR EQUAL
74 01110100 JE/JZ DISP8 JUMP ON EQUAL/ZERO
75 01110101 JNE/JNZ DISP8 JUMP ON NOT EQUAL/NOT ZERO
76 01110110 JBE/JNA DISP8 JUMP ON BELOW OR EQUAL/NOT ABOVE
77 01110111 JNBE/JA DISP8 JUMP ON NOT BELOW OR EQUAL/ABOVE
78 01111000 JS DISP8 JUMP ON SIGN
79 01111001 JNS DISP8 JUMP ON NOT SIGN
7A 01111010 JP/JPE DISP8 JUMP ON PARITYjPARITY EVEN
7B 01111011 JNP /JPO DISP8 JUMP ON NOT PARITY/PARITY ODD
7C 01111100 JL/JNGE DISP8 JUMP ON LESS/NOT GREATER OR EQUAL
7D 01111101 JNL/JGE DISP8 JUMP ON NOT LESS/GREATER OR EQUAL
7E 01111110 JLE/JNG DISP8 JUMP ON LESS OR EQUAL/NOT GREATER
7F 01111111 JNLE/JG DISP8 JUMP ON NOT LESS OR EQUAL/GREATER
80 10000000 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TO EA
80 10000000 MOD 001 R/M OR EA,DATA8 BYTE OR DATA TO EA
80 10000000 MOD 010 R/M ADC EA,DATA8 BYTE ADD DATA W/CARRY TO EA
80 10000000 MOD 011 R/M SBB EA,DATA8 BYTE SUB DATA W/BORROW FROM EA
80 10000000 MOD 100 R/M AND EA,DATA8 BYTE AND DATA TO EA
80 10000000 MOD 101 R/M SUB EA,DATA8 BYTE SUBTRACT DATA FROM EA
80 10000000 MOD 110 R/M XOR EA,DATA8 BYTE XOR DATA TO EA
80 10000000 MOD 111 R/M CMP EA,DATA8 BYTE COMPARE DATA WITH (EA)
81 10000001 MOD 000 R/M ADD EA,DATA16 WORD ADD DATA TO EA
81 10000001 MOD 001 R/M OR EA,DATA16 WORD OR DATA TO EA
81 10000001 MOD 010 R/M ADC EA,DATA16 WORD ADD DATA W/CARRY TO EA

ASM86 Instructions in Hexadecimal Order

81 10000001 MOD 011 RIM SBB EA,DATA16 WORD SUB DATA W I BORROW FROM EA
81 10000001 MOD 100 RIM AND EA,DATA16 WORD AND DATA TO EA
81 10000001 MOD 101 RIM SUB EA,DATA16 WORD SUBTRACT DATA FROM EA
81 10000001 MOD 110 RIM XOR EA,DATA16 WORD XOR DATA TO EA
81 10000001 MOD 111 RIM CMP EA,DATA16 WORD COMPARE DATA WITH (EA)
82 10000010 MOD 000 RIM ADD EA,DATA8 BYTE ADD DATA TO EA
82 10000010 MOD 001 RIM (not used)
82 10000010 MOD 010 RIM ADC EA,DATA8 BYTE ADD DATA WI CARRY TO EA
82 10000010 MOD 011 RIM SBB EA,DATA8 BYTE SUB DATA WI BORROW FROM EA
82 10000010 MOD 100 RIM (not used)
82 10000010 MOD 101 RIM SUB EA,DATA8 BYTE SUBTRACT DATA FROM EA
82 10000010 MOD 110 RIM (not used)
82 10000010 MOD 111 RIM CMP EA,DATA8 BYTE COMPARE DATA WITH (EA)
83 10000011 MOD 000 RIM ADD EA,DATA8 WORD ADD DATA TO EA
83 10000011 MOD 001 RIM (not used)
83 10000011 MOD 010 RIM ADC EA,DATA8 WORD ADD DATA W I CARRY TO EA
83 10000011 MOD 011 RIM SBB EA,DATA8 WORD SUB DATA W I BORROW FROM EA
83 10000011 MOD 100 RIM (not used)
83 10000011 MOD 101 RIM SUB EA,DATA8 WORD SUBTRACT DATA FROM EA
83 10000011 MOD 110 RIM (not used)
83 10000011 MOD 111 RIM CMP EA,DATA8 WORD COMPARE DATA WITH (EA)
84 10000100 MOD HEG RIM TEST EA,REG BYTE TEST (EA) WITH (REG)
85 10000101 MOD HEG RIM TEST EA,REG WORD TEST (EA) WITH (REG)
86 10000110 MOD HEG RIM XCHG REG,EA BYTE EXCHANGE (REG) WITH (EA)
87 10000111 MOD HEG RIM XCHG REG,EA WORD EXCHANGE (REG) WITH (EA)
88 10001000 MOD HEG RIM MOV EA,REG BYTE MOVE (REG) TO EA
89 10001001 MOD HEG RIM MOV EA,REG WORD MOVE (REG) TO EA
8A 10001010 MOD HEG RIM MOV REG,EA BYTE MOVE (EA) TO REG
8B 10001011 MOD !=lEG RIM MOV REG,EA WORD MOVE (EA) TO REG
8C 10001100 MOD OSR RIM MOV EA,SR WORD MOVE (SEGMENT REG SR) TO EA
8C 10001100 MOD 1-- RIM (not used)
8D10001101 MOD !=lEG RIM LEA REG,EA LOAD EFFECTIVE ADDRESS OF EA TO REG
8E 10001110 MOD OSR RIM MOV SR,EA WORD MOVE (EA) TO SEGMENT REG SR
8E 10001110 MOD --- RIM (not used)
8F 10001111 MOD 000 RIM POP EA POP STACK TO EA
8F 10001111 MOD 001 RIM (not used)
8F 10001111 MOD 010 RIM (not used)
8F 10001111 MOD 011 RIM (not used)
8F 10001111 MOD 100 RIM (not used)
8F 10001111 MOD 101 RIM (not used)
8F 10001111 MOD 110 RIM (not used)
8F 10001111 MOD 111 RIM (not used)
90 10010000 XCHG AX,AX EXCHANGE (AX) WITH (AX), (NOP)
91 10010001 XCHG AX,CX EXCHANGE (AX) WITH (CX)
92 10010010 XCHG AX,DX EXCHANGE (AX) WITH (DX)
93 10010011 XCHG AX,BX EXCHANGE (AX) WITH (BX)
94 10010100 XCHG AX,SP EXCHANGE (AX) WITH (SP)
95 10010101 XCHG AX,BP EXCHANGE (AX) WITH (BP)
96 10010110 XCHG AX,SI EXCHANGE (AX) WITH (SI)
97 10010111 XCHG AX,DI EXCHANGE (AX) WITH (DI)
98 10011000 CBW BYTE CONVERT (AL) TO WORD (AX)
99 10011001 CWD WORD CONVERT (AX) TO DOU BLE WORD
9A 10011010 CALL DISP113,SEG16 DIRECT INTER SEGMENT CALL
9810011011 WAIT WAIT FOR TEST SIGNAL
9C 10011100 PUSHF PUSH FLAGS ON STACK
9D 10011101 POPF POP STACK TO FLAGS
9E 10011110 SAHF STORE (AH) INTO FLAGS
9F 10011111 LAHF LOAD REG AH WITH FLAGS
AO 10100000 MOV AL,ADDR16 BYTE MOVE (ADDR) TO REG AL
A110100001 MOV AX,ADDR16 WORD MOVE (ADDR) TO REG AX
A210100010 MOV ADDR16,AL BYTE MOVE (AL) TO ADDR
A310100011 MOV ADDR16,AX WORD MOVE (AX) TO ADDR
A410100100 MOVS DST8,SRC8 BYTE MOVE, STRING OP
A510100101 MOVS DST16,SRC16 WORD MOVE, STRING OP
A610100110 CMPS SIPTR,DIPTR COMPARE BYTE, STRING OP
A710100111 CMPS SIPTR,DIPTR COMPARE WORD, STRING OP
A810101000 TEST AL,DATA8 BYTE TEST (AL) WITH DATA
A910101001 TEST AX,DATA16 WORD TEST (AX) WITH DATA
AA 10101010 STOS DST8 BYTE STORE, STRING OP
AB10101011 STOS DST16 WORD STORE, STRING OP
AC10101100 LODS SRC8 BYTE LOAD, STRING OP
AD10101101 LODS SRC16 WORD LOAD, STRING OP
AE10101110 SCAS DIPTR8 BYTE SCAN, STRING OP

E-3

Instructions in Hexadecimal Order ASM86

AF10101111 SCAS DIPTR16 WORD SCAN, STRING OP
BO 10110000 MOV AL,DATA8 BYTE MOVE DATA TO REG AL
B110110001 MOV CL,DATA8 BYTE MOVE DATA TO REG CL
B2 10110010 MOV DL,DATA8 BYTE MOVE DATA TO REG DL
B3 10110011 MOV BL,DATA8 BYTE MOVE DATA TO REG BL
B4 10110100 MOV AH,DATA8 BYTE MOVE DATA TO REG AH
B5 10110101 MOV CH,DATA8 BYTE MOVE DATA TO REG CH
B6 10110110 MOV DH,DATA8 BYTE MOVE DATA TO REG DH
B710110111 MOV BH,DATA8 BYTE MOVE DATA TO REG BH
B8 10111000 MOV AX,DATA16 WORD MOVE DATA TO REG AX
B9 10111001 MOV CX,DATA16 WORD MOVE DATA TO REG CX
BA10111010 MOV DX,DATA16 WORD MOVE DATA TO REG DX
BB10111011 MOV BX,DATA16 WORD MOVE DATA TO REG BX
BC1 01111 00 MOV SP,DATA16 WORD MOVE DATA TO REG SP
BD10111101 MOV BP,DATA16 WORD MOVE DATA TO REG BP
BE10111110 MOV SI,DATA16 WORD MOVE DATA TO REG SI
B F 10111111 MOV DI,DATA16 WORD MOVE DATA TO REG DI

CO 11000000 MOD 000 RIM ROL EA,DATA8 BYTE ROTATE EA LEFT DATA8 BITS
CO 11000000 MOD 001 RIM ROR EA,DATA8 BYTE ROTATE EA RIGHT DATA8 BITS
CO 11000000 MOD 010 RIM RCL EA,DATA8 BYTE ROTATE EA LEFTTHRU CARRY DATA8 E
CO 11000000 MOD 011 RIM RCR EA,DATA8 BYTE ROTATE EA RIGHT THRU CARRY DATA8
CO 11000000 MOD 100 RIM SHL/SAL EA,DATA8 BYTE SHIFT EA LEFT DATA8 BITS
CO 11000000 MO:) 101 RIM SHR EA,DATA8 BYTE SHIFT EA RIGHT DATA8 BITS
CO 11000000 MOD 110 RIM (not used)
CO 11000000 MOD 111 RIM SAR EA,DATA8 BYTE SHIFT SIGNED EA RIGHT DATA8 BITS

C1 .~ 1 000001 MOD 000 RIM ROL EA,DATA8 WORD ROTATE EA LEFT DATA8 BITS
C1 11000001 MOD 001 RIM ROR EA,DATA8 WORD ROTATE EA RIGHT DATA8 BITS
C1 11000001 MOD 010 RIM RCL EA,DATA8 WORD ROTATE EA LEFTTHRU CARRY DATA8
C1 11000001 MOD 011 RIM RCR EA,DATA8 WORD ROTATE EA RIGHTTHRU CARRY DATAl
C1 11000001 MOD 100 RIM SHL/SAL EA,DATA8 WORD SHIFT EA LEFT DATA8 BITS
C1 11000001 MOD 101 RIM SHR EA,DATA8 WORD SHIFT EA RIGHT DATA8 BITS
C1 11000001 MOD 110 RIM (not used)
C1 11000001 MOD 111 RIM SAR EA,DATA8 WORD SHIFT SIGNED EA RIGHT DATA8 BITS

C211000010 RET DATA16 INTRA SEGMENT RETURN, ADD DATA TO REG SP
C311000011 RET INTRA SEGMENT RETURN
C411000100 MOD REG RIM LES REG,EA WORD LOAD REG AND SEGMENT REG ES
C5 11000101 MOD REG RIM LDS REG,EA WORD LOAD REG AND SEGMENT REG DS
C6 11000110 MOD 000 RIM MOV EA,DATA8 BYTE MOVE DATA TO EA
C6 11000110 MOD 001 RIM (not used)
C611000110 MOD 010 RIM (not used)
C611000110 MOD 011 RIM (not used)
C6 11000110 MOD 100 RIM (not used)
C6 11000110 MOD 101 RIM (not used)
C6 11000110 MOD 110 RIM (not used)
C6 11000110 MOD 111 RIM (not used)
C711000111 MOD 000 RIM MOV EA,DATA16 WORD MOVE DATA TO EA
C7 11000111 MOD 001 RIM (not used)
C711000111 MOD 010 RIM (not used)
C7 11000111 MOD 011 RIM (not used)
C7 11000111 MOD 100 RIM (not used)
C7 11000111 MOD 101 RIM (not used)
C7 11000111 MOD 110 RIM (not used)
C711000111 MOD 111 RIM (not used)
C8 11001000 ENTER DATA16,DATA8 PERFORM ENTER SEQUENCE
C9 11001001 LEAVE PERFORM LEAVE SEQUENCE
CA 11001010 RET DATA16 INTER SEGMENT RETURN, ADD DATA TO REG SP
CB11001011 RET INTER SEGMENT RETURN
CC11001100 INT 3 TYPE 31NTERRUPT
CD11001101 INT TYPE TYPED INTERRUPT
CE11001110 INTO INTERRUPT ON OVERFLOW
CF11001111 IRET RETURN FROM INTERRUPT
DO 11010000 MOD 000 RIM ROL EA,1 BYTE ROTATE EA LEFT 1 BIT
DO 11010000 MOD 001 RIM ROR EA,1 BYTE ROTATE EA RIGHT 1 BIT
DO 11010000 MOD 010 RIM RCL EA,1 BYTE ROTATE EA LEFTTHRU CARRY 1 BIT
DO 11010000 MOD 011 RIM RCR EA,1 BYTE ROTATE EA RIGHT THRU CARRY 1 BIT
DO 11010000 MOD 100 RIM SHL EA,1 BYTE SHIFT EA LEFT 1 BIT
DO 11010000 MOD 101 RIM SHR EA,1 BYTE SHIFT EA RIGHT 1 BIT
DO 11010000 MOD 110 RIM (not used)
DO 11010000 MOD 111 RIM SAR EA,1 BYTE SHIFT SIGNED EA RIGHT 1 BIT
D1 11010001 MOD 000 RIM ROL EA,1 WORD ROTATE EA LEFT 1 BIT

E-4

ASM86 Instructions in Hexadecimal Order

01 11010001 MOD 001 RIM ROR EA,1 WORD ROTATE EA RIGHT 1 BIT
01 11010001 MOD 010 RIM RCl EA,1 WORD ROTATE EA lEFT THRU CARRY 1 BIT
01 11010001 MOD 011 RIM RCR EA,1 WORD ROTATE EA RIGHTTHRU CARRY 1 BIT
0"1 11010001 MOD 100 RIM SHl EA,1 WORD SHIFT EA lEFT 1 BIT
01 11010001 MOD 101 RIM SHR EA,1 WORD SHIFT EA RIGHT 1 BIT
01 11010001 MOD 110 RIM (not used)
01 11010001 MOD 111 RIM SAR EA,1 WORD SHIFT SIGNED EA RIGHT 1 BIT
0211010010 MOD 000 RIM ROl EA,Cl BYTE ROTATE EA lEFT (Cl) BITS
0211010010 MOD 001 RIM ROR EA,Cl BYTE ROTATE EA RIGHT (Cl) BITS
0211010010 MOD 0"10 RIM RCl EA,Cl BYTE ROTATE EA lEFT THRU CARRY (Cl) BITS
02 11010010 MOD 0"11 RIM RCR EA,Cl BYTE ROTATE EA RIGHT THRU CARRY (CLl BITS
02 11010010 MOD 100 RIM SHl EA,Cl BYTE SHIFT EA lEFT (Cl) BITS
0211010010 MOD 101 RIM SHR EA,Cl BYTE SHIFT EA RIGHT (Cl) BITS
02 11010010 MOD 1"10 RIM (not used)
0211010010 MOD 1"11 RIM SAR EA,Cl BYTE SHIFT SIGNED EA RIGHT (Cl) BITS
0311010011 MOD 000 RIM ROl EA,Cl WORD ROTATE EA lEFT (Cl) BITS

03 11010011 MOD 001 RIM ROR EA,CL. WORD ROTATE EA RIGHT (Cl) BITS
0311010011 MOD 0-10 RIM RCl EA,Cl WORD ROTATE EA lEFT THRU CARRY (Cl) BITS
0311010011 MOD 0-11 RIM RCR EA,Cl WORD ROTATE EA RIGHT THRU CARRY (Cl) BITS
03 11010011 MOD 100 RIM SHl EA,CL WORD SHIFT EA lEFT (Cl) BITS
0311010011 MOD 101 RIM SHR EA,CL WORD SHIFT EA RIGHT (Cl) BITS
03 11010011 MOD 110 RIM (not used)
0311010011 MOD 111 RIM SAR EA,CL WORD SHIFT SIGNED EA RIGHT (Cl) BITS
0411010100 00001010 AAM ASCII ADJUST FOR MULTIPLY
0511010101 00001010 AAD ASCII ADJUST FOR DIVIDE
06 11010110 (not used)
07 11010111 XlAT TABLE TRANSLATE USING (BX)
08 11011--- MOD --"- RIM ESC EA ESCAPE TO EXTERNAL DEVICE
0811011000 MOD 000 RIM FAOO Short-real ADD 4-BYTE EA TO ST
0811011000 MOD 001 RIM FMUl Short-real MUl TIPl Y ST BY 4-BYTE EA
0811011000 MOD 010 RIM FCOM Short-real COMPARE 4-BYTE EA WITH ST
0811011000 MOD 011 RIM FCOMP Short-real COMPARE 4-BYTE EA WITH ST AND POP
0811011000 MOD 100 RIM FSUB Short-real SUBTRACT 4-BYTE EA FROM ST
0811011000 MOD 101 RIM FSUBR Short-real SUBTRACT ST FROM 4-BYTE EA
0811011000 MOD 110 RIM FOIV Short-real DIVIDE ST BY 4-BYTE EA
0811011000 MOD 111 RIM FOIVR Short-real DIVIDE 4-BYTE EA BY ST
0811011000 1 1 000 (i) FAOO ST, ST(i) ADD ELEMENT TO ST
0811011000 1 1 001 (i) FMUl ST, ST(i) MUl TIPl Y ST BY ELEMENT
08 11011000 1 1 010 (i) FCOM ST(i) COMPARE ST(i) WITH ST
08 11011000 1 1 011 (i) FCOMP ST(i) COMPARE ST(i) WITH ST AND POP
08 11011000 1 1 100 (i) FSUB ST, ST(i) SUBTRACT ELEMENT FROM ST
08 11011000 1 1 101 (i) FSUBR ST,ST(i) SUBTRACT ST FROM STACK ELEMENT
08 11011000 1 1 110 (i) FOIV ST, ST(i) DIVIDE ST BY ELEMENT
0811011000 1 1 111 (i) FDIVR ST, ST(i) DIVIDE ST(i) BY ST
09 11011001 MOD 000 RIM FLO Short-real PUSH 4-BYTE EA TO ST
0911011001 MOD 001 RIM (not used)
0911011001 MOD 010 RIM FST Short-real STORE 4-BYTE REAL TO EA
0911011001 MOD 011 RIM FSTP Short-real STORE 4-BYTE REAL TO EA AND POP
0911011001 MOD 100 RIM FlOENV 14 BYTES lOAD 8087 ENVIRONMENT FROM EA
0911011001 MOD 101 RIM FlOCW 2-BYTE!3 lOAD CONTROL WORD FROM EA
09 "11011001 MOD 110 RIM FSTENV 14-BYTES STORE 8087 ENVIRONMENT INTO EA
09 "11011001 MOD 111 RIM FSTCW 2-BYTES STORE CONTROL WORD INTO EA
0911011001 1 1 000 (i) FLO ST(i) PUSH ST(i) ONTO ST
09 "11011001 1 1 001 (i) FXCH ST(i) EXCHANGE ST AND ST(i)
09 -11011001 1 1 010 000 FNOP STORE ST IN ST
0911011001 1 1 010 001 (not used)
0911011001 1 1 010 01- (not used)
0911011001 1 1 010 1-- (not used)
0911011001 1 1 011 (i) * (1)
0911011001 1 1 100 000 FCHS CHANGE SIGN OF ST
0911011001 1 1 100 001 FABS TAKE ABSOLUTE VALUE OF ST
0911011001 1 1 100 01- (not used)
09 i 1 011 001 1 1 100 100 FTST TEST ST AGAINST 0"0
09 11011001 1 1 100 101 FXAM EXAMINE ST AND REPORT CONDITION CODE
0911011001 1 1 100 11- (not used)
0911011001 1 1 10"1 000 Fl01 PUSH +1_0 TO ST
0911011001 1 1 10"1 001 FlOl2T PUSH 109210 TO ST
0911011001 1 1 10"1 010 FlOl2E PUSH 1092e TO ST
09 11011001 1 1 10"1 011 FlOPI PUSH Pi TO ST
09 11011001 1 1 10-1 100 FlOlG2 PUSH 109102 TO ST
09 11011001 1 1 10-1 101 FlDlN2 PUSH 10ge2 TO ST
0911011001 1 1 10-1 110 FlOZ PUSH ZERO TO ST

E-5

Instructions in Hexadecimal Order ASM86

D9 11011001 101 111 (not used)
D9 11011001 110 000 F2XM1 CALCULATE 2x-1

D9 11011001 110 001 FYL2X CALCULATE FUNCTION Y*log2 X

D911011001 110 010 FPTAN CALCULATE TAN OF e AS A RATIO

D911011001 110 011 FPATAN CALCU LA TE ARCT AN OF e
D9 11011001 110 100 FXTRACT EXTRACT EXPONENT AND SIGNIFICAND FROM S-

D911011001 110 101 (not used)
D911011001 110 110 FDECSTP DECREMENT STACK POINTER IN STATUS WORD

D911011001 110 111 FINCSTP INCREMENT STACK POINTER IN STATUS WORD

D911011001 111 000 FPREM MODU LO DIVISION OF ST BY ST(1)

D911011001 110 001 FYL2XP1 CALCULATE VALUE OF Y*log2 (X+1)

D911011001 111 010 FSQRT CALCULATE SQUARE ROOT OF ST

D911011001 111 011 (not used)
D911011001 111 100 FRNDINT ROUND ST TO INTEGER
D911011001 111 "101 FSCALE ADD ST(1) TO EXPONENT OF ST
D911011001 1 1 111 11- (not used)

DA 11011010 MOD 000 RIM FIADD Short-integer ADD 4-BYTE INTEGER EA TO ST
DA 11011010 MOD 001 f~/M FIMUL Short-integer MULTIPLY ST BY 4-BYTE INTEGER EA
DA11011010 MOD 010 f~/M FICOM Short-integer CONVERT 4-BYTE INTEGER EA, AND COMPARE W
DA11011010 MOD 011 f~/M FICOMP Short-integer CONVERT 4-BYTE INTEGER EA, COMPARE WITH S
DA 11011010 MOD 100 f~/M FISUB Short-integer SUBTRACT 4-BYTE INTEGER EA FROM ST
DA11011010 MOD 101 RIM FISUBR Short-integer SUBTRACT ST FROM 4-BYTE INTEGER EA
DA11011010 MOD 110 RIM FIDIV Short-integer DIVIDE ST BY 4-BYTE INTEGER EA
DA11011010 MOD 111 RIM FIDIVR Short-integer DIVIDE 4-BYTE INTEGER EA BY ST
DA11011010 1 1 -- (not used)
DB 11 011 011 MOD 000 F~/M FILD Short-integer PUSH 4-BYTE INTEGER EA ONTO ST
DB 11011011 MOD 001 RIM (not used)
DB 11011011 MOD 010 RIM FIST Short integer STORE ROUNDED ST IN 4-BYTE INTEGER EA
DB11011011 MOD 011 RIM FISTP Short-integer STORE ROUNDED ST IN 4-BYTE INTEGER EA, POP
DB11011011 MOD 100 RIM (not used)
DB11011011 MOD 101 RIM FLD Temp-real PUSH 10-BYTE EA ONTO ST
DB 11011011 MOD 110 RIM Reserved
DB 11011011 MOD 111 RIM FSTP Temp-real STORE ST INTO 10-BYTE EA, POP
DB 11011011 1 1 0-- Reserved
DB11011011 1 1 100 000 FENI ENABLE INTERRUPT
DB11 011 011 1 1 100 001 FDISI DISABLE INTERRU PTS
DB 11011011 1 1 100 010 FCLEX CLEAR EXCEPTIONS
DB11011011 1 1 100 011 FINIT INITIALIZE PROCESSOR
DB11011011 1 1 100 1-- Reserved
DB11011011 1 1 101 Reserved
DB11 011 011 1 1 11- Reserved
DC11 0111 00 MOD 000 F~/M FADD Long-real ADD 8-BYTE EA TO ST
DC11 0111 00 MOD 001 RIM FMUL Long-real MUL TIPLY ST BY 8-BYTE EA
DC11011100 MOD 010 RIM FCOM Long-real COMPARE ST WITH 8-BYTE EA
DC11011100 MOD 011 RIM FCOMP Long-real COMPARE ST WITH 8-BYTE EA, POP STACK
DC11 0111 00 MOD 100 RIM FSUB Long-real SUBTRACT 8-BYTE EA FROM ST
DC11 0111 00 MOD 101 Fl/M FSUBR Long-real SUBTRACT ST FROM 8-BYTE EA
DC11 0111 00 MOD 110 RIM FDIV Long-real DIVIDE ST BY 8-BYTE EA
DC11 0111 00 MOD 111 RIM FDIVR Long-real DIVIDE 8-BYTE EA BY ST
DC11011100 1 1 000 (i) FADD ST(i), ST ADD ST TO ELEMENT
DC11 0111 00 1 1 001 (i) FMUL ST(i), ST MULTIPLY ELEMENT BY ST
DC11 0111 00 1 1 010 (i) *(2)
DC11011100 1 1 011 (i) * (3)
DC11 0111 00 1 1 100 (i) FSUBR ST(i), ST SUBTRACT ST FROM ELEMENT
DC11 0111 00 1 1 101 (i) FSUB ST(i), ST SUBTRACT ELEMENT FROM ST
DC11011100 1 1 110 (i) FDIVR ST(i), ST DIVIDE ST(i) BY ST
DC11011100 1 1 111 (i) FDIV ST(i), ST DIVIDE ST BY ST(i)
DD11 0111 01 MOD 000 RIM FLD Long-real PUSH 8-BYTE EA ONTO ST
DD11011101 MOD 001 RIM Reserved
DD11011101 MOD 010 RIM FST Long-real STORE ST INTO 8-BYTE EA
DD11011101 MOD 011 RIM FSTP Long-real STORE ST INTO 8-BYTE EA, POP
DD11011101 MOD 100 RIM FRSTOR 94-BYTES RESTORE 8087 STATE FROM EA
DD11011101 MOD 101 RIM Reserved
DD11011101 MOD 110 RIM FSAVE 94-BYES SAVE 8087 STATE TO EA
DD11011101 MOD 111 RIM FSTSW 2-BYTES STORE 8087 STATUS WORD TO 2-BYTE EA
DD11011101 1 1 000 (i) FFREE ST(i) SET STACK TAG TO "EMPTY"
DD11 0111 01 1 1 001 (i) * (4)
DD11 0111 01 1 1 010 (i) FST ST(i) STORE ST INTO ST(i)
DD11011101 1 1 011 (i) FSTP ST(i) STORE ST INTO ST(i), POP
DD11011101 1 1 1-- Reserved
DE11011110 MOD 000 RIM FIADD Word-integer ADD 2-BYTE INTEGER EA TO ST
DE11011110 MOD 001 RIM FIMUL Word-inteqer MULTIPL Y ST BY 2-BYTE INTEGER EA

E-6

ASM86 Instructions in Hexadecimal Order

DE11011110 MOD 010 RIM FICOM Word-integer COMPARE 2-BYTE EA INTEGER WITH ST
DE 11011110 MOD 011 RIM FICOMP Word-integer COMPARE 2-BYTE INTEGER EA WITH ST. POP
DE11011110 MOD 100 RIM FISUB Word-integer SUBTRACT 2-BYTE INTEGER EA FROM ST
DE 11 01111 0 MOD 101 RIM FISUBR Word-integer SUBTRACT ST FROM 2-BYTE INTEGER EA
DE 11011110 MOD 110 RIM FIDIV Word-integer DIVIDE ST BY 2-BYTE INTEGER EA
DE11011110 MOD 111 RIM FIDIVR Word-integer DIVIDE 2-BYTE INTEGER EA BY ST
DE11011110 1 1 000 (i) FADDP ST(i), ST ADD ST TO ELEMENT, POP
DE11011110 1 1 001 (i) FMULP ST(i), ST MULTIPLY ST BY ELEMENT, POP
DE11011110 1 1 010 *(5)
DE11011110 1 1 011 000 Reserved
DE11011110 1 1 011 001 FCOMPP COMPARE ST WITH ST(1), POP TWICE
DE11011110 011 01- Reserved
DE11011110 0"11 1-- Reserved
DE 1101111 0 100 (i) FSUBRP ST(i), ST SUBTRACT ST FROM ELEMENT, POP
DE11011110 101 (i) FSUBP ST(i), ST SUBTRACT ST(i) FROM ST, POP
DE11011110 1"10 (i) FDIVRP ST(i), ST DIVIDE STACK ELEMENT BY ST, POP
DE11011110 1 1 1 "11 (i) FDIVP ST(i), ST DIVIDE ST BY STACK ELEMENT, POP
D F 11011111 MOD 000 RIM FILD Word-integer CONVERT 2-BYTE EA AND PUSH ONTO STACK
DF11011111 MOD 001 RIM Reserved
DF11011111 MOD 010 RIM FIST Word-integer ROUND ST AND STORE IN 2-BYTE INTEGER EA
DF11011111 MOD 011 RIM FISTP Word-integer ROUND ST, STORE IN 2-BYTE INTEGER EA, POP
DF11011111 MOD 100 RIM FBLD Packed decimal LOAD BCD TO ST
DF11011111 MOD 101 RIM FILD Long-integer CONVERT 8-BYTE INTEGER EA AND PUSH ONTO STACK
OF 11011111 MOD 110 RIM FBSTP Packed decimal CONVERT ST, STORE IN 10-BYTE BCD EA, POP
DF11011111 MOD 111 RIM FISTP Long-integer ROUND ST, STORE IN 8-BYTE INTEGER EA, POP
OF 11011111 1 1 000 (i) '(6)
OF 11011111 1 1 001 (i) *(7)
DF11011111 1 1 010 (i) *(8)
DF11011111 1 1 011 (i) *(9)
DF11011111 1 1 Reserved
EO 11100000 LOOPNZ/LOOPNE DISP8 LOOP (CX) TIMES WHILE NOT ZERO/NOT EQUAL
E111100001 LOOPZ/LOOPE DISP8 LOOP (CX) TIMES WHILE ZERO/EQUAL
E211100010 LOOP DISP8 LOOP (CX) TIMES
E311100011 JCXZ DISP8 JUMP ON (CX)=O
E411100100 IN AL,POFtT BYTE IN PUT FROM PORT TO REG AL
E5 11100101 IN AX,POHT WORD INPUT FROM PORT TO REG AX
E611100110 OUT PORT,AL BYTE OUTPUT (AL) TO PORT
E711100111 OUT PORT,AX WORD OUTPUT (AX) TO PORT
E8 11101000 CALL DISP16 DIRECT INTRA SEGMENT CALL
E9 11101001 JMP DISP16 DIRECT INTRA SEGMENT JUMP
EA11101010 JMP DISP16,SEG16 DIRECT INTER SEGMENT JUMP
EB 111 01 01 0 JMP DISP8 DIRECT INTRA SEGMENT JUMP
EC11101010 IN AL,DX BYTE INPUT FROM PORT (OX) TO REG AL
ED11101010 IN AX,DX WORD IN PUT FROM PORT (OX) TO REG AX
EE11101010 OUT DX,AL BYTE OUTPUT (AL) TO PORT (OX)
EF 11101010 OUT DX,AX WORD OUTPUT (AX) TO PORT (OX)
FO 11110000 LOCK BUS LOCK PREFIX
F1 11110001 (not used)
F211110010 REPNZ/REPNE REPEAT WHILE (CX)*O AND (ZF)=O
F311110011 REPZ/REPE/REP REPEAT WHILE (CX)*O AND (ZF)=1
F411110100 HLT HALT
F511110101 CMC COMPLEMENT CARRY FLAG
F6 11110110 MOD 000 RIM TEST EA,DATA8 BYTE TEST (EA) WITH DATA
F611110110 MOD 001 RIM (not used)
F611110110 MOD 010 RIM NOT EA BYTE INVERT EA
F611110110 MOD 011 RIM NEG EA BYTE NEGATE EA
F611110110 MOD 100 RIM MUL EA BYTE MULTIPLY BY (EA), UNSIGNED
F6 11110110 MOD 101 RIM IMUL EA BYTE MULTIPLY BY (EA), SIGNED
F611110110 MOD 110 RIM DIV EA BYTE DIVIDE BY (EA), UNSIGNED
F611110110 MOP 111 RIM IDIV EA BYTE DIVIDE BY (EA), SIGNED
F711110111 MOD 000 RIM TEST EA,DATA16 WORD TEST (EA) WITH DATA
F7 11110111 MOD 001 RIM (not used)
F7 11110111 MOD 010 RIM NOT EA WORD INVERT EA
F7 11110111 MOD 011 RIM NEG EA WORD NEGATE EA
F7 11110111 MOD 100 RIM MUL EA WORD MULTIPLY BY (EA), UNSIGNED
F711110111 MOD 101 RIM IMUL EA WORD MULTIPLY BY (EA), SIGNED
F7 11110111 MOD 110 RIM DIV EA WORD DIVIDE BY (EA), UNSIGNED
F7 11110111 MOD 111 RIM IDIV EA WORD DIVIDE BY (EA), SIGNED
F8 11111000 CLC CLEAR CARRY FLAG
F9 11111001 STC SET CARRY FLAG
FA 11111010 CLI CLEAR INTERRUPT FLAG
F B 11111011 STI SET INTERRUPT FLAG

E-7

Instructions in Hexadecimal Order

E-8

FC11111100
FD 11111101
FE 11111110 MOD 000 RIM
FE 11111110 MOD 001 RIM
FE 11111110 MOD 010 RIM
FE 11111110 MOD 011 RIM
FE 11111110 MOD 100 RIM
FE 11111110 MOD 101 RIM
FE 11111110 MOD 110 RIM
FE 11111110 MOD 111 RIM
FF 11111111 MOD 000 RIM
FF 11111111 MOD 001 RIM
FF 11111111 MOD 010 RIM
FF 11111111 MOD 011 RIM
FF 11111111 MOD 100 RIM
FF 11111111 MOD 101 RIM
FF 11111111 MOD 110 RIM
FF 11111111 MOD 111 RIM

CLD
STD
INC EA
DEC EA
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
INC EA
DEC EA
CALL EA
CALL EA
JMP EA
JMP EA
PUSH EA
(not used)

CLEAR DIRECTION FLAG
SET DIRECTION FLAG
BYTE INCREMENT EA
BYTE DECREMENT EA

WORD INCREMENT EA
WORD DECREMENT EA
INDIRECT INTRA SEGMENT CALL
INDIRECT INTER SEGMENT CALL
INDIRECT INTRA SEGMENT JUMP
INDIRECT INTER SEGMENT JUMP
PUSH (EA) ON STACK

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE:

16-BIT (W=1) 8-BIT (W=O) SEGMENT REG

000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS)

00 000 (BX) + (SI) DS
00 001 (BX) + (DI) DS
00 010 (BP) + (SI) SS
00 011 (BP) + (DI) SS
00 100 (SI) DS
00 101 (DI) DS
00 110 DISP16 (DIRECT ADDRESS) DS
00 111 (BX) DS
01 000 (BX) + (SI) + DISP8 DS
01 001 (BX) + (DI) + DISP8 DS
01 010 (BP) + (SI) + DISP8 SS
01 011 (BP) + (DI) + DISP8 SS
01 100 (SI) + DISP8 DS
01 101 (DI) + DISP8 DS
01 110 (BP)+DISP8 SS
01 111 (BX)+ DISP8 DS
10 000 (BX)+(SI)+DISP16 DS
10 001 (BX)+(DI)+DiSP16 DS
10 010 (BP)+(SI)+DISP16 SS
10 011 (BP)+(DI)+DISP16 SS
10 100 (SI)+DISP16 DS
10 101 (DI)+DISP16 DS
10 110 (BP)+DISP16 SS
10 111 (BX) + DISP16 DS
11 000 REG AX I AL
11 001 REG CX I CL
11 010 REG DX I DL
11 011 REGBX/BL
11 100 REG SP I AH
11 101 REGBP/CH
11 110 REG SII DH
11 111 REG DII BH

FLAGS REGISTER CONTAINS:

X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

ASM86

ASM86 Instructions in Hexadecimal Order

*The marked encodings are NOT generated by the language translators. If however,
the 8087 encounters one of these encodings in the instruction stream, it will execute
it as follows:

(1) FSTP ST(i)

(2) FCOM ST(i)

(3) FCOMP ST(i)

(4) FXCH ST(i)

(5) FCOMP ST(i)

(6) FFREE ST(i) and pop stack

(7) FXCH ST(i)

(8) FSTP ST(i)

(9) FSTP ST(i)

IAPX 86/88/186 INSTRUCTION SET MATRIX

Hi Lo Hi Lo

A

B

c

o

ADC
b.f.r/m

AND
b.f.r/m

XOR
b.f.r/m

INC
AX

PUSH
AX

JO

Immed
b.r/m

ADC
w.f.r/m

AND
w.f.r/m

XOR
w.f.r/m

INC
CX

PUSH
CX

JNO

ADC ADC ADC ADC PUSH
b.t.r/m w.t.r/m b.i w.i SS

POP
SS

·+··.-----i
AND AND AND AND SEG

b.t.r/m w.t.r/m b.i w.i ES DAA
··~r---·-+---·_r-----~

XOR XOR XOR XOR SEG AAA
b.t.r/m w.t.r/m b.i w.i SS -+--_._ _+

INC INC INC INC INC INC
DX BX SP BP SI DI

----r-----~----+- ----~--------i

PUSH PUSH PUSH PUSH PUSH PUSH
DX BX SI' BP SI DI

-----4-------~·----+-----_+-----i

JBI JNBI JEI JNEI JBEI JNBEI
JNAE JAE JZ JNZ JNA JA

"--"+---"--i
Immed Immed Immed TEST TEST XCHG XCHG
w.r/m b.r/m is.r/m b.r/m w.r/m b.r/m w.r/m

NOP XCHG XCHG XCHG XCHG XCHG XCHG XCHG
CX DX BX SF' BP SI DI

.--+----.---_l
MOV MOV MOV MOV MOVS MOVS CMPS CMPS

m-AL m-AX AL-m AX-m b w b w
~------+---.-.-.. +- -.-+ -- .. ----~--.--~----+-----~-----__1

MOV MOV MOV MOV MOV MOV MOV MOV
i -+ AL i - CL i - DL i .. BL i - AH i - CH i - DH i .. BH

LOCK REP

RET

Shift
W.V

JCXZ

REP
Z

-+---- ---+ · .. -·· ·· .. --f-·--+---·----;

LES

AAM

IN
b

HLT

LDS

AAD

IN
w

CMC

MOV MOV
b.i.r/m w.i.r/m

OUT
b.

Grp1
b.r/m

XLAT

OUT
w

Grp 1
w.r/m

where

= 186 only instruction

A

c

D

SBB SBB SBB SBB
b.f.r/m w.f.r/m w.t.r/m b.i

SUB SUB SUB SUB SUB
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i

CMP CMP CMP CMP CMP
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i

DEC DEC DEC DEC DEC
AX CX DX BX SP

POP POP POP POP POP
AX CX DX BX SP

MOV MOV MOV MOV MOV
b.f.r/m w.f.r/m b.t.r/m w.t.r/m sr.f.r/m

CBW CWD CALL WAIT PUSHF
i.d

TEST TEST STOS STOS LODS

SBB
w.i

SUB
w.i

CMP
w.i

DEC
BP

POP
BP

LEA

POPF

LODS
w

MOV
~-b~,i--~-w--.i __ _l----b---~---w----+-- b

MOV MOV MOV MOV MOV
i-AX i .. ex i - DX i .. BX i - SP i - BP
~~--1~==~-----1------1-------+

INT

----' __ -'--1 ____ .--j~'-'-----+-(.AnJL.

PUSH
DS

SEG
CS

SEG
DS

DEC
SI

POP
SI

MOV
sr.t.r/m

SAHF

SCAS
b

MOV
i- SI

INTO

F

POP
DS

DAS

AAS

DEC
DI

POP
DI

JG

POP
rim

LAHF

SCAS
w

MOV
i - DI

IRET

ESC ESC ESC ESC ESC ESC ESC
o 1 2 4 5 6 7

r--~---_+--- 1····----1-------+---····-~------~---__1
CALL JMP JMP JMP IN IN OUT OUT

d d i.d si.d v.b V.W v.d v.w

CLC STC CLI STI CLD STD ~~j~

~ byte operation
~ direct
~ from CPU reg
~ immediate

ia ~ immed. to accum.
ib ~ immediate byte
id ~ indirect
is ~ immed. byte sign ext.
iw ~ immediate word
I ~ long ie. intersegment
m ~ memory
r ~ register
rim ~ EA is second byte
si ~ short intrasegment
sr ~ segment register
t ~ to CPU reg
v ~ variable
w ~ word operation

~ zero

Grp 2
w.r/m

E-9

• (R) r-- APPENDIX F n ~ ____________ E_X_A_M_P_L_E __ M_A_C_R_O_S~

This appendix presents some example macros. These macros are designed to support
the writing of ASM86 routines that will be linked to other modules for the SMALL
model of computation (see An Introduction to ASM86). The intent here is not to
show the full power of MPL. Instead, it is to demonstrate a practical use for macros
in a common programming situation.

These macros could be built into an include file. If you were developing a large set of
ASM86 modules, you could use this include file at the beginning of each of your
modules to define a common interface betwet:n the modules (in this case SMALL).
Similar sets of macros could be defined to support other models of computation.

;A SET OF MACROS TO SUPPORT THE SMALL MODEL OF COMPUTATION
;TO BE USED AS AN INCLUDE FILE

$NOLIST

;THIS MACRO WILL GENERATE A PUBLIC SEGMENT STATEMENT WITH
;A NAME AS A PARAMETER

%*DEFINE (SEG(NAME» (%NAME SEGMENT PUBLIC '%NAME')

;THESE MACROS ARE USED TO GENERATE THE SEGMENT DIRECTIVES
;FOR THE SMALL MODEL

;CODE SEGMENT

%*DEFINE (CSEG) (%SEG(CODE»

%*DEFINE (CEND) (CODE ENDS)

;DATA SEGMENT

%*DEFINE (DSEG) (%SEG(DATA»

%*DEFINE (DEND) (DATA ENDS)

;CONST SEGMENT

%*DEFINE (CONSEG) (%SEG(CONST»

%*DEFINE (CONEND) (CONST ENDS)

;MEMORY SEGMENT

%*DEFINE (MEMSEG) (MEMORY SEGMENT MEMORY 'MEMORY')

%*DEFINE (MEMEND) (MEMORY ENDS)

;THIS MACRO WILL DEFINE A STACK SEGMENT. THE NUMBER OF
;WORDS TO RESERVE FOR THE STACK IS PASSED AS A PARAMETER.

%*DEFINE (STACKSEG(LENGTH» (STACK SEGMENT STACK 'STACK'

OW %LENGTH DUP (?)

F-l

Example Macros

F-2

STACK ENDS)

;THE FOLLOWING MACRO WILL GENERATE THE CODE TO INITIALIZE
;A SEGMENT REGISTER. IT WILL USE THE AX REGISTER.

%*DEFINE (INIT(SEGREG, SEGBASE» (MOVE AX, %SEGBASE
MOV %SEGREG, AX)

;THE FOLLOWING MACROS GENERATE THE PROLOGS AND EPILOGS USED
;AT THE BEGINNING AND ENDINGS OF PROCS.

%*DEFINE (PROLOG) (PUSH BP
MOV BP, SP

)

;NO PARAMETERS

%*DEFINE (EPILOG) (POP BP
RET

)

;PARAMETERS TO BE POPPED OFF THE STACK

%*DEFINE (EPI(PARMBYTECOUNT» (POP BP
RET %PARMBYTECOUNT

$LIST

;GROUP DECLARATIONS FOR THE SMALL MODEL

CGROUP GROUP CODE

DGROUP GROUP DATA, CONST, STACK, MEMORY

ASSUME CS:CGROUP, DS:DGROUP, SS:DGROUP, ES:DGROUP

;END OF INCLUDE FILE

The following is an example source file that uses these macros.

;AN EXAMPLE SOURCE FILE USING THE SMALL MODEL MACRO
;INCLUDE FILE

$INCLUDE SMALL.LIB

%DSEG

;some data

%DEND

%CONSEG

;constant definitions

%CONEND

;reserve 10 words of stack

%STACKSEG(10)

ASM86

ASM86 Example Macros

%CSEG

APROC PROC NEAR
%PROLOG

icode goes here

%EPILOG
APROC ENDP

XPROC PROC NEAR
%PROLOG

icode goes here

%EPI (6) iPOP 6 bytes of parameters
XPROC ENDP

%CEND

END

The above source module would expand to the following form:

iAN EXAMPLE SOURCE FILE USING THE SMALL MODEL MACRO
iINCLUDE FILE

$INCLUDE SMALL.LIB

iA SET OF MACROS TO SUPPORT THE SMALL MODEL OF COMPUTATION
iTO BE USED AS AN INCLUDE FILE

$NOLIST

iGROUP DECLARATIONS FOR THE SMALL MODEL

CGROUP GROUP CODE

DGROUP GROUP DATA, CONST, STACK, MEMORY

ASSUME CS:CGROUP, DS:DGROUP, SS:DGROUP, ES:DGROUP

iEND OF INCLUDE FILE

DATA SEGMENT PUBLIC 'DATA'

isome data

DATA ENDS

CONST SEGMENT PUBLIC 'CONST'

iconstant definitions

CONST ENDS

F-3

Example Macros ASM86

;reserve 10 words of stack

STACK SEGMENT STACK 'STACK'

OW 10 DUP (?)

STACK ENDS

CODE SEGMENT PUBLIC 'CODE'

APROC PROC NEAR
PUSH BP
MOV B P, SP

;code goes here

POP BP
RET

APROC ENDP

XPROC PROC NEAR
PUSH BP
MOV B P, SP

;code goes here

POP BP ;pop 6 bytes of parameters
RET 6

XPROC ENDP

CODE ENDS

END

F-4

• (R) ~ APPENDIX G n ~ __________ E_X_A_M_P_L_E __ P_R_O_G_R_A_M_S~

In this Appendix., several sample programs are presented, each with several
solutions.

The first two examples illustrate transferring control to one of eight routines,
depending on which bit of the accumulator has been set to 1 (by earlier instructions,
not shown).

Examples 3, 4, and 5 discuss additional methods of passing data and parameters to
procedures, illustrating the use of both the registers and the stack for passing
parameters. Examples 6 and 7 cover multibyte addition and subtraction. Interrupt
procedures and timing loops are described in examples 8 and 9. Examples 10-13
illustrate input/ output control.

The 8086 code examples given here are not optimal, and the presentation is not an
attempt at an exhaustive and complete overview of the language. These examples are
presented more as a gradual method of building familiarity, perhaps suggestive of
further improvements, rather than as ideal, finished models. Some instruction usage
is not introduced until the need for it has been suggested by the discussion of prior
code.

Examples 1 and 2

Consider a program that executes one of eight routines depending on which bit of
the accumulator is set:

Jump to routine 1 if the accumulator holds 00000001
Jump to routine 2 if the accumulator holds 00000010
Jump to routine 3 if the accumulator holds 00000100
Jump to routine 4 if the accumulator holds 00001000
Jump to routine 5 if the accumulator holds 00010000
Jump to routine 6 if the accumulator holds 00100000
Jump to routine 7 if ttle accumulator holds 01000000
Jump to routine 8 if the accumulator holds 10000000

MAIN PROGRAM BRANCH TABLE
PROGRAM

JUMP
ROUTINES

(normal procedure return sequence not provided by branch table program)

Example 1 below is a routine which transfers control to one of the eight possible pro
cedures depending on which bit of the accumulator is 1.

It moves the low··order bit of the accumulator into a flag register to find the one
signalling the correct routine, and then transfers based on that flag. This routine
uses seven instructions, including a test to prevent an infinite loop and an indirect
transfer via register BX.

Example 2 achieves the same transfer using a different technique for selecting the
appropriate address. It shifts the high-order bit of AL, and uses register SI as an
index into the branch table.

Each example contains comments, and is followed by a brief explanation.

G-l

Example Programs ASM86

G-2

Example 1:

BRANCH ADDRESSES SEGMENT
- BRANCH_TABLE_1 DW

DW
DW
DW
DW
DW
DW
DW

ROUTINE 1
ROUTINE-2
ROUTINE-3
ROUTINE-4
ROUTINE-S
ROUTINE-6
ROUTINE-7
ROUTINE=8

BRANCH_ADDRESSES ENDS

PROCEDURE_SELECT SEGMENT

&

L:

ASSUME CS:PROCEDURE_SELECT,
DS:BRANCH_ADDRESSES

MOV BX,BRANCH_ADDRESSES
MOV DS,BX ;moves above segment

;base-address into
;segment register DS.

CMP AL,O ;this test assures that
JE CONTINUE MAIN LINE ;some bit of AL has been

;set by-earlTer instructions to specify
;a routine (prior insts. not shown).

LEA BX,BRANCH_TABLE_1

SHR AL,1

JMP WORD PTR [BX]

JMP L

;BX set to location holding
;address of first routine.
;puts least-significant bit
;of AL into the carry flag
; (CF).
;if CF = a, the ON bit
;in AL has not yet
;been found.
;if CF = 1, then control
;is transferred (see
;explanation below).

;if no transfer, then
;the bit that is ON has
;not yet been found, so
;BX is set to point to
;the next entry in the
;address-table, by adding 2.
;jump to L to shift
;and retest

CONTINUE_MAIN LINE: ;we reach here only
;if no bit was set to
;indicate a desired
;routine

ASM86 Example Programs

PROCEDURE_SELECT ENDS

The line after "L:", JNC NOT_YET, reads "jump if no carry", which means
jump if CF = O. This will skip over the next line's transfer if the" 1" bit, signalling
the desired procedure, has not yet appeared. If it has been found, CF will be 1 and
this conditional jump JNC will be skipped. The appropriate procedure is then
reached by the indirect jump instruction JMP WORD PTR [BX].

A jump is always to an address in the code segment, i.e., relative to CS. The offset
defining that address in the code segment is not given explicitly here. Instead, an
indirect JMP is used, with [BX] given as a pointer to the memory location where that
offset is stored.

Register BX as used here within square brackets automatically refers to the contents
of a location in the data segment. The contents of that location are the desired offset
for the jump. In other words, the Instruction Pointer is replaced by the contents of a
location in the data segment, whose offset is in BX. The next instruction, ADD BX,
TYPE BRANCH __ T ABLE_I, adds 2 to BX, the index into the branch table. This
causes BX to point to the next word of the table. The contents of that word are the
offset of the "next" routine, again in the code segment.

Example 2:

BRANCH ADDRESSES
BRANCH_TABLE

SEGMENT
1 DW

DW
DW
DW
DW
DW
DW
DW

ROUTINE 1
ROUTINE-2
ROUTINE-3
ROUTINE-4
ROUTINE-S
ROUTINE-6
ROUTINE-7
ROUTINE=8

BRANCH_ADDRESSES ENDS
PROCEDURE_SELECT SEGMENT

ASSUME CS:PROCEDURE SELECT,
& DS:BRANCH_AD~RESSES

L:

MOV
MOV

L.EA

MOV

MOV

SHL

JNC

JMP

BX,BRANCH ADDRESSES
DS,BX -

BX,BRANCH_TABLE_1

SI,7*TYPE BRANCH_TABLE

CX,8

A L , 1

NOT YET

WORD PTR [BX][SI]

ibase-address of
isegment containing
ilists
ibase-address of list
iof branch addresses
ipoints initially to
i last such ent ry
iin list
i loop-counter allowing
;8 shifts maximum
ishifts high-order
iAL bit into CF
iif CF = 0, routine
irepresented by that
ibit not desired
iif CF = 1, transfer
ito procedure
irepresented by most
irecent bit tested

0-3

Example Programs ASM86

G-4

NOT VET: SUB SI,TVPE BRANCH TABLE 1

LOOP L

CONTINUE MAIN LINE:

ROUTINE 1:

ROUTINE 2:

ROUTINE 3:

PROCEDURE SELECT ENDS

;adjust index register
;to point to I Inext l I
;branch-address
;decrement CX, if
;CX > 0, transfer to
;L so as to shift
;AL and retest
;we reach here onLy
;if no bit was set
;to indicate a
;desi red routine

In Example 2 several elements have changed, though the net result is the same.
Instead of being incremented, BX stays constant, pointing to the beginning of the
list of branch addresses. SI is used as an index (subscript) within that list.

The number of shifts is controlled by the count register CX, which the LOOP
instruction automatically decrements after each iteration. The accumulator AL is
searched from its most-significant-bit using the shift-left instruction (SHL) instead
of SHR. This accounts for the initialization of SI to 14, pointing initially to the last
branch-address in the list, 14 bytes past the base-address in BX. SI is subsequently
decremented in each iteration just as Example 1 's BX was incremented.

The instruction JMP WORD PTR [BX][SI] uses the sum of BX and SI just as Exam
ple 1 used BX alone. That is, the sum gives the offset of a word in the data segment,
and the contents of that word replaces the IP. The next instruction executed is thus
the one whose code-segment offset was stored in the branch table.

If more than 1 bit were set in AL, these two examples would select different routines
due to selecting the rightmost or leftmost such bit.

Transferring Data to Procedures

The data on which a procedure performs its operations may be made available in
registers or memory locations. In many applications, however, reserving registers
for this purpose can be inconvenient to the system flow of control and uneconomical
in execution time, requiring frequent register saves and restores.

Reserving memory, on the other hand, can be uneconomical of space, especially if
such data is needed only temporarily. It is often preferable to use and reuse a special
area called a stack, storing and deleting interim data and parameters as needed.

Regardless of the method used to pass data to procedures, a stack will be necessary
and useful. The CALL instruction uses the stack to save the return address. The
RET instruction expects the return address to be on the stack. The stack is also
usually used to save the caller's register values at the beginning of a procedure.
Then, just before the procedure returns to the caller, these values can be restored.

ASM86 Example Programs

Example 3 shows the use of memory to pass parameters. Registers are used for this
in Example 4. Example 5 uses a stack.

One way to use memory to pass data is to place the required elements (called a
parameter list) in some data area. You then pass the first address of this area to the
procedure.

For example, the following procedure, ADSUB, expects the address of a three-byte
parameter list in the SI register. It adds the first and second bytes of the list, and
stores the result in the third byte of the list.

The first time ADSUB is called, at label CALLI, it loads the accumulator from
PLIST, adds the value from the next byte and stores the result in PLIST+2. Return
is then made to the instruction at RETI.

AFTER first call to ADSUB:

[ADsu.j
51 06 PLl5T

06 PLl5T+ 1

14 PLIST+2

The second time ADSUB is called, at label CALL2, the prior instruction has caused
the SI register to point to the parameter list LIST2. The accumulator is loaded with
10, 35 is added, and the sum is stored at LIST2 + 2. Return is then made to the
instruction at RET2.

Example 3:

PARAMS SEGMENT

PLIST DB 6
DB 8
DB ?

LIST2 DB 1 a
DB 35
DB ?

PARAMS ENDS

STACK SEGMENT
DW 1+ DUP (?)

STACK TOP LABEL WORD
STACK ENDS

ADDING
ASSUME

START:

SEGMENT
CS:ADDING,

MOV
MOV
MOV
MOV

DS:PARAMS, SS:STACK

AX,PARAMS
DS,AX
AX,STACK
SS,AX

;initialize DS

;initialize SS

G-5

Example Programs

0-6

CALL1:
RET 1 :

CALL2:
RET2:

ADSUB

ADSUB

MOV
MOV
CALL

LEA
CALL

PROC
MOV
ADD
MOV
RET
ENDP

ADDING ENDS
END START

SP,OFFSET STACK TOP ;initialize SP
SI,OFFSET PLIST-
ADSUB

SI,LIST2
ADSUB

AL,[SIJ
AL,[SI+1J
[SI+2J,AL

iget 1st parameter
;add 2nd parameter
;store result in
;3rd parameter

The instructions just prior to each CALL load the SI register with the offset of the
first parameter to be added. The MOV statement prior to CALLI makes use of the
OFFSET operator (discussed in Chapter 4). If this operator were omitted, SI would
receive the contents of PLIST instead of its offset. The LEA instruction prior to
CALL2 automatically puts the offset of its source (2nd operand) into the register
destination (1 st operand). The MOV statement is more efficient, but may only be
used if just the offset is being loaded into the register. If the address involves an
indexing register (e.g., PLIST [SI + 1]), then the LEA should be used, since this will
add the contents of the SI, 1, and the offset of PLIST, putting the sum in the
destination register.

A More General Solution

The approach used in Example 3 has its limitations, however. As coded, ADSUB
will process a list of two and only two numbers to be added, and they must be con
tiguous in memory. Suppose you wanted a subroutine (GENAD) which would add
an array containing an arbitrary number of bytes, located anywhere in memory, and
leave the sum in the accumulator.

CALL to GENAD:

EJ BX I
r::l
L::J

.. PARM1

PARM2

PARM3

PARM4

ASM86

ASM86 Example Programs

Example 4 below shows how this process can be written in ASM86. GENAD returns
the sum in the accumulator. It receives the address of the array in the BX register,
and the number of array elements in ex.

Example 4:

INITIAL PARAMETERS SEGMENT
RESULT - DB 0
PARM DB 6, 82, 13, 16

INITIAL_PARAMETERS ENDS

GENERAL PROCEDURES SEGMENT
- ASSUME CS:generaL_procedures DS:initiaL_parameters

;The procedure is pLaced first, to avoid forward
;referencing the FAR procedure GENAD. Note that the
;program ;start address is after the procedure, at LabeL
;"START2.

GENAD

I NIT:

MORE?:

PROC FAR
PUSH SI

MOV AL, 0
MOV SI, 0

;save current vaLue of SI on the
;stack (discussed beLow), so that
;this routine can use this
;register freeLy, restoring its
;originaL contents just prior
;to returning controL to
;caLLing routine.
; i nit i aLi z e A L tor e c e i ve sum.
;initiaLize SI to point to first
;array eLement

ADD AL, [BX][SI] ;add next array eLement to sum.
;BX points to the start of the
;array, and SI selects an eLement
;of the array.

INC S I

LOOP MORE?

POP SI
RET

;have SI index the next
;array element.
;continue looping unti l CX is
;zero (all array elements have
;been added into AL)

;restore original contents of SI.
;transfer to instruction
; i mmed i ate l y f 0 l Low i n 9 CAL L .

GENAD ENDP

;Program execution starts here (due to the label "start"
;na~ed on the END directive below). Point OS to the
;INITIAL_PARAMETERS segment, and call GENAD with the array
;PARM.

G-7

Example Programs

G-8

START: MOV AX, INITIAL PARAMETERS
MOV OS, AX

MOV CX, SIZE PARM

MOV ex, OFFSET PARM

CALL GENAD
MOV RESULT, AL

;number of elements is
;passed in CX
;address of array PARM is
;passed in ex.

;Sum is returned in AL

HLT
GENERAL PROCEDURES

END START

;******* end of program *******
ENDS

In GENAD, the first action is to save (PUSH) onto the stack the current value of SI
before using it. Just before the RETurn, this value is restored (via POP). Thus this
procedure does not destroy the status of registers (except AL and CX) possibly relied
upon by the calling routine. Stacks are discussed in Chapter 4. Further examples
appear below.

The routine does not explicitly save the value of CS because the CALL and RETurn
save CS on the stack and restore it automatically. The accumulator AL is here
expected to be usable without saving its pre-CALL contents. Using AL, the sum is
modulo 256.

The FAR type declaration on the PROC statement forces the use of "long" CALLs
to and RETurns from this procedure. This means the procedure is not expected to be
in the same segment as all of the CALLs to it. In a "long" CALL the contents of CS
are PUSHed onto the stack first, then the IP is PUSHed onto the stack. (This allows
an eventual return to the next sequential instruction.) Control is then transferred to
the procedure by first moving into CS the segment base address for the procedure,
and then replacing the contents of IP with the offset of the procedure in that seg
ment. A "long" RETurn reverses this process by POPping the former IP contents
back off the stack into IP, and then POPping the former CS contents off the stack
back into CS.

Within the inner body of GENAD, the statement

MOV AL,O

initializes the sum to zero. The statement

MOV SI,O

initializes SI to zero, to index the first element of the passed array.

The first statement in the loop

ADD AL, [eX] [SI]

adds the array element indexed by SI into the sum in the accumulator (recall that the
BX register points to the parameter array). In the next statement (INC SI), the array
index in SI is incremented to point to the next array element. The last statement in
the loop

LOOP MORE?

executes the loop repeatedly until the count in CX (passed in as a parameter) is
exhausted.

ASM86

ASM86 Example Programs

Using a Stack

Passing parameters on the stack offers different advantages than passing them in
registers. Passing parameters in registers is faster, but more complicated. The con
ventions as to which parameter should end up in which register can be confusing,
especially if there are many procedures.

For parameters passed on the stack, the convention need only specify the order they
should be pushed onto the stack. High level language compilers (e.g., PL/M-86)
generate code which passes parameters on the stack. Therefore, any procedure
which expects its parameters on the stack is callable from PL/M (see Appendix B of
the Operator's Guide for more details). The 8086 also offers special instructions to
facilitate using the stack for passing parameters. The RET instruction has an
optional byte count (e.g., RET 4), which says how many bytes should be popped off
the stack in addition to the return address. This makes returning from procedures
very easy. Moreover, since the BP indexing-register uses the SS segment by default,
it is very economical to use BP to reference data near the top of the stack.

Use of stacks may require some further introduction. A stack segment is expected to
be used relative to the contents of the stack-segment register SS, just as a code seg
ment uses CS and data segments use DS or ES. The stack segment below is defined
for use in this discussion and the examples.

PARAMS PASS SEGMENT STACK
DW 12 DUP (0)

LAST WORD LABEL WORD
PARAMS PASS ENDS

Four instructions use a stack in predefined ways: PUSH, CALL, POP, and
RETurn. They automatically use the stack pointer SP as an offset to the segment
base-address in SS. One of your first actions in a module which will use a stack must
be to initialize SS and SP. e.g.,

MOV AX,PARAMS_PASS
MOV SS,AX
MOV SP, OFFSET LAST_WORD

This use of LAST _WORD is critically important due to the built-in actions of the
four instructions named above.

The first two, PUSH and CALL, store additional words on the stack by decrement
ing SP by 2. Thus the stack "grows downward" from the last word in the stack seg
ment toward the segment-base-address lower in memory. Each successive address
used for new data on the stack is a lower number. The location pointed to by SP is
called the Top Of Stack (TOS). When a word is stored on the stack, e.g., by the
instruction

PUSH SOURCE DATA

SP is decremented by 2 and the source data is moved onto the stack at the new offset
now in SP. As described above in Example 4, CALL implicitly uses PUSH before
transferring control to a procedure.

The instruction

POP DESTINATION

takes the word at the "top-of-stack", i.e., pointed at by SP, and moves that word
into the specified destination. POP also then automatically adds 2 to SP. This
causes SP to point to the next higher-addressed word in the stack segment, farther
from the segment's base-address. The figures accompanying the examples below
show the expansion and contraction of a stack.

G-9

Example Programs ASM86

G-lO

Example 5 below illustrates the use of a stack to pass the number of byte parameters
plus the address of the first one. For this example all the parameters are expected in
successive bytes after that one.

Supplying the Number of Parameters and the First Address,
On the Stack

Example 5:

fi rst DB
second DB
thi rd DB
result DX
data_items

SEGMENT STACK
DW 12 DUP (?)

LABEL WORD

ENDS

SEGMENT

11, 22,33,44, 55,66
4, 5, 6
94, 88
?

ENDS

stk_usage_xmpl SEGMENT

;reserve 12 words of
;stack space
; last word is the
;offset of top of
;stack

ASSUME C S : stk_usage_xmpl, DS: data_items,

genaddr PROC FAR

PUSH BP ;save old copy of BP
PUSH BP, SP ;move tos to BP (see

;figure 4)
PUSH BX ;save BX, so ok to use

;genaddr
PUSH ex ;save CX, so ok to use

;genaddr (figure 5)
MOV ex, [BP + 8] ;get count of number of

; i n array

SS:params_1

BX in

ex in

bytes

MOV BX, [BP + 1 0] ;get address of array of
;bytes

MOV AX, 0 ;AX : = O. AX holds running
;sum in adder loop.

adder: ADD A L, [B X] ;add in the fir s t byte
ADe AH, 0 ;and add any carry into A H.
INC BX ;point to next byte to be

;added in.
LOOP adder ;CX : = ex - 1 ; I F ex <> 0 THEN

;GOTO ADDER;

POP CX ;The registers must be
; restored in the

POP BX ;reverse order they were
;pushed.

POP BP
RET 4 ; ret urn, popping off the 2

;WORD parameters

ASM86 Example Programs

genaddr ENOP

stk_usage_xmpl ENDS

caller SEGMENT
ASSUME CS: caller, OS: data_items, SS: params_pass

start:

caller

MOV

MOV
MOV

MOV
MOV

MOV

PUSH
MOV

PUSH
CALL

MOV

MOV
PUSH
MOV
PUSH

AX, data - items

OS, AX
AX, params_pass

S S , AX
SP, OFFSET last word

AX, OFFSET fir s t

AX
AX, SIZE fir s t

AX
genaddr

result,AX

AX, OFFSET second
AX
AX, SIZE second
AX

CALL genaddr
MOV result,AX

MOV AX, OFFSET thi rd
PUSH AX
MOV AX, SIZE thi rd

PUSH AX
CALL. genaddr
MOV result,AX

H L T
ENDS
END start

;paragraph number of
;data segment to AX
;and then to OS.
;paragraph number of
;stack segment to AX
;and then to SS
;offset of the
;stack_top to the SP

;offset of fir s t to
;AX
;then onto the stack
;number of bytes i n
;first array to AX
;then onto the stack
; Cal l the far
;procedure

;same as above except
idoing second

isame as above except
;doing third

To indicate why each register was saved, the above code has each PUSH placed just
prior to the first local use of that register. Earlier examples clustered those PUSHes
at the top of the routine, just as the POPs appear (in reverse order) at the end. This
makes it easy to see the proper order of saving and restoring. In either case you must
consider carefully where the parameters are relative to the pointer you are using,
e.g., BP. Making your own diagrams can help.

0-11

Example Programs

G-12

Note that the RET instruction of "genaddr" is a RET 4; the two parameters are
popped off the stack as the RETurn is executed. Without the 4, this 12 word stack
named "P ARAMS_PASS" could only be used three times. The fourth call would
cause two words outside that segment to be clobbered.

This is why: prior to each call the parameter words are pushed onto the stack. Then
each call uses two words of the stack to store the return address. Each execution of
the procedure pushes three more words onto the stack to preserve register values.
These last five words are popped off by the procedure's end and return, but those
first two parameters would remain.

Multibyte Addition and Subtraction

The carry flag and the ADC (add with carry) instructions may be used to add
unsigned data quantities of arbitrary length. Consider the following addition of two
three-byte unsigned hexadecimal numbers:

32AF8A

+84BA90

B76A1A

To perform this addition, you can use ADD or ADC to add the low-order byte of
each number. ADD sets the carry flag for use in subsequent instructions, but does
not include the carry flag in the addition.

Step 3

32
84

B7

carry=1

Step 2

AF
BA

6A

carry=1

Step 1

8A

90

1A

The routine below performs this multibyte addition, making these assumptions:

The numbers to be added are stored from low-order byte to high-order byte begin
ning at memory locations FIRST and SECOND, respectively.

The result will be stored from low-order byte to high-order byte beginning at
memory location FIRST, replacing the original contents of these locations~

MEMORY BEFORE

FIRST + SECON 0 + CF

8A +

AF +

32 +

90

BA

84

+ 0 = 1A

+ = 6A

+ 1 = B7

MEMORY AFTER

FIRST SECON 0

1A

6A

B7

90

BA

84

The routine uses an ADC instruction to add the low-order bytes of the operands.
This could cause the result to be high by one if the carry flag were left set by some
previous instruction. This routine avoids the problem by clearing the carry flag with
the CLC instruction just before LOOPER.

Since none of the instructions in the program loop affect the carry flag except ADC,
the addition with carry will proceed correctly.

ASM86

ASM86 Example Programs

MULTI_TWO

ASSUME
&

START:

SEGMENT

CS:MULTI TWO,
DS:ADD_DATA_2

MOV AX,ADD DATA 2
MOV DS,AX - -

;The routine determines which number is Longer and stores
;the resuLt there. The size in bytes of the smaLLer number
icontroLs LOOP1, i.e., where both numbers do have a byte
;of data to be added.
iThe difference in size controLs LOOP2, which is needed if
ithere is a finaL carry.

MOV AX, NUM2

LEA BX, SECOND

LEA BP, FIRST

CMP AX, NUM1
JGE NUM2 BIGGER

XCHG AX,

XCHG AX,

XCHG BX,

NUM1

NUM2

BP

NUM2_BIGGE-R:MOV C X, NUM2
SUB C X, N UM1

MOV NUM2, CX
MOV C X, NUM1

C L C

MOV S I , 0

LOOP1 : MOV A L, OS: [B P]

ADC [B X] [S I , AL

[S I]

;InitiaLLy assume NUM2
;Larger, and
;give BX address of
; Longer number,
iBP address of shorter
;number.

;Check assumption.
;continue with vaLues
;as they are unLess N2
i> N 1 •

;Switch NUM2 and NUM1,
;exchanging
;through AL NUM2 now <
iNUM1.

iMust aLso now switch
;addresses referred to,
;so that number of
;bytes stiLL
icorresponds with
;correct number,
;and sum goes
ito Longer pLace.

;NUM2 now gets
;difference

;of sizes. Use smaLLer
;number of bytes for
;centraL add.
iCLear carry of
;possibLe prior
;setting
;InitiaLize index to
;bytes of addends. Then
;SI=SI+1.
;Get byte of shorter
;number.

;Add it to reLevant
;byte of

G-13

Example Programs

G-14

INC SI

LOOP LOOP1

MOV CX, NUM2

LOOP2: JNB DONE

ADC BYTE PTR [B X J

INC S I

LOOP LOOP2
DONE:

ENDS
END START

[SIJ,O

;Longer number. Then
;SI=SI+1

;Number of bytes yet
;unused in longer
;number.

; I f no carry, CF=O,
; then don e .
;Add carry to remaining
;bytes
; 0 f longer number. Then
;SI=SI+1.

With some additional instructions, this same routine will do arithmetic for packed
decimal numbers. Packed-decimal means the 8 bits of each byte are interpreted as 2
decimal digits, e.g., 01100111B would mean 67 decimal instead of 67 hexadecimal
(103 decimal).

Below is the core of an 8086 routine to do decimal subtraction for packed-decimal
numbers.

Example 7:

MOV S I , 0
MOV C X, NUMBYTES
C L C

MORE?: MOV A L, FIRST [SIJ
SBB A L, SECOND [SIJ
DAS
MOV SECOND [SIJ, AL
INC S I
LOOP MORE?

Interrupt Procedures

Example 8:

;The following illustrates the use of interrupt procedures
;for the 8086. The code sets up six interrupt procedures
;for a hypothetical 8086 system involved in some type of
;process control application. There are 4 sensing devices
;and two alarm devices, each of which can supply external
;interrupts to the 8086. The different interrupt-handling
;procedures shown below are arbitrary, that is, the events
;and responses described are not inherent in the 8086 but

ASM86

ASM86 Example Programs

;rather in this hypothetical control application. The
;procedures merely illustrate the diverse possibi lities
;for handling situations of varying importance and
;urgency.

ASSUME CS:INTERRUPT_PROCEDURES, DS:DATA VAR

DEVICE 1 PORT
DEVICE-2-PORT
DEVICE-3-PORT
DEVICE=4=PORT
WARNING LIGHTS
CONTROL=1

EQU
EQU
EQU
EQU
EQU
EQU
EXTRN

OFOOOH
OF002H
OF004H
OF006H
OEOOOH
OE008H
CONVERT VALUE:FAR
;Positioning this EXTRN here indicates
;that CONVERT VALUE is outside of
;all segments-in this module.

INTERRUPT PROC TABLE SEGMENT BYTE AT 0
- -ORG 08H

DO ALARM 1 ;non-maskable interrupt
type 2

;One 64K area of memory contains pointers to the routines
;that handle interrupts. This area begins at absolute
;address zero. The address for the routine appropriate
;to each interrupt type is expected as the contents of the
;double word whose address is 4 times that type. Thus the
;address for the handler of non-maskable-interrupt type 2
;is stored as the contents of absolute location 8. These
;addresses are also called interrupt vectors since they
;point to the respective procedures.
;The first 32 interrupt types (0-31) are defined or
;reserved by INTEL for present and future uses. (See the
;8086 User's Manual for more detai l.) User-interrupt type
;32 must therefore use location 128 (=80H) for its
;interrupt vector.

ORG 08H

DO ALARM 2 ;INTERRUPT TYPE
DO DEVICE 1 ;INTERRUPT TYPE
DO DEVICE-2 ;INTERRUPT TYPE
DO DEVICE-3 ;INTERRUPT TYPE
DO DEVICE=4 ;INTERRUPT TYPE

INTERRUPT_PROC TABl.E ENDS

DATA VAR

EXTRN
&
EXTRN

SEGMENT PUBLIC

INPUT 1 VAL:BYTE, OUTPUT 2 VAL:BYTE,
INPUT-3-VAL:BYTE, INPUT ~ iAL:BYTE
ALARM=FLAG: BYTE, INPUT_F"LAG: BYTE

32
33
34
35
36

;The names above are used by 1 or more of the procedures
;below, but the location or value referred to is located
;(defined) in a different module. These EXTeRNal
;references are resoLved when the modules are linked
;together, meaning aLL addresses wi II then be known.
;Declaring these EXTRNs here indicates what segment they
; are in.

DATA VAR ENDS

G-IS

Example Programs

G-16

iThe names below are defined later in this module. The
iPUBLIC directive makes their addresses avai lable for
iother modules to use.

PUBLIC ALARM 1, ALARM 2, DEVICE 1, DEVICE_2, DEVICE_3,
& DEVICE_4 - -

INTERRUPT_PROCEDURES SEGMENT

ALARM 1 PROC FAR

iThe routine for type 2, "ALARM l' I is the most drastic
ibecause this interrupt is intended to signal disastrous
iconditions such as power fai lure. It is non-maskable,
ii .e., it cannot be inhibited by the CLear Interrupts
i(CLI) instruction.

MOV
MOV
OUT
MOV
MOV
OUT
HLT

ALARM 1 ENDP

PROC

OX,
AL,
DX,AL
OX,
A L,
DX,AL

FAR

OX

WARNING LIGHTS
OFFH -

CONTROL 1
38H

WARNING LIGHTS

iturn on all Lights
,
;turn off
;machine
;stop aLL processing

PUSH
PUSH
MOV
MOV
OUT

AX
OX,
A L,
DX,AL

1 - ;turn on ~arning light #1
ito warn operator of device

MOV ALARM FLAG, OFFH
POP AX -

POP OX
IRET

ALARM_2 ENDP

DEVICE 1 PROC

PUSH
PUSH
MOV
IN
MOV

MOV

OX
AX
OX, DEVICE 1 PORT
AL,DX
INPUT_1_VAL, AL

INPUT_FLAG,2

iset aLarm flag to inhibit
; Later processes which may
;now be dangerous

;return from interrupt:
ithis restores the flags
iand returns control
ithe interrupted
iinstruction stream

iget input byte from
idevice store vaLue

;this may alert another
iroutine or device that
ithis interrupt and input
;occurred

ASM86

ASM86 Example Programs

POP AX
POP OX
IRET

DEVICE ENDP
DEVICE_2 PROC

PUSH
PUSH

OX
AX

;when this interrupt-type
;occurs, the action necessary
;is to notify device 2 port
;of the event - -

MOV
MOV
OUT
POP
POP
IRET

A L,
OX,
DX,AL
AX

OUTPUT 2 VAL ;get value, to output
DEVICE-2-PORT ;to device_2_port

OX

DEVICE 2 ENDP

DEVICE 3 PROC
- PUSH OX

PUSH AX
MOV OX, DEVICE_3_PORT
IN AL,DX
AND AL,OFH
MOV INPUT 3 VAL, AL
POP AX --

POP OX
IRET

DEVICE 3 ENDP

DEVICE_4 PROC

PUSH OX
PUSH CX
PUSH AX
MOV OX, DEVICE 4 PORT

IN AL,DX
MOV CL, PIL

CALL CONVERT VALUE
MOV INPUT 4-VAL, AL

POP AX
POP CX
POP OX
IRET

DEVICE 4 ENDP

INTERRUPT PROCEDURES ENDS

END

;when a device 3 interrupt
;occurs only the lower byte
;at the port is of value

;mask off top four bits
;store value for use
;by later routines
;in another module

ia device 4 interrupt
iprovides-a value which
;needs immediate
iconversion by another
iprocedurebefore this
;interrupt-handler can allow
iit to be used at input_4_val

iconverts input value in
iCL to new result in AL
iand saves that result in
iinput_4_val

0-17

Example Programs

G-18

Timing Loop

Example 9:

;This example is a procedure for supplying timing loops
;for a program. The amount of time delayed is set by a
;byte parameter passed in the AL register, with the amount
;of time = PARAM * 100 microseconds. This is assuming that
;the 8086 is running at 8 MHZ.

ASSUME CS:TIMER SEG

SEGMENT

PROC

DELAY LOOP: MOV CL, 78H ;shift count for supplying
SHR CL,CL ;proper del~y via SHR countdown
DEC AL ;decrement timer count
JNZ DELAY LOOP

RET
TIME ENDP
TIMER SEG ENDS

END

1/0 Routines

The examples below (10-13) illustrate the type of procedures used by the SDK86
Serial I/O Monitor to communicate with the keyboard and display units during
execution.

The first, SIO_CHAR_RDY, tests whether an input character is awaiting
processing.

The second SIO_OUT _CHAR, outputs a character unless SIO_CHAR_RDY
reports an input character is there, which is handled first.

The third, SIO_OUT __ STRING, puts out an entire string of characters, e.g., a
page heading, using SIO_OUT _CHAR for each output byte.

Example 10:

SIO CHAR_ROY PROC

PUSH BP
MOV BP, SP

MOV OX, OFFF2H
IN AL,DX
TEST A L, 2 H

JNZ READY

MOV A L, 0
POP BP
RET

NEAR

;save old value

;address of status port to OX
;input from status port
;is read-data-ready line=1,
;i .e., character pending?
;if so, return TRUE

;if not, return FALSE: AL=O
;restore old value
;done, no char waiting

ASM86

ASM86 Example Programs

READY:

MOV AL, OFFH
POP BP

;return TRUE: AL=all ones
;restore old value

RET ;done, char 'is waiting

SIO_CHAR RDY ENDP

Example 11:
The above procedure also appears in this example, which introduces names for some
of the specific numbers used above, and for some that will be used in later examples.
These names can make it easier to read the procedure and understand what is going
on, or at least what is intended.

The example also uses BX and reorders the code to save a few bytes.

TRUE
FALSE

STATUS_PORT
DATA PORT

ASCII-MASK
CONTROL S
CONTROL=Q

CARR_RET

SIO_CHAR_RDY2

RESULT:

SIO_CHAR RDY2

Example 12:
SIO_OUT_CHAR

EQU OFFH
EQU OH
EQU OFFF2H
EQU OFFFOH
EQU 7FH
EQU 1 :3 H
EQU 11 H
EQU ODH

PROC NEAR

PUSH IB X
MOV IB L , TRUE
MOV OX, STATUS
IN I~ L, 0 X
TEST A L, 2 H
JNZ RESULT
MOV IBL, FA LS E

MOV A L, BL
POP IB X
RET

EN DIP

PROC NEAR

PORT

;save old BX value
;prepare for one result
;check the facts
;char waiting???
;if 2nd bit ON, char is
;waiting hence skip over
;FALSE set-up here if 2nd
;bit was off, hence no
;char waiting
;AL receives whichever
restore old BX value

;This routine outputs an input parameter to the USART
;output port when UART is ready for output transmit
;buffer empty. The input to this routine is on the stack.

PUSH BP
MOV BP, SIP

CALL
RCR
JNB

SIO CHAR RDY
A L,-1
OUTPUT

;keyboard input pending?
;put low-byte into CF to test
;if no input char waiting from
;keyboard, go to output loop

0-19

Example Programs

G-20

CHECK:

OUTPUT:

MOV OX, DATA_PORT
IN AL,DX

AND AL, ASCII MASK
MOV CHAR, AL
CMP AL, CONTROL_S
JNZ OUTPUT

CMP
JZ

CALL
RCR
JNB

MOV
IN
AND
MOV
CMP
JNZ

JMP

CHAR, CONTROL Q
OUTPUT -

SID CHAR ROY
A L, -1 -
CHECK

OX, DATA_PORT
AL,DX
AL, ASCII MASK
CHAR, AL -
AL, CARR_RET
CHECK

NEXTCOMMAND

CONTINUE:

;char waiting: get it
;char to AL from that port
;strip off high bit, leaving
;ASCII code
;save char
;is char control-S?
;if this halt-display signal
;is not rec'd, continue
;output at OUTPUT

;if control-S rec'd, must
;await its release
;Control-Q received?
;;f this continuation-signal
;rec'd, to do next output
;keep checking for new keyboard
;input, looping from CHECK
;to here unti l input waiting

;get waiting character

,
;if char=carriage-return,
;skip this instruction, which
; loops to await control-Q, and
;go to NEXTCOMMAND

MOV
IN

OX, STATUS_PORT; loop unti l status port
AL,DX ;and transmit line indicate

T E S,
JZ

AL, 1 ;ready to put out character

MOV
MOV
OUT

POP
RET

Example 13:

OUTPUT

OX, DATA PORT
AL, [BP]-+ 4
DX,AL

BP
2

SIO_OUT_STRING PROC NEAR

;output port address to OX
;character from stack to AL
;output character in AL through

;restore original BP value
;repositions SP behind prior
;parameter

;Outputs a string stored in the' 'extra' I segment (uses ES
;as base), the string being pointed to by a 2-word pointer
;on the stack

PUSH BP
MOV BP, SP
MOV SI,O

LES BX, DWORD PTR [BP] + 4

ASM86

ASM86 Example Programs

; load ES with base address and BX with offset of string
; (addresses pushed onto stack by calling routine)

CHECK:

CMP BYTE PTR ES: [BX] [SI], a

J Z DONE

;terminator character
;is ASCII
;null = all zeroes if
;done, exit

MOV AL,BYTE PTR ES: [BX] [51] ;put next char on
PUSH AX
CALL SIO_OUT_CHAR ;stack for output by

;this called procedure

INC

JMP
DONE:

POP
RET

S I

CHECK

BP
4

;point index to next
;char

;after return, resets
;SP behind former
;parameters

(;-21

FUNCTION

DATA TRANSFER
MOV = Move:
Register to Register/Memory

Register/memory to register

Immediate to register/memory

Immediate to register

Memory to accumulator

Accumulator to memory

Register/memory to segment register

Segment register to register/memory

PUSH = Push:
Memory

Register

Segment register

POP = Pop:
Memory

Register

Segment register

:)':':"':"":~'S

XCHG = Exchange:
Register/memory with register

Register with accumulator

IN = Input from:
Fixed port

Variable port

OUT = Output to:
Fixed port

Variable port

XLAT = Translate byte to AL

LEA = Load EA to register

LDS= Load pointer to OS

LES := Load pOinter to ES

LAHF = Load AH with flags

SAHF = Store AH into flags

PUSHF = Push flags

POPF = Pop flags

APPENDIX H
186 INSTRUCTION SET SUMMARY

186
Clock Comments

FORMAT Cycles

!II]]100wl mod reg rIm I 2/12

!II]] 1 0 1 w I mod reg rim 2/9

1II.D011W mod 000 rim data I data if w ~ 1 I 12-13 8/16-bit

rr=ID w reg data dataifw~1 I 3-4 8/16-bit

IT]JJl 000 w addr-Iow addr~ 9

IT]JJl 0 0 1 w addr-Iow addr~ 8
o:::IQJ)1 110 mod 0 reg rIm 2/9

~O1100 mod 0 reg rIm 2/11

11 1 1 1 1 1 1 1 J mod 11 0 r/ml 16
10 1 0 1 0 reg I 10
I 0 0 0 reg 1 1 0 I 9

,.",. ..'.:.' ... "":'.' .•. :,. '::.:':.:, ,. ,·i.'·:'
i (lata>

..• ,',.'::,:.::::.:':" ,,: .. I':·'··'··'·'·

"::':i,': :::<."':: .. ,::. :':'.'.:\:i:·:'.::·.:::··:·.:·.:: .. " ... i:'·.:'.'·.'::. ',',',',',',.,",."., ::"
< .. , ·:·':.::·::i.' : ,i· «:,::.:.::' i\' :.::.: .. :":<:':::::::.'.: , ... ",: i·:, 'c· ":.< :'::'.::.:.

[2J]) 1 11 1 I mod 000 rim I 20

l2J:I1 1 reg] 10

@J:Ireg 11 1 I (reg +01) 8

... , ', .: .,"' .. ' .. '., "",.:, ,.: ·:···:'.:·:'':::'iii:'/:
,.,., ... ,., .. ,." ... ,." ,.,., " ,. , .. , .. ,

[TIOO11wl mod reg rIm I 4/17

I3::TI 1 0 reg I 3

[IIIOO10wl port I 10

[III0110wl 8

rIIIOO11wl port I 9

rIII0111wl 7

[IIQ101111 11

~011011 mod reg rIm I 6
[D]OO101! mod reg rIm I (mod + 11) 18

[D]OO100i mod reg rIm I (mod:# 11) 18
IT:I:§ 1 1 11 1 I 2

o::TI 1 1 11 o I 3

o::TI 1 1 1 0 o I 9

o::TI 1 1 1 0 1 I 8

Shaded areas indicate instructions not ava.ilable in iAPX 86, 88 microsystems.

H-I

Instruction Set Memory ASM86

186 INSTRUCTION SET SUMMARY (Continued)

186

FUNCTION FORMAT
Clock Comments
Cycles

ARITHMETIC
ADD = Add:
Reg/memory with register to either 10 OOOOOdwl mod reg rm I 3/10
Immediate to register,memory 11 OOOOOswl mod 000 rm I data I data if s w ~. 01 I 4/16

Immediate to accumulator 10 000010wl data I data if w - 1 I 3/4 8/16-bit

ADC = Add wfith carry:
Reg/memory with register to either 10 o 0 1 o 0 d w I mod reg rm I 3/10
Immediate to register/memory 11 OOOOOswl mod 0 10 r·m I data I data if s w c· 01 I 4/16
Immediate to accumulator 10 o 0 1 o 1 0 wi data I data If w - 1 I 3/4 8/16-bit

INC = Increment:
Register/memory 11 11 1 1 1 1 wi mod 000 rm I 3/15
Register 10 1 0 0 0 r!L] 3

SUB = Subtract:
Reg/memory and register to either 10 01010dwl mod reg rm I 3/10
Immediate from register/memory 11 OOOOOswl mod 1 01 rm I data I data If s w - 0 1 I 4/16
Immediate from accumulator 10 o 1 o 1 1 0 wi data I data if w - 1 I 3/4 8/16-bit

SBB = Subtract with borrow:
Reg/memory and register to either 10 00 1 1 o d w I mod reg rm I 3/10
Immediate from register/memory 11 OOOOOswl mod 0 11 rm I data I data If s w ~ 0 1 I 4/16

Immediate from accumulator 10 o 0 1 1 1 0 wi data I data ifw - 1 I 3/4 8/16-bit

DEC = Decrement:
Register/memory 11 11 1 1 1 1 wi mod 001 rm I 3/15
Register 10 1 0 0 1 r~ 3

CMP = Compare:
Register/memory with register 10 o 1 1 1 0 1 wi mod reg rm I 3/10
Register with register/memory 10 o 1 1 1 0 0 wi mod reg r'm I 3/10
Immediate with registerimemory 11 OOOOOswl mod 111 r'm I data I data if s w ~ 0 1 I 3/10
Immediate with accumulator 10 o 1 1 1 1 0 wi data I data if w-1 I 3/4 8/16-bit
NEG = Change sign 11 11 1 o 1 1 wi mod 0 11 r'm I 3

AAA '" ASCII adjust for add 10 o 1 1 o 1 CD 8
DAA - Decimal adjust for add

10 o 1 0 0 1 CD 4
AAS ~ ASCII adjust for subtract 10 o 1 1 1 lDJ 7
DAS = Decimal adjust for subtract 10 o 1 o 1 1 CIJ 4

MUl·~ Multiply (unsigned)' 11 11 1 o 1 1 wi mod 100 rm I
Register-Byte 26-28
Register-Word 35-37
Memory-Byte 32-34
Memory-Word 41-43

IMUl = Integer multiply (signed) 11 11 1 o 1 1 wi mod 1 01 r.'m I
Register-Byte 25-28
Register-Word 34-37
Memory-Byte 31-34
Memory-Word 40-43

I~U~.~.ltJtege~illl~e~iat~~\itiPIY
(Signed}: 10 f 1 .. 0 lOs t! mod.reg ... tim I data I dataifS9G 1. 1 22..;25/2$,;..32

.. \
DIV = Divide (unsigned) 11 11 1 o 1 1 wi mod 110 r'm I
Register-Byte 29
Register-Word 38
Memory-Byte 35
Memory-Word 44

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

H-2

ASM86 Instruction Set Memory

186 INSTRUCTION SET SUMMARY (Continued)

186
Clock Comments

FUNCTION FORMAT Cycles

ARITHMETIC (Continued):

IDIV = Integer divide (signed): [III1 011 wi mod 111 r/~ 44-52
Register-Byte
Register-Word 53-61
Memory-Byte 50-58
Memory-Word 59-67
AAM = ASCII adjust for multiply 11 1 0 1 o 1 0 01000010101 19
AAD = ASCII adjust for divide 11 1 0 1 o 1 0 11000010101 15
CBW == Convert byte to word o:=:IT1 1 0 0 o I 2
CWD .~ Convert word to double word o:=:IT1 1 0 0 1 I 4

LOGIC
Shift/Rotate Instructions:
Register/Memory by 1 mod TTT rim 2/15
Register/Memory by CL 5+n/17+n

TTT Instruction
o 0 0 ROL
o 0 1 ROR
o 1 0 RCL
o 1 1 RCR
1 0 0 SHLISAL
1 0 1 SHR
111 SAR

AND=And:
Reg/memory and register to either @TI0 0 0 d wi mod reg rim 3/10

Immediate to register/memory [EoooOwl mod 100 rim data data if w~ 1 4/16
Immediate to accumulator @TI0010wl data data~ 3/4 8/16-bit

TEST = And function to lIags. no result:
Register/memory and register [Eo010wl mod reg rim 3/10
Immediate data and register/memory ITJ:I1011 wi mod 000 rim data data if w = 1 4/10
Immediate data and accumulator ITTIO 100 wl- data data~ 3/4 8/16-bit

OR=Or:
Reg/memory and register to either @J::I010dwl mod reg rim 3/10
Immediate to register/memory [IIToOOOwl mod 001 rim (lata dataifw=1 4/16
Immediate to accumulator @]}0110wl data data~ 3/4 8/16-bit

XOR = Exclusive or:
Reg/memory and register to either @J}100dwl mod reg rim 3/10
Immediate to register/memory [IITOOOOwl mod 11 0 rim data data ifw= 1 4/16
Immediate to accumulator @J}1010wl data data~ 3/4 8/16-bit
NOT = Invert register/memory IT:II1011 wi mod 0 10 rim 3

STRING MANIPULATION:
MOVS = Move byte/word [iJl0010wl 14
CMPS = Compare byte/word rr::ITO 0 11 wi 22
SCAS = Scan byte/word rr::IT0 111 w! 15
LODS = Load byte/wd to ALIAX rr::IT0 11 0 wi 12
STOS = Stor bytelWd from ALIA rr::IT0 101 wi

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

H-3

Instruction Set Memory

186 INSTRUCTION SET SUMMARY (Continued)

FORMAT

11 11 1 0 0 1 011010010wl

11 11 1 0 0 1 z 11 0 1 0 0 1 1 Wi

11 11 1 0 0 1 z 11 0 1 0 1 1 1 Wi

11 11 1 0 0 1 011010110Wl

011010101Wl

11 1 1 01 0 0 0 disp-Iow disp-high

11 111 111 1 1 mod 0 10 r m

11 o 0 1 1 0 1 o I segment offset

1 segment selector

11 111111 1 mod 0 11 r m (mod I 11)

jump:

11 1 1 0 1 0 1 11 disp-Iow

11 1 1 0 1 0 0 11 disp-Iow disp-high

111111 1 1 mod 100 r m

11 1 1 0 1 0 1 0 I segment offset

1 segment selector

11 111111 1 1 mod 1 01 r m (mod f 11)

11 10000IJ]

11 10000101 data-low data-high

11 10010IJ]

immediate to SP 11 1 0 0 1 0 1 0 1 data-low data-high

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

lI-4

186
Clock
Cycles

8+8n
5+22n
5+15n
6+11 n

14
13/19

23

38

13
13

11/17

13

26

16
18
22

25

ASM86

Comments

ASM86

186 INSTRUCTION SET SUMMARY (Continued)

FUNCTION FORMAT

CONTROL TRANSFER (Continued):

JE/JZ=Jumponequalzero @TI:=1=0=1 =o=O==:::=====diS=P==~
JLlJNGE = Jump on lessmot greater or equal @TI:=1=1==1 =o=O==:::=====diS=P==~
JLE/JNG = Jump on less or equalmot greater@TI=1=1==1 =1 =O=*====d=iS=P==~
JB/JNAE = Jump on belowiOot above or equal@TI=1 =0=0=1 =O==:::====d=iS=P==~
JBE/JNA = Jump on below or equalmot above@TI=1=0==1 =1 =O==:::====d=iS=P==~
JP/JPE = Jump on paritrparity even@TI=1=1==0=1=0:::::!:====d=iS=P=====:

JO ~ Jump on overflow@TI:=1=0==0=0=0:::::!:====d=iS=P=====:

JS = Jump on sign @TI:=1=1==0 =O=O:::::!:====d=iS=P==~
JNE/JNZ = Jump on not equalmot zero CQJ:I:=1=0==1 =0=1:::::!:=====diS=P==~
JNLlJGE = Jump on not lessigreater or equal CQJ:I:=1=1==1 =0=1~:=====diS=P==~
JNLE/JG = Jump on not less or equal/greater CQJ:I:=1=1=1 =1 =1::;:=====diS=P==~
JNB/JAE = Jump on not below/above or equal CQJ:I:=1=0=0 =1 =1=1;=====diS=P==~
JNBE/JA = Jump on not below or equal,above CQJ:I:=1=0=1 =1 =1=:::=====diS=P==~
JNP/JPO = Jump on not paripar odd CQJ:I:=1=1==0 =1 =1=:::=====di=SP==~
JNO = Jump on not overflow CQJ:I:=1=0==0 =0=1~:=====di=SP==~
JNS = Jump on not sign CQJ:I:=1=1==0 =0=1~:=====di=SP=====:1
LOOP = Loop ex times o:::J:1:=o=o==o =1 =O~:=====di=SP=====:1
LOOPZ/LOOPE ~ Loop while zerofequal o:::J:1~1==1 =1 :::0=0=0:::0=:::;:1=====di:::SP=====:1

LOOPNZ/LOOPNE = Loop while not zero,equal o:::J:1=o=o=o =O=O=:::====d=iS=P==~1
JCXZ = Jump on ex zero o:::J:1...:.0...,;0:....;;,..0 _1_1--L ___ d_iS...!.p_---l1

INT:::: Interrupt:
Type specified

Type 3

INTO = Interrupt on overflow

IRET = Interrupt return

/I:TI0110.11

/I:TI011001

/I:TIO 11101

..... ,

type

\

ii··i

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

Instruction Set Memory

186
Clock
Cycles

4/13

4/13

4/13

4/13

4/13

4/13

4/13

4/13

4/13
4/13

4/13

4/13

4/13
4/13

4/13

4/13
5/15
6/16
6/16
16
5

47

45

48/4

28

"",Y

Comments

13 if JMP
taken

4 if JMP
not taken

JMP taken/
JMP not taken

I .••.•• •.•. i' •.

if I NT. taken/
if INT. not

taken

H-5

Instruction Set Memory ASM86

186 INSTRUCTION SET SUMMARY (Continued)

186

FUNCTION FORMAT
Clock Comments
Cycles

PROCESSOR CONTROL
CLC = Clear carry 111110i[I] 2
CMC = Complement carry 111101011 2
STC = Set carry 111110~ 2
CLD ~ Clear direction 1 1 1 1 1 1 i[I] 2
STD = Set direction 111111 [I] 2
CLI = Clear interrupt 111110~ 2
STI = Set interrupt 111110~ 2
HLT= Halt 1111011[gJ 2
WAIT = Wait 1 00110111 6 if test = a
LOCK = Bus lock prefix 1111 OO~ 2

ESC = Processor Extension Escape 10011TTTI mod LLL rim I 6
(TTT LLL are opcode to processor extension)

-
Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

H-6

ASM86

FOOTNOTES

The effective Address (EA) of the memory operand is
computed according to the mod and rim fields:

if mod = 11 then rim is treated as a REG fie,ld

if mod = 00 then OISP = 0*, disp-Iow and disp-high

are absent

if mod = 01 then OISP = disp-Iow sign:.extended to

16-bits, disp-high is absent

if mod = 10 then OISP = disp-high: disp-Iow

if rim = 000 then EA = (BX) + (SI) + OISP

if rim = 001 then EA = (BX) + (01) + OISP

if rim = 010 then EA = (BP) + (SI) + OISP

if rim = 011 then EA = (BP) + (01) + OISP

ifr/m = 100 then EA = (SI) + OISP

if rim = 101 then EA = (01) + OISP

if rim = 110 then EA = (BP) + OISP*

if rim = 111 then EA = (BX) + OiSP

OISP follows 2nd byte of instruction (before data if
required)

*except if mod = 00 and rim = 110 then EA = disp-hi,gh: disp-Iow.

SEGMENT OVERRIDE PREFIX

[Q 0 1 reg 1 1 0]

reg is assigned according to the following:

Segment
reg Register

00 ES
01 CS
10 SS
11 OS

Instruction Set Memory

REG is assigned according to the following table:

16-Bit (w = 1) 8-Bit (w = 0)
000 AX 000 AL
001 CX 001 CL
010 OX 010 OL

011 BX 011 BL

100 SP 100 AH

101 BP 101 CH
110 SI 110 OH
111 01 111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
mgister. The physical addresses of the destination op
erands of the string primitive operations (those ad
dressed by the 01 register) are computed using the ES
segment, which may not be overridden.

H-7

17-bit number, 3-2
186 Clocks, H-I-H-7
186 Instruction Set Summary, H-I-H-7
8086/8087/8088 Development tools, vi, 1-1, 1-2
8086/8088 flags

(see Flags)
8087 Control word, 6-110
8087 Data types, 3-1, 3-2, 6-112
8087 Emulators, 6-116
8087 environment, 6-109
8087 Exception pointers, 6-112
8087 Rounding masks, 6-114
8087 Status word, 6-109
8087 Tag word, 6-111

AAA, ASCII Adjust for Addition, 6·21
AAD, ASCII Adjust for Division, 6-22
AAM, ASCII Adjust for Multiplication, 6-23
AAS, ASCII Adjust for Subtraction, 6-24
ABS, external type, 5-2
ADC, Add with Carry, 6-25
ADD,6-26
addition operator, +, 4-12
addressability of data/code, 1-9, 2-5, 4-14-4-1.5
address expression, 3-4, 2-6, 2-7, 4-7--4-8
addressing modes, 4-3, 6-1

based address, 4-4
based indirect address, 4-4, 4-18
direct address, 4-3
indexed address, 4-4
register indirect address, 4-3, 4-18

align-type, segment attribute, 2-2
AND, Logical And, 4-13
AND, Logical expression operator, 6-27
anonymous references, 4-5, 6-5
arithmetic operators, 4-10-A-12
Assembly language, 1-1
assembly language statements, 1-5
ASSUME directive, 1-9,2-5-2-8,4-5,4-14,4-18
AT, Segment combine-type, 2-3, 4-9
attribute operators

attribute overriding operators, 4-4-4-16
attribute value operators, 4-17-4-21

base relocatability, 4-9, 4-18
BOUND, check array, 6-28
BYTE

external variable type, 5-2
segment alignotype, 2-2
variable type operand, 3-18,4-16,4-17

CALL,6-29
CBW, Convert Byte to word, 6-31
Character Set, 1-3
CI, console input, 7-19
classname, segment attribute, 2-3
CLC, Clear Carry Flag, 6-32
CLD, Clear Direction Flag, 6-33
CLI, Clear Interrupt Flag, 6-34

INDEX

CMC, Complement Carry Flag, 6-35
eMP, Compare, 6-36
CMPS, Compare String, 6-99
CMPSB, Compare Byte String, 6-99
CMPSW, Compare Word String, 6-99
CO, console output, 7-19
CODEMACRO directive, A-I-A-17
codemacro matching, A-14
codemacro modifiers, A-4
codemacro range specifiers, A-4
codemacros, A-I-A-17
codemacro specifiers, A-3
Codemacros, list of, A-18-A-33
combine-type, segment attribute, 2-2
combining logical segments, 2-2, 2-8
COMMON, segment combine-type, 2-2
conditional jump instructions, 4-16, 6-12-6-13, 6-52
constants, 3-2, 3-5, 4-24

ASCII, 3-3, 3-7, 3-8
binary, 3-3
decimal, 3-3
decimal real, 3-2, 3-3
hexadecimal, 3-3
hexadecimal real, 3-2, 3-3
octal, 3-3

continuation lines, 1-5
CPU hardware, overview, 1-5
Crowley, Aleister, 3-4
CWD, Convert Word to Double Word, 6-37

DAA, Decimal Adjust for Addition, 6-38
DAS, Decimal Adjust for Subtraction, 6-39
data types, 3-1, 3-2
DB, Define byte directive,3-3, A-7
DD, Define directive, 3-3, A-7
debug information, control of, 3-19
DEC, Decrement, 6-40
Delimiters, 1-4, 7-20
DIV, divide, 6-41
division operator, /' 4-11
Dot operator, codemacro operator, A-12
DQ, Define word directive, 3-4
DT, Define tbyte directive, 3-4
DUP, repeated data initialization, 3-7-3-8
lDW, Define word directive, 3-3, A-7
lDWORD

external variable type, 5-2
variable type operand, 3-18, 4-16, 4-17

END directive, 5-3-5-5
ENTER, high level entry, 6-43
EQ, Relational expression operator, 4-12
EQU directive, 4-17, 4-24
ESC, Escape, 6-42
EVEN directive, 3-19
expression operands, 4-2, 4-6-4-8

address expressions, 4-7-4-8
numbers, 4-2, 4-6, 4-25

EXTRN directive, 4-9, 4-10, 5-1-5-3

Index-l

Index

F2XMI, Calculate, 6-123
F ABS, absolute value, 6-124
FADD, add real, 6-125
FADDP, Add real and pop, 6-126
FAR

external label type, 5-2
label type operand, 3-18, 4-16, 4-17
PROC type, 3-17

FBLD, Load packed decimal, 6-127
FBSTP, Store packed decimal, 6-128
FCHS, change sign, 6-129
FCLEX, clear exceptions, 6-130
FCOM, Compare real, 6-131
FCOMP, Compare real and pop, 6-133
FCOMPP, Compare real and pop twice, 6-135
FDECSTP, Decrement stack pointer, 6-137
FDISI, Disable interrupts, 6-138
FDIV, Divide real, 6-139
FDIVP, Divide real and pop, 6-140
FDIVR, Reversed divide real, 6-141
FDIVRP, Reversed divide real and pop, 6-142
FENI, Enable interrupts, 6-143
FFREE, Free stack element, 6-144
FIADD, Add integer, 6-145
FICOM, Compare integer, 6-146
FICOMP, Compare integer and pop, 6-148
FIDIV, Divide integer, 6-150
FIDIVR, Reversed divide integer, 6-151
FILD, Load integer, 6-152
FIMUL, Multiply integer, 6-153
FINCSTP, Increment stack pOinter, 6-154
FINIT , Initialize processor, 6-155
FIST, Store integer, 6-156
FISTP, Store integer and pop, 6-157
FISUB, Subtract integer, 6-158
FISUBR, Reversed subtract integer, 6-159
Flags, 6-4, 6-8, 6-14, 6-16, B-I-B-3
FLD, Load real, 6-160
FLDCW, Load control word, 6-161
FLDENV, Load 8087 environment, 6-162
FLDL2E, Load logze, 6-165
FLDL2T, Load logzl0, 6-166
FLDLG2, Load logI02, 6-163
FLDLN2, Load loge2, 6-164
FLDPI, Load II, 6-167
FLDZ, Load +0.0,6-168
FLD1, Load + 1.0, 6-169
Floating Point Stack, 4-2, 6-108
FMUL, Multiply real, 6-170
FMULP, Multiply read and pop, 6-171
FNCLEX, Clear exceptions with no WAIT, 6-130
FNDISI, Disable interrupts with no WAIT, 6-138
FNENI, Enable interrupts with no WAIT, 6-143
FNINIT, Initialize processor with no WAIT, 6-155
FNOP, No operation, 6-172
FNSAVE, Save 8087 state with no WAIT, 6-178
FNSTCW, Store control word with no WAIT, 6-183
FNSTENV, Store 8087 environment with no WAIT, 6-184
FNSTSW, Store 8087 status word with no WAIT, 6-187
forward references, 1-3, 2-7
FPATAN, Partial arctangent, 6-173
FPREM, Partial remainder, 6-174
FPT AN, Partial tangent, 6-175
FRNDINT, Round to integer, 6-176
FRSTOR, Restore 8087 state, 6-177

Index-2

FSAVE, Save 8087 state, 6-178
FSCALE, Scale, 6-180
FSQRT, Square root, 6-181
FST, Store real, 6-182
FSTCW, Store control word, 6-183
FSTENV, Store 8087 environment, 6-184
FSTP, Store real and pop, 6-186
FSTSW, Store 8087 status word, 6-187
FSUB, Subtract real, 6-188
FSUBP, Subtract real and pop, 6-189

ASM86

FSUBR, Reversed subtract real, 6-190
FSUBRP, Reversed subtract real and pop, 6-191
FTST, Test, 6-192
FWAIT, CPU WAIT alternate form, 6-193
FXAM, Examine, 6-194
FXCH, Exchange, 6-195
FXTRACT, Extract exponent and significand, 6-196
FYL2X, Calculate Y logzx, 6-198
FYL2Pl, Calculate Y log2(X + 1), 6-199

GE, Relational expression operator, 4-12
GROUP directive, 2-8, 4-9, 4-18
GT, Relational expression operator, 4-12

HIGH operator, 4-10
HLT, Halt, 6-44

Identifiers, 1-4
indeterminate initialization of data, 3-6
initializing a segment register, 2-6, 2-8, 4-18, 5-3-5-5, F-2
IDIV, Integer Divide, 6-45
IMUL, Integer Multiply, 6-46
IN, Input byte or word, 6-48
INC, Increment, 6-49
INPAGE, segment align-type, 2-2
INS, input 10 address to memory, 6-100
instruction operands, 4-1, 4-2

immediate, 4-2
register, 4-2, 6-3
memory, 4-3, 6-1-6-3

instruction statements, 4-1, 6-1
INT, Interrupt, 6-50
integer constants, 3-2
INTO, Interrupt on Overflow, 6-50
Interrupt Procedures, G-14
interrupts, 6-13-6-14
IRET, Interrupt Return, 6-51

JA, Jump or Above, 6-52
JAE, Jump or Above or Equal, 6-52
JB, Jump or Below, 6-52
JBE, Jump or Below or Equal, 6-52
JC, Jump or Carry Flag, 6-52
Jcond, conditional jump instructions

(see conditional jump instructions)
JCXZ, Jump or CX Zero, 6-52
JE, Jump or Equal, 6-52
JG, Jump or Greater, 6-52
JGE, Jump or Greater or Equal, 6-52
JL, Jump or Less, 6-52
JLE, Jump or Less or Equal, 6-52
JMP, Jump, 6-54-6-55
JNA, Jump or Not Above, 6-52
JNAE, Jump or Not Above or Equal, 6-52
JNB, Jump or Not Below, 6-52

ASM86

JNC, Jump on No Carry Flag, 6-52
JNBE, Jump or Not Below or Equal, 6-52
JNE, Jump or Not Equal, 6-52
JNG, Jump or Not Greater, 6-52
JNGE, Jump or Not Greater or Equal, 6-52
JNL, Jump or Not Less, 6-52
JNLE, Jump or Not Less or Equal, 6-52
JNO Jump or Not Overflow Flag, 6-52
JNP, Jump or Not Parity Flag, 6-52
JNS, Jump or Not Sign Flag, 6-52
JNZ, Jump or Not Zero Flag, 6-52
JO, Jump or Overflow Flag, 6-52
JP, Jump or Parity Flag, 6-52
JPE, Jump or Parity Even, 6-52
JPO, Jump or Parity Odd, 6-52
JS, Jump or Sign, 6-52
JZ, Jump or Zero Flag, 6-52

label
attributes of, 3-1-3-2
defining, 3-2, 3~15-3-18, 4-1, 4-24
operand of instruction or expression, 4-3

LABEL directive, 3-17-3-18,4-17
LAHF, Load AH with Flags, 6-56
LDS, Load Pointer into PS, 6-57
LE, Relational expression operator, 4-12
LEA, Load Effective Address, 6-58 .
LEAVE, high level exit, 6-59
LENGTH operator, 4-20
LES, Load pointer into ES, 6-57
Location counter ($), 3-18
LOCK, Lock Bus, 6-60
LODS, Load String, 6-100
LODSB, Load byte string, 6-100
LODSW, Load word string, 6-100
logical address, 1-8
logical segments

(see segments)
logical operators, 4-13
LOOP, 6-61
LOOPE, Loop while Equal, 6-61
LOOPNE, Loop while Not Equal, 6-61
LOOPNZ, Loop while Not Zero, 6-61
LOOPZ, Loop while Zero, 6-61
LOW operator, 4-10
LT, Relational expression operator, 4-12

Macro Processor Language (MPL), 1-5
arguments to macros, 7-6

-arithmetic expressions, 7-11
bracket function, 7-10
call-literally character (), 7-6

. CI, console input, 7-19
CO, console output, 7-19
comments as macros, 7-8
conditional assembly, 7-14
console I/O

(see CI, CO, IN, OUT under Macro Processing
Language)

DEFINE function, 7-2
delimiters

comma, 7-6
identifier, 7-20
literal,7-21
other, 7-20

EQ, relational operator, 7-11
EQS, string compare function, 7-12
Escape function, 7-9
EVAL function, 7-12
EXIT function, 7-16
GT, relational operator, 7-11
GTS, string compare function, 7-12
IF ... THEN ... [ELSE ...] Fl function, 7-14
IN function, 7-19
LE, relational operator, 7-11
LEN function, 7-17
LES, string compare function, 7-12
Local Symbols, 7-7
Logical expressions, 7-11, 7-12
MATCH function, 7-18
Metacharacter (%), 7-11
NE, relational operator, 7-11
NES, string compare function, 7-12
OUT function, 7-19
parameters, 7-6
REPEAT function, 7-16
SET, Built-in macro function, 7-11
String compares, 7-12
SUBSTR function, 7-17
values, range of; 7-11
WHILE function, 7-15

MASK operator, 4-22
Memory Segmentation model, 1-8
MEMORY, segment combine-type, 2-2
mnemonic, 1-1, 1-3,4-1,4-24,6-1,6-6,6-20,6-122
MOD, expression operator, 4-11
modrm byte, 6-2, 6-16
MODRM, Codemacro directive, A-6
module, source, 1-9,5-1, 5-5
MOV, Move data, 6-62
MOVS, Move string, 6-100
MOVSB, Move byte string, 6-100
MOVSW, Move word string, 6-100
MUL, Multiply, 6-64
multiplication operator, *, 4-11

NAME directive, 5-5
NE, Relational expression operator, 4-12
NEAR

external label type, 5-2
label type operand, 3~ 18, 4-16, 4-17
PROC type, 3-17

NEG, Negate, 6-65
NOP, No operation, 6-66
NOSEGFIX, Codemacro directive, A-5
NOT, Logical expression operator, 4-13
NOT, Logical Not, 6-67
NOTHING, Assume operand, 2-5, 2-7
numbers, 4-6, 4-10, 4-24

OFFSET operator, 2-9, 4-15, 4-18
offset relocatability, 4-9, 4-18
offset, variable/label attribute, 1-8,3-1,3-4,3-6,3-15,

4-8, 4-9
operands, expression

(see expression operands)
operands, instruction

(see instruction operands)
operator precedence, 4-23, 7-11

Index

Index-3

Index

operators, expression
arithmetic, 4-10-4-12
attribute, 4-14-4-21
logical, 4-13
record-specific, 4-21-4-23
relational,4-12-4-13

OR, Logical expression operator, 4-13
OR, Logical Or, 6-68
ORG directive, 3-18
OUT, Output byte or word, 6-69
OUTS, 6-100

PAGE, segment align-type, 2-2, 4-9
paragraph number

segment base pointer, 1-8, 2-7
variable/label attribute, 3-1, 4-18

parameter passing, G-4-G-12
PARA, Segment align-type, 2-2, 4-9
physical address, 1-8
physical segments, 1-8, 1-9

(see segments)
pointer to variable/labe, 3-6, 6-7
POP, Pop from stack, 6-70
POPA, Pop All Registers, 6-71
POPF, Pop Flags, 6-72
Prefix, instructions, 4-1
PREFX, Codemacro directive, A-2
PROC/ENDP directives, 3-2,3-15-3-17
PROCLEN, Codemacro directive, A-14
program linkage, 5-1-5-5
program module

(see module, source)
PTR operator, 4-15-4-16
PUBLIC directive, 5-1
PUBLIC, segment combine-type, 2-2, 4-9
PURGE directive, 3-19
PUSH, Push onto stack, 6-73
PUSHA, Push All Registers, 6-75
PUSHF, Push Flags, 6-76

QWORD
external variable type, 5-2
variable type operand, 4-16, 4-17

RCL, Rotate through Carry Left, 6-77·
RCR, Rotate through Carry Right, 6~ 79
real constants, 3-2-3-3
RECORD directive, 3-8
record field-name, usage as shift count, 4-22
Records

allocation and initialization, 3-8, 3-10, A-7
definition, 3-8-3-9
introduction, 3-8
record-specific operators, 4-21-;4-23

Record-specific operators, 4-21-4-23
register expression, 4-3-4-6, 4-7-4-8, 4-25
Registers, 4-24

base or pointer registers, 1-6, 4-3, 4-4, 4-5, 4-7
general registers, 1-6
implicit use of, 1-7,4-4-4-6,4-15,6-5
segment registers, 1-7, 4-4-4-6

relational operators, 4-12-4-13
RELB, Codemacro directive, A-8
relocatable expressions, 4-9, 4-12
relocatability, 4-9

Index-4

REL W, Codemacro directive, A-8
REP, Repeat, 6-81
REPE,6-81
repeated initialization of data, 3-7-3-8
REPNE,6-81
REPNZ, 6-81
REPZ, 6-81
reserved words, 6-1
RET, Return, 6-82
RFIX, Codemacro directive, A-I0
RFIXM, Codemacro directive, A-IO
RNFIX, Codemacro directive, A-II
RNFIXM, Codemacro directive, A-12
ROL, Rotate Left, 6-83
ROR, Rotate Right, 6-85
RWFIX, Codemacro directive, A-I3

SAHF, Store AH into Flags, 6-87
SAL, Shift Arithmetic left, 6-88
SAR, Shift Arithmetic Right, 6-90
SBB, Subtract with Borrow, 6-92
SCAS, Scan string, 6-100
SCASB, Scan byte string, 6-100
SCASW, Scan word string, 6-100
scope of identifiers, 1-4, 3-15
SEGFIX, Codemacro directive, A-4

ASM86

segment attribute of variables/labels, 3-1, 3-4, 3-6, 4-8, 4-9
SEGMENT/ENDS directive, 1-9,2-1-2-5,4-9
Segment override, 4-14-4-15
Segment Override Prefix, 2-6, 4-14-4-15, 6-2
segment register, default usage, 4-4-4-6
segments

logical segments, 1-8, 2-1, 4-9
physical segments, 1-8, 2-1, 4-9

SEG operator, 2-7, 2-9, 4-18
Separators, 1-4
shift count, record name, 4-22
SHL, expression operator, 4-11
SHL, Shift Left, 6-88
SHORT operator, 4-16
SHR, expression operator, 4-11
SHR, Shift Right, 6-94
SIZE operator, 4-21
ST, 8087 registers, 4-2
STACK, segment combine-type, 2-2, 4-9
STC, Set Carry Flag, 6-96
STD, Set Direction Flag, 6-97
STI, Set Interrupt Flag, 6-98
storage of 16-bit data in memory
STOS, Store string, 6-100
STOSB, Store byte string, 6-100
STOSW, Store word string, 6-100
String instructions, 4-5, 6-4-6-6, 6-10-6-12, 6-99
strings

(see constants, ASCII)
structure fields, accessing of, 4-8
Structures

allocation and initialization, 3-12-3-14, 4-8
definition, 3-11-3-12
introduction, 3-10

STRUC/ENDS directive, 3-11
SUB, subtract, 6-102
subtraction operator, -, 4-12
syntax notation, 1-10

ASM86

TBYTE
external variable type, 5-2
variable type operand, 3-18, 4-16, 4-17

TEST,6-103
THIS operator, 4-17
Tokens, 1-4
TYPE operator, 4-19-4-20
typing of operands, 1-3,4-15,4-17
type of variable or label, 3-1-3-2, 3-4

variable
attributes of, 3-1, 4-9
defining, 3-3-3-5, 4-24
initializing, 3-4, 3-5-3-8
operand of instruction or expression, 4-3

WAIT,6-104
WIDTH operator, 4-23

WORD
external variable type, 5-2
Segment align-type, 2-2
Variable type operand, 3-18, 4-16, 4-17

XCHG, Exchange, 6-105
XLAT, Translate, 6-106
XLATB, T.ranslate, 6-106
XOR, Logical Exclusive Or, 4-13
XOR, Logical expression operator, 6-107

-1-, addition operator, 4-12
I, division operator, 4-11
'?, indeterminate initialization, 3-6, 3-7, 4-17
$, location counter symbol, 3-18, 4-17
*, multiplication operator, 4-11
'?'!SEG, the default segment, 2-5
--, subtraction operator, 4-12

Index

Index-5

ASM86 Language Reference Manual
121703-003 intJ

REQUEST FOR F~EADER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi
cation. If you have any comments on the product that this publication describes, please contact your Intel repre
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1 . Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _____________ _

NAME DATE _______ __

TITLE __ __

COMPANY NAME/DEPARTMENT

ADDRESS ________ ~ ___ __

CITY _____________________ _ STATE ___________ _ ZI P CODE ________ __

(COUNTRY)

Please check here if you require a written reply. D

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

SOFTWARE

0255/7.5K/0385/WCP/AD

